Sample records for integrated experiments networks

  1. Defense switched network technology and experiments program

    NASA Astrophysics Data System (ADS)

    Weinstein, C. J.

    1983-09-01

    This report documents work performed during FY 1983 on the DCA-sponsored Defense Switched Network Technology and Experiments Program. The areas of work reported are: (1) development of routing algorithms for application in the Defense Switched Network (DSN); (2) instrumentation and integration of the Experimental Integrated Switched Network (EISN) test facility; (3) development and test of data communication techniques using DoD-standard data protocols in an integrated voice/data network; and (4) EISN system coordination and experiment planning.

  2. The Social Classroom: Integrating Social Network Use in Education

    ERIC Educational Resources Information Center

    Mallia, Gorg, Ed.

    2014-01-01

    As technology is being integrated into educational processes, teachers are searching for new ways to enhance student motivation and learning. Through shared experiences and the results of empirical research, educators can ease social networking sites into instructional usage. "The Social Classroom: Integrating Social Network Use in…

  3. Network Speech Systems Technology Program

    NASA Astrophysics Data System (ADS)

    Weinstein, C. J.

    1980-09-01

    This report documents work performed during FY 1980 on the DCA-sponsored Network Speech Systems Technology Program. The areas of work reported are: (1) communication systems studies in Demand-Assignment Multiple Access (DAMA), voice/data integration, and adaptive routing, in support of the evolving Defense Communications System (DCS) and Defense Switched Network (DSN); (2) a satellite/terrestrial integration design study including the functional design of voice and data interfaces to interconnect terrestrial and satellite network subsystems; and (3) voice-conferencing efforts dealing with support of the Secure Voice and Graphics Conferencing (SVGC) Test and Evaluation Program. Progress in definition and planning of experiments for the Experimental Integrated Switched Network (EISN) is detailed separately in an FY 80 Experiment Plan Supplement.

  4. Lunar-Ultraviolet Telescope Experiment (LUTE) integrated program plan

    NASA Technical Reports Server (NTRS)

    Smith, Janice F. (Compiler); Forrest, Larry

    1993-01-01

    A detailed Lunar Ultraviolet Telescope Experiment (LUTE) program plan representing major decisions and tasks leading to those decisions for program execution are presented. The purpose of this task was to develop an integrated plan of project activities for the LUTE project, and to display the plan as an integrated network that shows the project activities, all critical interfaces, and schedules. The integrated network will provide the project manager with a frame work for strategic planning and risk management throughout the life of the project.

  5. Integration of multi-omics data for integrative gene regulatory network inference.

    PubMed

    Zarayeneh, Neda; Ko, Euiseong; Oh, Jung Hun; Suh, Sang; Liu, Chunyu; Gao, Jean; Kim, Donghyun; Kang, Mingon

    2017-01-01

    Gene regulatory networks provide comprehensive insights and indepth understanding of complex biological processes. The molecular interactions of gene regulatory networks are inferred from a single type of genomic data, e.g., gene expression data in most research. However, gene expression is a product of sequential interactions of multiple biological processes, such as DNA sequence variations, copy number variations, histone modifications, transcription factors, and DNA methylations. The recent rapid advances of high-throughput omics technologies enable one to measure multiple types of omics data, called 'multi-omics data', that represent the various biological processes. In this paper, we propose an Integrative Gene Regulatory Network inference method (iGRN) that incorporates multi-omics data and their interactions in gene regulatory networks. In addition to gene expressions, copy number variations and DNA methylations were considered for multi-omics data in this paper. The intensive experiments were carried out with simulation data, where iGRN's capability that infers the integrative gene regulatory network is assessed. Through the experiments, iGRN shows its better performance on model representation and interpretation than other integrative methods in gene regulatory network inference. iGRN was also applied to a human brain dataset of psychiatric disorders, and the biological network of psychiatric disorders was analysed.

  6. Integration of multi-omics data for integrative gene regulatory network inference

    PubMed Central

    Zarayeneh, Neda; Ko, Euiseong; Oh, Jung Hun; Suh, Sang; Liu, Chunyu; Gao, Jean; Kim, Donghyun

    2017-01-01

    Gene regulatory networks provide comprehensive insights and indepth understanding of complex biological processes. The molecular interactions of gene regulatory networks are inferred from a single type of genomic data, e.g., gene expression data in most research. However, gene expression is a product of sequential interactions of multiple biological processes, such as DNA sequence variations, copy number variations, histone modifications, transcription factors, and DNA methylations. The recent rapid advances of high-throughput omics technologies enable one to measure multiple types of omics data, called ‘multi-omics data’, that represent the various biological processes. In this paper, we propose an Integrative Gene Regulatory Network inference method (iGRN) that incorporates multi-omics data and their interactions in gene regulatory networks. In addition to gene expressions, copy number variations and DNA methylations were considered for multi-omics data in this paper. The intensive experiments were carried out with simulation data, where iGRN’s capability that infers the integrative gene regulatory network is assessed. Through the experiments, iGRN shows its better performance on model representation and interpretation than other integrative methods in gene regulatory network inference. iGRN was also applied to a human brain dataset of psychiatric disorders, and the biological network of psychiatric disorders was analysed. PMID:29354189

  7. Multi-attribute integrated measurement of node importance in complex networks.

    PubMed

    Wang, Shibo; Zhao, Jinlou

    2015-11-01

    The measure of node importance in complex networks is very important to the research of networks stability and robustness; it also can ensure the security of the whole network. Most researchers have used a single indicator to measure the networks node importance, so that the obtained measurement results only reflect certain aspects of the networks with a loss of information. Meanwhile, because of the difference of networks topology, the nodes' importance should be described by combining the character of the networks topology. Most of the existing evaluation algorithms cannot completely reflect the circumstances of complex networks, so this paper takes into account the degree of centrality, the relative closeness centrality, clustering coefficient, and topology potential and raises an integrated measuring method to measure the nodes' importance. This method can reflect nodes' internal and outside attributes and eliminate the influence of network structure on the node importance. The experiments of karate network and dolphin network show that networks topology structure integrated measure has smaller range of metrical result than a single indicator and more universal. Experiments show that attacking the North American power grid and the Internet network with the method has a faster convergence speed than other methods.

  8. A Hospital Local Area Communication Network—The First Year's Experience

    PubMed Central

    Simborg, D. W.; Chadwick, M.; Whiting-O'Keefe, Q. E.; Tolchin, S. G.; Stewart, R. L.; Kahn, S. A.; Bergan, E. S.; Gafke, G. P.

    1982-01-01

    A local area communications network has been implemented at the University of California, San Francisco Hospital to integrate major components of the hospital's information system. This microprocessor-based network technology was developed by The Applied Physics Laboratory of the Johns Hopkins University. The first year's experience has demonstrated the basic feasibility of this technology in simplifying the integration of diverse hardware and software systems. Four minicomputer-based UCSF systems now use the network to synchronize key patient identification and registration information among the systems. Clinical uses of the network will begin during the second year of the project.

  9. Meditation is associated with increased brain network integration.

    PubMed

    van Lutterveld, Remko; van Dellen, Edwin; Pal, Prasanta; Yang, Hua; Stam, Cornelis Jan; Brewer, Judson

    2017-09-01

    This study aims to identify novel quantitative EEG measures associated with mindfulness meditation. As there is some evidence that meditation is associated with higher integration of brain networks, we focused on EEG measures of network integration. Sixteen novice meditators and sixteen experienced meditators participated in the study. Novice meditators performed a basic meditation practice that supported effortless awareness, which is an important quality of experience related to mindfulness practices, while their EEG was recorded. Experienced meditators performed a self-selected meditation practice that supported effortless awareness. Network integration was analyzed with maximum betweenness centrality and leaf fraction (which both correlate positively with network integration) as well as with diameter and average eccentricity (which both correlate negatively with network integration), based on a phase-lag index (PLI) and minimum spanning tree (MST) approach. Differences between groups were assessed using repeated-measures ANOVA for the theta (4-8 Hz), alpha (8-13 Hz) and lower beta (13-20 Hz) frequency bands. Maximum betweenness centrality was significantly higher in experienced meditators than in novices (P = 0.012) in the alpha band. In the same frequency band, leaf fraction showed a trend toward being significantly higher in experienced meditators than in novices (P = 0.056), while diameter and average eccentricity were significantly lower in experienced meditators than in novices (P = 0.016 and P = 0.028 respectively). No significant differences between groups were observed for the theta and beta frequency bands. These results show that alpha band functional network topology is better integrated in experienced meditators than in novice meditators during meditation. This novel finding provides the rationale to investigate the temporal relation between measures of functional connectivity network integration and meditation quality, for example using neurophenomenology experiments. Published by Elsevier Inc.

  10. Continued implementation and testing of a Neighborhood Office Center (NOC) and integration of the NOC with an administrative correspondence management information system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The concept of decentralized (remote) neighborhood offices, linked together through a self-sustaining communications network for exchanging voice messages, video images, and digital data was quantitatively evaluated. Hardware and procedures for the integrated multifunctional system were developed. The configuration of the neighborhood office center (NOC) is explained, its production statistics given, and an experiment for NOC network integration via satellite is described. The hardware selected for the integration NOC/management information system is discussed, and the NASA teleconferencing network is evaluated.

  11. Integrating Emerging Topics through Online Team Design in a Hybrid Communication Networks Course: Interaction Patterns and Impact of Prior Knowledge

    ERIC Educational Resources Information Center

    Reisslein, Jana; Seeling, Patrick; Reisslein, Martin

    2005-01-01

    An important challenge in the introductory communication networks course in electrical and computer engineering curricula is to integrate emerging topics, such as wireless Internet access and network security, into the already content-intensive course. At the same time it is essential to provide students with experiences in online collaboration,…

  12. Integrating data from biological experiments into metabolic networks with the DBE information system.

    PubMed

    Borisjuk, Ljudmilla; Hajirezaei, Mohammad-Reza; Klukas, Christian; Rolletschek, Hardy; Schreiber, Falk

    2005-01-01

    Modern 'omics'-technologies result in huge amounts of data about life processes. For analysis and data mining purposes this data has to be considered in the context of the underlying biological networks. This work presents an approach for integrating data from biological experiments into metabolic networks by mapping the data onto network elements and visualising the data enriched networks automatically. This methodology is implemented in DBE, an information system that supports the analysis and visualisation of experimental data in the context of metabolic networks. It consists of five parts: (1) the DBE-Database for consistent data storage, (2) the Excel-Importer application for the data import, (3) the DBE-Website as the interface for the system, (4) the DBE-Pictures application for the up- and download of binary (e. g. image) files, and (5) DBE-Gravisto, a network analysis and graph visualisation system. The usability of this approach is demonstrated in two examples.

  13. Discussion group networks in occupational medicine: A tool for continuing education to promote the integration of workers with disabilities.

    PubMed

    Rinsky-Halivni, Lilah; Lerman, Yehuda

    2018-04-01

    Despite their legal rights, individuals with disabilities face numerous obstacles to integration in the workplace which can result in their discharge from the labor force. Currently occupational physicians have few resources to help decide whether to integrate disabled workers in pre-placement, or in cases of return-to-work. A network of 13 discussion groups comprised of the occupational physicians of each regional clinic of a large Health Maintenance Organization (HMO) in Israel was created to deal with disability management dilemmas. A moderator compiles and shares the physicians' opinions and experiences with all network members thus assisting the consulting physician in decision-making. Successful management of three representative cases is described to illustrate real-life implementations of this network. The network enables both the consulting and other physicians to tap a large knowledge base and decision-making experience concerning cases of occupational disability management, contributing to professional development and improved service delivery. © 2018 Wiley Periodicals, Inc.

  14. UMA/GAN network architecture analysis

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Li, Wensheng; Deng, Chunjian; Lv, Yi

    2009-07-01

    This paper is to critically analyze the architecture of UMA which is one of Fix Mobile Convergence (FMC) solutions, and also included by the third generation partnership project(3GPP). In UMA/GAN network architecture, UMA Network Controller (UNC) is the key equipment which connects with cellular core network and mobile station (MS). UMA network could be easily integrated into the existing cellular networks without influencing mobile core network, and could provides high-quality mobile services with preferentially priced indoor voice and data usage. This helps to improve subscriber's experience. On the other hand, UMA/GAN architecture helps to integrate other radio technique into cellular network which includes WiFi, Bluetooth, and WiMax and so on. This offers the traditional mobile operators an opportunity to integrate WiMax technique into cellular network. In the end of this article, we also give an analysis of potential influence on the cellular core networks ,which is pulled by UMA network.

  15. Data Requirements for Ceiling and Visibility Products Development

    DTIC Science & Technology

    1994-04-13

    and Water - Cycle Experiment (GEWEX), STORM 1, and the Naval Research Laboratory’s Coastal Me- teorology Accelerated Research Initiative field... Water - Cycle Experiment HPCN High Plains Climate Network lOP Intensive Observation Period ICN Illinois Climate Network ITWS Integrated Terminal Weather

  16. A study of structural properties of gene network graphs for mathematical modeling of integrated mosaic gene networks.

    PubMed

    Petrovskaya, Olga V; Petrovskiy, Evgeny D; Lavrik, Inna N; Ivanisenko, Vladimir A

    2017-04-01

    Gene network modeling is one of the widely used approaches in systems biology. It allows for the study of complex genetic systems function, including so-called mosaic gene networks, which consist of functionally interacting subnetworks. We conducted a study of a mosaic gene networks modeling method based on integration of models of gene subnetworks by linear control functionals. An automatic modeling of 10,000 synthetic mosaic gene regulatory networks was carried out using computer experiments on gene knockdowns/knockouts. Structural analysis of graphs of generated mosaic gene regulatory networks has revealed that the most important factor for building accurate integrated mathematical models, among those analyzed in the study, is data on expression of genes corresponding to the vertices with high properties of centrality.

  17. Challenges of Integrating NASA's Space Communications Networks

    NASA Technical Reports Server (NTRS)

    Reinert, Jessica; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a significant obstacle for integration. Over the past few decades of use, user missions and network personnel alike have grown accustomed to the processes by which services are provided by the NASA communications and navigation networks. The culture established by each network has created several challenges that need to be overcome in order to effectively integrate the networks. As with any change, there has been resistance, an apprehension to explore automation of existing processes, and a working environment that attempts to indirectly influence change without mandating compliance. Overcoming technical and cultural challenges is essential to successfully integrating the networks and although the challenges are numerous, the integration of the networks promises a more efficient space communications network for NASA and its customers, as well as potential long-term cost savings to the agency. This paper, Challenges of Integrating NASA Legacy Communications Networks, will provide a brief overview of the current NASA space communications networks as well as the an overview of the process implemented while performing the SCaN Trade Studies and an introduction to the requirements driving integration of the SCaN Networks. This paper will describe in detail the challenges experienced, both technical and cultural, while working with NASA space communications network-specific personnel. The paper will also cover lessons learned during the performance of architecture trade studies and provide recommendations for ways to improve the process.

  18. Challenges of Integrating NASAs Space Communication Networks

    NASA Technical Reports Server (NTRS)

    Reinert, Jessica M.; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a significant obstacle for integration. Over the past few decades of use, user missions and network personnel alike have grown accustomed to the processes by which services are provided by the NASA communications and navigation networks. The culture established by each network has created several challenges that need to be overcome in order to effectively integrate the networks. As with any change, there has been resistance, an apprehension to explore automation of existing processes, and a working environment that attempts to indirectly influence change without mandating compliance. Overcoming technical and cultural challenges is essential to successfully integrating the networks and although the challenges are numerous, the integration of the networks promises a more efficient space communications network for NASA and its customers, as well as potential long-term cost savings to the agency. This paper, Challenges of Integrating NASA Legacy Communications Networks, will provide a brief overview of the current NASA space communications networks as well as the an overview of the process implemented while performing the SCaN Trade Studies and an introduction to the requirements driving integration of the SCaN Networks. This paper will describe in detail the challenges experienced, both technical and cultural, while working with NASA space communications network-specific personnel. The paper will also cover lessons learned during the performance of architecture trade studies and provide recommendations for ways to improve the process.

  19. Fast mapping rapidly integrates information into existing memory networks.

    PubMed

    Coutanche, Marc N; Thompson-Schill, Sharon L

    2014-12-01

    Successful learning involves integrating new material into existing memory networks. A learning procedure known as fast mapping (FM), thought to simulate the word-learning environment of children, has recently been linked to distinct neuroanatomical substrates in adults. This idea has suggested the (never-before tested) hypothesis that FM may promote rapid incorporation into cortical memory networks. We test this hypothesis here in 2 experiments. In our 1st experiment, we introduced 50 participants to 16 unfamiliar animals and names through FM or explicit encoding (EE) and tested participants on the training day, and again after sleep. Learning through EE produced strong declarative memories, without immediate lexical competition, as expected from slow-consolidation models. Learning through FM, however, led to almost immediate lexical competition, which continued to the next day. Additionally, the learned words began to prime related concepts on the day following FM (but not EE) training. In a 2nd experiment, we replicated the lexical integration results and determined that presenting an already-known item during learning was crucial for rapid integration through FM. The findings presented here indicate that learned items can be integrated into cortical memory networks at an accelerated rate through fast mapping. The retrieval of a related known concept, in order to infer the target of the FM question, is critical for this effect. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  20. Integrated cellular network of transcription regulations and protein-protein interactions

    PubMed Central

    2010-01-01

    Background With the accumulation of increasing omics data, a key goal of systems biology is to construct networks at different cellular levels to investigate cellular machinery of the cell. However, there is currently no satisfactory method to construct an integrated cellular network that combines the gene regulatory network and the signaling regulatory pathway. Results In this study, we integrated different kinds of omics data and developed a systematic method to construct the integrated cellular network based on coupling dynamic models and statistical assessments. The proposed method was applied to S. cerevisiae stress responses, elucidating the stress response mechanism of the yeast. From the resulting integrated cellular network under hyperosmotic stress, the highly connected hubs which are functionally relevant to the stress response were identified. Beyond hyperosmotic stress, the integrated network under heat shock and oxidative stress were also constructed and the crosstalks of these networks were analyzed, specifying the significance of some transcription factors to serve as the decision-making devices at the center of the bow-tie structure and the crucial role for rapid adaptation scheme to respond to stress. In addition, the predictive power of the proposed method was also demonstrated. Conclusions We successfully construct the integrated cellular network which is validated by literature evidences. The integration of transcription regulations and protein-protein interactions gives more insight into the actual biological network and is more predictive than those without integration. The method is shown to be powerful and flexible and can be used under different conditions and for different species. The coupling dynamic models of the whole integrated cellular network are very useful for theoretical analyses and for further experiments in the fields of network biology and synthetic biology. PMID:20211003

  1. Integrated cellular network of transcription regulations and protein-protein interactions.

    PubMed

    Wang, Yu-Chao; Chen, Bor-Sen

    2010-03-08

    With the accumulation of increasing omics data, a key goal of systems biology is to construct networks at different cellular levels to investigate cellular machinery of the cell. However, there is currently no satisfactory method to construct an integrated cellular network that combines the gene regulatory network and the signaling regulatory pathway. In this study, we integrated different kinds of omics data and developed a systematic method to construct the integrated cellular network based on coupling dynamic models and statistical assessments. The proposed method was applied to S. cerevisiae stress responses, elucidating the stress response mechanism of the yeast. From the resulting integrated cellular network under hyperosmotic stress, the highly connected hubs which are functionally relevant to the stress response were identified. Beyond hyperosmotic stress, the integrated network under heat shock and oxidative stress were also constructed and the crosstalks of these networks were analyzed, specifying the significance of some transcription factors to serve as the decision-making devices at the center of the bow-tie structure and the crucial role for rapid adaptation scheme to respond to stress. In addition, the predictive power of the proposed method was also demonstrated. We successfully construct the integrated cellular network which is validated by literature evidences. The integration of transcription regulations and protein-protein interactions gives more insight into the actual biological network and is more predictive than those without integration. The method is shown to be powerful and flexible and can be used under different conditions and for different species. The coupling dynamic models of the whole integrated cellular network are very useful for theoretical analyses and for further experiments in the fields of network biology and synthetic biology.

  2. Process and data fragmentation-oriented enterprise network integration with collaboration modelling and collaboration agents

    NASA Astrophysics Data System (ADS)

    Li, Qing; Wang, Ze-yuan; Cao, Zhi-chao; Du, Rui-yang; Luo, Hao

    2015-08-01

    With the process of globalisation and the development of management models and information technology, enterprise cooperation and collaboration has developed from intra-enterprise integration, outsourcing and inter-enterprise integration, and supply chain management, to virtual enterprises and enterprise networks. Some midfielder enterprises begin to serve for different supply chains. Therefore, they combine related supply chains into a complex enterprise network. The main challenges for enterprise network's integration and collaboration are business process and data fragmentation beyond organisational boundaries. This paper reviews the requirements of enterprise network's integration and collaboration, as well as the development of new information technologies. Based on service-oriented architecture (SOA), collaboration modelling and collaboration agents are introduced to solve problems of collaborative management for service convergence under the condition of process and data fragmentation. A model-driven methodology is developed to design and deploy the integrating framework. An industrial experiment is designed and implemented to illustrate the usage of developed technologies in this paper.

  3. Interim Service ISDN Satellite (ISIS) network model for advanced satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.; Hager, E. Paul

    1991-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Network Model for Advanced Satellite Designs and Experiments describes a model suitable for discrete event simulations. A top-down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ISDN modeling abstractions are added to permit the determination and performance for the NASA Satellite Communications Research (SCAR) Program.

  4. Integrated information in discrete dynamical systems: motivation and theoretical framework.

    PubMed

    Balduzzi, David; Tononi, Giulio

    2008-06-13

    This paper introduces a time- and state-dependent measure of integrated information, phi, which captures the repertoire of causal states available to a system as a whole. Specifically, phi quantifies how much information is generated (uncertainty is reduced) when a system enters a particular state through causal interactions among its elements, above and beyond the information generated independently by its parts. Such mathematical characterization is motivated by the observation that integrated information captures two key phenomenological properties of consciousness: (i) there is a large repertoire of conscious experiences so that, when one particular experience occurs, it generates a large amount of information by ruling out all the others; and (ii) this information is integrated, in that each experience appears as a whole that cannot be decomposed into independent parts. This paper extends previous work on stationary systems and applies integrated information to discrete networks as a function of their dynamics and causal architecture. An analysis of basic examples indicates the following: (i) phi varies depending on the state entered by a network, being higher if active and inactive elements are balanced and lower if the network is inactive or hyperactive. (ii) phi varies for systems with identical or similar surface dynamics depending on the underlying causal architecture, being low for systems that merely copy or replay activity states. (iii) phi varies as a function of network architecture. High phi values can be obtained by architectures that conjoin functional specialization with functional integration. Strictly modular and homogeneous systems cannot generate high phi because the former lack integration, whereas the latter lack information. Feedforward and lattice architectures are capable of generating high phi but are inefficient. (iv) In Hopfield networks, phi is low for attractor states and neutral states, but increases if the networks are optimized to achieve tension between local and global interactions. These basic examples appear to match well against neurobiological evidence concerning the neural substrates of consciousness. More generally, phi appears to be a useful metric to characterize the capacity of any physical system to integrate information.

  5. Optimization of an interactive distributive computer network

    NASA Technical Reports Server (NTRS)

    Frederick, V.

    1985-01-01

    The activities under a cooperative agreement for the development of a computer network are briefly summarized. Research activities covered are: computer operating systems optimization and integration; software development and implementation of the IRIS (Infrared Imaging of Shuttle) Experiment; and software design, development, and implementation of the APS (Aerosol Particle System) Experiment.

  6. Network speech systems technology program

    NASA Astrophysics Data System (ADS)

    Weinstein, C. J.

    1981-09-01

    This report documents work performed during FY 1981 on the DCA-sponsored Network Speech Systems Technology Program. The two areas of work reported are: (1) communication system studies in support of the evolving Defense Switched Network (DSN) and (2) design and implementation of satellite/terrestrial interfaces for the Experimental Integrated Switched Network (EISN). The system studies focus on the development and evaluation of economical and endurable network routing procedures. Satellite/terrestrial interface development includes circuit-switched and packet-switched connections to the experimental wideband satellite network. Efforts in planning and coordination of EISN experiments are reported in detail in a separate EISN Experiment Plan.

  7. A protein interaction network analysis for yeast integral membrane protein.

    PubMed

    Shi, Ming-Guang; Huang, De-Shuang; Li, Xue-Ling

    2008-01-01

    Although the yeast Saccharomyces cerevisiae is the best exemplified single-celled eukaryote, the vast number of protein-protein interactions of integral membrane proteins of Saccharomyces cerevisiae have not been characterized by experiments. Here, based on the kernel method of Greedy Kernel Principal Component analysis plus Linear Discriminant Analysis, we identify 300 protein-protein interactions involving 189 membrane proteins and get the outcome of a highly connected protein-protein interactions network. Furthermore, we study the global topological features of integral membrane proteins network of Saccharomyces cerevisiae. These results give the comprehensive description of protein-protein interactions of integral membrane proteins and reveal global topological and robustness of the interactome network at a system level. This work represents an important step towards a comprehensive understanding of yeast protein interactions.

  8. Precision Interval Estimation of the Response Surface by Means of an Integrated Algorithm of Neural Network and Linear Regression

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.

    1999-01-01

    The integration of Radial Basis Function Networks and Back Propagation Neural Networks with the Multiple Linear Regression has been accomplished to map nonlinear response surfaces over a wide range of independent variables in the process of the Modem Design of Experiments. The integrated method is capable to estimate the precision intervals including confidence and predicted intervals. The power of the innovative method has been demonstrated by applying to a set of wind tunnel test data in construction of response surface and estimation of precision interval.

  9. Integrated Verification Experiment data collected as part of the Los Alamos National Laboratory's Source Region Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzgerald, T.J.; Carlos, R.C.; Argo, P.E.

    As part of the integrated verification experiment (IVE), we deployed a network of hf ionospheric sounders to detect the effects of acoustic waves generated by surface ground motion following underground nuclear tests at the Nevada Test Site. The network sampled up to four geographic locations in the ionosphere from almost directly overhead of the surface ground zero out to a horizontal range of 60 km. We present sample results for four of the IVEs: Misty Echo, Texarkana, Mineral Quarry, and Bexar.

  10. Social Networking Tools and Teacher Education Learning Communities: A Case Study

    ERIC Educational Resources Information Center

    Poulin, Michael T.

    2014-01-01

    Social networking tools have become an integral part of a pre-service teacher's educational experience. As a result, the educational value of social networking tools in teacher preparation programs must be examined. The specific problem addressed in this study is that the role of social networking tools in teacher education learning communities…

  11. Research on a practical telecom and CATV co-network transmission system

    NASA Astrophysics Data System (ADS)

    Mao, Youju

    1998-12-01

    A practical co-network transmission system of Telecom and CATV over installed Telecom network is designed. The system, making use of WDM and other technologies, has undergone experiments and performance tests on the Public Switched Telephone Network, which illustrate that optical fiber telecommunication network could be thereby transformed into a unified broadband network integrating VOICE, DATA, and VEDIO expeditiously and conveniently.

  12. Modeling biological pathway dynamics with timed automata.

    PubMed

    Schivo, Stefano; Scholma, Jetse; Wanders, Brend; Urquidi Camacho, Ricardo A; van der Vet, Paul E; Karperien, Marcel; Langerak, Rom; van de Pol, Jaco; Post, Janine N

    2014-05-01

    Living cells are constantly subjected to a plethora of environmental stimuli that require integration into an appropriate cellular response. This integration takes place through signal transduction events that form tightly interconnected networks. The understanding of these networks requires capturing their dynamics through computational support and models. ANIMO (analysis of Networks with Interactive Modeling) is a tool that enables the construction and exploration of executable models of biological networks, helping to derive hypotheses and to plan wet-lab experiments. The tool is based on the formalism of Timed Automata, which can be analyzed via the UPPAAL model checker. Thanks to Timed Automata, we can provide a formal semantics for the domain-specific language used to represent signaling networks. This enforces precision and uniformity in the definition of signaling pathways, contributing to the integration of isolated signaling events into complex network models. We propose an approach to discretization of reaction kinetics that allows us to efficiently use UPPAAL as the computational engine to explore the dynamic behavior of the network of interest. A user-friendly interface hides the use of Timed Automata from the user, while keeping the expressive power intact. Abstraction to single-parameter kinetics speeds up construction of models that remain faithful enough to provide meaningful insight. The resulting dynamic behavior of the network components is displayed graphically, allowing for an intuitive and interactive modeling experience.

  13. Integration of biological networks and gene expression data using Cytoscape

    PubMed Central

    Cline, Melissa S; Smoot, Michael; Cerami, Ethan; Kuchinsky, Allan; Landys, Nerius; Workman, Chris; Christmas, Rowan; Avila-Campilo, Iliana; Creech, Michael; Gross, Benjamin; Hanspers, Kristina; Isserlin, Ruth; Kelley, Ryan; Killcoyne, Sarah; Lotia, Samad; Maere, Steven; Morris, John; Ono, Keiichiro; Pavlovic, Vuk; Pico, Alexander R; Vailaya, Aditya; Wang, Peng-Liang; Adler, Annette; Conklin, Bruce R; Hood, Leroy; Kuiper, Martin; Sander, Chris; Schmulevich, Ilya; Schwikowski, Benno; Warner, Guy J; Ideker, Trey; Bader, Gary D

    2013-01-01

    Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape. PMID:17947979

  14. Analysis and Modeling of DIII-D Experiments With OMFIT and Neural Networks

    NASA Astrophysics Data System (ADS)

    Meneghini, O.; Luna, C.; Smith, S. P.; Lao, L. L.; GA Theory Team

    2013-10-01

    The OMFIT integrated modeling framework is designed to facilitate experimental data analysis and enable integrated simulations. This talk introduces this framework and presents a selection of its applications to the DIII-D experiment. Examples include kinetic equilibrium reconstruction analysis; evaluation of MHD stability in the core and in the edge; and self-consistent predictive steady-state transport modeling. The OMFIT framework also provides the platform for an innovative approach based on neural networks to predict electron and ion energy fluxes. In our study a multi-layer feed-forward back-propagation neural network is built and trained over a database of DIII-D data. It is found that given the same parameters that the highest fidelity models use, the neural network model is able to predict to a large degree the heat transport profiles observed in the DIII-D experiments. Once the network is built, the numerical cost of evaluating the transport coefficients is virtually nonexistent, thus making the neural network model particularly well suited for plasma control and quick exploration of operational scenarios. The implementation of the neural network model and benchmark with experimental results and gyro-kinetic models will be discussed. Work supported in part by the US DOE under DE-FG02-95ER54309.

  15. [Networks of experiences on community health as an information system in health promotion: lessons learned in Aragon (Spain)].

    PubMed

    Gállego-Diéguez, Javier; Aliaga Traín, Pilar; Benedé Azagra, Carmen Belén; Bueno Franco, Manuel; Ferrer Gracia, Elisa; Ipiéns Sarrate, José Ramón; Muñoz Nadal, Pilar; Plumed Parrilla, Manuela; Vilches Urrutia, Begoña

    2016-11-01

    Networks of community health experiences promote interaction and knowledge management in health promotion among their participants. These networks integrate both professionals and social agents who work directly on the ground in small environments, with defined objectives and inclusion criteria and voluntary participation. In this article, networks in Aragon (Spain) are reviewed in order to analyse their role as an information system. The Health Promotion Projects Network of Aragon (Red Aragonesa de Proyectos de Promoción de la Salud, RAPPS) was launched in 1996 and currently includes 73 projects. The average duration of projects is 12.7 years. RAPPS interdisciplinary teams involve 701 people, of which 89.6% are professionals and 10.6% are social agents. The Aragon Health Promoting Schools Network (Red Aragonesa de Escuelas Promotoras de Salud, RAEPS) integrates 134 schools (24.9% of Aragon). The schools teams involve 829 teachers and members of the school community, students (35.2%), families (26.2%) and primary care health professionals (9.8%). Experiences Networks boost citizen participation, have an influence in changing social determinants and contribute to the formulation of plans and regional strategies. Networks can provide indicators for a health promotion information and monitoring system on: capacity building services in the territory, identifying assets and models of good practice, cross-sectoral and equity initiatives. Experiences Networks represent an opportunity to create a health promotion information system, systematising available information and establishing quality criteria for initiatives. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. SDN-NGenIA, a software defined next generation integrated architecture for HEP and data intensive science

    NASA Astrophysics Data System (ADS)

    Balcas, J.; Hendricks, T. W.; Kcira, D.; Mughal, A.; Newman, H.; Spiropulu, M.; Vlimant, J. R.

    2017-10-01

    The SDN Next Generation Integrated Architecture (SDN-NGeNIA) project addresses some of the key challenges facing the present and next generations of science programs in HEP, astrophysics, and other fields, whose potential discoveries depend on their ability to distribute, process and analyze globally distributed Petascale to Exascale datasets. The SDN-NGenIA system under development by Caltech and partner HEP and network teams is focused on the coordinated use of network, computing and storage infrastructures, through a set of developments that build on the experience gained in recently completed and previous projects that use dynamic circuits with bandwidth guarantees to support major network flows, as demonstrated across LHC Open Network Environment [1] and in large scale demonstrations over the last three years, and recently integrated with PhEDEx and Asynchronous Stage Out data management applications of the CMS experiment at the Large Hadron Collider. In addition to the general program goals of supporting the network needs of the LHC and other science programs with similar needs, a recent focus is the use of the Leadership HPC facility at Argonne National Lab (ALCF) for data intensive applications.

  17. The Human Thalamus Is an Integrative Hub for Functional Brain Networks

    PubMed Central

    Bertolero, Maxwell A.

    2017-01-01

    The thalamus is globally connected with distributed cortical regions, yet the functional significance of this extensive thalamocortical connectivity remains largely unknown. By performing graph-theoretic analyses on thalamocortical functional connectivity data collected from human participants, we found that most thalamic subdivisions display network properties that are capable of integrating multimodal information across diverse cortical functional networks. From a meta-analysis of a large dataset of functional brain-imaging experiments, we further found that the thalamus is involved in multiple cognitive functions. Finally, we found that focal thalamic lesions in humans have widespread distal effects, disrupting the modular organization of cortical functional networks. This converging evidence suggests that the human thalamus is a critical hub region that could integrate diverse information being processed throughout the cerebral cortex as well as maintain the modular structure of cortical functional networks. SIGNIFICANCE STATEMENT The thalamus is traditionally viewed as a passive relay station of information from sensory organs or subcortical structures to the cortex. However, the thalamus has extensive connections with the entire cerebral cortex, which can also serve to integrate information processing between cortical regions. In this study, we demonstrate that multiple thalamic subdivisions display network properties that are capable of integrating information across multiple functional brain networks. Moreover, the thalamus is engaged by tasks requiring multiple cognitive functions. These findings support the idea that the thalamus is involved in integrating information across cortical networks. PMID:28450543

  18. Integration Experiences Casebook: Program Ideas in Aging and Developmental Disabilities.

    ERIC Educational Resources Information Center

    Janicki, Matthew P.; Keefe, Robert M.

    An assortment of 38 case studies illustrates efforts to integrate elderly individuals with developmental disabilities into generic aging services and into community life. The case studies include models and practice experiences that aided seniors to retire, participate in programs and services, and become part of their community's aging network.…

  19. High Energy Physics and Nuclear Physics Network Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dart, Eli; Bauerdick, Lothar; Bell, Greg

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements needed by instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In August 2013, ESnet and the DOE SC Offices of High Energy Physics (HEP) and Nuclear Physicsmore » (NP) organized a review to characterize the networking requirements of the programs funded by the HEP and NP program offices. Several key findings resulted from the review. Among them: 1. The Large Hadron Collider?s ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) experiments are adopting remote input/output (I/O) as a core component of their data analysis infrastructure. This will significantly increase their demands on the network from both a reliability perspective and a performance perspective. 2. The Large Hadron Collider (LHC) experiments (particularly ATLAS and CMS) are working to integrate network awareness into the workflow systems that manage the large number of daily analysis jobs (1 million analysis jobs per day for ATLAS), which are an integral part of the experiments. Collaboration with networking organizations such as ESnet, and the consumption of performance data (e.g., from perfSONAR [PERformance Service Oriented Network monitoring Architecture]) are critical to the success of these efforts. 3. The international aspects of HEP and NP collaborations continue to expand. This includes the LHC experiments, the Relativistic Heavy Ion Collider (RHIC) experiments, the Belle II Collaboration, the Large Synoptic Survey Telescope (LSST), and others. The international nature of these collaborations makes them heavily reliant on transoceanic connectivity, which is subject to longer term service disruptions than terrestrial connectivity. The network engineering aspects of undersea connectivity will continue to be a significant part of the planning, deployment, and operation of the data analysis infrastructure for HEP and NP experiments for the foreseeable future. Given their critical dependency on networking services, the experiments have expressed the need for tight integration (both technically and operationally) of the domestic and the transoceanic parts of the network infrastructure that supports the experiments. 4. The datasets associated with simulations continue to increase in size, and the need to move these datasets between analysis centers is placing ever-increasing demands on networks and on data management systems at the supercomputing centers. In addition, there is a need to harmonize cybersecurity practice with the data transfer performance requirements of the science. This report expands on these points, and addresses others as well. The report contains a findings section in addition to the text of the case studies discussed during the review.« less

  20. Integrated Verification Experiment data collected as part of the Los Alamos National Laboratory`s Source Region Program. Appendix D: Ionospheric measurements for IVEs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzgerald, T.J.; Carlos, R.C.; Argo, P.E.

    As part of the integrated verification experiment (IVE), we deployed a network of hf ionospheric sounders to detect the effects of acoustic waves generated by surface ground motion following underground nuclear tests at the Nevada Test Site. The network sampled up to four geographic locations in the ionosphere from almost directly overhead of the surface ground zero out to a horizontal range of 60 km. We present sample results for four of the IVEs: Misty Echo, Texarkana, Mineral Quarry, and Bexar.

  1. The Real Time Mission Monitor: A Situational Awareness Tool For Managing Experiment Assets

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard; Hall, John; Goodman, Michael; Parker, Philip; Freudinger, Larry; He, Matt

    2007-01-01

    The NASA Real Time Mission Monitor (RTMM) is a situational awareness tool that integrates satellite, airborne and surface data sets; weather information; model and forecast outputs; and vehicle state data (e.g., aircraft navigation, satellite tracks and instrument field-of-views) for field experiment management RTMM optimizes science and logistic decision-making during field experiments by presenting timely data and graphics to the users to improve real time situational awareness of the experiment's assets. The RTMM is proven in the field as it supported program managers, scientists, and aircraft personnel during the NASA African Monsoon Multidisciplinary Analyses experiment during summer 2006 in Cape Verde, Africa. The integration and delivery of this information is made possible through data acquisition systems, network communication links and network server resources built and managed by collaborators at NASA Dryden Flight Research Center (DFRC) and Marshall Space Flight Center (MSFC). RTMM is evolving towards a more flexible and dynamic combination of sensor ingest, network computing, and decision-making activities through the use of a service oriented architecture based on community standards and protocols.

  2. Development of distinct control networks through segregation and integration

    PubMed Central

    Fair, Damien A.; Dosenbach, Nico U. F.; Church, Jessica A.; Cohen, Alexander L.; Brahmbhatt, Shefali; Miezin, Francis M.; Barch, Deanna M.; Raichle, Marcus E.; Petersen, Steven E.; Schlaggar, Bradley L.

    2007-01-01

    Human attentional control is unrivaled. We recently proposed that adults depend on distinct frontoparietal and cinguloopercular networks for adaptive online task control versus more stable set control, respectively. During development, both experience-dependent evoked activity and spontaneous waves of synchronized cortical activity are thought to support the formation and maintenance of neural networks. Such mechanisms may encourage tighter “integration” of some regions into networks over time while “segregating” other sets of regions into separate networks. Here we use resting state functional connectivity MRI, which measures correlations in spontaneous blood oxygenation level-dependent signal fluctuations between brain regions to compare previously identified control networks between children and adults. We find that development of the proposed adult control networks involves both segregation (i.e., decreased short-range connections) and integration (i.e., increased long-range connections) of the brain regions that comprise them. Delay/disruption in the developmental processes of segregation and integration may play a role in disorders of control, such as autism, attention deficit hyperactivity disorder, and Tourette's syndrome. PMID:17679691

  3. A disynaptic feedback network activated by experience promotes the integration of new granule cells.

    PubMed

    Alvarez, Diego D; Giacomini, Damiana; Yang, Sung Min; Trinchero, Mariela F; Temprana, Silvio G; Büttner, Karina A; Beltramone, Natalia; Schinder, Alejandro F

    2016-10-28

    Experience shapes the development and connectivity of adult-born granule cells (GCs) through mechanisms that are poorly understood. We examined the remodeling of dentate gyrus microcircuits in mice in an enriched environment (EE). Short exposure to EE during early development of new GCs accelerated their functional integration. This effect was mimicked by in vivo chemogenetic activation of a limited population of mature GCs. Slice recordings showed that mature GCs recruit parvalbumin γ-aminobutyric acid-releasing interneurons (PV-INs) that feed back onto developing GCs. Accordingly, chemogenetic stimulation of PV-INs or direct depolarization of developing GCs accelerated GC integration, whereas inactivation of PV-INs prevented the effects of EE. Our results reveal a mechanism for dynamic remodeling in which experience activates dentate networks that "prime" young GCs through a disynaptic feedback loop mediated by PV-INs. Copyright © 2016, American Association for the Advancement of Science.

  4. Hippocampal and ventral medial prefrontal activation during retrieval-mediated learning supports novel inference.

    PubMed

    Zeithamova, Dagmar; Dominick, April L; Preston, Alison R

    2012-07-12

    Memory enables flexible use of past experience to inform new behaviors. Although leading theories hypothesize that this fundamental flexibility results from the formation of integrated memory networks relating multiple experiences, the neural mechanisms that support memory integration are not well understood. Here, we demonstrate that retrieval-mediated learning, whereby prior event details are reinstated during encoding of related experiences, supports participants' ability to infer relationships between distinct events that share content. Furthermore, we show that activation changes in a functionally coupled hippocampal and ventral medial prefrontal cortical circuit track the formation of integrated memories and successful inferential memory performance. These findings characterize the respective roles of these regions in retrieval-mediated learning processes that support relational memory network formation and inferential memory in the human brain. More broadly, these data reveal fundamental mechanisms through which memory representations are constructed into prospectively useful formats. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Hippocampal and ventral medial prefrontal activation during retrieval-mediated learning supports novel inference

    PubMed Central

    Zeithamova, Dagmar; Dominick, April L.; Preston, Alison R.

    2012-01-01

    SUMMARY Memory enables flexible use of past experience to inform new behaviors. Though leading theories hypothesize that this fundamental flexibility results from the formation of integrated memory networks relating multiple experiences, the neural mechanisms that support memory integration are not well understood. Here, we demonstrate that retrieval-mediated learning, whereby prior event details are reinstated during encoding of related experiences, supports participants’ ability to infer relationships between distinct events that share content. Furthermore, we show that activation changes in a functionally coupled hippocampal and ventral medial prefrontal cortical circuit track the formation of integrated memories and successful inferential memory performance. These findings characterize the respective roles of these regions in retrieval-mediated learning processes that support relational memory network formation and inferential memory in the human brain. More broadly, these data reveal fundamental mechanisms through which memory representations are constructed into prospectively useful formats. PMID:22794270

  6. IP voice over ATM satellite: experimental results over satellite channels

    NASA Astrophysics Data System (ADS)

    Saraf, Koroush A.; Butts, Norman P.

    1999-01-01

    IP telephony, a new technology to provide voice communication over traditional data networks, has the potential to revolutionize telephone communication within the modern enterprise. This innovation uses packetization techniques to carry voice conversations over IP networks. This packet switched technology promises new integrated services, and lower cost long-distance communication compared to traditional circuit switched telephone networks. Future satellites will need to carry IP traffic efficiently in order to stay competitive in servicing the global data- networking and global telephony infrastructure. However, the effects of Voice over IP over switched satellite channels have not been investigated in detail. To fully understand the effects of satellite channels on Voice over IP quality; several experiments were conducted at Lockheed Martin Telecommunications' Satellite Integration Lab. The result of those experiments along with suggested improvements for voice communication over satellite are presented in this document. First, a detailed introduction of IP telephony as a suitable technology for voice communication over future satellites is presented. This is followed by procedures for the experiments, along with results and strategies. In conclusion we hope that these capability demonstrations will alleviate any uncertainty regarding the applicability of this technology to satellite networks.

  7. Accurate path integration in continuous attractor network models of grid cells.

    PubMed

    Burak, Yoram; Fiete, Ila R

    2009-02-01

    Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models can generate regular triangular grid responses, based on inputs that encode only the rat's velocity and heading direction. We consider the role of the network boundary in the integration performance of the network and show that both periodic and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds. We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise within the network. With a plausible range of parameters and the inclusion of spike variability, our model networks can accurately integrate velocity inputs over a maximum of approximately 10-100 meters and approximately 1-10 minutes. These findings form a proof-of-concept that continuous attractor dynamics may underlie velocity integration in the dorsolateral medial entorhinal cortex. The simulations also generate pertinent upper bounds on the accuracy of integration that may be achieved by continuous attractor dynamics in the grid cell network. We suggest experiments to test the continuous attractor model and differentiate it from models in which single cells establish their responses independently of each other.

  8. Semantic integration of data on transcriptional regulation

    PubMed Central

    Baitaluk, Michael; Ponomarenko, Julia

    2010-01-01

    Motivation: Experimental and predicted data concerning gene transcriptional regulation are distributed among many heterogeneous sources. However, there are no resources to integrate these data automatically or to provide a ‘one-stop shop’ experience for users seeking information essential for deciphering and modeling gene regulatory networks. Results: IntegromeDB, a semantic graph-based ‘deep-web’ data integration system that automatically captures, integrates and manages publicly available data concerning transcriptional regulation, as well as other relevant biological information, is proposed in this article. The problems associated with data integration are addressed by ontology-driven data mapping, multiple data annotation and heterogeneous data querying, also enabling integration of the user's data. IntegromeDB integrates over 100 experimental and computational data sources relating to genomics, transcriptomics, genetics, and functional and interaction data concerning gene transcriptional regulation in eukaryotes and prokaryotes. Availability: IntegromeDB is accessible through the integrated research environment BiologicalNetworks at http://www.BiologicalNetworks.org Contact: baitaluk@sdsc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20427517

  9. Semantic integration of data on transcriptional regulation.

    PubMed

    Baitaluk, Michael; Ponomarenko, Julia

    2010-07-01

    Experimental and predicted data concerning gene transcriptional regulation are distributed among many heterogeneous sources. However, there are no resources to integrate these data automatically or to provide a 'one-stop shop' experience for users seeking information essential for deciphering and modeling gene regulatory networks. IntegromeDB, a semantic graph-based 'deep-web' data integration system that automatically captures, integrates and manages publicly available data concerning transcriptional regulation, as well as other relevant biological information, is proposed in this article. The problems associated with data integration are addressed by ontology-driven data mapping, multiple data annotation and heterogeneous data querying, also enabling integration of the user's data. IntegromeDB integrates over 100 experimental and computational data sources relating to genomics, transcriptomics, genetics, and functional and interaction data concerning gene transcriptional regulation in eukaryotes and prokaryotes. IntegromeDB is accessible through the integrated research environment BiologicalNetworks at http://www.BiologicalNetworks.org baitaluk@sdsc.edu Supplementary data are available at Bioinformatics online.

  10. Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks

    PubMed Central

    Maca, Petr; Pech, Pavel

    2016-01-01

    The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feedforward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI) and the standardized precipitation evaporation index (SPEI) and were derived for the period of 1948–2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feedforward multilayer perceptron with one hidden layer of neurons. PMID:26880875

  11. Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks.

    PubMed

    Maca, Petr; Pech, Pavel

    2016-01-01

    The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feedforward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI) and the standardized precipitation evaporation index (SPEI) and were derived for the period of 1948-2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feedforward multilayer perceptron with one hidden layer of neurons.

  12. Integrating Space Communication Network Capabilities via Web Portal Technologies

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Lee, Carlyn-Ann; Lau, Chi-Wung; Cheung, Kar-Ming; Levesque, Michael; Carruth, Butch; Coffman, Adam; Wallace, Mike

    2014-01-01

    We have developed a service portal prototype as part of an investigation into the feasibility of using Java portlet technology as a means of providing integrated access to NASA communications network services. Portal servers provide an attractive platform for this role due to the various built-in collaboration applications they can provide, combined with the possibility to develop custom inter-operating portlets to extent their functionality while preserving common presentation and behavior. This paper describes various options for integration of network services related to planning and scheduling, and results based on use of a popular open-source portal framework. Plans are underway to develop an operational SCaN Service Portal, building on the experiences reported here.

  13. Diagnostic layer integration in FPGA-based pipeline measurement systems for HEP experiments

    NASA Astrophysics Data System (ADS)

    Pozniak, Krzysztof T.

    2007-08-01

    Integrated triggering and data acquisition systems for high energy physics experiments may be considered as fast, multichannel, synchronous, distributed, pipeline measurement systems. A considerable extension of functional, technological and monitoring demands, which has recently been imposed on them, forced a common usage of large field-programmable gate array (FPGA), digital signal processing-enhanced matrices and fast optical transmission for their realization. This paper discusses modelling, design, realization and testing of pipeline measurement systems. A distribution of synchronous data stream flows is considered in the network. A general functional structure of a single network node is presented. A suggested, novel block structure of the node model facilitates full implementation in the FPGA chip, circuit standardization and parametrization, as well as integration of functional and diagnostic layers. A general method for pipeline system design was derived. This method is based on a unified model of the synchronous data network node. A few examples of practically realized, FPGA-based, pipeline measurement systems were presented. The described systems were applied in ZEUS and CMS.

  14. Integrative Genomics Reveals Novel Molecular Pathways and Gene Networks for Coronary Artery Disease

    PubMed Central

    Mäkinen, Ville-Petteri; Civelek, Mete; Meng, Qingying; Zhang, Bin; Zhu, Jun; Levian, Candace; Huan, Tianxiao; Segrè, Ayellet V.; Ghosh, Sujoy; Vivar, Juan; Nikpay, Majid; Stewart, Alexandre F. R.; Nelson, Christopher P.; Willenborg, Christina; Erdmann, Jeanette; Blakenberg, Stefan; O'Donnell, Christopher J.; März, Winfried; Laaksonen, Reijo; Epstein, Stephen E.; Kathiresan, Sekar; Shah, Svati H.; Hazen, Stanley L.; Reilly, Muredach P.; Lusis, Aldons J.; Samani, Nilesh J.; Schunkert, Heribert; Quertermous, Thomas; McPherson, Ruth; Yang, Xia; Assimes, Themistocles L.

    2014-01-01

    The majority of the heritability of coronary artery disease (CAD) remains unexplained, despite recent successes of genome-wide association studies (GWAS) in identifying novel susceptibility loci. Integrating functional genomic data from a variety of sources with a large-scale meta-analysis of CAD GWAS may facilitate the identification of novel biological processes and genes involved in CAD, as well as clarify the causal relationships of established processes. Towards this end, we integrated 14 GWAS from the CARDIoGRAM Consortium and two additional GWAS from the Ottawa Heart Institute (25,491 cases and 66,819 controls) with 1) genetics of gene expression studies of CAD-relevant tissues in humans, 2) metabolic and signaling pathways from public databases, and 3) data-driven, tissue-specific gene networks from a multitude of human and mouse experiments. We not only detected CAD-associated gene networks of lipid metabolism, coagulation, immunity, and additional networks with no clear functional annotation, but also revealed key driver genes for each CAD network based on the topology of the gene regulatory networks. In particular, we found a gene network involved in antigen processing to be strongly associated with CAD. The key driver genes of this network included glyoxalase I (GLO1) and peptidylprolyl isomerase I (PPIL1), which we verified as regulatory by siRNA experiments in human aortic endothelial cells. Our results suggest genetic influences on a diverse set of both known and novel biological processes that contribute to CAD risk. The key driver genes for these networks highlight potential novel targets for further mechanistic studies and therapeutic interventions. PMID:25033284

  15. Application-oriented integrated control center (AICC) for heterogeneous optical networks

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Zhang, Jie; Cao, Xuping; Wang, Dajiang; Wu, Koubo; Cai, Yinxiang; Gu, Wanyi

    2011-12-01

    Various broad bandwidth services have being swallowing the bandwidth resource of optical networks, such as the data center application and cloud computation. There are still some challenges for future optical networks although the available bandwidth is increasing with the development of transmission technologies. The relationship between upper application layer and lower network resource layer is necessary to be researched further. In order to improve the efficiency of network resources and capability of service provisioning, heterogeneous optical networks resource can be abstracted as unified Application Programming Interfaces (APIs) which can be open to various upper applications through Application-oriented Integrated Control Center (AICC) proposed in the paper. A novel Openflow-based unified control architecture is proposed for the optimization of cross layer resources. Numeric results show good performance of AICC through simulation experiments.

  16. Toward of a highly integrated probe for improving wireless network quality

    NASA Astrophysics Data System (ADS)

    Ding, Fei; Song, Aiguo; Wu, Zhenyang; Pan, Zhiwen; You, Xiaohu

    2016-10-01

    Quality of service and customer perception is the focus of the telecommunications industry. This paper proposes a low-cost approach to the acquisition of terminal data, collected from LTE networks with the application of a soft probe, based on the Java language. The soft probe includes support for fast call in the form of a referenced library, and can be integrated into various Android-based applications to automatically monitor any exception event in the network. Soft probe-based acquisition of terminal data has the advantages of low cost and can be applied on large scale. Experiment shows that a soft probe can efficiently obtain terminal network data. With this method, the quality of service of LTE networks can be determined from acquired wireless data. This work contributes to efficient network optimization, and the analysis of abnormal network events.

  17. BiologicalNetworks 2.0 - an integrative view of genome biology data

    PubMed Central

    2010-01-01

    Background A significant problem in the study of mechanisms of an organism's development is the elucidation of interrelated factors which are making an impact on the different levels of the organism, such as genes, biological molecules, cells, and cell systems. Numerous sources of heterogeneous data which exist for these subsystems are still not integrated sufficiently enough to give researchers a straightforward opportunity to analyze them together in the same frame of study. Systematic application of data integration methods is also hampered by a multitude of such factors as the orthogonal nature of the integrated data and naming problems. Results Here we report on a new version of BiologicalNetworks, a research environment for the integral visualization and analysis of heterogeneous biological data. BiologicalNetworks can be queried for properties of thousands of different types of biological entities (genes/proteins, promoters, COGs, pathways, binding sites, and other) and their relations (interactions, co-expression, co-citations, and other). The system includes the build-pathways infrastructure for molecular interactions/relations and module discovery in high-throughput experiments. Also implemented in BiologicalNetworks are the Integrated Genome Viewer and Comparative Genomics Browser applications, which allow for the search and analysis of gene regulatory regions and their conservation in multiple species in conjunction with molecular pathways/networks, experimental data and functional annotations. Conclusions The new release of BiologicalNetworks together with its back-end database introduces extensive functionality for a more efficient integrated multi-level analysis of microarray, sequence, regulatory, and other data. BiologicalNetworks is freely available at http://www.biologicalnetworks.org. PMID:21190573

  18. A network-based, integrative study to identify core biological pathways that drive breast cancer clinical subtypes

    PubMed Central

    Dutta, B; Pusztai, L; Qi, Y; André, F; Lazar, V; Bianchini, G; Ueno, N; Agarwal, R; Wang, B; Shiang, C Y; Hortobagyi, G N; Mills, G B; Symmans, W F; Balázsi, G

    2012-01-01

    Background: The rapid collection of diverse genome-scale data raises the urgent need to integrate and utilise these resources for biological discovery or biomedical applications. For example, diverse transcriptomic and gene copy number variation data are currently collected for various cancers, but relatively few current methods are capable to utilise the emerging information. Methods: We developed and tested a data-integration method to identify gene networks that drive the biology of breast cancer clinical subtypes. The method simultaneously overlays gene expression and gene copy number data on protein–protein interaction, transcriptional-regulatory and signalling networks by identifying coincident genomic and transcriptional disturbances in local network neighborhoods. Results: We identified distinct driver-networks for each of the three common clinical breast cancer subtypes: oestrogen receptor (ER)+, human epidermal growth factor receptor 2 (HER2)+, and triple receptor-negative breast cancers (TNBC) from patient and cell line data sets. Driver-networks inferred from independent datasets were significantly reproducible. We also confirmed the functional relevance of a subset of randomly selected driver-network members for TNBC in gene knockdown experiments in vitro. We found that TNBC driver-network members genes have increased functional specificity to TNBC cell lines and higher functional sensitivity compared with genes selected by differential expression alone. Conclusion: Clinical subtype-specific driver-networks identified through data integration are reproducible and functionally important. PMID:22343619

  19. Dissociable intrinsic functional networks support noun-object and verb-action processing.

    PubMed

    Yang, Huichao; Lin, Qixiang; Han, Zaizhu; Li, Hongyu; Song, Luping; Chen, Lingjuan; He, Yong; Bi, Yanchao

    2017-12-01

    The processing mechanism of verbs-actions and nouns-objects is a central topic of language research, with robust evidence for behavioral dissociation. The neural basis for these two major word and/or conceptual classes, however, remains controversial. Two experiments were conducted to study this question from the network perspective. Experiment 1 found that nodes of the same class, obtained through task-evoked brain imaging meta-analyses, were more strongly connected with each other than nodes of different classes during resting-state, forming segregated network modules. Experiment 2 examined the behavioral relevance of these intrinsic networks using data from 88 brain-damaged patients, finding that across patients the relative strength of functional connectivity of the two networks significantly correlated with the noun-object vs. verb-action relative behavioral performances. In summary, we found that verbs-actions and nouns-objects are supported by separable intrinsic functional networks and that the integrity of such networks accounts for the relative noun-object- and verb-action-selective deficits. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Prediction of enzymatic pathways by integrative pathway mapping

    PubMed Central

    Wichelecki, Daniel J; San Francisco, Brian; Zhao, Suwen; Rodionov, Dmitry A; Vetting, Matthew W; Al-Obaidi, Nawar F; Lin, Henry; O'Meara, Matthew J; Scott, David A; Morris, John H; Russel, Daniel; Almo, Steven C; Osterman, Andrei L

    2018-01-01

    The functions of most proteins are yet to be determined. The function of an enzyme is often defined by its interacting partners, including its substrate and product, and its role in larger metabolic networks. Here, we describe a computational method that predicts the functions of orphan enzymes by organizing them into a linear metabolic pathway. Given candidate enzyme and metabolite pathway members, this aim is achieved by finding those pathways that satisfy structural and network restraints implied by varied input information, including that from virtual screening, chemoinformatics, genomic context analysis, and ligand -binding experiments. We demonstrate this integrative pathway mapping method by predicting the L-gulonate catabolic pathway in Haemophilus influenzae Rd KW20. The prediction was subsequently validated experimentally by enzymology, crystallography, and metabolomics. Integrative pathway mapping by satisfaction of structural and network restraints is extensible to molecular networks in general and thus formally bridges the gap between structural biology and systems biology. PMID:29377793

  1. Using i2b2 to Bootstrap Rural Health Analytics and Learning Networks

    PubMed Central

    Harris, Daniel R.; Baus, Adam D.; Harper, Tamela J.; Jarrett, Traci D.; Pollard, Cecil R.; Talbert, Jeffery C.

    2017-01-01

    We demonstrate that the open-source i2b2 (Informatics for Integrating Biology and the Bedside) data model can be used to bootstrap rural health analytics and learning networks. These networks promote communication and research initiatives by providing the infrastructure necessary for sharing data and insights across a group of healthcare and research partners. Data integration remains a crucial challenge in connecting rural healthcare sites with a common data sharing and learning network due to the lack of interoperability and standards within electronic health records. The i2b2 data model acts as a point of convergence for disparate data from multiple healthcare sites. A consistent and natural data model for healthcare data is essential for overcoming integration issues, but challenges such as those caused by weak data standardization must still be addressed. We describe our experience in the context of building the West Virginia/Kentucky Health Analytics and Learning Network, a collaborative, multi-state effort connecting rural healthcare sites. PMID:28261006

  2. Using i2b2 to Bootstrap Rural Health Analytics and Learning Networks.

    PubMed

    Harris, Daniel R; Baus, Adam D; Harper, Tamela J; Jarrett, Traci D; Pollard, Cecil R; Talbert, Jeffery C

    2016-08-01

    We demonstrate that the open-source i2b2 (Informatics for Integrating Biology and the Bedside) data model can be used to bootstrap rural health analytics and learning networks. These networks promote communication and research initiatives by providing the infrastructure necessary for sharing data and insights across a group of healthcare and research partners. Data integration remains a crucial challenge in connecting rural healthcare sites with a common data sharing and learning network due to the lack of interoperability and standards within electronic health records. The i2b2 data model acts as a point of convergence for disparate data from multiple healthcare sites. A consistent and natural data model for healthcare data is essential for overcoming integration issues, but challenges such as those caused by weak data standardization must still be addressed. We describe our experience in the context of building the West Virginia/Kentucky Health Analytics and Learning Network, a collaborative, multi-state effort connecting rural healthcare sites.

  3. Brain and Social Networks: Fundamental Building Blocks of Human Experience.

    PubMed

    Falk, Emily B; Bassett, Danielle S

    2017-09-01

    How do brains shape social networks, and how do social ties shape the brain? Social networks are complex webs by which ideas spread among people. Brains comprise webs by which information is processed and transmitted among neural units. While brain activity and structure offer biological mechanisms for human behaviors, social networks offer external inducers or modulators of those behaviors. Together, these two axes represent fundamental contributors to human experience. Integrating foundational knowledge from social and developmental psychology and sociology on how individuals function within dyads, groups, and societies with recent advances in network neuroscience can offer new insights into both domains. Here, we use the example of how ideas and behaviors spread to illustrate the potential of multilayer network models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Intelligent Resource Management for Local Area Networks: Approach and Evolution

    NASA Technical Reports Server (NTRS)

    Meike, Roger

    1988-01-01

    The Data Management System network is a complex and important part of manned space platforms. Its efficient operation is vital to crew, subsystems and experiments. AI is being considered to aid in the initial design of the network and to augment the management of its operation. The Intelligent Resource Management for Local Area Networks (IRMA-LAN) project is concerned with the application of AI techniques to network configuration and management. A network simulation was constructed employing real time process scheduling for realistic loads, and utilizing the IEEE 802.4 token passing scheme. This simulation is an integral part of the construction of the IRMA-LAN system. From it, a causal model is being constructed for use in prediction and deep reasoning about the system configuration. An AI network design advisor is being added to help in the design of an efficient network. The AI portion of the system is planned to evolve into a dynamic network management aid. The approach, the integrated simulation, project evolution, and some initial results are described.

  5. Applications of computational models to better understand microvascular remodelling: a focus on biomechanical integration across scales

    PubMed Central

    Murfee, Walter L.; Sweat, Richard S.; Tsubota, Ken-ichi; Gabhann, Feilim Mac; Khismatullin, Damir; Peirce, Shayn M.

    2015-01-01

    Microvascular network remodelling is a common denominator for multiple pathologies and involves both angiogenesis, defined as the sprouting of new capillaries, and network patterning associated with the organization and connectivity of existing vessels. Much of what we know about microvascular remodelling at the network, cellular and molecular scales has been derived from reductionist biological experiments, yet what happens when the experiments provide incomplete (or only qualitative) information? This review will emphasize the value of applying computational approaches to advance our understanding of the underlying mechanisms and effects of microvascular remodelling. Examples of individual computational models applied to each of the scales will highlight the potential of answering specific questions that cannot be answered using typical biological experimentation alone. Looking into the future, we will also identify the needs and challenges associated with integrating computational models across scales. PMID:25844149

  6. Technology Developments Integrating a Space Network Communications Testbed

    NASA Technical Reports Server (NTRS)

    Kwong, Winston; Jennings, Esther; Clare, Loren; Leang, Dee

    2006-01-01

    As future manned and robotic space explorations missions involve more complex systems, it is essential to verify, validate, and optimize such systems through simulation and emulation in a low cost testbed environment. The goal of such a testbed is to perform detailed testing of advanced space and ground communications networks, technologies, and client applications that are essential for future space exploration missions. We describe the development of new technologies enhancing our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) that enable its integration in a distributed space communications testbed. MACHETE combines orbital modeling, link analysis, and protocol and service modeling to quantify system performance based on comprehensive considerations of different aspects of space missions. It can simulate entire networks and can interface with external (testbed) systems. The key technology developments enabling the integration of MACHETE into a distributed testbed are the Monitor and Control module and the QualNet IP Network Emulator module. Specifically, the Monitor and Control module establishes a standard interface mechanism to centralize the management of each testbed component. The QualNet IP Network Emulator module allows externally generated network traffic to be passed through MACHETE to experience simulated network behaviors such as propagation delay, data loss, orbital effects and other communications characteristics, including entire network behaviors. We report a successful integration of MACHETE with a space communication testbed modeling a lunar exploration scenario. This document is the viewgraph slides of the presentation.

  7. Brains striving for coherence: Long-term cumulative plot formation in the default mode network.

    PubMed

    Tylén, K; Christensen, P; Roepstorff, A; Lund, T; Østergaard, S; Donald, M

    2015-11-01

    Many everyday activities, such as engaging in conversation or listening to a story, require us to sustain attention over a prolonged period of time while integrating and synthesizing complex episodic content into a coherent mental model. Humans are remarkably capable of navigating and keeping track of all the parallel social activities of everyday life even when confronted with interruptions or changes in the environment. However, the underlying cognitive and neurocognitive mechanisms of such long-term integration and profiling of information remain a challenge to neuroscience. While brain activity is generally traceable within the short time frame of working memory (milliseconds to seconds), these integrative processes last for minutes, hours or even days. Here we report two experiments on story comprehension. Experiment I establishes a cognitive dissociation between our comprehension of plot and incidental facts in narratives: when episodic material allows for long-term integration in a coherent plot, we recall fewer factual details. However, when plot formation is challenged, we pay more attention to incidental facts. Experiment II investigates the neural underpinnings of plot formation. Results suggest a central role for the brain's default mode network related to comprehension of coherent narratives while incoherent episodes rather activate the frontoparietal control network. Moreover, an analysis of cortical activity as a function of the cumulative integration of narrative material into a coherent story reveals to linear modulations of right hemisphere posterior temporal and parietal regions. Together these findings point to key neural mechanisms involved in the fundamental human capacity for cumulative plot formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Remote Teaching Experiments on Magnetic Domains in Thin Films

    ERIC Educational Resources Information Center

    Dobrogowski, W.; Maziewski, A.; Zablotskii, V.

    2007-01-01

    We describe our experience in building a remote laboratory for teaching magnetic domains. Fulfilling the proposed on-line experiments, students can observe and study magnetization processes that are often difficult to explain with written material. It is proposed that networks of remotely accessible laboratories could be integrated in the Global…

  9. Undergraduate Students' Development of Social, Cultural, and Human Capital in a Networked Research Experience

    ERIC Educational Resources Information Center

    Thompson, Jennifer Jo; Conaway, Evan; Dolan, Erin L.

    2016-01-01

    Recent calls for reform in undergraduate biology education have emphasized integrating research experiences into the learning experiences of all undergraduates. Contemporary science research increasingly demands collaboration across disciplines and institutions to investigate complex research questions, providing new contexts and models for…

  10. Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks.

    PubMed

    Jurdak, Raja; Nafaa, Abdelhamid; Barbirato, Alessio

    2008-11-24

    Monitoring outdoor environments through networks of wireless sensors has received interest for collecting physical and chemical samples at high spatial and temporal scales. A central challenge to environmental monitoring applications of sensor networks is the short communication range of the sensor nodes, which increases the complexity and cost of monitoring commodities that are located in geographically spread areas. To address this issue, we propose a new communication architecture that integrates sensor networks with medium range wireless mesh networks, and provides users with an advanced web portal for managing sensed information in an integrated manner. Our architecture adopts a holistic approach targeted at improving the user experience by optimizing the system performance for handling data that originates at the sensors, traverses the mesh network, and resides at the server for user consumption. This holistic approach enables users to set high level policies that can adapt the resolution of information collected at the sensors, set the preferred performance targets for their application, and run a wide range of queries and analysis on both real-time and historical data. All system components and processes will be described in this paper.

  11. Development and Integration of WWW-Based Services in an Existing University Environment.

    ERIC Educational Resources Information Center

    Garofalakis, John; Kappos, Panagiotis; Tsakalidis, Athanasios; Tsaknakis, John; Tzimas, Giannis; Vassiliadis, Vassilios

    This paper describes the experience and the problems solved in the process of developing and integrating advanced World Wide Web-based services into the University of Patras (Greece) system. In addition to basic network services (e.g., e-mail, file transfer protocol), the final system will integrate the following set of advanced services: a…

  12. Teachers in an Interdisciplinary Learning Community: Engaging, Integrating, and Strengthening K-12 Education

    ERIC Educational Resources Information Center

    Hardré, Patricia L.; Ling, Chen; Shehab, Randa L.; Nanny, Mark A.; Nollert, Matthias U.; Refai, Hazem; Ramseyer, Christopher; Herron, Jason; Wollega, Ebisa D.

    2013-01-01

    This study examines the inputs (processes and strategies) and outputs (perceptions, skill development, classroom transfer, disciplinary integration, social networking, and community development) of a yearlong, interdisciplinary teacher learning and development experience. Eleven secondary math and science teachers partnered with an…

  13. Suborbital Telepresence and Over-the-Horizon Networking

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    2007-01-01

    A viewgraph presentation describing the suborbital telepresence project utilizing in-flight network computing is shown. The topics include: 1) Motivation; 2) Suborbital Telepresence and Global Test Range; 3) Tropical Composition, Cloud, and Climate Coupling Experiment (TC4); 4) Data Sets for TC4 Real-time Monitoring; 5) TC-4 Notional Architecture; 6) An Application Integration View; 7) Telepresence: Architectural Framework; and 8) Disruption Tolerant Networks.

  14. Network reliability maximization for stochastic-flow network subject to correlated failures using genetic algorithm and tabu\\xA0search

    NASA Astrophysics Data System (ADS)

    Yeh, Cheng-Ta; Lin, Yi-Kuei; Yang, Jo-Yun

    2018-07-01

    Network reliability is an important performance index for many real-life systems, such as electric power systems, computer systems and transportation systems. These systems can be modelled as stochastic-flow networks (SFNs) composed of arcs and nodes. Most system supervisors respect the network reliability maximization by finding the optimal multi-state resource assignment, which is one resource to each arc. However, a disaster may cause correlated failures for the assigned resources, affecting the network reliability. This article focuses on determining the optimal resource assignment with maximal network reliability for SFNs. To solve the problem, this study proposes a hybrid algorithm integrating the genetic algorithm and tabu search to determine the optimal assignment, called the hybrid GA-TS algorithm (HGTA), and integrates minimal paths, recursive sum of disjoint products and the correlated binomial distribution to calculate network reliability. Several practical numerical experiments are adopted to demonstrate that HGTA has better computational quality than several popular soft computing algorithms.

  15. Training and operation of an integrated neuromorphic network based on metal-oxide memristors.

    PubMed

    Prezioso, M; Merrikh-Bayat, F; Hoskins, B D; Adam, G C; Likharev, K K; Strukov, D B

    2015-05-07

    Despite much progress in semiconductor integrated circuit technology, the extreme complexity of the human cerebral cortex, with its approximately 10(14) synapses, makes the hardware implementation of neuromorphic networks with a comparable number of devices exceptionally challenging. To provide comparable complexity while operating much faster and with manageable power dissipation, networks based on circuits combining complementary metal-oxide-semiconductors (CMOSs) and adjustable two-terminal resistive devices (memristors) have been developed. In such circuits, the usual CMOS stack is augmented with one or several crossbar layers, with memristors at each crosspoint. There have recently been notable improvements in the fabrication of such memristive crossbars and their integration with CMOS circuits, including first demonstrations of their vertical integration. Separately, discrete memristors have been used as artificial synapses in neuromorphic networks. Very recently, such experiments have been extended to crossbar arrays of phase-change memristive devices. The adjustment of such devices, however, requires an additional transistor at each crosspoint, and hence these devices are much harder to scale than metal-oxide memristors, whose nonlinear current-voltage curves enable transistor-free operation. Here we report the experimental implementation of transistor-free metal-oxide memristor crossbars, with device variability sufficiently low to allow operation of integrated neural networks, in a simple network: a single-layer perceptron (an algorithm for linear classification). The network can be taught in situ using a coarse-grain variety of the delta rule algorithm to perform the perfect classification of 3 × 3-pixel black/white images into three classes (representing letters). This demonstration is an important step towards much larger and more complex memristive neuromorphic networks.

  16. Nonlinear multiplicative dendritic integration in neuron and network models

    PubMed Central

    Zhang, Danke; Li, Yuanqing; Rasch, Malte J.; Wu, Si

    2013-01-01

    Neurons receive inputs from thousands of synapses distributed across dendritic trees of complex morphology. It is known that dendritic integration of excitatory and inhibitory synapses can be highly non-linear in reality and can heavily depend on the exact location and spatial arrangement of inhibitory and excitatory synapses on the dendrite. Despite this known fact, most neuron models used in artificial neural networks today still only describe the voltage potential of a single somatic compartment and assume a simple linear summation of all individual synaptic inputs. We here suggest a new biophysical motivated derivation of a single compartment model that integrates the non-linear effects of shunting inhibition, where an inhibitory input on the route of an excitatory input to the soma cancels or “shunts” the excitatory potential. In particular, our integration of non-linear dendritic processing into the neuron model follows a simple multiplicative rule, suggested recently by experiments, and allows for strict mathematical treatment of network effects. Using our new formulation, we further devised a spiking network model where inhibitory neurons act as global shunting gates, and show that the network exhibits persistent activity in a low firing regime. PMID:23658543

  17. Stakeholder engagement: a key component of integrating genomic information into electronic health records

    PubMed Central

    Hartzler, Andrea; McCarty, Catherine A.; Rasmussen, Luke V.; Williams, Marc S.; Brilliant, Murray; Bowton, Erica A.; Clayton, Ellen Wright; Faucett, William A.; Ferryman, Kadija; Field, Julie R.; Fullerton, Stephanie M.; Horowitz, Carol R.; Koenig, Barbara A.; McCormick, Jennifer B.; Ralston, James D.; Sanderson, Saskia C.; Smith, Maureen E.; Trinidad, Susan Brown

    2014-01-01

    Integrating genomic information into clinical care and the electronic health record can facilitate personalized medicine through genetically guided clinical decision support. Stakeholder involvement is critical to the success of these implementation efforts. Prior work on implementation of clinical information systems provides broad guidance to inform effective engagement strategies. We add to this evidence-based recommendations that are specific to issues at the intersection of genomics and the electronic health record. We describe stakeholder engagement strategies employed by the Electronic Medical Records and Genomics Network, a national consortium of US research institutions funded by the National Human Genome Research Institute to develop, disseminate, and apply approaches that combine genomic and electronic health record data. Through select examples drawn from sites of the Electronic Medical Records and Genomics Network, we illustrate a continuum of engagement strategies to inform genomic integration into commercial and homegrown electronic health records across a range of health-care settings. We frame engagement as activities to consult, involve, and partner with key stakeholder groups throughout specific phases of health information technology implementation. Our aim is to provide insights into engagement strategies to guide genomic integration based on our unique network experiences and lessons learned within the broader context of implementation research in biomedical informatics. On the basis of our collective experience, we describe key stakeholder practices, challenges, and considerations for successful genomic integration to support personalized medicine. PMID:24030437

  18. Unsupervised Extraction of Stable Expression Signatures from Public Compendia with an Ensemble of Neural Networks.

    PubMed

    Tan, Jie; Doing, Georgia; Lewis, Kimberley A; Price, Courtney E; Chen, Kathleen M; Cady, Kyle C; Perchuk, Barret; Laub, Michael T; Hogan, Deborah A; Greene, Casey S

    2017-07-26

    Cross-experiment comparisons in public data compendia are challenged by unmatched conditions and technical noise. The ADAGE method, which performs unsupervised integration with denoising autoencoder neural networks, can identify biological patterns, but because ADAGE models, like many neural networks, are over-parameterized, different ADAGE models perform equally well. To enhance model robustness and better build signatures consistent with biological pathways, we developed an ensemble ADAGE (eADAGE) that integrated stable signatures across models. We applied eADAGE to a compendium of Pseudomonas aeruginosa gene expression profiling experiments performed in 78 media. eADAGE revealed a phosphate starvation response controlled by PhoB in media with moderate phosphate and predicted that a second stimulus provided by the sensor kinase, KinB, is required for this PhoB activation. We validated this relationship using both targeted and unbiased genetic approaches. eADAGE, which captures stable biological patterns, enables cross-experiment comparisons that can highlight measured but undiscovered relationships. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. An Approach to measuring Integrated Care within a Maternity Care System: Experiences from the Maternity Care Network Study and the Dutch Birth Centre Study.

    PubMed

    Boesveld, Inge C; Valentijn, Pim P; Hitzert, Marit; Hermus, Marieke A A; Franx, Arie; de Vries, Raymond G; Wiegers, Therese A; Bruijnzeels, Marc A

    2017-06-20

    Integrated care is considered to be a means to reduce costs, improve the quality of care and generate better patient outcomes. At present, little is known about integrated care in maternity care systems. We developed questionnaires to examine integrated care in two different settings, using the taxonomy of the Rainbow Model of Integrated Care. The aim of this study was to explore the validity of these questionnaires. We used data collected between 2013 and 2015 from two studies: the Maternity Care Network Study (634 respondents) and the Dutch Birth Centre Study (56 respondents). We assessed the feasibility, discriminative validity, and reliability of the questionnaires. Both questionnaires showed good feasibility (overall missing rate < 20%) and reliability (Cronbach's Alpha coefficient > 0.70). Between-subgroups post-hoc comparisons showed statistically significant differences on integration profiles between regional networks (on all items, dimensions of integration and total integration score) and birth centres (on 50% of the items and dimensions of integration). Both questionnaires are feasible and can discriminate between sites with different integration profiles in The Netherlands. They offer an opportunity to better understand integrated care as one step in understanding the complexity of the concept.

  20. An Approach to measuring Integrated Care within a Maternity Care System: Experiences from the Maternity Care Network Study and the Dutch Birth Centre Study

    PubMed Central

    Valentijn, Pim P.; Hitzert, Marit; Hermus, Marieke A.A.; Franx, Arie; de Vries, Raymond G.; Wiegers, Therese A.; Bruijnzeels, Marc A.

    2017-01-01

    Introduction: Integrated care is considered to be a means to reduce costs, improve the quality of care and generate better patient outcomes. At present, little is known about integrated care in maternity care systems. We developed questionnaires to examine integrated care in two different settings, using the taxonomy of the Rainbow Model of Integrated Care. The aim of this study was to explore the validity of these questionnaires. Methods: We used data collected between 2013 and 2015 from two studies: the Maternity Care Network Study (634 respondents) and the Dutch Birth Centre Study (56 respondents). We assessed the feasibility, discriminative validity, and reliability of the questionnaires. Results: Both questionnaires showed good feasibility (overall missing rate < 20%) and reliability (Cronbach’s Alpha coefficient > 0.70). Between-subgroups post-hoc comparisons showed statistically significant differences on integration profiles between regional networks (on all items, dimensions of integration and total integration score) and birth centres (on 50% of the items and dimensions of integration). Discussion: Both questionnaires are feasible and can discriminate between sites with different integration profiles in The Netherlands. They offer an opportunity to better understand integrated care as one step in understanding the complexity of the concept. PMID:28970747

  1. Genexpi: a toolset for identifying regulons and validating gene regulatory networks using time-course expression data.

    PubMed

    Modrák, Martin; Vohradský, Jiří

    2018-04-13

    Identifying regulons of sigma factors is a vital subtask of gene network inference. Integrating multiple sources of data is essential for correct identification of regulons and complete gene regulatory networks. Time series of expression data measured with microarrays or RNA-seq combined with static binding experiments (e.g., ChIP-seq) or literature mining may be used for inference of sigma factor regulatory networks. We introduce Genexpi: a tool to identify sigma factors by combining candidates obtained from ChIP experiments or literature mining with time-course gene expression data. While Genexpi can be used to infer other types of regulatory interactions, it was designed and validated on real biological data from bacterial regulons. In this paper, we put primary focus on CyGenexpi: a plugin integrating Genexpi with the Cytoscape software for ease of use. As a part of this effort, a plugin for handling time series data in Cytoscape called CyDataseries has been developed and made available. Genexpi is also available as a standalone command line tool and an R package. Genexpi is a useful part of gene network inference toolbox. It provides meaningful information about the composition of regulons and delivers biologically interpretable results.

  2. Inequalities in Global Trade: A Cross-Country Comparison of Trade Network Position, Economic Wealth, Pollution and Mortality.

    PubMed

    Prell, Christina; Sun, Laixiang; Feng, Kuishuang; Myroniuk, Tyler W

    2015-01-01

    In this paper we investigate how structural patterns of international trade give rise to emissions inequalities across countries, and how such inequality in turn impact countries' mortality rates. We employ Multi-regional Input-Output analysis to distinguish between sulfur-dioxide (SO2) emissions produced within a country's boarders (production-based emissions) and emissions triggered by consumption in other countries (consumption-based emissions). We use social network analysis to capture countries' level of integration within the global trade network. We then apply the Prais-Winsten panel estimation technique to a panel data set across 172 countries over 20 years (1990-2010) to estimate the relationships between countries' level of integration and SO2 emissions, and the impact of trade integration and SO2 emission on mortality rates. Our findings suggest a positive, (log-) linear relationship between a country's level of integration and both kinds of emissions. In addition, although more integrated countries are mainly responsible for both forms of emissions, our findings indicate that they also tend to experience lower mortality rates. Our approach offers a unique combination of social network analysis with multiregional input-output analysis, which better operationalizes intuitive concepts about global trade and trade structure.

  3. "We are all in this together": integrated health service plans in Ontario.

    PubMed

    Eliasoph, Hy; Monaghan, Barry; Beaudoin, Rémy; Cushman, Robert; DuBois-Wing, Gwen; Emery, Marilyn J; Fenn, W Michael; Hanmer, Sandra J; Huras, Paul; Lowi-Young, Mimi; Mandy, Pat; Trimnell, Jean; Switzer, Garry; Woolgar, Tony; Butler, John

    2007-01-01

    Ontario's 14 Local Health Integration Networks (LHINs) produced their first major deliverable when they issued their integrated health service plans in October 2006. This article reviews the experience of LHINs in meeting this challenge, outlines the process and outcome dimensions of the plans and discusses eight opportunities for LHINs as they act on the basis of their plans.

  4. Brain network segregation and integration during an epoch-related working memory fMRI experiment.

    PubMed

    Fransson, Peter; Schiffler, Björn C; Thompson, William Hedley

    2018-05-17

    The characterization of brain subnetwork segregation and integration has previously focused on changes that are detectable at the level of entire sessions or epochs of imaging data. In this study, we applied time-varying functional connectivity analysis together with temporal network theory to calculate point-by-point estimates in subnetwork segregation and integration during an epoch-based (2-back, 0-back, baseline) working memory fMRI experiment as well as during resting-state. This approach allowed us to follow task-related changes in subnetwork segregation and integration at a high temporal resolution. At a global level, the cognitively more taxing 2-back epochs elicited an overall stronger response of integration between subnetworks compared to the 0-back epochs. Moreover, the visual, sensorimotor and fronto-parietal subnetworks displayed characteristic and distinct temporal profiles of segregation and integration during the 0- and 2-back epochs. During the interspersed epochs of baseline, several subnetworks, including the visual, fronto-parietal, cingulo-opercular and dorsal attention subnetworks showed pronounced increases in segregation. Using a drift diffusion model we show that the response time for the 2-back trials are correlated with integration for the fronto-parietal subnetwork and correlated with segregation for the visual subnetwork. Our results elucidate the fast-evolving events with regard to subnetwork integration and segregation that occur in an epoch-related task fMRI experiment. Our findings suggest that minute changes in subnetwork integration are of importance for task performance. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Exploring the Use of a Social Network to Facilitate and Integrate Long-Term Interprofessional Educational Experiences

    ERIC Educational Resources Information Center

    Pittenger, Amy L.

    2011-01-01

    The purpose of this study was to evaluate the feasibility and effectiveness of implementing interprofessional education to students from six health professional programs through use of an online social networking platform. Specifically, three pedagogical models (Minimally Structured, Facilitated, Highly Structured) were evaluated for impact on…

  6. Seeding Change through International University Partnerships: The MIT-Portugal Program as a Driver of Internationalization, Networking, and Innovation

    ERIC Educational Resources Information Center

    Pfotenhauer, Sebastian M.; Jacobs, Joshua S.; Pertuze, Julio A.; Newman, Dava J.; Roos, Daniel T.

    2013-01-01

    Higher education systems around the globe are experimenting with different strategies to foster internationalization and networking, achieve critical research mass, and strengthen innovation and labour market integration. This paper discusses how Portugal, since 2006, has pursued a distinctive international collaborative strategy to induce…

  7. Innovative Networking Concepts Tested on the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Friedman, Daniel; Gupta, Sonjai; Zhang, Chuanguo; Ephremides, Anthony

    1996-01-01

    This paper describes a program of experiments conducted over the advanced communications technology satellite (ACTS) and the associated TI-VSAT (very small aperture terminal). The experiments were motivated by the commercial potential of low-cost receive only satellite terminals that can operate in a hybrid network environment, and by the desire to demonstrate frame relay technology over satellite networks. The first experiment tested highly adaptive methods of satellite bandwidth allocation in an integrated voice-data service environment. The second involved comparison of forward error correction (FEC) and automatic repeat request (ARQ) methods of error control for satellite communication with emphasis on the advantage that a hybrid architecture provides, especially in the case of multicasts. Finally, the third experiment demonstrated hybrid access to databases and compared the performance of internetworking protocols for interconnecting local area networks (LANs) via satellite. A custom unit termed frame relay access switch (FRACS) was developed by COMSAT Laboratories for these experiments; the preparation and conduct of these experiments involved a total of 20 people from the University of Maryland, the University of Colorado and COMSAT Laboratories, from late 1992 until 1995.

  8. The Integrated Library System of the 1990s: The OhioLINK Experience.

    ERIC Educational Resources Information Center

    Hawks, Carol Pitts

    1992-01-01

    Discussion of integrated library systems focuses on the development of the Ohio Library and Information Network (OhioLINK). Capabilities of eight existing systems are described, including catalog creation and maintenance; the online public access catalog (OPAC); circulation, interlibrary loan, and document delivery; acquisitions and serials…

  9. A medical application integrating remote 3D visualization tools to access picture archiving and communication system on mobile devices.

    PubMed

    He, Longjun; Ming, Xing; Liu, Qian

    2014-04-01

    With computing capability and display size growing, the mobile device has been used as a tool to help clinicians view patient information and medical images anywhere and anytime. However, for direct interactive 3D visualization, which plays an important role in radiological diagnosis, the mobile device cannot provide a satisfactory quality of experience for radiologists. This paper developed a medical system that can get medical images from the picture archiving and communication system on the mobile device over the wireless network. In the proposed application, the mobile device got patient information and medical images through a proxy server connecting to the PACS server. Meanwhile, the proxy server integrated a range of 3D visualization techniques, including maximum intensity projection, multi-planar reconstruction and direct volume rendering, to providing shape, brightness, depth and location information generated from the original sectional images for radiologists. Furthermore, an algorithm that changes remote render parameters automatically to adapt to the network status was employed to improve the quality of experience. Finally, performance issues regarding the remote 3D visualization of the medical images over the wireless network of the proposed application were also discussed. The results demonstrated that this proposed medical application could provide a smooth interactive experience in the WLAN and 3G networks.

  10. The KUPNetViz: a biological network viewer for multiple -omics datasets in kidney diseases.

    PubMed

    Moulos, Panagiotis; Klein, Julie; Jupp, Simon; Stevens, Robert; Bascands, Jean-Loup; Schanstra, Joost P

    2013-07-24

    Constant technological advances have allowed scientists in biology to migrate from conventional single-omics to multi-omics experimental approaches, challenging bioinformatics to bridge this multi-tiered information. Ongoing research in renal biology is no exception. The results of large-scale and/or high throughput experiments, presenting a wealth of information on kidney disease are scattered across the web. To tackle this problem, we recently presented the KUPKB, a multi-omics data repository for renal diseases. In this article, we describe KUPNetViz, a biological graph exploration tool allowing the exploration of KUPKB data through the visualization of biomolecule interactions. KUPNetViz enables the integration of multi-layered experimental data over different species, renal locations and renal diseases to protein-protein interaction networks and allows association with biological functions, biochemical pathways and other functional elements such as miRNAs. KUPNetViz focuses on the simplicity of its usage and the clarity of resulting networks by reducing and/or automating advanced functionalities present in other biological network visualization packages. In addition, it allows the extrapolation of biomolecule interactions across different species, leading to the formulations of new plausible hypotheses, adequate experiment design and to the suggestion of novel biological mechanisms. We demonstrate the value of KUPNetViz by two usage examples: the integration of calreticulin as a key player in a larger interaction network in renal graft rejection and the novel observation of the strong association of interleukin-6 with polycystic kidney disease. The KUPNetViz is an interactive and flexible biological network visualization and exploration tool. It provides renal biologists with biological network snapshots of the complex integrated data of the KUPKB allowing the formulation of new hypotheses in a user friendly manner.

  11. The KUPNetViz: a biological network viewer for multiple -omics datasets in kidney diseases

    PubMed Central

    2013-01-01

    Background Constant technological advances have allowed scientists in biology to migrate from conventional single-omics to multi-omics experimental approaches, challenging bioinformatics to bridge this multi-tiered information. Ongoing research in renal biology is no exception. The results of large-scale and/or high throughput experiments, presenting a wealth of information on kidney disease are scattered across the web. To tackle this problem, we recently presented the KUPKB, a multi-omics data repository for renal diseases. Results In this article, we describe KUPNetViz, a biological graph exploration tool allowing the exploration of KUPKB data through the visualization of biomolecule interactions. KUPNetViz enables the integration of multi-layered experimental data over different species, renal locations and renal diseases to protein-protein interaction networks and allows association with biological functions, biochemical pathways and other functional elements such as miRNAs. KUPNetViz focuses on the simplicity of its usage and the clarity of resulting networks by reducing and/or automating advanced functionalities present in other biological network visualization packages. In addition, it allows the extrapolation of biomolecule interactions across different species, leading to the formulations of new plausible hypotheses, adequate experiment design and to the suggestion of novel biological mechanisms. We demonstrate the value of KUPNetViz by two usage examples: the integration of calreticulin as a key player in a larger interaction network in renal graft rejection and the novel observation of the strong association of interleukin-6 with polycystic kidney disease. Conclusions The KUPNetViz is an interactive and flexible biological network visualization and exploration tool. It provides renal biologists with biological network snapshots of the complex integrated data of the KUPKB allowing the formulation of new hypotheses in a user friendly manner. PMID:23883183

  12. Interim Service ISDN Satellite (ISIS) hardware experiment development for advanced ISDN satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The Interim Service Integrated Service Digital Network (ISDN) Satellite (ISIS) Hardware Experiment Development for Advanced Satellite Designs describes the development of the ISDN Satellite Terminal Adapter (ISTA) capable of translating ISDN protocol traffic into Time Division Multiple Access (TDMA) signals for use by a communications satellite. The ISTA connects the Type 1 Network Termination (NT1) via the U-interface on the line termination side of the CPE to the RS-499 interface for satellite uplink. The same ISTA converts in the opposite direction the RS-499 to U-interface data with a simple switch setting.

  13. Interim Service ISDN Satellite (ISIS) hardware experiment design for advanced ISDN satellite design and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Hardware Experiment Design for Advanced Satellite Designs describes the design of the ISDN Satellite Terminal Adapter (ISTA) capable of translating ISDN protocol traffic into time division multiple access (TDMA) signals for use by a communications satellite. The ISTA connects the Type 1 Network Termination (NT1) via the U-interface on the line termination side of the CPE to the V.35 interface for satellite uplink. The same ISTA converts in the opposite direction the V.35 to U-interface data with a simple switch setting.

  14. A metro-access integrated network with all-optical virtual private network function using DPSK/ASK modulation format

    NASA Astrophysics Data System (ADS)

    Tian, Yue; Leng, Lufeng; Su, Yikai

    2008-11-01

    All-optical virtual private network (VPN), which offers dedicated optical channels to connect users within a VPN group, is considered a promising approach to efficient internetworking with low latency and enhanced security implemented in the physical layer. On the other hand, time-division multiplexed (TDM) / wavelength-division multiplexed (WDM) network architecture based on a feeder-ring with access-tree topology, is considered a pragmatic migration scenario from current TDM-PONs to future WDM-PONs and a potential convergence scheme for access and metropolitan networks, due to its efficiently shared hardware and bandwidth resources. All-optical VPN internetworking in such a metro-access integrated structure is expected to cover a wider service area and therefore is highly desirable. In this paper, we present a TDM/WDM metro-access integrated network supporting all-optical VPN internetworking among ONUs in different sub- PONs based on orthogonal differential-phase-shift keying (DPSK) / amplitude-shift keying (ASK) modulation format. In each ONU, no laser but a single Mach-Zehnder modulator (MZM) is needed for the upstream and VPN signal generation, which is cost-effective. Experiments and simulations are performed to verify its feasibility as a potential solution to the future access service.

  15. Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks

    PubMed Central

    Jurdak, Raja; Nafaa, Abdelhamid; Barbirato, Alessio

    2008-01-01

    Monitoring outdoor environments through networks of wireless sensors has received interest for collecting physical and chemical samples at high spatial and temporal scales. A central challenge to environmental monitoring applications of sensor networks is the short communication range of the sensor nodes, which increases the complexity and cost of monitoring commodities that are located in geographically spread areas. To address this issue, we propose a new communication architecture that integrates sensor networks with medium range wireless mesh networks, and provides users with an advanced web portal for managing sensed information in an integrated manner. Our architecture adopts a holistic approach targeted at improving the user experience by optimizing the system performance for handling data that originates at the sensors, traverses the mesh network, and resides at the server for user consumption. This holistic approach enables users to set high level policies that can adapt the resolution of information collected at the sensors, set the preferred performance targets for their application, and run a wide range of queries and analysis on both real-time and historical data. All system components and processes will be described in this paper. PMID:27873941

  16. Integration of heterogeneous molecular networks to unravel gene-regulation in Mycobacterium tuberculosis.

    PubMed

    van Dam, Jesse C J; Schaap, Peter J; Martins dos Santos, Vitor A P; Suárez-Diez, María

    2014-09-26

    Different methods have been developed to infer regulatory networks from heterogeneous omics datasets and to construct co-expression networks. Each algorithm produces different networks and efforts have been devoted to automatically integrate them into consensus sets. However each separate set has an intrinsic value that is diluted and partly lost when building a consensus network. Here we present a methodology to generate co-expression networks and, instead of a consensus network, we propose an integration framework where the different networks are kept and analysed with additional tools to efficiently combine the information extracted from each network. We developed a workflow to efficiently analyse information generated by different inference and prediction methods. Our methodology relies on providing the user the means to simultaneously visualise and analyse the coexisting networks generated by different algorithms, heterogeneous datasets, and a suite of analysis tools. As a show case, we have analysed the gene co-expression networks of Mycobacterium tuberculosis generated using over 600 expression experiments. Regarding DNA damage repair, we identified SigC as a key control element, 12 new targets for LexA, an updated LexA binding motif, and a potential mismatch repair system. We expanded the DevR regulon with 27 genes while identifying 9 targets wrongly assigned to this regulon. We discovered 10 new genes linked to zinc uptake and a new regulatory mechanism for ZuR. The use of co-expression networks to perform system level analysis allows the development of custom made methodologies. As show cases we implemented a pipeline to integrate ChIP-seq data and another method to uncover multiple regulatory layers. Our workflow is based on representing the multiple types of information as network representations and presenting these networks in a synchronous framework that allows their simultaneous visualization while keeping specific associations from the different networks. By simultaneously exploring these networks and metadata, we gained insights into regulatory mechanisms in M. tuberculosis that could not be obtained through the separate analysis of each data type.

  17. Establishment of a hydrological monitoring network in a tropical African catchment: An integrated participatory approach

    NASA Astrophysics Data System (ADS)

    Gomani, M. C.; Dietrich, O.; Lischeid, G.; Mahoo, H.; Mahay, F.; Mbilinyi, B.; Sarmett, J.

    Sound decision making for water resources management has to be based on good knowledge of the dominant hydrological processes of a catchment. This information can only be obtained through establishing suitable hydrological monitoring networks. Research catchments are typically established without involving the key stakeholders, which results in instruments being installed at inappropriate places as well as at high risk of theft and vandalism. This paper presents an integrated participatory approach for establishing a hydrological monitoring network. We propose a framework with six steps beginning with (i) inception of idea; (ii) stakeholder identification; (iii) defining the scope of the network; (iv) installation; (v) monitoring; and (vi) feedback mechanism integrated within the participatory framework. The approach is illustrated using an example of the Ngerengere catchment in Tanzania. In applying the approach, the concept of establishing the Ngerengere catchment monitoring network was initiated in 2008 within the Resilient Agro-landscapes to Climate Change in Tanzania (ReACCT) research program. The main stakeholders included: local communities; Sokoine University of Agriculture; Wami Ruvu Basin Water Office and the ReACCT Research team. The scope of the network was based on expert experience in similar projects and lessons learnt from literature review of similar projects from elsewhere integrated with local expert knowledge. The installations involved reconnaissance surveys, detailed surveys, and expert consultations to identify best sites. First, a Digital Elevation Model, land use, and soil maps were used to identify potential monitoring sites. Local and expert knowledge was collected on flow regimes, indicators of shallow groundwater plant species, precipitation pattern, vegetation, and soil types. This information was integrated and used to select sites for installation of an automatic weather station, automatic rain gauges, river flow gauging stations, flow measurement sites and shallow groundwater wells. The network is now used to monitor hydro-meteorological parameters in collaboration with key stakeholders in the catchment. Preliminary results indicate that the network is working well. The benefits of this approach compared to conventional narrow scientific/technical approaches have been shown by gaining rapid insight into the hydrology of the catchment, identifying best sites for the instruments; and voluntary participation of stakeholders in installation, monitoring and safeguarding the installations. This approach has proved simple yet effective and yielded good results. Based on this experience gained in applying the approach in establishing the Ngerengere catchment monitoring network, we conclude that the integrated participatory approach helps to assimilate local and expert knowledge in catchments monitoring which consequently results in: (i) identifying best sites for the hydrologic monitoring; (ii) instilling the sense of ownership; (iii) providing security of the installed network; and (iv) minimizing costs for installation and monitoring.

  18. Teaching the bioinformatics of signaling networks: an integrated approach to facilitate multi-disciplinary learning.

    PubMed

    Korcsmaros, Tamas; Dunai, Zsuzsanna A; Vellai, Tibor; Csermely, Peter

    2013-09-01

    The number of bioinformatics tools and resources that support molecular and cell biology approaches is continuously expanding. Moreover, systems and network biology analyses are accompanied more and more by integrated bioinformatics methods. Traditional information-centered university teaching methods often fail, as (1) it is impossible to cover all existing approaches in the frame of a single course, and (2) a large segment of the current bioinformation can become obsolete in a few years. Signaling network offers an excellent example for teaching bioinformatics resources and tools, as it is both focused and complex at the same time. Here, we present an outline of a university bioinformatics course with four sample practices to demonstrate how signaling network studies can integrate biochemistry, genetics, cell biology and network sciences. We show that several bioinformatics resources and tools, as well as important concepts and current trends, can also be integrated to signaling network studies. The research-type hands-on experiences we show enable the students to improve key competences such as teamworking, creative and critical thinking and problem solving. Our classroom course curriculum can be re-formulated as an e-learning material or applied as a part of a specific training course. The multi-disciplinary approach and the mosaic setup of the course have the additional benefit to support the advanced teaching of talented students.

  19. The Australian Collaborative Education Network Student Scholarship for Work-Integrated Learning 2010-2014

    ERIC Educational Resources Information Center

    Moore, Keri; Ferns, Sonia; Peach, Deborah

    2015-01-01

    The increasing emphasis on embedding work-integrated learning (WIL) in the higher education curriculum has impacted on teaching and learning approaches. While the benefits of incorporating experiential learning in the student experience are recognized by all stakeholders, additional costs incurred by students have not been identified. At the same…

  20. An integrate-and-fire model for synchronized bursting in a network of cultured cortical neurons.

    PubMed

    French, D A; Gruenstein, E I

    2006-12-01

    It has been suggested that spontaneous synchronous neuronal activity is an essential step in the formation of functional networks in the central nervous system. The key features of this type of activity consist of bursts of action potentials with associated spikes of elevated cytoplasmic calcium. These features are also observed in networks of rat cortical neurons that have been formed in culture. Experimental studies of these cultured networks have led to several hypotheses for the mechanisms underlying the observed synchronized oscillations. In this paper, bursting integrate-and-fire type mathematical models for regular spiking (RS) and intrinsic bursting (IB) neurons are introduced and incorporated through a small-world connection scheme into a two-dimensional excitatory network similar to those in the cultured network. This computer model exhibits spontaneous synchronous activity through mechanisms similar to those hypothesized for the cultured experimental networks. Traces of the membrane potential and cytoplasmic calcium from the model closely match those obtained from experiments. We also consider the impact on network behavior of the IB neurons, the geometry and the small world connection scheme.

  1. Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres

    PubMed Central

    Gronau, Greta; Jacobsen, Matthew M.; Huang, Wenwen; Rizzo, Daniel J.; Li, David; Staii, Cristian; Pugno, Nicola M.; Wong, Joyce Y.; Kaplan, David L.; Buehler, Markus J.

    2016-01-01

    Scalable computational modelling tools are required to guide the rational design of complex hierarchical materials with predictable functions. Here, we utilize mesoscopic modelling, integrated with genetic block copolymer synthesis and bioinspired spinning process, to demonstrate de novo materials design that incorporates chemistry, processing and material characterization. We find that intermediate hydrophobic/hydrophilic block ratios observed in natural spider silks and longer chain lengths lead to outstanding silk fibre formation. This design by nature is based on the optimal combination of protein solubility, self-assembled aggregate size and polymer network topology. The original homogeneous network structure becomes heterogeneous after spinning, enhancing the anisotropic network connectivity along the shear flow direction. Extending beyond the classical polymer theory, with insights from the percolation network model, we illustrate the direct proportionality between network conductance and fibre Young's modulus. This integrated approach provides a general path towards de novo functional network materials with enhanced mechanical properties and beyond (optical, electrical or thermal) as we have experimentally verified. PMID:26017575

  2. Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres.

    PubMed

    Lin, Shangchao; Ryu, Seunghwa; Tokareva, Olena; Gronau, Greta; Jacobsen, Matthew M; Huang, Wenwen; Rizzo, Daniel J; Li, David; Staii, Cristian; Pugno, Nicola M; Wong, Joyce Y; Kaplan, David L; Buehler, Markus J

    2015-05-28

    Scalable computational modelling tools are required to guide the rational design of complex hierarchical materials with predictable functions. Here, we utilize mesoscopic modelling, integrated with genetic block copolymer synthesis and bioinspired spinning process, to demonstrate de novo materials design that incorporates chemistry, processing and material characterization. We find that intermediate hydrophobic/hydrophilic block ratios observed in natural spider silks and longer chain lengths lead to outstanding silk fibre formation. This design by nature is based on the optimal combination of protein solubility, self-assembled aggregate size and polymer network topology. The original homogeneous network structure becomes heterogeneous after spinning, enhancing the anisotropic network connectivity along the shear flow direction. Extending beyond the classical polymer theory, with insights from the percolation network model, we illustrate the direct proportionality between network conductance and fibre Young's modulus. This integrated approach provides a general path towards de novo functional network materials with enhanced mechanical properties and beyond (optical, electrical or thermal) as we have experimentally verified.

  3. Wireless Sensor Network Congestion Control Based on Standard Particle Swarm Optimization and Single Neuron PID

    PubMed Central

    Yang, Xiaoping; Chen, Xueying; Xia, Riting; Qian, Zhihong

    2018-01-01

    Aiming at the problem of network congestion caused by the large number of data transmissions in wireless routing nodes of wireless sensor network (WSN), this paper puts forward an algorithm based on standard particle swarm–neural PID congestion control (PNPID). Firstly, PID control theory was applied to the queue management of wireless sensor nodes. Then, the self-learning and self-organizing ability of neurons was used to achieve online adjustment of weights to adjust the proportion, integral and differential parameters of the PID controller. Finally, the standard particle swarm optimization to neural PID (NPID) algorithm of initial values of proportion, integral and differential parameters and neuron learning rates were used for online optimization. This paper describes experiments and simulations which show that the PNPID algorithm effectively stabilized queue length near the expected value. At the same time, network performance, such as throughput and packet loss rate, was greatly improved, which alleviated network congestion and improved network QoS. PMID:29671822

  4. Wireless Sensor Network Congestion Control Based on Standard Particle Swarm Optimization and Single Neuron PID.

    PubMed

    Yang, Xiaoping; Chen, Xueying; Xia, Riting; Qian, Zhihong

    2018-04-19

    Aiming at the problem of network congestion caused by the large number of data transmissions in wireless routing nodes of wireless sensor network (WSN), this paper puts forward an algorithm based on standard particle swarm⁻neural PID congestion control (PNPID). Firstly, PID control theory was applied to the queue management of wireless sensor nodes. Then, the self-learning and self-organizing ability of neurons was used to achieve online adjustment of weights to adjust the proportion, integral and differential parameters of the PID controller. Finally, the standard particle swarm optimization to neural PID (NPID) algorithm of initial values of proportion, integral and differential parameters and neuron learning rates were used for online optimization. This paper describes experiments and simulations which show that the PNPID algorithm effectively stabilized queue length near the expected value. At the same time, network performance, such as throughput and packet loss rate, was greatly improved, which alleviated network congestion and improved network QoS.

  5. What Do Proteges Look for in a Mentor? Results of Three Experimental Studies.

    ERIC Educational Resources Information Center

    Olian, Judy D.; And Others

    1988-01-01

    Conducted three experiments (total N=675) to examine determinants of potential protege attraction into relationship with mentor. Results suggest influence of manager interpersonal competence, manager's integration into decision making network of organization, gender, and protege age. Protege work experience and mentor age did not have significant…

  6. A bayesian translational framework for knowledge propagation, discovery, and integration under specific contexts.

    PubMed

    Deng, Michelle; Zollanvari, Amin; Alterovitz, Gil

    2012-01-01

    The immense corpus of biomedical literature existing today poses challenges in information search and integration. Many links between pieces of knowledge occur or are significant only under certain contexts-rather than under the entire corpus. This study proposes using networks of ontology concepts, linked based on their co-occurrences in annotations of abstracts of biomedical literature and descriptions of experiments, to draw conclusions based on context-specific queries and to better integrate existing knowledge. In particular, a Bayesian network framework is constructed to allow for the linking of related terms from two biomedical ontologies under the queried context concept. Edges in such a Bayesian network allow associations between biomedical concepts to be quantified and inference to be made about the existence of some concepts given prior information about others. This approach could potentially be a powerful inferential tool for context-specific queries, applicable to ontologies in other fields as well.

  7. A Bayesian Translational Framework for Knowledge Propagation, Discovery, and Integration Under Specific Contexts

    PubMed Central

    Deng, Michelle; Zollanvari, Amin; Alterovitz, Gil

    2012-01-01

    The immense corpus of biomedical literature existing today poses challenges in information search and integration. Many links between pieces of knowledge occur or are significant only under certain contexts—rather than under the entire corpus. This study proposes using networks of ontology concepts, linked based on their co-occurrences in annotations of abstracts of biomedical literature and descriptions of experiments, to draw conclusions based on context-specific queries and to better integrate existing knowledge. In particular, a Bayesian network framework is constructed to allow for the linking of related terms from two biomedical ontologies under the queried context concept. Edges in such a Bayesian network allow associations between biomedical concepts to be quantified and inference to be made about the existence of some concepts given prior information about others. This approach could potentially be a powerful inferential tool for context-specific queries, applicable to ontologies in other fields as well. PMID:22779044

  8. A Brazilian network of carbon flux stations

    NASA Astrophysics Data System (ADS)

    Roberti, Débora R.; Acevedo, Otávio C.; Moraes, Osvaldo L. L.

    2012-05-01

    First Brasflux Workshop; Santa Maria, Rio Grande do Sul, Brazil, 14-15 November 2011 Last November, 33 researchers participated in a workshop to establish Brasflux, the Brazilian network of carbon flux stations, with the objective of integrating previous efforts and planning for the future. Among the participants were those leading ongoing flux observation projects and others planning to establish flux stations in the near future. International scientists also participated to share the experiences gained with other networks. The need to properly characterize terrestrial ecosystems for their roles in the global carbon, water, and energy budgets has motivated the implementation of hundreds of micrometeorological research sites throughout the world in recent years. The eddy covariance (EC) technique for turbulent flux determination is the preferred method to provide integral information on ecosystematmosphere exchanges. Integrating the observations regionally and globally has proven to be an effective approach to maximizing the usefulness of this technique for carbon cycle studies at multiple scales.

  9. Inequalities in Global Trade: A Cross-Country Comparison of Trade Network Position, Economic Wealth, Pollution and Mortality

    PubMed Central

    Prell, Christina; Sun, Laixiang; Feng, Kuishuang; Myroniuk, Tyler W.

    2015-01-01

    In this paper we investigate how structural patterns of international trade give rise to emissions inequalities across countries, and how such inequality in turn impact countries’ mortality rates. We employ Multi-regional Input-Output analysis to distinguish between sulfur-dioxide (SO2) emissions produced within a country’s boarders (production-based emissions) and emissions triggered by consumption in other countries (consumption-based emissions). We use social network analysis to capture countries’ level of integration within the global trade network. We then apply the Prais-Winsten panel estimation technique to a panel data set across 172 countries over 20 years (1990–2010) to estimate the relationships between countries’ level of integration and SO2 emissions, and the impact of trade integration and SO2 emission on mortality rates. Our findings suggest a positive, (log-) linear relationship between a country’s level of integration and both kinds of emissions. In addition, although more integrated countries are mainly responsible for both forms of emissions, our findings indicate that they also tend to experience lower mortality rates. Our approach offers a unique combination of social network analysis with multiregional input-output analysis, which better operationalizes intuitive concepts about global trade and trade structure. PMID:26642202

  10. Reverse engineering biological networks :applications in immune responses to bio-toxins.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Anthony A.; Sinclair, Michael B.; Davidson, George S.

    Our aim is to determine the network of events, or the regulatory network, that defines an immune response to a bio-toxin. As a model system, we are studying T cell regulatory network triggered through tyrosine kinase receptor activation using a combination of pathway stimulation and time-series microarray experiments. Our approach is composed of five steps (1) microarray experiments and data error analysis, (2) data clustering, (3) data smoothing and discretization, (4) network reverse engineering, and (5) network dynamics analysis and fingerprint identification. The technological outcome of this study is a suite of experimental protocols and computational tools that reverse engineermore » regulatory networks provided gene expression data. The practical biological outcome of this work is an immune response fingerprint in terms of gene expression levels. Inferring regulatory networks from microarray data is a new field of investigation that is no more than five years old. To the best of our knowledge, this work is the first attempt that integrates experiments, error analyses, data clustering, inference, and network analysis to solve a practical problem. Our systematic approach of counting, enumeration, and sampling networks matching experimental data is new to the field of network reverse engineering. The resulting mathematical analyses and computational tools lead to new results on their own and should be useful to others who analyze and infer networks.« less

  11. Regulatory network rewiring for secondary metabolism in Arabidopsis thaliana under various conditions

    PubMed Central

    2014-01-01

    Background Plant secondary metabolites are critical to various biological processes. However, the regulations of these metabolites are complex because of regulatory rewiring or crosstalk. To unveil how regulatory behaviors on secondary metabolism reshape biological processes, we constructed and analyzed a dynamic regulatory network of secondary metabolic pathways in Arabidopsis. Results The dynamic regulatory network was constructed through integrating co-expressed gene pairs and regulatory interactions. Regulatory interactions were either predicted by conserved transcription factor binding sites (TFBSs) or proved by experiments. We found that integrating two data (co-expression and predicted regulatory interactions) enhanced the number of highly confident regulatory interactions by over 10% compared with using single data. The dynamic changes of regulatory network systematically manifested regulatory rewiring to explain the mechanism of regulation, such as in terpenoids metabolism, the regulatory crosstalk of RAV1 (AT1G13260) and ATHB1 (AT3G01470) on HMG1 (hydroxymethylglutaryl-CoA reductase, AT1G76490); and regulation of RAV1 on epoxysqualene biosynthesis and sterol biosynthesis. Besides, we investigated regulatory rewiring with expression, network topology and upstream signaling pathways. Regulatory rewiring was revealed by the variability of genes’ expression: pathway genes and transcription factors (TFs) were significantly differentially expressed under different conditions (such as terpenoids biosynthetic genes in tissue experiments and E2F/DP family members in genotype experiments). Both network topology and signaling pathways supported regulatory rewiring. For example, we discovered correlation among the numbers of pathway genes, TFs and network topology: one-gene pathways (such as δ-carotene biosynthesis) were regulated by a fewer TFs, and were not critical to metabolic network because of their low degrees in topology. Upstream signaling pathways of 50 TFs were identified to comprehend the underlying mechanism of TFs’ regulatory rewiring. Conclusion Overall, this dynamic regulatory network largely improves the understanding of perplexed regulatory rewiring in secondary metabolism in Arabidopsis. PMID:24993737

  12. Full Service ISDN Satellite (FSIS) network model for advanced ISDN satellite design and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The Full Service Integrated Services Digital Network (FSIS) network model for advanced satellite designs describes a model suitable for discrete event simulations. A top down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ACTS and the Interim Service ISDN Satellite (ISIS) perform ISDN protocol analyses and switching decisions in the terrestrial domain, whereas FSIS makes all its analyses and decisions on-board the ISDN satellite.

  13. The NASA Real Time Mission Monitor - A Situational Awareness Tool for Conducting Tropical Cyclone Field Experiments

    NASA Technical Reports Server (NTRS)

    Goodman, Michael; Blakeslee, Richard; Hall, John; Parker, Philip; He, Yubin

    2008-01-01

    The NASA Real Time Mission Monitor (RTMM) is a situational awareness tool that integrates satellite, aircraft state information, airborne and surface instruments, and weather state data in to a single visualization package for real time field experiment management. RTMM optimizes science and logistic decision-making during field experiments by presenting timely data and graphics to the users to improve real time situational awareness of the experiment's assets. The RTMM is proven in the field as it supported program managers, scientists, and aircraft personnel during the NASA African Monsoon Multidisciplinary Analyses (investigated African easterly waves and Tropical Storm Debby and Helene) during August-September 2006 in Cape Verde, the Tropical Composition, Cloud and Climate Coupling experiment during July-August 2007 in Costa Rica, and the Hurricane Aerosonde mission into Hurricane Noel in 2-3 November 2007. The integration and delivery of this information is made possible through data acquisition systems, network communication links, and network server resources built and managed by collaborators at NASA Marshall Space Flight Center (MSFC) and Dryden Flight Research Center (DFRC). RTMM is evolving towards a more flexible and dynamic combination of sensor ingest, network computing, and decision-making activities through the use of a service oriented architecture based on community standards and protocols. Each field experiment presents unique challenges and opportunities for advancing the functionality of RTMM. A description of RTMM, the missions it has supported, and its new features that are under development will be presented.

  14. A novel environmental chamber for neuronal network multisite recordings.

    PubMed

    Biffi, E; Regalia, G; Ghezzi, D; De Ceglia, R; Menegon, A; Ferrigno, G; Fiore, G B; Pedrocchi, A

    2012-10-01

    Environmental stability is a critical issue for neuronal networks in vitro. Hence, the ability to control the physical and chemical environment of cell cultures during electrophysiological measurements is an important requirement in the experimental design. In this work, we describe the development and the experimental verification of a closed chamber for multisite electrophysiology and optical monitoring. The chamber provides stable temperature, pH and humidity and guarantees cell viability comparable to standard incubators. Besides, it integrates the electronics for long-term neuronal activity recording. The system is portable and adaptable for multiple network housings, which allows performing parallel experiments in the same environment. Our results show that this device can be a solution for long-term electrophysiology, for dual network experiments and for coupled optical and electrical measurements. Copyright © 2012 Wiley Periodicals, Inc.

  15. Automated monitor and control for deep space network subsystems

    NASA Technical Reports Server (NTRS)

    Smyth, P.

    1989-01-01

    The problem of automating monitor and control loops for Deep Space Network (DSN) subsystems is considered and an overview of currently available automation techniques is given. The use of standard numerical models, knowledge-based systems, and neural networks is considered. It is argued that none of these techniques alone possess sufficient generality to deal with the demands imposed by the DSN environment. However, it is shown that schemes that integrate the better aspects of each approach and are referenced to a formal system model show considerable promise, although such an integrated technology is not yet available for implementation. Frequent reference is made to the receiver subsystem since this work was largely motivated by experience in developing an automated monitor and control loop for the advanced receiver.

  16. 'Multimorbidity' as the manifestation of network disturbances.

    PubMed

    Sturmberg, Joachim P; Bennett, Jeanette M; Martin, Carmel M; Picard, Martin

    2017-02-01

    We argue that 'multimorbidity' is the manifestation of interconnected physiological network processes within an individual in his or her socio-cultural environment. Networks include genomic, metabolomic, proteomic, neuroendocrine, immune and mitochondrial bioenergetic elements, as well as social, environmental and health care networks. Stress systems and other physiological mechanisms create feedback loops that integrate and regulate internal networks within the individual. Minor (e.g. daily hassles) and major (e.g. trauma) stressful life experiences perturb internal and social networks resulting in physiological instability with changes ranging from improved resilience to unhealthy adaptation and 'clinical disease'. Understanding 'multimorbidity' as a complex adaptive systems response to biobehavioural and socio-environmental networks is essential. Thus, designing integrative care delivery approaches that more adequately address the underlying disease processes as the manifestation of a state of physiological dysregulation is essential. This framework can shape care delivery approaches to meet the individual's care needs in the context of his or her underlying illness experience. It recognizes 'multimorbidity' and its symptoms as the end product of complex physiological processes, namely, stress activation and mitochondrial energetics, and suggests new opportunities for treatment and prevention. The future of 'multimorbidity' management might become much more discerning by combining the balancing of physiological dysregulation with targeted personalized biotechnology interventions such as small molecule therapeutics targeting specific cellular components of the stress response, with community-embedded interventions that involve addressing psycho-socio-cultural impediments that would aim to strengthen personal/social resilience and enhance social capital. © 2016 John Wiley & Sons, Ltd.

  17. Material Encounters with Mathematics: The Case for Museum Based Cross-Curricular Integration

    ERIC Educational Resources Information Center

    de Freitas, Elizabeth; Bentley, Sean J.

    2012-01-01

    This paper reports on research from a network of high school and museum partnerships designed to explore techniques for integrating mathematics and physics learning experiences during the first year of high school. The foundation of the curriculum is a problem-based, museum-based, and hands-on approach to mathematics and physics. In this paper, we…

  18. Social networking in nursing education: integrative literature review.

    PubMed

    Kakushi, Luciana Emi; Évora, Yolanda Dora Martinez

    2016-01-01

    to identify the use of social networking in nursing education. integrative literature review in the databases: LILACS, IBECS, Cochrane, BDENF, SciELO, CINAHL, Scopus, PubMed, CAPES Periodicals Portal and Web of Science, using the descriptors: social networking and nursing education and the keywords: social networking sites and nursing education, carried out in April 2015. of the 489 articles found, only 14 met the inclusion and exclusion criteria. Most studies were published after 2013 (57%), originating from the United States and United Kingdom (77.8%). It was observed the use of social networking among nursing students, postgraduate students, mentors and nurses, in undergraduate programmes, hybrid education (blended-learning) and in interprofessional education. The social networking sites used in the teaching and learning process were Facebook (42.8%), Ning (28.5%), Twitter (21.4%) and MySpace (7.1%), by means of audios, videos, quizzes, animations, forums, guidance, support, discussions and research group. few experiences of the use of social networking in nursing education were found and their contributions show the numerous benefits and difficulties faced, providing resourses for the improvement and revaluation of their use in the teaching and learning process.

  19. Suborbital Science Program

    NASA Technical Reports Server (NTRS)

    Vachon, Jacques; Curry, Robert E.

    2010-01-01

    Program Objectives: 1) Satellite Calibration and Validation: Provide methods to perform the cal/val requirements for Earth Observing System satellites. 2) New Sensor Development: Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations. 3) Process Studies: Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects. 4) Airborne Networking: Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden Capabilities include: a) Aeronautics history of aircraft developments and milestones. b) Extensive history and experience in instrument integration. c) Extensive history and experience in aircraft modifications. d) Strong background in international deployments. e) Long history of reliable and dependable execution of projects. f) Varied aircraft types providing different capabilities, performance and duration.

  20. Pathways, Networks, and Systems: Theory and Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph H. Nadeau; John D. Lambris

    2004-10-30

    The international conference provided a unique opportunity for theoreticians and experimenters to exchange ideas, strategies, problems, challenges, language and opportunities in both formal and informal settings. This dialog is an important step towards developing a deep and effective integration of theory and experiments in studies of systems biology in humans and model organisms.

  1. [Anesthesia and Consciousness].

    PubMed

    Ogino, Yuichi; Kawamichi, Hiroaki; Saiot, Shigeru

    2016-05-01

    The mechanism of consciousness and loss of conciousness by general anesthetics are crucial issue for the anesthesiologists. Recent non-invasive brain-imaging technology brings about light to various our emotions and sensations in human brain; however, neural correlate of consciousness is not yet still elucidated. The concept "the seat of the consciousness (is in the subcortical nuclei)" is now completely denied, but instead the consciousness is based on the idea that connectivity and communications across cortical and thalamocortical networks. Anesthetics and sleep disrupt the networks that encompass complexity and integration. The compatibility between complexity and integration is the key feature of the consciousness, which is represented by complex, extensive, communicative and integrative electroencephalograph currents evoked by transcranial magnetic stimulation, provoking a single unified conscious experience in us, humans.

  2. Modeling Trust in ELICIT-WEL to Capture the Impact of Organization Structure on the Agility of Complex Networks

    DTIC Science & Technology

    2012-06-01

    Topic 8: Networks and Networking Name of Author(s) Kevin Chan, US Army Research Laboratory Mary Ruddy, Azigo Point of Contact Kevin Chan RDRL-CIN...framework. The enhanced integrated emulation platform is then used to conduct a series of agent-based ELICIT experiments whose design is informed by...NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US Army Research

  3. Students' network integration vs. persistence in introductory physics courses

    NASA Astrophysics Data System (ADS)

    Zwolak, Justyna; Brewe, Eric

    2017-01-01

    Society is constantly in flux, which demands the continuous development of our educational system to meet new challenges and impart the appropriate knowledge/skills to students. In order to improve student learning, among other things, the way we are teaching has significantly changed over the past few decades. We are moving away from traditional, lecture-based teaching towards more interactive, engagement-based strategies. A current, major challenge for universities is to increase student retention. While students' academic and social integration into an institution seems to be vital for student retention, research on the effect of interpersonal interactions is rare. I use of network analysis to investigate academic and social experiences of students in and beyond the classroom. In particular, there is a compelling case that transformed physics classes, such as Modeling Instruction (MI), promote persistence by the creation of learning communities that support the integration of students into the university. I will discuss recent results on pattern development in networks of MI students' interactions throughout the semester, as well as the effect of students' position within the network on their persistence in physics.

  4. GIANT 2.0: genome-scale integrated analysis of gene networks in tissues.

    PubMed

    Wong, Aaron K; Krishnan, Arjun; Troyanskaya, Olga G

    2018-05-25

    GIANT2 (Genome-wide Integrated Analysis of gene Networks in Tissues) is an interactive web server that enables biomedical researchers to analyze their proteins and pathways of interest and generate hypotheses in the context of genome-scale functional maps of human tissues. The precise actions of genes are frequently dependent on their tissue context, yet direct assay of tissue-specific protein function and interactions remains infeasible in many normal human tissues and cell-types. With GIANT2, researchers can explore predicted tissue-specific functional roles of genes and reveal changes in those roles across tissues, all through interactive multi-network visualizations and analyses. Additionally, the NetWAS approach available through the server uses tissue-specific/cell-type networks predicted by GIANT2 to re-prioritize statistical associations from GWAS studies and identify disease-associated genes. GIANT2 predicts tissue-specific interactions by integrating diverse functional genomics data from now over 61 400 experiments for 283 diverse tissues and cell-types. GIANT2 does not require any registration or installation and is freely available for use at http://giant-v2.princeton.edu.

  5. Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building

    NASA Astrophysics Data System (ADS)

    Habtezion, S.

    2015-12-01

    Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building Senay Habtezion (shabtezion@start.org) / Hassan Virji (hvirji@start.org)Global Change SySTem for Analysis, Training and Research (START) (www.start.org) 2000 Florida Avenue NW, Suite 200 Washington, DC 20009 USA As part of the Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) project partnership effort to promote use of earth observations in advancing scientific knowledge, START works to bridge capacity needs related to earth observations (EOs) and their applications in the developing world. GOFC-GOLD regional networks, fostered through the support of regional and thematic workshops, have been successful in (1) enabling participation of scientists for developing countries and from the US to collaborate on key GOFC-GOLD and Land Cover and Land Use Change (LCLUC) issues, including NASA Global Data Set validation and (2) training young developing country scientists to gain key skills in EOs data management and analysis. Members of the regional networks are also engaged and reengaged in other EOs programs (e.g. visiting scientists program; data initiative fellowship programs at the USGS EROS Center and Boston University), which has helped strengthen these networks. The presentation draws from these experiences in advocating for integrative and iterative approaches to capacity building through the lens of the GOFC-GOLD partnership effort. Specifically, this presentation describes the role of the GODC-GOLD partnership in nurturing organic networks of scientists and EOs practitioners in Asia, Africa, Eastern Europe and Latin America.

  6. Variety in emotional life: within-category typicality of emotional experiences is associated with neural activity in large-scale brain networks

    PubMed Central

    Barrett, Lisa Feldman; Barsalou, Lawrence W.

    2015-01-01

    The tremendous variability within categories of human emotional experience receives little empirical attention. We hypothesized that atypical instances of emotion categories (e.g. pleasant fear of thrill-seeking) would be processed less efficiently than typical instances of emotion categories (e.g. unpleasant fear of violent threat) in large-scale brain networks. During a novel fMRI paradigm, participants immersed themselves in scenarios designed to induce atypical and typical experiences of fear, sadness or happiness (scenario immersion), and then focused on and rated the pleasant or unpleasant feeling that emerged (valence focus) in most trials. As predicted, reliably greater activity in the ‘default mode’ network (including medial prefrontal cortex and posterior cingulate) was observed for atypical (vs typical) emotional experiences during scenario immersion, suggesting atypical instances require greater conceptual processing to situate the socio-emotional experience. During valence focus, reliably greater activity was observed for atypical (vs typical) emotional experiences in the ‘salience’ network (including anterior insula and anterior cingulate), suggesting atypical instances place greater demands on integrating shifting body signals with the sensory and social context. Consistent with emerging psychological construction approaches to emotion, these findings demonstrate that is it important to study the variability within common categories of emotional experience. PMID:24563528

  7. An integrated multiscale river basin observing system in the Heihe River Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Li, X.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.

    2015-12-01

    Using the watershed as the unit to establish an integrated watershed observing system has been an important trend in integrated eco-hydrologic studies in the past ten years. Thus far, a relatively comprehensive watershed observing system has been established in the Heihe River Basin, northwest China. In addition, two comprehensive remote sensing hydrology experiments have been conducted sequentially in the Heihe River Basin, including the Watershed Allied Telemetry Experimental Research (WATER) (2007-2010) and the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) (2012-2015). Among these two experiments, an important result of WATER has been the generation of some multi-scale, high-quality comprehensive datasets, which have greatly supported the development, improvement and validation of a series of ecological, hydrological and quantitative remote-sensing models. The goal of a breakthrough for solving the "data bottleneck" problem has been achieved. HiWATER was initiated in 2012. This project has established a world-class hydrological and meteorological observation network, a flux measurement matrix and an eco-hydrological wireless sensor network. A set of super high-resolution airborne remote-sensing data has also been obtained. In addition, there has been important progress with regard to the scaling research. Furthermore, the automatic acquisition, transmission, quality control and remote control of the observational data has been realized through the use of wireless sensor network technology. The observation and information systems have been highly integrated, which will provide a solid foundation for establishing a research platform that integrates observation, data management, model simulation, scenario analysis and decision-making support to foster 21st-century watershed science in China.

  8. Integrating Data and Networks: Human Factors

    NASA Astrophysics Data System (ADS)

    Chen, R. S.

    2012-12-01

    The development of technical linkages and interoperability between scientific networks is a necessary but not sufficient step towards integrated use and application of networked data and information for scientific and societal benefit. A range of "human factors" must also be addressed to ensure the long-term integration, sustainability, and utility of both the interoperable networks themselves and the scientific data and information to which they provide access. These human factors encompass the behavior of both individual humans and human institutions, and include system governance, a common framework for intellectual property rights and data sharing, consensus on terminology, metadata, and quality control processes, agreement on key system metrics and milestones, the compatibility of "business models" in the short and long term, harmonization of incentives for cooperation, and minimization of disincentives. Experience with several national and international initiatives and research programs such as the International Polar Year, the Group on Earth Observations, the NASA Earth Observing Data and Information System, the U.S. National Spatial Data Infrastructure, the Global Earthquake Model, and the United Nations Spatial Data Infrastructure provide a range of lessons regarding these human factors. Ongoing changes in science, technology, institutions, relationships, and even culture are creating both opportunities and challenges for expanded interoperability of scientific networks and significant improvement in data integration to advance science and the use of scientific data and information to achieve benefits for society as a whole.

  9. Neural networks for simultaneous classification and parameter estimation in musical instrument control

    NASA Astrophysics Data System (ADS)

    Lee, Michael; Freed, Adrian; Wessel, David

    1992-08-01

    In this report we present our tools for prototyping adaptive user interfaces in the context of real-time musical instrument control. Characteristic of most human communication is the simultaneous use of classified events and estimated parameters. We have integrated a neural network object into the MAX language to explore adaptive user interfaces that considers these facets of human communication. By placing the neural processing in the context of a flexible real-time musical programming environment, we can rapidly prototype experiments on applications of adaptive interfaces and learning systems to musical problems. We have trained networks to recognize gestures from a Mathews radio baton, Nintendo Power GloveTM, and MIDI keyboard gestural input devices. In one experiment, a network successfully extracted classification and attribute data from gestural contours transduced by a continuous space controller, suggesting their application in the interpretation of conducting gestures and musical instrument control. We discuss network architectures, low-level features extracted for the networks to operate on, training methods, and musical applications of adaptive techniques.

  10. Blogging within a Social Networking Site as a Form of Literature Response in a Teacher Education Course

    ERIC Educational Resources Information Center

    Hutchison, Amy; Wang, Wei

    2012-01-01

    The purpose of this qualitative study was to document how pre-service teachers in a children's literature course experienced blogging on a social networking site as a form of literature response. Understanding how pre-service teachers experience these tools can inform the ways we instruct them to integrate Web 2.0 tools into their teaching.…

  11. ‘Integrative Physiology 2.0’: integration of systems biology into physiology and its application to cardiovascular homeostasis

    PubMed Central

    Kuster, Diederik W D; Merkus, Daphne; van der Velden, Jolanda; Verhoeven, Adrie J M; Duncker, Dirk J

    2011-01-01

    Since the completion of the Human Genome Project and the advent of the large scaled unbiased ‘-omics’ techniques, the field of systems biology has emerged. Systems biology aims to move away from the traditional reductionist molecular approach, which focused on understanding the role of single genes or proteins, towards a more holistic approach by studying networks and interactions between individual components of networks. From a conceptual standpoint, systems biology elicits a ‘back to the future’ experience for any integrative physiologist. However, many of the new techniques and modalities employed by systems biologists yield tremendous potential for integrative physiologists to expand their tool arsenal to (quantitatively) study complex biological processes, such as cardiac remodelling and heart failure, in a truly holistic fashion. We therefore advocate that systems biology should not become/stay a separate discipline with ‘-omics’ as its playing field, but should be integrated into physiology to create ‘Integrative Physiology 2.0’. PMID:21224228

  12. The Social Network Classroom

    NASA Astrophysics Data System (ADS)

    Bunus, Peter

    Online social networking is an important part in the everyday life of college students. Despite the increasing popularity of online social networking among students and faculty members, its educational benefits are largely untested. This paper presents our experience in using social networking applications and video content distribution websites as a complement of traditional classroom education. In particular, the solution has been based on effective adaptation, extension and integration of Facebook, Twitter, Blogger YouTube and iTunes services for delivering educational material to students on mobile platforms like iPods and 3 rd generation mobile phones. The goals of the proposed educational platform, described in this paper, are to make the learning experience more engaging, to encourage collaborative work and knowledge sharing among students, and to provide an interactive platform for the educators to reach students and deliver lecture material in a totally new way.

  13. A fast and high performance multiple data integration algorithm for identifying human disease genes

    PubMed Central

    2015-01-01

    Background Integrating multiple data sources is indispensable in improving disease gene identification. It is not only due to the fact that disease genes associated with similar genetic diseases tend to lie close with each other in various biological networks, but also due to the fact that gene-disease associations are complex. Although various algorithms have been proposed to identify disease genes, their prediction performances and the computational time still should be further improved. Results In this study, we propose a fast and high performance multiple data integration algorithm for identifying human disease genes. A posterior probability of each candidate gene associated with individual diseases is calculated by using a Bayesian analysis method and a binary logistic regression model. Two prior probability estimation strategies and two feature vector construction methods are developed to test the performance of the proposed algorithm. Conclusions The proposed algorithm is not only generated predictions with high AUC scores, but also runs very fast. When only a single PPI network is employed, the AUC score is 0.769 by using F2 as feature vectors. The average running time for each leave-one-out experiment is only around 1.5 seconds. When three biological networks are integrated, the AUC score using F3 as feature vectors increases to 0.830, and the average running time for each leave-one-out experiment takes only about 12.54 seconds. It is better than many existing algorithms. PMID:26399620

  14. The photoelectric effect and study of the diffraction of light: Two new experiments in UNILabs virtual and remote laboratories network

    NASA Astrophysics Data System (ADS)

    Pedro Sánchez, Juan; Sáenz, Jacobo; de la Torre, Luis; Carreras, Carmen; Yuste, Manuel; Heradio, Rubén; Dormido, Sebastián

    2016-05-01

    This work describes two experiments: "study of the diffraction of light: Fraunhofer approximation" and "the photoelectric effect". Both of them count with a virtual, simulated, version of the experiment as well as with a real one which can be operated remotely. The two previous virtual and remote labs (built using Easy Java(script) Simulations) are integrated in UNILabs, a network of online interactive laboratories based on the free Learning Management System Moodle. In this web environment, students can find not only the virtual and remote labs but also manuals with related theory, the user interface description for each application, and so on.

  15. The feasibility of measuring social networks among older adults in assisted living and dementia special care units.

    PubMed

    Abbott, Katherine M; Bettger, Janet Prvu; Hampton, Keith N; Kohler, Hans-Peter

    2015-03-01

    Studies indicate that social integration has a significant influence on physical and mental health. Older adults experience an increased risk of social isolation as their social networks decline with fewer traditional opportunities to add new social relationships. Deaths of similar aged friends, cognitive and functional impairments, and relocating to a nursing home (NH) or assisted-living (AL) facility contribute to difficulties in maintaining one's social network. Due to the paucity of research examining the social networks of people residing in AL and NH, this study was designed to develop and test the feasibility of using a combination of methodological approaches to capture social network data among older adults living in AL and a dementia special care unit NH. Social network analysis of both egocentric and sociocentric networks was conducted to visualize the social networks of 15 residents of an AL neighborhood and 12 residents of a dementia special care unit NH and to calculate measures network size, centrality, and reciprocity. The combined egocentric and sociocentric method was feasible and provided a robust indicator of resident social networks highlighting individuals who were socially integrated as well as isolated. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. Improving Students' Educational Experience by Harnessing Digital Technology: elgg in the ODL Environment

    ERIC Educational Resources Information Center

    Tung, Lai Cheng

    2013-01-01

    Given the rising popularity of both open and distance learning (ODL) and social networking tools, it seems logical to merge and harness these two popular technologies with the goal of improving student educational experience. The integration seems to hold tremendous promise for the open and distance learning mode. To reduce the gap in the…

  17. Hypnosis, suggestion, and suggestibility: an integrative model.

    PubMed

    Lynn, Steven Jay; Laurence, Jean-Roch; Kirsch, Irving

    2015-01-01

    This article elucidates an integrative model of hypnosis that integrates social, cultural, cognitive, and neurophysiological variables at play both in and out of hypnosis and considers their dynamic interaction as determinants of the multifaceted experience of hypnosis. The roles of these variables are examined in the induction and suggestion stages of hypnosis, including how they are related to the experience of involuntariness, one of the hallmarks of hypnosis. It is suggested that studies of the modification of hypnotic suggestibility; cognitive flexibility; response sets and expectancies; the default-mode network; and the search for the neurophysiological correlates of hypnosis, more broadly, in conjunction with research on social psychological variables, hold much promise to further understanding of hypnosis.

  18. Social networking in nursing education: integrative literature review

    PubMed Central

    Kakushi, Luciana Emi; Évora, Yolanda Dora Martinez

    2016-01-01

    Abstract Objective: to identify the use of social networking in nursing education. Method: integrative literature review in the databases: LILACS, IBECS, Cochrane, BDENF, SciELO, CINAHL, Scopus, PubMed, CAPES Periodicals Portal and Web of Science, using the descriptors: social networking and nursing education and the keywords: social networking sites and nursing education, carried out in April 2015. Results: of the 489 articles found, only 14 met the inclusion and exclusion criteria. Most studies were published after 2013 (57%), originating from the United States and United Kingdom (77.8%). It was observed the use of social networking among nursing students, postgraduate students, mentors and nurses, in undergraduate programmes, hybrid education (blended-learning) and in interprofessional education. The social networking sites used in the teaching and learning process were Facebook (42.8%), Ning (28.5%), Twitter (21.4%) and MySpace (7.1%), by means of audios, videos, quizzes, animations, forums, guidance, support, discussions and research group. Conclusion: few experiences of the use of social networking in nursing education were found and their contributions show the numerous benefits and difficulties faced, providing resourses for the improvement and revaluation of their use in the teaching and learning process. PMID:27384465

  19. Correlates of hepatitis B virus health-related behaviors of Korean Americans: a situation-specific nursing theory.

    PubMed

    Lee, Haeok; Fawcett, Jacqueline; Yang, Jin Hyang; Hann, Hie-Won

    2012-12-01

    The purpose of this article is to explain the evolution of a situation-specific theory developed to enhance understanding of health-related behaviors of Korean Americans (KAs) who have or are at risk for a chronic hepatitis B virus (HBV) infection. The situation-specific theory evolved from an integration of the Network Episode Model, studies of health-related behaviors of people with HBV infection, and our studies of and practice experiences with Asian American individuals with HBV infection. The major concepts of the theory are sociocultural context, social network, individual-level factors, illness experience, and health-related behaviors. The major propositions of the theory are that sociocultural context, social network, and individual-level factors influence the illness experience, and that sociocultural context, social network, individual-level factors, and the illness experience influence health-related behaviors of KAs who have or are at risk for HBV infection. This situation-specific theory represents a translation of abstract concepts into clinical reality. The theory is an explanation of correlates of health-related HBV behaviors of KAs. The next step is to develop and test the effectiveness of a nursing intervention designed to promote behaviors that will enhance the health of KAs who have or are at risk for HBV infection, and that takes into account sociocultural context, social network, individual-level factors, and illness experience. © 2012 Sigma Theta Tau International.

  20. "Facebook," Social Integration and Informal Learning at University: "It Is More for Socialising and Talking to Friends about Work than for Actually Doing Work"

    ERIC Educational Resources Information Center

    Madge, Clare; Meek, Julia; Wellens, Jane; Hooley, Tristram

    2009-01-01

    Whilst recent studies suggest that over 95% of British undergraduate students are regularly using social networking sites, we still know very little about how this phenomenon impacts on the student experience and, in particular, how it influences students' social integration into university life. This paper explores how pre-registration engagement…

  1. A neural network controller for automated composite manufacturing

    NASA Technical Reports Server (NTRS)

    Lichtenwalner, Peter F.

    1994-01-01

    At McDonnell Douglas Aerospace (MDA), an artificial neural network based control system has been developed and implemented to control laser heating for the fiber placement composite manufacturing process. This neurocontroller learns an approximate inverse model of the process on-line to provide performance that improves with experience and exceeds that of conventional feedback control techniques. When untrained, the control system behaves as a proportional plus integral (PI) controller. However after learning from experience, the neural network feedforward control module provides control signals that greatly improve temperature tracking performance. Faster convergence to new temperature set points and reduced temperature deviation due to changing feed rate have been demonstrated on the machine. A Cerebellar Model Articulation Controller (CMAC) network is used for inverse modeling because of its rapid learning performance. This control system is implemented in an IBM compatible 386 PC with an A/D board interface to the machine.

  2. Delay/Disruption Tolerant Networking for the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Schlesinger, Adam; Willman, Brett M.; Pitts, Lee; Davidson, Suzanne R.; Pohlchuck, William A.

    2017-01-01

    Disruption Tolerant Networking (DTN) is an emerging data networking technology designed to abstract the hardware communication layer from the spacecraft/payload computing resources. DTN is specifically designed to operate in environments where link delays and disruptions are common (e.g., space-based networks). The National Aeronautics and Space Administration (NASA) has demonstrated DTN on several missions, such as the Deep Impact Networking (DINET) experiment, the Earth Observing Mission 1 (EO-1) and the Lunar Laser Communication Demonstration (LLCD). To further the maturation of DTN, NASA is implementing DTN protocols on the International Space Station (ISS). This paper explains the architecture of the ISS DTN network, the operational support for the system, the results from integrated ground testing, and the future work for DTN expansion.

  3. Variety in emotional life: within-category typicality of emotional experiences is associated with neural activity in large-scale brain networks.

    PubMed

    Wilson-Mendenhall, Christine D; Barrett, Lisa Feldman; Barsalou, Lawrence W

    2015-01-01

    The tremendous variability within categories of human emotional experience receives little empirical attention. We hypothesized that atypical instances of emotion categories (e.g. pleasant fear of thrill-seeking) would be processed less efficiently than typical instances of emotion categories (e.g. unpleasant fear of violent threat) in large-scale brain networks. During a novel fMRI paradigm, participants immersed themselves in scenarios designed to induce atypical and typical experiences of fear, sadness or happiness (scenario immersion), and then focused on and rated the pleasant or unpleasant feeling that emerged (valence focus) in most trials. As predicted, reliably greater activity in the 'default mode' network (including medial prefrontal cortex and posterior cingulate) was observed for atypical (vs typical) emotional experiences during scenario immersion, suggesting atypical instances require greater conceptual processing to situate the socio-emotional experience. During valence focus, reliably greater activity was observed for atypical (vs typical) emotional experiences in the 'salience' network (including anterior insula and anterior cingulate), suggesting atypical instances place greater demands on integrating shifting body signals with the sensory and social context. Consistent with emerging psychological construction approaches to emotion, these findings demonstrate that is it important to study the variability within common categories of emotional experience. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. Value Co-creation and Co-innovation: Linking Networked Organisations and Customer Communities

    NASA Astrophysics Data System (ADS)

    Romero, David; Molina, Arturo

    Strategic networks such as Collaborative Networked Organisations (CNOs) and Virtual Customer Communities (VCCs) show a high potential as drivers of value co-creation and collaborative innovation in today’s Networking Era. Both look at the network structures as a source of jointly value creation and open innovation through access to new skills, knowledge, markets and technologies by sharing risk and integrating complementary competencies. This collaborative endeavour has proven to be able to enhance the adaptability and flexibility of CNOs and VCCs value creating systems in order to react in response to external drivers such as collaborative (business) opportunities. This paper presents a reference framework for creating interface networks, also known as ‘experience-centric networks’, as enablers for linking networked organisations and customer communities in order to support the establishment of user-driven and collaborative innovation networks.

  5. All-Optical Wavelength-Path Service With Quality Assurance by Multilayer Integration System

    NASA Astrophysics Data System (ADS)

    Yagi, Mikio; Tanaka, Shinya; Satomi, Shuichi; Ryu, Shiro; Asano, Shoichiro

    2006-09-01

    In the future all-optical network controlled by generalized multiprotocol label switching (GMPLS), the wavelength path between end nodes will change dynamically. This inevitably means that the fiber parameters along the wavelength path will also vary. This variation in fiber parameters influences the signal quality of high-speed-transmission system (bit rates over 40 Gb/s). Therefore, at a path setup, the fiber-parameter effect should be adequately compensated. Moreover, the path setup must be completed fast enough to meet the network-application demands. To realize the rapid setup of adequate paths, a multilayer integration system for all-optical wavelength-path quality assurance is proposed. This multilayer integration system is evaluated in a field trial. In the trial, the GMPLS control plane, measurement plane, and data plane coordinated to maintain the quality of a 40-Gb/s wavelength path that would otherwise be degraded by the influence of chromatic dispersion. It is also demonstrated that the multilayer integration system can assure the signal quality in the face of not only chromatic dispersion but also degradation in the optical signal-to-noise ratio by the use of a 2R regeneration system. Our experiments confirm that the proposed multilayer integration system is an essential part of future all-optical networks.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qishi; Zhu, Mengxia; Rao, Nageswara S

    We propose an intelligent decision support system based on sensor and computer networks that incorporates various component techniques for sensor deployment, data routing, distributed computing, and information fusion. The integrated system is deployed in a distributed environment composed of both wireless sensor networks for data collection and wired computer networks for data processing in support of homeland security defense. We present the system framework and formulate the analytical problems and develop approximate or exact solutions for the subtasks: (i) sensor deployment strategy based on a two-dimensional genetic algorithm to achieve maximum coverage with cost constraints; (ii) data routing scheme tomore » achieve maximum signal strength with minimum path loss, high energy efficiency, and effective fault tolerance; (iii) network mapping method to assign computing modules to network nodes for high-performance distributed data processing; and (iv) binary decision fusion rule that derive threshold bounds to improve system hit rate and false alarm rate. These component solutions are implemented and evaluated through either experiments or simulations in various application scenarios. The extensive results demonstrate that these component solutions imbue the integrated system with the desirable and useful quality of intelligence in decision making.« less

  7. Cloud Computing Services for Seismic Networks

    NASA Astrophysics Data System (ADS)

    Olson, Michael

    This thesis describes a compositional framework for developing situation awareness applications: applications that provide ongoing information about a user's changing environment. The thesis describes how the framework is used to develop a situation awareness application for earthquakes. The applications are implemented as Cloud computing services connected to sensors and actuators. The architecture and design of the Cloud services are described and measurements of performance metrics are provided. The thesis includes results of experiments on earthquake monitoring conducted over a year. The applications developed by the framework are (1) the CSN---the Community Seismic Network---which uses relatively low-cost sensors deployed by members of the community, and (2) SAF---the Situation Awareness Framework---which integrates data from multiple sources, including the CSN, CISN---the California Integrated Seismic Network, a network consisting of high-quality seismometers deployed carefully by professionals in the CISN organization and spread across Southern California---and prototypes of multi-sensor platforms that include carbon monoxide, methane, dust and radiation sensors.

  8. (Net)Working out: social capital in a private health club.

    PubMed

    Crossley, Nick

    2008-09-01

    In Bowling Alone Robert Putnam considers the possibility that the growth of private health clubs and the rising rates of membership to such clubs might represent a counter-trend to his thesis on the decline in social capital. In this paper I explore this idea using ethnographic data and social network analysis. I show both that and how networks form in health clubs and I discuss the ways in which these networks constitute social capital for their members. In addition, however, I explore the 'dark side' of this form of social capital. I argue that high integration amongst some members of a fitness class can generate a power differential between those members and other, less integrated members who experience this negatively. Furthermore, with an eye on Burt's (2005) important thesis on brokerage and closure, I argue that brokerage between relatively closed clusters of agents can lead to inter-group rivalry and conflict, which, in turn, is experienced negatively by those involved.

  9. An Integrated Environment Monitoring System for Underground Coal Mines—Wireless Sensor Network Subsystem with Multi-Parameter Monitoring

    PubMed Central

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-01-01

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected. PMID:25051037

  10. Students' network integration as a predictor of persistence in introductory physics courses

    NASA Astrophysics Data System (ADS)

    Zwolak, Justyna P.; Dou, Remy; Williams, Eric A.; Brewe, Eric

    2017-06-01

    Increasing student retention (successfully finishing a particular course) and persistence (continuing through a sequence of courses or the major area of study) is currently a major challenge for universities. While students' academic and social integration into an institution seems to be vital for student retention, research into the effect of interpersonal interactions is rare. We use network analysis as an approach to investigate academic and social experiences of students in the classroom. In particular, centrality measures identify patterns of interaction that contribute to integration into the university. Using these measures, we analyze how position within a social network in a Modeling Instruction (MI) course—an introductory physics course that strongly emphasizes interactive learning—predicts their persistence in taking a subsequent physics course. Students with higher centrality at the end of the first semester of MI are more likely to enroll in a second semester of MI. Moreover, we found that chances of successfully predicting individual student's persistence based on centrality measures are fairly high—up to 75%, making the centrality a good predictor of persistence. These findings suggest that increasing student social integration may help in improving persistence in science, technology, engineering, and mathematics fields.

  11. Organizing the public health-clinical health interface: theoretical bases.

    PubMed

    St-Pierre, Michèle; Reinharz, Daniel; Gauthier, Jacques-Bernard

    2006-01-01

    This article addresses the issue of the interface between public health and clinical health within the context of the search for networking approaches geared to a more integrated delivery of health services. The articulation of an operative interface is complicated by the fact that the definition of networking modalities involves complex intra- and interdisciplinary and intra- and interorganizational systems across which a new transversal dynamics of intervention practices and exchanges between service structures must be established. A better understanding of the situation is reached by shedding light on the rationale underlying the organizational methods that form the bases of the interface between these two sectors of activity. The Quebec experience demonstrates that neither the structural-functionalist approach, which emphasizes remodelling establishment structures and functions as determinants of integration, nor the structural-constructivist approach, which prioritizes distinct fields of practice in public health and clinical health, adequately serves the purpose of networking and integration. Consequently, a theoretical reframing is imperative. In this regard, structuration theory, which fosters the simultaneous study of methods of inter-structure coordination and inter-actor cooperation, paves the way for a better understanding of the situation and, in turn, to the emergence of new integration possibilities.

  12. An integrated environment monitoring system for underground coal mines--Wireless Sensor Network subsystem with multi-parameter monitoring.

    PubMed

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-07-21

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected.

  13. Live Social Semantics

    NASA Astrophysics Data System (ADS)

    Alani, Harith; Szomszor, Martin; Cattuto, Ciro; van den Broeck, Wouter; Correndo, Gianluca; Barrat, Alain

    Social interactions are one of the key factors to the success of conferences and similar community gatherings. This paper describes a novel application that integrates data from the semantic web, online social networks, and a real-world contact sensing platform. This application was successfully deployed at ESWC09, and actively used by 139 people. Personal profiles of the participants were automatically generated using several Web 2.0 systems and semantic academic data sources, and integrated in real-time with face-to-face contact networks derived from wearable sensors. Integration of all these heterogeneous data layers made it possible to offer various services to conference attendees to enhance their social experience such as visualisation of contact data, and a site to explore and connect with other participants. This paper describes the architecture of the application, the services we provided, and the results we achieved in this deployment.

  14. An integrated approach to addressing addiction and depression in college students.

    PubMed

    Eisen, Arri; Kushner, Howard; McLeod, Mark; Queen, Edward; Gordon, Jonathan; Ford, John L

    2009-01-01

    The authors present an integrated, interdisciplinary approach to address the problem of increasing student mental health issues on college campuses. The model uses addiction and depression as lenses into the problem and links residence life and academic and community internship experiences. The project has a positive impact on student attitudes and actions and strengthens and broadens the campus network required to ensure optimal student mental health.

  15. Simulated NASA Satellite Data Products for the NOAA Integrated Coral Reef Observation Network/Coral Reef Early Warning System

    NASA Technical Reports Server (NTRS)

    Estep, Leland; Spruce, Joseph P.

    2007-01-01

    This RPC (Rapid Prototyping Capability) experiment will demonstrate the use of VIIRS (Visible/Infrared Imager/Radiometer Suite) and LDCM (Landsat Data Continuity Mission) sensor data as significant input to the NOAA (National Oceanic and Atmospheric Administration) ICON/ CREWS (Integrated Coral Reef Observation System/Coral Reef Early Warning System). The project affects the Coastal Management Program Element of the Applied Sciences Program.

  16. OWL reasoning framework over big biological knowledge network.

    PubMed

    Chen, Huajun; Chen, Xi; Gu, Peiqin; Wu, Zhaohui; Yu, Tong

    2014-01-01

    Recently, huge amounts of data are generated in the domain of biology. Embedded with domain knowledge from different disciplines, the isolated biological resources are implicitly connected. Thus it has shaped a big network of versatile biological knowledge. Faced with such massive, disparate, and interlinked biological data, providing an efficient way to model, integrate, and analyze the big biological network becomes a challenge. In this paper, we present a general OWL (web ontology language) reasoning framework to study the implicit relationships among biological entities. A comprehensive biological ontology across traditional Chinese medicine (TCM) and western medicine (WM) is used to create a conceptual model for the biological network. Then corresponding biological data is integrated into a biological knowledge network as the data model. Based on the conceptual model and data model, a scalable OWL reasoning method is utilized to infer the potential associations between biological entities from the biological network. In our experiment, we focus on the association discovery between TCM and WM. The derived associations are quite useful for biologists to promote the development of novel drugs and TCM modernization. The experimental results show that the system achieves high efficiency, accuracy, scalability, and effectivity.

  17. OWL Reasoning Framework over Big Biological Knowledge Network

    PubMed Central

    Chen, Huajun; Chen, Xi; Gu, Peiqin; Wu, Zhaohui; Yu, Tong

    2014-01-01

    Recently, huge amounts of data are generated in the domain of biology. Embedded with domain knowledge from different disciplines, the isolated biological resources are implicitly connected. Thus it has shaped a big network of versatile biological knowledge. Faced with such massive, disparate, and interlinked biological data, providing an efficient way to model, integrate, and analyze the big biological network becomes a challenge. In this paper, we present a general OWL (web ontology language) reasoning framework to study the implicit relationships among biological entities. A comprehensive biological ontology across traditional Chinese medicine (TCM) and western medicine (WM) is used to create a conceptual model for the biological network. Then corresponding biological data is integrated into a biological knowledge network as the data model. Based on the conceptual model and data model, a scalable OWL reasoning method is utilized to infer the potential associations between biological entities from the biological network. In our experiment, we focus on the association discovery between TCM and WM. The derived associations are quite useful for biologists to promote the development of novel drugs and TCM modernization. The experimental results show that the system achieves high efficiency, accuracy, scalability, and effectivity. PMID:24877076

  18. Systems analysis of transcriptome data provides new hypotheses about Arabidopsis root response to nitrate treatments

    PubMed Central

    Canales, Javier; Moyano, Tomás C.; Villarroel, Eva; Gutiérrez, Rodrigo A.

    2014-01-01

    Nitrogen (N) is an essential macronutrient for plant growth and development. Plants adapt to changes in N availability partly by changes in global gene expression. We integrated publicly available root microarray data under contrasting nitrate conditions to identify new genes and functions important for adaptive nitrate responses in Arabidopsis thaliana roots. Overall, more than 2000 genes exhibited changes in expression in response to nitrate treatments in Arabidopsis thaliana root organs. Global regulation of gene expression by nitrate depends largely on the experimental context. However, despite significant differences from experiment to experiment in the identity of regulated genes, there is a robust nitrate response of specific biological functions. Integrative gene network analysis uncovered relationships between nitrate-responsive genes and 11 highly co-expressed gene clusters (modules). Four of these gene network modules have robust nitrate responsive functions such as transport, signaling, and metabolism. Network analysis hypothesized G2-like transcription factors are key regulatory factors controlling transport and signaling functions. Our meta-analysis highlights the role of biological processes not studied before in the context of the nitrate response such as root hair development and provides testable hypothesis to advance our understanding of nitrate responses in plants. PMID:24570678

  19. A Multi-User Remote Academic Laboratory System

    ERIC Educational Resources Information Center

    Barrios, Arquimedes; Panche, Stifen; Duque, Mauricio; Grisales, Victor H.; Prieto, Flavio; Villa, Jose L.; Chevrel, Philippe; Canu, Michael

    2013-01-01

    This article describes the development, implementation and preliminary operation assessment of Multiuser Network Architecture to integrate a number of Remote Academic Laboratories for educational purposes on automatic control. Through the Internet, real processes or physical experiments conducted at the control engineering laboratories of four…

  20. Mechanics of biological networks: from the cell cytoskeleton to connective tissue.

    PubMed

    Pritchard, Robyn H; Huang, Yan Yan Shery; Terentjev, Eugene M

    2014-03-28

    From the cell cytoskeleton to connective tissues, fibrous networks are ubiquitous in metazoan life as the key promoters of mechanical strength, support and integrity. In recent decades, the application of physics to biological systems has made substantial strides in elucidating the striking mechanical phenomena observed in such networks, explaining strain stiffening, power law rheology and cytoskeletal fluidisation - all key to the biological function of individual cells and tissues. In this review we focus on the current progress in the field, with a primer into the basic physics of individual filaments and the networks they form. This is followed by a discussion of biological networks in the context of a broad spread of recent in vitro and in vivo experiments.

  1. Developing a data life cycle for carbon and greenhouse gas measurements: challenges, experiences and visions

    NASA Astrophysics Data System (ADS)

    Kutsch, W. L.

    2015-12-01

    Environmental research infrastructures and big data integration networks require common data policies, standardized workflows and sophisticated e-infrastructure to optimise the data life cycle. This presentation summarizes the experiences in developing the data life cycle for the Integrated Carbon Observation System (ICOS), a European Research Infrastructure. It will also outline challenges that still exist and visions for future development. As many other environmental research infrastructures ICOS RI built on a large number of distributed observational or experimental sites. Data from these sites are transferred to Thematic Centres and quality checked, processed and integrated there. Dissemination will be managed by the ICOS Carbon Portal. This complex data life cycle has been defined in detail by developing protocols and assigning responsibilities. Since data will be shared under an open access policy there is a strong need for common data citation tracking systems that allow data providers to identify downstream usage of their data so as to prove their importance and show the impact to stakeholders and the public. More challenges arise from interoperating with other infrastructures or providing data for global integration projects as done e.g. in the framework of GEOSS or in global integration approaches such as fluxnet or SOCAt. Here, common metadata systems are the key solutions for data detection and harvesting. The metadata characterises data, services, users and ICT resources (including sensors and detectors). Risks may arise when data of high and low quality are mixed during this process or unexperienced data scientists without detailed knowledge on the data aquisition derive scientific theories through statistical analyses. The vision of fully open data availability is expressed in a recent GEO flagship initiative that will address important issues needed to build a connected and interoperable global network for carbon cycle and greenhouse gas observations and aims to meet the most urgent needs for integration between different information sources and methodologies, between different regional networks and from data providers to users.

  2. Modeling of Receptor Tyrosine Kinase Signaling: Computational and Experimental Protocols.

    PubMed

    Fey, Dirk; Aksamitiene, Edita; Kiyatkin, Anatoly; Kholodenko, Boris N

    2017-01-01

    The advent of systems biology has convincingly demonstrated that the integration of experiments and dynamic modelling is a powerful approach to understand the cellular network biology. Here we present experimental and computational protocols that are necessary for applying this integrative approach to the quantitative studies of receptor tyrosine kinase (RTK) signaling networks. Signaling by RTKs controls multiple cellular processes, including the regulation of cell survival, motility, proliferation, differentiation, glucose metabolism, and apoptosis. We describe methods of model building and training on experimentally obtained quantitative datasets, as well as experimental methods of obtaining quantitative dose-response and temporal dependencies of protein phosphorylation and activities. The presented methods make possible (1) both the fine-grained modeling of complex signaling dynamics and identification of salient, course-grained network structures (such as feedback loops) that bring about intricate dynamics, and (2) experimental validation of dynamic models.

  3. Distributed wireless sensing for methane leak detection technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Levente; van Kesse, Theodor

    Large scale environmental monitoring requires dynamic optimization of data transmission, power management, and distribution of the computational load. In this work, we demonstrate the use of a wireless sensor network for detection of chemical leaks on gas oil well pads. The sensor network consist of chemi-resistive and wind sensors and aggregates all the data and transmits it to the cloud for further analytics processing. The sensor network data is integrated with an inversion model to identify leak location and quantify leak rates. We characterize the sensitivity and accuracy of such system under multiple well controlled methane release experiments. It ismore » demonstrated that even 1 hour measurement with 10 sensors localizes leaks within 1 m and determines leak rate with an accuracy of 40%. This integrated sensing and analytics solution is currently refined to be a robust system for long term remote monitoring of methane leaks, generation of alarms, and tracking regulatory compliance.« less

  4. Distributed wireless sensing for fugitive methane leak detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Levente J.; van Kessel, Theodore; Nair, Dhruv

    Large scale environmental monitoring requires dynamic optimization of data transmission, power management, and distribution of the computational load. In this work, we demonstrate the use of a wireless sensor network for detection of chemical leaks on gas oil well pads. The sensor network consist of chemi-resistive and wind sensors and aggregates all the data and transmits it to the cloud for further analytics processing. The sensor network data is integrated with an inversion model to identify leak location and quantify leak rates. We characterize the sensitivity and accuracy of such system under multiple well controlled methane release experiments. It ismore » demonstrated that even 1 hour measurement with 10 sensors localizes leaks within 1 m and determines leak rate with an accuracy of 40%. This integrated sensing and analytics solution is currently refined to be a robust system for long term remote monitoring of methane leaks, generation of alarms, and tracking regulatory compliance.« less

  5. Distributed wireless sensing for fugitive methane leak detection

    DOE PAGES

    Klein, Levente J.; van Kessel, Theodore; Nair, Dhruv; ...

    2017-12-11

    Large scale environmental monitoring requires dynamic optimization of data transmission, power management, and distribution of the computational load. In this work, we demonstrate the use of a wireless sensor network for detection of chemical leaks on gas oil well pads. The sensor network consist of chemi-resistive and wind sensors and aggregates all the data and transmits it to the cloud for further analytics processing. The sensor network data is integrated with an inversion model to identify leak location and quantify leak rates. We characterize the sensitivity and accuracy of such system under multiple well controlled methane release experiments. It ismore » demonstrated that even 1 hour measurement with 10 sensors localizes leaks within 1 m and determines leak rate with an accuracy of 40%. This integrated sensing and analytics solution is currently refined to be a robust system for long term remote monitoring of methane leaks, generation of alarms, and tracking regulatory compliance.« less

  6. Happier Together: Integrating a Wellness Application into a Social Network Site

    NASA Astrophysics Data System (ADS)

    Munson, Sean A.; Lauterbach, Debra; Newman, Mark W.; Resnick, Paul

    What are the benefits and drawbacks of integrating health and wellness interventions into existing online social network websites? In this paper, we report on a case study of deploying the Three Good Things positive psychology exercise as a Facebook application. Our experience shows that embedding a wellness intervention in an existing social website is a viable option. In particular, we find adherence rates on par with or better than many other Internet-based wellness interventions. We also gained insights about users' privacy and audience concerns that inform the design of social network-based wellness applications. Participants did not want all of their entries to be shared with all their Facebook friends, both because they did not want others to know some things and because they did not want to clutter others' newsfeeds. Users found it compelling, however, to interact with their friends around some "Good Things" they had posted.

  7. Decentralized Multisensory Information Integration in Neural Systems.

    PubMed

    Zhang, Wen-Hao; Chen, Aihua; Rasch, Malte J; Wu, Si

    2016-01-13

    How multiple sensory cues are integrated in neural circuitry remains a challenge. The common hypothesis is that information integration might be accomplished in a dedicated multisensory integration area receiving feedforward inputs from the modalities. However, recent experimental evidence suggests that it is not a single multisensory brain area, but rather many multisensory brain areas that are simultaneously involved in the integration of information. Why many mutually connected areas should be needed for information integration is puzzling. Here, we investigated theoretically how information integration could be achieved in a distributed fashion within a network of interconnected multisensory areas. Using biologically realistic neural network models, we developed a decentralized information integration system that comprises multiple interconnected integration areas. Studying an example of combining visual and vestibular cues to infer heading direction, we show that such a decentralized system is in good agreement with anatomical evidence and experimental observations. In particular, we show that this decentralized system can integrate information optimally. The decentralized system predicts that optimally integrated information should emerge locally from the dynamics of the communication between brain areas and sheds new light on the interpretation of the connectivity between multisensory brain areas. To extract information reliably from ambiguous environments, the brain integrates multiple sensory cues, which provide different aspects of information about the same entity of interest. Here, we propose a decentralized architecture for multisensory integration. In such a system, no processor is in the center of the network topology and information integration is achieved in a distributed manner through reciprocally connected local processors. Through studying the inference of heading direction with visual and vestibular cues, we show that the decentralized system can integrate information optimally, with the reciprocal connections between processers determining the extent of cue integration. Our model reproduces known multisensory integration behaviors observed in experiments and sheds new light on our understanding of how information is integrated in the brain. Copyright © 2016 Zhang et al.

  8. Decentralized Multisensory Information Integration in Neural Systems

    PubMed Central

    Zhang, Wen-hao; Chen, Aihua

    2016-01-01

    How multiple sensory cues are integrated in neural circuitry remains a challenge. The common hypothesis is that information integration might be accomplished in a dedicated multisensory integration area receiving feedforward inputs from the modalities. However, recent experimental evidence suggests that it is not a single multisensory brain area, but rather many multisensory brain areas that are simultaneously involved in the integration of information. Why many mutually connected areas should be needed for information integration is puzzling. Here, we investigated theoretically how information integration could be achieved in a distributed fashion within a network of interconnected multisensory areas. Using biologically realistic neural network models, we developed a decentralized information integration system that comprises multiple interconnected integration areas. Studying an example of combining visual and vestibular cues to infer heading direction, we show that such a decentralized system is in good agreement with anatomical evidence and experimental observations. In particular, we show that this decentralized system can integrate information optimally. The decentralized system predicts that optimally integrated information should emerge locally from the dynamics of the communication between brain areas and sheds new light on the interpretation of the connectivity between multisensory brain areas. SIGNIFICANCE STATEMENT To extract information reliably from ambiguous environments, the brain integrates multiple sensory cues, which provide different aspects of information about the same entity of interest. Here, we propose a decentralized architecture for multisensory integration. In such a system, no processor is in the center of the network topology and information integration is achieved in a distributed manner through reciprocally connected local processors. Through studying the inference of heading direction with visual and vestibular cues, we show that the decentralized system can integrate information optimally, with the reciprocal connections between processers determining the extent of cue integration. Our model reproduces known multisensory integration behaviors observed in experiments and sheds new light on our understanding of how information is integrated in the brain. PMID:26758843

  9. A Secure Communication Suite for Underwater Acoustic Sensor Networks

    PubMed Central

    Dini, Gianluca; Duca, Angelica Lo

    2012-01-01

    In this paper we describe a security suite for Underwater Acoustic Sensor Networks comprising both fixed and mobile nodes. The security suite is composed of a secure routing protocol and a set of cryptographic primitives aimed at protecting the confidentiality and the integrity of underwater communication while taking into account the unique characteristics and constraints of the acoustic channel. By means of experiments and simulations based on real data, we show that the suite is suitable for an underwater networking environment as it introduces limited, and sometimes negligible, communication and power consumption overhead. PMID:23202204

  10. Synaptic Plasticity in Visual Cortex: Comparison of Theory with Experiment

    DTIC Science & Technology

    1990-01-01

    Hubel DH, Wiesel TN (1961) Integrative action in the cat’s lateral geniculate body . J. Physiol. 155:385-398. Hubel DH, Wiesel TN (1962) Receptive...fibers from the lateral geniculate nucleus (LGN) onto a single cortical neuron. Scofield and Cooper (1985) extended this to a network of interconnected...connected network was later 1 simplified by Cooper and Scofield (1988) with the introduction of a mean-field theory, which in effect replaces all of the

  11. Real-time Integration of Biological, Optical and Physical Oceanographic Data from Multiple Vessels and Nearshore Sites using a Wireless Network

    DTIC Science & Technology

    1997-09-30

    field experiments in Puget Sound . Each research vessel will use multi- sensor profiling instrument packages which obtain high-resolution physical...field deployment of the wireless network is planned for May-July, 1998, at Orcas Island, WA. IMPACT We expect that wireless communication systems will...East Sound project to be a first step toward continental shelf and open ocean deployments with the next generation of wireless and satellite

  12. A Double Dwell High Sensitivity GPS Acquisition Scheme Using Binarized Convolution Neural Network

    PubMed Central

    Wang, Zhen; Zhuang, Yuan; Yang, Jun; Zhang, Hengfeng; Dong, Wei; Wang, Min; Hua, Luchi; Liu, Bo; Shi, Longxing

    2018-01-01

    Conventional GPS acquisition methods, such as Max selection and threshold crossing (MAX/TC), estimate GPS code/Doppler by its correlation peak. Different from MAX/TC, a multi-layer binarized convolution neural network (BCNN) is proposed to recognize the GPS acquisition correlation envelope in this article. The proposed method is a double dwell acquisition in which a short integration is adopted in the first dwell and a long integration is applied in the second one. To reduce the search space for parameters, BCNN detects the possible envelope which contains the auto-correlation peak in the first dwell to compress the initial search space to 1/1023. Although there is a long integration in the second dwell, the acquisition computation overhead is still low due to the compressed search space. Comprehensively, the total computation overhead of the proposed method is only 1/5 of conventional ones. Experiments show that the proposed double dwell/correlation envelope identification (DD/CEI) neural network achieves 2 dB improvement when compared with the MAX/TC under the same specification. PMID:29747373

  13. An Integrative Platform of TCM Network Pharmacology and Its Application on a Herbal Formula, Qing-Luo-Yin

    PubMed Central

    Zhang, Bo; Wang, Xu; Li, Shao

    2013-01-01

    The scientific understanding of traditional Chinese medicine (TCM) has been hindered by the lack of methods that can explore the complex nature and combinatorial rules of herbal formulae. On the assumption that herbal ingredients mainly target a molecular network to adjust the imbalance of human body, here we present a-self-developed TCM network pharmacology platform for discovering herbal formulae in a systematic manner. This platform integrates a set of network-based methods that we established previously to catch the network regulation mechanism and to identify active ingredients as well as synergistic combinations for a given herbal formula. We then provided a case study on an antirheumatoid arthritis (RA) formula, Qing-Luo-Yin (QLY), to demonstrate the usability of the platform. We revealed the target network of QLY against RA-related key processes including angiogenesis, inflammatory response, and immune response, based on which we not only predicted active and synergistic ingredients from QLY but also interpreted the combinatorial rule of this formula. These findings are either verified by the literature evidence or have the potential to guide further experiments. Therefore, such a network pharmacology strategy and platform is expected to make the systematical study of herbal formulae achievable and to make the TCM drug discovery predictable. PMID:23653662

  14. Brainlab: A Python Toolkit to Aid in the Design, Simulation, and Analysis of Spiking Neural Networks with the NeoCortical Simulator.

    PubMed

    Drewes, Rich; Zou, Quan; Goodman, Philip H

    2009-01-01

    Neuroscience modeling experiments often involve multiple complex neural network and cell model variants, complex input stimuli and input protocols, followed by complex data analysis. Coordinating all this complexity becomes a central difficulty for the experimenter. The Python programming language, along with its extensive library packages, has emerged as a leading "glue" tool for managing all sorts of complex programmatic tasks. This paper describes a toolkit called Brainlab, written in Python, that leverages Python's strengths for the task of managing the general complexity of neuroscience modeling experiments. Brainlab was also designed to overcome the major difficulties of working with the NCS (NeoCortical Simulator) environment in particular. Brainlab is an integrated model-building, experimentation, and data analysis environment for the powerful parallel spiking neural network simulator system NCS.

  15. Brainlab: A Python Toolkit to Aid in the Design, Simulation, and Analysis of Spiking Neural Networks with the NeoCortical Simulator

    PubMed Central

    Drewes, Rich; Zou, Quan; Goodman, Philip H.

    2008-01-01

    Neuroscience modeling experiments often involve multiple complex neural network and cell model variants, complex input stimuli and input protocols, followed by complex data analysis. Coordinating all this complexity becomes a central difficulty for the experimenter. The Python programming language, along with its extensive library packages, has emerged as a leading “glue” tool for managing all sorts of complex programmatic tasks. This paper describes a toolkit called Brainlab, written in Python, that leverages Python's strengths for the task of managing the general complexity of neuroscience modeling experiments. Brainlab was also designed to overcome the major difficulties of working with the NCS (NeoCortical Simulator) environment in particular. Brainlab is an integrated model-building, experimentation, and data analysis environment for the powerful parallel spiking neural network simulator system NCS. PMID:19506707

  16. SDR/STRS Flight Experiment and the Role of SDR-Based Communication and Navigation Systems

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    2008-01-01

    This presentation describes an open architecture SDR (software defined radio) infrastructure, suitable for space-based radios and operations, entitled Space Telecommunications Radio System (STRS). SDR technologies will endow space and planetary exploration systems with dramatically increased capability, reduced power consumption, and less mass than conventional systems, at costs reduced by vigorous competition, hardware commonality, dense integration, minimizing the impact of parts obsolescence, improved interoperability, and software re-use. To advance the SDR architecture technology and demonstrate its applicability in space, NASA is developing a space experiment of multiple SDRs each with various waveforms to communicate with NASA s TDRSS satellite and ground networks, and the GPS constellation. An experiments program will investigate S-band and Ka-band communications, navigation, and networking technologies and operations.

  17. Apparatus for Teaching Physics.

    ERIC Educational Resources Information Center

    Gottlieb, Herbert H., Ed.

    1982-01-01

    Discusses: (1) construction of an integrated spherical reflectometer; (2) limitations of the NOAA Weather Radio Network; and (3) a simple experiment to demonstrate/measure influence of damping force on amplitude resonance. Also discusses whether or not a homemade electrophorus can lose its charge and then recharge itself. (JN)

  18. JPL Earth Science Center Visualization Multitouch Table

    NASA Astrophysics Data System (ADS)

    Kim, R.; Dodge, K.; Malhotra, S.; Chang, G.

    2014-12-01

    JPL Earth Science Center Visualization table is a specialized software and hardware to allow multitouch, multiuser, and remote display control to create seamlessly integrated experiences to visualize JPL missions and their remote sensing data. The software is fully GIS capable through time aware OGC WMTS using Lunar Mapping and Modeling Portal as the GIS backend to continuously ingest and retrieve realtime remote sending data and satellite location data. 55 inch and 82 inch unlimited finger count multitouch displays allows multiple users to explore JPL Earth missions and visualize remote sensing data through very intuitive and interactive touch graphical user interface. To improve the integrated experience, Earth Science Center Visualization Table team developed network streaming which allows table software to stream data visualization to near by remote display though computer network. The purpose of this visualization/presentation tool is not only to support earth science operation, but specifically designed for education and public outreach and will significantly contribute to STEM. Our presentation will include overview of our software, hardware, and showcase of our system.

  19. Interfacing with in-Situ Data Networks during the Arctic Boreal Vulnerability Experiment (ABoVE)

    NASA Astrophysics Data System (ADS)

    McInerney, M.; Griffith, P. C.; Duffy, D.; Hoy, E.; Schnase, J. L.; Sinno, S.; Thompson, J. H.

    2014-12-01

    The Arctic Boreal Vulnerability Experiment (ABoVE) is designed to improve understanding of the causes and impacts of ecological changes in Arctic/boreal regions, and will integrate field-based studies, modeling, and data from airborne and satellite remote sensing. ABoVE will result in a fuller understanding of ecosystem vulnerability and resilience to environmental change in the Arctic and boreal regions of western North America, and provide scientific information required to develop options for societal responses to the impacts of these changes. The studies sponsored by NASA during ABoVE will be coordinated with research and in-situ monitoring activities being sponsored by a number of national and international partners. The NASA Center for Climate Simulation at the Goddard Space Flight Center has partnered with the NASA Carbon Cycle & Ecosystems Office to create a science cloud designed for this field campaign - the ABoVE Science Cloud (ASC). The ASC combines high performance computing with emerging technologies to create an environment specifically designed for large-scale modeling, analysis of remote sensing data, copious disk storage with integrated data management, and integration of core variables from in-situ networks identified by the ABoVE Science Definition Team. In this talk, we will present the scientific requirements driving the development of the ABoVE Science Cloud, discuss the necessary interfaces, both computational and human, with in-situ monitoring networks, and show examples of how the ASC is being used to meet the needs of the ABoVE campaign.

  20. Integrating tracer-based metabolomics data and metabolic fluxes in a linear fashion via Elementary Carbon Modes.

    PubMed

    Pey, Jon; Rubio, Angel; Theodoropoulos, Constantinos; Cascante, Marta; Planes, Francisco J

    2012-07-01

    Constraints-based modeling is an emergent area in Systems Biology that includes an increasing set of methods for the analysis of metabolic networks. In order to refine its predictions, the development of novel methods integrating high-throughput experimental data is currently a key challenge in the field. In this paper, we present a novel set of constraints that integrate tracer-based metabolomics data from Isotope Labeling Experiments and metabolic fluxes in a linear fashion. These constraints are based on Elementary Carbon Modes (ECMs), a recently developed concept that generalizes Elementary Flux Modes at the carbon level. To illustrate the effect of our ECMs-based constraints, a Flux Variability Analysis approach was applied to a previously published metabolic network involving the main pathways in the metabolism of glucose. The addition of our ECMs-based constraints substantially reduced the under-determination resulting from a standard application of Flux Variability Analysis, which shows a clear progress over the state of the art. In addition, our approach is adjusted to deal with combinatorial explosion of ECMs in genome-scale metabolic networks. This extension was applied to infer the maximum biosynthetic capacity of non-essential amino acids in human metabolism. Finally, as linearity is the hallmark of our approach, its importance is discussed at a methodological, computational and theoretical level and illustrated with a practical application in the field of Isotope Labeling Experiments. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Firing patterns in the adaptive exponential integrate-and-fire model.

    PubMed

    Naud, Richard; Marcille, Nicolas; Clopath, Claudia; Gerstner, Wulfram

    2008-11-01

    For simulations of large spiking neuron networks, an accurate, simple and versatile single-neuron modeling framework is required. Here we explore the versatility of a simple two-equation model: the adaptive exponential integrate-and-fire neuron. We show that this model generates multiple firing patterns depending on the choice of parameter values, and present a phase diagram describing the transition from one firing type to another. We give an analytical criterion to distinguish between continuous adaption, initial bursting, regular bursting and two types of tonic spiking. Also, we report that the deterministic model is capable of producing irregular spiking when stimulated with constant current, indicating low-dimensional chaos. Lastly, the simple model is fitted to real experiments of cortical neurons under step current stimulation. The results provide support for the suitability of simple models such as the adaptive exponential integrate-and-fire neuron for large network simulations.

  2. Adaptation disrupts motion integration in the primate dorsal stream

    PubMed Central

    Patterson, Carlyn A.; Wissig, Stephanie C.; Kohn, Adam

    2014-01-01

    Summary Sensory systems adjust continuously to the environment. The effects of recent sensory experience—or adaptation—are typically assayed by recording in a relevant subcortical or cortical network. However, adaptation effects cannot be localized to a single, local network. Adjustments in one circuit or area will alter the input provided to others, with unclear consequences for computations implemented in the downstream circuit. Here we show that prolonged adaptation with drifting gratings, which alters responses in the early visual system, impedes the ability of area MT neurons to integrate motion signals in plaid stimuli. Perceptual experiments reveal a corresponding loss of plaid coherence. A simple computational model shows how the altered representation of motion signals in early cortex can derail integration in MT. Our results suggest that the effects of adaptation cascade through the visual system, derailing the downstream representation of distinct stimulus attributes. PMID:24507198

  3. Congenital blindness is associated with large-scale reorganization of anatomical networks.

    PubMed

    Hasson, Uri; Andric, Michael; Atilgan, Hicret; Collignon, Olivier

    2016-03-01

    Blindness is a unique model for understanding the role of experience in the development of the brain's functional and anatomical architecture. Documenting changes in the structure of anatomical networks for this population would substantiate the notion that the brain's core network-level organization may undergo neuroplasticity as a result of life-long experience. To examine this issue, we compared whole-brain networks of regional cortical-thickness covariance in early blind and matched sighted individuals. This covariance is thought to reflect signatures of integration between systems involved in similar perceptual/cognitive functions. Using graph-theoretic metrics, we identified a unique mode of anatomical reorganization in the blind that differed from that found for sighted. This was seen in that network partition structures derived from subgroups of blind were more similar to each other than they were to partitions derived from sighted. Notably, after deriving network partitions, we found that language and visual regions tended to reside within separate modules in sighted but showed a pattern of merging into shared modules in the blind. Our study demonstrates that early visual deprivation triggers a systematic large-scale reorganization of whole-brain cortical-thickness networks, suggesting changes in how occipital regions interface with other functional networks in the congenitally blind. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis.

    PubMed

    Frey, Olivier; Misun, Patrick M; Fluri, David A; Hengstler, Jan G; Hierlemann, Andreas

    2014-06-30

    Integration of multiple three-dimensional microtissues into microfluidic networks enables new insights in how different organs or tissues of an organism interact. Here, we present a platform that extends the hanging-drop technology, used for multi-cellular spheroid formation, to multifunctional complex microfluidic networks. Engineered as completely open, 'hanging' microfluidic system at the bottom of a substrate, the platform features high flexibility in microtissue arrangements and interconnections, while fabrication is simple and operation robust. Multiple spheroids of different cell types are formed in parallel on the same platform; the different tissues are then connected in physiological order for multi-tissue experiments through reconfiguration of the fluidic network. Liquid flow is precisely controlled through the hanging drops, which enable nutrient supply, substance dosage and inter-organ metabolic communication. The possibility to perform parallelized microtissue formation on the same chip that is subsequently used for complex multi-tissue experiments renders the developed platform a promising technology for 'body-on-a-chip'-related research.

  5. The new alchemy: Online networking, data sharing and research activity distribution tools for scientists

    PubMed Central

    Williams, Antony J.; Peck, Lou; Ekins, Sean

    2017-01-01

    There is an abundance of free online tools accessible to scientists and others that can be used for online networking, data sharing and measuring research impact. Despite this, few scientists know how these tools can be used or fail to take advantage of using them as an integrated pipeline to raise awareness of their research outputs. In this article, the authors describe their experiences with these tools and how they can make best use of them to make their scientific research generally more accessible, extending its reach beyond their own direct networks, and communicating their ideas to new audiences. These efforts have the potential to drive science by sparking new collaborations and interdisciplinary research projects that may lead to future publications, funding and commercial opportunities. The intent of this article is to: describe some of these freely accessible networking tools and affiliated products; demonstrate from our own experiences how they can be utilized effectively; and, inspire their adoption by new users for the benefit of science. PMID:28928951

  6. Human-Systems Integration (HSI) and the Network Integration Evaluations (NIEs), Part 3: Mitigating Cognitive Load in Network-Enabled Mission Command

    DTIC Science & Technology

    2016-06-01

    ARL-TR-7698 ● JUNE 2016 US Army Research Laboratory Human -Systems Integration (HSI) and the Network Integration Evaluations...ARL-TR-7698 ● JUNE 2016 US Army Research Laboratory Human -Systems Integration (HSI) and the Network Integration Evaluations (NIEs), Part 3...Mitigating Cognitive Load in Network-Enabled Mission Command by John K Hawley Human Research and Engineering Directorate, ARL Michael W

  7. Implementation of Integrated Service Networks under the Quebec Mental Health Reform: Facilitators and Barriers associated with Different Territorial Profiles.

    PubMed

    Fleury, Marie-Josée; Grenier, Guy; Vallée, Catherine; Aubé, Denise; Farand, Lambert

    2017-03-10

    This study evaluates implementation of the Quebec Mental Health Reform (2005-2015), which promoted the development of integrated service networks, in 11 local service networks organized into four territorial groups according to socio-demographic characteristics and mental health services offered. Data were collected from documents concerning networks; structured questionnaires completed by 90 managers and by 16 respondent-psychiatrists; and semi-structured interviews with 102 network stakeholders. Factors associated with implementation and integration were organized according to: 1) reform characteristics; 2) implementation context; 3) organizational characteristics; and 4) integration strategies. While local networks were in a process of development and expansion, none were fully integrated at the time of the study. Facilitators and barriers to implementation and integration were primarily associated with organizational characteristics. Integration was best achieved in larger networks including a general hospital with a psychiatric department, followed by networks with a psychiatric hospital. Formalized integration strategies such as service agreements, liaison officers, and joint training reduced some barriers to implementation in networks experiencing less favourable conditions. Strategies for the implementation of healthcare reform and integrated service networks should include sustained support and training in best-practices, adequate performance indicators and resources, formalized integration strategies to improve network coordination and suitable initiatives to promote staff retention.

  8. Healthcare provider education to support integration of pharmacogenomics in practice: the eMERGE Network experience

    PubMed Central

    Rohrer Vitek, Carolyn R; Abul-Husn, Noura S; Connolly, John J; Hartzler, Andrea L; Kitchner, Terrie; Peterson, Josh F; Rasmussen, Luke V; Smith, Maureen E; Stallings, Sarah; Williams, Marc S; Wolf, Wendy A; Prows, Cynthia A

    2017-01-01

    Ten organizations within the Electronic Medical Records and Genomics Network developed programs to implement pharmacogenomic sequencing and clinical decision support into clinical settings. Recognizing the importance of informed prescribers, a variety of strategies were used to incorporate provider education to support implementation. Education experiences with pharmacogenomics are described within the context of each organization's prior involvement, including the scope and scale of implementation specific to their Electronic Medical Records and Genomics projects. We describe common and distinct education strategies, provide exemplars and share challenges. Lessons learned inform future perspectives. Future pharmacogenomics clinical implementation initiatives need to include funding toward implementing provider education and evaluating outcomes. PMID:28639489

  9. Enticing New Growth

    ERIC Educational Resources Information Center

    Raby, June

    2014-01-01

    As an artist, designer and cultural historian, my work is concerned with integrating thought with material creativity. By relating science to methodology and learning strategies, somatic, experiential awareness comes to the fore. New scientific evidence about our neural network enables us to return to the body of experience we already have;…

  10. Graduate Inquiry: Social Capital in Online Courses

    ERIC Educational Resources Information Center

    Mays, Thomas

    2016-01-01

    As colleges and universities increase their online course offerings, student social experiences in online learning environments require further examination, specifically for nonresidential students who may already be less integrated into college social networks. A social capital framework was used to guide this qualitative study of 17…

  11. A Parallel Trade Study Architecture for Design Optimization of Complex Systems

    NASA Technical Reports Server (NTRS)

    Kim, Hongman; Mullins, James; Ragon, Scott; Soremekun, Grant; Sobieszczanski-Sobieski, Jaroslaw

    2005-01-01

    Design of a successful product requires evaluating many design alternatives in a limited design cycle time. This can be achieved through leveraging design space exploration tools and available computing resources on the network. This paper presents a parallel trade study architecture to integrate trade study clients and computing resources on a network using Web services. The parallel trade study solution is demonstrated to accelerate design of experiments, genetic algorithm optimization, and a cost as an independent variable (CAIV) study for a space system application.

  12. Cell Fate Reprogramming by Control of Intracellular Network Dynamics

    PubMed Central

    Zañudo, Jorge G. T.; Albert, Réka

    2015-01-01

    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell’s fate, such as disease therapeutics and stem cell reprogramming. Here we develop a novel network control framework that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our approach drives any initial state to the target state with 100% effectiveness and needs to be applied only transiently for the network to reach and stay in the desired state. We illustrate our method’s potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of helper T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. PMID:25849586

  13. A Novel BA Complex Network Model on Color Template Matching

    PubMed Central

    Han, Risheng; Yue, Guangxue; Ding, Hui

    2014-01-01

    A novel BA complex network model of color space is proposed based on two fundamental rules of BA scale-free network model: growth and preferential attachment. The scale-free characteristic of color space is discovered by analyzing evolving process of template's color distribution. And then the template's BA complex network model can be used to select important color pixels which have much larger effects than other color pixels in matching process. The proposed BA complex network model of color space can be easily integrated into many traditional template matching algorithms, such as SSD based matching and SAD based matching. Experiments show the performance of color template matching results can be improved based on the proposed algorithm. To the best of our knowledge, this is the first study about how to model the color space of images using a proper complex network model and apply the complex network model to template matching. PMID:25243235

  14. A novel BA complex network model on color template matching.

    PubMed

    Han, Risheng; Shen, Shigen; Yue, Guangxue; Ding, Hui

    2014-01-01

    A novel BA complex network model of color space is proposed based on two fundamental rules of BA scale-free network model: growth and preferential attachment. The scale-free characteristic of color space is discovered by analyzing evolving process of template's color distribution. And then the template's BA complex network model can be used to select important color pixels which have much larger effects than other color pixels in matching process. The proposed BA complex network model of color space can be easily integrated into many traditional template matching algorithms, such as SSD based matching and SAD based matching. Experiments show the performance of color template matching results can be improved based on the proposed algorithm. To the best of our knowledge, this is the first study about how to model the color space of images using a proper complex network model and apply the complex network model to template matching.

  15. NASA Integrated Space Communications Network

    NASA Technical Reports Server (NTRS)

    Tai, Wallace; Wright, Nate; Prior, Mike; Bhasin, Kul

    2012-01-01

    The NASA Integrated Network for Space Communications and Navigation (SCaN) has been in the definition phase since 2010. It is intended to integrate NASA s three existing network elements, i.e., the Space Network, Near Earth Network, and Deep Space Network, into a single network. In addition to the technical merits, the primary purpose of the Integrated Network is to achieve a level of operating cost efficiency significantly higher than it is today. Salient features of the Integrated Network include (a) a central system element that performs service management functions and user mission interfaces for service requests; (b) a set of common service execution equipment deployed at the all stations that provides return, forward, and radiometric data processing and delivery capabilities; (c) the network monitor and control operations for the entire integrated network are conducted remotely and centrally at a prime-shift site and rotating among three sites globally (a follow-the-sun approach); (d) the common network monitor and control software deployed at all three network elements that supports the follow-the-sun operations.

  16. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.

    PubMed

    Ni, Jingchao; Koyuturk, Mehmet; Tong, Hanghang; Haines, Jonathan; Xu, Rong; Zhang, Xiang

    2016-11-10

    Accurately prioritizing candidate disease genes is an important and challenging problem. Various network-based methods have been developed to predict potential disease genes by utilizing the disease similarity network and molecular networks such as protein interaction or gene co-expression networks. Although successful, a common limitation of the existing methods is that they assume all diseases share the same molecular network and a single generic molecular network is used to predict candidate genes for all diseases. However, different diseases tend to manifest in different tissues, and the molecular networks in different tissues are usually different. An ideal method should be able to incorporate tissue-specific molecular networks for different diseases. In this paper, we develop a robust and flexible method to integrate tissue-specific molecular networks for disease gene prioritization. Our method allows each disease to have its own tissue-specific network(s). We formulate the problem of candidate gene prioritization as an optimization problem based on network propagation. When there are multiple tissue-specific networks available for a disease, our method can automatically infer the relative importance of each tissue-specific network. Thus it is robust to the noisy and incomplete network data. To solve the optimization problem, we develop fast algorithms which have linear time complexities in the number of nodes in the molecular networks. We also provide rigorous theoretical foundations for our algorithms in terms of their optimality and convergence properties. Extensive experimental results show that our method can significantly improve the accuracy of candidate gene prioritization compared with the state-of-the-art methods. In our experiments, we compare our methods with 7 popular network-based disease gene prioritization algorithms on diseases from Online Mendelian Inheritance in Man (OMIM) database. The experimental results demonstrate that our methods recover true associations more accurately than other methods in terms of AUC values, and the performance differences are significant (with paired t-test p-values less than 0.05). This validates the importance to integrate tissue-specific molecular networks for studying disease gene prioritization and show the superiority of our network models and ranking algorithms toward this purpose. The source code and datasets are available at http://nijingchao.github.io/CRstar/ .

  17. Beta-Band Functional Connectivity Influences Audiovisual Integration in Older Age: An EEG Study

    PubMed Central

    Wang, Luyao; Wang, Wenhui; Yan, Tianyi; Song, Jiayong; Yang, Weiping; Wang, Bin; Go, Ritsu; Huang, Qiang; Wu, Jinglong

    2017-01-01

    Audiovisual integration occurs frequently and has been shown to exhibit age-related differences via behavior experiments or time-frequency analyses. In the present study, we examined whether functional connectivity influences audiovisual integration during normal aging. Visual, auditory, and audiovisual stimuli were randomly presented peripherally; during this time, participants were asked to respond immediately to the target stimulus. Electroencephalography recordings captured visual, auditory, and audiovisual processing in 12 old (60–78 years) and 12 young (22–28 years) male adults. For non-target stimuli, we focused on alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–50 Hz) bands. We applied the Phase Lag Index to study the dynamics of functional connectivity. Then, the network topology parameters, which included the clustering coefficient, path length, small-worldness global efficiency, local efficiency and degree, were calculated for each condition. For the target stimulus, a race model was used to analyze the response time. Then, a Pearson correlation was used to test the relationship between each network topology parameters and response time. The results showed that old adults activated stronger connections during audiovisual processing in the beta band. The relationship between network topology parameters and the performance of audiovisual integration was detected only in old adults. Thus, we concluded that old adults who have a higher load during audiovisual integration need more cognitive resources. Furthermore, increased beta band functional connectivity influences the performance of audiovisual integration during normal aging. PMID:28824411

  18. Beta-Band Functional Connectivity Influences Audiovisual Integration in Older Age: An EEG Study.

    PubMed

    Wang, Luyao; Wang, Wenhui; Yan, Tianyi; Song, Jiayong; Yang, Weiping; Wang, Bin; Go, Ritsu; Huang, Qiang; Wu, Jinglong

    2017-01-01

    Audiovisual integration occurs frequently and has been shown to exhibit age-related differences via behavior experiments or time-frequency analyses. In the present study, we examined whether functional connectivity influences audiovisual integration during normal aging. Visual, auditory, and audiovisual stimuli were randomly presented peripherally; during this time, participants were asked to respond immediately to the target stimulus. Electroencephalography recordings captured visual, auditory, and audiovisual processing in 12 old (60-78 years) and 12 young (22-28 years) male adults. For non-target stimuli, we focused on alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-50 Hz) bands. We applied the Phase Lag Index to study the dynamics of functional connectivity. Then, the network topology parameters, which included the clustering coefficient, path length, small-worldness global efficiency, local efficiency and degree, were calculated for each condition. For the target stimulus, a race model was used to analyze the response time. Then, a Pearson correlation was used to test the relationship between each network topology parameters and response time. The results showed that old adults activated stronger connections during audiovisual processing in the beta band. The relationship between network topology parameters and the performance of audiovisual integration was detected only in old adults. Thus, we concluded that old adults who have a higher load during audiovisual integration need more cognitive resources. Furthermore, increased beta band functional connectivity influences the performance of audiovisual integration during normal aging.

  19. Ten years of the Immune Tolerance Network: an integrated clinical research organization.

    PubMed

    Bluestone, Jeffrey A; Krensky, Alan M; Turka, Laurence A; Rotrosen, Daniel; Matthews, Jeffrey B

    2010-02-17

    The U.S. National Institutes of Health Roadmap and the U.S. Food and Drug Administration's Critical Path Initiative have endorsed the establishment of large academic clinical research networks as part of the solution to the growing divide between increased R&D spending and the lagging number of new drugs making it to market. Clearly, the role of these networks as translational science incubators that complement industry-sponsored programs is laudable and much-needed. However, the path to success for such organizations is less clear. Here, drawing on the experiences of the Immune Tolerance Network, a multidisciplinary clinical research network founded in 1999, we discuss some of the barriers inherent in developing such consortia and offer firsthand insight into the planning, resources, and organizational infrastructure required for a successful research program.

  20. A BHR Composite Network-Based Visualization Method for Deformation Risk Level of Underground Space

    PubMed Central

    Zheng, Wei; Zhang, Xiaoya; Lu, Qi

    2015-01-01

    This study proposes a visualization processing method for the deformation risk level of underground space. The proposed method is based on a BP-Hopfield-RGB (BHR) composite network. Complex environmental factors are integrated in the BP neural network. Dynamic monitoring data are then automatically classified in the Hopfield network. The deformation risk level is combined with the RGB color space model and is displayed visually in real time, after which experiments are conducted with the use of an ultrasonic omnidirectional sensor device for structural deformation monitoring. The proposed method is also compared with some typical methods using a benchmark dataset. Results show that the BHR composite network visualizes the deformation monitoring process in real time and can dynamically indicate dangerous zones. PMID:26011618

  1. Constructive autoassociative neural network for facial recognition.

    PubMed

    Fernandes, Bruno J T; Cavalcanti, George D C; Ren, Tsang I

    2014-01-01

    Autoassociative artificial neural networks have been used in many different computer vision applications. However, it is difficult to define the most suitable neural network architecture because this definition is based on previous knowledge and depends on the problem domain. To address this problem, we propose a constructive autoassociative neural network called CANet (Constructive Autoassociative Neural Network). CANet integrates the concepts of receptive fields and autoassociative memory in a dynamic architecture that changes the configuration of the receptive fields by adding new neurons in the hidden layer, while a pruning algorithm removes neurons from the output layer. Neurons in the CANet output layer present lateral inhibitory connections that improve the recognition rate. Experiments in face recognition and facial expression recognition show that the CANet outperforms other methods presented in the literature.

  2. Practical use of a framework for network science experimentation

    NASA Astrophysics Data System (ADS)

    Toth, Andrew; Bergamaschi, Flavio

    2014-06-01

    In 2006, the US Army Research Laboratory (ARL) and the UK Ministry of Defence (MoD) established a collaborative research alliance with academia and industry, called the International Technology Alliance (ITA)1 In Network and Information Sciences, to address fundamental issues concerning Network and Information Sciences that will enhance decision making for coalition operations and enable rapid, secure formation of ad hoc teams in coalition environments and enhance US and UK capabilities to conduct coalition warfare. Research conducted under the ITA was extended through collaboration between ARL and IBM UK to characterize and dene a software stack and tooling that has become the reference framework for network science experimentation in support for validation of theoretical research. This paper discusses the composition of the reference framework for experimentation resulting from the ARL/IBM UK collaboration and its use, by the Network Science Collaborative Technology Alliance (NS CTA)2 , in a recent network science experiment conducted at ARL. It also discusses how the experiment was modeled using the reference framework, the integration of two new components, the Apollo Fact-Finder3 tool and the Medusa Crowd Sensing4 application, the limitations identified and how they shall be addressed in future work.

  3. Cutting the Wires: Modularization of Cellular Networks for Experimental Design

    PubMed Central

    Lang, Moritz; Summers, Sean; Stelling, Jörg

    2014-01-01

    Understanding naturally evolved cellular networks requires the consecutive identification and revision of the interactions between relevant molecular species. In this process, initially often simplified and incomplete networks are extended by integrating new reactions or whole subnetworks to increase consistency between model predictions and new measurement data. However, increased consistency with experimental data alone is not sufficient to show the existence of biomolecular interactions, because the interplay of different potential extensions might lead to overall similar dynamics. Here, we present a graph-based modularization approach to facilitate the design of experiments targeted at independently validating the existence of several potential network extensions. Our method is based on selecting the outputs to measure during an experiment, such that each potential network extension becomes virtually insulated from all others during data analysis. Each output defines a module that only depends on one hypothetical network extension, and all other outputs act as virtual inputs to achieve insulation. Given appropriate experimental time-series measurements of the outputs, our modules can be analyzed, simulated, and compared to the experimental data separately. Our approach exemplifies the close relationship between structural systems identification and modularization, an interplay that promises development of related approaches in the future. PMID:24411264

  4. MIRAGE: The data acquisition, analysis, and display system

    NASA Technical Reports Server (NTRS)

    Rosser, Robert S.; Rahman, Hasan H.

    1993-01-01

    Developed for the NASA Johnson Space Center and Life Sciences Directorate by GE Government Services, the Microcomputer Integrated Real-time Acquisition Ground Equipment (MIRAGE) system is a portable ground support system for Spacelab life sciences experiments. The MIRAGE system can acquire digital or analog data. Digital data may be NRZ-formatted telemetry packets of packets from a network interface. Analog signal are digitized and stored in experimental packet format. Data packets from any acquisition source are archived to a disk as they are received. Meta-parameters are generated from the data packet parameters by applying mathematical and logical operators. Parameters are displayed in text and graphical form or output to analog devices. Experiment data packets may be retransmitted through the network interface. Data stream definition, experiment parameter format, parameter displays, and other variables are configured using spreadsheet database. A database can be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control. The MIRAGE system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability and ease of use make the MIRAGE a cost-effective solution to many experimental data processing requirements.

  5. Integration Processes Compared: Cortical Differences for Consistency Evaluation and Passive Comprehension in Local and Global Coherence.

    PubMed

    Egidi, Giovanna; Caramazza, Alfonso

    2016-10-01

    This research studies the neural systems underlying two integration processes that take place during natural discourse comprehension: consistency evaluation and passive comprehension. Evaluation was operationalized with a consistency judgment task and passive comprehension with a passive listening task. Using fMRI, the experiment examined the integration of incoming sentences with more recent, local context and with more distal, global context in these two tasks. The stimuli were stories in which we manipulated the consistency of the endings with the local context and the relevance of the global context for the integration of the endings. A whole-brain analysis revealed several differences between the two tasks. Two networks previously associated with semantic processing and attention orienting showed more activation during the judgment than the passive listening task. A network previously associated with episodic memory retrieval and construction of mental scenes showed greater activity when global context was relevant, but only during the judgment task. This suggests that evaluation, more than passive listening, triggers the reinstantiation of global context and the construction of a rich mental model for the story. Finally, a network previously linked to fluent updating of a knowledge base showed greater activity for locally consistent endings than inconsistent ones, but only during passive listening, suggesting a mode of comprehension that relies on a local scope approach to language processing. Taken together, these results show that consistency evaluation and passive comprehension weigh differently on distal and local information and are implemented, in part, by different brain networks.

  6. A Community-Building Framework for Collaborative Research Coordination across the Education and Biology Research Disciplines.

    PubMed

    Pelaez, Nancy; Anderson, Trevor R; Gardner, Stephanie M; Yin, Yue; Abraham, Joel K; Bartlett, Edward L; Gormally, Cara; Hurney, Carol A; Long, Tammy M; Newman, Dina L; Sirum, Karen; Stevens, Michael T

    2018-06-01

    Since 2009, the U.S. National Science Foundation Directorate for Biological Sciences has funded Research Coordination Networks (RCN) aimed at collaborative efforts to improve participation, learning, and assessment in undergraduate biology education (UBE). RCN-UBE projects focus on coordination and communication among scientists and educators who are fostering improved and innovative approaches to biology education. When faculty members collaborate with the overarching goal of advancing undergraduate biology education, there is a need to optimize collaboration between participants in order to deeply integrate the knowledge across disciplinary boundaries. In this essay we propose a novel guiding framework for bringing colleagues together to advance knowledge and its integration across disciplines, the "Five 'C's' of Collaboration: Commitment, Collegiality, Communication, Consensus, and Continuity." This guiding framework for professional network practice is informed by both relevant literature and empirical evidence from community-building experience within the RCN-UBE Advancing Competencies in Experimentation-Biology (ACE-Bio) Network. The framework is presented with practical examples to illustrate how it might be used to enhance collaboration between new and existing participants in the ACE-Bio Network as well as within other interdisciplinary networks.

  7. A Recurrent Network Model of Somatosensory Parametric Working Memory in the Prefrontal Cortex

    PubMed Central

    Miller, Paul; Brody, Carlos D; Romo, Ranulfo; Wang, Xiao-Jing

    2015-01-01

    A parametric working memory network stores the information of an analog stimulus in the form of persistent neural activity that is monotonically tuned to the stimulus. The family of persistent firing patterns with a continuous range of firing rates must all be realizable under exactly the same external conditions (during the delay when the transient stimulus is withdrawn). How this can be accomplished by neural mechanisms remains an unresolved question. Here we present a recurrent cortical network model of irregularly spiking neurons that was designed to simulate a somatosensory working memory experiment with behaving monkeys. Our model reproduces the observed positively and negatively monotonic persistent activity, and heterogeneous tuning curves of memory activity. We show that fine-tuning mathematically corresponds to a precise alignment of cusps in the bifurcation diagram of the network. Moreover, we show that the fine-tuned network can integrate stimulus inputs over several seconds. Assuming that such time integration occurs in neural populations downstream from a tonically persistent neural population, our model is able to account for the slow ramping-up and ramping-down behaviors of neurons observed in prefrontal cortex. PMID:14576212

  8. The benefits of convergence.

    PubMed

    Chang, Gee-Kung; Cheng, Lin

    2016-03-06

    A multi-tier radio access network (RAN) combining the strength of fibre-optic and radio access technologies employing adaptive microwave photonics interfaces and radio-over-fibre (RoF) techniques is envisioned for future heterogeneous wireless communications. All-band radio spectrum from 0.1 to 100 GHz will be used to deliver wireless services with high capacity, high link speed and low latency. The multi-tier RAN will improve the cell-edge performance in an integrated heterogeneous environment enabled by fibre-wireless integration and networking for mobile fronthaul/backhaul, resource sharing and all-layer centralization of multiple standards with different frequency bands and modulation formats. In essence, this is a 'no-more-cells' architecture in which carrier aggregation among multiple frequency bands can be easily achieved with seamless handover between cells. In this way, current and future mobile network standards such as 4G and 5G can coexist with optimized and continuous cell coverage using multi-tier RoF regardless of the underlying network topology or protocol. In terms of users' experience, the future-proof approach achieves the goals of system capacity, link speed, latency and continuous heterogeneous cell coverage while overcoming the bandwidth crunch in next-generation communication networks. © 2016 The Author(s).

  9. Psychotherapy, psychopathology, research and practice: pathways of connections and integration.

    PubMed

    Castonguay, Louis G

    2011-03-01

    This paper describes three pathways of connections between different communities of knowledge seekers: integration of psychotherapeutic approaches, integration of psychotherapy and psychopathology, and integration of science and practice. Some of the issues discussed involve the delineation and investigation of common factors (e.g., principles of change), improvement of major forms of psychotherapy, clinical implications of psychopathology research, as well as current and future directions related to practice-research networks. The aim of this paper is to suggest that building bridges across theoretical orientations, scientific fields, professional experiences, and epistemological views may be a fruitful strategy to improve our understanding and the impact of psychotherapy.

  10. Performance of the Landsat-Data Collection System in a Total System Context

    NASA Technical Reports Server (NTRS)

    Paulson, R. W. (Principal Investigator); Merk, C. F.

    1975-01-01

    The author has identified the following significant results. This experiment was, and continues to be, an integration of the LANDSAT-DCS with the data collection and processing system of the Geological Survey. Although an experimental demonstration, it was a successful integration of a satellite relay system that is capable of continental data collection, and an existing governmental nationwide operational data processing and distributing networks. The Survey's data processing system uses a large general purpose computer with insufficient redundancy for 24-hour a day, 7 day a week operation. This is significant, but soluble obstacle to converting the experimental integration of the system to an operational integration.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cutler, Dylan; Frank, Stephen; Slovensky, Michelle

    Rich, well-organized building performance and energy consumption data enable a host of analytic capabilities for building owners and operators, from basic energy benchmarking to detailed fault detection and system optimization. Unfortunately, data integration for building control systems is challenging and costly in any setting. Large portfolios of buildings--campuses, cities, and corporate portfolios--experience these integration challenges most acutely. These large portfolios often have a wide array of control systems, including multiple vendors and nonstandard communication protocols. They typically have complex information technology (IT) networks and cybersecurity requirements and may integrate distributed energy resources into their infrastructure. Although the challenges are significant,more » the integration of control system data has the potential to provide proportionally greater value for these organizations through portfolio-scale analytics, comprehensive demand management, and asset performance visibility. As a large research campus, the National Renewable Energy Laboratory (NREL) experiences significant data integration challenges. To meet them, NREL has developed an architecture for effective data collection, integration, and analysis, providing a comprehensive view of data integration based on functional layers. The architecture is being evaluated on the NREL campus through deployment of three pilot implementations.« less

  12. Audio-tactile integration and the influence of musical training.

    PubMed

    Kuchenbuch, Anja; Paraskevopoulos, Evangelos; Herholz, Sibylle C; Pantev, Christo

    2014-01-01

    Perception of our environment is a multisensory experience; information from different sensory systems like the auditory, visual and tactile is constantly integrated. Complex tasks that require high temporal and spatial precision of multisensory integration put strong demands on the underlying networks but it is largely unknown how task experience shapes multisensory processing. Long-term musical training is an excellent model for brain plasticity because it shapes the human brain at functional and structural levels, affecting a network of brain areas. In the present study we used magnetoencephalography (MEG) to investigate how audio-tactile perception is integrated in the human brain and if musicians show enhancement of the corresponding activation compared to non-musicians. Using a paradigm that allowed the investigation of combined and separate auditory and tactile processing, we found a multisensory incongruency response, generated in frontal, cingulate and cerebellar regions, an auditory mismatch response generated mainly in the auditory cortex and a tactile mismatch response generated in frontal and cerebellar regions. The influence of musical training was seen in the audio-tactile as well as in the auditory condition, indicating enhanced higher-order processing in musicians, while the sources of the tactile MMN were not influenced by long-term musical training. Consistent with the predictive coding model, more basic, bottom-up sensory processing was relatively stable and less affected by expertise, whereas areas for top-down models of multisensory expectancies were modulated by training.

  13. Analyzing and interpreting genome data at the network level with ConsensusPathDB.

    PubMed

    Herwig, Ralf; Hardt, Christopher; Lienhard, Matthias; Kamburov, Atanas

    2016-10-01

    ConsensusPathDB consists of a comprehensive collection of human (as well as mouse and yeast) molecular interaction data integrated from 32 different public repositories and a web interface featuring a set of computational methods and visualization tools to explore these data. This protocol describes the use of ConsensusPathDB (http://consensuspathdb.org) with respect to the functional and network-based characterization of biomolecules (genes, proteins and metabolites) that are submitted to the system either as a priority list or together with associated experimental data such as RNA-seq. The tool reports interaction network modules, biochemical pathways and functional information that are significantly enriched by the user's input, applying computational methods for statistical over-representation, enrichment and graph analysis. The results of this protocol can be observed within a few minutes, even with genome-wide data. The resulting network associations can be used to interpret high-throughput data mechanistically, to characterize and prioritize biomarkers, to integrate different omics levels, to design follow-up functional assay experiments and to generate topology for kinetic models at different scales.

  14. Dynamically allocated virtual clustering management system

    NASA Astrophysics Data System (ADS)

    Marcus, Kelvin; Cannata, Jess

    2013-05-01

    The U.S Army Research Laboratory (ARL) has built a "Wireless Emulation Lab" to support research in wireless mobile networks. In our current experimentation environment, our researchers need the capability to run clusters of heterogeneous nodes to model emulated wireless tactical networks where each node could contain a different operating system, application set, and physical hardware. To complicate matters, most experiments require the researcher to have root privileges. Our previous solution of using a single shared cluster of statically deployed virtual machines did not sufficiently separate each user's experiment due to undesirable network crosstalk, thus only one experiment could be run at a time. In addition, the cluster did not make efficient use of our servers and physical networks. To address these concerns, we created the Dynamically Allocated Virtual Clustering management system (DAVC). This system leverages existing open-source software to create private clusters of nodes that are either virtual or physical machines. These clusters can be utilized for software development, experimentation, and integration with existing hardware and software. The system uses the Grid Engine job scheduler to efficiently allocate virtual machines to idle systems and networks. The system deploys stateless nodes via network booting. The system uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex, private networks eliminating the need to map each virtual machine to a specific switch port. The system monitors the health of the clusters and the underlying physical servers and it maintains cluster usage statistics for historical trends. Users can start private clusters of heterogeneous nodes with root privileges for the duration of the experiment. Users also control when to shutdown their clusters.

  15. Integration of offshore wind farms through high voltage direct current networks

    NASA Astrophysics Data System (ADS)

    Livermore, Luke

    The integration of offshore wind farms through Multi Terminal DC (MTDC) networks into the GB network was investigated. The ability of Voltage Source Converter (VSC) High Voltage Direct Current (HVDC) to damp Subsynchronous Resonance (SSR) and ride through onshore AC faults was studied. Due to increased levels of wind generation in Scotland, substantial onshore and offshore reinforcements to the GB transmission network are proposed. Possible inland reinforcements include the use of series compensation through fixed capacitors. This potentially can lead to SSR. Offshore reinforcements are proposed by two HVDC links. In addition to its primary functions of bulk power transmission, a HVDC link can be used to provide damping against SSR, and this function has been modelled. Simulation studies have been carried out in PSCAD. In addition, a real-time hardware-in-the-loop HVDC test rig has been used to implement and validate the proposed damping scheme on an experimental platform. When faults occur within AC onshore networks, offshore MTDC networks are vulnerable to DC overvoltages, potentially damaging the DC plant and cables. Power reduction and power dissipation control systems were investigated to ride through onshore AC faults. These methods do not require dedicated fast communication systems. Simulations and laboratory experiments are carried out to evaluate the control systems, with the results from the two platforms compared..

  16. Long-Term Network Experiments and Interdisciplinary Campaigns Conducted by the USDA-Agricultural Research Service

    NASA Astrophysics Data System (ADS)

    Goodrich, D. C.; Kustas, W. P.; Cosh, M. H.; Moran, S. M.; Marks, D. G.; Jackson, T. J.; Bosch, D. D.; Rango, A.; Seyfried, M. S.; Scott, R. L.; Prueger, J. H.; Starks, P. J.; Walbridge, M. R.

    2014-12-01

    The USDA-Agricultural Research Service has led, or been integrally involved in, a myriad of interdisciplinary field campaigns in a wide range of locations both nationally and internationally. Many of the shorter campaigns were anchored over the existing national network of ARS Experimental Watersheds and Rangelands. These long-term outdoor laboratories provided a critical knowledge base for designing the campaigns as well as historical data, hydrologic and meteorological infrastructure coupled with shop, laboratory, and visiting scientist facilities. This strong outdoor laboratory base enabled cost-efficient campaigns informed by historical context, local knowledge, and detailed existing watershed characterization. These long-term experimental facilities have also enabled much longer term lower intensity experiments, observing and building an understanding of both seasonal and inter-annual biosphere-hydrosphere-atmosphere interactions across a wide range of conditions. A sampling of these experiments include MONSOON'90, SGP97, SGP99, Washita'92, Washita'94, SMEX02-05 and JORNEX series of experiments, SALSA, CLASIC and longer-term efforts over the ARS Little Washita, Walnut Gulch, Little River, Reynolds Creek, and OPE3 Experimental Watersheds. This presentation will review some of the highlights and key findings of these campaigns and long-term efforts including the inclusion of many of the experimental watersheds and ranges in the Long-Term Agro-ecosystems Research (LTAR) network. The LTAR network also contains several locations that are also part of other observational networks including the CZO, LTER, and NEON networks. Lessons learned will also be provided for scientists initiating their participation in large-scale, multi-site interdisciplinary science.

  17. Modeling development of natural multi-sensory integration using neural self-organisation and probabilistic population codes

    NASA Astrophysics Data System (ADS)

    Bauer, Johannes; Dávila-Chacón, Jorge; Wermter, Stefan

    2015-10-01

    Humans and other animals have been shown to perform near-optimally in multi-sensory integration tasks. Probabilistic population codes (PPCs) have been proposed as a mechanism by which optimal integration can be accomplished. Previous approaches have focussed on how neural networks might produce PPCs from sensory input or perform calculations using them, like combining multiple PPCs. Less attention has been given to the question of how the necessary organisation of neurons can arise and how the required knowledge about the input statistics can be learned. In this paper, we propose a model of learning multi-sensory integration based on an unsupervised learning algorithm in which an artificial neural network learns the noise characteristics of each of its sources of input. Our algorithm borrows from the self-organising map the ability to learn latent-variable models of the input and extends it to learning to produce a PPC approximating a probability density function over the latent variable behind its (noisy) input. The neurons in our network are only required to perform simple calculations and we make few assumptions about input noise properties and tuning functions. We report on a neurorobotic experiment in which we apply our algorithm to multi-sensory integration in a humanoid robot to demonstrate its effectiveness and compare it to human multi-sensory integration on the behavioural level. We also show in simulations that our algorithm performs near-optimally under certain plausible conditions, and that it reproduces important aspects of natural multi-sensory integration on the neural level.

  18. Simulator design for advanced ISDN satellite design and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerald R.

    1992-01-01

    This simulation design task completion report documents the simulation techniques associated with the network models of both the Interim Service ISDN (integrated services digital network) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures. The ISIS network model design represents satellite systems like the Advanced Communication Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) program, moves all control and switching functions on-board the next generation ISDN communication satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete events simulation experiments will be performed with these models using various traffic scenarios, design parameters and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  19. Interim Service ISDN Satellite (ISIS) simulator development for advanced satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  20. Log on to the Future: One School's Success Story.

    ERIC Educational Resources Information Center

    Hovenic, Ginger

    This paper describes Clear View Elementary School's (California) successful experience with integrating technology into the curriculum. Since its inception seven years ago, the school has acquired 250 computers, networked them all on two central file servers, and computerized the library and trained all staff members to be proficient facilitators…

  1. Emerging Technologies Integrating Technology into Study Abroad

    ERIC Educational Resources Information Center

    Godwin-Jones, Robert

    2016-01-01

    "Ready access to travel and to technology-enhanced social networking (e.g., Facebook or Skype) has changed the nature of study abroad to the point where today's experiences are fundamentally different from those of earlier eras" (Kinginger, 2013a, p. 345). In addition to more travel options and greater technology availability, study…

  2. Marital Status and Occupational Success Among Mental Health Professionals

    ERIC Educational Resources Information Center

    Marx, John H.; Spray, S. Lee

    1970-01-01

    Concludes that personal relations, professional experiences and occupational success form a network of relationships which integrate the occupational and nonoccupational roles of highly specialized practitioners. Part of a Study of Careers in the Mental Health Field, supported by National Institute of Mental Health Grant MH-09192 and directed by…

  3. Practical recommendations for strengthening national and regional laboratory networks in Africa in the Global Health Security era.

    PubMed

    Best, Michele; Sakande, Jean

    2016-01-01

    The role of national health laboratories in support of public health response has expanded beyond laboratory testing to include a number of other core functions such as emergency response, training and outreach, communications, laboratory-based surveillance and data management. These functions can only be accomplished by an efficient and resilient national laboratory network that includes public health, reference, clinical and other laboratories. It is a primary responsibility of the national health laboratory in the Ministry of Health to develop and maintain the national laboratory network in the country. In this article, we present practical recommendations based on 17 years of network development experience for the development of effective national laboratory networks. These recommendations and examples of current laboratory networks, are provided to facilitate laboratory network development in other states. The development of resilient, integrated laboratory networks will enhance each state's public health system and is critical to the development of a robust national laboratory response network to meet global health security threats.

  4. Practical recommendations for strengthening national and regional laboratory networks in Africa in the Global Health Security era

    PubMed Central

    2016-01-01

    The role of national health laboratories in support of public health response has expanded beyond laboratory testing to include a number of other core functions such as emergency response, training and outreach, communications, laboratory-based surveillance and data management. These functions can only be accomplished by an efficient and resilient national laboratory network that includes public health, reference, clinical and other laboratories. It is a primary responsibility of the national health laboratory in the Ministry of Health to develop and maintain the national laboratory network in the country. In this article, we present practical recommendations based on 17 years of network development experience for the development of effective national laboratory networks. These recommendations and examples of current laboratory networks, are provided to facilitate laboratory network development in other states. The development of resilient, integrated laboratory networks will enhance each state’s public health system and is critical to the development of a robust national laboratory response network to meet global health security threats. PMID:28879137

  5. Experience with PACS in an ATM/Ethernet switched network environment.

    PubMed

    Pelikan, E; Ganser, A; Kotter, E; Schrader, U; Timmermann, U

    1998-03-01

    Legacy local area network (LAN) technologies based on shared media concepts are not adequate for the growth of a large-scale picture archiving and communication system (PACS) in a client-server architecture. First, an asymmetric network load, due to the requests of a large number of PACS clients for only a few main servers, should be compensated by communication links to the servers with a higher bandwidth compared to the clients. Secondly, as the number of PACS nodes increases, the network throughout should not measurably cut production. These requirements can easily be fulfilled using switching technologies. Here asynchronous transfer mode (ATM) is clearly one of the hottest topics in networking because the ATM architecture provides integrated support for a variety of communication services, and it supports virtual networking. On the other hand, most of the imaging modalities are not yet ready for integration into a native ATM network. For a lot of nodes already joining an Ethernet, a cost-effective and pragmatic way to benefit from the switching concept would be a combined ATM/Ethernet switching environment. This incorporates an incremental migration strategy with the immediate benefits of high-speed, high-capacity ATM (for servers and high-sophisticated display workstations), while preserving elements of the existing network technologies. In addition, Ethernet switching instead of shared media Ethernet improves the performance considerably. The LAN emulation (LANE) specification by the ATM forum defines mechanisms that allow ATM networks to coexist with legacy systems using any data networking protocol. This paper points out the suitability of this network architecture in accordance with an appropriate system design.

  6. Social Integration and Domestic Violence Support in an Indigenous Community: Women's Recommendations of Formal Versus Informal Sources of Support.

    PubMed

    Gauthier, G Robin; Francisco, Sara C; Khan, Bilal; Dombrowski, Kirk

    2018-05-01

    Throughout North America, indigenous women experience higher rates of intimate partner violence and sexual violence than any other ethnic group, and so it is of particular importance to understand sources of support for Native American women. In this article, we use social network analysis to study the relationship between social integration and women's access to domestic violence support by examining the recommendations they would give to another woman in need. We ask two main questions: First, are less integrated women more likely to make no recommendation at all when compared with more socially integrated women? Second, are less integrated women more likely than more integrated women to nominate a formal source of support rather than an informal one? We use network data collected from interviews with 158 Canadian women residing in an indigenous community to measure their access to support. We find that, in general, less integrated women are less likely to make a recommendation than more integrated women. However, when they do make a recommendation, less integrated women are more likely to recommend a formal source of support than women who are more integrated. These results add to our understanding of how access to two types of domestic violence support is embedded in the larger set of social relations of an indigenous community.

  7. Social media: opportunities for quality improvement and lessons for providers-a networked model for patient-centered care through digital engagement.

    PubMed

    Bornkessel, Alexandra; Furberg, Robert; Lefebvre, R Craig

    2014-07-01

    Social media brings a new dimension to health care for patients, providers, and their support networks. Increasing evidence demonstrates that patients who are more actively involved in their healthcare experience have better health outcomes and incur lower costs. In the field of cardiology, social media are proposed as innovative tools for the education and update of clinicians, physicians, nurses, and medical students. This article reviews the use of social media by healthcare providers and patients and proposes a model of "networked care" that integrates the use of digital social networks and platforms by both patients and providers and offers recommendations for providers to optimize their use and understanding of social media for quality improvement.

  8. GEECS (Generalized Equipment and Experiment Control System)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GONSALVES, ANTHONY; DESHMUKH, AALHAD

    2017-01-12

    GEECS (Generalized Equipment and Experiment Control System) monitors and controls equipment distributed across a network, performs experiments by scanning input variables, and collects and stores various types of data synchronously from devices. Examples of devices include cameras, motors and pressure gauges. GEEKS is based upon LabView graphical object oriented programming (GOOP), allowing for a modular and scalable framework. Data is published for subscription of an arbitrary number of variables over TCP. A secondary framework allows easy development of graphical user interfaces for a combined control of any available devices on the control system without the need of programming knowledge. Thismore » allows for rapid integration of GEECS into a wide variety of systems. A database interface provides for devise and process configuration while allowing the user to save large quantities of data to local or network drives.« less

  9. Computational Analysis of Residue Interaction Networks and Coevolutionary Relationships in the Hsp70 Chaperones: A Community-Hopping Model of Allosteric Regulation and Communication

    PubMed Central

    Stetz, Gabrielle; Verkhivker, Gennady M.

    2017-01-01

    Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we introduced a community-hopping model of allosteric communication. Atomistic reconstruction of signaling pathways in the DnaK structures captured a direction-specific mechanism and molecular details of signal transmission that are fully consistent with the mutagenesis experiments. The results of our study reconciled structural and functional experiments from a network-centric perspective by showing that global properties of the residue interaction networks and coevolutionary signatures may be linked with specificity and diversity of allosteric regulation mechanisms. PMID:28095400

  10. Computational Analysis of Residue Interaction Networks and Coevolutionary Relationships in the Hsp70 Chaperones: A Community-Hopping Model of Allosteric Regulation and Communication.

    PubMed

    Stetz, Gabrielle; Verkhivker, Gennady M

    2017-01-01

    Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we introduced a community-hopping model of allosteric communication. Atomistic reconstruction of signaling pathways in the DnaK structures captured a direction-specific mechanism and molecular details of signal transmission that are fully consistent with the mutagenesis experiments. The results of our study reconciled structural and functional experiments from a network-centric perspective by showing that global properties of the residue interaction networks and coevolutionary signatures may be linked with specificity and diversity of allosteric regulation mechanisms.

  11. A study of EMR-based medical knowledge network and its applications.

    PubMed

    Zhao, Chao; Jiang, Jingchi; Xu, Zhiming; Guan, Yi

    2017-05-01

    Electronic medical records (EMRs) contain an amount of medical knowledge which can be used for clinical decision support. We attempt to integrate this medical knowledge into a complex network, and then implement a diagnosis model based on this network. The dataset of our study contains 992 records which are uniformly sampled from different departments of the hospital. In order to integrate the knowledge of these records, an EMR-based medical knowledge network (EMKN) is constructed. This network takes medical entities as nodes, and co-occurrence relationships between the two entities as edges. Selected properties of this network are analyzed. To make use of this network, a basic diagnosis model is implemented. Seven hundred records are randomly selected to re-construct the network, and the remaining 292 records are used as test records. The vector space model is applied to illustrate the relationships between diseases and symptoms. Because there may exist more than one actual disease in a record, the recall rate of the first ten results, and the average precision are adopted as evaluation measures. Compared with a random network of the same size, this network has a similar average length but a much higher clustering coefficient. Additionally, it can be observed that there are direct correlations between the community structure and the real department classes in the hospital. For the diagnosis model, the vector space model using disease as a base obtains the best result. At least one accurate disease can be obtained in 73.27% of the records in the first ten results. We constructed an EMR-based medical knowledge network by extracting the medical entities. This network has the small-world and scale-free properties. Moreover, the community structure showed that entities in the same department have a tendency to be self-aggregated. Based on this network, a diagnosis model was proposed. This model uses only the symptoms as inputs and is not restricted to a specific disease. The experiments conducted demonstrated that EMKN is a simple and universal technique to integrate different medical knowledge from EMRs, and can be used for clinical decision support. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Genome-wide predicting disease-related protein complexes by walking on the heterogeneous network based on data integration and laplacian normalization.

    PubMed

    Liu, Zhiming; Luo, Jiawei

    2017-08-01

    Associating protein complexes to human inherited diseases is critical for better understanding of biological processes and functional mechanisms of the disease. Many protein complexes have been identified and functionally annotated by computational and purification methods so far, however, the particular roles they were playing in causing disease have not yet been well determined. In this study, we present a novel method to identify associations between protein complexes and diseases. First, we construct a disease-protein heterogeneous network based on data integration and laplacian normalization. Second, we apply a random walk with restart on heterogeneous network (RWRH) algorithm on this network to quantify the strength of the association between proteins and the query disease. Third, we sum over the scores of member proteins to obtain a summary score for each candidate protein complex, and then rank all candidate protein complexes according to their scores. With a series of leave-one-out cross-validation experiments, we found that our method not only possesses high performance but also demonstrates robustness regarding the parameters and the network structure. We test our approach with breast cancer and select top 20 highly ranked protein complexes, 17 of the selected protein complexes are evidenced to be connected with breast cancer. Our proposed method is effective in identifying disease-related protein complexes based on data integration and laplacian normalization. Copyright © 2017. Published by Elsevier Ltd.

  13. Topological Alterations of the Intrinsic Brain Network in Patients with Functional Dyspepsia.

    PubMed

    Nan, Jiaofen; Zhang, Li; Zhu, Fubao; Tian, Xiaorui; Zheng, Qian; Deneen, Karen M von; Liu, Jixin; Zhang, Ming

    2016-01-31

    Previous studies reported that integrated information in the brain ultimately determines the subjective experience of patients with chronic pain, but how the information is integrated in the brain connectome of functional dyspepsia (FD) patients remains largely unclear. The study aimed to quantify the topological changes of the brain network in FD patients. Small-world properties, network efficiency and nodal centrality were utilized to measure the changes in topological architecture in 25 FD patients and 25 healthy controls based on functional magnetic resonance imaging. Pearson's correlation assessed the relationship of each topological property with clinical symptoms. FD patients showed an increase of clustering coefficients and local efficiency relative to controls from the perspective of a whole network as well as elevated nodal centrality in the right orbital part of the inferior frontal gyrus, left anterior cingulate gyrus and left hippocampus, and decreased nodal centrality in the right posterior cingulate gyrus, left cuneus, right putamen, left middle occipital gyrus and right inferior occipital gyrus. Moreover, the centrality in the anterior cingulate gyrus was significantly associated with symptom severity and duration in FD patients. Nevertheless, the inclusion of anxiety and depression scores as covariates erased the group differences in nodal centralities in the orbital part of the inferior frontal gyrus and hippocampus. The results suggest topological disruption of the functional brain networks in FD patients, presumably in response to disturbances of sensory information integrated with emotion, memory, pain modulation, and selective attention in patients.

  14. Genetic architecture of wood properties based on association analysis and co-expression networks in white spruce.

    PubMed

    Lamara, Mebarek; Raherison, Elie; Lenz, Patrick; Beaulieu, Jean; Bousquet, Jean; MacKay, John

    2016-04-01

    Association studies are widely utilized to analyze complex traits but their ability to disclose genetic architectures is often limited by statistical constraints, and functional insights are usually minimal in nonmodel organisms like forest trees. We developed an approach to integrate association mapping results with co-expression networks. We tested single nucleotide polymorphisms (SNPs) in 2652 candidate genes for statistical associations with wood density, stiffness, microfibril angle and ring width in a population of 1694 white spruce trees (Picea glauca). Associations mapping identified 229-292 genes per wood trait using a statistical significance level of P < 0.05 to maximize discovery. Over-representation of genes associated for nearly all traits was found in a xylem preferential co-expression group developed in independent experiments. A xylem co-expression network was reconstructed with 180 wood associated genes and several known MYB and NAC regulators were identified as network hubs. The network revealed a link between the gene PgNAC8, wood stiffness and microfibril angle, as well as considerable within-season variation for both genetic control of wood traits and gene expression. Trait associations were distributed throughout the network suggesting complex interactions and pleiotropic effects. Our findings indicate that integration of association mapping and co-expression networks enhances our understanding of complex wood traits. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. Social Network Analysis and Nutritional Behavior: An Integrated Modeling Approach

    PubMed Central

    Senior, Alistair M.; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J.

    2016-01-01

    Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent research combining state-space models of nutritional geometry with agent-based models (ABMs), show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit ABMs that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition). Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interactions in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments. PMID:26858671

  16. Granger causality network reconstruction of conductance-based integrate-and-fire neuronal systems.

    PubMed

    Zhou, Douglas; Xiao, Yanyang; Zhang, Yaoyu; Xu, Zhiqin; Cai, David

    2014-01-01

    Reconstruction of anatomical connectivity from measured dynamical activities of coupled neurons is one of the fundamental issues in the understanding of structure-function relationship of neuronal circuitry. Many approaches have been developed to address this issue based on either electrical or metabolic data observed in experiment. The Granger causality (GC) analysis remains one of the major approaches to explore the dynamical causal connectivity among individual neurons or neuronal populations. However, it is yet to be clarified how such causal connectivity, i.e., the GC connectivity, can be mapped to the underlying anatomical connectivity in neuronal networks. We perform the GC analysis on the conductance-based integrate-and-fire (I&F) neuronal networks to obtain their causal connectivity. Through numerical experiments, we find that the underlying synaptic connectivity amongst individual neurons or subnetworks, can be successfully reconstructed by the GC connectivity constructed from voltage time series. Furthermore, this reconstruction is insensitive to dynamical regimes and can be achieved without perturbing systems and prior knowledge of neuronal model parameters. Surprisingly, the synaptic connectivity can even be reconstructed by merely knowing the raster of systems, i.e., spike timing of neurons. Using spike-triggered correlation techniques, we establish a direct mapping between the causal connectivity and the synaptic connectivity for the conductance-based I&F neuronal networks, and show the GC is quadratically related to the coupling strength. The theoretical approach we develop here may provide a framework for examining the validity of the GC analysis in other settings.

  17. Granger Causality Network Reconstruction of Conductance-Based Integrate-and-Fire Neuronal Systems

    PubMed Central

    Zhou, Douglas; Xiao, Yanyang; Zhang, Yaoyu; Xu, Zhiqin; Cai, David

    2014-01-01

    Reconstruction of anatomical connectivity from measured dynamical activities of coupled neurons is one of the fundamental issues in the understanding of structure-function relationship of neuronal circuitry. Many approaches have been developed to address this issue based on either electrical or metabolic data observed in experiment. The Granger causality (GC) analysis remains one of the major approaches to explore the dynamical causal connectivity among individual neurons or neuronal populations. However, it is yet to be clarified how such causal connectivity, i.e., the GC connectivity, can be mapped to the underlying anatomical connectivity in neuronal networks. We perform the GC analysis on the conductance-based integrate-and-fire (IF) neuronal networks to obtain their causal connectivity. Through numerical experiments, we find that the underlying synaptic connectivity amongst individual neurons or subnetworks, can be successfully reconstructed by the GC connectivity constructed from voltage time series. Furthermore, this reconstruction is insensitive to dynamical regimes and can be achieved without perturbing systems and prior knowledge of neuronal model parameters. Surprisingly, the synaptic connectivity can even be reconstructed by merely knowing the raster of systems, i.e., spike timing of neurons. Using spike-triggered correlation techniques, we establish a direct mapping between the causal connectivity and the synaptic connectivity for the conductance-based IF neuronal networks, and show the GC is quadratically related to the coupling strength. The theoretical approach we develop here may provide a framework for examining the validity of the GC analysis in other settings. PMID:24586285

  18. Integrating network ecology with applied conservation: a synthesis and guide to implementation.

    PubMed

    Kaiser-Bunbury, Christopher N; Blüthgen, Nico

    2015-07-10

    Ecological networks are a useful tool to study the complexity of biotic interactions at a community level. Advances in the understanding of network patterns encourage the application of a network approach in other disciplines than theoretical ecology, such as biodiversity conservation. So far, however, practical applications have been meagre. Here we present a framework for network analysis to be harnessed to advance conservation management by using plant-pollinator networks and islands as model systems. Conservation practitioners require indicators to monitor and assess management effectiveness and validate overall conservation goals. By distinguishing between two network attributes, the 'diversity' and 'distribution' of interactions, on three hierarchical levels (species, guild/group and network) we identify seven quantitative metrics to describe changes in network patterns that have implications for conservation. Diversity metrics are partner diversity, vulnerability/generality, interaction diversity and interaction evenness, and distribution metrics are the specialization indices d' and [Formula: see text] and modularity. Distribution metrics account for sampling bias and may therefore be suitable indicators to detect human-induced changes to plant-pollinator communities, thus indirectly assessing the structural and functional robustness and integrity of ecosystems. We propose an implementation pathway that outlines the stages that are required to successfully embed a network approach in biodiversity conservation. Most importantly, only if conservation action and study design are aligned by practitioners and ecologists through joint experiments, are the findings of a conservation network approach equally beneficial for advancing adaptive management and ecological network theory. We list potential obstacles to the framework, highlight the shortfall in empirical, mostly experimental, network data and discuss possible solutions. Published by Oxford University Press on behalf of the Annals of Botany Company.

  19. Image feature based GPS trace filtering for road network generation and road segmentation

    DOE PAGES

    Yuan, Jiangye; Cheriyadat, Anil M.

    2015-10-19

    We propose a new method to infer road networks from GPS trace data and accurately segment road regions in high-resolution aerial images. Unlike previous efforts that rely on GPS traces alone, we exploit image features to infer road networks from noisy trace data. The inferred road network is used to guide road segmentation. We show that the number of image segments spanned by the traces and the trace orientation validated with image features are important attributes for identifying GPS traces on road regions. Based on filtered traces , we construct road networks and integrate them with image features to segmentmore » road regions. Lastly, our experiments show that the proposed method produces more accurate road networks than the leading method that uses GPS traces alone, and also achieves high accuracy in segmenting road regions even with very noisy GPS data.« less

  20. On Using Home Networks and Cloud Computing for a Future Internet of Things

    NASA Astrophysics Data System (ADS)

    Niedermayer, Heiko; Holz, Ralph; Pahl, Marc-Oliver; Carle, Georg

    In this position paper we state four requirements for a Future Internet and sketch our initial concept. The requirements: (1) more comfort, (2) integration of home networks, (3) resources like service clouds in the network, and (4) access anywhere on any machine. Future Internet needs future quality and future comfort. There need to be new possiblities for everyone. Our focus is on higher layers and related to the many overlay proposals. We consider them to run on top of a basic Future Internet core. A new user experience means to include all user devices. Home networks and services should be a fundamental part of the Future Internet. Home networks extend access and allow interaction with the environment. Cloud Computing can provide reliable resources beyond local boundaries. For access anywhere, we also need secure storage for data and profiles in the network, in particular for access with non-personal devices (Internet terminal, ticket machine, ...).

  1. Image feature based GPS trace filtering for road network generation and road segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Jiangye; Cheriyadat, Anil M.

    We propose a new method to infer road networks from GPS trace data and accurately segment road regions in high-resolution aerial images. Unlike previous efforts that rely on GPS traces alone, we exploit image features to infer road networks from noisy trace data. The inferred road network is used to guide road segmentation. We show that the number of image segments spanned by the traces and the trace orientation validated with image features are important attributes for identifying GPS traces on road regions. Based on filtered traces , we construct road networks and integrate them with image features to segmentmore » road regions. Lastly, our experiments show that the proposed method produces more accurate road networks than the leading method that uses GPS traces alone, and also achieves high accuracy in segmenting road regions even with very noisy GPS data.« less

  2. Is functional integration of resting state brain networks an unspecific biomarker for working memory performance?

    PubMed

    Alavash, Mohsen; Doebler, Philipp; Holling, Heinz; Thiel, Christiane M; Gießing, Carsten

    2015-03-01

    Is there one optimal topology of functional brain networks at rest from which our cognitive performance would profit? Previous studies suggest that functional integration of resting state brain networks is an important biomarker for cognitive performance. However, it is still unknown whether higher network integration is an unspecific predictor for good cognitive performance or, alternatively, whether specific network organization during rest predicts only specific cognitive abilities. Here, we investigated the relationship between network integration at rest and cognitive performance using two tasks that measured different aspects of working memory; one task assessed visual-spatial and the other numerical working memory. Network clustering, modularity and efficiency were computed to capture network integration on different levels of network organization, and to statistically compare their correlations with the performance in each working memory test. The results revealed that each working memory aspect profits from a different resting state topology, and the tests showed significantly different correlations with each of the measures of network integration. While higher global network integration and modularity predicted significantly better performance in visual-spatial working memory, both measures showed no significant correlation with numerical working memory performance. In contrast, numerical working memory was superior in subjects with highly clustered brain networks, predominantly in the intraparietal sulcus, a core brain region of the working memory network. Our findings suggest that a specific balance between local and global functional integration of resting state brain networks facilitates special aspects of cognitive performance. In the context of working memory, while visual-spatial performance is facilitated by globally integrated functional resting state brain networks, numerical working memory profits from increased capacities for local processing, especially in brain regions involved in working memory performance. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network.

    PubMed

    Wei, Pi-Jing; Zhang, Di; Xia, Junfeng; Zheng, Chun-Hou

    2016-12-23

    Cancer is a complex disease which is characterized by the accumulation of genetic alterations during the patient's lifetime. With the development of the next-generation sequencing technology, multiple omics data, such as cancer genomic, epigenomic and transcriptomic data etc., can be measured from each individual. Correspondingly, one of the key challenges is to pinpoint functional driver mutations or pathways, which contributes to tumorigenesis, from millions of functional neutral passenger mutations. In this paper, in order to identify driver genes effectively, we applied a generalized additive model to mutation profiles to filter genes with long length and constructed a new gene-gene interaction network. Then we integrated the mutation data and expression data into the gene-gene interaction network. Lastly, greedy algorithm was used to prioritize candidate driver genes from the integrated data. We named the proposed method Length-Net-Driver (LNDriver). Experiments on three TCGA datasets, i.e., head and neck squamous cell carcinoma, kidney renal clear cell carcinoma and thyroid carcinoma, demonstrated that the proposed method was effective. Also, it can identify not only frequently mutated drivers, but also rare candidate driver genes.

  4. Exploration of the integration of care for persons with a traumatic brain injury using social network analysis methodology.

    PubMed

    Lamontagne, Marie-Eve

    2013-01-01

    Integration is a popular strategy to increase the quality of care within systems of care. However, there is no common language, approach or tool allowing for a valid description, comparison and evaluation of integrated care. Social network analysis could be a viable methodology to provide an objective picture of integrated networks. To illustrate social network analysis use in the context of systems of care for traumatic brain injury. We surveyed members of a network using a validated questionnaire to determine the links between them. We determined the density, centrality, multiplexity, and quality of the links reported. The network was described as moderately dense (0.6), the most prevalent link was knowledge, and four organisation members of a consortium were central to the network. Social network analysis allowed us to create a graphic representation of the network. Social network analysis is a useful methodology to objectively characterise integrated networks.

  5. Databases, data integration, and expert systems: new directions in mineral resource assessment and mineral exploration

    USGS Publications Warehouse

    McCammon, Richard B.; Ramani, Raja V.; Mozumdar, Bijoy K.; Samaddar, Arun B.

    1994-01-01

    Overcoming future difficulties in searching for ore deposits deeper in the earth's crust will require closer attention to the collection and analysis of more diverse types of data and to more efficient use of current computer technologies. Computer technologies of greatest interest include methods of storage and retrieval of resource information, methods for integrating geologic, geochemical, and geophysical data, and the introduction of advanced computer technologies such as expert systems, multivariate techniques, and neural networks. Much experience has been gained in the past few years in applying these technologies. More experience is needed if they are to be implemented for everyday use in future assessments and exploration.

  6. ACCESS: integration and pre-flight performance

    NASA Astrophysics Data System (ADS)

    Kaiser, Mary Elizabeth; Morris, Matthew J.; Aldoroty, Lauren N.; Pelton, Russell; Kurucz, Robert; Peacock, Grant O.; Hansen, Jason; McCandliss, Stephan R.; Rauscher, Bernard J.; Kimble, Randy A.; Kruk, Jeffrey W.; Wright, Edward L.; Orndorff, Joseph D.; Feldman, Paul D.; Moos, H. Warren; Riess, Adam G.; Gardner, Jonathan P.; Bohlin, Ralph; Deustua, Susana E.; Dixon, W. V.; Sahnow, David J.; Perlmutter, Saul

    2017-09-01

    Establishing improved spectrophotometric standards is important for a broad range of missions and is relevant to many astrophysical problems. ACCESS, "Absolute Color Calibration Experiment for Standard Stars", is a series of rocket-borne sub-orbital missions and ground-based experiments designed to enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35 - 1.7μm bandpass. This paper describes the sub-system testing, payload integration, avionics operations, and data transfer for the ACCESS instrument.

  7. Cytoscape: the network visualization tool for GenomeSpace workflows.

    PubMed

    Demchak, Barry; Hull, Tim; Reich, Michael; Liefeld, Ted; Smoot, Michael; Ideker, Trey; Mesirov, Jill P

    2014-01-01

    Modern genomic analysis often requires workflows incorporating multiple best-of-breed tools. GenomeSpace is a web-based visual workbench that combines a selection of these tools with mechanisms that create data flows between them. One such tool is Cytoscape 3, a popular application that enables analysis and visualization of graph-oriented genomic networks. As Cytoscape runs on the desktop, and not in a web browser, integrating it into GenomeSpace required special care in creating a seamless user experience and enabling appropriate data flows. In this paper, we present the design and operation of the Cytoscape GenomeSpace app, which accomplishes this integration, thereby providing critical analysis and visualization functionality for GenomeSpace users. It has been downloaded over 850 times since the release of its first version in September, 2013.

  8. Cytoscape: the network visualization tool for GenomeSpace workflows

    PubMed Central

    Demchak, Barry; Hull, Tim; Reich, Michael; Liefeld, Ted; Smoot, Michael; Ideker, Trey; Mesirov, Jill P.

    2014-01-01

    Modern genomic analysis often requires workflows incorporating multiple best-of-breed tools. GenomeSpace is a web-based visual workbench that combines a selection of these tools with mechanisms that create data flows between them. One such tool is Cytoscape 3, a popular application that enables analysis and visualization of graph-oriented genomic networks. As Cytoscape runs on the desktop, and not in a web browser, integrating it into GenomeSpace required special care in creating a seamless user experience and enabling appropriate data flows. In this paper, we present the design and operation of the Cytoscape GenomeSpace app, which accomplishes this integration, thereby providing critical analysis and visualization functionality for GenomeSpace users. It has been downloaded over 850 times since the release of its first version in September, 2013. PMID:25165537

  9. Online access and motivation of tutors of health professions higher education.

    PubMed

    Monaco, Federico; Sarli, Leopoldo; Guasconi, Massimo; Alfieri, Emanuela

    2016-11-22

    The case study of PUNTOZERO as an open web lab for activities, research and support to 5 Master's courses for the health professions is described. A virtual learning environment integrated in a much wider network including social networks and open resources was experimented on for five Master's Courses for the health professions at the University of Parma. A social learning approach might be applied by the engagement of motivated and skilled tutors. This is not only needed for the improvement and integration of the digital and collaborative dimension in higher education, but it aims to introduce issues and biases of emerging e-health and online networking dimensions for future healthcare professionals. Elements of e-readiness to train tutors and improve their digital skills and e-moderation approaches are evident. This emerged during an online and asynchronous interview with two tutors out of the four that were involved, by the use of a wiki where interviewer and informants could both read and add contents and comments.

  10. Remote sensing and the Mississippi high accuracy reference network

    NASA Technical Reports Server (NTRS)

    Mick, Mark; Alexander, Timothy M.; Woolley, Stan

    1994-01-01

    Since 1986, NASA's Commercial Remote Sensing Program (CRSP) at Stennis Space Center has supported commercial remote sensing partnerships with industry. CRSP's mission is to maximize U.S. market exploitation of remote sensing and related space-based technologies and to develop advanced technical solutions for spatial information requirements. Observation, geolocation, and communications technologies are converging and their integration is critical to realize the economic potential for spatial informational needs. Global positioning system (GPS) technology enables a virtual revolution in geopositionally accurate remote sensing of the earth. A majority of states are creating GPS-based reference networks, or high accuracy reference networks (HARN). A HARN can be defined for a variety of local applications and tied to aerial or satellite observations to provide an important contribution to geographic information systems (GIS). This paper details CRSP's experience in the design and implementation of a HARN in Mississippi and the design and support of future applications of integrated earth observations, geolocation, and communications technology.

  11. On the Relevancy of Efficient, Integrated Computer and Network Monitoring in HEP Distributed Online Environment

    NASA Astrophysics Data System (ADS)

    Carvalho, D.; Gavillet, Ph.; Delgado, V.; Albert, J. N.; Bellas, N.; Javello, J.; Miere, Y.; Ruffinoni, D.; Smith, G.

    Large Scientific Equipments are controlled by Computer Systems whose complexity is growing driven, on the one hand by the volume and variety of the information, its distributed nature, the sophistication of its treatment and, on the other hand by the fast evolution of the computer and network market. Some people call them genetically Large-Scale Distributed Data Intensive Information Systems or Distributed Computer Control Systems (DCCS) for those systems dealing more with real time control. Taking advantage of (or forced by) the distributed architecture, the tasks are more and more often implemented as Client-Server applications. In this framework the monitoring of the computer nodes, the communications network and the applications becomes of primary importance for ensuring the safe running and guaranteed performance of the system. With the future generation of HEP experiments, such as those at the LHC in view, it is proposed to integrate the various functions of DCCS monitoring into one general purpose Multi-layer System.

  12. GMPLS-based control plane for optical networks: early implementation experience

    NASA Astrophysics Data System (ADS)

    Liu, Hang; Pendarakis, Dimitrios; Komaee, Nooshin; Saha, Debanjan

    2002-07-01

    Generalized Multi-Protocol Label Switching (GMPLS) extends MPLS signaling and Internet routing protocols to provide a scalable, interoperable, distributed control plane, which is applicable to multiple network technologies such as optical cross connects (OXCs), photonic switches, IP routers, ATM switches, SONET and DWDM systems. It is intended to facilitate automatic service provisioning and dynamic neighbor and topology discovery across multi-vendor intelligent transport networks, as well as their clients. Efforts to standardize such a distributed common control plane have reached various stages in several bodies such as the IETF, ITU and OIF. This paper describes the design considerations and architecture of a GMPLS-based control plane that we have prototyped for core optical networks. Functional components of GMPLS signaling and routing are integrated in this architecture with an application layer controller module. Various requirements including bandwidth, network protection and survivability, traffic engineering, optimal utilization of network resources, and etc. are taken into consideration during path computation and provisioning. Initial experiments with our prototype demonstrate the feasibility and main benefits of GMPLS as a distributed control plane for core optical networks. In addition to such feasibility results, actual adoption and deployment of GMPLS as a common control plane for intelligent transport networks will depend on the successful completion of relevant standardization activities, extensive interoperability testing as well as the strengthening of appropriate business drivers.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykstra, Dave; Garzoglio, Gabriele; Kim, Hyunwoo

    As of 2012, a number of US Department of Energy (DOE) National Laboratories have access to a 100 Gb/s wide-area network backbone. The ESnet Advanced Networking Initiative (ANI) project is intended to develop a prototype network, based on emerging 100 Gb/s Ethernet technology. The ANI network will support DOE's science research programs. A 100 Gb/s network test bed is a key component of the ANI project. The test bed offers the opportunity for early evaluation of 100Gb/s network infrastructure for supporting the high impact data movement typical of science collaborations and experiments. In order to make effective use of thismore » advanced infrastructure, the applications and middleware currently used by the distributed computing systems of large-scale science need to be adapted and tested within the new environment, with gaps in functionality identified and corrected. As a user of the ANI test bed, Fermilab aims to study the issues related to end-to-end integration and use of 100 Gb/s networks for the event simulation and analysis applications of physics experiments. In this paper we discuss our findings from evaluating existing HEP Physics middleware and application components, including GridFTP, Globus Online, etc. in the high-speed environment. These will include possible recommendations to the system administrators, application and middleware developers on changes that would make production use of the 100 Gb/s networks, including data storage, caching and wide area access.« less

  14. VISUAL3D - An EIT network on visualization of geomodels

    NASA Astrophysics Data System (ADS)

    Bauer, Tobias

    2017-04-01

    When it comes to interpretation of data and understanding of deep geological structures and bodies at different scales then modelling tools and modelling experience is vital for deep exploration. Geomodelling provides a platform for integration of different types of data, including new kinds of information (e.g., new improved measuring methods). EIT Raw Materials, initiated by the EIT (European Institute of Innovation and Technology) and funded by the European Commission, is the largest and strongest consortium in the raw materials sector worldwide. The VISUAL3D network of infrastructure is an initiative by EIT Raw Materials and aims at bringing together partners with 3D-4D-visualisation infrastructure and 3D-4D-modelling experience. The recently formed network collaboration interlinks hardware, software and expert knowledge in modelling visualization and output. A special focus will be the linking of research, education and industry and integrating multi-disciplinary data and to visualize the data in three and four dimensions. By aiding network collaborations we aim at improving the combination of geomodels with differing file formats and data characteristics. This will create an increased competency in modelling visualization and the ability to interchange and communicate models more easily. By combining knowledge and experience in geomodelling with expertise in Virtual Reality visualization partners of EIT Raw Materials but also external parties will have the possibility to visualize, analyze and validate their geomodels in immersive VR-environments. The current network combines partners from universities, research institutes, geological surveys and industry with a strong background in geological 3D-modelling and 3D visualization and comprises: Luleå University of Technology, Geological Survey of Finland, Geological Survey of Denmark and Greenland, TUBA Freiberg, Uppsala University, Geological Survey of France, RWTH Aachen, DMT, KGHM Cuprum, Boliden, Montan Universität Leoben, Slovenian National Building and Civil Engineering Institute, Tallinn University of Technology and Turku University. The infrastructure within the network comprises different types of capturing and visualization hardware, ranging from high resolution cubes, VR walls, VR goggle solutions, high resolution photogrammetry, UAVs, lidar-scanners, and many more.

  15. Integrative FourD omics approach profiles the target network of the carbon storage regulatory system

    PubMed Central

    Sowa, Steven W.; Gelderman, Grant; Leistra, Abigail N.; Buvanendiran, Aishwarya; Lipp, Sarah; Pitaktong, Areen; Vakulskas, Christopher A.; Romeo, Tony; Baldea, Michael

    2017-01-01

    Abstract Multi-target regulators represent a largely untapped area for metabolic engineering and anti-bacterial development. These regulators are complex to characterize because they often act at multiple levels, affecting proteins, transcripts and metabolites. Therefore, single omics experiments cannot profile their underlying targets and mechanisms. In this work, we used an Integrative FourD omics approach (INFO) that consists of collecting and analyzing systems data throughout multiple time points, using multiple genetic backgrounds, and multiple omics approaches (transcriptomics, proteomics and high throughput sequencing crosslinking immunoprecipitation) to evaluate simultaneous changes in gene expression after imposing an environmental stress that accentuates the regulatory features of a network. Using this approach, we profiled the targets and potential regulatory mechanisms of a global regulatory system, the well-studied carbon storage regulatory (Csr) system of Escherichia coli, which is widespread among bacteria. Using 126 sets of proteomics and transcriptomics data, we identified 136 potential direct CsrA targets, including 50 novel ones, categorized their behaviors into distinct regulatory patterns, and performed in vivo fluorescence-based follow up experiments. The results of this work validate 17 novel mRNAs as authentic direct CsrA targets and demonstrate a generalizable strategy to integrate multiple lines of omics data to identify a core pool of regulator targets. PMID:28126921

  16. Inferring Broad Regulatory Biology from Time Course Data: Have We Reached an Upper Bound under Constraints Typical of In Vivo Studies?

    PubMed Central

    Craddock, Travis J. A.; Fletcher, Mary Ann; Klimas, Nancy G.

    2015-01-01

    There is a growing appreciation for the network biology that regulates the coordinated expression of molecular and cellular markers however questions persist regarding the identifiability of these networks. Here we explore some of the issues relevant to recovering directed regulatory networks from time course data collected under experimental constraints typical of in vivo studies. NetSim simulations of sparsely connected biological networks were used to evaluate two simple feature selection techniques used in the construction of linear Ordinary Differential Equation (ODE) models, namely truncation of terms versus latent vector projection. Performance was compared with ODE-based Time Series Network Identification (TSNI) integral, and the information-theoretic Time-Delay ARACNE (TD-ARACNE). Projection-based techniques and TSNI integral outperformed truncation-based selection and TD-ARACNE on aggregate networks with edge densities of 10-30%, i.e. transcription factor, protein-protein cliques and immune signaling networks. All were more robust to noise than truncation-based feature selection. Performance was comparable on the in silico 10-node DREAM 3 network, a 5-node Yeast synthetic network designed for In vivo Reverse-engineering and Modeling Assessment (IRMA) and a 9-node human HeLa cell cycle network of similar size and edge density. Performance was more sensitive to the number of time courses than to sample frequency and extrapolated better to larger networks by grouping experiments. In all cases performance declined rapidly in larger networks with lower edge density. Limited recovery and high false positive rates obtained overall bring into question our ability to generate informative time course data rather than the design of any particular reverse engineering algorithm. PMID:25984725

  17. Dissociable meta-analytic brain networks contribute to coordinated emotional processing.

    PubMed

    Riedel, Michael C; Yanes, Julio A; Ray, Kimberly L; Eickhoff, Simon B; Fox, Peter T; Sutherland, Matthew T; Laird, Angela R

    2018-06-01

    Meta-analytic techniques for mining the neuroimaging literature continue to exert an impact on our conceptualization of functional brain networks contributing to human emotion and cognition. Traditional theories regarding the neurobiological substrates contributing to affective processing are shifting from regional- towards more network-based heuristic frameworks. To elucidate differential brain network involvement linked to distinct aspects of emotion processing, we applied an emergent meta-analytic clustering approach to the extensive body of affective neuroimaging results archived in the BrainMap database. Specifically, we performed hierarchical clustering on the modeled activation maps from 1,747 experiments in the affective processing domain, resulting in five meta-analytic groupings of experiments demonstrating whole-brain recruitment. Behavioral inference analyses conducted for each of these groupings suggested dissociable networks supporting: (1) visual perception within primary and associative visual cortices, (2) auditory perception within primary auditory cortices, (3) attention to emotionally salient information within insular, anterior cingulate, and subcortical regions, (4) appraisal and prediction of emotional events within medial prefrontal and posterior cingulate cortices, and (5) induction of emotional responses within amygdala and fusiform gyri. These meta-analytic outcomes are consistent with a contemporary psychological model of affective processing in which emotionally salient information from perceived stimuli are integrated with previous experiences to engender a subjective affective response. This study highlights the utility of using emergent meta-analytic methods to inform and extend psychological theories and suggests that emotions are manifest as the eventual consequence of interactions between large-scale brain networks. © 2018 Wiley Periodicals, Inc.

  18. Advanced ISDN satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The research performed by GTE Government Systems and the University of Colorado in support of the NASA Satellite Communications Applications Research (SCAR) Program is summarized. Two levels of research were undertaken. The first dealt with providing interim services Integrated Services Digital Network (ISDN) satellite (ISIS) capabilities that accented basic rate ISDN with a ground control similar to that of the Advanced Communications Technology Satellite (ACTS). The ISIS Network Model development represents satellite systems like the ACTS orbiting switch. The ultimate aim is to move these ACTS ground control functions on-board the next generation of ISDN communications satellite to provide full-service ISDN satellite (FSIS) capabilities. The technical and operational parameters for the advanced ISDN communications satellite design are obtainable from the simulation of ISIS and FSIS engineering software models of the major subsystems of the ISDN communications satellite architecture. Discrete event simulation experiments would generate data for analysis against NASA SCAR performance measure and the data obtained from the ISDN satellite terminal adapter hardware (ISTA) experiments, also developed in the program. The Basic and Option 1 phases of the program are also described and include the following: literature search, traffic mode, network model, scenario specifications, performance measures definitions, hardware experiment design, hardware experiment development, simulator design, and simulator development.

  19. Cingulo-opercular network efficiency mediates the association between psychotic-like experiences and cognitive ability in the general population.

    PubMed

    Sheffield, Julia M; Kandala, Sridhar; Burgess, Gregory C; Harms, Michael P; Barch, Deanna M

    2016-11-01

    Psychosis is hypothesized to occur on a spectrum between psychotic disorders and healthy individuals. In the middle of the spectrum are individuals who endorse psychotic-like experiences (PLEs) that may not impact daily functioning or cause distress. Individuals with PLEs show alterations in both cognitive ability and functional connectivity of several brain networks, but the relationship between PLEs, cognition, and functional networks remains poorly understood. We analyzed resting-state fMRI data, a range of neuropsychological tasks, and questions from the Achenbach Adult Self Report (ASR) in 468 individuals from the Human Connectome Project. We aimed to determine whether global efficiency of specific functional brain networks supporting higher-order cognition (the fronto-parietal network (FPN), cingulo-opercular network (CON), and default mode network (DMN)) was associated with PLEs and cognitive ability in a non-psychiatric sample. 21.6% of individuals in our sample endorsed at least one PLE. PLEs were significantly negatively associated with higher-order cognitive ability, CON global efficiency, and DMN global efficiency, but not crystallized knowledge. Higher-order cognition was significantly positively associated with CON and DMN global efficiency. Interestingly, the association between PLEs and cognitive ability was partially mediated by CON global efficiency and, in a subset of individuals who tested negative for drugs (N=405), the participation coefficient of the right anterior insula (a hub within the CON). These findings suggest that CON integrity may represent a shared mechanism that confers risk for psychotic experiences and the cognitive deficits observed across the psychosis spectrum.

  20. Functional connectivity alterations in brain networks relevant to self-awareness in chronic cannabis users.

    PubMed

    Pujol, Jesus; Blanco-Hinojo, Laura; Batalla, Albert; López-Solà, Marina; Harrison, Ben J; Soriano-Mas, Carles; Crippa, Jose A; Fagundo, Ana B; Deus, Joan; de la Torre, Rafael; Nogué, Santiago; Farré, Magí; Torrens, Marta; Martín-Santos, Rocío

    2014-04-01

    Recreational drugs are generally used to intentionally alter conscious experience. Long-lasting cannabis users frequently seek this effect as a means to relieve negative affect states. As with conventional anxiolytic drugs, however, changes in subjective feelings may be associated with memory impairment. We have tested whether the use of cannabis, as a psychoactive compound, is associated with alterations in spontaneous activity in brain networks relevant to self-awareness, and whether such potential changes are related to perceived anxiety and memory performance. Functional connectivity was assessed in the Default and Insula networks during resting state using fMRI in 28 heavy cannabis users and 29 control subjects. Imaging assessments were conducted during cannabis use in the unintoxicated state and repeated after one month of controlled abstinence. Cannabis users showed increased functional connectivity in the core of the Default and Insula networks and selective enhancement of functional anticorrelation between both. Reduced functional connectivity was observed in areas overlapping with other brain networks. Observed alterations were associated with behavioral measurements in a direction suggesting anxiety score reduction and interference with memory performance. Alterations were also related to the amount of cannabis used and partially persisted after one month of abstinence. Chronic cannabis use was associated with significant effects on the tuning and coupling of brain networks relevant to self-awareness, which in turn are integrated into brain systems supporting the storage of personal experience and motivated behavior. The results suggest potential mechanisms for recreational drugs to interfere with higher-order network interactions generating conscious experience. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Design mobile satellite system architecture as an integral part of the cellular access digital network

    NASA Technical Reports Server (NTRS)

    Chien, E. S. K.; Marinho, J. A.; Russell, J. E., Sr.

    1988-01-01

    The Cellular Access Digital Network (CADN) is the access vehicle through which cellular technology is brought into the mainstream of the evolving integrated telecommunications network. Beyond the integrated end-to-end digital access and per call network services provisioning of the Integrated Services Digital Network (ISDN), the CADN engenders the added capability of mobility freedom via wireless access. One key element of the CADN network architecture is the standard user to network interface that is independent of RF transmission technology. Since the Mobile Satellite System (MSS) is envisioned to not only complement but also enhance the capabilities of the terrestrial cellular telecommunications network, compatibility and interoperability between terrestrial cellular and mobile satellite systems are vitally important to provide an integrated moving telecommunications network of the future. From a network standpoint, there exist very strong commonalities between the terrestrial cellular system and the mobile satellite system. Therefore, the MSS architecture should be designed as an integral part of the CADN. This paper describes the concept of the CADN, the functional architecture of the MSS, and the user-network interface signaling protocols.

  2. Student Perceptions of Microblogging: Integrating Twitter with Blogging to Support Learning and Interaction

    ERIC Educational Resources Information Center

    Thoms, Brian

    2012-01-01

    Social networking technologies are used by millions of individuals around the globe to foster dialogue and share all types of information. It is therefore common to see that campuses abound with students embracing these technologies, sharing everything from personal experiences to general interests and current events with their immediate and…

  3. Using Technology to Enhance Science Inquiry in an Outdoor Classroom

    ERIC Educational Resources Information Center

    Cantrell, Pamela; Knudson, Mark S.

    2006-01-01

    Participants in a science professional development field experience were surveyed for their perceptions of the impacts of integrating a wireless local area network (WLAN), pocket PCs, and laptops as tools for enhancing science inquiry. Pocket PCs and laptops were used for data collection and analysis and for communication of research results to…

  4. Traffic model for advanced satellite designs and experiments for ISDN services

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.; Hager, E. Paul

    1991-01-01

    The data base structure and fields for categorizing and storing Integrated Services Digital Network (ISDN) user characteristics is outlined. This traffic model data base will be used to exercise models of the ISDN Advanced Communication Satellite to determine design parameters and performance for the NASA Satellite Communications Applications Research (SCAR) Program.

  5. Towards systems genetic analyses in barley: Integration of phenotypic, expression and genotype data into GeneNetwork.

    PubMed

    Druka, Arnis; Druka, Ilze; Centeno, Arthur G; Li, Hongqiang; Sun, Zhaohui; Thomas, William T B; Bonar, Nicola; Steffenson, Brian J; Ullrich, Steven E; Kleinhofs, Andris; Wise, Roger P; Close, Timothy J; Potokina, Elena; Luo, Zewei; Wagner, Carola; Schweizer, Günther F; Marshall, David F; Kearsey, Michael J; Williams, Robert W; Waugh, Robbie

    2008-11-18

    A typical genetical genomics experiment results in four separate data sets; genotype, gene expression, higher-order phenotypic data and metadata that describe the protocols, processing and the array platform. Used in concert, these data sets provide the opportunity to perform genetic analysis at a systems level. Their predictive power is largely determined by the gene expression dataset where tens of millions of data points can be generated using currently available mRNA profiling technologies. Such large, multidimensional data sets often have value beyond that extracted during their initial analysis and interpretation, particularly if conducted on widely distributed reference genetic materials. Besides quality and scale, access to the data is of primary importance as accessibility potentially allows the extraction of considerable added value from the same primary dataset by the wider research community. Although the number of genetical genomics experiments in different plant species is rapidly increasing, none to date has been presented in a form that allows quick and efficient on-line testing for possible associations between genes, loci and traits of interest by an entire research community. Using a reference population of 150 recombinant doubled haploid barley lines we generated novel phenotypic, mRNA abundance and SNP-based genotyping data sets, added them to a considerable volume of legacy trait data and entered them into the GeneNetwork http://www.genenetwork.org. GeneNetwork is a unified on-line analytical environment that enables the user to test genetic hypotheses about how component traits, such as mRNA abundance, may interact to condition more complex biological phenotypes (higher-order traits). Here we describe these barley data sets and demonstrate some of the functionalities GeneNetwork provides as an easily accessible and integrated analytical environment for exploring them. By integrating barley genotypic, phenotypic and mRNA abundance data sets directly within GeneNetwork's analytical environment we provide simple web access to the data for the research community. In this environment, a combination of correlation analysis and linkage mapping provides the potential to identify and substantiate gene targets for saturation mapping and positional cloning. By integrating datasets from an unsequenced crop plant (barley) in a database that has been designed for an animal model species (mouse) with a well established genome sequence, we prove the importance of the concept and practice of modular development and interoperability of software engineering for biological data sets.

  6. Understanding Hydraulic Fracturing: A Multi-Scale Problem

    DOE PAGES

    Hyman, Jeffrey De'Haven; Gimenez Martinez, Joaquin; Viswanathan, Hari S.; ...

    2016-09-05

    Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nano-meters to kilo-meters. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical, and experimental efforts. At the field scale, we use discrete fracture network modeling to simulate production at a well site whose fracture network is based on a site characterization of a shale formation. At the core scale, we use triaxial fracture experiments and a finite-element discrete-elementmore » fracture propagation model with a coupled fluid solver to study dynamic crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and real micromodels to study pore-scale flow phenomenon such as multiphase flow and mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs.« less

  7. Scientific Assistant Virtual Laboratory (SAVL)

    NASA Astrophysics Data System (ADS)

    Alaghband, Gita; Fardi, Hamid; Gnabasik, David

    2007-03-01

    The Scientific Assistant Virtual Laboratory (SAVL) is a scientific discovery environment, an interactive simulated virtual laboratory, for learning physics and mathematics. The purpose of this computer-assisted intervention is to improve middle and high school student interest, insight and scores in physics and mathematics. SAVL develops scientific and mathematical imagination in a visual, symbolic, and experimental simulation environment. It directly addresses the issues of scientific and technological competency by providing critical thinking training through integrated modules. This on-going research provides a virtual laboratory environment in which the student directs the building of the experiment rather than observing a packaged simulation. SAVL: * Engages the persistent interest of young minds in physics and math by visually linking simulation objects and events with mathematical relations. * Teaches integrated concepts by the hands-on exploration and focused visualization of classic physics experiments within software. * Systematically and uniformly assesses and scores students by their ability to answer their own questions within the context of a Master Question Network. We will demonstrate how the Master Question Network uses polymorphic interfaces and C# lambda expressions to manage simulation objects.

  8. Progress in Open-World, Integrative, Collaborative Science Data Platforms (Invited)

    NASA Astrophysics Data System (ADS)

    Fox, P. A.

    2013-12-01

    As collaborative, or network science spreads into more Earth and space science fields, both the participants and their funders have expressed a very strong desire for highly functional data and information capabilities that are a) easy to use, b) integrated in a variety of ways, c) leverage prior investments and keep pace with rapid technical change, and d) are not expensive or time-consuming to build or maintain. In response, and based on our accumulated experience over the last decade and a maturing of several key technical approaches, we have adapted, extended, and integrated several open source applications and frameworks that handle major portions of functionality for these platforms. At minimum, these functions include: an object-type repository, collaboration tools, an ability to identify and manage all key entities in the platform, and an integrated portal to manage diverse content and applications, with varied access levels and privacy options. At a conceptual level, science networks (even small ones) deal with people, and many intellectual artifacts produced or consumed in research, organizational and/our outreach activities, as well as the relations among them. Increasingly these networks are modeled as knowledge networks, i.e. graphs with named and typed relations among the 'nodes'. Nodes can be people, organizations, datasets, events, presentations, publications, videos, meetings, reports, groups, and more. In this heterogeneous ecosystem, it is also important to use a set of common informatics approaches to co-design and co-evolve the needed science data platforms based on what real people want to use them for. In this contribution, we present our methods and results for information modeling, adapting, integrating and evolving a networked data science and information architecture based on several open source technologies (Drupal, VIVO, the Comprehensive Knowledge Archive Network; CKAN, and the Global Handle System; GHS). In particular we present both the instantiation of this data platform for the Deep Carbon Observatory, including key functional and non-functional attributes, how the smart mediation among the components is modeled and managed, and discuss its general applicability.

  9. COMPUTING THERAPY FOR PRECISION MEDICINE: COLLABORATIVE FILTERING INTEGRATES AND PREDICTS MULTI-ENTITY INTERACTIONS.

    PubMed

    Regenbogen, Sam; Wilkins, Angela D; Lichtarge, Olivier

    2016-01-01

    Biomedicine produces copious information it cannot fully exploit. Specifically, there is considerable need to integrate knowledge from disparate studies to discover connections across domains. Here, we used a Collaborative Filtering approach, inspired by online recommendation algorithms, in which non-negative matrix factorization (NMF) predicts interactions among chemicals, genes, and diseases only from pairwise information about their interactions. Our approach, applied to matrices derived from the Comparative Toxicogenomics Database, successfully recovered Chemical-Disease, Chemical-Gene, and Disease-Gene networks in 10-fold cross-validation experiments. Additionally, we could predict each of these interaction matrices from the other two. Integrating all three CTD interaction matrices with NMF led to good predictions of STRING, an independent, external network of protein-protein interactions. Finally, this approach could integrate the CTD and STRING interaction data to improve Chemical-Gene cross-validation performance significantly, and, in a time-stamped study, it predicted information added to CTD after a given date, using only data prior to that date. We conclude that collaborative filtering can integrate information across multiple types of biological entities, and that as a first step towards precision medicine it can compute drug repurposing hypotheses.

  10. COMPUTING THERAPY FOR PRECISION MEDICINE: COLLABORATIVE FILTERING INTEGRATES AND PREDICTS MULTI-ENTITY INTERACTIONS

    PubMed Central

    REGENBOGEN, SAM; WILKINS, ANGELA D.; LICHTARGE, OLIVIER

    2015-01-01

    Biomedicine produces copious information it cannot fully exploit. Specifically, there is considerable need to integrate knowledge from disparate studies to discover connections across domains. Here, we used a Collaborative Filtering approach, inspired by online recommendation algorithms, in which non-negative matrix factorization (NMF) predicts interactions among chemicals, genes, and diseases only from pairwise information about their interactions. Our approach, applied to matrices derived from the Comparative Toxicogenomics Database, successfully recovered Chemical-Disease, Chemical-Gene, and Disease-Gene networks in 10-fold cross-validation experiments. Additionally, we could predict each of these interaction matrices from the other two. Integrating all three CTD interaction matrices with NMF led to good predictions of STRING, an independent, external network of protein-protein interactions. Finally, this approach could integrate the CTD and STRING interaction data to improve Chemical-Gene cross-validation performance significantly, and, in a time-stamped study, it predicted information added to CTD after a given date, using only data prior to that date. We conclude that collaborative filtering can integrate information across multiple types of biological entities, and that as a first step towards precision medicine it can compute drug repurposing hypotheses. PMID:26776170

  11. Multisensor interoperability for persistent surveillance and FOB protection with multiple technologies during the TNT exercise at Camp Roberts, California

    NASA Astrophysics Data System (ADS)

    Murarka, Naveen; Chambers, Jon

    2012-06-01

    Multiple sensors, providing actionable intelligence to the war fighter, often have difficulty interoperating with each other. Northrop Grumman (NG) is dedicated to solving these problems and providing complete solutions for persistent surveillance. In August, 2011, NG was invited to participate in the Tactical Network Topology (TNT) Capabilities Based Experimentation at Camp Roberts, CA to demonstrate integrated system capabilities providing Forward Operating Base (FOB) protection. This experiment was an opportunity to leverage previous efforts from NG's Rotorcraft Avionics Innovation Laboratory (RAIL) to integrate five prime systems with widely different capabilities. The five systems included a Hostile Fire and Missile Warning Sensor System, SCORPION II Unattended Ground Sensor system, Smart Integrated Vehicle Area Network (SiVAN), STARLite Synthetic Aperture Radar (SAR)/Ground Moving Target Indications (GMTI) radar system, and a vehicle with Target Location Module (TLM) and Laser Designation Module (LDM). These systems were integrated with each other and a Tactical Operations Center (TOC) equipped with RaptorX and Falconview providing a Common Operational Picture (COP) via Cursor on Target (CoT) messages. This paper will discuss this exercise, and the lessons learned, by integrating these five prime systems for persistent surveillance and FOB protection.

  12. Investigating Driver Fatigue versus Alertness Using the Granger Causality Network.

    PubMed

    Kong, Wanzeng; Lin, Weicheng; Babiloni, Fabio; Hu, Sanqing; Borghini, Gianluca

    2015-08-05

    Driving fatigue has been identified as one of the main factors affecting drivers' safety. The aim of this study was to analyze drivers' different mental states, such as alertness and drowsiness, and find out a neurometric indicator able to detect drivers' fatigue level in terms of brain networks. Twelve young, healthy subjects were recruited to take part in a driver fatigue experiment under different simulated driving conditions. The Electroencephalogram (EEG) signals of the subjects were recorded during the whole experiment and analyzed by using Granger-Causality-based brain effective networks. It was that the topology of the brain networks and the brain's ability to integrate information changed when subjects shifted from the alert to the drowsy stage. In particular, there was a significant difference in terms of strength of Granger causality (GC) in the frequency domain and the properties of the brain effective network i.e., causal flow, global efficiency and characteristic path length between such conditions. Also, some changes were more significant over the frontal brain lobes for the alpha frequency band. These findings might be used to detect drivers' fatigue levels, and as reference work for future studies.

  13. Investigating Driver Fatigue versus Alertness Using the Granger Causality Network

    PubMed Central

    Kong, Wanzeng; Lin, Weicheng; Babiloni, Fabio; Hu, Sanqing; Borghini, Gianluca

    2015-01-01

    Driving fatigue has been identified as one of the main factors affecting drivers’ safety. The aim of this study was to analyze drivers’ different mental states, such as alertness and drowsiness, and find out a neurometric indicator able to detect drivers’ fatigue level in terms of brain networks. Twelve young, healthy subjects were recruited to take part in a driver fatigue experiment under different simulated driving conditions. The Electroencephalogram (EEG) signals of the subjects were recorded during the whole experiment and analyzed by using Granger-Causality-based brain effective networks. It was that the topology of the brain networks and the brain’s ability to integrate information changed when subjects shifted from the alert to the drowsy stage. In particular, there was a significant difference in terms of strength of Granger causality (GC) in the frequency domain and the properties of the brain effective network i.e., causal flow, global efficiency and characteristic path length between such conditions. Also, some changes were more significant over the frontal brain lobes for the alpha frequency band. These findings might be used to detect drivers’ fatigue levels, and as reference work for future studies. PMID:26251909

  14. The Satellite Clock Bias Prediction Method Based on Takagi-Sugeno Fuzzy Neural Network

    NASA Astrophysics Data System (ADS)

    Cai, C. L.; Yu, H. G.; Wei, Z. C.; Pan, J. D.

    2017-05-01

    The continuous improvement of the prediction accuracy of Satellite Clock Bias (SCB) is the key problem of precision navigation. In order to improve the precision of SCB prediction and better reflect the change characteristics of SCB, this paper proposes an SCB prediction method based on the Takagi-Sugeno fuzzy neural network. Firstly, the SCB values are pre-treated based on their characteristics. Then, an accurate Takagi-Sugeno fuzzy neural network model is established based on the preprocessed data to predict SCB. This paper uses the precise SCB data with different sampling intervals provided by IGS (International Global Navigation Satellite System Service) to realize the short-time prediction experiment, and the results are compared with the ARIMA (Auto-Regressive Integrated Moving Average) model, GM(1,1) model, and the quadratic polynomial model. The results show that the Takagi-Sugeno fuzzy neural network model is feasible and effective for the SCB short-time prediction experiment, and performs well for different types of clocks. The prediction results for the proposed method are better than the conventional methods obviously.

  15. Cutting the wires: modularization of cellular networks for experimental design.

    PubMed

    Lang, Moritz; Summers, Sean; Stelling, Jörg

    2014-01-07

    Understanding naturally evolved cellular networks requires the consecutive identification and revision of the interactions between relevant molecular species. In this process, initially often simplified and incomplete networks are extended by integrating new reactions or whole subnetworks to increase consistency between model predictions and new measurement data. However, increased consistency with experimental data alone is not sufficient to show the existence of biomolecular interactions, because the interplay of different potential extensions might lead to overall similar dynamics. Here, we present a graph-based modularization approach to facilitate the design of experiments targeted at independently validating the existence of several potential network extensions. Our method is based on selecting the outputs to measure during an experiment, such that each potential network extension becomes virtually insulated from all others during data analysis. Each output defines a module that only depends on one hypothetical network extension, and all other outputs act as virtual inputs to achieve insulation. Given appropriate experimental time-series measurements of the outputs, our modules can be analyzed, simulated, and compared to the experimental data separately. Our approach exemplifies the close relationship between structural systems identification and modularization, an interplay that promises development of related approaches in the future. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. iSAFT Protocol Validation Platform for On-Board Data Networks

    NASA Astrophysics Data System (ADS)

    Tavoularis, Antonis; Kollias, Vangelis; Marinis, Kostas

    2014-08-01

    iSAFT is an integrated powerful HW/SW environmentfor the simulation, validation & monitoring of satellite/spacecraft on-board data networks supporting simultaneously a wide range of protocols (RMAP, PTP, CCSDS Space Packet, TM/TC, CANopen, etc.) and network interfaces (SpaceWire, ECSS MIL-STD-1553, ECSS CAN). It is based on over 20 years of TELETEL's experience in the area of protocol validation in the telecommunications and aeronautical sectors, and it has been fully re-engineered in cooperation of TELETEL with ESA & space Primes, to comply with space on-board industrial validation requirements (ECSS, EGSE, AIT, AIV, etc.). iSAFT is highly modular and expandable to support new network interfaces & protocols and it is based on the powerful iSAFT graphical tool chain (Protocol Analyser / Recorder, TestRunner, Device Simulator, Traffic Generator, etc.).

  17. Social networks as a tool for science communication and public engagement: focus on Twitter.

    PubMed

    López-Goñi, Ignacio; Sánchez-Angulo, Manuel

    2018-02-01

    Social networks have been used to teach and engage people about the importance of science. The integration of social networks in the daily routines of faculties and scientists is strongly recommended to increase their personal brand, improve their skills, enhance their visibility, share and communicate science to society, promote scientific culture, and even as a tool for teaching and learning. Here we review the use of Twitter in science and comment on our previous experience of using this social network as a platform for a Massive Online Open Course (MOOC) in Spain and Latin America. We propose to extend this strategy to a pan-European Microbiology MOOC in the near future. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. CD-ROM in the age of internet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrad, B.; Depp, D.

    1994-12-31

    Networks are hot and CD-ROM is also hot, but how do they mix? CD-ROM is a relatively inexpensive medium for storing and delivering information, and increasingly, users are connected to networks. But the technologies have developed separately, and there are obstacles to their integration. Drawing on their experience networking CD-ROMs at Oak Ridge National Laboratory, the authors discuss CD-ROM`s strengths and weaknesses as a technology for delivering information to the desktop. CD-ROM networking solutions are LAN-based, not ``open systems.`` Despite this limitation, due to the large number of information resources available on CD-ROM and the relative ease of installing andmore » maintaining databases on CD-ROM, CD-ROMs remain an essential piece of the electronic information puzzle.« less

  19. Novel Networked Remote Laboratory Architecture for Open Connectivity Based on PLC-OPC-LabVIEW-EJS Integration. Application in Remote Fuzzy Control and Sensors Data Acquisition.

    PubMed

    González, Isaías; Calderón, Antonio José; Mejías, Andrés; Andújar, José Manuel

    2016-10-31

    In this paper the design and implementation of a network for integrating Programmable Logic Controllers (PLC), the Object-Linking and Embedding for Process Control protocol (OPC) and the open-source Easy Java Simulations (EJS) package is presented. A LabVIEW interface and the Java-Internet-LabVIEW (JIL) server complete the scheme for data exchange. This configuration allows the user to remotely interact with the PLC. Such integration can be considered a novelty in scientific literature for remote control and sensor data acquisition of industrial plants. An experimental application devoted to remote laboratories is developed to demonstrate the feasibility and benefits of the proposed approach. The experiment to be conducted is the parameterization and supervision of a fuzzy controller of a DC servomotor. The graphical user interface has been developed with EJS and the fuzzy control is carried out by our own PLC. In fact, the distinctive features of the proposed novel network application are the integration of the OPC protocol to share information with the PLC and the application under control. The user can perform the tuning of the controller parameters online and observe in real time the effect on the servomotor behavior. The target group is engineering remote users, specifically in control- and automation-related tasks. The proposed architecture system is described and experimental results are presented.

  20. Novel Networked Remote Laboratory Architecture for Open Connectivity Based on PLC-OPC-LabVIEW-EJS Integration. Application in Remote Fuzzy Control and Sensors Data Acquisition

    PubMed Central

    González, Isaías; Calderón, Antonio José; Mejías, Andrés; Andújar, José Manuel

    2016-01-01

    In this paper the design and implementation of a network for integrating Programmable Logic Controllers (PLC), the Object-Linking and Embedding for Process Control protocol (OPC) and the open-source Easy Java Simulations (EJS) package is presented. A LabVIEW interface and the Java-Internet-LabVIEW (JIL) server complete the scheme for data exchange. This configuration allows the user to remotely interact with the PLC. Such integration can be considered a novelty in scientific literature for remote control and sensor data acquisition of industrial plants. An experimental application devoted to remote laboratories is developed to demonstrate the feasibility and benefits of the proposed approach. The experiment to be conducted is the parameterization and supervision of a fuzzy controller of a DC servomotor. The graphical user interface has been developed with EJS and the fuzzy control is carried out by our own PLC. In fact, the distinctive features of the proposed novel network application are the integration of the OPC protocol to share information with the PLC and the application under control. The user can perform the tuning of the controller parameters online and observe in real time the effect on the servomotor behavior. The target group is engineering remote users, specifically in control- and automation-related tasks. The proposed architecture system is described and experimental results are presented. PMID:27809229

  1. Plant Clonal Integration Mediates the Horizontal Redistribution of Soil Resources, Benefiting Neighboring Plants.

    PubMed

    Ye, Xue-Hua; Zhang, Ya-Lin; Liu, Zhi-Lan; Gao, Shu-Qin; Song, Yao-Bin; Liu, Feng-Hong; Dong, Ming

    2016-01-01

    Resources such as water taken up by plants can be released into soils through hydraulic redistribution and can also be translocated by clonal integration within a plant clonal network. We hypothesized that the resources from one (donor) microsite could be translocated within a clonal network, released into different (recipient) microsites and subsequently used by neighbor plants in the recipient microsite. To test these hypotheses, we conducted two experiments in which connected and disconnected ramet pairs of Potentilla anserina were grown under both homogeneous and heterogeneous water regimes, with seedlings of Artemisia ordosica as neighbors. The isotopes [(15)N] and deuterium were used to trace the translocation of nitrogen and water, respectively, within the clonal network. The water and nitrogen taken up by P. anserina ramets in the donor microsite were translocated into the connected ramets in the recipient microsites. Most notably, portions of the translocated water and nitrogen were released into the recipient microsite and were used by the neighboring A. ordosica, which increased growth of the neighboring A. ordosica significantly. Therefore, our hypotheses were supported, and plant clonal integration mediated the horizontal hydraulic redistribution of resources, thus benefiting neighboring plants. Such a plant clonal integration-mediated resource redistribution in horizontal space may have substantial effects on the interspecific relations and composition of the community and consequently on ecosystem processes.

  2. Architecture for an integrated real-time air combat and sensor network simulation

    NASA Astrophysics Data System (ADS)

    Criswell, Evans A.; Rushing, John; Lin, Hong; Graves, Sara

    2007-04-01

    An architecture for an integrated air combat and sensor network simulation is presented. The architecture integrates two components: a parallel real-time sensor fusion and target tracking simulation, and an air combat simulation. By integrating these two simulations, it becomes possible to experiment with scenarios in which one or both sides in a battle have very large numbers of primitive passive sensors, and to assess the likely effects of those sensors on the outcome of the battle. Modern Air Power is a real-time theater-level air combat simulation that is currently being used as a part of the USAF Air and Space Basic Course (ASBC). The simulation includes a variety of scenarios from the Vietnam war to the present day, and also includes several hypothetical future scenarios. Modern Air Power includes a scenario editor, an order of battle editor, and full AI customization features that make it possible to quickly construct scenarios for any conflict of interest. The scenario editor makes it possible to place a wide variety of sensors including both high fidelity sensors such as radars, and primitive passive sensors that provide only very limited information. The parallel real-time sensor network simulation is capable of handling very large numbers of sensors on a computing cluster of modest size. It can fuse information provided by disparate sensors to detect and track targets, and produce target tracks.

  3. Evaluation of partnerships in a transnational family violence prevention network using an integrated knowledge translation and exchange model: a mixed methods study

    PubMed Central

    2014-01-01

    Background Family violence is a significant and complex public health problem that demands collaboration between researchers, practitioners, and policymakers for systemic, sustainable solutions. An integrated knowledge translation network was developed to support joint research production and application in the area. The purpose of this study was to determine the extent to which the international Preventing Violence Across the Lifespan (PreVAiL) Research Network built effective partnerships among its members, with a focus on the knowledge user partner perspective. Methods This mixed-methods study employed a combination of questionnaire and semi-structured interviews to understand partnerships two years after PreVAiL’s inception. The questionnaire examined communication, collaborative research, dissemination of research, research findings, negotiation, partnership enhancement, information needs, rapport, and commitment. The interviews elicited feedback about partners’ experiences with being part of the network. Results Five main findings were highlighted: i) knowledge user partner involvement varied across activities, ranging from 11% to 79% participation rates; ii) partners and researchers generally converged on their assessment of communication indicators; iii) partners valued the network at both an individual level and to fulfill their organizations’ mandates; iv) being part of PreVAiL allowed partners to readily contact researchers, and partners felt comfortable acting as an intermediary between PreVAiL and the rest of their own organization; v) application of research was just emerging; partners needed more actionable insights to determine ways to move forward given the research at that point in time. Conclusions Our results demonstrate the importance of developing and nurturing strong partnerships for integrated knowledge translation. Our findings are applicable to other network-oriented partnerships where a diversity of stakeholders work to address complex, multi-faceted public health problems. PMID:24886489

  4. Self-sensing of dielectric elastomer actuator enhanced by artificial neural network

    NASA Astrophysics Data System (ADS)

    Ye, Zhihang; Chen, Zheng

    2017-09-01

    Dielectric elastomer (DE) is a type of soft actuating material, the shape of which can be changed under electrical voltage stimuli. DE materials have promising usage in future’s soft actuators and sensors, such as soft robotics, energy harvesters, and wearable sensors. In this paper, a stripe DE actuator with integrated sensing capability is designed, fabricated, and characterized. Since the strip actuator can be approximated as a compliant capacitor, it is possible to detect the actuator’s displacement by analyzing the actuator’s impedance change. An integrated sensing scheme that adds a high frequency probing signal into actuation signal is developed. Electrical impedance changes in the probing signal are extracted by fast Fourier transform algorithm, and nonlinear data fitting methods involving artificial neural network are implemented to detect the actuator’s displacement. A series of experiments show that by improving data processing and analyzing methods, the integrated sensing method can achieve error level of lower than 1%.

  5. Exploration of the integration of care for persons with a traumatic brain injury using social network analysis methodology

    PubMed Central

    Lamontagne, Marie-Eve

    2013-01-01

    Introduction Integration is a popular strategy to increase the quality of care within systems of care. However, there is no common language, approach or tool allowing for a valid description, comparison and evaluation of integrated care. Social network analysis could be a viable methodology to provide an objective picture of integrated networks. Goal of the article To illustrate social network analysis use in the context of systems of care for traumatic brain injury. Method We surveyed members of a network using a validated questionnaire to determine the links between them. We determined the density, centrality, multiplexity, and quality of the links reported. Results The network was described as moderately dense (0.6), the most prevalent link was knowledge, and four organisation members of a consortium were central to the network. Social network analysis allowed us to create a graphic representation of the network. Conclusion Social network analysis is a useful methodology to objectively characterise integrated networks. PMID:24250281

  6. Sustaining Research Networks: the Twenty-Year Experience of the HMO Research Network

    PubMed Central

    Steiner, John F.; Paolino, Andrea R.; Thompson, Ella E.; Larson, Eric B.

    2014-01-01

    Purpose: As multi-institutional research networks assume a central role in clinical research, they must address the challenge of sustainability. Despite its importance, the concept of network sustainability has received little attention in the literature, and the sustainability strategies of durable scientific networks have not been described. Innovation: The Health Maintenance Organization Research Network (HMORN) is a consortium of 18 research departments in integrated health care delivery systems with over 15 million members in the United States and Israel. The HMORN has coordinated federally funded scientific networks and studies since 1994. This case study describes the HMORN approach to sustainability, proposes an operational definition of network sustainability, and identifies 10 essential elements that can enhance sustainability. Credibility: The sustainability framework proposed here is drawn from prior publications on organizational issues by HMORN investigators and from the experience of recent HMORN leaders and senior staff. Conclusion and Discussion: Network sustainability can be defined as (1) the development and enhancement of shared research assets to facilitate a sequence of research studies in a specific content area or multiple areas, and (2) a community of researchers and other stakeholders who reuse and develop those assets. Essential elements needed to develop the shared assets of a network include: network governance; trustworthy data and processes for sharing data; shared knowledge about research tools; administrative efficiency; physical infrastructure; and infrastructure funding. The community of researchers within a network is enhanced by: a clearly defined mission, vision and values; protection of human subjects; a culture of collaboration; and strong relationships with host organizations. While the importance of these elements varies based on the membership and goals of a network, this framework for sustainability can enhance strategic planning within the network and can guide relationships with external stakeholders. PMID:25848605

  7. MetaMapR: pathway independent metabolomic network analysis incorporating unknowns.

    PubMed

    Grapov, Dmitry; Wanichthanarak, Kwanjeera; Fiehn, Oliver

    2015-08-15

    Metabolic network mapping is a widely used approach for integration of metabolomic experimental results with biological domain knowledge. However, current approaches can be limited by biochemical domain or pathway knowledge which results in sparse disconnected graphs for real world metabolomic experiments. MetaMapR integrates enzymatic transformations with metabolite structural similarity, mass spectral similarity and empirical associations to generate richly connected metabolic networks. This open source, web-based or desktop software, written in the R programming language, leverages KEGG and PubChem databases to derive associations between metabolites even in cases where biochemical domain or molecular annotations are unknown. Network calculation is enhanced through an interface to the Chemical Translation System, which allows metabolite identifier translation between >200 common biochemical databases. Analysis results are presented as interactive visualizations or can be exported as high-quality graphics and numerical tables which can be imported into common network analysis and visualization tools. Freely available at http://dgrapov.github.io/MetaMapR/. Requires R and a modern web browser. Installation instructions, tutorials and application examples are available at http://dgrapov.github.io/MetaMapR/. ofiehn@ucdavis.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software.

    PubMed

    Jacomy, Mathieu; Venturini, Tommaso; Heymann, Sebastien; Bastian, Mathieu

    2014-01-01

    Gephi is a network visualization software used in various disciplines (social network analysis, biology, genomics...). One of its key features is the ability to display the spatialization process, aiming at transforming the network into a map, and ForceAtlas2 is its default layout algorithm. The latter is developed by the Gephi team as an all-around solution to Gephi users' typical networks (scale-free, 10 to 10,000 nodes). We present here for the first time its functioning and settings. ForceAtlas2 is a force-directed layout close to other algorithms used for network spatialization. We do not claim a theoretical advance but an attempt to integrate different techniques such as the Barnes Hut simulation, degree-dependent repulsive force, and local and global adaptive temperatures. It is designed for the Gephi user experience (it is a continuous algorithm), and we explain which constraints it implies. The algorithm benefits from much feedback and is developed in order to provide many possibilities through its settings. We lay out its complete functioning for the users who need a precise understanding of its behaviour, from the formulas to graphic illustration of the result. We propose a benchmark for our compromise between performance and quality. We also explain why we integrated its various features and discuss our design choices.

  9. ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software

    PubMed Central

    Jacomy, Mathieu; Venturini, Tommaso; Heymann, Sebastien; Bastian, Mathieu

    2014-01-01

    Gephi is a network visualization software used in various disciplines (social network analysis, biology, genomics…). One of its key features is the ability to display the spatialization process, aiming at transforming the network into a map, and ForceAtlas2 is its default layout algorithm. The latter is developed by the Gephi team as an all-around solution to Gephi users’ typical networks (scale-free, 10 to 10,000 nodes). We present here for the first time its functioning and settings. ForceAtlas2 is a force-directed layout close to other algorithms used for network spatialization. We do not claim a theoretical advance but an attempt to integrate different techniques such as the Barnes Hut simulation, degree-dependent repulsive force, and local and global adaptive temperatures. It is designed for the Gephi user experience (it is a continuous algorithm), and we explain which constraints it implies. The algorithm benefits from much feedback and is developed in order to provide many possibilities through its settings. We lay out its complete functioning for the users who need a precise understanding of its behaviour, from the formulas to graphic illustration of the result. We propose a benchmark for our compromise between performance and quality. We also explain why we integrated its various features and discuss our design choices. PMID:24914678

  10. Selection for territory acquisition is modulated by social network structure in a wild songbird

    PubMed Central

    Farine, D R; Sheldon, B C

    2015-01-01

    The social environment may be a key mediator of selection that operates on animals. In many cases, individuals may experience selection not only as a function of their phenotype, but also as a function of the interaction between their phenotype and the phenotypes of the conspecifics they associate with. For example, when animals settle after dispersal, individuals may benefit from arriving early, but, in many cases, these benefits will be affected by the arrival times of other individuals in their local environment. We integrated a recently described method for calculating assortativity on weighted networks, which is the correlation between an individual's phenotype and that of its associates, into an existing framework for measuring the magnitude of social selection operating on phenotypes. We applied this approach to large-scale data on social network structure and the timing of arrival into the breeding area over three years. We found that late-arriving individuals had a reduced probability of breeding. However, the probability of breeding was also influenced by individuals’ social networks. Associating with late-arriving conspecifics increased the probability of successfully acquiring a breeding territory. Hence, social selection could offset the effects of nonsocial selection. Given parallel theoretical developments of the importance of local network structure on population processes, and increasing data being collected on social networks in free-living populations, the integration of these concepts could yield significant insights into social evolution. PMID:25611344

  11. Development of veterinary laboratory networks for avian influenza and other emerging infectious disease control: the southeast asian experience.

    PubMed

    Daniels, Peter; Poermadjaja, Bagoes; Morrissy, Chris; Ngo, Thanh Long; Selleck, Paul; Kalpravidh, Wantanee; Weaver, John; Wong, Frank; Torchetti, Mia Kim; Allen, John; Padungtod, Parwin; Davis, Andrew; Suradhat, Sanipa; Morzaria, Subhash

    2014-01-01

    The outbreak of highly pathogenic H5N1 avian influenza, with its international spread, confirmed that emerging infectious disease control must be underpinned by effective laboratory services. Laboratory results are the essential data underpinning effective surveillance, case diagnosis, or monitoring of responses. Importantly, laboratories are best managed within national and international networks of technological support rather than in isolation. A well planned laboratory network can deliver both a geographical spread of testing capacity and also a cost effective hierarchy of capability. Hence in the international context regional networks can be particularly effective. Laboratories are an integral part of a country's veterinary services and their role and function should be clearly defined in the national animal health strategy and supporting government policies. Not every laboratory should be expected to deliver every possible service, and integration into regional and broader international networks should be a part of the overall strategy. The outputs required of each laboratory should be defined and then ensured through accredited quality assurance. The political and scientific environment in which laboratories operate changes continuously, not only through evolving national and regional animal health priorities but also through new test technologies and enhancements to existing technologies. Active networks help individual laboratories to monitor, evaluate, and respond to such challenges and opportunities. The end result is enhanced emerging infectious disease preparedness across the region.

  12. Analysis of the characteristics of the synchronous clusters in the adaptive Kuramoto network and neural network of the epileptic brain

    NASA Astrophysics Data System (ADS)

    Hramov, Alexander E.; Kharchenko, Alexander A.; Makarov, Vladimir V.; Khramova, Marina V.; Koronovskii, Alexey A.; Pavlov, Alexey N.; Dana, Syamal K.

    2016-04-01

    In the paper we study the mechanisms of phase synchronization in the adaptive model network of Kuramoto oscillators and the neural network of brain by consideration of the integral characteristics of the observed networks signals. As the integral characteristics of the model network we consider the summary signal produced by the oscillators. Similar to the model situation we study the ECoG signal as the integral characteristic of neural network of the brain. We show that the establishment of the phase synchronization results in the increase of the peak, corresponding to synchronized oscillators, on the wavelet energy spectrum of the integral signals. The observed correlation between the phase relations of the elements and the integral characteristics of the whole network open the way to detect the size of synchronous clusters in the neural networks of the epileptic brain before and during seizure.

  13. Mean-field equations for neuronal networks with arbitrary degree distributions.

    PubMed

    Nykamp, Duane Q; Friedman, Daniel; Shaker, Sammy; Shinn, Maxwell; Vella, Michael; Compte, Albert; Roxin, Alex

    2017-04-01

    The emergent dynamics in networks of recurrently coupled spiking neurons depends on the interplay between single-cell dynamics and network topology. Most theoretical studies on network dynamics have assumed simple topologies, such as connections that are made randomly and independently with a fixed probability (Erdös-Rényi network) (ER) or all-to-all connected networks. However, recent findings from slice experiments suggest that the actual patterns of connectivity between cortical neurons are more structured than in the ER random network. Here we explore how introducing additional higher-order statistical structure into the connectivity can affect the dynamics in neuronal networks. Specifically, we consider networks in which the number of presynaptic and postsynaptic contacts for each neuron, the degrees, are drawn from a joint degree distribution. We derive mean-field equations for a single population of homogeneous neurons and for a network of excitatory and inhibitory neurons, where the neurons can have arbitrary degree distributions. Through analysis of the mean-field equations and simulation of networks of integrate-and-fire neurons, we show that such networks have potentially much richer dynamics than an equivalent ER network. Finally, we relate the degree distributions to so-called cortical motifs.

  14. Essential elements of online information networks on invasive alien species

    USGS Publications Warehouse

    Simpson, A.; Sellers, E.; Grosse, A.; Xie, Y.

    2006-01-01

    In order to be effective, information must be placed in the proper context and organized in a manner that is logical and (preferably) standardized. Recently, invasive alien species (IAS) scientists have begun to create online networks to share their information concerning IAS prevention and control. At a special networking session at the Beijing International Symposium on Biological Invasions, an online Eastern Asia-North American IAS Information Network (EA-NA Network) was proposed. To prepare for the development of this network, and to provide models for other regional collaborations, we compare four examples of global, regional, and national online IAS information networks: the Global Invasive Species Information Network, the Invasives Information Network of the Inter-American Biodiversity Information Network, the Chinese Species Information System, and the Invasive Species Information Node of the US National Biological Information Infrastructure. We conclude that IAS networks require a common goal, dedicated leaders, effective communication, and broad endorsement, in order to obtain sustainable, long-term funding and long-term stability. They need to start small, use the experience of other networks, partner with others, and showcase benefits. Global integration and synergy among invasive species networks will succeed with contributions from both the top-down and the bottom-up. ?? 2006 Springer.

  15. Mean-field equations for neuronal networks with arbitrary degree distributions

    NASA Astrophysics Data System (ADS)

    Nykamp, Duane Q.; Friedman, Daniel; Shaker, Sammy; Shinn, Maxwell; Vella, Michael; Compte, Albert; Roxin, Alex

    2017-04-01

    The emergent dynamics in networks of recurrently coupled spiking neurons depends on the interplay between single-cell dynamics and network topology. Most theoretical studies on network dynamics have assumed simple topologies, such as connections that are made randomly and independently with a fixed probability (Erdös-Rényi network) (ER) or all-to-all connected networks. However, recent findings from slice experiments suggest that the actual patterns of connectivity between cortical neurons are more structured than in the ER random network. Here we explore how introducing additional higher-order statistical structure into the connectivity can affect the dynamics in neuronal networks. Specifically, we consider networks in which the number of presynaptic and postsynaptic contacts for each neuron, the degrees, are drawn from a joint degree distribution. We derive mean-field equations for a single population of homogeneous neurons and for a network of excitatory and inhibitory neurons, where the neurons can have arbitrary degree distributions. Through analysis of the mean-field equations and simulation of networks of integrate-and-fire neurons, we show that such networks have potentially much richer dynamics than an equivalent ER network. Finally, we relate the degree distributions to so-called cortical motifs.

  16. Integrating and Visualizing Tropical Cyclone Data Using the Real Time Mission Monitor

    NASA Technical Reports Server (NTRS)

    Goodman, H. Michael; Blakeslee, Richard; Conover, Helen; Hall, John; He, Yubin; Regner, Kathryn

    2009-01-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the NASA Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM is extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, scientists, and managers appreciate the contributions that RTMM makes to their flight projects. A broad spectrum of interdisciplinary scientists used RTMM during field campaigns including the hurricane-focused 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 NOAA-NASA Aerosonde Hurricane Noel flight, 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), plus a soil moisture (SMAP-VEX) and two arctic research experiments (ARCTAS) in 2008. Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated "on the fly". The resultant flight plan is then immediately posted to the Google Earth-based RTMM for interested scientists to view the planned flight track and subsequently compare it to the actual real time flight progress. We are planning additional capabilities to RTMM including collaborations with the Jet Propulsion Laboratory in the joint development of a Tropical Cyclone Integrated Data Exchange and Analysis System (TC IDEAS) which will serve as a web portal for access to tropical cyclone data, visualizations and model output.

  17. Inferring dynamic gene regulatory networks in cardiac differentiation through the integration of multi-dimensional data.

    PubMed

    Gong, Wuming; Koyano-Nakagawa, Naoko; Li, Tongbin; Garry, Daniel J

    2015-03-07

    Decoding the temporal control of gene expression patterns is key to the understanding of the complex mechanisms that govern developmental decisions during heart development. High-throughput methods have been employed to systematically study the dynamic and coordinated nature of cardiac differentiation at the global level with multiple dimensions. Therefore, there is a pressing need to develop a systems approach to integrate these data from individual studies and infer the dynamic regulatory networks in an unbiased fashion. We developed a two-step strategy to integrate data from (1) temporal RNA-seq, (2) temporal histone modification ChIP-seq, (3) transcription factor (TF) ChIP-seq and (4) gene perturbation experiments to reconstruct the dynamic network during heart development. First, we trained a logistic regression model to predict the probability (LR score) of any base being bound by 543 TFs with known positional weight matrices. Second, four dimensions of data were combined using a time-varying dynamic Bayesian network model to infer the dynamic networks at four developmental stages in the mouse [mouse embryonic stem cells (ESCs), mesoderm (MES), cardiac progenitors (CP) and cardiomyocytes (CM)]. Our method not only infers the time-varying networks between different stages of heart development, but it also identifies the TF binding sites associated with promoter or enhancers of downstream genes. The LR scores of experimentally verified ESCs and heart enhancers were significantly higher than random regions (p <10(-100)), suggesting that a high LR score is a reliable indicator for functional TF binding sites. Our network inference model identified a region with an elevated LR score approximately -9400 bp upstream of the transcriptional start site of Nkx2-5, which overlapped with a previously reported enhancer region (-9435 to -8922 bp). TFs such as Tead1, Gata4, Msx2, and Tgif1 were predicted to bind to this region and participate in the regulation of Nkx2-5 gene expression. Our model also predicted the key regulatory networks for the ESC-MES, MES-CP and CP-CM transitions. We report a novel method to systematically integrate multi-dimensional -omics data and reconstruct the gene regulatory networks. This method will allow one to rapidly determine the cis-modules that regulate key genes during cardiac differentiation.

  18. Six elements of integrated primary healthcare.

    PubMed

    Brown, Lynsey J; Oliver-Baxter, Jodie

    2016-03-01

    Integrated care has the potential to deliver efficiencies and improvements in patient experiences and health outcomes. Efforts towards integrated care, especially at the primary and community health levels, have increasingly been under focus, both nationally and internationally. In Australia, regional integration is a priority, and integration of care is a task for meso-level organisations such as Primary Health Networks (PHNs). This paper seeks to provide a list of elements and questions for consideration by organisations working across primary healthcare settings, looking to enact and improve the delivery of integrated care. Six elements that consistently emerged during the development of a series of rapid reviews on integrated primary healthcare in Australia are presented in this paper. The elements identified are context, governance and leadership, infrastructure, financing, engagement, and communication. They offer a starting point for reflection in the planning and practices of organisations in their drive for continuous improvements in integrated care.

  19. NASA Integrated Network COOP

    NASA Technical Reports Server (NTRS)

    Anderson, Michael L.; Wright, Nathaniel; Tai, Wallace

    2012-01-01

    Natural disasters, terrorist attacks, civil unrest, and other events have the potential of disrupting mission-essential operations in any space communications network. NASA's Space Communications and Navigation office (SCaN) is in the process of studying options for integrating the three existing NASA network elements, the Deep Space Network, the Near Earth Network, and the Space Network, into a single integrated network with common services and interfaces. The need to maintain Continuity of Operations (COOP) after a disastrous event has a direct impact on the future network design and operations concepts. The SCaN Integrated Network will provide support to a variety of user missions. The missions have diverse requirements and include anything from earth based platforms to planetary missions and rovers. It is presumed that an integrated network, with common interfaces and processes, provides an inherent advantage to COOP in that multiple elements and networks can provide cross-support in a seamless manner. The results of trade studies support this assumption but also show that centralization as a means of achieving integration can result in single points of failure that must be mitigated. The cost to provide this mitigation can be substantial. In support of this effort, the team evaluated the current approaches to COOP, developed multiple potential approaches to COOP in a future integrated network, evaluated the interdependencies of the various approaches to the various network control and operations options, and did a best value assessment of the options. The paper will describe the trade space, the study methods, and results of the study.

  20. The Data Conservancy

    NASA Astrophysics Data System (ADS)

    Choudhury, S.; Duerr, R. E.

    2009-12-01

    NSF's Sustainable Digital Data Preservation and Access Network Partners program is an ambitious attempt to integrate a wide variety of expertise and infrastructure into a network for providing "reliable digital preservation, access, integration, and analysis capabilities for science." One of the first two DataNet award recipients, the Data Conservancy, is itself a network of widely diverse partners led by the libraries at the Johns Hopkins University. The Data Conservancy is built on existing exemplar scientific projects, communities, and virtual organizations that have deep engagement with their user communities, and extensive experience with large-scale distributed system development. Data Conservancy members embrace a shared vision that data curation is not an end, but rather a means to collect, organize, validate, and preserve data needed to address the grand research challenges that face society. Data Conservancy members holdings encompass the entire range of earth, life, and space science data. New to the Data Conservancy is the concept that University libraries will be part of the distributed network of data centers and that data science will become a path in the library and information science curricula. As noted by Winston Tabb (JHU Dean of Libraries) "Data Centers are the new library stacks."

  1. Quantum stochastic walks on networks for decision-making.

    PubMed

    Martínez-Martínez, Ismael; Sánchez-Burillo, Eduardo

    2016-03-31

    Recent experiments report violations of the classical law of total probability and incompatibility of certain mental representations when humans process and react to information. Evidence shows promise of a more general quantum theory providing a better explanation of the dynamics and structure of real decision-making processes than classical probability theory. Inspired by this, we show how the behavioral choice-probabilities can arise as the unique stationary distribution of quantum stochastic walkers on the classical network defined from Luce's response probabilities. This work is relevant because (i) we provide a very general framework integrating the positive characteristics of both quantum and classical approaches previously in confrontation, and (ii) we define a cognitive network which can be used to bring other connectivist approaches to decision-making into the quantum stochastic realm. We model the decision-maker as an open system in contact with her surrounding environment, and the time-length of the decision-making process reveals to be also a measure of the process' degree of interplay between the unitary and irreversible dynamics. Implementing quantum coherence on classical networks may be a door to better integrate human-like reasoning biases in stochastic models for decision-making.

  2. Quantum stochastic walks on networks for decision-making

    NASA Astrophysics Data System (ADS)

    Martínez-Martínez, Ismael; Sánchez-Burillo, Eduardo

    2016-03-01

    Recent experiments report violations of the classical law of total probability and incompatibility of certain mental representations when humans process and react to information. Evidence shows promise of a more general quantum theory providing a better explanation of the dynamics and structure of real decision-making processes than classical probability theory. Inspired by this, we show how the behavioral choice-probabilities can arise as the unique stationary distribution of quantum stochastic walkers on the classical network defined from Luce’s response probabilities. This work is relevant because (i) we provide a very general framework integrating the positive characteristics of both quantum and classical approaches previously in confrontation, and (ii) we define a cognitive network which can be used to bring other connectivist approaches to decision-making into the quantum stochastic realm. We model the decision-maker as an open system in contact with her surrounding environment, and the time-length of the decision-making process reveals to be also a measure of the process’ degree of interplay between the unitary and irreversible dynamics. Implementing quantum coherence on classical networks may be a door to better integrate human-like reasoning biases in stochastic models for decision-making.

  3. Quantum stochastic walks on networks for decision-making

    PubMed Central

    Martínez-Martínez, Ismael; Sánchez-Burillo, Eduardo

    2016-01-01

    Recent experiments report violations of the classical law of total probability and incompatibility of certain mental representations when humans process and react to information. Evidence shows promise of a more general quantum theory providing a better explanation of the dynamics and structure of real decision-making processes than classical probability theory. Inspired by this, we show how the behavioral choice-probabilities can arise as the unique stationary distribution of quantum stochastic walkers on the classical network defined from Luce’s response probabilities. This work is relevant because (i) we provide a very general framework integrating the positive characteristics of both quantum and classical approaches previously in confrontation, and (ii) we define a cognitive network which can be used to bring other connectivist approaches to decision-making into the quantum stochastic realm. We model the decision-maker as an open system in contact with her surrounding environment, and the time-length of the decision-making process reveals to be also a measure of the process’ degree of interplay between the unitary and irreversible dynamics. Implementing quantum coherence on classical networks may be a door to better integrate human-like reasoning biases in stochastic models for decision-making. PMID:27030372

  4. Perception Evolution Network Based on Cognition Deepening Model--Adapting to the Emergence of New Sensory Receptor.

    PubMed

    Xing, Youlu; Shen, Furao; Zhao, Jinxi

    2016-03-01

    The proposed perception evolution network (PEN) is a biologically inspired neural network model for unsupervised learning and online incremental learning. It is able to automatically learn suitable prototypes from learning data in an incremental way, and it does not require the predefined prototype number or the predefined similarity threshold. Meanwhile, being more advanced than the existing unsupervised neural network model, PEN permits the emergence of a new dimension of perception in the perception field of the network. When a new dimension of perception is introduced, PEN is able to integrate the new dimensional sensory inputs with the learned prototypes, i.e., the prototypes are mapped to a high-dimensional space, which consists of both the original dimension and the new dimension of the sensory inputs. In the experiment, artificial data and real-world data are used to test the proposed PEN, and the results show that PEN can work effectively.

  5. Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks.

    PubMed

    Rangan, Aaditya V; Cai, David

    2007-02-01

    We discuss numerical methods for simulating large-scale, integrate-and-fire (I&F) neuronal networks. Important elements in our numerical methods are (i) a neurophysiologically inspired integrating factor which casts the solution as a numerically tractable integral equation, and allows us to obtain stable and accurate individual neuronal trajectories (i.e., voltage and conductance time-courses) even when the I&F neuronal equations are stiff, such as in strongly fluctuating, high-conductance states; (ii) an iterated process of spike-spike corrections within groups of strongly coupled neurons to account for spike-spike interactions within a single large numerical time-step; and (iii) a clustering procedure of firing events in the network to take advantage of localized architectures, such as spatial scales of strong local interactions, which are often present in large-scale computational models-for example, those of the primary visual cortex. (We note that the spike-spike corrections in our methods are more involved than the correction of single neuron spike-time via a polynomial interpolation as in the modified Runge-Kutta methods commonly used in simulations of I&F neuronal networks.) Our methods can evolve networks with relatively strong local interactions in an asymptotically optimal way such that each neuron fires approximately once in [Formula: see text] operations, where N is the number of neurons in the system. We note that quantifications used in computational modeling are often statistical, since measurements in a real experiment to characterize physiological systems are typically statistical, such as firing rate, interspike interval distributions, and spike-triggered voltage distributions. We emphasize that it takes much less computational effort to resolve statistical properties of certain I&F neuronal networks than to fully resolve trajectories of each and every neuron within the system. For networks operating in realistic dynamical regimes, such as strongly fluctuating, high-conductance states, our methods are designed to achieve statistical accuracy when very large time-steps are used. Moreover, our methods can also achieve trajectory-wise accuracy when small time-steps are used.

  6. The International Center for Integrated Water Resources Management (ICIWaRM): The United States' Contribution to UNESCO IHP's Global Network of Water Centers

    NASA Astrophysics Data System (ADS)

    Logan, W. S.

    2015-12-01

    The concept of a "category 2 center"—i.e., one that is closely affiliated with UNESCO, but not legally part of UNESCO—dates back many decades. However, only in the last decade has the concept been fully developed. Within UNESCO, the International Hydrological Programme (IHP) has led the way in creating a network of regional and global water-related centers.ICIWaRM—the International Center for Integrated Water Resources Management—is one member of this network. Approved by UNESCO's General Conference, the center has been operating since 2009. It was designed to fill a niche in the system for a center that was backed by an institution with on-the-ground water management experience, but that also had strong connections to academia, NGOs and other governmental agencies. Thus, ICIWaRM is hosted by the US Army Corps of Engineers' Institute for Water Resources (IWR), but established with an internal network of partner institutions. Three main factors have contributed to any success that ICIWaRM has achieved in its global work: A focus on practical science and technology which can be readily transferred. This includes the Corps' own methodologies and models for planning and water management, and those of our university and government partners. Collaboration with other UNESCO Centers on joint applied research, capacity-building and training. A network of centers needs to function as a network, and ICIWaRM has worked together with UNESCO-affiliated centers in Chile, Brazil, Paraguay, the Dominican Republic, Japan, China, and elsewhere. Partnering with and supporting existing UNESCO-IHP programs. ICIWaRM serves as the Global Technical Secretariat for IHP's Global Network on Water and Development Information in Arid Lands (G-WADI). In addition to directly supporting IHP, work through G-WADI helps the center to frame, prioritize and integrate its activities. With the recent release of the United Nation's 2030 Agenda for Sustainable Development, it is clear that implementation of integrated water resources management (IWRM) at all governmental levels is an international priority. This underscores the continued need for internationally focused institutions that can combine the engineering, natural science, and social science aspects of IWRM.

  7. Integrated Networks.

    ERIC Educational Resources Information Center

    Robinovitz, Stewart

    1987-01-01

    A strategy for integrated data and voice networks implemented at the University of Michigan is described. These networks often use multi-technologies, multi-vendors, and multi-transmission media that will be fused into a single integrated network. Transmission media include twisted-pair wire, coaxial cable, fiber optics, and microwave. (Author/MLW)

  8. A link prediction method for heterogeneous networks based on BP neural network

    NASA Astrophysics Data System (ADS)

    Li, Ji-chao; Zhao, Dan-ling; Ge, Bing-Feng; Yang, Ke-Wei; Chen, Ying-Wu

    2018-04-01

    Most real-world systems, composed of different types of objects connected via many interconnections, can be abstracted as various complex heterogeneous networks. Link prediction for heterogeneous networks is of great significance for mining missing links and reconfiguring networks according to observed information, with considerable applications in, for example, friend and location recommendations and disease-gene candidate detection. In this paper, we put forward a novel integrated framework, called MPBP (Meta-Path feature-based BP neural network model), to predict multiple types of links for heterogeneous networks. More specifically, the concept of meta-path is introduced, followed by the extraction of meta-path features for heterogeneous networks. Next, based on the extracted meta-path features, a supervised link prediction model is built with a three-layer BP neural network. Then, the solution algorithm of the proposed link prediction model is put forward to obtain predicted results by iteratively training the network. Last, numerical experiments on the dataset of examples of a gene-disease network and a combat network are conducted to verify the effectiveness and feasibility of the proposed MPBP. It shows that the MPBP with very good performance is superior to the baseline methods.

  9. Making fire and fire surrogate science available: a summary of regional workshops with clients

    Treesearch

    Andrew Youngblood; Heidi Bigler-Cole; Christopher J. Fettig; Carl Fiedler; Eric E. Knapp; John F. Lehmkuhl; Kenneth W. Outcalt; Carl N. Skinner; Scott L. Stephens; Thomas A. Waldrop

    2007-01-01

    Operational-scale experiments that evaluate the consequences of fire and mechanical "surrogates" for natural disturbance events are essential to better understand strategies for reducing the incidence and severity of wildfire. The national Fire and Fire Surrogate (FFS) study was initiated in 1999 to establish an integrated network of long-term studies...

  10. A Little Help from My Friends: Classroom 2.0 Educators Share Their Experiences

    ERIC Educational Resources Information Center

    Hargardon, Steve

    2007-01-01

    Blogs, wikis, podcasting, social networks... it seems the entire world has gone 2.0 crazy. Among the followers are educators, who, in ever increasing numbers, are integrating these online, interactive tools into their classrooms and even libraries. This article presents profiles of a few of educators who have taken the plunge, launching blogs,…

  11. CEO summit. The new delivery & financing realities. Part III of III.

    PubMed

    Becker, B F; Cramer, H; Easley, D; Nathanson, P; Neeson, R; Raney, J; Samuelson, C; Ummel, S

    1994-08-20

    In cooperation with McManis Associates Inc., Washington, Hospitals & Health Networks recently convened a summit on the integration of financing and delivery in health care. This installment is the third of a three-part series on lessons learned by those on the front lines of integration activity. The session was designed and facilitated by senior associates at McManis. Among the issues summit participants discussed in the second segment: What level of understanding do purchasers have of the factors that differentiate quality in health care services? Can provider-driven integrated delivery systems compete with insurer-driven ones? And what happens when a large integrated delivery system merges with a dominant insurer, as happened in the Philadelphia market? Can that model be successfully replicated in other markets? In this final segment, participants talk about whether providers' deep connections to their communities will add value in a reformed delivery system; how incentives might be aligned among all the players in integrated networks and organizations; how the concept of community focus might be redefined under systems integration; and the process involved in preparing for constant, accelerated change. The second segment concluded with comments about the assets providers and insurers bring to integrated health systems, and whether the merger experience of Graduate Health System and QCC/Independence Blue Cross could be replicated in other markets or not.

  12. Multiple network interface core apparatus and method

    DOEpatents

    Underwood, Keith D [Albuquerque, NM; Hemmert, Karl Scott [Albuquerque, NM

    2011-04-26

    A network interface controller and network interface control method comprising providing a single integrated circuit as a network interface controller and employing a plurality of network interface cores on the single integrated circuit.

  13. Pattern-recognition techniques applied to performance monitoring of the DSS 13 34-meter antenna control assembly

    NASA Technical Reports Server (NTRS)

    Mellstrom, J. A.; Smyth, P.

    1991-01-01

    The results of applying pattern recognition techniques to diagnose fault conditions in the pointing system of one of the Deep Space network's large antennas, the DSS 13 34-meter structure, are discussed. A previous article described an experiment whereby a neural network technique was used to identify fault classes by using data obtained from a simulation model of the Deep Space Network (DSN) 70-meter antenna system. Described here is the extension of these classification techniques to the analysis of real data from the field. The general architecture and philosophy of an autonomous monitoring paradigm is described and classification results are discussed and analyzed in this context. Key features of this approach include a probabilistic time-varying context model, the effective integration of signal processing and system identification techniques with pattern recognition algorithms, and the ability to calibrate the system given limited amounts of training data. Reported here are recognition accuracies in the 97 to 98 percent range for the particular fault classes included in the experiments.

  14. Development of an internet based system for modeling biotin metabolism using Bayesian networks.

    PubMed

    Zhou, Jinglei; Wang, Dong; Schlegel, Vicki; Zempleni, Janos

    2011-11-01

    Biotin is an essential water-soluble vitamin crucial for maintaining normal body functions. The importance of biotin for human health has been under-appreciated but there is plenty of opportunity for future research with great importance for human health. Currently, carrying out predictions of biotin metabolism involves tedious manual manipulations. In this paper, we report the development of BiotinNet, an internet based program that uses Bayesian networks to integrate published data on various aspects of biotin metabolism. Users can provide a combination of values on the levels of biotin related metabolites to obtain the predictions on other metabolites that are not specified. As an inherent feature of Bayesian networks, the uncertainty of the prediction is also quantified and reported to the user. This program enables convenient in silico experiments regarding biotin metabolism, which can help researchers design future experiments while new data can be continuously incorporated. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Gamma oscillations in a nonlinear regime: a minimal model approach using heterogeneous integrate-and-fire networks.

    PubMed

    Bathellier, Brice; Carleton, Alan; Gerstner, Wulfram

    2008-12-01

    Fast oscillations and in particular gamma-band oscillation (20-80 Hz) are commonly observed during brain function and are at the center of several neural processing theories. In many cases, mathematical analysis of fast oscillations in neural networks has been focused on the transition between irregular and oscillatory firing viewed as an instability of the asynchronous activity. But in fact, brain slice experiments as well as detailed simulations of biological neural networks have produced a large corpus of results concerning the properties of fully developed oscillations that are far from this transition point. We propose here a mathematical approach to deal with nonlinear oscillations in a network of heterogeneous or noisy integrate-and-fire neurons connected by strong inhibition. This approach involves limited mathematical complexity and gives a good sense of the oscillation mechanism, making it an interesting tool to understand fast rhythmic activity in simulated or biological neural networks. A surprising result of our approach is that under some conditions, a change of the strength of inhibition only weakly influences the period of the oscillation. This is in contrast to standard theoretical and experimental models of interneuron network gamma oscillations (ING), where frequency tightly depends on inhibition strength, but it is similar to observations made in some in vitro preparations in the hippocampus and the olfactory bulb and in some detailed network models. This result is explained by the phenomenon of suppression that is known to occur in strongly coupled oscillating inhibitory networks but had not yet been related to the behavior of oscillation frequency.

  16. Considerations for Public Health Organizations Attempting to Implement a Social Media Presence: A Qualitative Study.

    PubMed

    Hart, Mark; Stetten, Nichole; Castaneda, Gail

    2016-01-01

    In the past decade, social media has become an integral part of our everyday lives, but research on how this tool is used by public health workers and organizations is still developing. Budget cuts and staff reduction in county departments have required employees to take on more responsibilities. These reductions have caused a reduction in the time for training or collaborating with others in the field. To make up for the loss, many employees are seeking collaboration through social media sites but are unable to do so because state departments block these Internet sites. This study sought to highlight the key considerations and decision-making process for a public health organization deciding whether to implement a social media presence for their organization. Using 3 structured interviews, 15 stakeholders were questioned on their personal experience with social media, experience within the context of public health, and their thoughts on implementation for their center. Interviews were coded using constant comparative qualitative methods. The following themes emerged from the interviews: (1) personal experience with technology and social networking sites, (2) use of social networking sites in public health, (3) use of social networking sites in work environments, (4) social networking sites access, (5) ways the Rural South Public Health Training Center could use social networking sites, and (6) perceived outcomes of social networking site usage for the Rural South Public Health Training Center (positive and negative). The collective voice of the center showed a positive perceived perception of social media implementation, with the benefits outweighing the risks. Despite the benefits, there is a cautious skepticism of the importance of social networking site use.

  17. Considerations for Public Health Organizations Attempting to Implement a Social Media Presence: A Qualitative Study

    PubMed Central

    2016-01-01

    Background In the past decade, social media has become an integral part of our everyday lives, but research on how this tool is used by public health workers and organizations is still developing. Budget cuts and staff reduction in county departments have required employees to take on more responsibilities. These reductions have caused a reduction in the time for training or collaborating with others in the field. To make up for the loss, many employees are seeking collaboration through social media sites but are unable to do so because state departments block these Internet sites. Objective This study sought to highlight the key considerations and decision-making process for a public health organization deciding whether to implement a social media presence for their organization. Methods Using 3 structured interviews, 15 stakeholders were questioned on their personal experience with social media, experience within the context of public health, and their thoughts on implementation for their center. Interviews were coded using constant comparative qualitative methods. Results The following themes emerged from the interviews: (1) personal experience with technology and social networking sites, (2) use of social networking sites in public health, (3) use of social networking sites in work environments, (4) social networking sites access, (5) ways the Rural South Public Health Training Center could use social networking sites, and (6) perceived outcomes of social networking site usage for the Rural South Public Health Training Center (positive and negative). Conclusions The collective voice of the center showed a positive perceived perception of social media implementation, with the benefits outweighing the risks. Despite the benefits, there is a cautious skepticism of the importance of social networking site use. PMID:27227160

  18. Experience-dependent modulation of feedback integration during singing: role of the right anterior insula.

    PubMed

    Kleber, Boris; Zeitouni, Anthony G; Friberg, Anders; Zatorre, Robert J

    2013-04-03

    Somatosensation plays an important role in the motor control of vocal functions, yet its neural correlate and relation to vocal learning is not well understood. We used fMRI in 17 trained singers and 12 nonsingers to study the effects of vocal-fold anesthesia on the vocal-motor singing network as a function of singing expertise. Tasks required participants to sing musical target intervals under normal conditions and after anesthesia. At the behavioral level, anesthesia altered pitch accuracy in both groups, but singers were less affected than nonsingers, indicating an experience-dependent effect of the intervention. At the neural level, this difference was accompanied by distinct patterns of decreased activation in singers (cortical and subcortical sensory and motor areas) and nonsingers (subcortical motor areas only) respectively, suggesting that anesthesia affected the higher-level voluntary (explicit) motor and sensorimotor integration network more in experienced singers, and the lower-level (implicit) subcortical motor loops in nonsingers. The right anterior insular cortex (AIC) was identified as the principal area dissociating the effect of expertise as a function of anesthesia by three separate sources of evidence. First, it responded differently to anesthesia in singers (decreased activation) and nonsingers (increased activation). Second, functional connectivity between AIC and bilateral A1, M1, and S1 was reduced in singers but augmented in nonsingers. Third, increased BOLD activity in right AIC in singers was correlated with larger pitch deviation under anesthesia. We conclude that the right AIC and sensory-motor areas play a role in experience-dependent modulation of feedback integration for vocal motor control during singing.

  19. Integrated workflows for spiking neuronal network simulations

    PubMed Central

    Antolík, Ján; Davison, Andrew P.

    2013-01-01

    The increasing availability of computational resources is enabling more detailed, realistic modeling in computational neuroscience, resulting in a shift toward more heterogeneous models of neuronal circuits, and employment of complex experimental protocols. This poses a challenge for existing tool chains, as the set of tools involved in a typical modeler's workflow is expanding concomitantly, with growing complexity in the metadata flowing between them. For many parts of the workflow, a range of tools is available; however, numerous areas lack dedicated tools, while integration of existing tools is limited. This forces modelers to either handle the workflow manually, leading to errors, or to write substantial amounts of code to automate parts of the workflow, in both cases reducing their productivity. To address these issues, we have developed Mozaik: a workflow system for spiking neuronal network simulations written in Python. Mozaik integrates model, experiment and stimulation specification, simulation execution, data storage, data analysis and visualization into a single automated workflow, ensuring that all relevant metadata are available to all workflow components. It is based on several existing tools, including PyNN, Neo, and Matplotlib. It offers a declarative way to specify models and recording configurations using hierarchically organized configuration files. Mozaik automatically records all data together with all relevant metadata about the experimental context, allowing automation of the analysis and visualization stages. Mozaik has a modular architecture, and the existing modules are designed to be extensible with minimal programming effort. Mozaik increases the productivity of running virtual experiments on highly structured neuronal networks by automating the entire experimental cycle, while increasing the reliability of modeling studies by relieving the user from manual handling of the flow of metadata between the individual workflow stages. PMID:24368902

  20. Integrated workflows for spiking neuronal network simulations.

    PubMed

    Antolík, Ján; Davison, Andrew P

    2013-01-01

    The increasing availability of computational resources is enabling more detailed, realistic modeling in computational neuroscience, resulting in a shift toward more heterogeneous models of neuronal circuits, and employment of complex experimental protocols. This poses a challenge for existing tool chains, as the set of tools involved in a typical modeler's workflow is expanding concomitantly, with growing complexity in the metadata flowing between them. For many parts of the workflow, a range of tools is available; however, numerous areas lack dedicated tools, while integration of existing tools is limited. This forces modelers to either handle the workflow manually, leading to errors, or to write substantial amounts of code to automate parts of the workflow, in both cases reducing their productivity. To address these issues, we have developed Mozaik: a workflow system for spiking neuronal network simulations written in Python. Mozaik integrates model, experiment and stimulation specification, simulation execution, data storage, data analysis and visualization into a single automated workflow, ensuring that all relevant metadata are available to all workflow components. It is based on several existing tools, including PyNN, Neo, and Matplotlib. It offers a declarative way to specify models and recording configurations using hierarchically organized configuration files. Mozaik automatically records all data together with all relevant metadata about the experimental context, allowing automation of the analysis and visualization stages. Mozaik has a modular architecture, and the existing modules are designed to be extensible with minimal programming effort. Mozaik increases the productivity of running virtual experiments on highly structured neuronal networks by automating the entire experimental cycle, while increasing the reliability of modeling studies by relieving the user from manual handling of the flow of metadata between the individual workflow stages.

  1. Emergence of Functional Hierarchy in a Multiple Timescale Neural Network Model: A Humanoid Robot Experiment

    PubMed Central

    Yamashita, Yuichi; Tani, Jun

    2008-01-01

    It is generally thought that skilled behavior in human beings results from a functional hierarchy of the motor control system, within which reusable motor primitives are flexibly integrated into various sensori-motor sequence patterns. The underlying neural mechanisms governing the way in which continuous sensori-motor flows are segmented into primitives and the way in which series of primitives are integrated into various behavior sequences have, however, not yet been clarified. In earlier studies, this functional hierarchy has been realized through the use of explicit hierarchical structure, with local modules representing motor primitives in the lower level and a higher module representing sequences of primitives switched via additional mechanisms such as gate-selecting. When sequences contain similarities and overlap, however, a conflict arises in such earlier models between generalization and segmentation, induced by this separated modular structure. To address this issue, we propose a different type of neural network model. The current model neither makes use of separate local modules to represent primitives nor introduces explicit hierarchical structure. Rather than forcing architectural hierarchy onto the system, functional hierarchy emerges through a form of self-organization that is based on two distinct types of neurons, each with different time properties (“multiple timescales”). Through the introduction of multiple timescales, continuous sequences of behavior are segmented into reusable primitives, and the primitives, in turn, are flexibly integrated into novel sequences. In experiments, the proposed network model, coordinating the physical body of a humanoid robot through high-dimensional sensori-motor control, also successfully situated itself within a physical environment. Our results suggest that it is not only the spatial connections between neurons but also the timescales of neural activity that act as important mechanisms leading to functional hierarchy in neural systems. PMID:18989398

  2. New Insights into Auroral Particle Acceleration via Coordinated Optical-Radar Networks

    NASA Astrophysics Data System (ADS)

    Hirsch, M.

    2016-12-01

    The efficacy of instruments synthesized from heterogeneous sensor networks is increasingly being realized in fielded science observation systems. New insights into the finest spatio-temporal scales of ground-observable ionospheric physics are realized by coupling low-level data from fixed legacy instruments with mobile and portable sensors. In particular, turbulent ionospheric events give enhanced radar returns more than three orders of magnitude larger than typical incoherent plasma observations. Radar integration times for the Poker Flat Incoherent Scatter Radar (PFISR) can thereby be shrunk from order 100 second integration time down to order 100 millisecond integration time for the ion line. Auroral optical observations with 20 millisecond cadence synchronized in absolute time with the radar help uncover plausible particle acceleration processes for the highly dynamic aurora often associated with Langmuir turbulence. Quantitative analysis of coherent radar returns combined with a physics-based model yielding optical volume emission rate profiles vs. differential number flux input of precipitating particles into the ionosphere yield plausibility estimates for a particular auroral acceleration process type. Tabulated results from a survey of auroral events where the Boston University High Speed Auroral Tomography system operated simultaneously with PFISR are presented. Context is given to the narrow-field HiST observations by the Poker Flat Digital All-Sky Camera and THEMIS GBO ASI network. Recent advances in high-rate (order 100 millisecond) plasma line ISR observations (100x improvement in temporal resolution) will contribute to future coordinated observations. ISR beam pattern and pulse parameter configurations favorable for future coordinated optical-ISR experiments are proposed in light of recent research uncovering the criticality of aspect angle to ISR-observable physics. High-rate scientist-developed GPS TEC receivers are expected to contribute additional high resolution observations to such experiments.

  3. Structure-function relationships during segregated and integrated network states of human brain functional connectivity.

    PubMed

    Fukushima, Makoto; Betzel, Richard F; He, Ye; van den Heuvel, Martijn P; Zuo, Xi-Nian; Sporns, Olaf

    2018-04-01

    Structural white matter connections are thought to facilitate integration of neural information across functionally segregated systems. Recent studies have demonstrated that changes in the balance between segregation and integration in brain networks can be tracked by time-resolved functional connectivity derived from resting-state functional magnetic resonance imaging (rs-fMRI) data and that fluctuations between segregated and integrated network states are related to human behavior. However, how these network states relate to structural connectivity is largely unknown. To obtain a better understanding of structural substrates for these network states, we investigated how the relationship between structural connectivity, derived from diffusion tractography, and functional connectivity, as measured by rs-fMRI, changes with fluctuations between segregated and integrated states in the human brain. We found that the similarity of edge weights between structural and functional connectivity was greater in the integrated state, especially at edges connecting the default mode and the dorsal attention networks. We also demonstrated that the similarity of network partitions, evaluated between structural and functional connectivity, increased and the density of direct structural connections within modules in functional networks was elevated during the integrated state. These results suggest that, when functional connectivity exhibited an integrated network topology, structural connectivity and functional connectivity were more closely linked to each other and direct structural connections mediated a larger proportion of neural communication within functional modules. Our findings point out the possibility of significant contributions of structural connections to integrative neural processes underlying human behavior.

  4. Post-acute care and vertical integration after the Patient Protection and Affordable Care Act.

    PubMed

    Shay, Patrick D; Mick, Stephen S

    2013-01-01

    The anticipated changes resulting from the passage of the Patient Protection and Affordable Care Act-including the proposed adoption of bundled payment systems and the promotion of accountable care organizations-have generated considerable controversy as U.S. healthcare industry observers debate whether such changes will motivate vertical integration activity. Using examples of accountable care organizations and bundled payment systems in the American post-acute healthcare sector, this article applies economic and sociological perspectives from organization theory to predict that as acute care organizations vary in the degree to which they experience environmental uncertainty, asset specificity, and network embeddedness, their motivation to integrate post-acute care services will also vary, resulting in a spectrum of integrative behavior.

  5. A Smart Sensor Web for Ocean Observation: Integrated Acoustics, Satellite Networking, and Predictive Modeling

    NASA Astrophysics Data System (ADS)

    Arabshahi, P.; Chao, Y.; Chien, S.; Gray, A.; Howe, B. M.; Roy, S.

    2008-12-01

    In many areas of Earth science, including climate change research, there is a need for near real-time integration of data from heterogeneous and spatially distributed sensors, in particular in-situ and space- based sensors. The data integration, as provided by a smart sensor web, enables numerous improvements, namely, 1) adaptive sampling for more efficient use of expensive space-based sensing assets, 2) higher fidelity information gathering from data sources through integration of complementary data sets, and 3) improved sensor calibration. The specific purpose of the smart sensor web development presented here is to provide for adaptive sampling and calibration of space-based data via in-situ data. Our ocean-observing smart sensor web presented herein is composed of both mobile and fixed underwater in-situ ocean sensing assets and Earth Observing System (EOS) satellite sensors providing larger-scale sensing. An acoustic communications network forms a critical link in the web between the in-situ and space-based sensors and facilitates adaptive sampling and calibration. After an overview of primary design challenges, we report on the development of various elements of the smart sensor web. These include (a) a cable-connected mooring system with a profiler under real-time control with inductive battery charging; (b) a glider with integrated acoustic communications and broadband receiving capability; (c) satellite sensor elements; (d) an integrated acoustic navigation and communication network; and (e) a predictive model via the Regional Ocean Modeling System (ROMS). Results from field experiments, including an upcoming one in Monterey Bay (October 2008) using live data from NASA's EO-1 mission in a semi closed-loop system, together with ocean models from ROMS, are described. Plans for future adaptive sampling demonstrations using the smart sensor web are also presented.

  6. Quebec mental health services networks: models and implementation

    PubMed Central

    Fleury, Marie-Josée

    2005-01-01

    Abstract Purpose In the transformation of health care systems, the introduction of integrated service networks is considered to be one of the main solutions for enhancing efficiency. In the last few years, a wealth of literature has emerged on the topic of services integration. However, the question of how integrated service networks should be modelled to suit different implementation contexts has barely been touched. To fill that gap, this article presents four models for the organization of mental health integrated networks. Data sources The proposed models are drawn from three recently published studies on mental health integrated services in the province of Quebec (Canada) with the author as principal investigator. Description Following an explanation of the concept of integrated service network and a description of the Quebec context for mental health networks, the models, applicable in all settings: rural, urban or semi-urban, and metropolitan, and summarized in four figures, are presented. Discussion and conclusion To apply the models successfully, the necessity of rallying all the actors of a system, from the strategic, tactical and operational levels, according to the type of integration involved: functional/administrative, clinical and physician-system is highlighted. The importance of formalizing activities among organizations and actors in a network and reinforcing the governing mechanisms at the local level is also underlined. Finally, a number of integration strategies and key conditions of success to operationalize integrated service networks are suggested. PMID:16773157

  7. Functional Interaction Network Construction and Analysis for Disease Discovery.

    PubMed

    Wu, Guanming; Haw, Robin

    2017-01-01

    Network-based approaches project seemingly unrelated genes or proteins onto a large-scale network context, therefore providing a holistic visualization and analysis platform for genomic data generated from high-throughput experiments, reducing the dimensionality of data via using network modules and increasing the statistic analysis power. Based on the Reactome database, the most popular and comprehensive open-source biological pathway knowledgebase, we have developed a highly reliable protein functional interaction network covering around 60 % of total human genes and an app called ReactomeFIViz for Cytoscape, the most popular biological network visualization and analysis platform. In this chapter, we describe the detailed procedures on how this functional interaction network is constructed by integrating multiple external data sources, extracting functional interactions from human curated pathway databases, building a machine learning classifier called a Naïve Bayesian Classifier, predicting interactions based on the trained Naïve Bayesian Classifier, and finally constructing the functional interaction database. We also provide an example on how to use ReactomeFIViz for performing network-based data analysis for a list of genes.

  8. Network Analysis of Rodent Transcriptomes in Spaceflight

    NASA Technical Reports Server (NTRS)

    Ramachandran, Maya; Fogle, Homer; Costes, Sylvain

    2017-01-01

    Network analysis methods leverage prior knowledge of cellular systems and the statistical and conceptual relationships between analyte measurements to determine gene connectivity. Correlation and conditional metrics are used to infer a network topology and provide a systems-level context for cellular responses. Integration across multiple experimental conditions and omics domains can reveal the regulatory mechanisms that underlie gene expression. GeneLab has assembled rich multi-omic (transcriptomics, proteomics, epigenomics, and epitranscriptomics) datasets for multiple murine tissues from the Rodent Research 1 (RR-1) experiment. RR-1 assesses the impact of 37 days of spaceflight on gene expression across a variety of tissue types, such as adrenal glands, quadriceps, gastrocnemius, tibalius anterior, extensor digitorum longus, soleus, eye, and kidney. Network analysis is particularly useful for RR-1 -omics datasets because it reinforces subtle relationships that may be overlooked in isolated analyses and subdues confounding factors. Our objective is to use network analysis to determine potential target nodes for therapeutic intervention and identify similarities with existing disease models. Multiple network algorithms are used for a higher confidence consensus.

  9. Integrated Network Testbed for Energy Grid Research and Technology

    Science.gov Websites

    Network Testbed for Energy Grid Research and Technology Experimentation Project Under the Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project, NREL and partners completed five successful technology demonstrations at the ESIF. INTEGRATE is a $6.5-million, cost

  10. The Contribution of Network Organization and Integration to the Development of Cognitive Control

    PubMed Central

    Marek, Scott; Hwang, Kai; Foran, William; Hallquist, Michael N.; Luna, Beatriz

    2015-01-01

    Abstract Cognitive control, which continues to mature throughout adolescence, is supported by the ability for well-defined organized brain networks to flexibly integrate information. However, the development of intrinsic brain network organization and its relationship to observed improvements in cognitive control are not well understood. In the present study, we used resting state functional magnetic resonance imaging (RS-fMRI), graph theory, the antisaccade task, and rigorous head motion control to characterize and relate developmental changes in network organization, connectivity strength, and integration to inhibitory control development. Subjects were 192 10–26-y-olds who were imaged during 5 min of rest. In contrast to initial studies, our results indicate that network organization is stable throughout adolescence. However, cross-network integration, predominantly of the cingulo-opercular/salience network, increased with age. Importantly, this increased integration of the cingulo-opercular/salience network significantly moderated the robust effect of age on the latency to initiate a correct inhibitory control response. These results provide compelling evidence that the transition to adult-level inhibitory control is dependent upon the refinement and strengthening of integration between specialized networks. Our findings support a novel, two-stage model of neural development, in which networks stabilize prior to adolescence and subsequently increase their integration to support the cross-domain incorporation of information processing critical for mature cognitive control. PMID:26713863

  11. The Contribution of Network Organization and Integration to the Development of Cognitive Control.

    PubMed

    Marek, Scott; Hwang, Kai; Foran, William; Hallquist, Michael N; Luna, Beatriz

    2015-12-01

    Cognitive control, which continues to mature throughout adolescence, is supported by the ability for well-defined organized brain networks to flexibly integrate information. However, the development of intrinsic brain network organization and its relationship to observed improvements in cognitive control are not well understood. In the present study, we used resting state functional magnetic resonance imaging (RS-fMRI), graph theory, the antisaccade task, and rigorous head motion control to characterize and relate developmental changes in network organization, connectivity strength, and integration to inhibitory control development. Subjects were 192 10-26-y-olds who were imaged during 5 min of rest. In contrast to initial studies, our results indicate that network organization is stable throughout adolescence. However, cross-network integration, predominantly of the cingulo-opercular/salience network, increased with age. Importantly, this increased integration of the cingulo-opercular/salience network significantly moderated the robust effect of age on the latency to initiate a correct inhibitory control response. These results provide compelling evidence that the transition to adult-level inhibitory control is dependent upon the refinement and strengthening of integration between specialized networks. Our findings support a novel, two-stage model of neural development, in which networks stabilize prior to adolescence and subsequently increase their integration to support the cross-domain incorporation of information processing critical for mature cognitive control.

  12. Integrative FourD omics approach profiles the target network of the carbon storage regulatory system.

    PubMed

    Sowa, Steven W; Gelderman, Grant; Leistra, Abigail N; Buvanendiran, Aishwarya; Lipp, Sarah; Pitaktong, Areen; Vakulskas, Christopher A; Romeo, Tony; Baldea, Michael; Contreras, Lydia M

    2017-02-28

    Multi-target regulators represent a largely untapped area for metabolic engineering and anti-bacterial development. These regulators are complex to characterize because they often act at multiple levels, affecting proteins, transcripts and metabolites. Therefore, single omics experiments cannot profile their underlying targets and mechanisms. In this work, we used an Integrative FourD omics approach (INFO) that consists of collecting and analyzing systems data throughout multiple time points, using multiple genetic backgrounds, and multiple omics approaches (transcriptomics, proteomics and high throughput sequencing crosslinking immunoprecipitation) to evaluate simultaneous changes in gene expression after imposing an environmental stress that accentuates the regulatory features of a network. Using this approach, we profiled the targets and potential regulatory mechanisms of a global regulatory system, the well-studied carbon storage regulatory (Csr) system of Escherichia coli, which is widespread among bacteria. Using 126 sets of proteomics and transcriptomics data, we identified 136 potential direct CsrA targets, including 50 novel ones, categorized their behaviors into distinct regulatory patterns, and performed in vivo fluorescence-based follow up experiments. The results of this work validate 17 novel mRNAs as authentic direct CsrA targets and demonstrate a generalizable strategy to integrate multiple lines of omics data to identify a core pool of regulator targets. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Integrated network capacity analysis for freight railroads.

    DOT National Transportation Integrated Search

    2016-02-23

    Rail network capacity analysis should consider all network infrastructures in an integrated way, with the challenges of the nonlinear relationships at each network element, a link or a node, and complexity of the interaction between various network e...

  14. The NASA Science Internet: An integrated approach to networking

    NASA Technical Reports Server (NTRS)

    Rounds, Fred

    1991-01-01

    An integrated approach to building a networking infrastructure is an absolute necessity for meeting the multidisciplinary science networking requirements of the Office of Space Science and Applications (OSSA) science community. These networking requirements include communication connectivity between computational resources, databases, and library systems, as well as to other scientists and researchers around the world. A consolidated networking approach allows strategic use of the existing science networking within the Federal government, and it provides networking capability that takes into consideration national and international trends towards multivendor and multiprotocol service. It also offers a practical vehicle for optimizing costs and maximizing performance. Finally, and perhaps most important to the development of high speed computing is that an integrated network constitutes a focus for phasing to the National Research and Education Network (NREN). The NASA Science Internet (NSI) program, established in mid 1988, is structured to provide just such an integrated network. A description of the NSI is presented.

  15. Integrative omics analysis. A study based on Plasmodium falciparum mRNA and protein data.

    PubMed

    Tomescu, Oana A; Mattanovich, Diethard; Thallinger, Gerhard G

    2014-01-01

    Technological improvements have shifted the focus from data generation to data analysis. The availability of large amounts of data from transcriptomics, protemics and metabolomics experiments raise new questions concerning suitable integrative analysis methods. We compare three integrative analysis techniques (co-inertia analysis, generalized singular value decomposition and integrative biclustering) by applying them to gene and protein abundance data from the six life cycle stages of Plasmodium falciparum. Co-inertia analysis is an analysis method used to visualize and explore gene and protein data. The generalized singular value decomposition has shown its potential in the analysis of two transcriptome data sets. Integrative Biclustering applies biclustering to gene and protein data. Using CIA, we visualize the six life cycle stages of Plasmodium falciparum, as well as GO terms in a 2D plane and interpret the spatial configuration. With GSVD, we decompose the transcriptomic and proteomic data sets into matrices with biologically meaningful interpretations and explore the processes captured by the data sets. IBC identifies groups of genes, proteins, GO Terms and life cycle stages of Plasmodium falciparum. We show method-specific results as well as a network view of the life cycle stages based on the results common to all three methods. Additionally, by combining the results of the three methods, we create a three-fold validated network of life cycle stage specific GO terms: Sporozoites are associated with transcription and transport; merozoites with entry into host cell as well as biosynthetic and metabolic processes; rings with oxidation-reduction processes; trophozoites with glycolysis and energy production; schizonts with antigenic variation and immune response; gametocyctes with DNA packaging and mitochondrial transport. Furthermore, the network connectivity underlines the separation of the intraerythrocytic cycle from the gametocyte and sporozoite stages. Using integrative analysis techniques, we can integrate knowledge from different levels and obtain a wider view of the system under study. The overlap between method-specific and common results is considerable, even if the basic mathematical assumptions are very different. The three-fold validated network of life cycle stage characteristics of Plasmodium falciparum could identify a large amount of the known associations from literature in only one study.

  16. Integrative omics analysis. A study based on Plasmodium falciparum mRNA and protein data

    PubMed Central

    2014-01-01

    Background Technological improvements have shifted the focus from data generation to data analysis. The availability of large amounts of data from transcriptomics, protemics and metabolomics experiments raise new questions concerning suitable integrative analysis methods. We compare three integrative analysis techniques (co-inertia analysis, generalized singular value decomposition and integrative biclustering) by applying them to gene and protein abundance data from the six life cycle stages of Plasmodium falciparum. Co-inertia analysis is an analysis method used to visualize and explore gene and protein data. The generalized singular value decomposition has shown its potential in the analysis of two transcriptome data sets. Integrative Biclustering applies biclustering to gene and protein data. Results Using CIA, we visualize the six life cycle stages of Plasmodium falciparum, as well as GO terms in a 2D plane and interpret the spatial configuration. With GSVD, we decompose the transcriptomic and proteomic data sets into matrices with biologically meaningful interpretations and explore the processes captured by the data sets. IBC identifies groups of genes, proteins, GO Terms and life cycle stages of Plasmodium falciparum. We show method-specific results as well as a network view of the life cycle stages based on the results common to all three methods. Additionally, by combining the results of the three methods, we create a three-fold validated network of life cycle stage specific GO terms: Sporozoites are associated with transcription and transport; merozoites with entry into host cell as well as biosynthetic and metabolic processes; rings with oxidation-reduction processes; trophozoites with glycolysis and energy production; schizonts with antigenic variation and immune response; gametocyctes with DNA packaging and mitochondrial transport. Furthermore, the network connectivity underlines the separation of the intraerythrocytic cycle from the gametocyte and sporozoite stages. Conclusion Using integrative analysis techniques, we can integrate knowledge from different levels and obtain a wider view of the system under study. The overlap between method-specific and common results is considerable, even if the basic mathematical assumptions are very different. The three-fold validated network of life cycle stage characteristics of Plasmodium falciparum could identify a large amount of the known associations from literature in only one study. PMID:25033389

  17. A Framework for Integrating Multiple Biological Networks to Predict MicroRNA-Disease Associations.

    PubMed

    Peng, Wei; Lan, Wei; Yu, Zeng; Wang, Jianxin; Pan, Yi

    2017-03-01

    MicroRNAs have close relationship with human diseases. Therefore, identifying disease related MicroRNAs plays an important role in disease diagnosis, prognosis and therapy. However, designing an effective computational method which can make good use of various biological resources and correctly predict the associations between MicroRNA and disease is still a big challenge. Previous researchers have pointed out that there are complex relationships among microRNAs, diseases and environment factors. There are inter-relationships between microRNAs, diseases or environment factors based on their functional similarity or phenotype similarity or chemical structure similarity and so on. There are also intra-relationships between microRNAs and diseases, microRNAs and environment factors, diseases and environment factors. Moreover, functionally similar microRNAs tend to associate with common diseases and common environment factors. The diseases with similar phenotypes are likely caused by common microRNAs and common environment factors. In this work, we propose a framework namely ThrRWMDE which can integrate these complex relationships to predict microRNA-disease associations. In this framework, microRNA similarity network (MFN), disease similarity network (DSN) and environmental factor similarity network (ESN) are constructed according to certain biological properties. Then, an unbalanced three random walking algorithm is implemented on the three networks so as to obtain information from neighbors in corresponding networks. This algorithm not only can flexibly infer information from different levels of neighbors with respect to the topological and structural differences of the three networks, but also in the course of working the functional information will be transferred from one network to another according to the associations between the nodes in different networks. The results of experiment show that our method achieves better prediction performance than other state-of-the-art methods.

  18. Dynamic modelling of microRNA regulation during mesenchymal stem cell differentiation.

    PubMed

    Weber, Michael; Sotoca, Ana M; Kupfer, Peter; Guthke, Reinhard; van Zoelen, Everardus J

    2013-11-12

    Network inference from gene expression data is a typical approach to reconstruct gene regulatory networks. During chondrogenic differentiation of human mesenchymal stem cells (hMSCs), a complex transcriptional network is active and regulates the temporal differentiation progress. As modulators of transcriptional regulation, microRNAs (miRNAs) play a critical role in stem cell differentiation. Integrated network inference aimes at determining interrelations between miRNAs and mRNAs on the basis of expression data as well as miRNA target predictions. We applied the NetGenerator tool in order to infer an integrated gene regulatory network. Time series experiments were performed to measure mRNA and miRNA abundances of TGF-beta1+BMP2 stimulated hMSCs. Network nodes were identified by analysing temporal expression changes, miRNA target gene predictions, time series correlation and literature knowledge. Network inference was performed using NetGenerator to reconstruct a dynamical regulatory model based on the measured data and prior knowledge. The resulting model is robust against noise and shows an optimal trade-off between fitting precision and inclusion of prior knowledge. It predicts the influence of miRNAs on the expression of chondrogenic marker genes and therefore proposes novel regulatory relations in differentiation control. By analysing the inferred network, we identified a previously unknown regulatory effect of miR-524-5p on the expression of the transcription factor SOX9 and the chondrogenic marker genes COL2A1, ACAN and COL10A1. Genome-wide exploration of miRNA-mRNA regulatory relationships is a reasonable approach to identify miRNAs which have so far not been associated with the investigated differentiation process. The NetGenerator tool is able to identify valid gene regulatory networks on the basis of miRNA and mRNA time series data.

  19. Analysis of adaptive algorithms for an integrated communication network

    NASA Technical Reports Server (NTRS)

    Reed, Daniel A.; Barr, Matthew; Chong-Kwon, Kim

    1985-01-01

    Techniques were examined that trade communication bandwidth for decreased transmission delays. When the network is lightly used, these schemes attempt to use additional network resources to decrease communication delays. As the network utilization rises, the schemes degrade gracefully, still providing service but with minimal use of the network. Because the schemes use a combination of circuit and packet switching, they should respond to variations in the types and amounts of network traffic. Also, a combination of circuit and packet switching to support the widely varying traffic demands imposed on an integrated network was investigated. The packet switched component is best suited to bursty traffic where some delays in delivery are acceptable. The circuit switched component is reserved for traffic that must meet real time constraints. Selected packet routing algorithms that might be used in an integrated network were simulated. An integrated traffic places widely varying workload demands on a network. Adaptive algorithms were identified, ones that respond to both the transient and evolutionary changes that arise in integrated networks. A new algorithm was developed, hybrid weighted routing, that adapts to workload changes.

  20. Neural networks for structural design - An integrated system implementation

    NASA Technical Reports Server (NTRS)

    Berke, Laszlo; Hafez, Wassim; Pao, Yoh-Han

    1992-01-01

    The development of powerful automated procedures to aid the creative designer is becoming increasingly critical for complex design tasks. In the work described here Artificial Neural Nets are applied to acquire structural analysis and optimization domain expertise. Based on initial instructions from the user an automated procedure generates random instances of structural analysis and/or optimization 'experiences' that cover a desired domain. It extracts training patterns from the created instances, constructs and trains an appropriate network architecture and checks the accuracy of net predictions. The final product is a trained neural net that can estimate analysis and/or optimization results instantaneously.

  1. Reinforce: An Ensemble Approach for Inferring PPI Network from AP-MS Data.

    PubMed

    Tian, Bo; Duan, Qiong; Zhao, Can; Teng, Ben; He, Zengyou

    2017-05-17

    Affinity Purification-Mass Spectrometry (AP-MS) is one of the most important technologies for constructing protein-protein interaction (PPI) networks. In this paper, we propose an ensemble method, Reinforce, for inferring PPI network from AP-MS data set. The new algorithm named Reinforce is based on rank aggregation and false discovery rate control. Under the null hypothesis that the interaction scores from different scoring methods are randomly generated, Reinforce follows three steps to integrate multiple ranking results from different algorithms or different data sets. The experimental results show that Reinforce can get more stable and accurate inference results than existing algorithms. The source codes of Reinforce and data sets used in the experiments are available at: https://sourceforge.net/projects/reinforce/.

  2. Towards an integrated defense system for cyber security situation awareness experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Hanlin; Wei, Sixiao; Ge, Linqiang; Shen, Dan; Yu, Wei; Blasch, Erik P.; Pham, Khanh D.; Chen, Genshe

    2015-05-01

    In this paper, an implemented defense system is demonstrated to carry out cyber security situation awareness. The developed system consists of distributed passive and active network sensors designed to effectively capture suspicious information associated with cyber threats, effective detection schemes to accurately distinguish attacks, and network actors to rapidly mitigate attacks. Based on the collected data from network sensors, image-based and signals-based detection schemes are implemented to detect attacks. To further mitigate attacks, deployed dynamic firewalls on hosts dynamically update detection information reported from the detection schemes and block attacks. The experimental results show the effectiveness of the proposed system. A future plan to design an effective defense system is also discussed based on system theory.

  3. Detecting Disease Specific Pathway Substructures through an Integrated Systems Biology Approach

    PubMed Central

    Alaimo, Salvatore; Marceca, Gioacchino Paolo; Ferro, Alfredo; Pulvirenti, Alfredo

    2017-01-01

    In the era of network medicine, pathway analysis methods play a central role in the prediction of phenotype from high throughput experiments. In this paper, we present a network-based systems biology approach capable of extracting disease-perturbed subpathways within pathway networks in connection with expression data taken from The Cancer Genome Atlas (TCGA). Our system extends pathways with missing regulatory elements, such as microRNAs, and their interactions with genes. The framework enables the extraction, visualization, and analysis of statistically significant disease-specific subpathways through an easy to use web interface. Our analysis shows that the methodology is able to fill the gap in current techniques, allowing a more comprehensive analysis of the phenomena underlying disease states. PMID:29657291

  4. CoryneRegNet 4.0 – A reference database for corynebacterial gene regulatory networks

    PubMed Central

    Baumbach, Jan

    2007-01-01

    Background Detailed information on DNA-binding transcription factors (the key players in the regulation of gene expression) and on transcriptional regulatory interactions of microorganisms deduced from literature-derived knowledge, computer predictions and global DNA microarray hybridization experiments, has opened the way for the genome-wide analysis of transcriptional regulatory networks. The large-scale reconstruction of these networks allows the in silico analysis of cell behavior in response to changing environmental conditions. We previously published CoryneRegNet, an ontology-based data warehouse of corynebacterial transcription factors and regulatory networks. Initially, it was designed to provide methods for the analysis and visualization of the gene regulatory network of Corynebacterium glutamicum. Results Now we introduce CoryneRegNet release 4.0, which integrates data on the gene regulatory networks of 4 corynebacteria, 2 mycobacteria and the model organism Escherichia coli K12. As the previous versions, CoryneRegNet provides a web-based user interface to access the database content, to allow various queries, and to support the reconstruction, analysis and visualization of regulatory networks at different hierarchical levels. In this article, we present the further improved database content of CoryneRegNet along with novel analysis features. The network visualization feature GraphVis now allows the inter-species comparisons of reconstructed gene regulatory networks and the projection of gene expression levels onto that networks. Therefore, we added stimulon data directly into the database, but also provide Web Service access to the DNA microarray analysis platform EMMA. Additionally, CoryneRegNet now provides a SOAP based Web Service server, which can easily be consumed by other bioinformatics software systems. Stimulons (imported from the database, or uploaded by the user) can be analyzed in the context of known transcriptional regulatory networks to predict putative contradictions or further gene regulatory interactions. Furthermore, it integrates protein clusters by means of heuristically solving the weighted graph cluster editing problem. In addition, it provides Web Service based access to up to date gene annotation data from GenDB. Conclusion The release 4.0 of CoryneRegNet is a comprehensive system for the integrated analysis of procaryotic gene regulatory networks. It is a versatile systems biology platform to support the efficient and large-scale analysis of transcriptional regulation of gene expression in microorganisms. It is publicly available at . PMID:17986320

  5. Evaluation of Integration Degree of the ASG-EUPOS Polish Reference Networks With Ukrainian GeoTerrace Network Stations in the Border Area

    NASA Astrophysics Data System (ADS)

    Siejka, Zbigniew

    2017-09-01

    GNSS systems are currently the basic tools for determination of the highest precision station coordinates (e.g. basic control network stations or stations used in the networks for geodynamic studies) as well as for land, maritime and air navigation. All of these tasks are carried out using active, large scale, satellite geodetic networks which are complex, intelligent teleinformatic systems offering post processing services along with corrections delivered in real-time for kinematic measurements. Many countries in the world, also in Europe, have built their own multifunctional networks and enhance them with their own GNSS augmentation systems. Nowadays however, in the era of international integration, there is a necessity to consider collective actions in order to build a unified system, covering e.g. the whole Europe or at least some of its regions. Such actions have already been undertaken in many regions of the world. In Europe such an example is the development for EUPOS which consists of active national networks built in central eastern European countries. So far experience and research show, that the critical areas for connecting these networks are border areas, in which the positioning accuracy decreases (Krzeszowski and Bosy, 2011). This study attempts to evaluate the border area compatibility of Polish ASG-EUPOS (European Position Determination System) reference stations and Ukrainian GeoTerrace system reference stations in the context of their future incorporation into the EUPOS. The two networks analyzed in work feature similar hardware parameters. In the ASG-EUPOS reference stations network, during the analyzed period, 2 stations (WLDW and CHEL) used only one system (GPS), while, in the GeoTerrace network, all the stations were equipped with both GPS and GLONASS receivers. The ASG EUPOS reference station network (95.6%) has its average completeness greater by about 6% when compared to the GeoTerrace network (89.8%).

  6. Integrative approach for inference of gene regulatory networks using lasso-based random featuring and application to psychiatric disorders.

    PubMed

    Kim, Dongchul; Kang, Mingon; Biswas, Ashis; Liu, Chunyu; Gao, Jean

    2016-08-10

    Inferring gene regulatory networks is one of the most interesting research areas in the systems biology. Many inference methods have been developed by using a variety of computational models and approaches. However, there are two issues to solve. First, depending on the structural or computational model of inference method, the results tend to be inconsistent due to innately different advantages and limitations of the methods. Therefore the combination of dissimilar approaches is demanded as an alternative way in order to overcome the limitations of standalone methods through complementary integration. Second, sparse linear regression that is penalized by the regularization parameter (lasso) and bootstrapping-based sparse linear regression methods were suggested in state of the art methods for network inference but they are not effective for a small sample size data and also a true regulator could be missed if the target gene is strongly affected by an indirect regulator with high correlation or another true regulator. We present two novel network inference methods based on the integration of three different criteria, (i) z-score to measure the variation of gene expression from knockout data, (ii) mutual information for the dependency between two genes, and (iii) linear regression-based feature selection. Based on these criterion, we propose a lasso-based random feature selection algorithm (LARF) to achieve better performance overcoming the limitations of bootstrapping as mentioned above. In this work, there are three main contributions. First, our z score-based method to measure gene expression variations from knockout data is more effective than similar criteria of related works. Second, we confirmed that the true regulator selection can be effectively improved by LARF. Lastly, we verified that an integrative approach can clearly outperform a single method when two different methods are effectively jointed. In the experiments, our methods were validated by outperforming the state of the art methods on DREAM challenge data, and then LARF was applied to inferences of gene regulatory network associated with psychiatric disorders.

  7. Managing operational documentation in the ALICE Detector Control System

    NASA Astrophysics Data System (ADS)

    Lechman, M.; Augustinus, A.; Bond, P.; Chochula, P.; Kurepin, A.; Pinazza, O.; Rosinsky, P.

    2012-12-01

    ALICE (A Large Ion Collider Experiment) is one of the big LHC (Large Hadron Collider) experiments at CERN in Geneve, Switzerland. The experiment is composed of 18 sub-detectors controlled by an integrated Detector Control System (DCS) that is implemented using the commercial SCADA package PVSSII. The DCS includes over 1200 network devices, over 1,000,000 monitored parameters and numerous custom made software components that are prepared by over 100 developers from all around the world. This complex system is controlled by a single operator via a central user interface. One of his/her main tasks is the recovery of anomalies and errors that may occur during operation. Therefore, clear, complete and easily accessible documentation is essential to guide the shifter through the expert interfaces of different subsystems. This paper describes the idea of the management of the operational documentation in ALICE using a generic repository that is built on a relational database and is integrated with the control system. The experience gained and the conclusions drawn from the project are also presented.

  8. Training radial basis function networks for wind speed prediction using PSO enhanced differential search optimizer

    PubMed Central

    2018-01-01

    This paper presents an integrated hybrid optimization algorithm for training the radial basis function neural network (RBF NN). Training of neural networks is still a challenging exercise in machine learning domain. Traditional training algorithms in general suffer and trap in local optima and lead to premature convergence, which makes them ineffective when applied for datasets with diverse features. Training algorithms based on evolutionary computations are becoming popular due to their robust nature in overcoming the drawbacks of the traditional algorithms. Accordingly, this paper proposes a hybrid training procedure with differential search (DS) algorithm functionally integrated with the particle swarm optimization (PSO). To surmount the local trapping of the search procedure, a new population initialization scheme is proposed using Logistic chaotic sequence, which enhances the population diversity and aid the search capability. To demonstrate the effectiveness of the proposed RBF hybrid training algorithm, experimental analysis on publicly available 7 benchmark datasets are performed. Subsequently, experiments were conducted on a practical application case for wind speed prediction to expound the superiority of the proposed RBF training algorithm in terms of prediction accuracy. PMID:29768463

  9. Training radial basis function networks for wind speed prediction using PSO enhanced differential search optimizer.

    PubMed

    Rani R, Hannah Jessie; Victoire T, Aruldoss Albert

    2018-01-01

    This paper presents an integrated hybrid optimization algorithm for training the radial basis function neural network (RBF NN). Training of neural networks is still a challenging exercise in machine learning domain. Traditional training algorithms in general suffer and trap in local optima and lead to premature convergence, which makes them ineffective when applied for datasets with diverse features. Training algorithms based on evolutionary computations are becoming popular due to their robust nature in overcoming the drawbacks of the traditional algorithms. Accordingly, this paper proposes a hybrid training procedure with differential search (DS) algorithm functionally integrated with the particle swarm optimization (PSO). To surmount the local trapping of the search procedure, a new population initialization scheme is proposed using Logistic chaotic sequence, which enhances the population diversity and aid the search capability. To demonstrate the effectiveness of the proposed RBF hybrid training algorithm, experimental analysis on publicly available 7 benchmark datasets are performed. Subsequently, experiments were conducted on a practical application case for wind speed prediction to expound the superiority of the proposed RBF training algorithm in terms of prediction accuracy.

  10. A Decade of Building a STEM Educational Community of Practice from the Ground Up: Leveraging Technology, Visualization, and Evaluation

    NASA Astrophysics Data System (ADS)

    Pisut, D.; MacIntosh, E.; McDougall, C.; Peddicord, H.; Russell, E. L.; Zepecki, S., III

    2017-12-01

    A small group of scientists and museum directors sit in a room and ponder, "What do we do with this thing?" It was ten years ago, and the Science On a Sphere was a nascent educational technology. Since that time, NOAA has built a energetic community of practice, with over 150 institutional network members ranging from museums and aquariums, to scientific laboratories, and even documentary producers. A key to the long term success of this educational community has been its constant evolution - driven by needs assessments of the network partners, NOAA's foresight on how to improve user experiences by integrating new visualizations, storytelling, and improved technology, and the ability of institutions to integrate the technologies into their other STEM offerings. In this talk we'll cover specific examples of the challenges that have arisen, and how NOAA, and its close partner NASA, has evolved the program offerings and technologies to meet the needs of this educational community of practice, along with some thoughts on the future of the Science On a Sphere Collaborative Network and NOAA's STEM educational technology portfolio.

  11. Distributed Deliberative Recommender Systems

    NASA Astrophysics Data System (ADS)

    Recio-García, Juan A.; Díaz-Agudo, Belén; González-Sanz, Sergio; Sanchez, Lara Quijano

    Case-Based Reasoning (CBR) is one of most successful applied AI technologies of recent years. Although many CBR systems reason locally on a previous experience base to solve new problems, in this paper we focus on distributed retrieval processes working on a network of collaborating CBR systems. In such systems, each node in a network of CBR agents collaborates, arguments and counterarguments its local results with other nodes to improve the performance of the system's global response. We describe D2ISCO: a framework to design and implement deliberative and collaborative CBR systems that is integrated as a part of jcolibritwo an established framework in the CBR community. We apply D2ISCO to one particular simplified type of CBR systems: recommender systems. We perform a first case study for a collaborative music recommender system and present the results of an experiment of the accuracy of the system results using a fuzzy version of the argumentation system AMAL and a network topology based on a social network. Besides individual recommendation we also discuss how D2ISCO can be used to improve recommendations to groups and we present a second case of study based on the movie recommendation domain with heterogeneous groups according to the group personality composition and a group topology based on a social network.

  12. The Role of Semantics in Open-World, Integrative, Collaborative Science Data Platforms

    NASA Astrophysics Data System (ADS)

    Fox, Peter; Chen, Yanning; Wang, Han; West, Patrick; Erickson, John; Ma, Marshall

    2014-05-01

    As collaborative science spreads into more and more Earth and space science fields, both participants and funders are expressing stronger needs for highly functional data and information capabilities. Characteristics include a) easy to use, b) highly integrated, c) leverage investments, d) accommodate rapid technical change, and e) do not incur undue expense or time to build or maintain - these are not a small set of requirements. Based on our accumulated experience over the last ~ decade and several key technical approaches, we adapt, extend, and integrate several open source applications and frameworks to handle major portions of functionality for these platforms. This includes: an object-type repository, collaboration tools, identity management, all within a portal managing diverse content and applications. In this contribution, we present our methods and results of information models, adaptation, integration and evolution of a networked data science architecture based on several open source technologies (Drupal, VIVO, the Comprehensive Knowledge Archive Network; CKAN, and the Global Handle System; GHS). In particular we present the Deep Carbon Observatory - a platform for international science collaboration. We present and discuss key functional and non-functional attributes, and discuss the general applicability of the platform.

  13. Reconstruction of Complex Network based on the Noise via QR Decomposition and Compressed Sensing.

    PubMed

    Li, Lixiang; Xu, Dafei; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian

    2017-11-08

    It is generally known that the states of network nodes are stable and have strong correlations in a linear network system. We find that without the control input, the method of compressed sensing can not succeed in reconstructing complex networks in which the states of nodes are generated through the linear network system. However, noise can drive the dynamics between nodes to break the stability of the system state. Therefore, a new method integrating QR decomposition and compressed sensing is proposed to solve the reconstruction problem of complex networks under the assistance of the input noise. The state matrix of the system is decomposed by QR decomposition. We construct the measurement matrix with the aid of Gaussian noise so that the sparse input matrix can be reconstructed by compressed sensing. We also discover that noise can build a bridge between the dynamics and the topological structure. Experiments are presented to show that the proposed method is more accurate and more efficient to reconstruct four model networks and six real networks by the comparisons between the proposed method and only compressed sensing. In addition, the proposed method can reconstruct not only the sparse complex networks, but also the dense complex networks.

  14. T-SDN architecture for space and ground integrated optical transport network

    NASA Astrophysics Data System (ADS)

    Nie, Kunkun; Hu, Wenjing; Gao, Shenghua; Chang, Chengwu

    2015-11-01

    Integrated optical transport network is the development trend of the future space information backbone network. The space and ground integrated optical transport network(SGIOTN) may contain a variety of equipment and systems. Changing the network or meeting some innovation missions in the network will be an expensive implement. Software Defined Network(SDN) provides a good solution to flexibly adding process logic, timely control states and resources of the whole network, as well as shielding the differences of heterogeneous equipment and so on. According to the characteristics of SGIOTN, we propose an transport SDN architecture for it, with hierarchical control plane and data plane composed of packet networks and optical transport networks.

  15. Situating emotional experience

    PubMed Central

    Wilson-Mendenhall, Christine D.; Barrett, Lisa Feldman; Barsalou, Lawrence W.

    2013-01-01

    Psychological construction approaches to emotion suggest that emotional experience is situated and dynamic. Fear, for example, is typically studied in a physical danger context (e.g., threatening snake), but in the real world, it often occurs in social contexts, especially those involving social evaluation (e.g., public speaking). Understanding situated emotional experience is critical because adaptive responding is guided by situational context (e.g., inferring the intention of another in a social evaluation situation vs. monitoring the environment in a physical danger situation). In an fMRI study, we assessed situated emotional experience using a newly developed paradigm in which participants vividly imagine different scenarios from a first-person perspective, in this case scenarios involving either social evaluation or physical danger. We hypothesized that distributed neural patterns would underlie immersion in social evaluation and physical danger situations, with shared activity patterns across both situations in multiple sensory modalities and in circuitry involved in integrating salient sensory information, and with unique activity patterns for each situation type in coordinated large-scale networks that reflect situated responding. More specifically, we predicted that networks underlying the social inference and mentalizing involved in responding to a social threat (in regions that make up the “default mode” network) would be reliably more active during social evaluation situations. In contrast, networks underlying the visuospatial attention and action planning involved in responding to a physical threat would be reliably more active during physical danger situations. The results supported these hypotheses. In line with emerging psychological construction approaches, the findings suggest that coordinated brain networks offer a systematic way to interpret the distributed patterns that underlie the diverse situational contexts characterizing emotional life. PMID:24324420

  16. Explaining technological change of wind power in China and the United States: Roles of energy policies, technological learning, and collaboration

    NASA Astrophysics Data System (ADS)

    Tang, Tian

    The following dissertation explains how technological change of wind power, in terms of cost reduction and performance improvement, is achieved in China and the US through energy policies, technological learning, and collaboration. The objective of this dissertation is to understand how energy policies affect key actors in the power sector to promote renewable energy and achieve cost reductions for climate change mitigation in different institutional arrangements. The dissertation consists of three essays. The first essay examines the learning processes and technological change of wind power in China. I integrate collaboration and technological learning theories to model how wind technologies are acquired and diffused among various wind project participants in China through the Clean Development Mechanism (CDM)--an international carbon trade program, and empirically test whether different learning channels lead to cost reduction of wind power. Using pooled cross-sectional data of Chinese CDM wind projects and spatial econometric models, I find that a wind project developer's previous experience (learning-by-doing) and industrywide wind project experience (spillover effect) significantly reduce the costs of wind power. The spillover effect provides justification for subsidizing users of wind technologies so as to offset wind farm investors' incentive to free-ride on knowledge spillovers from other wind energy investors. The CDM has played such a role in China. Most importantly, this essay provides the first empirical evidence of "learning-by-interacting": CDM also drives wind power cost reduction and performance improvement by facilitating technology transfer through collaboration between foreign turbine manufacturers and local wind farm developers. The second essay extends this learning framework to the US wind power sector, where I examine how state energy policies, restructuring of the electricity market, and learning among actors in wind industry lead to performance improvement of wind farms. Unlike China, the restructuring of the US electricity market created heterogeneity in transmission network governance across regions. Thus, I add transmission network governance to my learning framework to test the impacts of different transmission network governance models. Using panel data of existing utility-scale wind farms in US during 2001-2012 and spatial models, I find that the performance of a wind project is improved through more collaboration among project participants (learning-by-interacting), and this improvement is even greater if the wind project is interconnected to a regional transmission network coordinated by an independent system operator or a regional transmission organization (ISO/RTO). In the third essay, I further explore how different transmission network governance models affect wind power integration through a comparative case study. I compare two regional transmission networks, which represent two major transmission network governance models in the US: the ISO/RTO-governance model and the non-RTO model. Using archival data and interviews with key network participants, I find that a centralized transmission network coordinated through an ISO/RTO is more effective in integrating wind power because it allows resource pooling and optimal allocating of the resources by the central network administrative agency (NAO). The case study also suggests an alternative path to improved network effectiveness for a less cohesive network, which is through more frequent resource exchange among subgroups within a large network. On top of that, this essay contributes to the network governance literature by providing empirical evidence on the coexistence of hierarchy, market, and collaboration in complex service delivery networks. These coordinating mechanisms complement each other to provide system flexibility and stability, particularly when the network operates in a turbulent environment with changes and uncertainties.

  17. Atypical language laterality is associated with large-scale disruption of network integration in children with intractable focal epilepsy.

    PubMed

    Ibrahim, George M; Morgan, Benjamin R; Doesburg, Sam M; Taylor, Margot J; Pang, Elizabeth W; Donner, Elizabeth; Go, Cristina Y; Rutka, James T; Snead, O Carter

    2015-04-01

    Epilepsy is associated with disruption of integration in distributed networks, together with altered localization for functions such as expressive language. The relation between atypical network connectivity and altered localization is unknown. In the current study we tested whether atypical expressive language laterality was associated with the alteration of large-scale network integration in children with medically-intractable localization-related epilepsy (LRE). Twenty-three right-handed children (age range 8-17) with medically-intractable LRE performed a verb generation task in fMRI. Language network activation was identified and the Laterality index (LI) was calculated within the pars triangularis and pars opercularis. Resting-state data from the same cohort were subjected to independent component analysis. Dual regression was used to identify associations between resting-state integration and LI values. Higher positive values of the LI, indicating typical language localization were associated with stronger functional integration of various networks including the default mode network (DMN). The normally symmetric resting-state networks showed a pattern of lateralized connectivity mirroring that of language function. The association between atypical language localization and network integration implies a widespread disruption of neural network development. These findings may inform the interpretation of localization studies by providing novel insights into reorganization of neural networks in epilepsy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Three levels of neuroelectronic interfacing: silicon chips with ion channels, nerve cells, and brain tissue.

    PubMed

    Fromherz, Peter

    2006-12-01

    We consider the direct electrical interfacing of semiconductor chips with individual nerve cells and brain tissue. At first, the structure of the cell-chip contact is studied. Then we characterize the electrical coupling of ion channels--the electrical elements of nerve cells--with transistors and capacitors in silicon chips. On that basis it is possible to implement signal transmission between microelectronics and the microionics of nerve cells in both directions. Simple hybrid neuroelectronic systems are assembled with neuron pairs and with small neuronal networks. Finally, the interfacing with capacitors and transistors is extended to brain tissue cultured on silicon chips. The application of highly integrated silicon chips allows an imaging of neuronal activity with high spatiotemporal resolution. The goal of the work is an integration of neuronal network dynamics with digital electronics on a microscopic level with respect to experiments in brain research, medical prosthetics, and information technology.

  19. Case Studies of Ecological Integrative Information Systems: The Luquillo and Sevilleta Information Management Systems

    NASA Astrophysics Data System (ADS)

    San Gil, Inigo; White, Marshall; Melendez, Eda; Vanderbilt, Kristin

    The thirty-year-old United States Long Term Ecological Research Network has developed extensive metadata to document their scientific data. Standard and interoperable metadata is a core component of the data-driven analytical solutions developed by this research network Content management systems offer an affordable solution for rapid deployment of metadata centered information management systems. We developed a customized integrative metadata management system based on the Drupal content management system technology. Building on knowledge and experience with the Sevilleta and Luquillo Long Term Ecological Research sites, we successfully deployed the first two medium-scale customized prototypes. In this paper, we describe the vision behind our Drupal based information management instances, and list the features offered through these Drupal based systems. We also outline the plans to expand the information services offered through these metadata centered management systems. We will conclude with the growing list of participants deploying similar instances.

  20. Robust nano-fabrication of an integrated platform for spin control in a tunable microcavity

    NASA Astrophysics Data System (ADS)

    Bogdanović, Stefan; Liddy, Madelaine S. Z.; van Dam, Suzanne B.; Coenen, Lisanne C.; Fink, Thomas; Lončar, Marko; Hanson, Ronald

    2017-12-01

    Coupling nitrogen-vacancy (NV) centers in diamonds to optical cavities is a promising way to enhance the efficiency of diamond-based quantum networks. An essential aspect of the full toolbox required for the operation of these networks is the ability to achieve the microwave control of the electron spin associated with this defect within the cavity framework. Here, we report on the fabrication of an integrated platform for the microwave control of an NV center electron spin in an open, tunable Fabry-Pérot microcavity. A critical aspect of the measurements of the cavity's finesse reveals that the presented fabrication process does not compromise its optical properties. We provide a method to incorporate a thin diamond slab into the cavity architecture and demonstrate the control of the NV center spin. These results show the promise of this design for future cavity-enhanced NV center spin-photon entanglement experiments.

  1. A pedagogical walkthrough of computational modeling and simulation of Wnt signaling pathway using static causal models in MATLAB.

    PubMed

    Sinha, Shriprakash

    2016-12-01

    Simulation study in systems biology involving computational experiments dealing with Wnt signaling pathways abound in literature but often lack a pedagogical perspective that might ease the understanding of beginner students and researchers in transition, who intend to work on the modeling of the pathway. This paucity might happen due to restrictive business policies which enforce an unwanted embargo on the sharing of important scientific knowledge. A tutorial introduction to computational modeling of Wnt signaling pathway in a human colorectal cancer dataset using static Bayesian network models is provided. The walkthrough might aid biologists/informaticians in understanding the design of computational experiments that is interleaved with exposition of the Matlab code and causal models from Bayesian network toolbox. The manuscript elucidates the coding contents of the advance article by Sinha (Integr. Biol. 6:1034-1048, 2014) and takes the reader in a step-by-step process of how (a) the collection and the transformation of the available biological information from literature is done, (b) the integration of the heterogeneous data and prior biological knowledge in the network is achieved, (c) the simulation study is designed, (d) the hypothesis regarding a biological phenomena is transformed into computational framework, and (e) results and inferences drawn using d -connectivity/separability are reported. The manuscript finally ends with a programming assignment to help the readers get hands-on experience of a perturbation project. Description of Matlab files is made available under GNU GPL v3 license at the Google code project on https://code.google.com/p/static-bn-for-wnt-signaling-pathway and https: //sites.google.com/site/shriprakashsinha/shriprakashsinha/projects/static-bn-for-wnt-signaling-pathway. Latest updates can be found in the latter website.

  2. Targeted Human Factors and Ergonomics Recommendations for Materiel and Concept Developers from the 2013 US Army Capabilities Integration Center Dismounted Non-network-Enabled Limited Objective Experiment (ARCIC DNNE LOE)

    DTIC Science & Technology

    2014-11-01

    minimizing danger to friendly personnel. Alternate applications include concussion effects in enclosed areas, blasting, and demolition. Soldiers rejected...like a football ”), and therefore Soldiers would not want to throw it within close proximity to friendly personnel. Soldiers attributed this issue to

  3. Process Challenges and Learning-Based Interactions in Stage 2 of Doctoral Education: Implications from Two Applied Social Science Fields

    ERIC Educational Resources Information Center

    Baker, Vicki L.; Pifer, Meghan J.; Flemion, Blair

    2013-01-01

    This article reports on an exploratory study that examined the transition to independence in Stage 2 of the doctoral student experience in two applied social science fields. We rely on an interdisciplinary framework that integrates developmental networks and sociocultural perspectives of learning to better understand the connection between the…

  4. Effectiveness and Obstacle of Using Facebook as a Tool to Facilitate Student-Centred Learning in Higher Education

    ERIC Educational Resources Information Center

    Cheng, Irene Nga Yee; Chan, Janet Kit Yan; Kong, Suria Suet Yee; Leung, Kenneth Mei Yee

    2016-01-01

    Blended learning which combines face-to-face and online experiences of students by integrating technology into the curriculum is increasingly prevalent in university education. In a context of long time arguments on the educational value of using social networking websites on teaching and learning, this study was conducted in two higher education…

  5. Assessing the Training and Operational Proficiency of China’s Aerospace Forces: Selections from the Inaugural Conference of the China Aerospace Studies Institute (CASI)

    DTIC Science & Technology

    2016-01-01

    available at www.jamestown.org: • “PLA Air Force Aviator Recruitment, Education, and Training,” Kenneth W. Allen • “Building a Strong Informatized ...on U.S. Experience .................................................. 34 Defining Integrated Joint Operations: The Role of Informatization and System...75 Petroleum, Oil , and Lubricant Network

  6. The iso-response method: measuring neuronal stimulus integration with closed-loop experiments

    PubMed Central

    Gollisch, Tim; Herz, Andreas V. M.

    2012-01-01

    Throughout the nervous system, neurons integrate high-dimensional input streams and transform them into an output of their own. This integration of incoming signals involves filtering processes and complex non-linear operations. The shapes of these filters and non-linearities determine the computational features of single neurons and their functional roles within larger networks. A detailed characterization of signal integration is thus a central ingredient to understanding information processing in neural circuits. Conventional methods for measuring single-neuron response properties, such as reverse correlation, however, are often limited by the implicit assumption that stimulus integration occurs in a linear fashion. Here, we review a conceptual and experimental alternative that is based on exploring the space of those sensory stimuli that result in the same neural output. As demonstrated by recent results in the auditory and visual system, such iso-response stimuli can be used to identify the non-linearities relevant for stimulus integration, disentangle consecutive neural processing steps, and determine their characteristics with unprecedented precision. Automated closed-loop experiments are crucial for this advance, allowing rapid search strategies for identifying iso-response stimuli during experiments. Prime targets for the method are feed-forward neural signaling chains in sensory systems, but the method has also been successfully applied to feedback systems. Depending on the specific question, “iso-response” may refer to a predefined firing rate, single-spike probability, first-spike latency, or other output measures. Examples from different studies show that substantial progress in understanding neural dynamics and coding can be achieved once rapid online data analysis and stimulus generation, adaptive sampling, and computational modeling are tightly integrated into experiments. PMID:23267315

  7. NASA Integrated Network Monitor and Control Software Architecture

    NASA Technical Reports Server (NTRS)

    Shames, Peter; Anderson, Michael; Kowal, Steve; Levesque, Michael; Sindiy, Oleg; Donahue, Kenneth; Barnes, Patrick

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Space Communications and Navigation office (SCaN) has commissioned a series of trade studies to define a new architecture intended to integrate the three existing networks that it operates, the Deep Space Network (DSN), Space Network (SN), and Near Earth Network (NEN), into one integrated network that offers users a set of common, standardized, services and interfaces. The integrated monitor and control architecture utilizes common software and common operator interfaces that can be deployed at all three network elements. This software uses state-of-the-art concepts such as a pool of re-programmable equipment that acts like a configurable software radio, distributed hierarchical control, and centralized management of the whole SCaN integrated network. For this trade space study a model-based approach using SysML was adopted to describe and analyze several possible options for the integrated network monitor and control architecture. This model was used to refine the design and to drive the costing of the four different software options. This trade study modeled the three existing self standing network elements at point of departure, and then described how to integrate them using variations of new and existing monitor and control system components for the different proposed deployments under consideration. This paper will describe the trade space explored, the selected system architecture, the modeling and trade study methods, and some observations on useful approaches to implementing such model based trade space representation and analysis.

  8. The brain's default network: anatomy, function, and relevance to disease.

    PubMed

    Buckner, Randy L; Andrews-Hanna, Jessica R; Schacter, Daniel L

    2008-03-01

    Thirty years of brain imaging research has converged to define the brain's default network-a novel and only recently appreciated brain system that participates in internal modes of cognition. Here we synthesize past observations to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment. Analysis of connectional anatomy in the monkey supports the presence of an interconnected brain system. Providing insight into function, the default network is active when individuals are engaged in internally focused tasks including autobiographical memory retrieval, envisioning the future, and conceiving the perspectives of others. Probing the functional anatomy of the network in detail reveals that it is best understood as multiple interacting subsystems. The medial temporal lobe subsystem provides information from prior experiences in the form of memories and associations that are the building blocks of mental simulation. The medial prefrontal subsystem facilitates the flexible use of this information during the construction of self-relevant mental simulations. These two subsystems converge on important nodes of integration including the posterior cingulate cortex. The implications of these functional and anatomical observations are discussed in relation to possible adaptive roles of the default network for using past experiences to plan for the future, navigate social interactions, and maximize the utility of moments when we are not otherwise engaged by the external world. We conclude by discussing the relevance of the default network for understanding mental disorders including autism, schizophrenia, and Alzheimer's disease.

  9. A collaborative molecular modeling environment using a virtual tunneling service.

    PubMed

    Lee, Jun; Kim, Jee-In; Kang, Lin-Woo

    2012-01-01

    Collaborative researches of three-dimensional molecular modeling can be limited by different time zones and locations. A networked virtual environment can be utilized to overcome the problem caused by the temporal and spatial differences. However, traditional approaches did not sufficiently consider integration of different computing environments, which were characterized by types of applications, roles of users, and so on. We propose a collaborative molecular modeling environment to integrate different molecule modeling systems using a virtual tunneling service. We integrated Co-Coot, which is a collaborative crystallographic object-oriented toolkit, with VRMMS, which is a virtual reality molecular modeling system, through a collaborative tunneling system. The proposed system showed reliable quantitative and qualitative results through pilot experiments.

  10. Finding influential nodes for integration in brain networks using optimal percolation theory.

    PubMed

    Del Ferraro, Gino; Moreno, Andrea; Min, Byungjoon; Morone, Flaviano; Pérez-Ramírez, Úrsula; Pérez-Cervera, Laura; Parra, Lucas C; Holodny, Andrei; Canals, Santiago; Makse, Hernán A

    2018-06-11

    Global integration of information in the brain results from complex interactions of segregated brain networks. Identifying the most influential neuronal populations that efficiently bind these networks is a fundamental problem of systems neuroscience. Here, we apply optimal percolation theory and pharmacogenetic interventions in vivo to predict and subsequently target nodes that are essential for global integration of a memory network in rodents. The theory predicts that integration in the memory network is mediated by a set of low-degree nodes located in the nucleus accumbens. This result is confirmed with pharmacogenetic inactivation of the nucleus accumbens, which eliminates the formation of the memory network, while inactivations of other brain areas leave the network intact. Thus, optimal percolation theory predicts essential nodes in brain networks. This could be used to identify targets of interventions to modulate brain function.

  11. An interprofessional diabetes experience to improve pharmacy and nursing students' competency in collaborative practice.

    PubMed

    Pittenger, Amy L; Westberg, Sarah; Rowan, Mary; Schweiss, Sarah

    2013-11-12

    To improve pharmacy and nursing students' competency in collaborative practice by having them participate in an interprofessional diabetes experience involving social networking. An existing elective course on diabetes management was modified to include interprofessional content based on Interprofessional Education Collaborative (IPEC) competency domains. Web-based collaborative tools (social networking and video chat) were used to allow nursing and pharmacy students located on 2 different campuses to apply diabetes management content as an interprofessional team. Mixed-method analyses demonstrated an increase in students' knowledge of the roles and responsibilities of the other profession and developed an understanding of interprofessional communication strategies and their central role in effective teamwork. Interprofessional content and activities can be effectively integrated into an existing course and offered successfully to students from other professional programs and on remote campuses.

  12. Towards systems genetic analyses in barley: Integration of phenotypic, expression and genotype data into GeneNetwork

    PubMed Central

    Druka, Arnis; Druka, Ilze; Centeno, Arthur G; Li, Hongqiang; Sun, Zhaohui; Thomas, William TB; Bonar, Nicola; Steffenson, Brian J; Ullrich, Steven E; Kleinhofs, Andris; Wise, Roger P; Close, Timothy J; Potokina, Elena; Luo, Zewei; Wagner, Carola; Schweizer, Günther F; Marshall, David F; Kearsey, Michael J; Williams, Robert W; Waugh, Robbie

    2008-01-01

    Background A typical genetical genomics experiment results in four separate data sets; genotype, gene expression, higher-order phenotypic data and metadata that describe the protocols, processing and the array platform. Used in concert, these data sets provide the opportunity to perform genetic analysis at a systems level. Their predictive power is largely determined by the gene expression dataset where tens of millions of data points can be generated using currently available mRNA profiling technologies. Such large, multidimensional data sets often have value beyond that extracted during their initial analysis and interpretation, particularly if conducted on widely distributed reference genetic materials. Besides quality and scale, access to the data is of primary importance as accessibility potentially allows the extraction of considerable added value from the same primary dataset by the wider research community. Although the number of genetical genomics experiments in different plant species is rapidly increasing, none to date has been presented in a form that allows quick and efficient on-line testing for possible associations between genes, loci and traits of interest by an entire research community. Description Using a reference population of 150 recombinant doubled haploid barley lines we generated novel phenotypic, mRNA abundance and SNP-based genotyping data sets, added them to a considerable volume of legacy trait data and entered them into the GeneNetwork . GeneNetwork is a unified on-line analytical environment that enables the user to test genetic hypotheses about how component traits, such as mRNA abundance, may interact to condition more complex biological phenotypes (higher-order traits). Here we describe these barley data sets and demonstrate some of the functionalities GeneNetwork provides as an easily accessible and integrated analytical environment for exploring them. Conclusion By integrating barley genotypic, phenotypic and mRNA abundance data sets directly within GeneNetwork's analytical environment we provide simple web access to the data for the research community. In this environment, a combination of correlation analysis and linkage mapping provides the potential to identify and substantiate gene targets for saturation mapping and positional cloning. By integrating datasets from an unsequenced crop plant (barley) in a database that has been designed for an animal model species (mouse) with a well established genome sequence, we prove the importance of the concept and practice of modular development and interoperability of software engineering for biological data sets. PMID:19017390

  13. GeNNet: an integrated platform for unifying scientific workflows and graph databases for transcriptome data analysis

    PubMed Central

    Gadelha, Luiz; Ribeiro-Alves, Marcelo; Porto, Fábio

    2017-01-01

    There are many steps in analyzing transcriptome data, from the acquisition of raw data to the selection of a subset of representative genes that explain a scientific hypothesis. The data produced can be represented as networks of interactions among genes and these may additionally be integrated with other biological databases, such as Protein-Protein Interactions, transcription factors and gene annotation. However, the results of these analyses remain fragmented, imposing difficulties, either for posterior inspection of results, or for meta-analysis by the incorporation of new related data. Integrating databases and tools into scientific workflows, orchestrating their execution, and managing the resulting data and its respective metadata are challenging tasks. Additionally, a great amount of effort is equally required to run in-silico experiments to structure and compose the information as needed for analysis. Different programs may need to be applied and different files are produced during the experiment cycle. In this context, the availability of a platform supporting experiment execution is paramount. We present GeNNet, an integrated transcriptome analysis platform that unifies scientific workflows with graph databases for selecting relevant genes according to the evaluated biological systems. It includes GeNNet-Wf, a scientific workflow that pre-loads biological data, pre-processes raw microarray data and conducts a series of analyses including normalization, differential expression inference, clusterization and gene set enrichment analysis. A user-friendly web interface, GeNNet-Web, allows for setting parameters, executing, and visualizing the results of GeNNet-Wf executions. To demonstrate the features of GeNNet, we performed case studies with data retrieved from GEO, particularly using a single-factor experiment in different analysis scenarios. As a result, we obtained differentially expressed genes for which biological functions were analyzed. The results are integrated into GeNNet-DB, a database about genes, clusters, experiments and their properties and relationships. The resulting graph database is explored with queries that demonstrate the expressiveness of this data model for reasoning about gene interaction networks. GeNNet is the first platform to integrate the analytical process of transcriptome data with graph databases. It provides a comprehensive set of tools that would otherwise be challenging for non-expert users to install and use. Developers can add new functionality to components of GeNNet. The derived data allows for testing previous hypotheses about an experiment and exploring new ones through the interactive graph database environment. It enables the analysis of different data on humans, rhesus, mice and rat coming from Affymetrix platforms. GeNNet is available as an open source platform at https://github.com/raquele/GeNNet and can be retrieved as a software container with the command docker pull quelopes/gennet. PMID:28695067

  14. GeNNet: an integrated platform for unifying scientific workflows and graph databases for transcriptome data analysis.

    PubMed

    Costa, Raquel L; Gadelha, Luiz; Ribeiro-Alves, Marcelo; Porto, Fábio

    2017-01-01

    There are many steps in analyzing transcriptome data, from the acquisition of raw data to the selection of a subset of representative genes that explain a scientific hypothesis. The data produced can be represented as networks of interactions among genes and these may additionally be integrated with other biological databases, such as Protein-Protein Interactions, transcription factors and gene annotation. However, the results of these analyses remain fragmented, imposing difficulties, either for posterior inspection of results, or for meta-analysis by the incorporation of new related data. Integrating databases and tools into scientific workflows, orchestrating their execution, and managing the resulting data and its respective metadata are challenging tasks. Additionally, a great amount of effort is equally required to run in-silico experiments to structure and compose the information as needed for analysis. Different programs may need to be applied and different files are produced during the experiment cycle. In this context, the availability of a platform supporting experiment execution is paramount. We present GeNNet, an integrated transcriptome analysis platform that unifies scientific workflows with graph databases for selecting relevant genes according to the evaluated biological systems. It includes GeNNet-Wf, a scientific workflow that pre-loads biological data, pre-processes raw microarray data and conducts a series of analyses including normalization, differential expression inference, clusterization and gene set enrichment analysis. A user-friendly web interface, GeNNet-Web, allows for setting parameters, executing, and visualizing the results of GeNNet-Wf executions. To demonstrate the features of GeNNet, we performed case studies with data retrieved from GEO, particularly using a single-factor experiment in different analysis scenarios. As a result, we obtained differentially expressed genes for which biological functions were analyzed. The results are integrated into GeNNet-DB, a database about genes, clusters, experiments and their properties and relationships. The resulting graph database is explored with queries that demonstrate the expressiveness of this data model for reasoning about gene interaction networks. GeNNet is the first platform to integrate the analytical process of transcriptome data with graph databases. It provides a comprehensive set of tools that would otherwise be challenging for non-expert users to install and use. Developers can add new functionality to components of GeNNet. The derived data allows for testing previous hypotheses about an experiment and exploring new ones through the interactive graph database environment. It enables the analysis of different data on humans, rhesus, mice and rat coming from Affymetrix platforms. GeNNet is available as an open source platform at https://github.com/raquele/GeNNet and can be retrieved as a software container with the command docker pull quelopes/gennet.

  15. Genome-wide protein-protein interactions and protein function exploration in cyanobacteria

    PubMed Central

    Lv, Qi; Ma, Weimin; Liu, Hui; Li, Jiang; Wang, Huan; Lu, Fang; Zhao, Chen; Shi, Tieliu

    2015-01-01

    Genome-wide network analysis is well implemented to study proteins of unknown function. Here, we effectively explored protein functions and the biological mechanism based on inferred high confident protein-protein interaction (PPI) network in cyanobacteria. We integrated data from seven different sources and predicted 1,997 PPIs, which were evaluated by experiments in molecular mechanism, text mining of literatures in proved direct/indirect evidences, and “interologs” in conservation. Combined the predicted PPIs with known PPIs, we obtained 4,715 no-redundant PPIs (involving 3,231 proteins covering over 90% of genome) to generate the PPI network. Based on the PPI network, terms in Gene ontology (GO) were assigned to function-unknown proteins. Functional modules were identified by dissecting the PPI network into sub-networks and analyzing pathway enrichment, with which we investigated novel function of underlying proteins in protein complexes and pathways. Examples of photosynthesis and DNA repair indicate that the network approach is a powerful tool in protein function analysis. Overall, this systems biology approach provides a new insight into posterior functional analysis of PPIs in cyanobacteria. PMID:26490033

  16. Random network peristalsis in Physarum polycephalum organizes fluid flows across an individual

    PubMed Central

    Alim, Karen; Amselem, Gabriel; Peaudecerf, François; Brenner, Michael P.; Pringle, Anne

    2013-01-01

    Individuals can function as integrated organisms only when information and resources are shared across a body. Signals and substrates are commonly moved using fluids, often channeled through a network of tubes. Peristalsis is one mechanism for fluid transport and is caused by a wave of cross-sectional contractions along a tube. We extend the concept of peristalsis from the canonical case of one tube to a random network. Transport is maximized within the network when the wavelength of the peristaltic wave is of the order of the size of the network. The slime mold Physarum polycephalum grows as a random network of tubes, and our experiments confirm peristalsis is used by the slime mold to drive internal cytoplasmic flows. Comparisons of theoretically generated contraction patterns with the patterns exhibited by individuals of P. polycephalum demonstrate that individuals maximize internal flows by adapting patterns of contraction to size, thus optimizing transport throughout an organism. This control of fluid flow may be the key to coordinating growth and behavior, including the dynamic changes in network architecture seen over time in an individual. PMID:23898203

  17. Random network peristalsis in Physarum polycephalum organizes fluid flows across an individual.

    PubMed

    Alim, Karen; Amselem, Gabriel; Peaudecerf, François; Brenner, Michael P; Pringle, Anne

    2013-08-13

    Individuals can function as integrated organisms only when information and resources are shared across a body. Signals and substrates are commonly moved using fluids, often channeled through a network of tubes. Peristalsis is one mechanism for fluid transport and is caused by a wave of cross-sectional contractions along a tube. We extend the concept of peristalsis from the canonical case of one tube to a random network. Transport is maximized within the network when the wavelength of the peristaltic wave is of the order of the size of the network. The slime mold Physarum polycephalum grows as a random network of tubes, and our experiments confirm peristalsis is used by the slime mold to drive internal cytoplasmic flows. Comparisons of theoretically generated contraction patterns with the patterns exhibited by individuals of P. polycephalum demonstrate that individuals maximize internal flows by adapting patterns of contraction to size, thus optimizing transport throughout an organism. This control of fluid flow may be the key to coordinating growth and behavior, including the dynamic changes in network architecture seen over time in an individual.

  18. An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods.

    PubMed

    Valentini, Giorgio; Paccanaro, Alberto; Caniza, Horacio; Romero, Alfonso E; Re, Matteo

    2014-06-01

    In the context of "network medicine", gene prioritization methods represent one of the main tools to discover candidate disease genes by exploiting the large amount of data covering different types of functional relationships between genes. Several works proposed to integrate multiple sources of data to improve disease gene prioritization, but to our knowledge no systematic studies focused on the quantitative evaluation of the impact of network integration on gene prioritization. In this paper, we aim at providing an extensive analysis of gene-disease associations not limited to genetic disorders, and a systematic comparison of different network integration methods for gene prioritization. We collected nine different functional networks representing different functional relationships between genes, and we combined them through both unweighted and weighted network integration methods. We then prioritized genes with respect to each of the considered 708 medical subject headings (MeSH) diseases by applying classical guilt-by-association, random walk and random walk with restart algorithms, and the recently proposed kernelized score functions. The results obtained with classical random walk algorithms and the best single network achieved an average area under the curve (AUC) across the 708 MeSH diseases of about 0.82, while kernelized score functions and network integration boosted the average AUC to about 0.89. Weighted integration, by exploiting the different "informativeness" embedded in different functional networks, outperforms unweighted integration at 0.01 significance level, according to the Wilcoxon signed rank sum test. For each MeSH disease we provide the top-ranked unannotated candidate genes, available for further bio-medical investigation. Network integration is necessary to boost the performances of gene prioritization methods. Moreover the methods based on kernelized score functions can further enhance disease gene ranking results, by adopting both local and global learning strategies, able to exploit the overall topology of the network. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Optimal Network for Patients with Severe Mental Illness: A Social Network Analysis.

    PubMed

    Lorant, Vincent; Nazroo, James; Nicaise, Pablo

    2017-11-01

    It is still unclear what the optimal structure of mental health care networks should be. We examine whether certain types of network structure have been associated with improved continuity of care and greater social integration. A social network survey was carried out, covering 954 patients across 19 mental health networks in Belgium in 2014. We found continuity of care to be associated with large, centralized, and homophilous networks, whereas social integration was associated with smaller, centralized, and heterophilous networks. Two important goals of mental health service provision, continuity of care and social integration, are associated with different types of network. Further research is needed to ascertain the direction of this association.

  20. Structural reliability calculation method based on the dual neural network and direct integration method.

    PubMed

    Li, Haibin; He, Yun; Nie, Xiaobo

    2018-01-01

    Structural reliability analysis under uncertainty is paid wide attention by engineers and scholars due to reflecting the structural characteristics and the bearing actual situation. The direct integration method, started from the definition of reliability theory, is easy to be understood, but there are still mathematics difficulties in the calculation of multiple integrals. Therefore, a dual neural network method is proposed for calculating multiple integrals in this paper. Dual neural network consists of two neural networks. The neural network A is used to learn the integrand function, and the neural network B is used to simulate the original function. According to the derivative relationships between the network output and the network input, the neural network B is derived from the neural network A. On this basis, the performance function of normalization is employed in the proposed method to overcome the difficulty of multiple integrations and to improve the accuracy for reliability calculations. The comparisons between the proposed method and Monte Carlo simulation method, Hasofer-Lind method, the mean value first-order second moment method have demonstrated that the proposed method is an efficient and accurate reliability method for structural reliability problems.

  1. Interactions between auditory and visual semantic stimulus classes: evidence for common processing networks for speech and body actions.

    PubMed

    Meyer, Georg F; Greenlee, Mark; Wuerger, Sophie

    2011-09-01

    Incongruencies between auditory and visual signals negatively affect human performance and cause selective activation in neuroimaging studies; therefore, they are increasingly used to probe audiovisual integration mechanisms. An open question is whether the increased BOLD response reflects computational demands in integrating mismatching low-level signals or reflects simultaneous unimodal conceptual representations of the competing signals. To address this question, we explore the effect of semantic congruency within and across three signal categories (speech, body actions, and unfamiliar patterns) for signals with matched low-level statistics. In a localizer experiment, unimodal (auditory and visual) and bimodal stimuli were used to identify ROIs. All three semantic categories cause overlapping activation patterns. We find no evidence for areas that show greater BOLD response to bimodal stimuli than predicted by the sum of the two unimodal responses. Conjunction analysis of the unimodal responses in each category identifies a network including posterior temporal, inferior frontal, and premotor areas. Semantic congruency effects are measured in the main experiment. We find that incongruent combinations of two meaningful stimuli (speech and body actions) but not combinations of meaningful with meaningless stimuli lead to increased BOLD response in the posterior STS (pSTS) bilaterally, the left SMA, the inferior frontal gyrus, the inferior parietal lobule, and the anterior insula. These interactions are not seen in premotor areas. Our findings are consistent with the hypothesis that pSTS and frontal areas form a recognition network that combines sensory categorical representations (in pSTS) with action hypothesis generation in inferior frontal gyrus/premotor areas. We argue that the same neural networks process speech and body actions.

  2. A new mutually reinforcing network node and link ranking algorithm

    PubMed Central

    Wang, Zhenghua; Dueñas-Osorio, Leonardo; Padgett, Jamie E.

    2015-01-01

    This study proposes a novel Normalized Wide network Ranking algorithm (NWRank) that has the advantage of ranking nodes and links of a network simultaneously. This algorithm combines the mutual reinforcement feature of Hypertext Induced Topic Selection (HITS) and the weight normalization feature of PageRank. Relative weights are assigned to links based on the degree of the adjacent neighbors and the Betweenness Centrality instead of assigning the same weight to every link as assumed in PageRank. Numerical experiment results show that NWRank performs consistently better than HITS, PageRank, eigenvector centrality, and edge betweenness from the perspective of network connectivity and approximate network flow, which is also supported by comparisons with the expensive N-1 benchmark removal criteria based on network efficiency. Furthermore, it can avoid some problems, such as the Tightly Knit Community effect, which exists in HITS. NWRank provides a new inexpensive way to rank nodes and links of a network, which has practical applications, particularly to prioritize resource allocation for upgrade of hierarchical and distributed networks, as well as to support decision making in the design of networks, where node and link importance depend on a balance of local and global integrity. PMID:26492958

  3. A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience

    PubMed Central

    Jerath, Ravinder; Crawford, Molly W.; Barnes, Vernon A.

    2015-01-01

    The Global Workspace Theory and Information Integration Theory are two of the most currently accepted consciousness models; however, these models do not address many aspects of conscious experience. We compare these models to our previously proposed consciousness model in which the thalamus fills-in processed sensory information from corticothalamic feedback loops within a proposed 3D default space, resulting in the recreation of the internal and external worlds within the mind. This 3D default space is composed of all cells of the body, which communicate via gap junctions and electrical potentials to create this unified space. We use 3D illustrations to explain how both visual and non-visual sensory information may be filled-in within this dynamic space, creating a unified seamless conscious experience. This neural sensory memory space is likely generated by baseline neural oscillatory activity from the default mode network, other salient networks, brainstem, and reticular activating system. PMID:26379573

  4. Brain mechanisms in religion and spirituality: An integrative predictive processing framework.

    PubMed

    van Elk, Michiel; Aleman, André

    2017-02-01

    We present the theory of predictive processing as a unifying framework to account for the neurocognitive basis of religion and spirituality. Our model is substantiated by discussing four different brain mechanisms that play a key role in religion and spirituality: temporal brain areas are associated with religious visions and ecstatic experiences; multisensory brain areas and the default mode network are involved in self-transcendent experiences; the Theory of Mind-network is associated with prayer experiences and over attribution of intentionality; top-down mechanisms instantiated in the anterior cingulate cortex and the medial prefrontal cortex could be involved in acquiring and maintaining intuitive supernatural beliefs. We compare the predictive processing model with two-systems accounts of religion and spirituality, by highlighting the central role of prediction error monitoring. We conclude by presenting novel predictions for future research and by discussing the philosophical and theological implications of neuroscientific research on religion and spirituality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Secure smart grid communications and information integration based on digital watermarking in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Yan, Xin; Zhang, Ling; Wu, Yang; Luo, Youlong; Zhang, Xiaoxing

    2017-02-01

    As more and more wireless sensor nodes and networks are employed to acquire and transmit the state information of power equipment in smart grid, we are in urgent need of some viable security solutions to ensure secure smart grid communications. Conventional information security solutions, such as encryption/decryption, digital signature and so forth, are not applicable to wireless sensor networks in smart grid any longer, where bulk messages need to be exchanged continuously. The reason is that these cryptographic solutions will account for a large portion of the extremely limited resources on sensor nodes. In this article, a security solution based on digital watermarking is adopted to achieve the secure communications for wireless sensor networks in smart grid by data and entity authentications at a low cost of operation. Our solution consists of a secure framework of digital watermarking, and two digital watermarking algorithms based on alternating electric current and time window, respectively. Both watermarking algorithms are composed of watermark generation, embedding and detection. The simulation experiments are provided to verify the correctness and practicability of our watermarking algorithms. Additionally, a new cloud-based architecture for the information integration of smart grid is proposed on the basis of our security solutions.

  6. Genes2Networks: connecting lists of gene symbols using mammalian protein interactions databases.

    PubMed

    Berger, Seth I; Posner, Jeremy M; Ma'ayan, Avi

    2007-10-04

    In recent years, mammalian protein-protein interaction network databases have been developed. The interactions in these databases are either extracted manually from low-throughput experimental biomedical research literature, extracted automatically from literature using techniques such as natural language processing (NLP), generated experimentally using high-throughput methods such as yeast-2-hybrid screens, or interactions are predicted using an assortment of computational approaches. Genes or proteins identified as significantly changing in proteomic experiments, or identified as susceptibility disease genes in genomic studies, can be placed in the context of protein interaction networks in order to assign these genes and proteins to pathways and protein complexes. Genes2Networks is a software system that integrates the content of ten mammalian interaction network datasets. Filtering techniques to prune low-confidence interactions were implemented. Genes2Networks is delivered as a web-based service using AJAX. The system can be used to extract relevant subnetworks created from "seed" lists of human Entrez gene symbols. The output includes a dynamic linkable three color web-based network map, with a statistical analysis report that identifies significant intermediate nodes used to connect the seed list. Genes2Networks is powerful web-based software that can help experimental biologists to interpret lists of genes and proteins such as those commonly produced through genomic and proteomic experiments, as well as lists of genes and proteins associated with disease processes. This system can be used to find relationships between genes and proteins from seed lists, and predict additional genes or proteins that may play key roles in common pathways or protein complexes.

  7. PRINTO scholarships: the Italian experience

    PubMed Central

    Munitis, Pablo Garcia

    2007-01-01

    The increasing availability of the internet allows physicians to access actualized medical information quickly and easily, but it is not comparable with the possibility of working in a well known international medical centre. International collaboration (scholarships, courses and research), such as the PRINTO alpha project, allows professionals not only to increase and share scientific knowledge and experiences but also to integrate into a working team in a foreign country which leads to an understanding among cultures. PRINTO has set up a scientific and technical collaborative research network in Paediatric Rheumatology for Latin American physicians. PMID:17900338

  8. A physical sciences network characterization of non-tumorigenic and metastatic cells

    PubMed Central

    Agus, David B.; Alexander, Jenolyn F.; Arap, Wadih; Ashili, Shashanka; Aslan, Joseph E.; Austin, Robert H.; Backman, Vadim; Bethel, Kelly J.; Bonneau, Richard; Chen, Wei-Chiang; Chen-Tanyolac, Chira; Choi, Nathan C.; Curley, Steven A.; Dallas, Matthew; Damania, Dhwanil; Davies, Paul C. W.; Decuzzi, Paolo; Dickinson, Laura; Estevez-Salmeron, Luis; Estrella, Veronica; Ferrari, Mauro; Fischbach, Claudia; Foo, Jasmine; Fraley, Stephanie I.; Frantz, Christian; Fuhrmann, Alexander; Gascard, Philippe; Gatenby, Robert A.; Geng, Yue; Gerecht, Sharon; Gillies, Robert J.; Godin, Biana; Grady, William M.; Greenfield, Alex; Hemphill, Courtney; Hempstead, Barbara L.; Hielscher, Abigail; Hillis, W. Daniel; Holland, Eric C.; Ibrahim-Hashim, Arig; Jacks, Tyler; Johnson, Roger H.; Joo, Ahyoung; Katz, Jonathan E.; Kelbauskas, Laimonas; Kesselman, Carl; King, Michael R.; Konstantopoulos, Konstantinos; Kraning-Rush, Casey M.; Kuhn, Peter; Kung, Kevin; Kwee, Brian; Lakins, Johnathon N.; Lambert, Guillaume; Liao, David; Licht, Jonathan D.; Liphardt, Jan T.; Liu, Liyu; Lloyd, Mark C.; Lyubimova, Anna; Mallick, Parag; Marko, John; McCarty, Owen J. T.; Meldrum, Deirdre R.; Michor, Franziska; Mumenthaler, Shannon M.; Nandakumar, Vivek; O’Halloran, Thomas V.; Oh, Steve; Pasqualini, Renata; Paszek, Matthew J.; Philips, Kevin G.; Poultney, Christopher S.; Rana, Kuldeepsinh; Reinhart-King, Cynthia A.; Ros, Robert; Semenza, Gregg L.; Senechal, Patti; Shuler, Michael L.; Srinivasan, Srimeenakshi; Staunton, Jack R.; Stypula, Yolanda; Subramanian, Hariharan; Tlsty, Thea D.; Tormoen, Garth W.; Tseng, Yiider; van Oudenaarden, Alexander; Verbridge, Scott S.; Wan, Jenny C.; Weaver, Valerie M.; Widom, Jonathan; Will, Christine; Wirtz, Denis; Wojtkowiak, Jonathan; Wu, Pei-Hsun

    2013-01-01

    To investigate the transition from non-cancerous to metastatic from a physical sciences perspective, the Physical Sciences–Oncology Centers (PS-OC) Network performed molecular and biophysical comparative studies of the non-tumorigenic MCF-10A and metastatic MDA-MB-231 breast epithelial cell lines, commonly used as models of cancer metastasis. Experiments were performed in 20 laboratories from 12 PS-OCs. Each laboratory was supplied with identical aliquots and common reagents and culture protocols. Analyses of these measurements revealed dramatic differences in their mechanics, migration, adhesion, oxygen response, and proteomic profiles. Model-based multi-omics approaches identified key differences between these cells' regulatory networks involved in morphology and survival. These results provide a multifaceted description of cellular parameters of two widely used cell lines and demonstrate the value of the PS-OC Network approach for integration of diverse experimental observations to elucidate the phenotypes associated with cancer metastasis. PMID:23618955

  9. A physical sciences network characterization of non-tumorigenic and metastatic cells.

    PubMed

    Agus, David B; Alexander, Jenolyn F; Arap, Wadih; Ashili, Shashanka; Aslan, Joseph E; Austin, Robert H; Backman, Vadim; Bethel, Kelly J; Bonneau, Richard; Chen, Wei-Chiang; Chen-Tanyolac, Chira; Choi, Nathan C; Curley, Steven A; Dallas, Matthew; Damania, Dhwanil; Davies, Paul C W; Decuzzi, Paolo; Dickinson, Laura; Estevez-Salmeron, Luis; Estrella, Veronica; Ferrari, Mauro; Fischbach, Claudia; Foo, Jasmine; Fraley, Stephanie I; Frantz, Christian; Fuhrmann, Alexander; Gascard, Philippe; Gatenby, Robert A; Geng, Yue; Gerecht, Sharon; Gillies, Robert J; Godin, Biana; Grady, William M; Greenfield, Alex; Hemphill, Courtney; Hempstead, Barbara L; Hielscher, Abigail; Hillis, W Daniel; Holland, Eric C; Ibrahim-Hashim, Arig; Jacks, Tyler; Johnson, Roger H; Joo, Ahyoung; Katz, Jonathan E; Kelbauskas, Laimonas; Kesselman, Carl; King, Michael R; Konstantopoulos, Konstantinos; Kraning-Rush, Casey M; Kuhn, Peter; Kung, Kevin; Kwee, Brian; Lakins, Johnathon N; Lambert, Guillaume; Liao, David; Licht, Jonathan D; Liphardt, Jan T; Liu, Liyu; Lloyd, Mark C; Lyubimova, Anna; Mallick, Parag; Marko, John; McCarty, Owen J T; Meldrum, Deirdre R; Michor, Franziska; Mumenthaler, Shannon M; Nandakumar, Vivek; O'Halloran, Thomas V; Oh, Steve; Pasqualini, Renata; Paszek, Matthew J; Philips, Kevin G; Poultney, Christopher S; Rana, Kuldeepsinh; Reinhart-King, Cynthia A; Ros, Robert; Semenza, Gregg L; Senechal, Patti; Shuler, Michael L; Srinivasan, Srimeenakshi; Staunton, Jack R; Stypula, Yolanda; Subramanian, Hariharan; Tlsty, Thea D; Tormoen, Garth W; Tseng, Yiider; van Oudenaarden, Alexander; Verbridge, Scott S; Wan, Jenny C; Weaver, Valerie M; Widom, Jonathan; Will, Christine; Wirtz, Denis; Wojtkowiak, Jonathan; Wu, Pei-Hsun

    2013-01-01

    To investigate the transition from non-cancerous to metastatic from a physical sciences perspective, the Physical Sciences-Oncology Centers (PS-OC) Network performed molecular and biophysical comparative studies of the non-tumorigenic MCF-10A and metastatic MDA-MB-231 breast epithelial cell lines, commonly used as models of cancer metastasis. Experiments were performed in 20 laboratories from 12 PS-OCs. Each laboratory was supplied with identical aliquots and common reagents and culture protocols. Analyses of these measurements revealed dramatic differences in their mechanics, migration, adhesion, oxygen response, and proteomic profiles. Model-based multi-omics approaches identified key differences between these cells' regulatory networks involved in morphology and survival. These results provide a multifaceted description of cellular parameters of two widely used cell lines and demonstrate the value of the PS-OC Network approach for integration of diverse experimental observations to elucidate the phenotypes associated with cancer metastasis.

  10. Depth Reconstruction from Single Images Using a Convolutional Neural Network and a Condition Random Field Model.

    PubMed

    Liu, Dan; Liu, Xuejun; Wu, Yiguang

    2018-04-24

    This paper presents an effective approach for depth reconstruction from a single image through the incorporation of semantic information and local details from the image. A unified framework for depth acquisition is constructed by joining a deep Convolutional Neural Network (CNN) and a continuous pairwise Conditional Random Field (CRF) model. Semantic information and relative depth trends of local regions inside the image are integrated into the framework. A deep CNN network is firstly used to automatically learn a hierarchical feature representation of the image. To get more local details in the image, the relative depth trends of local regions are incorporated into the network. Combined with semantic information of the image, a continuous pairwise CRF is then established and is used as the loss function of the unified model. Experiments on real scenes demonstrate that the proposed approach is effective and that the approach obtains satisfactory results.

  11. A dynamically coupled allosteric network underlies binding cooperativity in Src kinase

    PubMed Central

    Foda, Zachariah H.; Shan, Yibing; Kim, Eric T.; Shaw, David E.; Seeliger, Markus A.

    2015-01-01

    Protein tyrosine kinases are attractive drug targets because many human diseases are associated with the deregulation of kinase activity. However, how the catalytic kinase domain integrates different signals and switches from an active to an inactive conformation remains incompletely understood. Here we identify an allosteric network of dynamically coupled amino acids in Src kinase that connects regulatory sites to the ATP- and substrate-binding sites. Surprisingly, reactants (ATP and peptide substrates) bind with negative cooperativity to Src kinase while products (ADP and phosphopeptide) bind with positive cooperativity. We confirm the molecular details of the signal relay through the allosteric network by biochemical studies. Experiments on two additional protein tyrosine kinases indicate that the allosteric network may be largely conserved among these enzymes. Our work provides new insights into the regulation of protein tyrosine kinases and establishes a potential conduit by which resistance mutations to ATP-competitive kinase inhibitors can affect their activity. PMID:25600932

  12. A physical sciences network characterization of non-tumorigenic and metastatic cells

    NASA Astrophysics Data System (ADS)

    Physical Sciences-Oncology Centers Network; Agus, David B.; Alexander, Jenolyn F.; Arap, Wadih; Ashili, Shashanka; Aslan, Joseph E.; Austin, Robert H.; Backman, Vadim; Bethel, Kelly J.; Bonneau, Richard; Chen, Wei-Chiang; Chen-Tanyolac, Chira; Choi, Nathan C.; Curley, Steven A.; Dallas, Matthew; Damania, Dhwanil; Davies, Paul C. W.; Decuzzi, Paolo; Dickinson, Laura; Estevez-Salmeron, Luis; Estrella, Veronica; Ferrari, Mauro; Fischbach, Claudia; Foo, Jasmine; Fraley, Stephanie I.; Frantz, Christian; Fuhrmann, Alexander; Gascard, Philippe; Gatenby, Robert A.; Geng, Yue; Gerecht, Sharon; Gillies, Robert J.; Godin, Biana; Grady, William M.; Greenfield, Alex; Hemphill, Courtney; Hempstead, Barbara L.; Hielscher, Abigail; Hillis, W. Daniel; Holland, Eric C.; Ibrahim-Hashim, Arig; Jacks, Tyler; Johnson, Roger H.; Joo, Ahyoung; Katz, Jonathan E.; Kelbauskas, Laimonas; Kesselman, Carl; King, Michael R.; Konstantopoulos, Konstantinos; Kraning-Rush, Casey M.; Kuhn, Peter; Kung, Kevin; Kwee, Brian; Lakins, Johnathon N.; Lambert, Guillaume; Liao, David; Licht, Jonathan D.; Liphardt, Jan T.; Liu, Liyu; Lloyd, Mark C.; Lyubimova, Anna; Mallick, Parag; Marko, John; McCarty, Owen J. T.; Meldrum, Deirdre R.; Michor, Franziska; Mumenthaler, Shannon M.; Nandakumar, Vivek; O'Halloran, Thomas V.; Oh, Steve; Pasqualini, Renata; Paszek, Matthew J.; Philips, Kevin G.; Poultney, Christopher S.; Rana, Kuldeepsinh; Reinhart-King, Cynthia A.; Ros, Robert; Semenza, Gregg L.; Senechal, Patti; Shuler, Michael L.; Srinivasan, Srimeenakshi; Staunton, Jack R.; Stypula, Yolanda; Subramanian, Hariharan; Tlsty, Thea D.; Tormoen, Garth W.; Tseng, Yiider; van Oudenaarden, Alexander; Verbridge, Scott S.; Wan, Jenny C.; Weaver, Valerie M.; Widom, Jonathan; Will, Christine; Wirtz, Denis; Wojtkowiak, Jonathan; Wu, Pei-Hsun

    2013-04-01

    To investigate the transition from non-cancerous to metastatic from a physical sciences perspective, the Physical Sciences-Oncology Centers (PS-OC) Network performed molecular and biophysical comparative studies of the non-tumorigenic MCF-10A and metastatic MDA-MB-231 breast epithelial cell lines, commonly used as models of cancer metastasis. Experiments were performed in 20 laboratories from 12 PS-OCs. Each laboratory was supplied with identical aliquots and common reagents and culture protocols. Analyses of these measurements revealed dramatic differences in their mechanics, migration, adhesion, oxygen response, and proteomic profiles. Model-based multi-omics approaches identified key differences between these cells' regulatory networks involved in morphology and survival. These results provide a multifaceted description of cellular parameters of two widely used cell lines and demonstrate the value of the PS-OC Network approach for integration of diverse experimental observations to elucidate the phenotypes associated with cancer metastasis.

  13. Musical expertise is related to altered functional connectivity during audiovisual integration

    PubMed Central

    Paraskevopoulos, Evangelos; Kraneburg, Anja; Herholz, Sibylle Cornelia; Bamidis, Panagiotis D.; Pantev, Christo

    2015-01-01

    The present study investigated the cortical large-scale functional network underpinning audiovisual integration via magnetoencephalographic recordings. The reorganization of this network related to long-term musical training was investigated by comparing musicians to nonmusicians. Connectivity was calculated on the basis of the estimated mutual information of the sources’ activity, and the corresponding networks were statistically compared. Nonmusicians’ results indicated that the cortical network associated with audiovisual integration supports visuospatial processing and attentional shifting, whereas a sparser network, related to spatial awareness supports the identification of audiovisual incongruences. In contrast, musicians’ results showed enhanced connectivity in regions related to the identification of auditory pattern violations. Hence, nonmusicians rely on the processing of visual clues for the integration of audiovisual information, whereas musicians rely mostly on the corresponding auditory information. The large-scale cortical network underpinning multisensory integration is reorganized due to expertise in a cognitive domain that largely involves audiovisual integration, indicating long-term training-related neuroplasticity. PMID:26371305

  14. Integration opportunities for HIV and family planning services in Addis Ababa, Ethiopia: an organizational network analysis

    PubMed Central

    2014-01-01

    Background Public health resources are often deployed in developing countries by foreign governments, national governments, civil society and the private health clinics, but seldom in ways that are coordinated within a particular community or population. The lack of coordination results in inefficiencies and suboptimal results. Organizational network analysis can reveal how organizations interact with each other and provide insights into means of realizing better public health results from the resources already deployed. Our objective in this study was to identify the missed opportunities for the integration of HIV care and family planning services and to inform future network strengthening. Methods In two sub-cities of Addis Ababa, we identified each organization providing either HIV care or family planning services. We interviewed representatives of each of them about exchanges of clients with each of the others. With network analysis, we identified network characteristics in each sub-city network, such as referral density and centrality; and gaps in the referral patterns. The results were shared with representatives from the organizations. Results The two networks were of similar size (25 and 26 organizations) and had referral densities of 0.115 and 0.155 out of a possible range from 0 (none) to 1.0 (all possible connections). Two organizations in one sub-city did not refer HIV clients to a family planning organization. One organization in one sub-city and seven in the other offered few HIV services and did not refer clients to any other HIV service provider. Representatives from the networks confirmed the results reflected their experience and expressed an interest in establishing more links between organizations. Conclusions Because of organizations not working together, women in the two sub-cities were at risk of not receiving needed family planning or HIV care services. Facilitating referrals among a few organizations that are most often working in isolation could remediate the problem, but the overall referral densities suggests that improved connections throughout might benefit conditions in addition to HIV and family planning that need service integration. PMID:24438522

  15. Integration opportunities for HIV and family planning services in Addis Ababa, Ethiopia: an organizational network analysis.

    PubMed

    Thomas, James C; Reynolds, Heidi; Bevc, Christine; Tsegaye, Ademe

    2014-01-18

    Public health resources are often deployed in developing countries by foreign governments, national governments, civil society and the private health clinics, but seldom in ways that are coordinated within a particular community or population. The lack of coordination results in inefficiencies and suboptimal results. Organizational network analysis can reveal how organizations interact with each other and provide insights into means of realizing better public health results from the resources already deployed. Our objective in this study was to identify the missed opportunities for the integration of HIV care and family planning services and to inform future network strengthening. In two sub-cities of Addis Ababa, we identified each organization providing either HIV care or family planning services. We interviewed representatives of each of them about exchanges of clients with each of the others. With network analysis, we identified network characteristics in each sub-city network, such as referral density and centrality; and gaps in the referral patterns. The results were shared with representatives from the organizations. The two networks were of similar size (25 and 26 organizations) and had referral densities of 0.115 and 0.155 out of a possible range from 0 (none) to 1.0 (all possible connections). Two organizations in one sub-city did not refer HIV clients to a family planning organization. One organization in one sub-city and seven in the other offered few HIV services and did not refer clients to any other HIV service provider. Representatives from the networks confirmed the results reflected their experience and expressed an interest in establishing more links between organizations. Because of organizations not working together, women in the two sub-cities were at risk of not receiving needed family planning or HIV care services. Facilitating referrals among a few organizations that are most often working in isolation could remediate the problem, but the overall referral densities suggests that improved connections throughout might benefit conditions in addition to HIV and family planning that need service integration.

  16. Reverse-engineering of gene networks for regulating early blood development from single-cell measurements.

    PubMed

    Wei, Jiangyong; Hu, Xiaohua; Zou, Xiufen; Tian, Tianhai

    2017-12-28

    Recent advances in omics technologies have raised great opportunities to study large-scale regulatory networks inside the cell. In addition, single-cell experiments have measured the gene and protein activities in a large number of cells under the same experimental conditions. However, a significant challenge in computational biology and bioinformatics is how to derive quantitative information from the single-cell observations and how to develop sophisticated mathematical models to describe the dynamic properties of regulatory networks using the derived quantitative information. This work designs an integrated approach to reverse-engineer gene networks for regulating early blood development based on singel-cell experimental observations. The wanderlust algorithm is initially used to develop the pseudo-trajectory for the activities of a number of genes. Since the gene expression data in the developed pseudo-trajectory show large fluctuations, we then use Gaussian process regression methods to smooth the gene express data in order to obtain pseudo-trajectories with much less fluctuations. The proposed integrated framework consists of both bioinformatics algorithms to reconstruct the regulatory network and mathematical models using differential equations to describe the dynamics of gene expression. The developed approach is applied to study the network regulating early blood cell development. A graphic model is constructed for a regulatory network with forty genes and a dynamic model using differential equations is developed for a network of nine genes. Numerical results suggests that the proposed model is able to match experimental data very well. We also examine the networks with more regulatory relations and numerical results show that more regulations may exist. We test the possibility of auto-regulation but numerical simulations do not support the positive auto-regulation. In addition, robustness is used as an importantly additional criterion to select candidate networks. The research results in this work shows that the developed approach is an efficient and effective method to reverse-engineer gene networks using single-cell experimental observations.

  17. Social support network typologies and health outcomes of older people in low and middle income countries--a 10/66 Dementia Research Group population-based study.

    PubMed

    Thiyagarajan, Jotheeswaran A; Prince, Martin; Webber, Martin

    2014-08-01

    This study aims to assess the construct validity of the Wenger social support network typology in low and middle income countries. We hypothesize that, in comparison with the integrated network type, the non-integrated network type is associated with loneliness, depression, poor quality of life (less happiness), poor self-reported health, increased disability and higher care needs. Cross-sectional one-phase surveys were conducted of all residents aged 65 and over in catchment areas in eight low and middle income countries (India, China, Cuba, Dominican Republic, Venezuela, Mexico, Peru and Puerto Rico). Wenger's Practitioner Assessment of Network Type (PANT) was used to measure social network type. Family dependent, local self-contained, wider community-focused and private restricted network types were considered non-integrated, in comparison to the locally integrated network type. Overall, 17,031 participants were interviewed. Family dependent and locally integrated network types were the most prevalent. Adjusted pooled estimates across sites showed that loneliness, depression, less happiness, poor health, disability, and need for care were significantly associated with non-integrated network type. The findings of this study support the construct validity of Wenger's network typology in low and middle income countries. However, further research is required to test the criterion validity of Wenger typology using longitudinal data. Identifying older people who are vulnerable could inform the development of social care interventions to support older people and their families in the context of deteriorating health.

  18. Measuring healthcare integration: Operationalization of a framework for a systems evaluation of palliative care structures, processes, and outcomes.

    PubMed

    Bainbridge, Daryl; Brazil, Kevin; Ploeg, Jenny; Krueger, Paul; Taniguchi, Alan

    2016-06-01

    Healthcare integration is a priority in many countries, yet there remains little direction on how to systematically evaluate this construct to inform further development. The examination of community-based palliative care networks provides an ideal opportunity for the advancement of integration measures, in consideration of how fundamental provider cohesion is to effective care at end of life. This article presents a variable-oriented analysis from a theory-based case study of a palliative care network to help bridge the knowledge gap in integration measurement. Data from a mixed-methods case study were mapped to a conceptual framework for evaluating integrated palliative care and a visual array depicting the extent of key factors in the represented palliative care network was formulated. The study included data from 21 palliative care network administrators, 86 healthcare professionals, and 111 family caregivers, all from an established palliative care network in Ontario, Canada. The framework used to guide this research proved useful in assessing qualities of integration and functioning in the palliative care network. The resulting visual array of elements illustrates that while this network performed relatively well at the multiple levels considered, room for improvement exists, particularly in terms of interventions that could facilitate the sharing of information. This study, along with the other evaluative examples mentioned, represents important initial attempts at empirically and comprehensively examining network-integrated palliative care and healthcare integration in general. © The Author(s) 2016.

  19. Analyzing Cyber-Physical Threats on Robotic Platforms.

    PubMed

    Ahmad Yousef, Khalil M; AlMajali, Anas; Ghalyon, Salah Abu; Dweik, Waleed; Mohd, Bassam J

    2018-05-21

    Robots are increasingly involved in our daily lives. Fundamental to robots are the communication link (or stream) and the applications that connect the robots to their clients or users. Such communication link and applications are usually supported through client/server network connection. This networking system is amenable of being attacked and vulnerable to the security threats. Ensuring security and privacy for robotic platforms is thus critical, as failures and attacks could have devastating consequences. In this paper, we examine several cyber-physical security threats that are unique to the robotic platforms; specifically the communication link and the applications. Threats target integrity, availability and confidential security requirements of the robotic platforms, which use MobileEyes/arnlServer client/server applications. A robot attack tool (RAT) was developed to perform specific security attacks. An impact-oriented approach was adopted to analyze the assessment results of the attacks. Tests and experiments of attacks were conducted in simulation environment and physically on the robot. The simulation environment was based on MobileSim; a software tool for simulating, debugging and experimenting on MobileRobots/ActivMedia platforms and their environments. The robot platform PeopleBot TM was used for physical experiments. The analysis and testing results show that certain attacks were successful at breaching the robot security. Integrity attacks modified commands and manipulated the robot behavior. Availability attacks were able to cause Denial-of-Service (DoS) and the robot was not responsive to MobileEyes commands. Integrity and availability attacks caused sensitive information on the robot to be hijacked. To mitigate security threats, we provide possible mitigation techniques and suggestions to raise awareness of threats on the robotic platforms, especially when the robots are involved in critical missions or applications.

  20. Clinical Integration and How It Affects Student Retention in Undergraduate Athletic Training Programs

    PubMed Central

    Young, Allison; Klossner, Joanne; Docherty, Carrie L; Dodge, Thomas M; Mensch, James M

    2013-01-01

    Context A better understanding of why students leave an undergraduate athletic training education program (ATEP), as well as why they persist, is critical in determining the future membership of our profession. Objective To better understand how clinical experiences affect student retention in undergraduate ATEPs. Design Survey-based research using a quantitative and qualitative mixed-methods approach. Setting Three-year undergraduate ATEPs across District 4 of the National Athletic Trainers' Association. Patients or Other Participants Seventy-one persistent students and 23 students who left the ATEP prematurely. Data Collection and Analysis Data were collected using a modified version of the Athletic Training Education Program Student Retention Questionnaire. Multivariate analysis of variance was performed on the quantitative data, followed by a univariate analysis of variance on any significant findings. The qualitative data were analyzed through inductive content analysis. Results A difference was identified between the persister and dropout groups (Pillai trace = 0.42, F1,92 = 12.95, P = .01). The follow-up analysis of variance revealed that the persister and dropout groups differed on the anticipatory factors (F1,92 = 4.29, P = .04), clinical integration (F1,92 = 6.99, P = .01), and motivation (F1,92 = 43.12, P = .01) scales. Several themes emerged in the qualitative data, including networks of support, authentic experiential learning, role identity, time commitment, and major or career change. Conclusions A perceived difference exists in how athletic training students are integrated into their clinical experiences between those students who leave an ATEP and those who stay. Educators may improve retention by emphasizing authentic experiential learning opportunities rather than hours worked, by allowing students to take on more responsibility, and by facilitating networks of support within clinical education experiences. PMID:23672327

  1. Clinical integration and how it affects student retention in undergraduate athletic training programs.

    PubMed

    Young, Allison; Klossner, Joanne; Docherty, Carrie L; Dodge, Thomas M; Mensch, James M

    2013-01-01

    A better understanding of why students leave an undergraduate athletic training education program (ATEP), as well as why they persist, is critical in determining the future membership of our profession. To better understand how clinical experiences affect student retention in undergraduate ATEPs. Survey-based research using a quantitative and qualitative mixed-methods approach. Three-year undergraduate ATEPs across District 4 of the National Athletic Trainers' Association. Seventy-one persistent students and 23 students who left the ATEP prematurely. Data were collected using a modified version of the Athletic Training Education Program Student Retention Questionnaire. Multivariate analysis of variance was performed on the quantitative data, followed by a univariate analysis of variance on any significant findings. The qualitative data were analyzed through inductive content analysis. A difference was identified between the persister and dropout groups (Pillai trace = 0.42, F(1,92) = 12.95, P = .01). The follow-up analysis of variance revealed that the persister and dropout groups differed on the anticipatory factors (F(1,92) = 4.29, P = .04), clinical integration (F(1,92) = 6.99, P = .01), and motivation (F(1,92) = 43.12, P = .01) scales. Several themes emerged in the qualitative data, including networks of support, authentic experiential learning, role identity, time commitment, and major or career change. A perceived difference exists in how athletic training students are integrated into their clinical experiences between those students who leave an ATEP and those who stay. Educators may improve retention by emphasizing authentic experiential learning opportunities rather than hours worked, by allowing students to take on more responsibility, and by facilitating networks of support within clinical education experiences.

  2. Analyzing Cyber-Physical Threats on Robotic Platforms †

    PubMed Central

    2018-01-01

    Robots are increasingly involved in our daily lives. Fundamental to robots are the communication link (or stream) and the applications that connect the robots to their clients or users. Such communication link and applications are usually supported through client/server network connection. This networking system is amenable of being attacked and vulnerable to the security threats. Ensuring security and privacy for robotic platforms is thus critical, as failures and attacks could have devastating consequences. In this paper, we examine several cyber-physical security threats that are unique to the robotic platforms; specifically the communication link and the applications. Threats target integrity, availability and confidential security requirements of the robotic platforms, which use MobileEyes/arnlServer client/server applications. A robot attack tool (RAT) was developed to perform specific security attacks. An impact-oriented approach was adopted to analyze the assessment results of the attacks. Tests and experiments of attacks were conducted in simulation environment and physically on the robot. The simulation environment was based on MobileSim; a software tool for simulating, debugging and experimenting on MobileRobots/ActivMedia platforms and their environments. The robot platform PeopleBotTM was used for physical experiments. The analysis and testing results show that certain attacks were successful at breaching the robot security. Integrity attacks modified commands and manipulated the robot behavior. Availability attacks were able to cause Denial-of-Service (DoS) and the robot was not responsive to MobileEyes commands. Integrity and availability attacks caused sensitive information on the robot to be hijacked. To mitigate security threats, we provide possible mitigation techniques and suggestions to raise awareness of threats on the robotic platforms, especially when the robots are involved in critical missions or applications. PMID:29883403

  3. Planning and cost analysis of digital radiography services for a network of hospitals (the Veterans Integrated Service Network).

    PubMed

    Duerinckx, A J; Kenagy, J J; Grant, E G

    1998-01-01

    This study analysed the design and cost of a picture archiving and communications system (PACS), computerized radiography (CR) and a wide-area network for teleradiology. The Desert Pacific Healthcare Network comprises 10 facilities, including four tertiary medical centres and one small hospital. Data were collected on radiologists' workloads, and patient and image flow within and between these medical centres. These were used to estimate the size and cash flows associated with a system-wide implementation of PACS, CR and teleradiology services. A cost analysis model was used to estimate the potential cost savings in a filmless radiology environment. ATM technology was selected as the communications medium between the medical centres. A strategic plan and business plan were successfully developed. The cost model predicted the cost-effectiveness of the proposed PACS/CR configuration within four to six years, if the base costs were kept low. The experience gained in design and cost analysis of a PACS/teleradiology network will serve as a model for similar projects.

  4. Discrete dynamic modeling of cellular signaling networks.

    PubMed

    Albert, Réka; Wang, Rui-Sheng

    2009-01-01

    Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.

  5. Receivers

    NASA Technical Reports Server (NTRS)

    Donnelly, H.

    1983-01-01

    Before discussing Deep Space Network receivers, a brief description of the functions of receivers and how they interface with other elements of the Network is presented. Different types of receivers are used in the Network for various purposes. The principal receiver type is used for telemetry and tracking. This receiver provides the capability, with other elements of the Network, to track the space probe utilizing Doppler and range measurements, and to receive telemetry, including both scientific data from the onboard experiments and engineering data pertaining to the health of the probe. Another type of receiver is used for radio science applications. This receiver measures phase perturbations on the carrier signal to obtain information on the composition of solar and planetary atmospheres and interplanetary space. A third type of receiver utilizes very long baseline interferometry (VLBI) techniques for both radio science and spacecraft navigation data. Only the telemetry receiver is described in detail in this document. The integration of the Receiver-Exciter subsystem with other portions of the Deep Space Network is described.

  6. Anisotropic connectivity implements motion-based prediction in a spiking neural network.

    PubMed

    Kaplan, Bernhard A; Lansner, Anders; Masson, Guillaume S; Perrinet, Laurent U

    2013-01-01

    Predictive coding hypothesizes that the brain explicitly infers upcoming sensory input to establish a coherent representation of the world. Although it is becoming generally accepted, it is not clear on which level spiking neural networks may implement predictive coding and what function their connectivity may have. We present a network model of conductance-based integrate-and-fire neurons inspired by the architecture of retinotopic cortical areas that assumes predictive coding is implemented through network connectivity, namely in the connection delays and in selectiveness for the tuning properties of source and target cells. We show that the applied connection pattern leads to motion-based prediction in an experiment tracking a moving dot. In contrast to our proposed model, a network with random or isotropic connectivity fails to predict the path when the moving dot disappears. Furthermore, we show that a simple linear decoding approach is sufficient to transform neuronal spiking activity into a probabilistic estimate for reading out the target trajectory.

  7. Response Inhibition Is Facilitated by a Change to Red Over Green in the Stop Signal Paradigm

    PubMed Central

    Blizzard, Shawn; Fierro-Rojas, Adriela; Fallah, Mazyar

    2017-01-01

    Actions are informed by the complex interactions of response execution and inhibition networks. These networks integrate sensory information with internal states and behavioral goals to produce an appropriate action or to update an ongoing action. Recent investigations have shown that, behaviorally, attention is captured through a hierarchy of colors. These studies showed how the color hierarchy affected visual processing. To determine whether the color hierarchy can be extended to higher level executive functions such as response execution and inhibition, we conducted several experiments using the stop-signal task (SST). In the first experiment, we modified the classic paradigm so that the go signals could vary in task-irrelevant color, with an auditory stop signal. We found that the task-irrelevant color of the go signals did not differentially affect response times. In the second experiment we determined that making the color of the go signal relevant for response selection still did not affect reaction times(RTs) and, thus, execution. In the third experiment, we modified the paradigm so that the stop signal was a task relevant change in color of the go signal. The mean RT to the red stop signal was approximately 25 ms faster than to the green stop signal. In other words, red stop signals facilitated response inhibition more than green stop signals, however, there was no comparative facilitation of response execution. These findings suggest that response inhibition, but not execution, networks are sensitive to differences in color salience. They also suggest that the color hierarchy is based on attentional networks and not simply on early sensory processing. PMID:28101011

  8. Undergraduate students' development of social, cultural, and human capital in a networked research experience

    NASA Astrophysics Data System (ADS)

    Thompson, Jennifer Jo; Conaway, Evan; Dolan, Erin L.

    2016-12-01

    Recent calls for reform in undergraduate biology education have emphasized integrating research experiences into the learning experiences of all undergraduates. Contemporary science research increasingly demands collaboration across disciplines and institutions to investigate complex research questions, providing new contexts and models for involving undergraduates in research. In this study, we examined the experiences of undergraduates participating in a multi-institution and interdisciplinary biology research network. Unlike the traditional apprenticeship model of research, in which a student participates in research under the guidance of a single faculty member, students participating in networked research have the opportunity to develop relationships with additional faculty and students working in other areas of the project, at their own and at other institutions. We examined how students in this network develop social ties and to what extent a networked research experience affords opportunities for students to develop social, cultural, and human capital. Most studies of undergraduate involvement in science research have focused on documenting student outcomes rather than elucidating how students gain access to research experiences or how elements of research participation lead to desired student outcomes. By taking a qualitative approach framed by capital theories, we have identified ways that undergraduates utilize and further develop various forms of capital important for success in science research. In our study of the first 16 months of a biology research network, we found that undergraduates drew upon a combination of human, cultural, and social capital to gain access to the network. Within their immediate research groups, students built multidimensional social ties with faculty, peers, and others, yielding social capital that can be drawn upon for information, resources, and support. They reported developing cultural capital in the form of learning to think and work like a scientist—a scientific habitus. They reported developing human capital in the forms of technical, analytical, and communication skills in scientific research. Most of the students had little, direct interaction with network members in other research groups and thus developed little cross-institutional capital. The exception to this trend was at one institution that housed three research groups. Because proximity facilitated shared activities, students across research groups at this institution developed cross-lab ties with faculty and peers through which they developed social, cultural, and human capital. An important long-term concern is whether the capital students have developed will help them access opportunities in science beyond the network. At this point, many undergraduates have had limited opportunities to actually draw on capital beyond the network. Nevertheless, a number of students demonstrated awareness that they had developed resources that they could use in other scientific contexts.

  9. EPMOSt: An Energy-Efficient Passive Monitoring System for Wireless Sensor Networks

    PubMed Central

    Garcia, Fernando P.; Andrade, Rossana M. C.; Oliveira, Carina T.; de Souza, José Neuman

    2014-01-01

    Monitoring systems are important for debugging and analyzing Wireless Sensor Networks (WSN). In passive monitoring, a monitoring network needs to be deployed in addition to the network to be monitored, named the target network. The monitoring network captures and analyzes packets transmitted by the target network. An energy-efficient passive monitoring system is necessary when we need to monitor a WSN in a real scenario because the lifetime of the monitoring network is extended and, consequently, the target network benefits from the monitoring for a longer time. In this work, we have identified, analyzed and compared the main passive monitoring systems proposed for WSN. During our research, we did not identify any passive monitoring system for WSN that aims to reduce the energy consumption of the monitoring network. Therefore, we propose an Energy-efficient Passive MOnitoring SysTem for WSN named EPMOSt that provides monitoring information using a Simple Network Management Protocol (SNMP) agent. Thus, any management tool that supports the SNMP protocol can be integrated with this monitoring system. Experiments with real sensors were performed in several scenarios. The results obtained show the energy efficiency of the proposed monitoring system and the viability of using it to monitor WSN in real scenarios. PMID:24949639

  10. Reconfiguration of the pontomedullary respiratory network: a computational modeling study with coordinated in vivo experiments.

    PubMed

    Rybak, I A; O'Connor, R; Ross, A; Shevtsova, N A; Nuding, S C; Segers, L S; Shannon, R; Dick, T E; Dunin-Barkowski, W L; Orem, J M; Solomon, I C; Morris, K F; Lindsey, B G

    2008-10-01

    A large body of data suggests that the pontine respiratory group (PRG) is involved in respiratory phase-switching and the reconfiguration of the brain stem respiratory network. However, connectivity between the PRG and ventral respiratory column (VRC) in computational models has been largely ad hoc. We developed a network model with PRG-VRC connectivity inferred from coordinated in vivo experiments. Neurons were modeled in the "integrate-and-fire" style; some neurons had pacemaker properties derived from the model of Breen et al. We recapitulated earlier modeling results, including reproduction of activity profiles of different respiratory neurons and motor outputs, and their changes under different conditions (vagotomy, pontine lesions, etc.). The model also reproduced characteristic changes in neuronal and motor patterns observed in vivo during fictive cough and during hypoxia in non-rapid eye movement sleep. Our simulations suggested possible mechanisms for respiratory pattern reorganization during these behaviors. The model predicted that network- and pacemaker-generated rhythms could be co-expressed during the transition from gasping to eupnea, producing a combined "burst-ramp" pattern of phrenic discharges. To test this prediction, phrenic activity and multiple single neuron spike trains were monitored in vagotomized, decerebrate, immobilized, thoracotomized, and artificially ventilated cats during hypoxia and recovery. In most experiments, phrenic discharge patterns during recovery from hypoxia were similar to those predicted by the model. We conclude that under certain conditions, e.g., during recovery from severe brain hypoxia, components of a distributed network activity present during eupnea can be co-expressed with gasp patterns generated by a distinct, functionally "simplified" mechanism.

  11. Experiences with engineering, making and deploying sensor networks

    NASA Astrophysics Data System (ADS)

    Martinez, K.; Hart, J. K.

    2008-12-01

    Engineers and computer scientists will usually persuade themselves that producing a sensor network is matter of design, test and deploy. After several deployments in and on Glaciers within the Glacsweb project we are in a better position to understand the reality of producing sensor networks for real-world deployments. Not only does the electronics design, programming, management and logistics have to be perfected but a full understanding of the geoscience user's priorities and needs have to be an integral part of the system. This talk will outline the achievements of the 2008 Iceland subglacial probe deployment concentrating on the unexpected things which can affect the success of such a system. This includes the design of a new sensor node which is designed for low power, easy programming and high flexibility.

  12. ‘Slow’ Revitalization on Regional Scale, the Example of an Integrated Investment Project

    NASA Astrophysics Data System (ADS)

    Mazur-Belzyt, Katarzyna

    2017-10-01

    The study arose from question about the future of towns, as well as the possibility of their development. The paper is an attempt to look at the direction in which many towns around the world aim, connecting to a networks, and especially the network of Cittaslow. The author asked a few questions - whether the Cittaslow network actually helps towns to use their inner potential, build their brand and improve the quality of residents’ lifes? The starting point for the case study method adopted in the paper is a discussion of examples of urban networks as a background for a wider Cittaslow characteristic. For this purpose, there was conducted literature and in situ research on the Cittaslow towns, the query of documents related to Polish Cittaslow, own photographic documentation was collected and a series of talks were carried out in different offices and municipalities. The database constructed in this way, allowed the analysis and conclusions. An important part of the research was the synthesis of information on the integrated project which has been taken in 14 Polish Slow Cities. “The Cross-Local Programme of Revitalization of Cittaslow Town Network in the Warmian-Masurian Voivodeship” is a unique action on the scale of the entire international Cittaslow network. Each of the participating towns tried to exploit through revitalization its own unique potential for real growth and improve the quality of life of its residents. Through the joint action, even the smallest town could more easily obtain significant funding. The involvement of regional government and understanding of the idea was also crucial. Cittaslow network, although not perfect, may in the long term strengthen linkages and exchange of experience between the slow towns and not lead to their unification. Furthermore, as shown by the example of Polish “The Cross-Local Programme of Revitalization of Cittaslow Town Network in the Warmian-Masurian Voivodeship”, belonging to the Cittaslow network could help to raise funds for the implementation of a comprehensive revitalization, as well as to integrate revitalization projects in the whole region. Joint venture naturally consolidated these slow towns in the Warmia-Mazury region and facilitated to operate efficiently in the network, as well as to undertake other common "hard" measures. As a result, obtained effect of revitalization is likely to be a more coherent and holistic.

  13. Function of local networks in palliative care: a Dutch view.

    PubMed

    Nikbakht-Van de Sande, C V M Vahedi; van der Rijt, C C D; Visser, A Ph; ten Voorde, M A; Pruyn, J F A

    2005-08-01

    Although network formation is considered an effective method of stimulating the integrated delivery of palliative care, scientific evidence on the usefulness of network formation is scarce. In 1998 the Ministry of Health of The Netherlands started a 5-year stimulation program on palliative care by founding and funding six regional Centres for the Development of Palliative Care. These centers were structured around pivotal organizations such as university hospitals and comprehensive cancer centers. As part of the stimulation program a locoregional network model was introduced within each center for the Development of Palliative Care to integrate palliative care services in the Dutch health care system. We performed a study on network formation in the southwestern area of The Netherlands with 2.4 million inhabitants. The study aimed to answer the following questions: (1) how do networks in palliative care develop, which care providers participate and how do they function? (2) which are the achievements of the palliative care networks as perceived by their participants? (3) which are the success factors of the palliative care networks according to their participants and which factors predict the achievements? Between September 2000 and January 2004 eight local palliative care networks in the region of the Center for Development of Palliative Care-Rotterdam (southwestern area of The Netherlands) were closely followed to gain information on their characteristics and developmental course. At the start of the study semistructured interviews were held with the coordinators of the eight networks. The information from these interviews and from the network documents were used to constitute a questionnaire to assess the opinions and experiences of the network participants. According to the vast majority of responders, the most important reason to install the networks was the lack of integration between the existing local health care services. The networks were initiated to stimulate mutual collaboration, improve accessibility to health care services and increase the quality of these services. The most important achievements obtained by the palliative care networks were: increase in personal contacts between colleagues in a region, improved engagement and collaboration between participating organizations, enhanced insight in the health care provisions, joined initiatives for the development of new care products, and organization of patient-tailored care. Important success factors for the networks were deemed: fruitful mutual contacts, regular funding and the collective development of care products. By logistic regression analyses, the collective development of new care products and the organization of case discussions between caregivers from different health care services turned out to be the most important predictors for success of the palliative care networks. Projects that stimulate the communication between professionals appear to improve the mutual collaboration between individual participants and between the participating organizations, which consequently enhances the quality of palliative care.

  14. On an LAS-integrated soft PLC system based on WorldFIP fieldbus.

    PubMed

    Liang, Geng; Li, Zhijun; Li, Wen; Bai, Yan

    2012-01-01

    Communication efficiency is lowered and real-time performance is not good enough in discrete control based on traditional WorldFIP field intelligent nodes in case that the scale of control in field is large. A soft PLC system based on WorldFIP fieldbus was designed and implemented. Link Activity Scheduler (LAS) was integrated into the system and field intelligent I/O modules acted as networked basic nodes. Discrete control logic was implemented with the LAS-integrated soft PLC system. The proposed system was composed of configuration and supervisory sub-systems and running sub-systems. The configuration and supervisory sub-system was implemented with a personal computer or an industrial personal computer; running subsystems were designed and implemented based on embedded hardware and software systems. Communication and schedule in the running subsystem was implemented with an embedded sub-module; discrete control and system self-diagnosis were implemented with another embedded sub-module. Structure of the proposed system was presented. Methodology for the design of the sub-systems was expounded. Experiments were carried out to evaluate the performance of the proposed system both in discrete and process control by investigating the effect of network data transmission delay induced by the soft PLC in WorldFIP network and CPU workload on resulting control performances. The experimental observations indicated that the proposed system is practically applicable. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Integrating Online and Offline Three-Dimensional Deep Learning for Automated Polyp Detection in Colonoscopy Videos.

    PubMed

    Lequan Yu; Hao Chen; Qi Dou; Jing Qin; Pheng Ann Heng

    2017-01-01

    Automated polyp detection in colonoscopy videos has been demonstrated to be a promising way for colorectal cancer prevention and diagnosis. Traditional manual screening is time consuming, operator dependent, and error prone; hence, automated detection approach is highly demanded in clinical practice. However, automated polyp detection is very challenging due to high intraclass variations in polyp size, color, shape, and texture, and low interclass variations between polyps and hard mimics. In this paper, we propose a novel offline and online three-dimensional (3-D) deep learning integration framework by leveraging the 3-D fully convolutional network (3D-FCN) to tackle this challenging problem. Compared with the previous methods employing hand-crafted features or 2-D convolutional neural network, the 3D-FCN is capable of learning more representative spatio-temporal features from colonoscopy videos, and hence has more powerful discrimination capability. More importantly, we propose a novel online learning scheme to deal with the problem of limited training data by harnessing the specific information of an input video in the learning process. We integrate offline and online learning to effectively reduce the number of false positives generated by the offline network and further improve the detection performance. Extensive experiments on the dataset of MICCAI 2015 Challenge on Polyp Detection demonstrated the better performance of our method when compared with other competitors.

  16. Integrating Facebook into a University Cohort to Enhance Student Sense of Belonging: A Pilot Program in Sport and Exercise Science

    ERIC Educational Resources Information Center

    McGuckin, Teneale Alyce; Sealey, Rebecca Maree

    2013-01-01

    University initiatives that enhance a students' sense of belonging may increase student retention and the overall student experience. Previous initiatives have largely focussed on face-to-face interactions however with the high usage of social networking, an online initiative may prove beneficial. The aim of this study was to establish a Facebook…

  17. HyspIRI Low Latency Concept and Benchmarks

    NASA Technical Reports Server (NTRS)

    Mandl, Dan

    2010-01-01

    Topics include HyspIRI low latency data ops concept, HyspIRI data flow, ongoing efforts, experiment with Web Coverage Processing Service (WCPS) approach to injecting new algorithms into SensorWeb, low fidelity HyspIRI IPM testbed, compute cloud testbed, open cloud testbed environment, Global Lambda Integrated Facility (GLIF) and OCC collaboration with Starlight, delay tolerant network (DTN) protocol benchmarking, and EO-1 configuration for preliminary DTN prototype.

  18. Integrating Social Networks in Teaching in Higher Education

    ERIC Educational Resources Information Center

    Abousoliman, Onsy

    2017-01-01

    In response to the emerging and swiftly developing digital tools, this dissertation investigated integrating a specific category of these tools, social networks, in teaching in higher education. The study focused on exploring how social networks integration might impact the teaching/learning process and on investigating the challenges that could…

  19. Low voltage polymer network liquid crystal for infrared spatial light modulators.

    PubMed

    Peng, Fenglin; Xu, Daming; Chen, Haiwei; Wu, Shin-Tson

    2015-02-09

    We report a low-voltage and fast-response polymer network liquid crystal (PNLC) infrared phase modulator. To optimize device performance, we propose a physical model to understand the curing temperature effect on average domain size. Good agreement between model and experiment is obtained. By optimizing the UV curing temperature and employing a large dielectric anisotropy LC host, we have lowered the 2π phase change voltage to 22.8V at 1.55μm wavelength while keeping response time at about 1 ms. Widespread application of such a PNLC integrated into a high resolution liquid-crystal-on-silicon (LCoS) for infrared spatial light modulator is foreseeable.

  20. Cell fate reprogramming by control of intracellular network dynamics

    NASA Astrophysics Data System (ADS)

    Zanudo, Jorge G. T.; Albert, Reka

    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell's fate, such as disease therapeutics and stem cell reprogramming. Although the topic of controlling the dynamics of a system has a long history in control theory, most of this work is not directly applicable to intracellular networks. Here we present a network control method that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our control method takes advantage of certain function-dependent network components and their relation to steady states in order to identify control targets, which are guaranteed to drive any initial state to the target state with 100% effectiveness and need to be applied only transiently for the system to reach and stay in the desired state. We illustrate our method's potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. This work was supported by NSF Grant PHY 1205840.

  1. A Reinforcement Sensor Embedded Vertical Handoff Controller for Vehicular Heterogeneous Wireless Networks

    PubMed Central

    Li, Limin; Xu, Yubin; Soong, Boon-Hee; Ma, Lin

    2013-01-01

    Vehicular communication platforms that provide real-time access to wireless networks have drawn more and more attention in recent years. IEEE 802.11p is the main radio access technology that supports communication for high mobility terminals, however, due to its limited coverage, IEEE 802.11p is usually deployed by coupling with cellular networks to achieve seamless mobility. In a heterogeneous cellular/802.11p network, vehicular communication is characterized by its short time span in association with a wireless local area network (WLAN). Moreover, for the media access control (MAC) scheme used for WLAN, the network throughput dramatically decreases with increasing user quantity. In response to these compelling problems, we propose a reinforcement sensor (RFS) embedded vertical handoff control strategy to support mobility management. The RFS has online learning capability and can provide optimal handoff decisions in an adaptive fashion without prior knowledge. The algorithm integrates considerations including vehicular mobility, traffic load, handoff latency, and network status. Simulation results verify that the proposed algorithm can adaptively adjust the handoff strategy, allowing users to stay connected to the best network. Furthermore, the algorithm can ensure that RSUs are adequate, thereby guaranteeing a high quality user experience. PMID:24193101

  2. Optimizing Cluster Heads for Energy Efficiency in Large-Scale Heterogeneous Wireless Sensor Networks

    DOE PAGES

    Gu, Yi; Wu, Qishi; Rao, Nageswara S. V.

    2010-01-01

    Many complex sensor network applications require deploying a large number of inexpensive and small sensors in a vast geographical region to achieve quality through quantity. Hierarchical clustering is generally considered as an efficient and scalable way to facilitate the management and operation of such large-scale networks and minimize the total energy consumption for prolonged lifetime. Judicious selection of cluster heads for data integration and communication is critical to the success of applications based on hierarchical sensor networks organized as layered clusters. We investigate the problem of selecting sensor nodes in a predeployed sensor network to be the cluster heads tomore » minimize the total energy needed for data gathering. We rigorously derive an analytical formula to optimize the number of cluster heads in sensor networks under uniform node distribution, and propose a Distance-based Crowdedness Clustering algorithm to determine the cluster heads in sensor networks under general node distribution. The results from an extensive set of experiments on a large number of simulated sensor networks illustrate the performance superiority of the proposed solution over the clustering schemes based on k -means algorithm.« less

  3. Modeling Endoplasmic Reticulum Network Maintenance in a Plant Cell.

    PubMed

    Lin, Congping; White, Rhiannon R; Sparkes, Imogen; Ashwin, Peter

    2017-07-11

    The endoplasmic reticulum (ER) in plant cells forms a highly dynamic network of complex geometry. ER network morphology and dynamics are influenced by a number of biophysical processes, including filament/tubule tension, viscous forces, Brownian diffusion, and interactions with many other organelles and cytoskeletal elements. Previous studies have indicated that ER networks can be thought of as constrained minimal-length networks acted on by a variety of forces that perturb and/or remodel the network. Here, we study two specific biophysical processes involved in remodeling. One is the dynamic relaxation process involving a combination of tubule tension and viscous forces. The other is the rapid creation of cross-connection tubules by direct or indirect interactions with cytoskeletal elements. These processes are able to remodel the ER network: the first reduces network length and complexity whereas the second increases both. Using live cell imaging of ER network dynamics in tobacco leaf epidermal cells, we examine these processes on ER network dynamics. Away from regions of cytoplasmic streaming, we suggest that the dynamic network structure is a balance between the two processes, and we build an integrative model of the two processes for network remodeling. This model produces quantitatively similar ER networks to those observed in experiments. We use the model to explore the effect of parameter variation on statistical properties of the ER network. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Cyber entertainment system using an immersive networked virtual environment

    NASA Astrophysics Data System (ADS)

    Ihara, Masayuki; Honda, Shinkuro; Kobayashi, Minoru; Ishibashi, Satoshi

    2002-05-01

    Authors are examining a cyber entertainment system that applies IPT (Immersive Projection Technology) displays to the entertainment field. This system enables users who are in remote locations to communicate with each other so that they feel as if they are together. Moreover, the system enables those users to experience a high degree of presence, this is due to provision of stereoscopic vision as well as a haptic interface and stereo sound. This paper introduces this system from the viewpoint of space sharing across the network and elucidates its operation using the theme of golf. The system is developed by integrating avatar control, an I/O device, communication links, virtual interaction, mixed reality, and physical simulations. Pairs of these environments are connected across the network. This allows the two players to experience competition. An avatar of each player is displayed by the other player's IPT display in the remote location and is driven by only two magnetic sensors. That is, in the proposed system, users don't need to wear any data suit with a lot of sensors and they are able to play golf without any encumbrance.

  5. Dynamic Neural Networks Supporting Memory Retrieval

    PubMed Central

    St. Jacques, Peggy L.; Kragel, Philip A.; Rubin, David C.

    2011-01-01

    How do separate neural networks interact to support complex cognitive processes such as remembrance of the personal past? Autobiographical memory (AM) retrieval recruits a consistent pattern of activation that potentially comprises multiple neural networks. However, it is unclear how such large-scale neural networks interact and are modulated by properties of the memory retrieval process. In the present functional MRI (fMRI) study, we combined independent component analysis (ICA) and dynamic causal modeling (DCM) to understand the neural networks supporting AM retrieval. ICA revealed four task-related components consistent with the previous literature: 1) Medial Prefrontal Cortex (PFC) Network, associated with self-referential processes, 2) Medial Temporal Lobe (MTL) Network, associated with memory, 3) Frontoparietal Network, associated with strategic search, and 4) Cingulooperculum Network, associated with goal maintenance. DCM analysis revealed that the medial PFC network drove activation within the system, consistent with the importance of this network to AM retrieval. Additionally, memory accessibility and recollection uniquely altered connectivity between these neural networks. Recollection modulated the influence of the medial PFC on the MTL network during elaboration, suggesting that greater connectivity among subsystems of the default network supports greater re-experience. In contrast, memory accessibility modulated the influence of frontoparietal and MTL networks on the medial PFC network, suggesting that ease of retrieval involves greater fluency among the multiple networks contributing to AM. These results show the integration between neural networks supporting AM retrieval and the modulation of network connectivity by behavior. PMID:21550407

  6. Data quality control and tools in passive seismic experiments exemplified on the Czech broadband seismic pool MOBNET in the AlpArray collaborative project

    NASA Astrophysics Data System (ADS)

    Vecsey, Luděk; Plomerová, Jaroslava; Jedlička, Petr; Munzarová, Helena; Babuška, Vladislav; AlpArray Working Group

    2017-12-01

    This paper focuses on major issues related to the data reliability and network performance of 20 broadband (BB) stations of the Czech (CZ) MOBNET (MOBile NETwork) seismic pool within the AlpArray seismic experiments. Currently used high-resolution seismological applications require high-quality data recorded for a sufficiently long time interval at seismological observatories and during the entire time of operation of the temporary stations. In this paper we present new hardware and software tools we have been developing during the last two decades while analysing data from several international passive experiments. The new tools help to assure the high-quality standard of broadband seismic data and eliminate potential errors before supplying data to seismological centres. Special attention is paid to crucial issues like the detection of sensor misorientation, timing problems, interchange of record components and/or their polarity reversal, sensor mass centring, or anomalous channel amplitudes due to, for example, imperfect gain. Thorough data quality control should represent an integral constituent of seismic data recording, preprocessing, and archiving, especially for data from temporary stations in passive seismic experiments. Large international seismic experiments require enormous efforts from scientists from different countries and institutions to gather hundreds of stations to be deployed in the field during a limited time period. In this paper, we demonstrate the beneficial effects of the procedures we have developed for acquiring a reliable large set of high-quality data from each group participating in field experiments. The presented tools can be applied manually or automatically on data from any seismic network.

  7. A mismatch between supply and demand of social support in dementia care: a qualitative study on the perspectives of spousal caregivers and their social network members.

    PubMed

    Dam, Alieske E H; Boots, Lizzy M M; van Boxtel, Martin P J; Verhey, Frans R J; de Vugt, Marjolein E

    2017-06-13

    Access to social support contributes to feelings of independence and better social health. This qualitative study aims to investigate multi-informant perspectives on informal social support in dementia care networks. Ten spousal caregivers of people with dementia (PwD) completed an ecogram, a social network card and a semi-structured interview. The ecogram aimed to trigger subjective experiences regarding social support. Subsequently, 17 network members were interviewed. The qualitative analyses identified codes, categories, and themes. Sixth themes emerged: (1) barriers to ask for support; (2) facilitators to ask for support; (3) barriers to offer support; (4) facilitators to offer support; (5) a mismatch between supply and demand of social support; and (6) openness in communication to repair the imbalance. Integrating social network perspectives resulted in a novel model identifying a mismatch between the supply and demand of social support, strengthened by a cognitive bias: caregivers reported to think for other social network members and vice versa. Openness in communication in formal and informal care systems might repair this mismatch.

  8. Receiver-Assisted Congestion Control to Achieve High Throughput in Lossy Wireless Networks

    NASA Astrophysics Data System (ADS)

    Shi, Kai; Shu, Yantai; Yang, Oliver; Luo, Jiarong

    2010-04-01

    Many applications would require fast data transfer in high-speed wireless networks nowadays. However, due to its conservative congestion control algorithm, Transmission Control Protocol (TCP) cannot effectively utilize the network capacity in lossy wireless networks. In this paper, we propose a receiver-assisted congestion control mechanism (RACC) in which the sender performs loss-based control, while the receiver is performing delay-based control. The receiver measures the network bandwidth based on the packet interarrival interval and uses it to compute a congestion window size deemed appropriate for the sender. After receiving the advertised value feedback from the receiver, the sender then uses the additive increase and multiplicative decrease (AIMD) mechanism to compute the correct congestion window size to be used. By integrating the loss-based and the delay-based congestion controls, our mechanism can mitigate the effect of wireless losses, alleviate the timeout effect, and therefore make better use of network bandwidth. Simulation and experiment results in various scenarios show that our mechanism can outperform conventional TCP in high-speed and lossy wireless environments.

  9. The SLH framework for modeling quantum input-output networks

    DOE PAGES

    Combes, Joshua; Kerckhoff, Joseph; Sarovar, Mohan

    2017-09-04

    Here, many emerging quantum technologies demand precise engineering and control over networks consisting of quantum mechanical degrees of freedom connected by propagating electromagnetic fields, or quantum input-output networks. Here we review recent progress in theory and experiment related to such quantum input-output networks, with a focus on the SLH framework, a powerful modeling framework for networked quantum systems that is naturally endowed with properties such as modularity and hierarchy. We begin by explaining the physical approximations required to represent any individual node of a network, e.g. atoms in cavity or a mechanical oscillator, and its coupling to quantum fields bymore » an operator triple ( S,L,H). Then we explain how these nodes can be composed into a network with arbitrary connectivity, including coherent feedback channels, using algebraic rules, and how to derive the dynamics of network components and output fields. The second part of the review discusses several extensions to the basic SLH framework that expand its modeling capabilities, and the prospects for modeling integrated implementations of quantum input-output networks. In addition to summarizing major results and recent literature, we discuss the potential applications and limitations of the SLH framework and quantum input-output networks, with the intention of providing context to a reader unfamiliar with the field.« less

  10. The SLH framework for modeling quantum input-output networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Combes, Joshua; Kerckhoff, Joseph; Sarovar, Mohan

    Here, many emerging quantum technologies demand precise engineering and control over networks consisting of quantum mechanical degrees of freedom connected by propagating electromagnetic fields, or quantum input-output networks. Here we review recent progress in theory and experiment related to such quantum input-output networks, with a focus on the SLH framework, a powerful modeling framework for networked quantum systems that is naturally endowed with properties such as modularity and hierarchy. We begin by explaining the physical approximations required to represent any individual node of a network, e.g. atoms in cavity or a mechanical oscillator, and its coupling to quantum fields bymore » an operator triple ( S,L,H). Then we explain how these nodes can be composed into a network with arbitrary connectivity, including coherent feedback channels, using algebraic rules, and how to derive the dynamics of network components and output fields. The second part of the review discusses several extensions to the basic SLH framework that expand its modeling capabilities, and the prospects for modeling integrated implementations of quantum input-output networks. In addition to summarizing major results and recent literature, we discuss the potential applications and limitations of the SLH framework and quantum input-output networks, with the intention of providing context to a reader unfamiliar with the field.« less

  11. Enhancing situational awareness by means of visualization and information integration of sensor networks

    NASA Astrophysics Data System (ADS)

    Timonen, Jussi; Vankka, Jouko

    2013-05-01

    This paper presents a solution for information integration and sharing architecture, which is able to receive data simultaneously from multiple different sensor networks. Creating a Common Operational Picture (COP) object along with the base map of the building plays a key role in the research. The object is combined with desired map sources and then shared to the mobile devices worn by soldiers in the field. The sensor networks we used focus on location techniques indoors, and a simple set of symbols is created to present the information, as an addition to NATO APP6B symbols. A core element in this research is the MUSAS (Mobile Urban Situational Awareness System), a demonstration environment that implements central functionalities. Information integration of the system is handled by the Internet Connection Engine (Ice) middleware, as well as the server, which hosts COP information and maps. The entire system is closed, such that it does not need any external service, and the information transfer with the mobile devices is organized by a tactical 5 GHz WLAN solution. The demonstration environment is implemented using only commercial off-theshelf (COTS) products. We have presented a field experiment event in which the system was able to integrate and share real time information of a blue force tracking system, received signal strength indicator (RSSI) based intrusion detection system, and a robot using simultaneous location and mapping technology (SLAM), where all the inputs were based on real activities. The event was held in a training area on urban area warfare.

  12. Mechanics of composite actin networks: in vitro and cellular perspectives

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Arpita

    2014-03-01

    Actin filaments and associated actin binding proteins play an essential role in governing the mechanical properties of eukaryotic cells. Even though cells have multiple actin binding proteins (ABPs) that exist simultaneously to maintain the structural and mechanical integrity of the cellular cytoskeleton, how these proteins work together to determine the properties of actin networks is not well understood. The ABP, palladin, is essential for the integrity of cell morphology and movement during development. Palladin coexists with alpha-actinin in stress fibers and focal adhesions and binds to both actin and alpha-actinin. To obtain insight into how mutually interacting actin crosslinking proteins modulate the properties of actin networks, we have characterized the micro-structure and mechanics of actin networks crosslinked with palladin and alpha-actinin. Our studies on composite networks of alpha-actinin/palladin/actin show that palladin and alpha-actinin synergistically determine network viscoelasticity. We have further examined the role of palladin in cellular force generation and mechanosensing. Traction force microscopy revealed that TAFs are sensitive to substrate stiffness as they generate larger forces on substrates of increased stiffness. Contrary to expectations, knocking down palladin increased the forces generated by cells, and also inhibited the ability to sense substrate stiffness for very stiff gels. This was accompanied by significant differences in the actin organization and adhesion dynamics of palladin knock down cells. Perturbation experiments also suggest altered myosin activity in palladin KD cells. Our results suggest that the actin crosslinkers such as palladin and myosin motors coordinate for optimal cell function and to prevent aberrant behavior as in cancer metastasis.

  13. A decade of insights into grassland ecosystem responses to global environmental change

    USGS Publications Warehouse

    Borer, Elizabeth T.; Grace, James B.; Harpole, W. Stanley; MacDougall, Andrew S.; Seabloom, Eric W.

    2017-01-01

    Earth’s biodiversity and carbon uptake by plants, or primary productivity, are intricately interlinked, underlie many essential ecosystem processes, and depend on the interplay among environmental factors, many of which are being changed by human activities. While ecological theory generalizes across taxa and environments, most empirical tests of factors controlling diversity and productivity have been observational, single-site experiments, or meta-analyses, limiting our understanding of variation among site-level responses and tests of general mechanisms. A synthesis of results from ten years of a globally distributed, coordinated experiment, the Nutrient Network (NutNet), demonstrates that species diversity promotes ecosystem productivity and stability, and that nutrient supply and herbivory control diversity via changes in composition, including invasions of non-native species and extinction of native species. Distributed experimental networks are a powerful tool for tests and integration of multiple theories and for generating multivariate predictions about the effects of global changes on future ecosystems.

  14. Metabolic Networks Integrative Cardiac Health Project (ICHP) - Center of Excellence

    DTIC Science & Technology

    2016-08-01

    Award Number: TITLE: Metabolic Networks Integrative Cardiac Health Project (ICHP) - Center of Excellence PRINCIPAL INVESTIGATOR: COL (Ret) Marina N...2016 2. REPORT TYPE FINAL 3. DATES COVERED (From - To) 29 Sep 2011 – 31 May 2016 4. TITLE AND SUBTITLE "Metabolic Networks Integrative Cardiac Health...ABSTRACT The Integrative Cardiac Health Project (ICHP) aims to lead the way in Cardiovascular Disease (CVD) Prevention by conducting novel research

  15. MMM: A toolbox for integrative structure modeling.

    PubMed

    Jeschke, Gunnar

    2018-01-01

    Structural characterization of proteins and their complexes may require integration of restraints from various experimental techniques. MMM (Multiscale Modeling of Macromolecules) is a Matlab-based open-source modeling toolbox for this purpose with a particular emphasis on distance distribution restraints obtained from electron paramagnetic resonance experiments on spin-labelled proteins and nucleic acids and their combination with atomistic structures of domains or whole protomers, small-angle scattering data, secondary structure information, homology information, and elastic network models. MMM does not only integrate various types of restraints, but also various existing modeling tools by providing a common graphical user interface to them. The types of restraints that can support such modeling and the available model types are illustrated by recent application examples. © 2017 The Protein Society.

  16. A Collaborative Molecular Modeling Environment Using a Virtual Tunneling Service

    PubMed Central

    Lee, Jun; Kim, Jee-In; Kang, Lin-Woo

    2012-01-01

    Collaborative researches of three-dimensional molecular modeling can be limited by different time zones and locations. A networked virtual environment can be utilized to overcome the problem caused by the temporal and spatial differences. However, traditional approaches did not sufficiently consider integration of different computing environments, which were characterized by types of applications, roles of users, and so on. We propose a collaborative molecular modeling environment to integrate different molecule modeling systems using a virtual tunneling service. We integrated Co-Coot, which is a collaborative crystallographic object-oriented toolkit, with VRMMS, which is a virtual reality molecular modeling system, through a collaborative tunneling system. The proposed system showed reliable quantitative and qualitative results through pilot experiments. PMID:22927721

  17. Towards an integrated EU data system within AtlantOS project

    NASA Astrophysics Data System (ADS)

    Pouliquen, Sylvie; Harscoat, Valerie; Waldmann, Christoph; Koop-Jakobsen, ketill

    2017-04-01

    The H2020 AtlantOS project started in June 2015 and aims to optimise and enhance the Integrated Atlantic Ocean Observing Systems (IAOOS). One goal is to ensure that data from different and diverse in-situ observing networks are readily accessible and useable to the wider community, international ocean science community and other stakeholders in this field. To achieve that, the strategy is to move towards an integrated data system within AtlantOS that harmonises work flows, data processing and distribution across the in-situ observing network systems, and integrates in-situ observations in existing European and international data infrastructures (Copernicus marine service, SeaDataNet NODCs, EMODnet, OBIS, GEOSS) so called Integrators. The targeted integrated system will deal with data management challenges for efficient and reliable data service to users: • Quality control commons for heterogeneous and nearly real time data • Standardisation of mandatory metadata for efficient data exchange • Interoperability of network and integrator data management systems Presently the situation is that the data acquired by the different in situ observing networks contributing to the AtlantOS project are processed and distributed using different methodologies and means. Depending on the network data management organization, the data are either processed following recommendations elaborated y the network teams and accessible through a unique portal (FTP or Web), or are processed by individual scientific researchers and made available through National Data Centres or directly at institution level. Some datasets are available through Integrators, such as Copernicus or EMODnet, but connected through ad-hoc links. To facilitate the access to the Atlantic observations and avoid "mixing pears with apples", it has been necessary to agree on (1) the EOVs list and definition across the Networks, (2) a minimum set of common vocabularies for metadata and data description to be used by all the Networks, and (3) a minimum level of Near Real Time Quality Control Procedures for selected EOVs. Then a data exchange backbone has been defined and is being setting up to facilitate discovery, viewing and downloading by the users. Some tools will be recommended to help Network plugging their data on this backbone and facilitate integration in the Integrators. Finally, existing services to the users for data discovery, viewing and downloading will be enhanced to ease access to existing observations. An initial working phase relying on existing international standards and protocols, involving data providers, both Networks and Integrators, and dealing with data harmonisation and integration objectives, has led to agreements and recommendations .The setup phase has started, both on Networks and Integrators sides, to adapt the existing systems in order to move toward this integrated EU data system within AtlantOS as well as collaboration with international partners arpound the ATlantic Ocean.

  18. A local network integrated into a balloon-borne apparatus

    NASA Astrophysics Data System (ADS)

    Imori, Masatosi; Ueda, Ikuo; Shimamura, Kotaro; Maeno, Tadashi; Murata, Takahiro; Sasaki, Makoto; Matsunaga, Hiroyuki; Matsumoto, Hiroshi; Shikaze, Yoshiaki; Anraku, Kazuaki; Matsui, Nagataka; Yamagami, Takamasa

    A local network is incorporated into an apparatus for a balloon-borne experiment. A balloon-borne system implemented in the apparatus is composed of subsystems interconnected through a local network, which introduces modular architecture into the system. The network decomposes the balloon-borne system into subsystems, which are similarly structured from the point of view that the systems is kept under the control of a ground station. The subsystem is functionally self-contained and electrically independent. A computer is integrated into a subsystem, keeping the subsystem under the control. An independent group of batteries, being dedicated to a subsystem, supplies the whole electricity of the subsystem. The subsystem could be turned on and off independently of the other subsystems. So communication among the subsystems needs to be based on such a protocol that could guarantee the independence of the individual subsystems. An Omninet protocol is employed to network the subsystems. A ground station sends commands to the balloon-borne system. The command is received and executed at the system, then results of the execution are returned to the ground station. Various commands are available so that the system borne on a balloon could be controlled and monitored remotely from the ground station. A subsystem responds to a specific group of commands. A command is received by a transceiver subsystem and then transferred through the network to the subsystem to which the command is addressed. Then the subsystem executes the command and returns results to the transceiver subsystem, where the results are telemetered to the ground station. The network enhances independence of the individual subsystems, which enables programs of the individual subsystems to be coded independently. Independence facilitates development and debugging of programs, improving the quality of the system borne on a balloon.

  19. A Critical Agency Network Model for Building an Integrated Outreach Program

    ERIC Educational Resources Information Center

    Kiyama, Judy Marquez; Lee, Jenny J.; Rhoades, Gary

    2012-01-01

    This study considers a distinct case of a college outreach program that integrates student affairs staff, academic administrators, and faculty across campus. The authors find that social networks and critical agency help to understand the integration of these various professionals and offer a critical agency network model of enacting change.…

  20. The Structure and Effectiveness of Health Systems: Exploring the Impact of System Integration in Rural China.

    PubMed

    Wang, Xin; Birch, Stephen; Ma, Huifen; Zhu, Weiming; Meng, Qingyue

    2016-08-12

    Facing the challenges of aging populations, increasing chronic diseases prevalence and health system fragmentation, there have been several pilots of integrated health systems in China. But little is known about their structure, mechanism and effectiveness. The aim of this paper is to analyze health system integration and develop recommendations for achieving integration. Huangzhong and Hualong counties in Qinghai province were studied as study sites, with only Huangzhong having implemented health system integration. Questionnaires, interviews, and health insurance records were sources of data. Social network analysis was employed to analyze integration, through structure measurement and effectiveness evaluation. Health system integration in Huangzhong is higher than in Hualong, so is system effectiveness. The patient referral network in Hualong has more "leapfrog" referrals. The information sharing networks in both counties are larger than the other types of networks. The average distance in the joint training network of Huangzhong is less than in Hualong. Meanwhile, there are deficiencies common to both systems. Both county health systems have strengths and limitations regarding system integration. The use of medical consortia in Huangzhong has contributed to system effectiveness. Future research might consider alternative more context specific models of health system integration.

  1. RMS: a platform for managing cross-disciplinary and multi-institutional research project collaboration.

    PubMed

    Luo, Jake; Apperson-Hansen, Carolyn; Pelfrey, Clara M; Zhang, Guo-Qiang

    2014-11-30

    Cross-institutional cross-disciplinary collaboration has become a trend as researchers move toward building more productive and innovative teams for scientific research. Research collaboration is significantly changing the organizational structure and strategies used in the clinical and translational science domain. However, due to the obstacles of diverse administrative structures, differences in area of expertise, and communication barriers, establishing and managing a cross-institutional research project is still a challenging task. We address these challenges by creating an integrated informatics platform to reduce the barriers to biomedical research collaboration. The Request Management System (RMS) is an informatics infrastructure designed to transform a patchwork of expertise and resources into an integrated support network. The RMS facilitates investigators' initiation of new collaborative projects and supports the management of the collaboration process. In RMS, experts and their knowledge areas are categorized and managed structurally to provide consistent service. A role-based collaborative workflow is tightly integrated with domain experts and services to streamline and monitor the life-cycle of a research project. The RMS has so far tracked over 1,500 investigators with over 4,800 tasks. The research network based on the data collected in RMS illustrated that the investigators' collaborative projects increased close to 3 times from 2009 to 2012. Our experience with RMS indicates that the platform reduces barriers for cross-institutional collaboration of biomedical research projects. Building a new generation of infrastructure to enhance cross-disciplinary and multi-institutional collaboration has become an important yet challenging task. In this paper, we share the experience of developing and utilizing a collaborative project management system. The results of this study demonstrate that a web-based integrated informatics platform can facilitate and increase research interactions among investigators.

  2. Genome Scale Modeling in Systems Biology: Algorithms and Resources

    PubMed Central

    Najafi, Ali; Bidkhori, Gholamreza; Bozorgmehr, Joseph H.; Koch, Ina; Masoudi-Nejad, Ali

    2014-01-01

    In recent years, in silico studies and trial simulations have complemented experimental procedures. A model is a description of a system, and a system is any collection of interrelated objects; an object, moreover, is some elemental unit upon which observations can be made but whose internal structure either does not exist or is ignored. Therefore, any network analysis approach is critical for successful quantitative modeling of biological systems. This review highlights some of most popular and important modeling algorithms, tools, and emerging standards for representing, simulating and analyzing cellular networks in five sections. Also, we try to show these concepts by means of simple example and proper images and graphs. Overall, systems biology aims for a holistic description and understanding of biological processes by an integration of analytical experimental approaches along with synthetic computational models. In fact, biological networks have been developed as a platform for integrating information from high to low-throughput experiments for the analysis of biological systems. We provide an overview of all processes used in modeling and simulating biological networks in such a way that they can become easily understandable for researchers with both biological and mathematical backgrounds. Consequently, given the complexity of generated experimental data and cellular networks, it is no surprise that researchers have turned to computer simulation and the development of more theory-based approaches to augment and assist in the development of a fully quantitative understanding of cellular dynamics. PMID:24822031

  3. Functional Organization of the Action Observation Network in Autism: A Graph Theory Approach.

    PubMed

    Alaerts, Kaat; Geerlings, Franca; Herremans, Lynn; Swinnen, Stephan P; Verhoeven, Judith; Sunaert, Stefan; Wenderoth, Nicole

    2015-01-01

    The ability to recognize, understand and interpret other's actions and emotions has been linked to the mirror system or action-observation-network (AON). Although variations in these abilities are prevalent in the neuro-typical population, persons diagnosed with autism spectrum disorders (ASD) have deficits in the social domain and exhibit alterations in this neural network. Here, we examined functional network properties of the AON using graph theory measures and region-to-region functional connectivity analyses of resting-state fMRI-data from adolescents and young adults with ASD and typical controls (TC). Overall, our graph theory analyses provided convergent evidence that the network integrity of the AON is altered in ASD, and that reductions in network efficiency relate to reductions in overall network density (i.e., decreased overall connection strength). Compared to TC, individuals with ASD showed significant reductions in network efficiency and increased shortest path lengths and centrality. Importantly, when adjusting for overall differences in network density between ASD and TC groups, participants with ASD continued to display reductions in network integrity, suggesting that also network-level organizational properties of the AON are altered in ASD. While differences in empirical connectivity contributed to reductions in network integrity, graph theoretical analyses provided indications that also changes in the high-level network organization reduced integrity of the AON.

  4. Extensive cross-talk and global regulators identified from an analysis of the integrated transcriptional and signaling network in Escherichia coli.

    PubMed

    Antiqueira, Lucas; Janga, Sarath Chandra; Costa, Luciano da Fontoura

    2012-11-01

    To understand the regulatory dynamics of transcription factors (TFs) and their interplay with other cellular components we have integrated transcriptional, protein-protein and the allosteric or equivalent interactions which mediate the physiological activity of TFs in Escherichia coli. To study this integrated network we computed a set of network measurements followed by principal component analysis (PCA), investigated the correlations between network structure and dynamics, and carried out a procedure for motif detection. In particular, we show that outliers identified in the integrated network based on their network properties correspond to previously characterized global transcriptional regulators. Furthermore, outliers are highly and widely expressed across conditions, thus supporting their global nature in controlling many genes in the cell. Motifs revealed that TFs not only interact physically with each other but also obtain feedback from signals delivered by signaling proteins supporting the extensive cross-talk between different types of networks. Our analysis can lead to the development of a general framework for detecting and understanding global regulatory factors in regulatory networks and reinforces the importance of integrating multiple types of interactions in underpinning the interrelationships between them.

  5. A scalable, self-analyzing digital locking system for use on quantum optics experiments.

    PubMed

    Sparkes, B M; Chrzanowski, H M; Parrain, D P; Buchler, B C; Lam, P K; Symul, T

    2011-07-01

    Digital control of optics experiments has many advantages over analog control systems, specifically in terms of the scalability, cost, flexibility, and the integration of system information into one location. We present a digital control system, freely available for download online, specifically designed for quantum optics experiments that allows for automatic and sequential re-locking of optical components. We show how the inbuilt locking analysis tools, including a white-noise network analyzer, can be used to help optimize individual locks, and verify the long term stability of the digital system. Finally, we present an example of the benefits of digital locking for quantum optics by applying the code to a specific experiment used to characterize optical Schrödinger cat states.

  6. Conditions for the successful integration of Human and Organizational Factors (HOF) in the nuclear safety analysis.

    PubMed

    Tosello, Michèle; Lévêque, Françoise; Dutillieu, Stéphanie; Hernandez, Guillaume; Vautier, Jean-François

    2012-01-01

    This communication presents some elements which come from the experience feedback at CEA about the conditions for the successful integration of HOF in the nuclear safety analysis. To point out some of these conditions, one of the concepts proposed by Edgar Morin to describe the functioning of "complex" systems: the dialogical principle has been used. The idea is to look for some dialogical pairs. The elements of this kind of pair are both complementary and antagonist to one another. Three dialogical pairs are presented in this communication. The first two pairs are related to the organization of the HOF network and the last one is related to the methods which are used to analyse the working situations. The three pairs are: specialist - non-specialist actors of the network, centralized - distributed human resources in the network and microscopic - macroscopic levels of HOF methods to analyse the working situations. To continuously improve these three dialogical pairs, it is important to keep the differences which exist between the two elements of a pair and to find and maintain a balance between the two elements of the pairs.

  7. An experiment in remote manufacturing using the advanced communications technology satellite

    NASA Technical Reports Server (NTRS)

    Tsatsoulis, Costas; Frost, Victor

    1991-01-01

    The goal of the completed project was to develop an experiment in remote manufacturing that would use the capabilities of the ACTS satellite. A set of possible experiments that could be performed using the Advanced Communications Technology Satellite (ACTS), and which would perform remote manufacturing using a laser cutter and an integrated circuit testing machine are described in detail. The proposed design is shown to be a feasible solution to the offered problem and it takes into consideration the constraints that were placed on the experiment. In addition, we have developed two more experiments that are included in this report: backup of rural telecommunication networks, and remote use of Synthetic Aperture Radar (SAR) data analysis for on-site collection of glacier scattering data in the Antarctic.

  8. Past climate change on Sky Islands drives novelty in a core developmental gene network and its phenotype.

    PubMed

    Favé, Marie-Julie; Johnson, Robert A; Cover, Stefan; Handschuh, Stephan; Metscher, Brian D; Müller, Gerd B; Gopalan, Shyamalika; Abouheif, Ehab

    2015-09-04

    A fundamental and enduring problem in evolutionary biology is to understand how populations differentiate in the wild, yet little is known about what role organismal development plays in this process. Organismal development integrates environmental inputs with the action of gene regulatory networks to generate the phenotype. Core developmental gene networks have been highly conserved for millions of years across all animals, and therefore, organismal development may bias variation available for selection to work on. Biased variation may facilitate repeatable phenotypic responses when exposed to similar environmental inputs and ecological changes. To gain a more complete understanding of population differentiation in the wild, we integrated evolutionary developmental biology with population genetics, morphology, paleoecology and ecology. This integration was made possible by studying how populations of the ant species Monomorium emersoni respond to climatic and ecological changes across five 'Sky Islands' in Arizona, which are mountain ranges separated by vast 'seas' of desert. Sky Islands represent a replicated natural experiment allowing us to determine how repeatable is the response of M. emersoni populations to climate and ecological changes at the phenotypic, developmental, and gene network levels. We show that a core developmental gene network and its phenotype has kept pace with ecological and climate change on each Sky Island over the last ~90,000 years before present (BP). This response has produced two types of evolutionary change within an ant species: one type is unpredictable and contingent on the pattern of isolation of Sky lsland populations by climate warming, resulting in slight changes in gene expression, organ growth, and morphology. The other type is predictable and deterministic, resulting in the repeated evolution of a novel wingless queen phenotype and its underlying gene network in response to habitat changes induced by climate warming. Our findings reveal dynamics of developmental gene network evolution in wild populations. This holds important implications: (1) for understanding how phenotypic novelty is generated in the wild; (2) for providing a possible bridge between micro- and macroevolution; and (3) for understanding how development mediates the response of organisms to past, and potentially, future climate change.

  9. Reconstruction of the experimentally supported human protein interactome: what can we learn?

    PubMed

    Klapa, Maria I; Tsafou, Kalliopi; Theodoridis, Evangelos; Tsakalidis, Athanasios; Moschonas, Nicholas K

    2013-10-02

    Understanding the topology and dynamics of the human protein-protein interaction (PPI) network will significantly contribute to biomedical research, therefore its systematic reconstruction is required. Several meta-databases integrate source PPI datasets, but the protein node sets of their networks vary depending on the PPI data combined. Due to this inherent heterogeneity, the way in which the human PPI network expands via multiple dataset integration has not been comprehensively analyzed. We aim at assembling the human interactome in a global structured way and exploring it to gain insights of biological relevance. First, we defined the UniProtKB manually reviewed human "complete" proteome as the reference protein-node set and then we mined five major source PPI datasets for direct PPIs exclusively between the reference proteins. We updated the protein and publication identifiers and normalized all PPIs to the UniProt identifier level. The reconstructed interactome covers approximately 60% of the human proteome and has a scale-free structure. No apparent differentiating gene functional classification characteristics were identified for the unrepresented proteins. The source dataset integration augments the network mainly in PPIs. Polyubiquitin emerged as the highest-degree node, but the inclusion of most of its identified PPIs may be reconsidered. The high number (>300) of connections of the subsequent fifteen proteins correlates well with their essential biological role. According to the power-law network structure, the unrepresented proteins should mainly have up to four connections with equally poorly-connected interactors. Reconstructing the human interactome based on the a priori definition of the protein nodes enabled us to identify the currently included part of the human "complete" proteome, and discuss the role of the proteins within the network topology with respect to their function. As the network expansion has to comply with the scale-free theory, we suggest that the core of the human interactome has essentially emerged. Thus, it could be employed in systems biology and biomedical research, despite the considerable number of currently unrepresented proteins. The latter are probably involved in specialized physiological conditions, justifying the scarcity of related PPI information, and their identification can assist in designing relevant functional experiments and targeted text mining algorithms.

  10. Metabolic Networks Integrative Cardiac Health Project (ICHP) - Center of Excellence

    DTIC Science & Technology

    2016-04-01

    2.6; P = 0.001) among all variables, as the most significant predictor of abnormal CIMT, thus increasing risk for CVD. Conclusions: The Integrative ...1 Award Number: W81XWH-11-2-0227 TITLE: "Metabolic Networks Integrative Cardiac Health Project (ICHP) - Center of Excellence." PRINCIPAL...April 2016 2. REPORT TYPE ANNUAL 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE "Metabolic Networks Integrative Cardiac Health Project (ICHP

  11. Performance Analysis of a NASA Integrated Network Array

    NASA Technical Reports Server (NTRS)

    Nessel, James A.

    2012-01-01

    The Space Communications and Navigation (SCaN) Program is planning to integrate its individual networks into a unified network which will function as a single entity to provide services to user missions. This integrated network architecture is expected to provide SCaN customers with the capabilities to seamlessly use any of the available SCaN assets to support their missions to efficiently meet the collective needs of Agency missions. One potential optimal application of these assets, based on this envisioned architecture, is that of arraying across existing networks to significantly enhance data rates and/or link availabilities. As such, this document provides an analysis of the transmit and receive performance of a proposed SCaN inter-network antenna array. From the study, it is determined that a fully integrated internetwork array does not provide any significant advantage over an intra-network array, one in which the assets of an individual network are arrayed for enhanced performance. Therefore, it is the recommendation of this study that NASA proceed with an arraying concept, with a fundamental focus on a network-centric arraying.

  12. Metro-access integrated network based on optical OFDMA with dynamic sub-carrier allocation and power distribution.

    PubMed

    Zhang, Chongfu; Zhang, Qiongli; Chen, Chen; Jiang, Ning; Liu, Deming; Qiu, Kun; Liu, Shuang; Wu, Baojian

    2013-01-28

    We propose and demonstrate a novel optical orthogonal frequency-division multiple access (OFDMA)-based metro-access integrated network with dynamic resource allocation. It consists of a single fiber OFDMA ring and many single fiber OFDMA trees, which transparently integrates metropolitan area networks with optical access networks. The single fiber OFDMA ring connects the core network and the central nodes (CNs), the CNs are on demand reconfigurable and use multiple orthogonal sub-carriers to realize parallel data transmission and dynamic resource allocation, meanwhile, they can also implement flexible power distribution. The remote nodes (RNs) distributed in the user side are connected by the single fiber OFDMA trees with the corresponding CN. The obtained results indicate that our proposed metro-access integrated network is feasible and the power distribution is agile.

  13. Adaptive Topological Configuration of an Integrated Circuit/Packet-Switched Computer Network.

    DTIC Science & Technology

    1984-01-01

    Gitman et al. [45] state that there are basically two approaches to the integrated network design problem: (1) solve the link/capacity problem for...1972), 1385-1397. 33. Frank, H., and Gitman , I. Economic analysis of integrated voice and data networks: a case study. Proc. of IEEE 66 , 11 (Nov. 1978...1974), 1074-1079. 45. Gitman , I., Hsieh, W., and Occhiogrosso, B. J. Analysis and design of hybrid switching networks. IEEE Trans. on Comm. Com-29

  14. Network-based drug discovery by integrating systems biology and computational technologies

    PubMed Central

    Leung, Elaine L.; Cao, Zhi-Wei; Jiang, Zhi-Hong; Zhou, Hua

    2013-01-01

    Network-based intervention has been a trend of curing systemic diseases, but it relies on regimen optimization and valid multi-target actions of the drugs. The complex multi-component nature of medicinal herbs may serve as valuable resources for network-based multi-target drug discovery due to its potential treatment effects by synergy. Recently, robustness of multiple systems biology platforms shows powerful to uncover molecular mechanisms and connections between the drugs and their targeting dynamic network. However, optimization methods of drug combination are insufficient, owning to lacking of tighter integration across multiple ‘-omics’ databases. The newly developed algorithm- or network-based computational models can tightly integrate ‘-omics’ databases and optimize combinational regimens of drug development, which encourage using medicinal herbs to develop into new wave of network-based multi-target drugs. However, challenges on further integration across the databases of medicinal herbs with multiple system biology platforms for multi-target drug optimization remain to the uncertain reliability of individual data sets, width and depth and degree of standardization of herbal medicine. Standardization of the methodology and terminology of multiple system biology and herbal database would facilitate the integration. Enhance public accessible databases and the number of research using system biology platform on herbal medicine would be helpful. Further integration across various ‘-omics’ platforms and computational tools would accelerate development of network-based drug discovery and network medicine. PMID:22877768

  15. Developing Health Promotion Interventions on Social Networking Sites: Recommendations from The FaceSpace Project

    PubMed Central

    Pedrana, Alisa E; Stoove, Mark A; Chang, Shanton; Howard, Steve; Asselin, Jason; Ilic, Olivia; Batrouney, Colin; Hellard, Margaret E

    2012-01-01

    Online social networking sites offer a novel setting for the delivery of health promotion interventions due to their potential to reach a large population and the possibility for two-way engagement. However, few have attempted to host interventions on these sites, or to use the range of interactive functions available to enhance the delivery of health-related messages. This paper presents lessons learnt from “The FaceSpace Project”, a sexual health promotion intervention using social networking sites targeting two key at-risk groups. Based on our experience, we make recommendations for developing and implementing health promotion interventions on these sites. Elements crucial for developing interventions include establishing a multidisciplinary team, allowing adequate time for obtaining approvals, securing sufficient resources for building and maintaining an online presence, and developing an integrated process and impact evaluation framework. With two-way interaction an important and novel feature of health promotion interventions in this medium, we also present strategies trialled to generate interest and engagement in our intervention. Social networking sites are now an established part of the online environment; our experience in developing and implementing a health promotion intervention using this medium are of direct relevance and utility for all health organizations creating a presence in this new environment. PMID:22374589

  16. Modeling and Analysis of Hybrid Cellular/WLAN Systems with Integrated Service-Based Vertical Handoff Schemes

    NASA Astrophysics Data System (ADS)

    Xia, Weiwei; Shen, Lianfeng

    We propose two vertical handoff schemes for cellular network and wireless local area network (WLAN) integration: integrated service-based handoff (ISH) and integrated service-based handoff with queue capabilities (ISHQ). Compared with existing handoff schemes in integrated cellular/WLAN networks, the proposed schemes consider a more comprehensive set of system characteristics such as different features of voice and data services, dynamic information about the admitted calls, user mobility and vertical handoffs in two directions. The code division multiple access (CDMA) cellular network and IEEE 802.11e WLAN are taken into account in the proposed schemes. We model the integrated networks by using multi-dimensional Markov chains and the major performance measures are derived for voice and data services. The important system parameters such as thresholds to prioritize handoff voice calls and queue sizes are optimized. Numerical results demonstrate that the proposed ISHQ scheme can maximize the utilization of overall bandwidth resources with the best quality of service (QoS) provisioning for voice and data services.

  17. Offline memory reprocessing: involvement of the brain's default network in spontaneous thought processes.

    PubMed

    Wang, Kun; Yu, Chunshui; Xu, Lijuan; Qin, Wen; Li, Kuncheng; Xu, Lin; Jiang, Tianzi

    2009-01-01

    Spontaneous thought processes (STPs), also called daydreaming or mind-wandering, occur ubiquitously in daily life. However, the functional significance of STPs remains largely unknown. Using functional magnetic resonance imaging (fMRI), we first identified an STPs-network whose activity was positively correlated with the subjects' tendency of having STPs during a task-free state. The STPs-network was then found to be strongly associated with the default network, which has previously been established as being active during the task-free state. Interestingly, we found that offline reprocessing of previously memorized information further increased the activity of the STPs-network regions, although during a state with less STPs. In addition, we found that the STPs-network kept a dynamic balance between functional integration and functional separation among its component regions to execute offline memory reprocessing in STPs. These findings strengthen a view that offline memory reprocessing and STPs share the brain's default network, and thus implicate that offline memory reprocessing may be a predetermined function of STPs. This supports the perspective that memory can be consolidated and modified during STPs, and thus gives rise to a dynamic behavior dependent on both previous external and internal experiences.

  18. On the Feasibility of Wireless Multimedia Sensor Networks over IEEE 802.15.5 Mesh Topologies

    PubMed Central

    Garcia-Sanchez, Antonio-Javier; Losilla, Fernando; Rodenas-Herraiz, David; Cruz-Martinez, Felipe; Garcia-Sanchez, Felipe

    2016-01-01

    Wireless Multimedia Sensor Networks (WMSNs) are a special type of Wireless Sensor Network (WSN) where large amounts of multimedia data are transmitted over networks composed of low power devices. Hierarchical routing protocols typically used in WSNs for multi-path communication tend to overload nodes located within radio communication range of the data collection unit or data sink. The battery life of these nodes is therefore reduced considerably, requiring frequent battery replacement work to extend the operational life of the WSN system. In a wireless sensor network with mesh topology, any node may act as a forwarder node, thereby enabling multiple routing paths toward any other node or collection unit. In addition, mesh topologies have proven advantages, such as data transmission reliability, network robustness against node failures, and potential reduction in energy consumption. This work studies the feasibility of implementing WMSNs in mesh topologies and their limitations by means of exhaustive computer simulation experiments. To this end, a module developed for the Synchronous Energy Saving (SES) mode of the IEEE 802.15.5 mesh standard has been integrated with multimedia tools to thoroughly test video sequences encoded using H.264 in mesh networks. PMID:27164106

  19. On the Feasibility of Wireless Multimedia Sensor Networks over IEEE 802.15.5 Mesh Topologies.

    PubMed

    Garcia-Sanchez, Antonio-Javier; Losilla, Fernando; Rodenas-Herraiz, David; Cruz-Martinez, Felipe; Garcia-Sanchez, Felipe

    2016-05-05

    Wireless Multimedia Sensor Networks (WMSNs) are a special type of Wireless Sensor Network (WSN) where large amounts of multimedia data are transmitted over networks composed of low power devices. Hierarchical routing protocols typically used in WSNs for multi-path communication tend to overload nodes located within radio communication range of the data collection unit or data sink. The battery life of these nodes is therefore reduced considerably, requiring frequent battery replacement work to extend the operational life of the WSN system. In a wireless sensor network with mesh topology, any node may act as a forwarder node, thereby enabling multiple routing paths toward any other node or collection unit. In addition, mesh topologies have proven advantages, such as data transmission reliability, network robustness against node failures, and potential reduction in energy consumption. This work studies the feasibility of implementing WMSNs in mesh topologies and their limitations by means of exhaustive computer simulation experiments. To this end, a module developed for the Synchronous Energy Saving (SES) mode of the IEEE 802.15.5 mesh standard has been integrated with multimedia tools to thoroughly test video sequences encoded using H.264 in mesh networks.

  20. Scenarios and performance measures for advanced ISDN satellite design and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1991-01-01

    Described here are the contemplated input and expected output for the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and Full Service ISDN Satellite (FSIS) Models. The discrete event simulations of these models are presented with specific scenarios that stress ISDN satellite parameters. Performance measure criteria are presented for evaluating the advanced ISDN communication satellite designs of the NASA Satellite Communications Research (SCAR) Program.

  1. The Effect Teaching Experience Has on Perceived Effectiveness of Interactive Television as a Distance Education Model for Elementary School Science Teacher's Professional Development: Another Digital Divide?

    ERIC Educational Resources Information Center

    Annetta, Leonard A.; Minogue, James

    2004-01-01

    The first year of a 5 year professional development project for elementary teachers in two mid-western states integrated a bridge of two distinctly different distance education networks (T-1 and fiber optics) to provide science professional development for elementary school teachers in rural communities. "Interactive television" (ITV), the title…

  2. Understanding hydraulic fracturing: a multi-scale problem.

    PubMed

    Hyman, J D; Jiménez-Martínez, J; Viswanathan, H S; Carey, J W; Porter, M L; Rougier, E; Karra, S; Kang, Q; Frash, L; Chen, L; Lei, Z; O'Malley, D; Makedonska, N

    2016-10-13

    Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages.This article is part of the themed issue 'Energy and the subsurface'. © 2016 The Author(s).

  3. Manned/Unmanned Common Architecture Program (MCAP) net centric flight tests

    NASA Astrophysics Data System (ADS)

    Johnson, Dale

    2009-04-01

    Properly architected avionics systems can reduce the costs of periodic functional improvements, maintenance, and obsolescence. With this in mind, the U.S. Army Aviation Applied Technology Directorate (AATD) initiated the Manned/Unmanned Common Architecture Program (MCAP) in 2003 to develop an affordable, high-performance embedded mission processing architecture for potential application to multiple aviation platforms. MCAP analyzed Army helicopter and unmanned air vehicle (UAV) missions, identified supporting subsystems, surveyed advanced hardware and software technologies, and defined computational infrastructure technical requirements. The project selected a set of modular open systems standards and market-driven commercial-off-theshelf (COTS) electronics and software, and, developed experimental mission processors, network architectures, and software infrastructures supporting the integration of new capabilities, interoperability, and life cycle cost reductions. MCAP integrated the new mission processing architecture into an AH-64D Apache Longbow and participated in Future Combat Systems (FCS) network-centric operations field experiments in 2006 and 2007 at White Sands Missile Range (WSMR), New Mexico and at the Nevada Test and Training Range (NTTR) in 2008. The MCAP Apache also participated in PM C4ISR On-the-Move (OTM) Capstone Experiments 2007 (E07) and 2008 (E08) at Ft. Dix, NJ and conducted Mesa, Arizona local area flight tests in December 2005, February 2006, and June 2008.

  4. Understanding hydraulic fracturing: a multi-scale problem

    PubMed Central

    Hyman, J. D.; Jiménez-Martínez, J.; Viswanathan, H. S.; Carey, J. W.; Porter, M. L.; Rougier, E.; Karra, S.; Kang, Q.; Frash, L.; Chen, L.; Lei, Z.; O’Malley, D.; Makedonska, N.

    2016-01-01

    Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597789

  5. Dancing through Life: Molecular Dynamics Simulations and Network-Centric Modeling of Allosteric Mechanisms in Hsp70 and Hsp110 Chaperone Proteins.

    PubMed

    Stetz, Gabrielle; Verkhivker, Gennady M

    2015-01-01

    Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that allosteric mechanisms of Hsp70 and Hsp110 chaperones may be primarily determined by nucleotide-induced redistribution of local conformational ensembles in the inter-domain regions and the substrate binding domain. Conformational dynamics and energetics of the peptide substrate binding with the Hsp70 structures has been analyzed using free energy calculations, revealing allosteric hotspots that control negative cooperativity between regulatory sites. The results have indicated that cooperative interactions may promote a population-shift mechanism in Hsp70, in which functional residues are organized in a broad and robust allosteric network that can link the nucleotide-binding site and the substrate-binding regions. A smaller allosteric network in Hsp110 structures may elicit an entropy-driven allostery that occurs in the absence of global structural changes. We have found that global mediating residues with high network centrality may be organized in stable local communities that are indispensable for structural stability and efficient allosteric communications. The network-centric analysis of allosteric interactions has also established that centrality of functional residues could correlate with their sensitivity to mutations across diverse chaperone functions. This study reconciles a wide spectrum of structural and functional experiments by demonstrating how integration of molecular simulations and network-centric modeling may explain thermodynamic and mechanistic aspects of allosteric regulation in chaperones.

  6. Sociospace: A smart social framework based on the IP Multimedia Subsystem

    NASA Astrophysics Data System (ADS)

    Hasswa, Ahmed

    Advances in smart technologies, wireless networking, and increased interest in contextual services have led to the emergence of ubiquitous and pervasive computing as one of the most promising areas of computing in recent years. Smart Spaces, in particular, have gained significant interest within the research community. Currently, most Smart Spaces rely on physical components, such as sensors, to acquire information about the real-world environment. Although current sensor networks can acquire some useful contextual information from the physical environment, their information resources are often limited, and the data acquired is often unreliable. We argue that by introducing social network information into such systems, smarter and more adaptive spaces can be created. Social networks have recently become extremely popular, and are now an integral part of millions of people's daily lives. Through social networks, users create profiles, build relationships, and join groups, forming intermingled sets and communities. Social Networks contain a wealth of information, which, if exploited properly, can lead to a whole new level of smart contextual services. A mechanism is therefore needed to extract data from heterogeneous social networks, to link profiles across different networks, and to aggregate the data obtained. We therefore propose the design and implementation of a Smart Spaces framework that utilizes the social context. In order to manage services and sessions, we integrate our system with the IP Multimedia Subsystem. Our system, which we call SocioSpace, includes full design and implementation of all components, including the central server, the location management system, the social network interfacing system, the service delivery platform, and user agents. We have built a prototype for proof of concept and carried out exhaustive performance analysis; the results show that SocioSpace is scalable, extensible, and fault-tolerant. It is capable of creating Smart Spaces that can truly deliver adaptive services that enhance the users' overall experience, increase their satisfaction, and make the surroundings more beneficial and interesting to them.

  7. Dancing through Life: Molecular Dynamics Simulations and Network-Centric Modeling of Allosteric Mechanisms in Hsp70 and Hsp110 Chaperone Proteins

    PubMed Central

    Stetz, Gabrielle; Verkhivker, Gennady M.

    2015-01-01

    Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that allosteric mechanisms of Hsp70 and Hsp110 chaperones may be primarily determined by nucleotide-induced redistribution of local conformational ensembles in the inter-domain regions and the substrate binding domain. Conformational dynamics and energetics of the peptide substrate binding with the Hsp70 structures has been analyzed using free energy calculations, revealing allosteric hotspots that control negative cooperativity between regulatory sites. The results have indicated that cooperative interactions may promote a population-shift mechanism in Hsp70, in which functional residues are organized in a broad and robust allosteric network that can link the nucleotide-binding site and the substrate-binding regions. A smaller allosteric network in Hsp110 structures may elicit an entropy-driven allostery that occurs in the absence of global structural changes. We have found that global mediating residues with high network centrality may be organized in stable local communities that are indispensable for structural stability and efficient allosteric communications. The network-centric analysis of allosteric interactions has also established that centrality of functional residues could correlate with their sensitivity to mutations across diverse chaperone functions. This study reconciles a wide spectrum of structural and functional experiments by demonstrating how integration of molecular simulations and network-centric modeling may explain thermodynamic and mechanistic aspects of allosteric regulation in chaperones. PMID:26619280

  8. The RAFT Telemedicine Network: Lessons Learnt and Perspectives from a Decade of Educational and Clinical Services in Low- and Middle-Incomes Countries.

    PubMed

    Bediang, Georges; Perrin, Caroline; Ruiz de Castañeda, Rafael; Kamga, Yannick; Sawadogo, Alexandre; Bagayoko, Cheick Oumar; Geissbuhler, Antoine

    2014-01-01

    The objectives of this paper are to (i) provide an overview of the educational and clinical experiences of the Réseau en Afrique Francophone pour la Télémédecine (RAFT) network, (ii) analyze key challenges and lessons learnt throughout a decade of activity, and (iii) draw a vision and perspectives of its sustainability. The study was carried out following three main stages: (i) a literature review, (ii) the analysis of key documents, and (iii) discussions with key collaborators of the RAFT. Réseau en Afrique Francophone pour la Télémédecine has been offering an important quantity of educational, clinical, and public health activities during the last decade. The educational activities include the weekly delivery of video-lectures for continuing and post-graduate medical education, the use of virtual patients for training in clinical decision making, research training activities using ICTs and other e-learning activities. The clinical and public health activities include tele-expertise to support health professionals in the management of difficult clinical cases, the implementation of clinical information systems in African hospitals, the deployment of mHealth projects, etc. Since 2010, the RAFT has been extended to the Altiplano in Bolivia and Nepal (in progress). Lessons Learnt and Perspectives: Important lessons have been learnt from the accumulated experiences throughout these years. These lessons concern: social and organization, human resources, technologies and data security, policy and legislation, and economy and financing. Also, given the increase of the activities and the integration of eHealth and telemedicine in the health system of most of the countries, the RAFT network faces many other challenges and perspectives such as learning throughout life, recognition, and valorization of teaching or learning activities, the impact evaluation of interventions, and the scaling up and transferability out of Africa of RAFT activities. Based on the RAFT experience, effective integration and optimum use of eHealth and telemedicine in low- and middle-income countries (LMICs) health systems should take into account the context (resources, infrastructure, and funding), the needs of key stakeholders, and the results derived from theoretical and practical experience. The relevant items highlighted to illustrate the sustainability of the RAFT network and the analyses performed in this study, should serve as discussion basis for the development of eHealth and telemedicine in LMICs.

  9. Integrating Empirical-Modeling Approaches to Improve Understanding of Terrestrial Ecology Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, Heather; Luo, Yiqi; Wullschleger, Stan D

    Recent decades have seen tremendous increases in the quantity of empirical ecological data collected by individual investigators, as well as through research networks such as FLUXNET (Baldocchi et al., 2001). At the same time, advances in computer technology have facilitated the development and implementation of large and complex land surface and ecological process models. Separately, each of these information streams provides useful, but imperfect information about ecosystems. To develop the best scientific understanding of ecological processes, and most accurately predict how ecosystems may cope with global change, integration of empirical and modeling approaches is necessary. However, true integration - inmore » which models inform empirical research, which in turn informs models (Fig. 1) - is not yet common in ecological research (Luo et al., 2011). The goal of this workshop, sponsored by the Department of Energy, Office of Science, Biological and Environmental Research (BER) program, was to bring together members of the empirical and modeling communities to exchange ideas and discuss scientific practices for increasing empirical - model integration, and to explore infrastructure and/or virtual network needs for institutionalizing empirical - model integration (Yiqi Luo, University of Oklahoma, Norman, OK, USA). The workshop included presentations and small group discussions that covered topics ranging from model-assisted experimental design to data driven modeling (e.g. benchmarking and data assimilation) to infrastructure needs for empirical - model integration. Ultimately, three central questions emerged. How can models be used to inform experiments and observations? How can experimental and observational results be used to inform models? What are effective strategies to promote empirical - model integration?« less

  10. Too Many Friends: Social Integration, Network Cohesion and Adolescent Depressive Symptoms

    ERIC Educational Resources Information Center

    Falci, Christina; McNeely, Clea

    2009-01-01

    Using a nationally representative sample of adolescents, we examine associations among social integration (network size), network cohesion (alter-density), perceptions of social relationships (e.g., social support) and adolescent depressive symptoms. We find that adolescents with either too large or too small a network have higher levels of…

  11. Performance evaluation of multi-stratum resources integration based on network function virtualization in software defined elastic data center optical interconnect.

    PubMed

    Yang, Hui; Zhang, Jie; Ji, Yuefeng; Tian, Rui; Han, Jianrui; Lee, Young

    2015-11-30

    Data center interconnect with elastic optical network is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented multi-stratum resilience between IP and elastic optical networks that allows to accommodate data center services. In view of this, this study extends to consider the resource integration by breaking the limit of network device, which can enhance the resource utilization. We propose a novel multi-stratum resources integration (MSRI) architecture based on network function virtualization in software defined elastic data center optical interconnect. A resource integrated mapping (RIM) scheme for MSRI is introduced in the proposed architecture. The MSRI can accommodate the data center services with resources integration when the single function or resource is relatively scarce to provision the services, and enhance globally integrated optimization of optical network and application resources. The overall feasibility and efficiency of the proposed architecture are experimentally verified on the control plane of OpenFlow-based enhanced software defined networking (eSDN) testbed. The performance of RIM scheme under heavy traffic load scenario is also quantitatively evaluated based on MSRI architecture in terms of path blocking probability, provisioning latency and resource utilization, compared with other provisioning schemes.

  12. Math anxiety: Brain cortical network changes in anticipation of doing mathematics.

    PubMed

    Klados, Manousos A; Pandria, Niki; Micheloyannis, Sifis; Margulies, Daniel; Bamidis, Panagiotis D

    2017-12-01

    Following our previous work regarding the involvement of math anxiety (MA) in math-oriented tasks, this study tries to explore the differences in the cerebral networks' topology between self-reported low math-anxious (LMA) and high math-anxious (HMA) individuals, during the anticipation phase prior to a mathematical related experiment. For this reason, multichannel EEG recordings were adopted, while the solution of the inverse problem was applied in a generic head model, in order to obtain the cortical signals. The cortical networks have been computed for each band separately, using the magnitude square coherence metric. The main graph theoretical parameters, showed differences in segregation and integration in almost all EEG bands of the HMAs in comparison to LMAs, indicative of a great influence of the anticipatory anxiety prior to mathematical performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A Lossless Network for Data Acquisition

    NASA Astrophysics Data System (ADS)

    Jereczek, Grzegorz; Lehmann Miotto, Giovanna; Malone, David; Walukiewicz, Miroslaw

    2017-06-01

    The bursty many-to-one communication pattern, typical for data acquisition systems, is particularly demanding for commodity TCP/IP and Ethernet technologies. We expand the study of lossless switching in software running on commercial off-the-shelf servers, using the ATLAS experiment as a case study. In this paper, we extend the popular software switch, Open vSwitch, with a dedicated, throughput-oriented buffering mechanism for data acquisition. We compare the performance under heavy congestion on typical Ethernet switches to a commodity server acting as a switch. Our results indicate that software switches with large buffers perform significantly better. Next, we evaluate the scalability of the system when building a larger topology of interconnected software switches, exploiting the integration with software-defined networking technologies. We build an IP-only leaf-spine network consisting of eight software switches running on distinct physical servers as a demonstrator.

  14. Internetworking in the military environment

    NASA Astrophysics Data System (ADS)

    Davies, B. H.; Bates, A. S.

    1981-07-01

    The increasing requirement for data communications in the military environment and the heterogeneous nature of the network technologies and protocols involved are highlighted. The design of a military internet architecture, influenced by the military requirements, especially that of survivability, is discussed. Comparison with the civilian PTT approach to internetworking shows that while there are economic advantages to using civilian international standards where possible, these standards do not satisfy the military requirements. In particular the strategies for routing in a heavily damaged network environment and addressing hosts that migrate from one network to another must form an integral part of the overall architectural design. This results in gateways whose routing tables have a finer degree of detail of the internet topology than is usually required but which do not contain connection oriented information. Finally, practical experience gained on the ARPA catenet system is described.

  15. Teacher Directed Design: Content Knowledge, Pedagogy and Assessment under the Nevada K-12 Real-Time Seismic Network

    NASA Astrophysics Data System (ADS)

    Cantrell, P.; Ewing-Taylor, J.; Crippen, K. J.; Smith, K. D.; Snelson, C. M.

    2004-12-01

    Education professionals and seismologists under the emerging SUN (Shaking Up Nevada) program are leveraging the existing infrastructure of the real-time Nevada K-12 Seismic Network to provide a unique inquiry based science experience for teachers. The concept and effort are driven by teacher needs and emphasize rigorous content knowledge acquisition coupled with the translation of that knowledge into an integrated seismology based earth sciences curriculum development process. We are developing a pedagogical framework, graduate level coursework, and materials to initiate the SUN model for teacher professional development in an effort to integrate the research benefits of real-time seismic data with science education needs in Nevada. A component of SUN is to evaluate teacher acquisition of qualified seismological and earth science information and pedagogy both in workshops and in the classroom and to assess the impact on student achievement. SUN's mission is to positively impact earth science education practices. With the upcoming EarthScope initiative, the program is timely and will incorporate EarthScope real-time seismic data (USArray) and educational materials in graduate course materials and teacher development programs. A number of schools in Nevada are contributing real-time data from both inexpensive and high-quality seismographs that are integrated with Nevada regional seismic network operations as well as the IRIS DMC. A powerful and unique component of the Nevada technology model is that schools can receive "stable" continuous live data feeds from 100's seismograph stations in Nevada, California and world (including live data from Earthworm systems and the IRIS DMC BUD - Buffer of Uniform Data). Students and teachers see their own networked seismograph station within a global context, as participants in regional and global monitoring. The robust real-time Internet communications protocols invoked in the Nevada network provide for local data acquisition, remote multi-channel data access, local time-series data management, interactive multi-window waveform display and time-series analysis with centralized meta-data control. Formally integrating educational seismology into the K-12 science curriculum with an overall "positive" impact to science education practices necessarily requires a collaborative effort between professional educators and seismologists yet driven exclusively by teacher needs.

  16. Grey-matter network disintegration as predictor of cognitive and motor function with aging.

    PubMed

    Koini, Marisa; Duering, Marco; Gesierich, Benno G; Rombouts, Serge A R B; Ropele, Stefan; Wagner, Fabian; Enzinger, Christian; Schmidt, Reinhold

    2018-06-01

    Loss of grey-matter volume with advancing age affects the entire cortex. It has been suggested that atrophy occurs in a network-dependent manner with advancing age rather than in independent brain areas. The relationship between networks of structural covariance (SCN) disintegration and cognitive functioning during normal aging is not fully explored. We, therefore, aimed to (1) identify networks that lose GM integrity with advancing age, (2) investigate if age-related impairment of integrity in GM networks associates with cognitive function and decreasing fine motor skills (FMS), and (3) examine if GM disintegration is a mediator between age and cognition and FMS. T1-weighted scans of n = 257 participants (age range: 20-87) were used to identify GM networks using independent component analysis. Random forest analysis was implemented to examine the importance of network integrity as predictors of memory, executive functions, and FMS. The associations between GM disintegration, age and cognitive performance, and FMS were assessed using mediation analyses. Advancing age was associated with decreasing cognitive performance and FMS. Fourteen of 20 GM networks showed integrity changes with advancing age. Next to age and education, eight networks (fronto-parietal, fronto-occipital, temporal, limbic, secondary somatosensory, cuneal, sensorimotor network, and a cerebellar network) showed an association with cognition and FMS (up to 15.08%). GM networks partially mediated the effect between age and cognition and age and FMS. We confirm an age-related decline in cognitive functioning and FMS in non-demented community-dwelling subjects and showed that aging selectively affects the integrity of GM networks. The negative effect of age on cognition and FMS is associated with distinct GM networks and is partly mediated by their disintegration.

  17. Clinical experience with a high-performance ATM-connected DICOM archive for cardiology

    NASA Astrophysics Data System (ADS)

    Solomon, Harry P.

    1997-05-01

    A system to archive large image sets, such as cardiac cine runs, with near realtime response must address several functional and performance issues, including efficient use of a high performance network connection with standard protocols, an architecture which effectively integrates both short- and long-term mass storage devices, and a flexible data management policy which allows optimization of image distribution and retrieval strategies based on modality and site-specific operational use. Clinical experience with such as archive has allowed evaluation of these systems issues and refinement of a traffic model for cardiac angiography.

  18. Reflections on a vision for integrated research and monitoring after 15 years

    USGS Publications Warehouse

    Murdoch, Peter S.; McHale, Michael; Baron, Jill S.

    2014-01-01

    In May of 1998, Owen Bricker and his co-author Michael Ruggiero introduced a conceptual design for integrating the Nation’s environmental research and monitoring programs. The Framework for Integrated Monitoring and Related Research was an organizing strategy for relating data collected by various programs, at multiple spatial and temporal scales, and by multiple science disciplines to solve complex ecological issues that individual research or monitoring programs were not designed to address. The concept nested existing intensive monitoring and research stations within national and regional surveys, remotely sensed data, and inventories to produce a collaborative program for multi-scale, multi-network integrated environmental monitoring and research. Analyses of gaps in data needed for specific issues would drive decisions on network improvements or enhancements. Data contributions to the Framework from existing networks would help indicate critical research and monitoring programs to protect during budget reductions. Significant progress has been made since 1998 on refining the Framework strategy. Methods and models for projecting scientific information across spatial and temporal scales have been improved, and a few regional pilots of multi-scale data-integration concepts have been attempted. The links between science and decision-making are also slowly improving and being incorporated into science practice. Experiments with the Framework strategy since 1998 have revealed the foundational elements essential to its successful implementation, such as defining core measurements, establishing standards of data collection and management, integrating research and long-term monitoring, and describing baseline ecological conditions. They have also shown us the remaining challenges to establishing the Framework concept: protecting and enhancing critical long-term monitoring, filling gaps in measurement methods, improving science for decision support, and integrating the disparate integrated science efforts now underway. In the 15 years since the Bricker and Ruggiero (Ecol Appl 8(2):326–329, 1998) paper challenged us with a new paradigm for bringing sound and comprehensive science to environmental decisions, the scientific community can take pride in the progress that has been made, while also taking stock of the challenges ahead for completing the Framework vision.

  19. The Requirements and Design of the Rapid Prototyping Capabilities System

    NASA Astrophysics Data System (ADS)

    Haupt, T. A.; Moorhead, R.; O'Hara, C.; Anantharaj, V.

    2006-12-01

    The Rapid Prototyping Capabilities (RPC) system will provide the capability to rapidly evaluate innovative methods of linking science observations. To this end, the RPC will provide the capability to integrate the software components and tools needed to evaluate the use of a wide variety of current and future NASA sensors, numerical models, and research results, model outputs, and knowledge, collectively referred to as "resources". It is assumed that the resources are geographically distributed, and thus RPC will provide the support for the location transparency of the resources. The RPC system requires providing support for: (1) discovery, semantic understanding, secure access and transport mechanisms for data products available from the known data provides; (2) data assimilation and geo- processing tools for all data transformations needed to match given data products to the model input requirements; (3) model management including catalogs of models and model metadata, and mechanisms for creation environments for model execution; and (4) tools for model output analysis and model benchmarking. The challenge involves developing a cyberinfrastructure for a coordinated aggregate of software, hardware and other technologies, necessary to facilitate RPC experiments, as well as human expertise to provide an integrated, "end-to-end" platform to support the RPC objectives. Such aggregation is to be achieved through a horizontal integration of loosely coupled services. The cyberinfrastructure comprises several software layers. At the bottom, the Grid fabric encompasses network protocols, optical networks, computational resources, storage devices, and sensors. At the top, applications use workload managers to coordinate their access to physical resources. Applications are not tightly bounded to a single physical resource. Instead, they bind dynamically to resources (i.e., they are provisioned) via a common grid infrastructure layer. For the RPC system, the cyberinfrastructure must support organizing computations (or "data transformations" in general) into complex workflows with resource discovery, automatic resource allocation, monitoring, preserving provenance as well as to aggregate heterogeneous, distributed data into knowledge databases. Such service orchestration is the responsibility of the "collective services" layer. For RPC, this layer will be based on Java Business Integration (JBI, [JSR-208]) specification which is a standards-based integration platform that combines messaging, web services, data transformation, and intelligent routing to reliably connect and coordinate the interaction of significant numbers of diverse applications (plug-in components) across organizational boundaries. JBI concept is a new approach to integration that can provide the underpinnings for loosely coupled, highly distributed integration network that can scale beyond the limits of currently used hub-and-spoke brokers. This presentation discusses the requirements, design and early prototype of the NASA-sponsored RPC system under development at Mississippi State University, demonstrating the integration of data provisioning mechanisms, data transformation tools and computational models into a single interoperable system enabling rapid execution of RPC experiments.

  20. Integration of Body Sensor Networks and Vehicular Ad-hoc Networks for Traffic Safety.

    PubMed

    Reyes-Muñoz, Angelica; Domingo, Mari Carmen; López-Trinidad, Marco Antonio; Delgado, José Luis

    2016-01-15

    The emergence of Body Sensor Networks (BSNs) constitutes a new and fast growing trend for the development of daily routine applications. However, in the case of heterogeneous BSNs integration with Vehicular ad hoc Networks (VANETs) a large number of difficulties remain, that must be solved, especially when talking about the detection of human state factors that impair the driving of motor vehicles. The main contributions of this investigation are principally three: (1) an exhaustive review of the current mechanisms to detect four basic physiological behavior states (drowsy, drunk, driving under emotional state disorders and distracted driving) that may cause traffic accidents is presented; (2) A middleware architecture is proposed. This architecture can communicate with the car dashboard, emergency services, vehicles belonging to the VANET and road or street facilities. This architecture seeks on the one hand to improve the car driving experience of the driver and on the other hand to extend security mechanisms for the surrounding individuals; and (3) as a proof of concept, an Android real-time attention low level detection application that runs in a next-generation smartphone is developed. The application features mechanisms that allow one to measure the degree of attention of a driver on the base of her/his EEG signals, establish wireless communication links via various standard wireless means, GPRS, Bluetooth and WiFi and issue alarms of critical low driver attention levels.

  1. Synchronous wearable wireless body sensor network composed of autonomous textile nodes.

    PubMed

    Vanveerdeghem, Peter; Van Torre, Patrick; Stevens, Christiaan; Knockaert, Jos; Rogier, Hendrik

    2014-10-09

    A novel, fully-autonomous, wearable, wireless sensor network is presented, where each flexible textile node performs cooperative synchronous acquisition and distributed event detection. Computationally efficient situational-awareness algorithms are implemented on the low-power microcontroller present on each flexible node. The detected events are wirelessly transmitted to a base station, directly, as well as forwarded by other on-body nodes. For each node, a dual-polarized textile patch antenna serves as a platform for the flexible electronic circuitry. Therefore, the system is particularly suitable for comfortable and unobtrusive integration into garments. In the meantime, polarization diversity can be exploited to improve the reliability and energy-efficiency of the wireless transmission. Extensive experiments in realistic conditions have demonstrated that this new autonomous, body-centric, textile-antenna, wireless sensor network is able to correctly detect different operating conditions of a firefighter during an intervention. By relying on four network nodes integrated into the protective garment, this functionality is implemented locally, on the body, and in real time. In addition, the received sensor data are reliably transferred to a central access point at the command post, for more detailed and more comprehensive real-time visualization. This information provides coordinators and commanders with situational awareness of the entire rescue operation. A statistical analysis of measured on-body node-to-node, as well as off-body person-to-person channels is included, confirming the reliability of the communication system.

  2. Deconstructing Memory in Drosophila

    PubMed Central

    Margulies, Carla; Tully, Tim; Dubnau, Josh

    2011-01-01

    Unlike most organ systems, which have evolved to maintain homeostasis, the brain has been selected to sense and adapt to environmental stimuli by constantly altering interactions in a gene network that functions within a larger neural network. This unique feature of the central nervous system provides a remarkable plasticity of behavior, but also makes experimental investigations challenging. Each experimental intervention ramifies through both gene and neural networks, resulting in unpredicted and sometimes confusing phenotypic adaptations. Experimental dissection of mechanisms underlying behavioral plasticity ultimately must accomplish an integration across many levels of biological organization, including genetic pathways acting within individual neurons, neural network interactions which feed back to gene function, and phenotypic observations at the behavioral level. This dissection will be more easily accomplished for model systems such as Drosophila, which, compared with mammals, have relatively simple and manipulable nervous systems and genomes. The evolutionary conservation of behavioral phenotype and the underlying gene function ensures that much of what we learn in such model systems will be relevant to human cognition. In this essay, we have not attempted to review the entire Drosophila memory field. Instead, we have tried to discuss particular findings that provide some level of intellectual synthesis across three levels of biological organization: behavior, neural circuitry and biochemical pathways. We have attempted to use this integrative approach to evaluate distinct mechanistic hypotheses, and to propose critical experiments that will advance this field. PMID:16139203

  3. Integration of Body Sensor Networks and Vehicular Ad-hoc Networks for Traffic Safety

    PubMed Central

    Reyes-Muñoz, Angelica; Domingo, Mari Carmen; López-Trinidad, Marco Antonio; Delgado, José Luis

    2016-01-01

    The emergence of Body Sensor Networks (BSNs) constitutes a new and fast growing trend for the development of daily routine applications. However, in the case of heterogeneous BSNs integration with Vehicular ad hoc Networks (VANETs) a large number of difficulties remain, that must be solved, especially when talking about the detection of human state factors that impair the driving of motor vehicles. The main contributions of this investigation are principally three: (1) an exhaustive review of the current mechanisms to detect four basic physiological behavior states (drowsy, drunk, driving under emotional state disorders and distracted driving) that may cause traffic accidents is presented; (2) A middleware architecture is proposed. This architecture can communicate with the car dashboard, emergency services, vehicles belonging to the VANET and road or street facilities. This architecture seeks on the one hand to improve the car driving experience of the driver and on the other hand to extend security mechanisms for the surrounding individuals; and (3) as a proof of concept, an Android real-time attention low level detection application that runs in a next-generation smartphone is developed. The application features mechanisms that allow one to measure the degree of attention of a driver on the base of her/his EEG signals, establish wireless communication links via various standard wireless means, GPRS, Bluetooth and WiFi and issue alarms of critical low driver attention levels. PMID:26784204

  4. Synchronous Wearable Wireless Body Sensor Network Composed of Autonomous Textile Nodes

    PubMed Central

    Vanveerdeghem, Peter; Van Torre, Patrick; Stevens, Christiaan; Knockaert, Jos; Rogier, Hendrik

    2014-01-01

    A novel, fully-autonomous, wearable, wireless sensor network is presented, where each flexible textile node performs cooperative synchronous acquisition and distributed event detection. Computationally efficient situational-awareness algorithms are implemented on the low-power microcontroller present on each flexible node. The detected events are wirelessly transmitted to a base station, directly, as well as forwarded by other on-body nodes. For each node, a dual-polarized textile patch antenna serves as a platform for the flexible electronic circuitry. Therefore, the system is particularly suitable for comfortable and unobtrusive integration into garments. In the meantime, polarization diversity can be exploited to improve the reliability and energy-efficiency of the wireless transmission. Extensive experiments in realistic conditions have demonstrated that this new autonomous, body-centric, textile-antenna, wireless sensor network is able to correctly detect different operating conditions of a firefighter during an intervention. By relying on four network nodes integrated into the protective garment, this functionality is implemented locally, on the body, and in real time. In addition, the received sensor data are reliably transferred to a central access point at the command post, for more detailed and more comprehensive real-time visualization. This information provides coordinators and commanders with situational awareness of the entire rescue operation. A statistical analysis of measured on-body node-to-node, as well as off-body person-to-person channels is included, confirming the reliability of the communication system. PMID:25302808

  5. Iconic memory and parietofrontal network: fMRI study using temporal integration.

    PubMed

    Saneyoshi, Ayako; Niimi, Ryosuke; Suetsugu, Tomoko; Kaminaga, Tatsuro; Yokosawa, Kazuhiko

    2011-08-03

    We investigated the neural basis of iconic memory using functional magnetic resonance imaging. The parietofrontal network of selective attention is reportedly relevant to readout from iconic memory. We adopted a temporal integration task that requires iconic memory but not selective attention. The results showed that the task activated the parietofrontal network, confirming that the network is involved in readout from iconic memory. We further tested a condition in which temporal integration was performed by visual short-term memory but not by iconic memory. However, no brain region revealed higher activation for temporal integration by iconic memory than for temporal integration by visual short-term memory. This result suggested that there is no localized brain region specialized for iconic memory per se.

  6. Portraying emotions at their unfolding: a multilayered approach for probing dynamics of neural networks.

    PubMed

    Raz, Gal; Winetraub, Yonatan; Jacob, Yael; Kinreich, Sivan; Maron-Katz, Adi; Shaham, Galit; Podlipsky, Ilana; Gilam, Gadi; Soreq, Eyal; Hendler, Talma

    2012-04-02

    Dynamic functional integration of distinct neural systems plays a pivotal role in emotional experience. We introduce a novel approach for studying emotion-related changes in the interactions within and between networks using fMRI. It is based on continuous computation of a network cohesion index (NCI), which is sensitive to both strength and variability of signal correlations between pre-defined regions. The regions encompass three clusters (namely limbic, medial prefrontal cortex (mPFC) and cognitive), each previously was shown to be involved in emotional processing. Two sadness-inducing film excerpts were viewed passively, and comparisons between viewer's rated sadness, parasympathetic, and inter-NCI and intra-NCI were obtained. Limbic intra-NCI was associated with reported sadness in both movies. However, the correlation between the parasympathetic-index, the rated sadness and the limbic-NCI occurred in only one movie, possibly related to a "deactivated" pattern of sadness. In this film, rated sadness intensity also correlated with the mPFC intra-NCI, possibly reflecting temporal correspondence between sadness and sympathy. Further, only for this movie, we found an association between sadness rating and the mPFC-limbic inter-NCI time courses. To the contrary, in the other film in which sadness was reported to commingle with horror and anger, dramatic events coincided with disintegration of these networks. Together, this may point to a difference between the cinematic experiences with regard to inter-network dynamics related to emotional regulation. These findings demonstrate the advantage of a multi-layered dynamic analysis for elucidating the uniqueness of emotional experiences with regard to an unguided processing of continuous and complex stimulation. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Surveying hospital network structure in New York State: how are they structured?

    PubMed

    Nauenberg, E; Brewer, C S

    2000-01-01

    We determine the most common network structures in New York state. The taxonomy employed uses three structural dimensions: integration, complexity, and risk-sharing between organizations. Based on a survey conducted in 1996, the most common type of network (26.4 percent) had medium levels of integration, medium or high levels of complexity, and some risk-sharing. Also common were networks with low levels of integration, low levels of complexity, and no risk-sharing (22.1 percent).

  8. Evaluation of Offline Models Used to Simulate Components of the Permafrost Carbon Feedback: Experience from the Permafrost Carbon Network Model Integration Group

    NASA Astrophysics Data System (ADS)

    McGuire, A. D.

    2016-12-01

    The Model Integration Group of the Permafrost Carbon Network (see http://www.permafrostcarbon.org/) has conducted studies to evaluate the sensitivity of offline terrestrial permafrost and carbon models to both historical and projected climate change. These studies indicate that there is a wide range of (1) initial states permafrost extend and carbon stocks simulated by these models and (2) responses of permafrost extent and carbon stocks to both historical and projected climate change. In this study, we synthesize what has been learned about the variability in initial states among models and the driving factors that contribute to variability in the sensitivity of responses. We conclude the talk with a discussion of efforts needed by (1) the modeling community to standardize structural representation of permafrost and carbon dynamics among models that are used to evaluate the permafrost carbon feedback and (2) the modeling and observational communities to jointly develop data sets and methodologies to more effectively benchmark models.

  9. Functional Organization of the Action Observation Network in Autism: A Graph Theory Approach

    PubMed Central

    Alaerts, Kaat; Geerlings, Franca; Herremans, Lynn; Swinnen, Stephan P.; Verhoeven, Judith; Sunaert, Stefan; Wenderoth, Nicole

    2015-01-01

    Background The ability to recognize, understand and interpret other’s actions and emotions has been linked to the mirror system or action-observation-network (AON). Although variations in these abilities are prevalent in the neuro-typical population, persons diagnosed with autism spectrum disorders (ASD) have deficits in the social domain and exhibit alterations in this neural network. Method Here, we examined functional network properties of the AON using graph theory measures and region-to-region functional connectivity analyses of resting-state fMRI-data from adolescents and young adults with ASD and typical controls (TC). Results Overall, our graph theory analyses provided convergent evidence that the network integrity of the AON is altered in ASD, and that reductions in network efficiency relate to reductions in overall network density (i.e., decreased overall connection strength). Compared to TC, individuals with ASD showed significant reductions in network efficiency and increased shortest path lengths and centrality. Importantly, when adjusting for overall differences in network density between ASD and TC groups, participants with ASD continued to display reductions in network integrity, suggesting that also network-level organizational properties of the AON are altered in ASD. Conclusion While differences in empirical connectivity contributed to reductions in network integrity, graph theoretical analyses provided indications that also changes in the high-level network organization reduced integrity of the AON. PMID:26317222

  10. Harnessing Online Peer Education (HOPE): integrating C-POL and social media to train peer leaders in HIV prevention.

    PubMed

    Jaganath, Devan; Gill, Harkiran K; Cohen, Adam Carl; Young, Sean D

    2012-01-01

    Novel methods, such as Internet-based interventions, are needed to combat the spread of HIV. While past initiatives have used the Internet to promote HIV prevention, the growing popularity, decreasing digital divide, and multi-functionality of social networking sites, such as Facebook, make this an ideal time to develop innovative ways to use online social networking sites to scale HIV prevention interventions among high-risk groups. The UCLA Harnessing Online Peer Education study is a longitudinal experimental study to evaluate the feasibility, acceptability, and preliminary effectiveness of using social media for peer-led HIV prevention, specifically among African American and Latino Men who have Sex with Men (MSM). No curriculum currently exists to train peer leaders in delivering culturally aware HIV prevention messages using social media. Training was created that adapted the Community Popular Opinion Leader (C-POL) model, for use on social networking sites. Peer leaders are recruited who represent the target population and have experience with both social media and community outreach. The curriculum contains the following elements: discussion and role playing exercises to integrate basic knowledge of HIV/AIDS, awareness of sociocultural HIV/AIDS issues in the age of technology, and communication methods for training peer leaders in effective, interactive social media-based HIV prevention. Ethical issues related to Facebook and health interventions are integrated throughout the sessions. Training outcomes have been developed for long-term assessment of retention and efficacy. This is the first C-POL curriculum that has been adapted for use on social networking websites. Although this curriculum has been used to target African-American and Latino MSM, it has been created to allow generalization to other high-risk groups.

  11. Harnessing Online Peer Education (HOPE): Integrating C-POL and Social Media to Train Peer Leaders in HIV Prevention

    PubMed Central

    Jaganath, Devan; Gill, Harkiran K.; Cohen, Adam Carl; Young, Sean D.

    2011-01-01

    Novel methods, such as Internet-based interventions, are needed to combat the spread of HIV. While past initiatives have used the Internet to promote HIV prevention, the growing popularity, decreasing digital divide, and multi-functionality of social networking sites, such as Facebook, make this an ideal time to develop innovative ways to use online social networking sites to scale HIV prevention interventions among high-risk groups. The UCLA HOPE [Harnessing Online Peer Education] study is a longitudinal experimental study to evaluate the feasibility, acceptability, and preliminary effectiveness of using social media for peer-led HIV prevention, specifically among African American and Latino Men who have Sex with Men (MSM). No curriculum currently exists to train peer leaders in delivering culturally aware HIV prevention messages using social media. Training was created that adapted the Community Popular Opinion Leader (C-POL) model, for use on social networking sites. Peer leaders are recruited who represent the target population and have experience with both social media and community outreach. The curriculum contains the following elements: discussion and role playing exercises to integrate basic knowledge of HIV/AIDS, awareness of sociocultural HIV/AIDS issues in the age of technology, and communication methods for training peer leaders in effective, interactive social media-based HIV prevention. Ethical issues related to Facebook and health interventions are integrated throughout the sessions. Training outcomes have been developed for long-term assessment of retention and efficacy. This is the first C-POL curriculum that has been adapted for use on social networking websites. Although this curriculum has been used to target African American and Latino MSM, it has been created to allow generalization to other high-risk groups. PMID:22149081

  12. [Quality indicators for the assessment of ST-segment elevation acute myocardial infarction (STEMI) networks. How hospital discharge records could be integrated with Emergency medical services data: the Emilia-Romagna STEMI network experience].

    PubMed

    Pavesi, Pier Camillo; Guastaroba, Paolo; Casella, Gianni; Berti, Elena; De Palma, Rossana; Di Bartolomeo, Stefano; Di Pasquale, Giuseppe

    2015-09-01

    The assessment of the regional network for ST-segment elevation acute myocardial infarction (STEMI) is fundamental for quality assurance. Since 2011 all Italian Health Authorities, in addition to hospital discharge records (HDR), must provide a standardized information flow (ERD) about emergency department (ED) and emergency medical system (EMS) activities. The aim of this study was to evaluate whether data integration of ERD with HDR may allow the development of appropriate quality indicators. Patients admitted to coronary care units (CCU) for STEMI between January 1 to December 31, 2013, were identified from the regional HDR database. All data were linked to those of the regional ERD database. Four quality indicators were defined: 1) rates of EMS activation, 2) rates of EMS direct transfer to the catheterization laboratory (Cath-lab), 3) transfer rates from a Spoke to a Hub hospital with angioplasty facilities, and 4) median time spent in ED. In 2013, 2793 patients with STEMI were admitted to the CCU. Of these, 1684 patients (60%) activated EMS and were transported to Spoke or Hub hospitals; 955 (57%) entered directly in CCU/Cath-lab; 677 were transferred directly to a Hub hospital ED without being admitted to a Spoke hospital. The median ED time in Hub hospital was 47 min (IQR 24-136) and in Spoke hospital 53 min (IQR 30-131). The integration among administrative data banks (i.e., HDR with ERD) allowed the assessment of the regional STEMI network and the identification of potentially useful quality indicators. Their easy availability should enable comparisons with local, national and international standards, and may favor quality improvement.

  13. Identifying enhanced cortico-basal ganglia loops associated with prolonged dance training

    PubMed Central

    Li, Gujing; He, Hui; Huang, Mengting; Zhang, Xingxing; Lu, Jing; Lai, Yongxiu; Luo, Cheng; Yao, Dezhong

    2015-01-01

    Studies have revealed that prolonged, specialized training combined with higher cognitive conditioning induces enhanced brain alternation. In particular, dancers with long-term dance experience exhibit superior motor control and integration with their sensorimotor networks. However, little is known about the functional connectivity patterns of spontaneous intrinsic activities in the sensorimotor network of dancers. Our study examined the functional connectivity density (FCD) of dancers with a mean period of over 10 years of dance training in contrast with a matched non-dancer group without formal dance training using resting-state fMRI scans. FCD was mapped and analyzed, and the functional connectivity (FC) analyses were then performed based on the difference of FCD. Compared to the non-dancers, the dancers exhibited significantly increased FCD in the precentral gyri, postcentral gyri and bilateral putamen. Furthermore, the results of the FC analysis revealed enhanced connections between the middle cingulate cortex and the bilateral putamen and between the precentral and the postcentral gyri. All findings indicated an enhanced functional integration in the cortico-basal ganglia loops that govern motor control and integration in dancers. These findings might reflect improved sensorimotor function for the dancers consequent to long-term dance training. PMID:26035693

  14. Self-organizing path integration using a linked continuous attractor and competitive network: path integration of head direction.

    PubMed

    Stringer, Simon M; Rolls, Edmund T

    2006-12-01

    A key issue is how networks in the brain learn to perform path integration, that is update a represented position using a velocity signal. Using head direction cells as an example, we show that a competitive network could self-organize to learn to respond to combinations of head direction and angular head rotation velocity. These combination cells can then be used to drive a continuous attractor network to the next head direction based on the incoming rotation signal. An associative synaptic modification rule with a short term memory trace enables preceding combination cell activity during training to be associated with the next position in the continuous attractor network. The network accounts for the presence of neurons found in the brain that respond to combinations of head direction and angular head rotation velocity. Analogous networks in the hippocampal system could self-organize to perform path integration of place and spatial view representations.

  15. UMTS rapid response real-time seismic networks: implementation and strategies at INGV

    NASA Astrophysics Data System (ADS)

    Govoni, Aladino; Margheriti, Lucia; Moretti, Milena; Lauciani, Valentino; Sensale, Gianpaolo; Bucci, Augusto; Criscuoli, Fabio

    2015-04-01

    The benefits of portable real-time seismic networks are several and well known. During the management of a temporary experiment from the real-time data it is possible to detect and fix rapidly problems with power supply, time synchronization, disk failures and, most important, seismic signal quality degradation due to unexpected noise sources or sensor alignment/tampering. This usually minimizes field maintenance trips and maximizes both the quantity and the quality of the acquired data. When the area of the temporary experiment is not well monitored by the local permanent network, the real-time data from the temporary experiment can be fed to the permanent network monitoring system improving greatly both the real-time hypocentral locations and the final revised bulletin. All these benefits apply also in case of seismic crises when rapid deployment stations can significantly contribute to the aftershock analysis. Nowadays data transmission using meshed radio networks or satellite systems is not a big technological problem for a permanent seismic network where each site is optimized for the device power consumption and is usually installed by properly specialized technicians that can configure transmission devices and align antennas. This is not usually practical for temporary networks and especially for rapid response networks where the installation time is the main concern. These difficulties are substantially lowered using the now widespread UMTS technology for data transmission. A small (but sometimes power hungry) properly configured device with an omnidirectional antenna must be added to the station assembly. All setups are usually configured before deployment and this allows for an easy installation also by untrained personnel. We describe here the implementation of a UMTS based portable seismic network for both temporary experiments and rapid response applications developed at INGV. The first field experimentation of this approach dates back to the 2009 L'Aquila aftershock sequence and since then it has been customized and refined to overcome most reliability and security issues using an industry standard VPN architecture that allows to avoid UMTS provider firewall problems and does not expose to the Internet the usually weak and attack prone data acquisition ports. With this approach all the devices are protected inside a local network and the only exposed port is the VPN server one. This solution improves both the security and the bandwidth available to data transmission. While most of the experimentation has been carried out using the RefTek units of the INGV Mobile Network this solution applies equally well to most seismic data loggers available on the market. Overall the UMTS data transmission has been used in most temporary seismic experiments and in all seismic emergencies happened in Italy since 2010 and has proved to be a very cost effective approach with real-time data acquisition rates usually greater than 97% and all the benefits that result from the fast integration of the temporary data in the National Network monitoring system and in the EIDA data bank.

  16. Integration and Analysis of Neighbor Discovery and Link Quality Estimation in Wireless Sensor Networks

    PubMed Central

    Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Abd Razak, Shukor

    2014-01-01

    Network connectivity and link quality information are the fundamental requirements of wireless sensor network protocols to perform their desired functionality. Most of the existing discovery protocols have only focused on the neighbor discovery problem, while a few number of them provide an integrated neighbor search and link estimation. As these protocols require a careful parameter adjustment before network deployment, they cannot provide scalable and accurate network initialization in large-scale dense wireless sensor networks with random topology. Furthermore, performance of these protocols has not entirely been evaluated yet. In this paper, we perform a comprehensive simulation study on the efficiency of employing adaptive protocols compared to the existing nonadaptive protocols for initializing sensor networks with random topology. In this regard, we propose adaptive network initialization protocols which integrate the initial neighbor discovery with link quality estimation process to initialize large-scale dense wireless sensor networks without requiring any parameter adjustment before network deployment. To the best of our knowledge, this work is the first attempt to provide a detailed simulation study on the performance of integrated neighbor discovery and link quality estimation protocols for initializing sensor networks. This study can help system designers to determine the most appropriate approach for different applications. PMID:24678277

  17. NaNet-10: a 10GbE network interface card for the GPU-based low-level trigger of the NA62 RICH detector.

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Fiorini, M.; Frezza, O.; Lonardo, A.; Lamanna, G.; Lo Cicero, F.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Tosoratto, L.; Vicini, P.

    2016-03-01

    A GPU-based low level (L0) trigger is currently integrated in the experimental setup of the RICH detector of the NA62 experiment to assess the feasibility of building more refined physics-related trigger primitives and thus improve the trigger discriminating power. To ensure the real-time operation of the system, a dedicated data transport mechanism has been implemented: an FPGA-based Network Interface Card (NaNet-10) receives data from detectors and forwards them with low, predictable latency to the memory of the GPU performing the trigger algorithms. Results of the ring-shaped hit patterns reconstruction will be reported and discussed.

  18. Cloud-based robot remote control system for smart factory

    NASA Astrophysics Data System (ADS)

    Wu, Zhiming; Li, Lianzhong; Xu, Yang; Zhai, Jingmei

    2015-12-01

    With the development of internet technologies and the wide application of robots, there is a prospect (trend/tendency) of integration between network and robots. A cloud-based robot remote control system over networks for smart factory is proposed, which enables remote users to control robots and then realize intelligent production. To achieve it, a three-layer system architecture is designed including user layer, service layer and physical layer. Remote control applications running on the cloud server is developed on Microsoft Azure. Moreover, DIV+ CSS technologies are used to design human-machine interface to lower maintenance cost and improve development efficiency. Finally, an experiment is implemented to verify the feasibility of the program.

  19. Assessment of Course-Based Undergraduate Research Experiences: A Meeting Report

    PubMed Central

    Auchincloss, Lisa Corwin; Laursen, Sandra L.; Branchaw, Janet L.; Eagan, Kevin; Graham, Mark; Hanauer, David I.; Lawrie, Gwendolyn; McLinn, Colleen M.; Pelaez, Nancy; Rowland, Susan; Towns, Marcy; Trautmann, Nancy M.; Varma-Nelson, Pratibha; Weston, Timothy J.; Dolan, Erin L.

    2014-01-01

    The Course-Based Undergraduate Research Experiences Network (CUREnet) was initiated in 2012 with funding from the National Science Foundation program for Research Coordination Networks in Undergraduate Biology Education. CUREnet aims to address topics, problems, and opportunities inherent to integrating research experiences into undergraduate courses. During CUREnet meetings and discussions, it became apparent that there is need for a clear definition of what constitutes a CURE and systematic exploration of what makes CUREs meaningful in terms of student learning. Thus, we assembled a small working group of people with expertise in CURE instruction and assessment to: 1) draft an operational definition of a CURE, with the aim of defining what makes a laboratory course or project a “research experience”; 2) summarize research on CUREs, as well as findings from studies of undergraduate research internships that would be useful for thinking about how students are influenced by participating in CUREs; and 3) identify areas of greatest need with respect to CURE assessment, and directions for future research on and evaluation of CUREs. This report summarizes the outcomes and recommendations of this meeting. PMID:24591501

  20. The Role of Model and Initial Condition Error in Numerical Weather Forecasting Investigated with an Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, Nikki C.; Errico, Ronald M.

    2013-01-01

    A series of experiments that explore the roles of model and initial condition error in numerical weather prediction are performed using an observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA/GMAO). The use of an OSSE allows the analysis and forecast errors to be explicitly calculated, and different hypothetical observing networks can be tested with ease. In these experiments, both a full global OSSE framework and an 'identical twin' OSSE setup are utilized to compare the behavior of the data assimilation system and evolution of forecast skill with and without model error. The initial condition error is manipulated by varying the distribution and quality of the observing network and the magnitude of observation errors. The results show that model error has a strong impact on both the quality of the analysis field and the evolution of forecast skill, including both systematic and unsystematic model error components. With a realistic observing network, the analysis state retains a significant quantity of error due to systematic model error. If errors of the analysis state are minimized, model error acts to rapidly degrade forecast skill during the first 24-48 hours of forward integration. In the presence of model error, the impact of observation errors on forecast skill is small, but in the absence of model error, observation errors cause a substantial degradation of the skill of medium range forecasts.

Top