Sample records for integrated geologic-engineering model

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling that utilizes geologic reservoir characterization andmore » modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 3 of the project has been reservoir characterization, 3-D modeling, testing of the geologic-engineering model, and technology transfer. This effort has included six tasks: (1) the study of seismic attributes, (2) petrophysical characterization, (3) data integration, (4) the building of the geologic-engineering model, (5) the testing of the geologic-engineering model and (6) technology transfer. This work was scheduled for completion in Year 3. Progress on the project is as follows: geoscientific reservoir characterization is completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been completed. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The models represent an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic models served as the framework for the simulations. The geologic-engineering models of the Appleton and Vocation Field reservoirs have been developed. These models are being tested. The geophysical interpretation for the paleotopographic feature being tested has been made, and the study of the data resulting from drilling of a well on this paleohigh is in progress. Numerous presentations on reservoir characterization and modeling at Appleton and Vocation Fields have been made at professional meetings and conferences and a short course on microbial reservoir characterization and modeling based on these fields has been prepared.« less

  2. Engineering-Geological Data Model - The First Step to Build National Polish Standard for Multilevel Information Management

    NASA Astrophysics Data System (ADS)

    Ryżyński, Grzegorz; Nałęcz, Tomasz

    2016-10-01

    The efficient geological data management in Poland is necessary to support multilevel decision processes for government and local authorities in case of spatial planning, mineral resources and groundwater supply and the rational use of subsurface. Vast amount of geological information gathered in the digital archives and databases of Polish Geological Survey (PGS) is a basic resource for multi-scale national subsurface management. Data integration is the key factor to allow development of GIS and web tools for decision makers, however the main barrier for efficient geological information management is the heterogeneity of data in the resources of the Polish Geological Survey. Engineering-geological database is the first PGS thematic domain applied in the whole data integration plan. The solutions developed within this area will facilitate creation of procedures and standards for multilevel data management in PGS. Twenty years of experience in delivering digital engineering-geological mapping in 1:10 000 scale and archival geotechnical reports acquisition and digitisation allowed gathering of more than 300 thousands engineering-geological boreholes database as well as set of 10 thematic spatial layers (including foundation conditions map, depth to the first groundwater level, bedrock level, geohazards). Historically, the desktop approach was the source form of the geological-engineering data storage, resulting in multiple non-correlated interbase datasets. The need for creation of domain data model emerged and an object-oriented modelling (UML) scheme has been developed. The aim of the aforementioned development was to merge all datasets in one centralised Oracle server and prepare the unified spatial data structure for efficient web presentation and applications development. The presented approach will be the milestone toward creation of the Polish national standard for engineering-geological information management. The paper presents the approach and methodology of data unification, thematic vocabularies harmonisation, assumptions and results of data modelling as well as process of the integration of domain model with enterprise architecture implemented in PGS. Currently, there is no geological data standard in Poland. Lack of guidelines for borehole and spatial data management results in an increasing data dispersion as well as in growing barrier for multilevel data management and implementation of efficient decision support tools. Building the national geological data standard makes geotechnical information accessible to multiple institutions, universities, administration and research organisations and gather their data in the same, unified digital form according to the presented data model. Such approach is compliant with current digital trends and the idea of Spatial Data Infrastructure. Efficient geological data management is essential to support the sustainable development and the economic growth, as they allow implementation of geological information to assist the idea of Smart Cites, deliver information for Building Information Management (BIM) and support modern spatial planning. The engineering-geological domain data model presented in the paper is a scalable solution. Future implementation of developed procedures on other domains of PGS geological data is possible.

  3. Geoscience techniques for engineering assessment of Oman to India pipeline route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baerenwald, P.D.; Mullee, J.E.; Campbell, K.J.

    1996-12-31

    A variety of geoscience techniques were used to define soil conditions and evaluate geologic processes in order to develop design criteria for complex segments of the proposed Oman to Indian pipeline route. Geophysical survey data, seafloor cores, ROV observation of the seafloor, and oceanographic measurements were the principal field data collected. Geotechnical soil testing, and X-ray radiography, detailed geologic logging, and C-14 age dating of cores were carried out. The diverse sets of field data and lab test results were integrated by a multi-disciplined team of geoscientists and engineers to develop geologic and soil models, soil design criteria, a turbidmore » flow model, and seafloor stability models. The integrated approach used here is applicable to other complex areas where seafloor stability needs to be assessed or design criteria need to be developed for active geologic processes.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization andmore » modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 2 of the project has been reservoir characterization, 3-D modeling and technology transfer. This effort has included six tasks: (1) the study of rockfluid interactions, (2) petrophysical and engineering characterization, (3) data integration, (4) 3-D geologic modeling, (5) 3-D reservoir simulation and (6) technology transfer. This work was scheduled for completion in Year 2. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions is near completion. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been essentially completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The model represents an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic model served as the framework for the simulations. A technology workshop on reservoir characterization and modeling at Appleton and Vocation Fields was conducted to transfer the results of the project to the petroleum industry.« less

  5. Reservoir Characterization using geostatistical and numerical modeling in GIS with noble gas geochemistry

    NASA Astrophysics Data System (ADS)

    Vasquez, D. A.; Swift, J. N.; Tan, S.; Darrah, T. H.

    2013-12-01

    The integration of precise geochemical analyses with quantitative engineering modeling into an interactive GIS system allows for a sophisticated and efficient method of reservoir engineering and characterization. Geographic Information Systems (GIS) is utilized as an advanced technique for oil field reservoir analysis by combining field engineering and geological/geochemical spatial datasets with the available systematic modeling and mapping methods to integrate the information into a spatially correlated first-hand approach in defining surface and subsurface characteristics. Three key methods of analysis include: 1) Geostatistical modeling to create a static and volumetric 3-dimensional representation of the geological body, 2) Numerical modeling to develop a dynamic and interactive 2-dimensional model of fluid flow across the reservoir and 3) Noble gas geochemistry to further define the physical conditions, components and history of the geologic system. Results thus far include using engineering algorithms for interpolating electrical well log properties across the field (spontaneous potential, resistivity) yielding a highly accurate and high-resolution 3D model of rock properties. Results so far also include using numerical finite difference methods (crank-nicholson) to solve for equations describing the distribution of pressure across field yielding a 2D simulation model of fluid flow across reservoir. Ongoing noble gas geochemistry results will also include determination of the source, thermal maturity and the extent/style of fluid migration (connectivity, continuity and directionality). Future work will include developing an inverse engineering algorithm to model for permeability, porosity and water saturation.This combination of new and efficient technological and analytical capabilities is geared to provide a better understanding of the field geology and hydrocarbon dynamics system with applications to determine the presence of hydrocarbon pay zones (or other reserves) and improve oil field management (e.g. perforating, drilling, EOR and reserves estimation)

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huff, Kathryn D.

    Component level and system level abstraction of detailed computational geologic repository models have resulted in four rapid computational models of hydrologic radionuclide transport at varying levels of detail. Those models are described, as is their implementation in Cyder, a software library of interchangeable radionuclide transport models appropriate for representing natural and engineered barrier components of generic geology repository concepts. A proof of principle demonstration was also conducted in which these models were used to represent the natural and engineered barrier components of a repository concept in a reducing, homogenous, generic geology. This base case demonstrates integration of the Cyder openmore » source library with the Cyclus computational fuel cycle systems analysis platform to facilitate calculation of repository performance metrics with respect to fuel cycle choices. (authors)« less

  7. Building the 3D Geological Model of Wall Rock of Salt Caverns Based on Integration Method of Multi-source data

    NASA Astrophysics Data System (ADS)

    Yongzhi, WANG; hui, WANG; Lixia, LIAO; Dongsen, LI

    2017-02-01

    In order to analyse the geological characteristics of salt rock and stability of salt caverns, rough three-dimensional (3D) models of salt rock stratum and the 3D models of salt caverns on study areas are built by 3D GIS spatial modeling technique. During implementing, multi-source data, such as basic geographic data, DEM, geological plane map, geological section map, engineering geological data, and sonar data are used. In this study, the 3D spatial analyzing and calculation methods, such as 3D GIS intersection detection method in three-dimensional space, Boolean operations between three-dimensional space entities, three-dimensional space grid discretization, are used to build 3D models on wall rock of salt caverns. Our methods can provide effective calculation models for numerical simulation and analysis of the creep characteristics of wall rock in salt caverns.

  8. GO2OGS 1.0: a versatile workflow to integrate complex geological information with fault data into numerical simulation models

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Naumov, D.; Sattler, S.; Kolditz, O.; Walther, M.

    2015-11-01

    We offer a versatile workflow to convert geological models built with the ParadigmTM GOCAD© (Geological Object Computer Aided Design) software into the open-source VTU (Visualization Toolkit unstructured grid) format for usage in numerical simulation models. Tackling relevant scientific questions or engineering tasks often involves multidisciplinary approaches. Conversion workflows are needed as a way of communication between the diverse tools of the various disciplines. Our approach offers an open-source, platform-independent, robust, and comprehensible method that is potentially useful for a multitude of environmental studies. With two application examples in the Thuringian Syncline, we show how a heterogeneous geological GOCAD model including multiple layers and faults can be used for numerical groundwater flow modeling, in our case employing the OpenGeoSys open-source numerical toolbox for groundwater flow simulations. The presented workflow offers the chance to incorporate increasingly detailed data, utilizing the growing availability of computational power to simulate numerical models.

  9. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC) : FY10 development and integration.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.

    2011-02-01

    This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs,more » and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.« less

  10. Integrated reservoir assessment and characterization: Final report, October 1, 1985--September 30, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honarpour, M.; Szpakiewicz, M.; Sharma, B.

    This report covers the development of a generic approach to reservoir characterization, the preliminary studies leading to the selection of an appropriate depositional system for detailed study, the application of outcrop studies to quantified reservoir characterization, and the construction of a quantified geological/engineering model used to screen the effects and scales of various geological heterogeneities within a reservoir. These heterogeneities result in large production/residual oil saturation contrasts over small distances. 36 refs., 124 figs., 38 tabs.

  11. Synthetic geology - Exploring the "what if?" in geology

    NASA Astrophysics Data System (ADS)

    Klump, J. F.; Robertson, J.

    2015-12-01

    The spatial and temporal extent of geological phenomena makes experiments in geology difficult to conduct, if not entirely impossible and collection of data is laborious and expensive - so expensive that most of the time we cannot test a hypothesis. The aim, in many cases, is to gather enough data to build a predictive geological model. Even in a mine, where data are abundant, a model remains incomplete because the information at the level of a blasting block is two orders of magnitude larger than the sample from a drill core, and we have to take measurement errors into account. So, what confidence can we have in a model based on sparse data, uncertainties and measurement error? Synthetic geology does not attempt to model the real world in terms of geological processes with all their uncertainties, rather it offers an artificial geological data source with fully known properties. On the basis of this artificial geology, we can simulate geological sampling by established or future technologies to study the resulting dataset. Conducting these experiments in silico removes the constraints of testing in the field or in production, and provides us with a known ground-truth against which the steps in a data analysis and integration workflow can be validated.Real-time simulation of data sources can be used to investigate crucial questions such as the potential information gain from future sensing capabilities, or from new sampling strategies, or the combination of both, and it enables us to test many "what if?" questions, both in geology and in data engineering. What would we be able to see if we could obtain data at higher resolution? How would real-time data analysis change sampling strategies? Does our data infrastructure handle many new real-time data streams? What feature engineering can be deducted for machine learning approaches? By providing a 'data sandbox' able to scale to realistic geological scenarios we hope to start answering some of these questions.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization andmore » modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 1 of the project has been reservoir description and characterization. This effort has included four tasks: (1) geoscientific reservoir characterization, (2) the study of rock-fluid interactions, (3) petrophysical and engineering characterization and (4) data integration. This work was scheduled for completion in Year 1. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been initiated. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization is progressing. Data on reservoir production rate and pressure history at Appleton and Vocation Fields have been tabulated, and porosity data from core analysis has been correlated with porosity as observed from well log response. Data integration is on schedule, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database for reservoir characterization, modeling and simulation for the reef and carbonate shoal reservoirs for each of these fields.« less

  13. Research on Geo-information Data Model for Preselected Areas of Geological Disposal of High-level Radioactive Waste

    NASA Astrophysics Data System (ADS)

    Gao, M.; Huang, S. T.; Wang, P.; Zhao, Y. A.; Wang, H. B.

    2016-11-01

    The geological disposal of high-level radioactive waste (hereinafter referred to "geological disposal") is a long-term, complex, and systematic scientific project, whose data and information resources in the research and development ((hereinafter referred to ”R&D”) process provide the significant support for R&D of geological disposal system, and lay a foundation for the long-term stability and safety assessment of repository site. However, the data related to the research and engineering in the sitting of the geological disposal repositories is more complicated (including multi-source, multi-dimension and changeable), the requirements for the data accuracy and comprehensive application has become much higher than before, which lead to the fact that the data model design of geo-information database for the disposal repository are facing more serious challenges. In the essay, data resources of the pre-selected areas of the repository has been comprehensive controlled and systematic analyzed. According to deeply understanding of the application requirements, the research work has made a solution for the key technical problems including reasonable classification system of multi-source data entity, complex logic relations and effective physical storage structures. The new solution has broken through data classification and conventional spatial data the organization model applied in the traditional industry, realized the data organization and integration with the unit of data entities and spatial relationship, which were independent, holonomic and with application significant features in HLW geological disposal. The reasonable, feasible and flexible data conceptual models, logical models and physical models have been established so as to ensure the effective integration and facilitate application development of multi-source data in pre-selected areas for geological disposal.

  14. Study on the Integrated Geophysic Methods and Application of Advanced Geological Detection for Complicated Tunnel

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Xiao, G.

    2014-12-01

    The engineering geological and hydrological conditions of current tunnels are more and more complicated, as the tunnels are elongated with deeper depth. In constructing these complicated tunnels, geological hazards prone to occur as induced by unfavorable geological bodies, such as fault zones, karst or hydrous structures, etc. The working emphasis and difficulty of the advanced geological exploration for complicated tunnels are mainly focused on the structure and water content of these unfavorable geological bodies. The technical aspects of my paper systematically studied the advanced geological exploration theory and application aspects for complicated tunnels, with discussion on the key technical points and useful conclusions. For the all-aroundness and accuracy of advanced geological exploration results, the objective of my paper is targeted on the comprehensive examination on the structure and hydrous characteristic of the unfavorable geological bodies in complicated tunnels. By the multi-component seismic modeling on a more real model containing the air medium, the wave field response characteristics of unfavorable geological bodies can be analyzed, thus providing theoretical foundation for the observation system layout, signal processing and interpretation of seismic methods. Based on the tomographic imaging theory of seismic and electromagnetic method, 2D integrated seismic and electromagnetic tomographic imaging and visualization software was designed and applied in the advanced drilling hole in the tunnel face, after validation of the forward and inverse modeling results on theoretical models. The transmission wave imaging technology introduced in my paper can be served as a new criterion for detection of unfavorable geological bodies. After careful study on the basic theory, data processing and interpretation, practical applications of TSP and ground penetrating radar (GPR) method, as well as serious examination on their application examples, my paper formulated a suite of comprehensive application system of seismic and electromagnetic methods for the advanced geological exploration of complicated tunnels. This research is funded by National Natural Science Foundation of China (Grant No. 41202223) .

  15. Geo-Engineering through Internet Informatics (GEMINI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watney, W. Lynn; Doveton, John H.; Victorine, John R.

    GEMINI will resolve reservoir parameters that control well performance; characterize subtle reservoir properties important in understanding and modeling hydrocarbon pore volume and fluid flow; expedite recognition of bypassed, subtle, and complex oil and gas reservoirs at regional and local scale; differentiate commingled reservoirs; build integrated geologic and engineering model based on real-time, iterate solutions to evaluate reservoir management options for improved recovery; provide practical tools to assist the geoscientist, engineer, and petroleum operator in making their tasks more efficient and effective; enable evaluations to be made at different scales, ranging from individual well, through lease, field, to play and regionmore » (scalable information infrastructure); and provide training and technology transfer to evaluate capabilities of the client.« less

  16. Research and implementation on 3D modeling of geological body

    NASA Astrophysics Data System (ADS)

    Niu, Lijuan; Li, Ligong; Zhu, Renyi; Huang, Man

    2017-10-01

    This study based on GIS thinking explores the combination of the mixed spatial data model and GIS model to build three-dimensional(3d) model of geological bodies in the Arc Engine platform, describes the interface and method used in the construction of 3d geological body in Arc Engine component platform in detail, and puts forward an indirect method which constructs a set of geological grid layers through Rigging interpolation by the borehole data and then converts it into the geological layers of TIN, which improves the defect in building the geological layers of TIN directly and makes it better to complete the simulation of the real geological layer. This study makes a useful attempt to build 3d model of the geological body based on the GIS, and provides a certain reference value for simulating geological bodies in 3d and constructing the digital system of underground space.

  17. A Web-based Visualization System for Three Dimensional Geological Model using Open GIS

    NASA Astrophysics Data System (ADS)

    Nemoto, T.; Masumoto, S.; Nonogaki, S.

    2017-12-01

    A three dimensional geological model is an important information in various fields such as environmental assessment, urban planning, resource development, waste management and disaster mitigation. In this study, we have developed a web-based visualization system for 3D geological model using free and open source software. The system has been successfully implemented by integrating web mapping engine MapServer and geographic information system GRASS. MapServer plays a role of mapping horizontal cross sections of 3D geological model and a topographic map. GRASS provides the core components for management, analysis and image processing of the geological model. Online access to GRASS functions has been enabled using PyWPS that is an implementation of WPS (Web Processing Service) Open Geospatial Consortium (OGC) standard. The system has two main functions. Two dimensional visualization function allows users to generate horizontal and vertical cross sections of 3D geological model. These images are delivered via WMS (Web Map Service) and WPS OGC standards. Horizontal cross sections are overlaid on the topographic map. A vertical cross section is generated by clicking a start point and an end point on the map. Three dimensional visualization function allows users to visualize geological boundary surfaces and a panel diagram. The user can visualize them from various angles by mouse operation. WebGL is utilized for 3D visualization. WebGL is a web technology that brings hardware-accelerated 3D graphics to the browser without installing additional software. The geological boundary surfaces can be downloaded to incorporate the geologic structure in a design on CAD and model for various simulations. This study was supported by JSPS KAKENHI Grant Number JP16K00158.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini

    The University of Alabama, in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company, has undertaken an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization andmore » modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary goal of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. Geoscientific reservoir property, geophysical seismic attribute, petrophysical property, and engineering property characterization has shown that reef (thrombolite) and shoal reservoir lithofacies developed on the flanks of high-relief crystalline basement paleohighs (Vocation Field example) and on the crest and flanks of low-relief crystalline basement paleohighs (Appleton Field example). The reef thrombolite lithofacies have higher reservoir quality than the shoal lithofacies due to overall higher permeabilities and greater interconnectivity. Thrombolite dolostone flow units, which are dominated by dolomite intercrystalline and vuggy pores, are characterized by a pore system comprised of a higher percentage of large-sized pores and larger pore throats. Rock-fluid interactions (diagenesis) studies have shown that although the primary control on reservoir architecture and geographic distribution of Smackover reservoirs is the fabric and texture of the depositional lithofacies, diagenesis (chiefly dolomitization) is a significant factor that preserves and enhances reservoir quality. The evaporative pumping mechanism is favored to explain the dolomitization of the thrombolite doloboundstone and dolostone reservoir flow units at Appleton and Vocation Fields. Geologic modeling, reservoir simulation, and the testing and applying the resulting integrated geologic-engineering models have shown that little oil remains to be recovered at Appleton Field and a significant amount of oil remains to be recovered at Vocation Field through a strategic infill drilling program. The drive mechanisms for primary production in Appleton and Vocation Fields remain effective; therefore, the initiation of a pressure maintenance program or enhanced recovery project is not required at this time. The integrated geologic-engineering model developed for a low-relief paleohigh (Appleton Field) was tested for three scenarios involving the variables of present-day structural elevation and the presence/absence of potential reef thrombolite lithofacies. In each case, the predictions based upon the model were correct. From this modeling, the characteristics of the ideal prospect in the basement ridge play include a low-relief paleohigh associated with dendroidal/chaotic thrombolite doloboundstone and dolostone that has sufficient present-day structural relief so that these carbonates rest above the oil-water contact. Such a prospect was identified from the modeling, and it is located northwest of well Permit No. 3854B (Appleton Field) and south of well No. Permit No.11030B (Northwest Appleton Field).« less

  19. Cross-disciplinary Undergraduate Research: A Case Study in Digital Mapping, western Ireland

    NASA Astrophysics Data System (ADS)

    Whitmeyer, S. J.; de Paor, D. G.; Nicoletti, J.; Rivera, M.; Santangelo, B.; Daniels, J.

    2008-12-01

    As digital mapping technology becomes ever more advanced, field geologists spend a greater proportion of time learning digital methods relative to analyzing rocks and structures. To explore potential solutions to the time commitment implicit in learning digital field methods, we paired James Madison University (JMU) geology majors (experienced in traditional field techniques) with Worcester Polytechnic Institute (WPI) engineering students (experienced in computer applications) during a four week summer mapping project in Connemara, western Ireland. The project consisted of approximately equal parts digital field mapping (directed by the geology students), and lab-based map assembly, evaluation and formatting for virtual 3D terrains (directed by the engineering students). Students collected geologic data in the field using ruggedized handheld computers (Trimble GeoExplorer® series) with ArcPAD® software. Lab work initially focused on building geologic maps in ArcGIS® from the digital field data and then progressed to developing Google Earth-based visualizations of field data and maps. Challenges included exporting GIS data, such as locations and attributes, to KML tags for viewing in Google Earth, which we accomplished using a Linux bash script written by one of our engineers - a task outside the comfort zone of the average geology major. We also attempted to expand the scope of Google Earth by using DEMs of present-day geologically-induced landforms as representative models for paleo-geographic reconstructions of the western Ireland field area. As our integrated approach to digital field work progressed, we found that our digital field mapping produced data at a faster rate than could be effectively managed during our allotted time for lab work. This likely reflected the more developed methodology for digital field data collection, as compared with our lab-based attempts to develop new methods for 3D visualization of geologic maps. However, this experiment in cross-disciplinary undergraduate research was a big success, with an enthusiastic interchange of expertise between undergraduate geology and engineering students that produced new, cutting-edge methods for visualizing geologic data and maps.

  20. A Bayesian Framework of Uncertainties Integration in 3D Geological Model

    NASA Astrophysics Data System (ADS)

    Liang, D.; Liu, X.

    2017-12-01

    3D geological model can describe complicated geological phenomena in an intuitive way while its application may be limited by uncertain factors. Great progress has been made over the years, lots of studies decompose the uncertainties of geological model to analyze separately, while ignored the comprehensive impacts of multi-source uncertainties. Great progress has been made over the years, while lots of studies ignored the comprehensive impacts of multi-source uncertainties when analyzed them item by item from each source. To evaluate the synthetical uncertainty, we choose probability distribution to quantify uncertainty, and propose a bayesian framework of uncertainties integration. With this framework, we integrated data errors, spatial randomness, and cognitive information into posterior distribution to evaluate synthetical uncertainty of geological model. Uncertainties propagate and cumulate in modeling process, the gradual integration of multi-source uncertainty is a kind of simulation of the uncertainty propagation. Bayesian inference accomplishes uncertainty updating in modeling process. Maximum entropy principle makes a good effect on estimating prior probability distribution, which ensures the prior probability distribution subjecting to constraints supplied by the given information with minimum prejudice. In the end, we obtained a posterior distribution to evaluate synthetical uncertainty of geological model. This posterior distribution represents the synthetical impact of all the uncertain factors on the spatial structure of geological model. The framework provides a solution to evaluate synthetical impact on geological model of multi-source uncertainties and a thought to study uncertainty propagation mechanism in geological modeling.

  1. Waste IPSC : Thermal-Hydrologic-Chemical-Mechanical (THCM) modeling and simulation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeze, Geoffrey A.; Wang, Yifeng; Arguello, Jose Guadalupe, Jr.

    2010-10-01

    Waste IPSC Objective is to develop an integrated suite of high performance computing capabilities to simulate radionuclide movement through the engineered components and geosphere of a radioactive waste storage or disposal system: (1) with robust thermal-hydrologic-chemical-mechanical (THCM) coupling; (2) for a range of disposal system alternatives (concepts, waste form types, engineered designs, geologic settings); (3) for long time scales and associated large uncertainties; (4) at multiple model fidelities (sub-continuum, high-fidelity continuum, PA); and (5) in accordance with V&V and software quality requirements. THCM Modeling collaborates with: (1) Other Waste IPSC activities: Sub-Continuum Processes (and FMM), Frameworks and Infrastructure (and VU,more » ECT, and CT); (2) Waste Form Campaign; (3) Used Fuel Disposition (UFD) Campaign; and (4) ASCEM.« less

  2. Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock.

    PubMed

    Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L; de Bruijn, Ino; Andersson, Anders F; Leupin, Olivier X; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-10-14

    The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present.

  3. Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock

    PubMed Central

    Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L.; de Bruijn, Ino; Andersson, Anders F.; Leupin, Olivier X.; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-01-01

    The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present. PMID:27739431

  4. The Australian Computational Earth Systems Simulator

    NASA Astrophysics Data System (ADS)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic behaviour of earth systems. ACcESS represents a part of Australia's contribution to the APEC Cooperation for Earthquake Simulation (ACES) international initiative. Together with other national earth systems science initiatives including the Japanese Earth Simulator and US General Earthquake Model projects, ACcESS aims to provide a driver for scientific advancement and technological breakthroughs including: quantum leaps in understanding of earth evolution at global, crustal, regional and microscopic scales; new knowledge of the physics of crustal fault systems required to underpin the grand challenge of earthquake prediction; new understanding and predictive capabilities of geological processes such as tectonics and mineralisation.

  5. VISUAL3D - An EIT network on visualization of geomodels

    NASA Astrophysics Data System (ADS)

    Bauer, Tobias

    2017-04-01

    When it comes to interpretation of data and understanding of deep geological structures and bodies at different scales then modelling tools and modelling experience is vital for deep exploration. Geomodelling provides a platform for integration of different types of data, including new kinds of information (e.g., new improved measuring methods). EIT Raw Materials, initiated by the EIT (European Institute of Innovation and Technology) and funded by the European Commission, is the largest and strongest consortium in the raw materials sector worldwide. The VISUAL3D network of infrastructure is an initiative by EIT Raw Materials and aims at bringing together partners with 3D-4D-visualisation infrastructure and 3D-4D-modelling experience. The recently formed network collaboration interlinks hardware, software and expert knowledge in modelling visualization and output. A special focus will be the linking of research, education and industry and integrating multi-disciplinary data and to visualize the data in three and four dimensions. By aiding network collaborations we aim at improving the combination of geomodels with differing file formats and data characteristics. This will create an increased competency in modelling visualization and the ability to interchange and communicate models more easily. By combining knowledge and experience in geomodelling with expertise in Virtual Reality visualization partners of EIT Raw Materials but also external parties will have the possibility to visualize, analyze and validate their geomodels in immersive VR-environments. The current network combines partners from universities, research institutes, geological surveys and industry with a strong background in geological 3D-modelling and 3D visualization and comprises: Luleå University of Technology, Geological Survey of Finland, Geological Survey of Denmark and Greenland, TUBA Freiberg, Uppsala University, Geological Survey of France, RWTH Aachen, DMT, KGHM Cuprum, Boliden, Montan Universität Leoben, Slovenian National Building and Civil Engineering Institute, Tallinn University of Technology and Turku University. The infrastructure within the network comprises different types of capturing and visualization hardware, ranging from high resolution cubes, VR walls, VR goggle solutions, high resolution photogrammetry, UAVs, lidar-scanners, and many more.

  6. Modeling hazardous mass flows Geoflows09: Mathematical and computational aspects of modeling hazardous geophysical mass flows; Seattle, Washington, 9–11 March 2009

    USGS Publications Warehouse

    Iverson, Richard M.; LeVeque, Randall J.

    2009-01-01

    A recent workshop at the University of Washington focused on mathematical and computational aspects of modeling the dynamics of dense, gravity-driven mass movements such as rock avalanches and debris flows. About 30 participants came from seven countries and brought diverse backgrounds in geophysics; geology; physics; applied and computational mathematics; and civil, mechanical, and geotechnical engineering. The workshop was cosponsored by the U.S. Geological Survey Volcano Hazards Program, by the U.S. National Science Foundation through a Vertical Integration of Research and Education (VIGRE) in the Mathematical Sciences grant to the University of Washington, and by the Pacific Institute for the Mathematical Sciences. It began with a day of lectures open to the academic community at large and concluded with 2 days of focused discussions and collaborative work among the participants.

  7. Counting Dots.

    ERIC Educational Resources Information Center

    Repine, Tom; Hemler, Deb; Lane, Duane

    2003-01-01

    Presents a problem-solving investigation on coal mining that integrates science and mathematics with geology. Engages students in a scenario in which they play the roles of geologists and mining engineers. (NB)

  8. Geological Modeling and Fluid Flow Simulation of Acid Gas Storage, Nugget Sandstone, Moxa Arch, Wyoming

    NASA Astrophysics Data System (ADS)

    Li, S.; Zhang, Y.; Zhang, X.; Du, C.

    2009-12-01

    The Moxa Arch Anticline is a regional-scale northwest-trending uplift in western Wyoming where geological storage of acid gases (CO2, CH4, N2, H2S, He) from ExxonMobile's Shute Creek Gas Plant is under consideration. The Nugget Sandstone, a deep saline aquifer at depths exceeding 17,170 ft, is a candidate formation for acid gas storage. As part of a larger goal of determining site suitability, this study builds three-dimensional local to regional scale geological and fluid flow models for the Nugget Sandstone, its caprock (Twin Creek Limestone), and an underlying aquifer (Ankareh Sandstone), or together, the ``Nugget Suite''. For an area of 3000 square miles, geological and engineering data were assembled, screened for accuracy, and digitized, covering an average formation thickness of ~1700 feet. The data include 900 public-domain well logs (SP, Gamma Ray, Neutron Porosity, Density, Sonic, shallow and deep Resistivity, Lithology, Deviated well logs), 784 feet of core measurements (porosity and permeability), 4 regional geological cross sections, and 3 isopach maps. Data were interpreted and correlated for geological formations and facies, the later categorized using both Neural Network and Gaussian Hierarchical Clustering algorithms. Well log porosities were calibrated with core measurements, those of permeability estimated using formation-specific porosity-permeability transforms. Using conditional geostatistical simulations (first indicator simulation of facies, then sequential Gaussian simulation of facies-specific porosity), data were integrated at the regional-scale to create a geological model from which a local-scale simulation model surrounding the Shute Creek injection site was extracted. Based on this model, full compositional multiphase flow simulations were conducted with which we explore (1) an appropriate grid resolution for accurate acid gas predictions (pressure, saturation, and mass balance); (2) sensitivity of key geological and engineering variables on model predictions. Results suggest that (1) a horizontal and vertical resolution of 1/75 and 1/5~1/2 porosity correlation length is needed, respectively, to accurately capture the flow physics and mass balance. (2) the most sensitive variables that have first order impact on model predictions (i.e., regional storage, local displacement efficiency) are boundary condition, vertical permeability, relative permeability hysteresis, and injection rate. However, all else being equal, formation brine salinity has the most important effects on the concentrations of all dissolved components. Future work will define and simulate reactions of acid gases with formation brines and rocks which are currently under laboratory investigations.

  9. Terrain Analysis Research Needs to Support Test and Evaluation at YPG: Workshop Report

    DTIC Science & Technology

    2013-04-12

    hydrology, modeling, geology , civil engineering, soil science), and representatives from the US Military Academy, and Strategic Planning, Test Resource...Other personnel included five DRI staff (representing expertise in hydrology, modeling, geology , civil engineering, soil science), and representatives...Defense The number of undergraduates funded by your agreement who graduated during this period and will receive scholarships or fellowships for further

  10. An Integrated Watershed and Receiving Water Model for Fecal Coliform Fate and Transport in Sinclair and Dyes Inlets, Puget Sound, WA

    DTIC Science & Technology

    2009-12-01

    Area IMPLND Impervious Land Cover INFILT Interflow Inflow Parameter (related to infiltration capacity of the soil ) INSUR Manning’s N for the...Km) SCCWRP Southern California Coastal Water Research Project SCS Soil Conservation Service SGA Shellfish Growing Area SPAWAR Space and Naval...UCI User Control Input USACE U.S. Army Corps of Engineers USEPA U.S. Environmental Protection Agency USGS U.S. Geological Survey xix USLE Universal

  11. Integration of 3D geological modeling and gravity surveys for geothermal prospection in an Alpine region

    NASA Astrophysics Data System (ADS)

    Guglielmetti, L.; Comina, C.; Abdelfettah, Y.; Schill, E.; Mandrone, G.

    2013-11-01

    Thermal sources are common manifestations of geothermal energy resources in Alpine regions. The up-flow of the fluid is well-known to be often linked to cross-cutting fault zones providing a significant volume of fractures. Since conventional exploration methods are challenging in such areas of high topography and complicated logistics, 3D geological modeling based on structural investigation becomes a useful tool for assessing the overall geology of the investigated sites. Geological modeling alone is, however, less effective if not integrated with deep subsurface investigations that could provide a first order information on geological boundaries and an imaging of geological structures. With this aim, in the present paper the combined use of 3D geological modeling and gravity surveys for geothermal prospection of a hydrothermal area in the western Alps was carried out on two sites located in the Argentera Massif (NW Italy). The geothermal activity of the area is revealed by thermal anomalies with surface evidences, such as hot springs, at temperatures up to 70 °C. Integration of gravity measurements and 3D modeling investigates the potential of this approach in the context of geothermal exploration in Alpine regions where a very complex geological and structural setting is expected. The approach used in the present work is based on the comparison between the observed gravity and the gravity effect of the 3D geological models, in order to enhance local effects related to the geothermal system. It is shown that a correct integration of 3D modeling and detailed geophysical survey could allow a better characterization of geological structures involved in geothermal fluids circulation. Particularly, gravity inversions have successfully delineated the continuity in depth of low density structures, such as faults and fractured bands observed at the surface, and have been of great help in improving the overall geological model.

  12. PUMa - modelling the groundwater flow in Baltic Sedimentary Basin

    NASA Astrophysics Data System (ADS)

    Kalvane, G.; Marnica, A.; Bethers, U.

    2012-04-01

    In 2009-2012 at University of Latvia and Latvia University of Agriculture project "Establishment of interdisciplinary scientist group and modelling system for groundwater research" is implemented financed by the European Social Fund. The aim of the project is to develop groundwater research in Latvia by establishing interdisciplinary research group and modelling system covering groundwater flow in the Baltic Sedimentary Basin. Researchers from fields like geology, chemistry, mathematical modelling, physics and environmental engineering are involved in the project. The modelling system is used as a platform for addressing scientific problems such as: (1) large-scale groundwater flow in Baltic Sedimentary Basin and impact of human activities on it; (2) the evolution of groundwater flow since the last glaciation and subglacial groundwater recharge; (3) the effects of climate changes on shallow groundwater and interaction of hydrographical network and groundwater; (4) new programming approaches for groundwater modelling. Within the frame of the project most accessible geological information such as description of geological wells, geological maps and results of seismic profiling in Latvia as well as Estonia and Lithuania are collected and integrated into modelling system. For example data form more then 40 thousands wells are directly used to automatically generate the geological structure of the model. Additionally a groundwater sampling campaign is undertaken. Contents of CFC, stabile isotopes of O and H and radiocarbon are the most significant parameters of groundwater that are established in unprecedented scale for Latvia. The most important modelling results will be published in web as a data set. Project number: 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060. Project web-site: www.puma.lu.lv

  13. New Age of 3D Geological Modelling or Complexity is not an Issue Anymore

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Aleksandr

    2017-04-01

    Geological model has a significant value in almost all types of researches related to regional mapping, geodynamics and especially to structural and resource geology of mineral deposits. Well-developed geological model must take into account all vital features of modelling object without over-simplification and also should adequately represent the interpretation of the geologist. In recent years with the gradual exhaustion deposits with relatively simple morphology geologists from all over the world are faced with the necessity of building the representative models for more and more structurally complex objects. Meanwhile, the amount of tools used for that has not significantly changed in the last two-three decades. The most widespread method of wireframe geological modelling now was developed in 1990s and is fully based on engineering design set of instruments (so-called CAD). Strings and polygons representing the section-based interpretation are being used as an intermediate step in the process of wireframes generation. Despite of significant time required for this type of modelling, it still can provide sufficient results for simple and medium-complexity geological objects. However, with the increasing complexity more and more vital features of the deposit are being sacrificed because of fundamental inability (or much greater time required for modelling) of CAD-based explicit techniques to develop the wireframes of the appropriate complexity. At the same time alternative technology which is not based on sectional approach and which uses the fundamentally different mathematical algorithms is being actively developed in the variety of other disciplines: medicine, advanced industrial design, game and cinema industry. In the recent years this implicit technology started to being developed for geological modelling purpose and nowadays it is represented by very powerful set of tools that has been integrated in almost all major commercial software packages. Implicit modelling allows to develop geological models that really correspond with complicated geological reality. Models can include fault blocking, complex structural trends and folding; can be based on excessive input dataset (like lots of drilling on the mining stage) or, on the other hand, on a quite few drillholes intersections with significant input from geological interpretation of the deposit. In any case implicit modelling, if is used correctly, allows to incorporate the whole batch of geological data and relatively quickly get the easily adjustable, flexible and robust geological wireframes that can be used as a reliable foundation on the following stages of geological investigations. In SRK practice nowadays almost all the wireframe models used for structural and resource geology are developed with implicit modelling tools which significantly increased the speed and quality of geological modelling.

  14. Thematic Conference on Geologic Remote Sensing, 8th, Denver, CO, Apr. 29-May 2, 1991, Proceedings. Vols. 1 & 2

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The proceedings contain papers discussing the state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing, along with the research and development activities aimed at increasing the future capabilities of this technology. The following topics are addressed: spectral geology, U.S. and international hydrocarbon exporation, radar and thermal infrared remote sensing, engineering geology and hydrogeology, mineral exploration, remote sensing for marine and environmental applications, image processing and analysis, geobotanical remote sensing, and data integration and geographic information systems. Particular attention is given to spectral alteration mapping with imaging spectrometers, mapping the coastal plain of the Congo with airborne digital radar, applications of remote sensing techniques to the assessment of dam safety, remote sensing of ferric iron minerals as guides for gold exploration, principal component analysis for alteration mappping, and the application of remote sensing techniques for gold prospecting in the north Fujian province.

  15. Role of reservoir engineering in the assessment of undiscovered oil and gas resources in the National Petroleum Reserve, Alaska

    USGS Publications Warehouse

    Verma, M.K.; Bird, K.J.

    2005-01-01

    The geology and reservoir-engineering data were integrated in the 2002 U.S. Geological Survey assessment of the National Petroleum Reserve in Alaska (NPRA). VVhereas geology defined the analog pools and fields and provided the basic information on sizes and numbers of hypothesized petroleum accumulations, reservoir engineering helped develop necessary equations and correlations, which allowed the determination of reservoir parameters for better quantification of in-place petroleum volumes and recoverable reserves. Seismic- and sequence-stratigraphic study of the NPRA resulted in identification of 24 plays. Depth ranges in these 24 plays, however, were typically greater than depth ranges of analog plays for which there were available data, necessitating the need for establishing correlations. The basic parameters required were pressure, temperature, oil and gas formation volume factors, liquid/gas ratios for the associated and nonassociated gas, and recovery factors. Finally, the re sults of U.S. Geological Survey deposit simulation were used in carrying out an economic evaluation, which has been separately published. Copyright ?? 2005. The American Association of Petroleum Geologists. All rights reserved.

  16. Predicting long-term performance of engineered geologic carbon dioxide storage systems to inform decisions amidst uncertainty

    NASA Astrophysics Data System (ADS)

    Pawar, R.

    2016-12-01

    Risk assessment and risk management of engineered geologic CO2 storage systems is an area of active investigation. The potential geologic CO2 storage systems currently under consideration are inherently heterogeneous and have limited to no characterization data. Effective risk management decisions to ensure safe, long-term CO2 storage requires assessing and quantifying risks while taking into account the uncertainties in a storage site's characteristics. The key decisions are typically related to definition of area of review, effective monitoring strategy and monitoring duration, potential of leakage and associated impacts, etc. A quantitative methodology for predicting a sequestration site's long-term performance is critical for making key decisions necessary for successful deployment of commercial scale geologic storage projects where projects will require quantitative assessments of potential long-term liabilities. An integrated assessment modeling (IAM) paradigm which treats a geologic CO2 storage site as a system made up of various linked subsystems can be used to predict long-term performance. The subsystems include storage reservoir, seals, potential leakage pathways (such as wellbores, natural fractures/faults) and receptors (such as shallow groundwater aquifers). CO2 movement within each of the subsystems and resulting interactions are captured through reduced order models (ROMs). The ROMs capture the complex physical/chemical interactions resulting due to CO2 movement and interactions but are computationally extremely efficient. The computational efficiency allows for performing Monte Carlo simulations necessary for quantitative probabilistic risk assessment. We have used the IAM to predict long-term performance of geologic CO2 sequestration systems and to answer questions related to probability of leakage of CO2 through wellbores, impact of CO2/brine leakage into shallow aquifer, etc. Answers to such questions are critical in making key risk management decisions. A systematic uncertainty quantification approach can been used to understand how uncertain parameters associated with different subsystems (e.g., reservoir permeability, wellbore cement permeability, wellbore density, etc.) impact the overall site performance predictions.

  17. Engineering Geology | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Highway and development of avalanche susceptibility and prediction models near Atigun Pass. Alaska coastal

  18. A Theoretical Model to Predict Both Horizontal Displacement and Vertical Displacement for Electromagnetic Induction-Based Deep Displacement Sensors

    PubMed Central

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors’ mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors’ monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency. PMID:22368467

  19. A theoretical model to predict both horizontal displacement and vertical displacement for electromagnetic induction-based deep displacement sensors.

    PubMed

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors' mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors' monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency.

  20. The SKI repository performance assessment project Site-94

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, J.; Dverstorp, B.; Sjoeblom, R.

    1995-12-01

    SITE-94 is a research project conducted as a performance assessment of a hypothetical repository for spent nuclear fuel, but with real pre-excavation data from a real site. The geosphere, the engineered barriers and the processes for radionuclide release and transport comprise an integrated interdependent system, which is described by an influence diagram (PID) that reflects how different Features, Events or Processes (FEPs) inside the system interact. Site evaluation is used to determine information of transport paths in the geosphere and to deliver information on geosphere interaction with the engineered barriers. A three-dimensional geological structure model of the site as wellmore » as alternative conceptual models consistent with the existing hydrological field data, have been analyzed. Groundwater chemistry is evaluated and a model, fairly consistent with the flow model, for the origin of the different waters has been developed. The geological structure model is also used for analyzing the mechanical stability of the site. Several phenomena of relevance for copper corrosion in a repository environment have been investigated. For Reference Case conditions and regardless of flow variability, output is dominated by I-129, which, for a single canister, may give rise to drinking water well doses in the order of 10{sup -6}Sv/yr. Finally, it appears that the procedures involved in the development of influence diagrams may be a promising tool for quality assurance of performance assessments.« less

  1. Modeling uncertainty in producing natural gas from tight sands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chermak, J.M.; Dahl, C.A.; Patrick, R.H

    1995-12-31

    Since accurate geologic, petroleum engineering, and economic information are essential ingredients in making profitable production decisions for natural gas, we combine these ingredients in a dynamic framework to model natural gas reservoir production decisions. We begin with the certainty case before proceeding to consider how uncertainty might be incorporated in the decision process. Our production model uses dynamic optimal control to combine economic information with geological constraints to develop optimal production decisions. To incorporate uncertainty into the model, we develop probability distributions on geologic properties for the population of tight gas sand wells and perform a Monte Carlo study tomore » select a sample of wells. Geological production factors, completion factors, and financial information are combined into the hybrid economic-petroleum reservoir engineering model to determine the optimal production profile, initial gas stock, and net present value (NPV) for an individual well. To model the probability of the production abandonment decision, the NPV data is converted to a binary dependent variable. A logit model is used to model this decision as a function of the above geological and economic data to give probability relationships. Additional ways to incorporate uncertainty into the decision process include confidence intervals and utility theory.« less

  2. Publications - PDF 99-24D | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska ; Engineering; Engineering Geologic Map; Engineering Geology; Geologic Map; Geology; Land Subsidence; Landslide

  3. 3D subsurface geological modeling using GIS, remote sensing, and boreholes data

    NASA Astrophysics Data System (ADS)

    Kavoura, Katerina; Konstantopoulou, Maria; Kyriou, Aggeliki; Nikolakopoulos, Konstantinos G.; Sabatakakis, Nikolaos; Depountis, Nikolaos

    2016-08-01

    The current paper presents the combined use of geological-geotechnical insitu data, remote sensing data and GIS techniques for the evaluation of a subsurface geological model. High accuracy Digital Surface Model (DSM), airphotos mosaic and satellite data, with a spatial resolution of 0.5m were used for an othophoto base map compilation of the study area. Geological - geotechnical data obtained from exploratory boreholes and the 1:5000 engineering geological maps were digitized and implemented in a GIS platform for a three - dimensional subsurface model evaluation. The study is located at the North part of Peloponnese along the new national road.

  4. Use of XML and Java for collaborative petroleum reservoir modeling on the Internet

    NASA Astrophysics Data System (ADS)

    Victorine, John; Watney, W. Lynn; Bhattacharya, Saibal

    2005-11-01

    The GEMINI (Geo-Engineering Modeling through INternet Informatics) is a public-domain, web-based freeware that is made up of an integrated suite of 14 Java-based software tools to accomplish on-line, real-time geologic and engineering reservoir modeling. GEMINI facilitates distant collaborations for small company and academic clients, negotiating analyses of both single and multiple wells. The system operates on a single server and an enterprise database. External data sets must be uploaded into this database. Feedback from GEMINI users provided the impetus to develop Stand Alone Web Start Applications of GEMINI modules that reside in and operate from the user's PC. In this version, the GEMINI modules run as applets, which may reside in local user PCs, on the server, or Java Web Start. In this enhanced version, XML-based data handling procedures are used to access data from remote and local databases and save results for later access and analyses. The XML data handling process also integrates different stand-alone GEMINI modules enabling the user(s) to access multiple databases. It provides flexibility to the user to customize analytical approach, database location, and level of collaboration. An example integrated field-study using GEMINI modules and Stand Alone Web Start Applications is provided to demonstrate the versatile applicability of this freeware for cost-effective reservoir modeling.

  5. Use of XML and Java for collaborative petroleum reservoir modeling on the Internet

    USGS Publications Warehouse

    Victorine, J.; Watney, W.L.; Bhattacharya, S.

    2005-01-01

    The GEMINI (Geo-Engineering Modeling through INternet Informatics) is a public-domain, web-based freeware that is made up of an integrated suite of 14 Java-based software tools to accomplish on-line, real-time geologic and engineering reservoir modeling. GEMINI facilitates distant collaborations for small company and academic clients, negotiating analyses of both single and multiple wells. The system operates on a single server and an enterprise database. External data sets must be uploaded into this database. Feedback from GEMINI users provided the impetus to develop Stand Alone Web Start Applications of GEMINI modules that reside in and operate from the user's PC. In this version, the GEMINI modules run as applets, which may reside in local user PCs, on the server, or Java Web Start. In this enhanced version, XML-based data handling procedures are used to access data from remote and local databases and save results for later access and analyses. The XML data handling process also integrates different stand-alone GEMINI modules enabling the user(s) to access multiple databases. It provides flexibility to the user to customize analytical approach, database location, and level of collaboration. An example integrated field-study using GEMINI modules and Stand Alone Web Start Applications is provided to demonstrate the versatile applicability of this freeware for cost-effective reservoir modeling. ?? 2005 Elsevier Ltd. All rights reserved.

  6. Implicit Three-Dimensional Geo-Modelling Based on HRBF Surface

    NASA Astrophysics Data System (ADS)

    Gou, J.; Zhou, W.; Wu, L.

    2016-10-01

    Three-dimensional (3D) geological models are important representations of the results of regional geological surveys. However, the process of constructing 3D geological models from two-dimensional (2D) geological elements remains difficult and time-consuming. This paper proposes a method of migrating from 2D elements to 3D models. First, the geological interfaces were constructed using the Hermite Radial Basis Function (HRBF) to interpolate the boundaries and attitude data. Then, the subsurface geological bodies were extracted from the spatial map area using the Boolean method between the HRBF surface and the fundamental body. Finally, the top surfaces of the geological bodies were constructed by coupling the geological boundaries to digital elevation models. Based on this workflow, a prototype system was developed, and typical geological structures (e.g., folds, faults, and strata) were simulated. Geological modes were constructed through this workflow based on realistic regional geological survey data. For extended applications in 3D modelling of other kinds of geo-objects, mining ore body models and urban geotechnical engineering stratum models were constructed by this method from drill-hole data. The model construction process was rapid, and the resulting models accorded with the constraints of the original data.

  7. Characterization of Sedimentary Deposits Using usSEABED for Large-scale Mapping, Modeling and Research of U.S.Continental Margins

    NASA Astrophysics Data System (ADS)

    Williams, S. J.; Reid, J. A.; Arsenault, M. A.; Jenkins, C.

    2006-12-01

    Geologic maps of offshore areas containing detailed morphologic features and sediment character can serve many scientific and operational purposes. Such maps have been lacking, but recent computer technology and software to capture diverse marine data are offering promise. Continental margins, products of complex geologic history and dynamic oceanographic processes, dominated by the Holocene marine transgression, contain landforms which provide a variety of important functions: critical habitats for fish, ship navigation, national defense, and engineering activities (i.e., oil and gas platforms, pipeline and cable routes, wind-energy sites) and contain important sedimentary records. Some shelf areas also contain sedimentary deposits such as sand and gravel, regarded as potential aggregate resources for mitigating coastal erosion, reducing vulnerability to hazards, and restoring ecosystems. Because coastal and offshore areas are increasingly important, knowledge of the framework geology and marine processes is useful to many. Especially valuable are comprehensive and integrated digital databases based on data from original sources in the marine community. Products of interest are GIS maps containing thematic information such as seafloor physiography, geology, sediment character and texture, seafloor roughness, and geotechnical engineering properties. These map products are useful to scientists modeling nearshore and shelf processes as well as planners and managers. The USGS with partners is leading a Nation-wide program to gather a wide variety of extant marine geologic data into the usSEABED system (http://walrus.wr.usgs/usseabed). This provides a centralized, fully integrated digital database of marine geologic data collected over the past 50 years by USGS, other federal and state agencies, universities and private companies. To date, approximately 325,000 data points from the U.S. EEZ reside in usSEABED. The usSEABED, which combines a broad array of physical data and information (both analytical and descriptive) about the sea floor, including sediment textural, statistical, geochemical, geophysical, and compositional information, is available to the marine community through USGS Data Series publications. Three DS reports for the Atlantic (DS-118), Gulf of Mexico (DS-146) and Pacific(DS-182) were published in 2006 and reports for HI and AK are forthcoming. The use of usSEABED and derivative map products are part of ongoing USGS efforts to conduct regional assessments of potential marine sand and gravel resources, map benthic habitats, and support research in understanding seafloor character and mobility, transport processes and natural resources.

  8. Summaries of the thematic conferences on remote sensing for exploration geology

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Thematic Conference series was initiated to address the need for concentrated discussion of particular remote sensing applications. The program is primarily concerned with the application of remote sensing to mineral and hydrocarbon exploration, with special emphasis on data integration, methodologies, and practical solutions for geologists. Some fifty invited papers are scheduled for eleven plenary sessions, formulated to address such important topics as basement tectonics and their surface expressions, spectral geology, applications for hydrocarbon exploration, and radar applications and future systems. Other invited presentations will discuss geobotanical remote sensing, mineral exploration, engineering and environmental applications, advanced image processing, and integration and mapping.

  9. Integration of geological remote-sensing techniques in subsurface analysis

    USGS Publications Warehouse

    Taranik, James V.; Trautwein, Charles M.

    1976-01-01

    Geological remote sensing is defined as the study of the Earth utilizing electromagnetic radiation which is either reflected or emitted from its surface in wavelengths ranging from 0.3 micrometre to 3 metres. The natural surface of the Earth is composed of a diversified combination of surface cover types, and geologists must understand the characteristics of surface cover types to successfully evaluate remotely-sensed data. In some areas landscape surface cover changes throughout the year, and analysis of imagery acquired at different times of year can yield additional geological information. Integration of different scales of analysis allows landscape features to be effectively interpreted. Interpretation of the static elements displayed on imagery is referred to as an image interpretation. Image interpretation is dependent upon: (1) the geologist's understanding of the fundamental aspects of image formation, and (2.) his ability to detect, delineate, and classify image radiometric data; recognize radiometric patterns; and identify landscape surface characteristics as expressed on imagery. A geologic interpretation integrates surface characteristics of the landscape with subsurface geologic relationships. Development of a geologic interpretation from imagery is dependent upon: (1) the geologist's ability to interpret geomorphic processes from their static surface expression as landscape characteristics on imagery, (2) his ability to conceptualize the dynamic processes responsible for the evolution 6f interpreted geologic relationships (his ability to develop geologic models). The integration of geologic remote-sensing techniques in subsurface analysis is illustrated by development of an exploration model for ground water in the Tucson area of Arizona, and by the development of an exploration model for mineralization in southwest Idaho.

  10. 3D Geological modelling - towards a European level infrastructure

    NASA Astrophysics Data System (ADS)

    Lee, Kathryn A.; van der Krogt, Rob; Busschers, Freek S.

    2013-04-01

    The joint European Geological Surveys are preparing the ground for a "European Geological Data Infrastructure" (EGDI), under the framework of the FP7-project EGDI-Scope. This scoping study, started in June 2012, for a pan-European e-Infrastructure is based on the successes of earlier joint projects including 'OneGeology-Europe' and aims to provide the backbone for serving interoperable, geological data currently held by European Geological Surveys. Also data from past, ongoing and future European projects will be incorporated. The scope will include an investigation of the functional and technical requirements for serving 3D geological models and will look to research the potential for providing a framework to integrate models at different scales, and form a structure for enabling the development of new and innovative model delivery mechanisms. The EGDI-scope project encourages pan-European inter-disciplinary collaboration between all European Geological Surveys. It aims to enhance emerging web based technologies that will facilitate the delivery of geological data to user communities involved in European policy making and international industry, but also to geoscientific research communities and the general public. Therefore, stakeholder input and communication is imperative to the success, as is the collaboration with all the Geological Surveys of Europe. The most important functional and technical requirements for delivery of such information at pan-European level will be derived from exchanges with relevant European stakeholder representatives and providers of geological data. For handling and delivering 3D geological model data the project will need to address a number of strategic issues: • Which are the most important issues and queries for the relevant stakeholders, requiring 3D geological models? How can this be translated to functional requirements for development and design of an integrated European application? • How to handle the very large differences in quality and scales with regard to 3D geological modelling in different European countries and regions, within a harmonized European framework? • How to handle the differences in model concepts and perceptions, especially with regard to the leading developers of 3D geological models within Europe? • How to handle differences between participating countries concerning relevant legal issues, governance, and funding models? With a primary focus on these issues, the EGDI-Scope study will provide a number of possible scenarios for delivery of 3D geological models and information within an integrated European application, including the most relevant technical, legal and organizational consequences.

  11. Diffusion Dominant Solute Transport Modelling In Deep Repository Under The Effect of Emplacement Media Degradation - 13285

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwong, S.; Jivkov, A.P.

    2013-07-01

    Deep geologic disposal of high activity and long-lived radioactive waste is being actively considered and pursued in many countries, where low permeability geological formations are used to provide long term waste contaminant with minimum impact to the environment and risk to the biosphere. A multi-barrier approach that makes use of both engineered and natural barriers (i.e. geological formations) is often used to further enhance the containment performance of the repository. As the deep repository system subjects to a variety of thermo-hydro-chemo-mechanical (THCM) effects over its long 'operational' lifespan (e.g. 0.1 to 1.0 million years, the integrity of the barrier systemmore » will decrease over time (e.g. fracturing in rock or clay)). This is broadly referred as media degradation in the present study. This modelling study examines the effects of media degradation on diffusion dominant solute transport in fractured media that are typical of deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes, while the effects of degradation is studied using a pore network model that considers the media diffusivity and network changes. Model results are presented to demonstrate the use of a 3D pore-network model, using a novel architecture, to calculate macroscopic properties of the medium such as diffusivity, subject to pore space changes as the media degrade. Results from a reactive transport model of a representative geological waste disposal package are also presented to demonstrate the effect of media property change on the solute migration behaviour, illustrating the complex interplay between kinetic biogeochemical processes and diffusion dominant transport. The initial modelling results demonstrate the feasibility of a coupled modelling approach (using pore-network model and reactive transport model) to examine the long term behaviour of deep geological repositories with media property change under complex geochemical conditions. (authors)« less

  12. A Geospatial Information Grid Framework for Geological Survey.

    PubMed

    Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong

    2015-01-01

    The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper.

  13. A Geospatial Information Grid Framework for Geological Survey

    PubMed Central

    Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong

    2015-01-01

    The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper. PMID:26710255

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallenbeck, L.D.; Harpole, K.J.; Gerard, M.G.

    The work reported here covers Budget Phase I of the project. The principal tasks in Budget Phase I are the Reservoir Analysis and Characterization Task and the Advanced Technology Definition Task. Completion of these tasks have enabled an optimum carbon dioxide (CO{sub 2}) flood project to be designed and evaluated from an economic and risk analysis standpoint. Field implementation of the project has been recommended to the working interest owner of the South Cowden Unit (SCU) and approval has been obtained. The current project has focused on reducing initial investment cost by utilizing horizontal injection wells and concentrating the projectmore » in the best productivity area of the field. An innovative CO{sub 2} purchase agreement (no take or pay requirements, CO{sub 2} purchase price tied to West Texas Intermediate crude oil price) and gas recycle agreements (expensing cost as opposed to large capital investments for compression) were negotiated to further improve project economics. A detailed reservoir characterization study was completed by an integrated team of geoscientists and engineers. The study consisted of detailed core description, integration of log response to core descriptions, mapping of the major flow units, evaluation of porosity and permeability relationships, geostatistical analysis of permeability trends, and direct integration of reservoir performance with the geological interpretation. The study methodology fostered iterative bidirectional feedback between the reservoir characterization team and the reservoir engineering/simulation team to allow simultaneous refinement and convergence of the geological interpretation with the reservoir model. The fundamental conclusion from the study is that South Cowden exhibits favorable enhanced oil recovery characteristics, particularly reservoir quality and continuity.« less

  15. Estimate of the Reliability in Geological Forecasts for Tunnels: Toward a Structured Approach

    NASA Astrophysics Data System (ADS)

    Perello, Paolo

    2011-11-01

    In tunnelling, a reliable geological model often allows providing an effective design and facing the construction phase without unpleasant surprises. A geological model can be considered reliable when it is a valid support to correctly foresee the rock mass behaviour, therefore preventing unexpected events during the excavation. The higher the model reliability, the lower the probability of unforeseen rock mass behaviour. Unfortunately, owing to different reasons, geological models are affected by uncertainties and a fully reliable knowledge of the rock mass is, in most cases, impossible. Therefore, estimating to which degree a geological model is reliable, becomes a primary requirement in order to save time and money and to adopt the appropriate construction strategy. The definition of the geological model reliability is often achieved by engineering geologists through an unstructured analytical process and variable criteria. This paper focusses on geological models for projects of linear underground structures and represents an effort to analyse and include in a conceptual framework the factors influencing such models. An empirical parametric procedure is then developed with the aim of obtaining an index called "geological model rating (GMR)", which can be used to provide a more standardised definition of a geological model reliability.

  16. DFN Modeling for the Safety Case of the Final Disposal of Spent Nuclear Fuel in Olkiluoto, Finland

    NASA Astrophysics Data System (ADS)

    Vanhanarkaus, O.

    2017-12-01

    Olkiluoto Island is a site in SW Finland chosen to host a deep geological repository for high-level nuclear waste generated by nuclear power plants of power companies TVO and Fortum. Posiva, a nuclear waste management organization, submitted a construction license application for the Olkiluoto repository to the Finnish government in 2012. A key component of the license application was an integrated geological, hydrological and biological description of the Olkiluoto site. After the safety case was reviewed in 2015 by the Radiation and Nuclear Safety Authority in Finland, Posiva was granted a construction license. Posiva is now preparing an updated safety case for the operating license application to be submitted in 2022, and an update of the discrete fracture network (DFN) model used for site characterization is part of that. The first step describing and modelling the network of fractures in the Olkiluoto bedrock was DFN model version 1 (2009), which presented an initial understanding of the relationships between rock fracturing and geology at the site and identified the important primary controls on fracturing. DFN model version 2 (2012) utilized new subsurface data from additional drillholes, tunnels and excavated underground facilities in ONKALO to better understand spatial variability of the geological controls on geological and hydrogeological fracture properties. DFN version 2 connected fracture geometric and hydraulic properties to distinct tectonic domains and to larger-scale hydraulically conductive fault zones. In the version 2 DFN model, geological and hydrogeological models were developed along separate parallel tracks. The version 3 (2017) DFN model for the Olkiluoto site integrates geological and hydrogeological elements into a single consistent model used for geological, rock mechanical, hydrogeological and hydrogeochemical studies. New elements in the version 3 DFN model include a stochastic description of fractures within Brittle Fault Zones (BFZ), integration of geological and hydrostructural interpretations of BFZ, greater use of 3D geological models to better constrain the spatial variability of fracturing and fractures using hydromechanical principles to account for material behavior and in-situ stresses.

  17. GSFLOW - Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)

    USGS Publications Warehouse

    Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.

    2008-01-01

    The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.

  18. 3D Stratigraphic Modeling of Central Aachen

    NASA Astrophysics Data System (ADS)

    Dong, M.; Neukum, C.; Azzam, R.; Hu, H.

    2010-05-01

    Since 1980s, advanced computer hardware and software technologies, as well as multidisciplinary research have provided possibilities to develop advanced three dimensional (3D) simulation software for geosciences application. Some countries, such as USA1) and Canada2) 3), have built up regional 3D geological models based on archival geological data. Such models have played huge roles in engineering geology2), hydrogeology2) 3), geothermal industry1) and so on. In cooperating with the Municipality of Aachen, the Department of Engineering Geology of RWTH Aachen University have built up a computer-based 3D stratigraphic model of 50 meter' depth for the center of Aachen, which is a 5 km by 7 km geologically complex area. The uncorrelated data from multi-resources, discontinuous nature and unconformable connection of the units are main challenges for geological modeling in this area. The reliability of 3D geological models largely depends on the quality and quantity of data. Existing 1D and 2D geological data were collected, including 1) approximately 6970 borehole data of different depth compiled in Microsoft Access database and MapInfo database; 2) a Digital Elevation Model (DEM); 3) geological cross sections; and 4) stratigraphic maps in 1m, 2m and 5m depth. Since acquired data are of variable origins, they were managed step by step. The main processes are described below: 1) Typing errors of borehole data were identified and the corrected data were exported to Variowin2.2 to distinguish duplicate points; 2) The surface elevation of borehole data was compared to the DEM, and differences larger than 3m were eliminated. Moreover, where elevation data missed, it was read from the DEM; 3) Considerable data were collected from municipal constructions, such as residential buildings, factories, and roads. Therefore, many boreholes are spatially clustered, and only one or two representative points were picked out in such areas; After above procedures, 5839 boreholes with -x, -y, -z coordinates, down-hole depth, and stratigraphic information are available. 4) We grouped stratigraphic units into four main layers based on analysis of geological settings of the modeling area. The stratigraphic units extend from Quaternary, Cretaceous, Carboniferous to Devonian. In order to facilitate the determination of each unit boundaries, a series of standard code was used to integrate data with different descriptive attributes. 5) The Quaternary and Cretaceous units are characterized by subhorizontal layers. Kriging interpolation was processed to the borehole data in order to estimate data distribution and surface relief for the layers. 6) The Carboniferous and Devonian units are folded. The lack of software support, concerning simulating folds and the shallow depth of boreholes and cross sections constrained the determination of geological boundaries. A strategy of digitalizing the fold surfaces from cross sections and establishing them as inclined strata was followed. The modeling was simply subdivided into two steps. The first step consisted of importing data into the modeling software. The second step involved the construction of subhorizontal layers and folds, which were constrained by geological maps, cross sections and outcrops. The construction of the 3D stratigraphic model is of high relevance to further simulation and application, such as 1) lithological modeling; 2) answering simple questions such as "At which unit is the water table?" and calculating volume of groundwater storage during assessment of aquifer vulnerability to contamination; and 3) assigned by geotechnical properties in grids and providing them for user required application. Acknowledgements: Borehole data is kindly provided by the Municipality of Aachen. References: 1. Janet T. Watt, Jonathan M.G. Glen, David A. John and David A. Ponce (2007) Three-dimensional geologic model of the northern Nevada rift and the Beowawe geothermal system, north-central Nevada. Geosphere, v. 3; no. 6; p. 667-682 2. Martin Ross, Michel Parent and René Lefebvre (2005) 3D geologic framework models for regional hydrogeology and land-use management: a case study from a Quaternary basin of southwestern Quebec, Canada. Hydrogeology Journal, 13:690-707 3. Martin Ross, Richard Martel, René Lefebvre, Michel Parent and Martine M. Savard (2004) Assessing rock aquifer vulnerability using downward advective times from a 3D model of surficial geology: A case study from the St. Lawrence Lowlands, Canada. Geofísica Internacional Vol. 43, Num. 4, pp. 591-602

  19. Groundwater modeling in integrated water resources management--visions for 2020.

    PubMed

    Refsgaard, Jens Christian; Højberg, Anker Lajer; Møller, Ingelise; Hansen, Martin; Søndergaard, Verner

    2010-01-01

    Groundwater modeling is undergoing a change from traditional stand-alone studies toward being an integrated part of holistic water resources management procedures. This is illustrated by the development in Denmark, where comprehensive national databases for geologic borehole data, groundwater-related geophysical data, geologic models, as well as a national groundwater-surface water model have been established and integrated to support water management. This has enhanced the benefits of using groundwater models. Based on insight gained from this Danish experience, a scientifically realistic scenario for the use of groundwater modeling in 2020 has been developed, in which groundwater models will be a part of sophisticated databases and modeling systems. The databases and numerical models will be seamlessly integrated, and the tasks of monitoring and modeling will be merged. Numerical models for atmospheric, surface water, and groundwater processes will be coupled in one integrated modeling system that can operate at a wide range of spatial scales. Furthermore, the management systems will be constructed with a focus on building credibility of model and data use among all stakeholders and on facilitating a learning process whereby data and models, as well as stakeholders' understanding of the system, are updated to currently available information. The key scientific challenges for achieving this are (1) developing new methodologies for integration of statistical and qualitative uncertainty; (2) mapping geological heterogeneity and developing scaling methodologies; (3) developing coupled model codes; and (4) developing integrated information systems, including quality assurance and uncertainty information that facilitate active stakeholder involvement and learning.

  20. Measuring and predicting reservoir heterogeneity in complex deposystems: The fluvial-deltaic Big Injun sandstone in West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patchen, D.G.; Hohn, M.E.; Aminian, K.

    1993-04-01

    The purpose of this research is to develop techniques to measure and predict heterogeneities in oil reservoirs that are the products of complex deposystems. The unit chosen for study is the Lower Mississippian Big Injun sandstone, a prolific oil producer (nearly 60 fields) in West Virginia. This research effort has been designed and is being implemented as an integrated effort involving stratigraphy, structural geology, petrology, seismic study, petroleum engineering, modeling and geostatistics. Sandstone bodies are being mapped within their regional depositional systems, and then sandstone bodies are being classified in a scheme of relative heterogeneity to determine heterogeneity across depositionalmore » systems. Facies changes are being mapped within given reservoirs, and the environments of deposition responsible for each facies are being interpreted to predict the inherent relative heterogeneity of each facies. Structural variations will be correlated both with production, where the availability of production data will permit, and with variations in geologic and engineering parameters that affect production. A reliable seismic model of the Big Injun reservoirs in Granny Creek field is being developed to help interpret physical heterogeneity in that field. Pore types are being described and related to permeability, fluid flow and diagenesis, and petrographic data are being integrated with facies and depositional environments to develop a technique to use diagenesis as a predictive tool in future reservoir development. Another objective in the Big Injun study is to determine the effect of heterogeneity on fluid flow and efficient hydrocarbon recovery in order to improve reservoir management. Graphical methods will be applied to Big Injun production data and new geostatistical methods will be developed to detect regional trends in heterogeneity.« less

  1. Measuring and predicting reservoir heterogeneity in complex deposystems: The fluvial-deltaic Big Injun sandstone in West Virginia. Annual report, September 20, 1991--September 20, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patchen, D.G.; Hohn, M.E.; Aminian, K.

    1993-04-01

    The purpose of this research is to develop techniques to measure and predict heterogeneities in oil reservoirs that are the products of complex deposystems. The unit chosen for study is the Lower Mississippian Big Injun sandstone, a prolific oil producer (nearly 60 fields) in West Virginia. This research effort has been designed and is being implemented as an integrated effort involving stratigraphy, structural geology, petrology, seismic study, petroleum engineering, modeling and geostatistics. Sandstone bodies are being mapped within their regional depositional systems, and then sandstone bodies are being classified in a scheme of relative heterogeneity to determine heterogeneity across depositionalmore » systems. Facies changes are being mapped within given reservoirs, and the environments of deposition responsible for each facies are being interpreted to predict the inherent relative heterogeneity of each facies. Structural variations will be correlated both with production, where the availability of production data will permit, and with variations in geologic and engineering parameters that affect production. A reliable seismic model of the Big Injun reservoirs in Granny Creek field is being developed to help interpret physical heterogeneity in that field. Pore types are being described and related to permeability, fluid flow and diagenesis, and petrographic data are being integrated with facies and depositional environments to develop a technique to use diagenesis as a predictive tool in future reservoir development. Another objective in the Big Injun study is to determine the effect of heterogeneity on fluid flow and efficient hydrocarbon recovery in order to improve reservoir management. Graphical methods will be applied to Big Injun production data and new geostatistical methods will be developed to detect regional trends in heterogeneity.« less

  2. Publications - AR 2010-C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content DGGS AR 2010-C Publication Details Title: Engineering Geology FY11 project descriptions Authors , Engineering Geology FY11 project descriptions, in DGGS Staff, Alaska Division of Geological & Geophysical

  3. Ensemble of ground subsidence hazard maps using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Park, Inhye; Lee, Jiyeong; Saro, Lee

    2014-06-01

    Hazard maps of ground subsidence around abandoned underground coal mines (AUCMs) in Samcheok, Korea, were constructed using fuzzy ensemble techniques and a geographical information system (GIS). To evaluate the factors related to ground subsidence, a spatial database was constructed from topographic, geologic, mine tunnel, land use, groundwater, and ground subsidence maps. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 70/30 for training and validation of the models. The relationships between the detected ground-subsidence area and the factors were identified and quantified by frequency ratio (FR), logistic regression (LR) and artificial neural network (ANN) models. The relationships were used as factor ratings in the overlay analysis to create ground-subsidence hazard indexes and maps. The three GSH maps were then used as new input factors and integrated using fuzzy-ensemble methods to make better hazard maps. All of the hazard maps were validated by comparison with known subsidence areas that were not used directly in the analysis. As the result, the ensemble model was found to be more effective in terms of prediction accuracy than the individual model.

  4. Evaluating Variability and Uncertainty of Geological Strength Index at a Specific Site

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Aladejare, Adeyemi Emman

    2016-09-01

    Geological Strength Index (GSI) is an important parameter for estimating rock mass properties. GSI can be estimated from quantitative GSI chart, as an alternative to the direct observational method which requires vast geological experience of rock. GSI chart was developed from past observations and engineering experience, with either empiricism or some theoretical simplifications. The GSI chart thereby contains model uncertainty which arises from its development. The presence of such model uncertainty affects the GSI estimated from GSI chart at a specific site; it is, therefore, imperative to quantify and incorporate the model uncertainty during GSI estimation from the GSI chart. A major challenge for quantifying the GSI chart model uncertainty is a lack of the original datasets that have been used to develop the GSI chart, since the GSI chart was developed from past experience without referring to specific datasets. This paper intends to tackle this problem by developing a Bayesian approach for quantifying the model uncertainty in GSI chart when using it to estimate GSI at a specific site. The model uncertainty in the GSI chart and the inherent spatial variability in GSI are modeled explicitly in the Bayesian approach. The Bayesian approach generates equivalent samples of GSI from the integrated knowledge of GSI chart, prior knowledge and observation data available from site investigation. Equations are derived for the Bayesian approach, and the proposed approach is illustrated using data from a drill and blast tunnel project. The proposed approach effectively tackles the problem of how to quantify the model uncertainty that arises from using GSI chart for characterization of site-specific GSI in a transparent manner.

  5. Application of MAGSAT to Lithospheric Modeling in South America. Part 2: Synthesis of Geologic and Seismic Data for Development of Integrated Crustal Models

    NASA Technical Reports Server (NTRS)

    Keller, G. R.; Lidiak, E. G.; Hinze, W. J.; Braile, L. W.; Vonfrese, R. R. B. (Principal Investigator)

    1984-01-01

    Research activities performed on MAGSAT scalar data over South America, Central America, and the adjacent marine areas are summarized. The geologic utility of magnetic anomalies detected by satellite is demonstrated by focusing on the spherical-Earth interpretation of scalar MAGSAT data in combination with ancillary geological and geophysical data to obtain lithospheric models for these regions related to their contemporary crustal dynamics processes, geologic history, current volcanism seismicity and natural resources.

  6. Preface

    NASA Astrophysics Data System (ADS)

    Faybishenko, Boris; Witherspoon, Paul A.; Gale, John

    How to characterize fluid flow, heat, and chemical transport in geologic media remains a central challenge for geoscientists and engineers worldwide. Investigations of fluid flow and transport within rock relate to such fundamental and applied problems as environmental remediation; nonaqueous phase liquid (NAPL) transport; exploitation of oil, gas, and geothermal resources; disposal of spent nuclear fuel; and geotechnical engineering. It is widely acknowledged that fractures in unsaturated-saturated rock can play a major role in solute transport from the land surface to underlying aquifers. It is also evident that general issues concerning flow and transport predictions in subsurface fractured zones can be resolved in a practical manner by integrating investigations into the physical nature of flow in fractures, developing relevant mathematical models and modeling approaches, and collecting site characterization data. Because of the complexity of flow and transport processes in most fractured rock flow problems, it is not yet possible to develop models directly from first principles. One reason for this is the presence of episodic, preferential water seepage and solute transport, which usually proceed more rapidly than expected from volume-averaged and time-averaged models. However, the physics of these processes is still known.

  7. Improving Female Participation in Professional Engineering Geology to Bring New Perspectives to Ethics in the Geosciences

    PubMed Central

    Pereira, Dolores

    2014-01-01

    Many papers have been published related to the retention and advancement of women in sciences. Engineering geology is one of the professional areas where women have not yet broken the gender barrier. The research issues of this paper are focused on why female students “leak out” at the end of engineering geology studies, and what can be done to encourage them to complete their degrees with an engineering career in mind. The author has studied students’ preferences of the final year project required to complete their degree at the University of Salamanca (Salamanca, Spain). It has been found that most female students are choosing a more theoretical final project instead of a practical one relevant to professional employment, contrary to their male peers. Focus group meetings with the students showed that at the end of five years of engineering geology training, many female students, unsatisfied with the content of their courses, feel that their expectations had not been met. They often have preferences for traditional geology rather than applied branches of the subject. Also, they do not feel comfortable with future job prospects in the profession. From the findings of this research it is clear that tutoring and mentoring would be valuable from the beginning of studies to allow all students to become aware of the content and the potential outcomes of engineering geology studies. In the case of female students, it is particularly important for them to know from the very start that they are about to join what is still a man’s world but that they are capable of achieving just as much as men can in the profession. Most importantly, the involvement of more female engineers in professional engineering, including teaching duties, should serve as example and role models in students’ education and future careers. PMID:25216254

  8. Improving female participation in professional engineering geology to bring new perspectives to ethics in the geosciences.

    PubMed

    Pereira, Dolores

    2014-09-11

    Many papers have been published related to the retention and advancement of women in sciences. Engineering geology is one of the professional areas where women have not yet broken the gender barrier. The research issues of this paper are focused on why female students "leak out" at the end of engineering geology studies, and what can be done to encourage them to complete their degrees with an engineering career in mind. The author has studied students' preferences of the final year project required to complete their degree at the University of Salamanca (Salamanca, Spain). It has been found that most female students are choosing a more theoretical final project instead of a practical one relevant to professional employment, contrary to their male peers. Focus group meetings with the students showed that at the end of five years of engineering geology training, many female students, unsatisfied with the content of their courses, feel that their expectations had not been met. They often have preferences for traditional geology rather than applied branches of the subject. Also, they do not feel comfortable with future job prospects in the profession. From the findings of this research it is clear that tutoring and mentoring would be valuable from the beginning of studies to allow all students to become aware of the content and the potential outcomes of engineering geology studies. In the case of female students, it is particularly important for them to know from the very start that they are about to join what is still a man's world but that they are capable of achieving just as much as men can in the profession. Most importantly, the involvement of more female engineers in professional engineering, including teaching duties, should serve as example and role models in students' education and future careers.

  9. A fully-coupled discontinuous Galerkin spectral element method for two-phase flow in petroleum reservoirs

    NASA Astrophysics Data System (ADS)

    Taneja, Ankur; Higdon, Jonathan

    2018-01-01

    A high-order spectral element discontinuous Galerkin method is presented for simulating immiscible two-phase flow in petroleum reservoirs. The governing equations involve a coupled system of strongly nonlinear partial differential equations for the pressure and fluid saturation in the reservoir. A fully implicit method is used with a high-order accurate time integration using an implicit Rosenbrock method. Numerical tests give the first demonstration of high order hp spatial convergence results for multiphase flow in petroleum reservoirs with industry standard relative permeability models. High order convergence is shown formally for spectral elements with up to 8th order polynomials for both homogeneous and heterogeneous permeability fields. Numerical results are presented for multiphase fluid flow in heterogeneous reservoirs with complex geometric or geologic features using up to 11th order polynomials. Robust, stable simulations are presented for heterogeneous geologic features, including globally heterogeneous permeability fields, anisotropic permeability tensors, broad regions of low-permeability, high-permeability channels, thin shale barriers and thin high-permeability fractures. A major result of this paper is the demonstration that the resolution of the high order spectral element method may be exploited to achieve accurate results utilizing a simple cartesian mesh for non-conforming geological features. Eliminating the need to mesh to the boundaries of geological features greatly simplifies the workflow for petroleum engineers testing multiple scenarios in the face of uncertainty in the subsurface geology.

  10. Territories typification technique with use of statistical models

    NASA Astrophysics Data System (ADS)

    Galkin, V. I.; Rastegaev, A. V.; Seredin, V. V.; Andrianov, A. V.

    2018-05-01

    Territories typification is required for solution of many problems. The results of geological zoning received by means of various methods do not always agree. That is why the main goal of the research given is to develop a technique of obtaining a multidimensional standard classified indicator for geological zoning. In the course of the research, the probabilistic approach was used. In order to increase the reliability of geological information classification, the authors suggest using complex multidimensional probabilistic indicator P K as a criterion of the classification. The second criterion chosen is multidimensional standard classified indicator Z. These can serve as characteristics of classification in geological-engineering zoning. Above mentioned indicators P K and Z are in good correlation. Correlation coefficient values for the entire territory regardless of structural solidity equal r = 0.95 so each indicator can be used in geological-engineering zoning. The method suggested has been tested and the schematic map of zoning has been drawn.

  11. Assessment of effectiveness of geologic isolation systems. Geologic-simulation model for a hypothetical site in the Columbia Plateau. Volume 2: results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foley, M.G.; Petrie, G.M.; Baldwin, A.J.

    1982-06-01

    This report contains the input data and computer results for the Geologic Simulation Model. This model is described in detail in the following report: Petrie, G.M., et. al. 1981. Geologic Simulation Model for a Hypothetical Site in the Columbia Plateau, Pacific Northwest Laboratory, Richland, Washington. The Geologic Simulation Model is a quasi-deterministic process-response model which simulates, for a million years into the future, the development of the geologic and hydrologic systems of the ground-water basin containing the Pasco Basin. Effects of natural processes on the ground-water hydrologic system are modeled principally by rate equations. The combined effects and synergistic interactionsmore » of different processes are approximated by linear superposition of their effects during discrete time intervals in a stepwise-integration approach.« less

  12. Multi-model approach to petroleum resource appraisal using analytic methodologies for probabilistic systems

    USGS Publications Warehouse

    Crovelli, R.A.

    1988-01-01

    The geologic appraisal model that is selected for a petroleum resource assessment depends upon purpose of the assessment, basic geologic assumptions of the area, type of available data, time available before deadlines, available human and financial resources, available computer facilities, and, most importantly, the available quantitative methodology with corresponding computer software and any new quantitative methodology that would have to be developed. Therefore, different resource assessment projects usually require different geologic models. Also, more than one geologic model might be needed in a single project for assessing different regions of the study or for cross-checking resource estimates of the area. Some geologic analyses used in the past for petroleum resource appraisal involved play analysis. The corresponding quantitative methodologies of these analyses usually consisted of Monte Carlo simulation techniques. A probabilistic system of petroleum resource appraisal for play analysis has been designed to meet the following requirements: (1) includes a variety of geologic models, (2) uses an analytic methodology instead of Monte Carlo simulation, (3) possesses the capacity to aggregate estimates from many areas that have been assessed by different geologic models, and (4) runs quickly on a microcomputer. Geologic models consist of four basic types: reservoir engineering, volumetric yield, field size, and direct assessment. Several case histories and present studies by the U.S. Geological Survey are discussed. ?? 1988 International Association for Mathematical Geology.

  13. AN INTEGRATED VIEW OF GROUNDWATER FLOW CHARACTERIZATION AND MODELING IN FRACTURED GEOLOGIC MEDIA

    EPA Science Inventory

    The particular attributes of fractured geologic media pertaining to groundwater flow characterization and modeling are presented. These cover the issues of fracture network and hydraulic control of fracture geometry parameters, major and minor fractures, heterogeneity, anisotrop...

  14. Industry and Academic Consortium for Computer Based Subsurface Geology Laboratory

    NASA Astrophysics Data System (ADS)

    Brown, A. L.; Nunn, J. A.; Sears, S. O.

    2008-12-01

    Twenty two licenses for Petrel Software acquired through a grant from Schlumberger are being used to redesign the laboratory portion of Subsurface Geology at Louisiana State University. The course redesign is a cooperative effort between LSU's Geology and Geophysics and Petroleum Engineering Departments and Schlumberger's Technical Training Division. In spring 2008, two laboratory sections were taught with 22 students in each section. The class contained geology majors, petroleum engineering majors, and geology graduate students. Limited enrollments and 3 hour labs make it possible to incorporate hands-on visualization, animation, manipulation of data and images, and access to geological data available online. 24/7 access to the laboratory and step by step instructions for Petrel exercises strongly promoted peer instruction and individual learning. Goals of the course redesign include: enhancing visualization of earth materials; strengthening student's ability to acquire, manage, and interpret multifaceted geological information; fostering critical thinking, the scientific method; improving student communication skills; providing cross training between geologists and engineers and increasing the quantity, quality, and diversity of students pursuing Earth Science and Petroleum Engineering careers. IT resources available in the laboratory provide students with sophisticated visualization tools, allowing them to switch between 2-D and 3-D reconstructions more seamlessly, and enabling them to manipulate larger integrated data-sets, thus permitting more time for critical thinking and hypothesis testing. IT resources also enable faculty and students to simultaneously work with the software to visually interrogate a 3D data set and immediately test hypothesis formulated in class. Preliminary evaluation of class results indicate that students found MS-Windows based Petrel easy to learn. By the end of the semester, students were able to not only map horizons and faults using seismic and well data but also compute volumetrics. Exam results indicated that while students could complete sophisticated exercises using the software, their understanding of key concepts such as conservation of volume in a palinspastic reconstruction or association of structures with a particular stress regime was limited. Future classes will incorporate more paper and pencil exercises to illustrate basic concepts. The equipment, software, and exercises developed will be used in additional upper level undergraduate and graduate classes.

  15. Estimation of Missing Water-Level Data for the Everglades Depth Estimation Network (EDEN)

    USGS Publications Warehouse

    Conrads, Paul; Petkewich, Matthew D.

    2009-01-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of real-time water-level gaging stations, ground-elevation models, and water-surface elevation models designed to provide scientists, engineers, and water-resource managers with current (2000-2009) water-depth information for the entire freshwater portion of the greater Everglades. The U.S. Geological Survey Greater Everglades Priority Ecosystems Science provides support for EDEN and their goal of providing quality-assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. To increase the accuracy of the daily water-surface elevation model, water-level estimation equations were developed to fill missing data. To minimize the occurrences of no estimation of data due to missing data for an input station, a minimum of three linear regression equations were developed for each station using different input stations. Of the 726 water-level estimation equations developed to fill missing data at 239 stations, more than 60 percent of the equations have coefficients of determination greater than 0.90, and 92 percent have an coefficient of determination greater than 0.70.

  16. Outreach to Inspire Girls in Geology: A Recipe for Success (Invited)

    NASA Astrophysics Data System (ADS)

    Kekelis, L.

    2010-12-01

    Geology and engineering careers can seem very abstract to a young girl, especially to a girl who has no role model in technical fields. Many girls want to make the world a better place but don’t see how their interests connect with geology or engineering. Role models and field trips to worksites are instrumental in encouraging girls to consider careers in geoscience and engineering. The opportunities to see real-world applications of technology and meet with role models who work in technical fields are extremely impactful and can have a strong influence on a girl’s career path. Together we need to do a better job of communicating what geoscience and engineering have to offer girls and what girls have to offer these fields. This presentation will provide practical tips to help combat stereotypes, 2) share resources for outreach at one-day special events, summer camps, visits to the classroom and field trips to corporate sites and college campuses, and 3) highlight strategies for groups to work collaboratively in outreach. This presentation will help those currently involved in outreach who want to improve on existing efforts, along with those who have never done outreach and are interested in getting started. Techbridge will share a “recipe for success” for planning and hosting role model visits to the classroom and field trips. A case study of outreach by Chevron with Techbridge girls will be shared including the pre-event planning that made this event a success. Activities that make geology fun and friendly to girls and tips for dispelling stereotypes about careers in geology and engineering will also be shared. Participants will be invited to ask questions and share on topics of interest, such as “Challenges with outreach,” “How to get involved without burning out,” and “How to show your manager or organization that outreach is worth the effort.” We will also promote a candid discussion of the challenges that can arise along with way and how to overcome them. Participants will receive a copy of our role model outreach guide and CD toolkit, Get Involved. Make a Difference, developed by the Techbridge team. This guide includes practical tips and suggestions as well as successful case studies in outreach to K-12. These materials include sample icebreakers and hands-on activities, biographies of students and role models, questions to facilitate conversations between role models and students, scavenger hunts for tours, suggested schedule and timeline, evaluations, tips for success, and more.

  17. A Geology Sampling System for Small Bodies

    NASA Technical Reports Server (NTRS)

    Naids, Adam J.; Hood, Anthony D.; Abell, Paul; Graff, Trevor; Buffington, Jesse

    2016-01-01

    Human exploration of microgravity bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this microgravity category and some are being discussed as potential mission targets. Obtaining geological samples for return to Earth will be a major objective for any mission to a small body. Currently, the knowledge base for geology sampling in microgravity is in its infancy. Humans interacting with non-engineered surfaces in microgravity environment pose unique challenges. In preparation for such missions a team at the NASA Johnson Space Center has been working to gain experience on how to safely obtain numerous sample types in such an environment. This paper describes the type of samples the science community is interested in, highlights notable prototype work, and discusses an integrated geology sampling solution.

  18. A Geology Sampling System for Microgravity Bodies

    NASA Technical Reports Server (NTRS)

    Hood, Anthony; Naids, Adam

    2016-01-01

    Human exploration of microgravity bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this microgravity category and some are been discussed as potential mission targets. Obtaining geological samples for return to Earth will be a major objective for any mission to a microgravity body. Currently the knowledge base for geology sampling in microgravity is in its infancy. Humans interacting with non-engineered surfaces in microgravity environment pose unique challenges. In preparation for such missions a team at the NASA Johnson Space Center has been working to gain experience on how to safely obtain numerous sample types in such an environment. This paper describes the type of samples the science community is interested in, highlights notable prototype work, and discusses an integrated geology sampling solution.

  19. Integrating passive seismicity with Web-Based GIS for a new perspective on volcano imaging and monitoring: the case study of Mt. Etna

    NASA Astrophysics Data System (ADS)

    Guardo, Roberto; De Siena, Luca

    2017-04-01

    The timely estimation of short- and long-term volcanic hazard relies on the existence of detailed 3D geophysical images of volcanic structures. High-resolution seismic models of the absorbing uppermost conduit systems and highly-heterogeneous shallowest volcanic layers, while particularly challenging to obtain, provide important data to locate feasible eruptive centers and forecast flank collapses and lava ascending paths. Here, we model the volcanic structures of Mt. Etna (Sicily, Italy) and its outskirts using the Horizontal to Vertical Spectral Ratio method, generally applied to industrial and engineering settings. The integration of this technique with Web-based Geographic Information System improves precision during the acquisition phase. It also integrates geological and geophysical visualization of 3D surface and subsurface structures in a queryable environment representing their exact three-dimensional geographic position, enhancing interpretation. The results show high-resolution 3D images of the shallowest volcanic and feeding systems, which complement (1) deeper seismic tomography imaging and (2) the results of recent remote sensing imaging. The main novelty with respect to previous model is the presence of a vertical structure that divides the pre-existing volcanic complexes of Ellittico and Cuvigghiuni. This could be interpreted as a transitional phase between the two systems. A comparison with recent remote sensing and geological results, however, shows clear connections between the anomaly and dynamic active during the last 15 years. We infer that seismic noise measurements from miniaturized instruments, when combined with remote sensing techniques, represent an important resource when monitoring volcanic media and eruptions, reducing the risk of loss of human lives and instrumentation.

  20. Publications - AR 2011-C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content DGGS AR 2011-C Publication Details Title: Engineering Geology FY12 project descriptions Authors Combellick, R.A., 2012, Engineering Geology FY12 project descriptions, in DGGS Staff, Alaska Division of

  1. Popularizing Geological Education among Civil Engineering Students

    ERIC Educational Resources Information Center

    Chen, Xiang-jun; Zhou, Ying

    2012-01-01

    The sustainable development of an economy and a society cannot be realized without the help of modern geoscience. Engineering geology knowledge is necessary on a civil engineering construction site to ensure the construction work goes smoothly. This paper first discusses the importance of geoscience, especially the study of engineering geology.…

  2. A Geostatistical Toolset for Reconstructing Louisiana's Coastal Stratigraphy using Subsurface Boring and Cone Penetrometer Test Data

    NASA Astrophysics Data System (ADS)

    Li, A.; Tsai, F. T. C.; Jafari, N.; Chen, Q. J.; Bentley, S. J.

    2017-12-01

    A vast area of river deltaic wetlands stretches across southern Louisiana coast. The wetlands are suffering from a high rate of land loss, which increasingly threats coastal community and energy infrastructure. A regional stratigraphic framework of the delta plain is now imperative to answer scientific questions (such as how the delta plain grows and decays?) and to provide information to coastal protection and restoration projects (such as marsh creation and construction of levees and floodwalls). Through years, subsurface investigations in Louisiana have been conducted by state and federal agencies (Louisiana Department of Natural Resources, United States Geological Survey, United States Army Corps of Engineers, etc.), research institutes (Louisiana Geological Survey, LSU Coastal Studies Institute, etc.), engineering firms, and oil-gas companies. This has resulted in the availability of various types of data, including geological, geotechnical, and geophysical data. However, it is challenging to integrate different types of data and construct three-dimensional stratigraphy models in regional scale. In this study, a set of geostatistical methods were used to tackle this problem. An ordinary kriging method was used to regionalize continuous data, such as grain size, water content, liquid limit, plasticity index, and cone penetrometer tests (CPTs). Indicator kriging and multiple indicator kriging methods were used to regionalize categorized data, such as soil classification. A compositional kriging method was used to regionalize compositional data, such as soil composition (fractions of sand, silt and clay). Stratigraphy models were constructed for three cases in the coastal zone: (1) Inner Harbor Navigation Canal (IHNC) area: soil classification and soil behavior type (SBT) stratigraphies were constructed using ordinary kriging; (2) Middle Barataria Bay area: a soil classification stratigraphy was constructed using multiple indicator kriging; (3) Lower Barataria Bay and Lower Breton Sound areas: a soil texture stratigraphy was constructed using soil compositional data and compositional kriging. Cross sections were extracted from the three-dimensional stratigraphy models to reveal spatial distributions of different stratigraphic features.

  3. French Geological Repository Project for High Level and Long-Lived Waste: Scientific Programme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landais, P.; Lebon, P.; Ouzounian, G.

    2008-07-01

    The feasibility study presented in the Dossier 2005 Argile set out to evaluate the conditions for building, operating and managing a reversible disposal facility. The research was directed at demonstrating a potential for confining long-lived radioactive waste in a deep clay formation by establishing the feasibility of the disposal principle. Results have been enough convincing and a Planning Act was passed on 28 June, 2006. Decision in principle has been taken to dispose of intermediate and high level long-lived radioactive waste in a geological repository. An application file for a license to construct a disposal facility is requested by endmore » of 2014 and its commissioning is planned for 2025. Based on previous results as well as on recommendations made by various Dossier 2005 evaluators, a new scientific programme for 2006-2015 has been defined. It gives details of what will be covered over the 2006-2015 period. Particular emphasis is placed on consolidating scientific data, increasing understanding of certain mechanisms and using a scientific and technical integration approach. It aims at integrating scientific developments and engineering advances. The scientific work envisaged beyond 2006 has the benefit of a unique context, which is direct access to the geological medium over long timescales. It naturally extends the research carried out to date, and incorporates additional investigations of the geological medium, and the preparation of demonstration work especially through full-scale tests. Results will aim at improving the representation of repository evolutions over time, extract the relevant parameters for monitoring during the reversibility phases, reduce the parametric uncertainties and enhance the robustness of models for performance calculations and safety analyses. Structure and main orientation of the ongoing scientific programme are presented. (author)« less

  4. Integrating ambient noise with GIS for a new perspective on volcano imaging and monitoring: The case study of Mt. Etna

    NASA Astrophysics Data System (ADS)

    Guardo, R.; De Siena, L.

    2017-11-01

    The timely estimation of short- and long-term volcanic hazard relies on the availability of detailed 3D geophysical images of volcanic structures. High-resolution seismic models of the absorbing uppermost conduit systems and highly-heterogeneous shallowest volcanic layers, while particularly challenging to obtain, provide important data to locate feasible eruptive centres and forecast flank collapses and lava ascending paths. Here, we model the volcanic structures of Mt. Etna (Sicily, Italy) and its outskirts using the Horizontal to Vertical Spectral Ratio method, generally applied to industrial and engineering settings. The integration of this technique with Web-based Geographic Information System improves precision during the acquisition phase. It also integrates geological and geophysical visualization of 3D surface and subsurface structures in a queryable environment representing their exact three-dimensional geographic position, enhancing interpretation. The results show high-resolution 3D images of the shallowest volcanic and feeding systems, which complement (1) deeper seismic tomography imaging and (2) the results of recent remote sensing imaging. The study recovers a vertical structure that divides the pre-existing volcanic complexes of Ellittico and Cuvigghiuni. This could be interpreted as a transitional phase between the two systems. A comparison with recent remote sensing and geological results, however, shows that anomalies are generally related to volcano-tectonic structures active during the last 17 years. We infer that seismic noise measurements from miniaturized instruments, when combined with remote sensing techniques, represent an important resource to monitor volcanoes in unrest, reducing the risk of loss of human lives and instrumentation.

  5. A case study for a digital seabed database: Bohai Sea engineering geology database

    NASA Astrophysics Data System (ADS)

    Tianyun, Su; Shikui, Zhai; Baohua, Liu; Ruicai, Liang; Yanpeng, Zheng; Yong, Wang

    2006-07-01

    This paper discusses the designing plan of ORACLE-based Bohai Sea engineering geology database structure from requisition analysis, conceptual structure analysis, logical structure analysis, physical structure analysis and security designing. In the study, we used the object-oriented Unified Modeling Language (UML) to model the conceptual structure of the database and used the powerful function of data management which the object-oriented and relational database ORACLE provides to organize and manage the storage space and improve its security performance. By this means, the database can provide rapid and highly effective performance in data storage, maintenance and query to satisfy the application requisition of the Bohai Sea Oilfield Paradigm Area Information System.

  6. Advanced 3D Geological Modelling Using Multi Geophysical Data in the Yamagawa Geothermal Field, Japan

    NASA Astrophysics Data System (ADS)

    Mochinaga, H.; Aoki, N.; Mouri, T.

    2017-12-01

    We propose a robust workflow of 3D geological modelling based on integrated analysis while honouring seismic, gravity, and wellbore data for exploration and development at flash steam geothermal power plants. We design the workflow using temperature logs at less than 10 well locations for practical use at an early stage of geothermal exploration and development. In the workflow, geostatistical technique, multi-attribute analysis, and artificial neural network are employed for the integration of multi geophysical data. The geological modelling is verified by using a 3D seismic data which was acquired in the Yamagawa Demonstration Area (approximately 36 km2), located at the city of Ibusuki in Kagoshima, Japan in 2015. Temperature-depth profiles are typically characterized by heat transfer of conduction, outflow, and up-flow which have low frequency trends. On the other hand, feed and injection zones with high permeability would cause high frequency perturbation on temperature-depth profiles. Each trend is supposed to be caused by different geological properties and subsurface structures. In this study, we estimate high frequency (> 2 cycles/km) and low frequency (< 1 cycle/km) models separately by means of different types of attribute volumes. These attributes are mathematically generated from P-impedance and density volumes derived from seismic inversion, an ant-tracking seismic volume, and a geostatistical temperature model prior to application of artificial neural network on the geothermal modelling. As a result, the band-limited stepwise approach predicts a more precise geothermal model than that of full-band temperature profiles at a time. Besides, lithofacies interpretation confirms reliability of the predicted geothermal model. The integrated interpretation is significantly consistent with geological reports from previous studies. Isotherm geobodies illustrate specific features of geothermal reservoir and cap rock, shallow aquifer, and its hydrothermal circulation in 3D visualization. The advanced workflow of 3D geological modelling is suitable for optimization of well locations for production and reinjection in geothermal fields.

  7. Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, K.; Graf, P.; Scott, G.

    2015-01-01

    The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems tomore » achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.« less

  8. Joint and constrained inversions in a complex geological setting, example from the Skellefte District

    NASA Astrophysics Data System (ADS)

    Garcia Juanatey, M. A.; Lelievre, P. G.; Juhlin, C.; Farquharson, C. G.

    2015-12-01

    The Skellefte District is a very rich metallogenic province in northern Sweden. It is of Paleoproterozoic age and consists of mainly metavolcanic rocks. Even though the district has been intensively studied, many questions still remain about its emplacement. The complicated structural setting, and the great extension of post-glacial sediments, pose a challenge for geophysical and geological investigations. Most recent research efforts in the area have been directed at the construction of 3D geological models through the combined interpretation of independently modeled geophysical and geological data. Our aim is to take these studies further and derive, through joint and constraint inversions, a common 3D earth model consistent with all the available data. By integrating the datasets already at the modelling stage we intend to reduce significantly the uncertainties associated to the constructed 3D models.The available geophysics in the district includes regional gravity and magnetic data acquired by the Geological Survey of Sweden in the 1970s, four lines of seismic reflection data totalling approximately 70 km, and more than 60 magnetotelluric sites spread across the area. The existing geological data (from surface, borehole, and in-mine observations) is condensed on interpreted surfaces representing the most important lithological boundaries. Additionally, there are density and susceptibility values obtained from samples across the whole district. We are looking for the best way to integrate the different geophysical datasets with geologically-constrained joint and cooperative inversions.

  9. Dynamics of Fluids and Transport in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Faybishenko, Boris; Witherspoon, Paul A.; Gale, John

    How to characterize fluid flow, heat, and chemical transport in geologic media remains a central challenge for geo-scientists and engineers worldwide. Investigations of fluid flow and transport within rock relate to such fundamental and applied problems as environmental remediation; nonaqueous phase liquid (NAPL) transport; exploitation of oil, gas, and geothermal resources; disposal of spent nuclear fuel; and geotechnical engineering. It is widely acknowledged that fractures in unsaturated-saturated rock can play a major role in solute transport from the land surface to underlying aquifers. It is also evident that general issues concerning flow and transport predictions in subsurface fractured zones can be resolved in a practical manner by integrating investigations into the physical nature of flow in fractures, developing relevant mathematical models and modeling approaches, and collecting site characterization data. Because of the complexity of flow and transport processes in most fractured rock flow problems, it is not yet possible to develop models directly from first principles. One reason for this is the presence of episodic, preferential water seepage and solute transport, which usually proceed more rapidly than expected from volume-averaged and time-averaged models. However, the physics of these processes is still known.

  10. An Interactive Map Viewer for the Urban Geology of Ottawa (Canada): an Example of Web Publishing

    NASA Astrophysics Data System (ADS)

    Giroux, D.; Bélanger, R.

    2003-04-01

    Developed by the Terrain Sciences Division (TSD) of the Geological Survey of Canada (GSC), an interactive map viewer, called GEOSERV (www.geoserv.org), is now available on the Internet. The purpose of this viewer is to provide engineers, planners, decision makers, and the general public with the geoscience information required for sound regional planning in densely populated areas, such as Canada's national capital, Ottawa (Ontario). Urban geology studies rely on diverse branches of earth sciences such as hydrology, engineering geology, geochemistry, stratigraphy, and geomorphology in order to build a three-dimensional model of the character of the land and to explain the geological processes involved in the dynamic equilibrium of the local environment. Over the past few years, TSD has compiled geoscientific information derived from various sources such as borehole logs, geological maps, hydrological reports and digital elevation models, compiled it in digital format and stored it in georeferenced databases in the form of point, linear, and polygonal data. This information constitutes the geoscience knowledge base which is then processed by Geographic Information Systems (GIS) to integrate the various sources of information and produce derived graphics, maps and models describing the geological infrastructure and response of the geological environment to human activities. Urban Geology of Canada's National Capital Area is a pilot project aiming at developing approaches, methodologies and standards that can be applied to other major urban centres of the country, while providing the geoscience knowledge required for sound regional planning and environmental protection of the National Capital Area. Based on an application developed by ESRI (Environmental System Research Institute), namely ArcIMS, the TSD has customized this web application to give free access to geoscience information of the Ottawa/Outaouais (Ontario/Québec) area including geological history, subsurface database, stratigraphy, bedrock, surficial and hydrogeology maps, and a few others. At present, each layer of geospatial information in TSD's interactive map viewer is connected to simple independent flat files (i.e. shapefiles), but it is also possible to connect GEOSERV to other types of (relational) databases (e.g. Microsoft SQL Server, Oracle). Frequent updating of shapefiles could be a cumbersome task, when new records are added, since we have to completely rebuild the updated shapefiles. However, new attributes can be added to existing shapefiles easily. At present, the updating process can not be done on-the-fly; we must stop and restart the updated MapService if one of its shapefiles is changed. The public can access seventeen MapServices that provide interactive tools that users can use to query, zoom, pan, select, and so on, or print the map displayed on their monitor. The map viewer is light-weight as it uses HTML and Javascript, so end users do not have to download and install any plug-ins. A free CD and a companion web site were also developed to give access to complementary information, like high resolution raster maps and reports. Some of the datasets are available free of charge, on-line.

  11. Selective Guide to Literature on Engineering Geology. Engineering Literature Guides, Number 7.

    ERIC Educational Resources Information Center

    Mullen, Cecilia P., Comp.

    This guide has been prepared for use by the undergraduate or graduate student in engineering geology. Because of the broad scope of the field, the major disciplines of soil mechanics, rock mechanics, and foundations are primarily emphasized. This document is a survey of information sources in engineering geology and is intended to identify those…

  12. A Geology Sampling System for Small Bodies

    NASA Technical Reports Server (NTRS)

    Hood, A. D.; Naids, A. J.; Graff, T.; Abell, P.

    2015-01-01

    Human exploration of Small Bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this Small Bodies category and some are being discussed as potential mission tar-gets. Obtaining geological samples for return to Earth will be a major objective for any mission to a Small Body. Currently the knowledge base for geology sampling in microgravity is in its infancy. Furthermore, humans interacting with non-engineered surfaces in a microgravity environment poses unique challenges. In preparation for such missions, a team at the National Aeronautics and Space Administration (NASA) John-son Space Center (JSC) has been working to gain experience on how to safely obtain numerous sample types in such an environment. This abstract briefly summarizes the type of samples the science community is interested in, discusses an integrated geology sampling solution, and highlights some of the unique challenges associated with this type of exploration.

  13. Integration of Geophysical Data into Structural Geological Modelling through Bayesian Networks

    NASA Astrophysics Data System (ADS)

    de la Varga, Miguel; Wellmann, Florian; Murdie, Ruth

    2016-04-01

    Structural geological models are widely used to represent the spatial distribution of relevant geological features. Several techniques exist to construct these models on the basis of different assumptions and different types of geological observations (e.g. Jessell et al., 2014). However, two problems are prevalent when constructing models: (i) observations and assumptions, and therefore also the constructed model, are subject to uncertainties, and (ii) additional information, such as geophysical data, is often available, but cannot be considered directly in the geological modelling step. In our work, we propose the integration of all available data into a Bayesian network including the generation of the implicit geological method by means of interpolation functions (Mallet, 1992; Lajaunie et al., 1997; Mallet, 2004; Carr et al., 2001; Hillier et al., 2014). As a result, we are able to increase the certainty of the resultant models as well as potentially learn features of our regional geology through data mining and information theory techniques. MCMC methods are used in order to optimize computational time and assure the validity of the results. Here, we apply the aforementioned concepts in a 3-D model of the Sandstone Greenstone Belt in the Archean Yilgarn Craton in Western Australia. The example given, defines the uncertainty in the thickness of greenstone as limited by Bouguer anomaly and the internal structure of the greenstone as limited by the magnetic signature of a banded iron formation. The incorporation of the additional data and specially the gravity provides an important reduction of the possible outcomes and therefore the overall uncertainty. References Carr, C. J., K. R. Beatson, B. J. Cherrie, J. T. Mitchell, R. W. Fright, C. B. McCallum, and R. T. Evans, 2001, Reconstruction and representation of 3D objects with radial basis functions: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, 67-76. Jessell, M., Aillères, L., de Kemp, E., Lindsay, M., Wellmann, F., Hillier, M., ... & Martin, R. (2014). Next Generation Three-Dimensional Geologic Modeling and Inversion. Lajaunie, C., G. Courrioux, and L. Manuel, 1997, Foliation fields and 3D cartography in geology: Principles of a method based on potential interpolation: Mathematical Geology, 29, 571-584. Mallet, J.-L., 1992, Discrete smooth interpolation in geometric modelling: Computer-Aided Design, 24, 178-191 Mallet, L. J., 2004, Space-time mathematical framework for sedimentary geology: Mathematical Geology, 36, 1-32.

  14. National Dam Safety Program. Bray Lake Dam (MO 30098), Osage - Gasconade Basin, Phelps County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1979-12-01

    Geologist Applied Engineering & Urban Geology Missouri Geological Survey May 6, 1974 Sheet 6, Appendix B For file Only DEAN LAKE SITE (Formerly Bray...time to point out these problems that you have been discussing. ,J. Hadley Williams Geologist and Chief Applied Engineering & Urban Geology Missouri...Geologist Applied Engineering & Urban Geology Missouri Geological Survey June 27, 1974 Sheet 9, Appendix B FOR FILE ONLY L • BRAYS LAKE RECONNAISSANCE PHELPS

  15. How much can we trust a geological model underlying a subsurface hydrological investigation?

    NASA Astrophysics Data System (ADS)

    Wellmann, Florian; de la Varga, Miguel; Schaaf, Alexander; Burs, David

    2017-04-01

    Geological models often provide an important basis for subsequent hydrological investigations. As these models are generally built with a limited amount of information, they can contain significant uncertainties - and it is reasonable to assume that these uncertainties can potentially influence subsequent hydrological simulations. However, the investigation of uncertainties in geological models is not straightforward - and, even though recent advances have been made in the field, there is no out-of-the-box implementation to analyze uncertainties in a standard geological modeling package. We present here results of recent developments to address this problem with an efficient implementation of a geological modeling method for complex structural models, integrated in a Bayesian inference framework. The implemented geological modeling approach is based on a full 3-D implicit interpolation that directly respects interface positions and orientation measurements, as well as the influence of faults. In combination, the approach allows us to generate ensembles of geological model realizations, constrained by additional information in the form of likelihood functions to ensure consistency with additional geological aspects (e.g. sequence continuity, topology, fault network consistency), and we demonstrate the potential of the method in an exemplified case study. With this approach, we aim to contribute to a better understanding of the influence of geological uncertainties on subsurface hydrological investigations.

  16. Search without Boundaries Using Simple APIs

    USGS Publications Warehouse

    Tong, Qi

    2009-01-01

    The U.S. Geological Survey (USGS) Library, where the author serves as the digital services librarian, is increasingly challenged to make it easier for users to find information from many heterogeneous information sources. Information is scattered throughout different software applications (i.e., library catalog, federated search engine, link resolver, and vendor websites), and each specializes in one thing. How could the library integrate the functionalities of one application with another and provide a single point of entry for users to search across? To improve the user experience, the library launched an effort to integrate the federated search engine into the library's intranet website. The result is a simple search box that leverages the federated search engine's built-in application programming interfaces (APIs). In this article, the author describes how this project demonstrated the power of APIs and their potential to be used by other enterprise search portals inside or outside of the library.

  17. Revitalizing a mature oil play: Strategies for finding and producing oil in Frio Fluvial-Deltaic Sandstone reservoirs of South Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knox, P.R.; Holtz, M.H.; McRae, L.E.

    Domestic fluvial-dominated deltaic (FDD) reservoirs contain more than 30 Billion barrels (Bbbl) of remaining oil, more than any other type of reservoir, approximately one-third of which is in danger of permanent loss through premature field abandonments. The U.S. Department of Energy has placed its highest priority on increasing near-term recovery from FDD reservoirs in order to prevent abandonment of this important strategic resource. To aid in this effort, the Bureau of Economic Geology, The University of Texas at Austin, began a 46-month project in October, 1992, to develop and demonstrate advanced methods of reservoir characterization that would more accurately locatemore » remaining volumes of mobile oil that could then be recovered by recompleting existing wells or drilling geologically targeted infill. wells. Reservoirs in two fields within the Frio Fluvial-Deltaic Sandstone (Vicksburg Fault Zone) oil play of South Texas, a mature play which still contains 1.6 Bbbl of mobile oil after producing 1 Bbbl over four decades, were selected as laboratories for developing and testing reservoir characterization techniques. Advanced methods in geology, geophysics, petrophysics, and engineering were integrated to (1) identify probable reservoir architecture and heterogeneity, (2) determine past fluid-flow history, (3) integrate fluid-flow history with reservoir architecture to identify untapped, incompletely drained, and new pool compartments, and (4) identify specific opportunities for near-term reserve growth. To facilitate the success of operators in applying these methods in the Frio play, geologic and reservoir engineering characteristics of all major reservoirs in the play were documented and statistically analyzed. A quantitative quick-look methodology was developed to prioritize reservoirs in terms of reserve-growth potential.« less

  18. Industrial use of land observation satellite systems

    NASA Technical Reports Server (NTRS)

    Henderson, F. B., III

    1984-01-01

    The principal industrial users of land observation satellite systems are the geological industries; oil/gas, mining, and engineering/environmental companies. The primary system used is LANDSAT/MSS. Currently, use is also being made of the limited amounts of SKYLAB photography, SEASAT and SIR-A radar, and the new LANDSAT/TM data available. Although considered experimental, LANDSAT data is now used operationally by several hundred exploration and engineering companies worldwide as a vastly improved geological mapping tool to help direct more expensive geophysical and drilling phases, leading to more efficient decision-making and results. Future needs include global LANDSAT/TM; higher spatial resolution; stereo and radar; improved data handling, processing distribution and archiving systems, and integrated geographical information systems (GIS). For a promising future, governments must provide overall continuity (government and/or private sector) of such systems, insure continued government R and D, and commit to operating internationally under the civil Open Skies policy.

  19. Invasive Species Forecasting System: A Decision Support Tool for the U.S. Geological Survey: FY 2005 Benchmarking Report v.1.6

    NASA Technical Reports Server (NTRS)

    Stohlgren, Tom; Schnase, John; Morisette, Jeffrey; Most, Neal; Sheffner, Ed; Hutchinson, Charles; Drake, Sam; Van Leeuwen, Willem; Kaupp, Verne

    2005-01-01

    The National Institute of Invasive Species Science (NIISS), through collaboration with NASA's Goddard Space Flight Center (GSFC), recently began incorporating NASA observations and predictive modeling tools to fulfill its mission. These enhancements, labeled collectively as the Invasive Species Forecasting System (ISFS), are now in place in the NIISS in their initial state (V1.0). The ISFS is the primary decision support tool of the NIISS for the management and control of invasive species on Department of Interior and adjacent lands. The ISFS is the backbone for a unique information services line-of-business for the NIISS, and it provides the means for delivering advanced decision support capabilities to a wide range of management applications. This report describes the operational characteristics of the ISFS, a decision support tool of the United States Geological Survey (USGS). Recent enhancements to the performance of the ISFS, attained through the integration of observations, models, and systems engineering from the NASA are benchmarked; i.e., described quantitatively and evaluated in relation to the performance of the USGS system before incorporation of the NASA enhancements. This report benchmarks Version 1.0 of the ISFS.

  20. Fast history matching of time-lapse seismic and production data for high resolution models

    NASA Astrophysics Data System (ADS)

    Jimenez Arismendi, Eduardo Antonio

    Integrated reservoir modeling has become an important part of day-to-day decision analysis in oil and gas management practices. A very attractive and promising technology is the use of time-lapse or 4D seismic as an essential component in subsurface modeling. Today, 4D seismic is enabling oil companies to optimize production and increase recovery through monitoring fluid movements throughout the reservoir. 4D seismic advances are also being driven by an increased need by the petroleum engineering community to become more quantitative and accurate in our ability to monitor reservoir processes. Qualitative interpretations of time-lapse anomalies are being replaced by quantitative inversions of 4D seismic data to produce accurate maps of fluid saturations, pore pressure, temperature, among others. Within all steps involved in this subsurface modeling process, the most demanding one is integrating the geologic model with dynamic field data, including 4Dseismic when available. The validation of the geologic model with observed dynamic data is accomplished through a "history matching" (HM) process typically carried out with well-based measurements. Due to low resolution of production data, the validation process is severely limited in its reservoir areal coverage, compromising the quality of the model and any subsequent predictive exercise. This research will aim to provide a novel history matching approach that can use information from high-resolution seismic data to supplement the areally sparse production data. The proposed approach will utilize streamline-derived sensitivities as means of relating the forward model performance with the prior geologic model. The essential ideas underlying this approach are similar to those used for high-frequency approximations in seismic wave propagation. In both cases, this leads to solutions that are defined along "streamlines" (fluid flow), or "rays" (seismic wave propagation). Synthetic and field data examples will be used extensively to demonstrate the value and contribution of this work. Our results show that the problem of non-uniqueness in this complex history matching problem is greatly reduced when constraints in the form of saturation maps from spatially closely sampled seismic data are included. Further on, our methodology can be used to quickly identify discrepancies between static and dynamic modeling. Reducing this gap will ensure robust and reliable models leading to accurate predictions and ultimately an optimum hydrocarbon extraction.

  1. Contribution of in situ geophysical methods for the definition of the São Sebastião crater model (Azores)

    NASA Astrophysics Data System (ADS)

    Lopes, Isabel; Deidda, Gian Piero; Mendes, Manuela; Strobbia, Claudio; Santos, Jaime

    2013-11-01

    The area located inside the São Sebastião volcanic crater, at the southeast end of Terceira Island (Azores), is characterized by an important amplification of ground motion with respect to the surrounding area, as clearly demonstrated by the spatial distribution of the damage that occurred during the Terceira earthquake (the strongest earthquake felt in the Island during the recent decades - 01/01/1980 - M = 7.2). Geological and geophysical studies have been conducted, to characterize the volcanic crater and understand the different site effects that occurred in the village of São Sebastião. The complexity of the subsurface geology, with intercalations of compact basalt and soft pyroclastic deposits, is associated to extreme vertical and lateral velocity contrasts, and poses a serious challenge to different geophysical characterization methods. The available qualitative model did not allow a complete understanding of the site effects. A new seismic campaign has been designed and acquired, and a single, geologically consistent geophysical model has been generated integrating the existing and new data. The new campaign included two cross-line P-wave seismic refraction profiles, four short SH-wave seismic reflection profiles, and seven multichannel surface wave acquisitions. The integration and joint interpretation of geophysical and geological data allowed mutual validation and confirmation of data processing steps. In particular, the use of refraction, reflection and surface wave techniques allowed facing the complexity of a geology that can pose different challenges to all the methods when used individually: velocity inversions, limited reflectivity, and lateral variations. It is shown how the integration of seismic data from different methods, in the framework of a geological model, allowed the geometrical and dynamic characterization of the site. Correlation with further borehole information, then allowed the definition of a subsoil model for the crater, providing information that allowed a better understanding of the earthquake site effects in the São Sebastião village. The new near-surface geological model includes a lava layer within the soft infill materials of the crater. This new model matches closely with the damage distribution map, and explains the spatial variation of building stock performance in the 1980 earthquake.

  2. Integrating Research and Extension for the Nsf-Reu Program in Water Resources

    NASA Astrophysics Data System (ADS)

    Judge, J.; Migliaccio, K.; Gao, B.; Shukla, S.; Ehsani, R.; McLamore, E.

    2011-12-01

    Providing positive and meaningful research experiences to students in their undergraduate years is critical for motivating them to pursue advanced degrees or research careers in science and engineering. Such experiences not only offer training for the students in problem solving and critical thinking via hands-on projects, but also offer excellent mentoring and recruiting opportunities for the faculty advisors. The goal of the Research Experience for Undergraduates (REU) Program in the Agricultural and Biological Engineering Department (ABE) at the University of Florida (UF) is to provide eight undergraduate students a unique opportunity to conduct research in water resources using interdisciplinary approaches, integrating research and extension. The students are selected from diverse cultural and educational backgrounds. The eight-week REU Program utilizes the extensive infrastructure of UF - Institute of Food and Agricultural Sciences (IFAS) through the Research and Education Centers (RECs). Two students are paired to participate in their own project under the direct supervision of one of the four research mentors. Four of the eight students are located at the main campus, in Gainesville, Fl, and four remaining students are located off-campus, at the RECs, where some of the ABE faculty are located. The students achieve an enriching cohort experience through social networking, daily blogs, and weekly video conferences to share their research and other REU experiences. The students are co-located during the Orientation week and also during the 5-day Florida Waters Tour. Weekly group meetings and guest lectures are conducted via synchronously through video conferencing. The integration of research and extension is naturally achieved through the projects at the RECs, the guest lectures, Extension workshops, and visits to the Water Management Districts in Florida. In the last two years of the Program, we have received over 80 applicants, from four-year and advanced degree offering institutions and a variety of majors such as Geology, Meteorology, Environmental Sciences & Engineering, Civil Engineering, Water Resources, Agricultural Engineering, Physics, Geography, Chemical Engineering, to name a few. This model of providing integrated research and extension opportunities in hydrology where not all the REU participants are physically co-located, is unique and can be extended to other disciplines.

  3. Kinematic Structural Modelling in Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Schaaf, Alexander; de la Varga, Miguel; Florian Wellmann, J.

    2017-04-01

    We commonly capture our knowledge about the spatial distribution of distinct geological lithologies in the form of 3-D geological models. Several methods exist to create these models, each with its own strengths and limitations. We present here an approach to combine the functionalities of two modeling approaches - implicit interpolation and kinematic modelling methods - into one framework, while explicitly considering parameter uncertainties and thus model uncertainty. In recent work, we proposed an approach to implement implicit modelling algorithms into Bayesian networks. This was done to address the issues of input data uncertainty and integration of geological information from varying sources in the form of geological likelihood functions. However, one general shortcoming of implicit methods is that they usually do not take any physical constraints into consideration, which can result in unrealistic model outcomes and artifacts. On the other hand, kinematic structural modelling intends to reconstruct the history of a geological system based on physically driven kinematic events. This type of modelling incorporates simplified, physical laws into the model, at the cost of a substantial increment of usable uncertain parameters. In the work presented here, we show an integration of these two different modelling methodologies, taking advantage of the strengths of both of them. First, we treat the two types of models separately, capturing the information contained in the kinematic models and their specific parameters in the form of likelihood functions, in order to use them in the implicit modelling scheme. We then go further and combine the two modelling approaches into one single Bayesian network. This enables the direct flow of information between the parameters of the kinematic modelling step and the implicit modelling step and links the exclusive input data and likelihoods of the two different modelling algorithms into one probabilistic inference framework. In addition, we use the capabilities of Noddy to analyze the topology of structural models to demonstrate how topological information, such as the connectivity of two layers across an unconformity, can be used as a likelihood function. In an application to a synthetic case study, we show that our approach leads to a successful combination of the two different modelling concepts. Specifically, we show that we derive ensemble realizations of implicit models that now incorporate the knowledge of the kinematic aspects, representing an important step forward in the integration of knowledge and a corresponding estimation of uncertainties in structural geological models.

  4. Monte Carlo simulation for uncertainty estimation on structural data in implicit 3-D geological modeling, a guide for disturbance distribution selection and parameterization

    NASA Astrophysics Data System (ADS)

    Pakyuz-Charrier, Evren; Lindsay, Mark; Ogarko, Vitaliy; Giraud, Jeremie; Jessell, Mark

    2018-04-01

    Three-dimensional (3-D) geological structural modeling aims to determine geological information in a 3-D space using structural data (foliations and interfaces) and topological rules as inputs. This is necessary in any project in which the properties of the subsurface matters; they express our understanding of geometries in depth. For that reason, 3-D geological models have a wide range of practical applications including but not restricted to civil engineering, the oil and gas industry, the mining industry, and water management. These models, however, are fraught with uncertainties originating from the inherent flaws of the modeling engines (working hypotheses, interpolator's parameterization) and the inherent lack of knowledge in areas where there are no observations combined with input uncertainty (observational, conceptual and technical errors). Because 3-D geological models are often used for impactful decision-making it is critical that all 3-D geological models provide accurate estimates of uncertainty. This paper's focus is set on the effect of structural input data measurement uncertainty propagation in implicit 3-D geological modeling. This aim is achieved using Monte Carlo simulation for uncertainty estimation (MCUE), a stochastic method which samples from predefined disturbance probability distributions that represent the uncertainty of the original input data set. MCUE is used to produce hundreds to thousands of altered unique data sets. The altered data sets are used as inputs to produce a range of plausible 3-D models. The plausible models are then combined into a single probabilistic model as a means to propagate uncertainty from the input data to the final model. In this paper, several improved methods for MCUE are proposed. The methods pertain to distribution selection for input uncertainty, sample analysis and statistical consistency of the sampled distribution. Pole vector sampling is proposed as a more rigorous alternative than dip vector sampling for planar features and the use of a Bayesian approach to disturbance distribution parameterization is suggested. The influence of incorrect disturbance distributions is discussed and propositions are made and evaluated on synthetic and realistic cases to address the sighted issues. The distribution of the errors of the observed data (i.e., scedasticity) is shown to affect the quality of prior distributions for MCUE. Results demonstrate that the proposed workflows improve the reliability of uncertainty estimation and diminish the occurrence of artifacts.

  5. Study of Shallow Low-Enthalpy Geothermal Resources Using Integrated Geophysical Methods

    NASA Astrophysics Data System (ADS)

    De Giorgi, Lara; Leucci, Giovanni

    2015-02-01

    The paper is focused on low enthalpy geothermal exploration performed in south Italy and provides an integrated presentation of geological, hydrogeological, and geophysical surveys carried out in the area of municipality of Lecce. Geological and hydrogeological models were performed using the stratigraphical data from 51 wells. A ground-water flow (direction and velocity) model was obtained. Using the same wells data, the ground-water annual temperature was modeled. Furthermore, the ground surface temperature records from ten meteorological stations were studied. This allowed us to obtain a model related to the variations of the temperature at different depths in the subsoil. Integrated geophysical surveys were carried out in order to explore the low-enthalpy geothermal fluids and to evaluate the results of the model. Electrical resistivity tomography (ERT) and self-potential (SP) methods were used. The results obtained upon integrating the geophysical data with the models show a low-enthalpy geothermal resource constituted by a shallow ground-water system.

  6. Immersive Virtual Reality Field Trips in the Geosciences: Integrating Geodetic Data in Undergraduate Geoscience Courses

    NASA Astrophysics Data System (ADS)

    La Femina, P. C.; Klippel, A.; Zhao, J.; Walgruen, J. O.; Stubbs, C.; Jackson, K. L.; Wetzel, R.

    2017-12-01

    High-quality geodetic data and data products, including GPS-GNSS, InSAR, LiDAR, and Structure from Motion (SfM) are opening the doors to visualizing, quantifying, and modeling geologic, tectonic, geomorphic, and geodynamic processes. The integration of these data sets with other geophysical, geochemical and geologic data is providing opportunities for the development of immersive Virtual Reality (iVR) field trips in the geosciences. iVR fieldtrips increase accessibility in the geosciences, by providing experiences that allow for: 1) exploration of field locations that might not be tenable for introductory or majors courses; 2) accessibility to outcrops for students with physical disabilities; and 3) the development of online geosciences courses. We have developed a workflow for producing iVR fieldtrips and tools to make quantitative observations (e.g., distance, area, and volume) within the iVR environment. We use a combination of terrestrial LiDAR and SfM data, 360° photos and videos, and other geophysical, geochemical and geologic data to develop realistic experiences for students to be exposed to the geosciences from sedimentary geology to physical volcanology. We present two of our iVR field trips: 1) Inside the Volcano: Exploring monogenetic volcanism at Thrihnukagigar Iceland; and 2) Changes in Depositional Environment in a Sedimentary Sequence: The Reedsville and Bald Eagle Formations, Pennsylvania. The Thrihnukagigar experience provides the opportunity to investigate monogenetic volcanism through the exploration of the upper 125 m of a fissure-cinder cone eruptive system. Students start at the plate boundary scale, then zoom into a single volcano where they can view the 3D geometry from either terrestrial LiDAR or SfM point clouds, view geochemical data and petrologic thins sections of rock samples, and a presentation of data collection and analysis, results and interpretation. Our sedimentary geology experience is based on a field lab from our introductory Physical Geology course for majors in Geoscience and Engineering. The lab explores formation of a turbidite sequence, and the transition to a shallower marine environment using the tools described above and data from SfM and 360° photos. We are evaluating the effectiveness of both iVR field trips on student learning.

  7. Modelling fully-coupled Thermo-Hydro-Mechanical (THM) processes in fractured reservoirs using GOLEM: a massively parallel open-source simulator

    NASA Astrophysics Data System (ADS)

    Jacquey, Antoine; Cacace, Mauro

    2017-04-01

    Utilization of the underground for energy-related purposes have received increasing attention in the last decades as a source for carbon-free energy and for safe storage solutions. Understanding the key processes controlling fluid and heat flow around geological discontinuities such as faults and fractures as well as their mechanical behaviours is therefore of interest in order to design safe and sustainable reservoir operations. These processes occur in a naturally complex geological setting, comprising natural or engineered discrete heterogeneities as faults and fractures, span a relatively large spectrum of temporal and spatial scales and they interact in a highly non-linear fashion. In this regard, numerical simulators have become necessary in geological studies to model coupled processes and complex geological geometries. In this study, we present a new simulator GOLEM, using multiphysics coupling to characterize geological reservoirs. In particular, special attention is given to discrete geological features such as faults and fractures. GOLEM is based on the Multiphysics Object-Oriented Simulation Environment (MOOSE). The MOOSE framework provides a powerful and flexible platform to solve multiphysics problems implicitly and in a tightly coupled manner on unstructured meshes which is of interest for the considered non-linear context. Governing equations in 3D for fluid flow, heat transfer (conductive and advective), saline transport as well as deformation (elastic and plastic) have been implemented into the GOLEM application. Coupling between rock deformation and fluid and heat flow is considered using theories of poroelasticity and thermoelasticity. Furthermore, considering material properties such as density and viscosity and transport properties such as porosity as dependent on the state variables (based on the International Association for the Properties of Water and Steam models) increase the coupling complexity of the problem. The GOLEM application aims therefore at integrating more physical processes observed in the field or in the laboratory to simulate more realistic scenarios. The use of high-level nonlinear solver technology allow us to tackle these complex multiphysics problems in three dimensions. Basic concepts behing the GOLEM simulator will be presented in this study as well as a few application examples to illustrate its main features.

  8. Environmental aspects of engineering geological mapping in the United States

    USGS Publications Warehouse

    Radbruch-Hall, Dorothy H.

    1979-01-01

    Many engineering geological maps at different scales have been prepared for various engineering and environmental purposes in regions of diverse geological conditions in the United States. They include maps of individual geological hazards and maps showing the effect of land development on the environment. An approach to assessing the environmental impact of land development that is used increasingly in the United States is the study of a single area by scientists from several disciplines, including geology. A study of this type has been made for the National Petroleum Reserve in northern Alaska. In the San Francisco Bay area, a technique has been worked out for evaluating the cost of different types of construction and land development in terms of the cost of a number of kinds of earth science factors. ?? 1979 International Association of Engineering Geology.

  9. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Peter Andrew

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomicmore » scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Joshua S.; Rautman, Christopher Arthur

    The Bryan Mound salt dome, located near Freeport, Texas, is home to one of four underground crude oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the Bryan Mound site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary units, mapped faults, and the 20 oil-storage caverns at the site. Thismore » work provides an internally consistent geologic model of the Bryan Mound site that can be used in support of future work.« less

  11. TRENDS IN ENGINEERING GEOLOGIC AND RELATED MAPPING.

    USGS Publications Warehouse

    Varnes, David J.; Keaton, Jeffrey R.

    1983-01-01

    Progress is reviewed that has been made during the period 1972-1982 in producing medium- and small-scale engineering geologic maps with a variety of content. Improved methods to obtain and present information are evolving. Standards concerning text and map content, soil and rock classification, and map symbols have been proposed. Application of geomorphological techniques in terrain evaluation has increased, as has the use of aerial photography and other remote sensing. Computers are being used to store, analyze, retrieve, and print both text and map information. Development of offshore resources, especially petroleum, has led to marked improvement and growth in marine engineering geology and geotechnology. Coordinated planning for societal needs has required broader scope and increased complexity of both engineering geologic and environmental geologic studies. Refs.

  12. Development of teaching modules for geology and engineering coursework using terrestrial LiDAR scanning systems

    NASA Astrophysics Data System (ADS)

    Yarbrough, L. D.; Katzenstein, K.

    2012-12-01

    Exposing students to active and local examples of physical geologic processes is beneficial to the learning process. Students typically respond with interest to examples that use state-of-the-art technologies to investigate local or regional phenomena. For lower cognitive level of learning (e.g. knowledge, comprehension, and application), the use of "close-to-home" examples ensures that students better understand concepts. By providing these examples, the students may already have a familiarity or can easily visit the location. Furthermore, these local and regional examples help students to offer quickly other examples of similar phenomena. Investigation of these examples using normal photographic techniques, as well as a more sophisticated 3-D Light Detection And Ranging (LiDAR) (AKA Terrestrial Laser Scanning or TLS) system, allows students to gain a better understanding of the scale and the mechanics of the geologic processes and hazards. The systems are used for research, teaching and outreach efforts and depending on departmental policies can be accessible to students are various learning levels. TLS systems can yield scans at sub-centimeter resolution and contain surface reflectance of targets. These systems can serve a number of learning goals that are essential for training geoscientists and engineers. While querying the data to answer geotechnical or geomorphologic related questions, students will develop skills using large, spatial databases. The upper cognitive level of learning (e.g. analysis, synthesis, and evaluation) is also promoted by using a subset of the data and correlating the physical geologic process of stream bank erosion and rock slope failures with mathematical and computer models using the scanned data. Students use the examples and laboratory exercises to help build their engineering judgment skills with Earth materials. The students learn not only applications of math and engineering science but also the economic and social implication of designed engineering solutions. These course learning modules were developed for traditional geological engineering courses delivered on campus, for more intensive field work courses and online-based asynchronous course delivery.

  13. Publications - PIR 2002-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ): Philip Smith Mountains Bibliographic Reference Stevens, D.S.P., 2014, Engineering-geologic map of the Digital Geospatial Data Philip Smith Mountains: Engineering-geologic map Data File Format File Size Info

  14. 25 Years of DECOVALEX - Research Advances and Lessons Learned from an International Model Comparison Initiative

    NASA Astrophysics Data System (ADS)

    Birkholzer, J. T.

    2017-12-01

    This presentation provides an overview of an international research and model comparison collaboration (DECOVALEX) for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems. Prediction of these coupled effects is an essential part of the performance and safety assessment of geologic disposal systems for radioactive waste and spent nuclear fuel, and is also relevant for a range of other sub-surface engineering activities. DECOVALEX research activities have been supported by a large number of radioactive-waste-management organizations and regulatory authorities. Research teams from more than a dozen international partner organizations have participated in the comparative modeling evaluation of complex field and laboratory experiments in the UK, Switzerland, Japan, France and Sweden. Together, these tasks (1) have addressed a wide range of relevant issues related to engineered and natural system behavior in argillaceous, crystalline and other host rocks, (2) have yielded in-depth knowledge of coupled THM and THMC processes associated with nuclear waste repositories and wider geo-engineering applications, and (3) have advanced the capability, as well as demonstrated the suitability, of numerical simulation models for quantitative analysis.

  15. Geologic cross sections and preliminary geologic map of the Questa Area, Taos County, New Mexico

    USGS Publications Warehouse

    Bauer, Paul W.; Grauch, V.J.S.; Johnson, Peggy S.; Thompson, Ren A.; Drenth, Benjamin J.; Kelson, Keith I.

    2015-01-01

    In 2011, the senior authors were contacted by Ron Gardiner of Questa, and Village of Questa Mayor Esther Garcia, to discuss the existing and future groundwater supply for the Village of Questa. This meeting led to the development of a plan in 2013 to perform an integrated geologic, geophysical, and hydrogeologic investigation of the Questa area by the New Mexico Bureau of Geology & Mineral Resources (NMBG), the U.S. Geological Survey (USGS), and New Mexico Tech (NMT). The NMBG was responsible for the geologic map and geologic cross sections. The USGS was responsible for a detailed geophysical model to be incorporated into the NMBG products. NMT was responsible for providing a graduate student to develop a geochemical and groundwater flow model. This report represents the final products of the geologic and geophysical investigations conducted by the NMBG and USGS. The USGS final products have been incorporated directly into the geologic cross sections. The objective of the study was to characterize and interpret the shallow (to a depth of approximately 5,000 ft) three-dimensional geology and preliminary hydrogeology of the Questa area. The focus of this report is to compile existing geologic and geophysical data, integrate new geophysical data, and interpret these data to construct three, detailed geologic cross sections across the Questa area. These cross sections can be used by the Village of Questa to make decisions about municipal water-well development, and can be used in the future to help in the development of a conceptual model of groundwater flow for the Questa area. Attached to this report are a location map, a preliminary geologic map and unit descriptions, tables of water wells and springs used in the study, and three detailed hydrogeologic cross sections shown at two different vertical scales. The locations of the cross sections are shown on the index map of the cross section sheet.

  16. Site-specific seismic-hazard maps and deaggregation in the western United States using the NGA models for ground-motion prediction

    USGS Publications Warehouse

    Harmsen, Stephen

    2011-01-01

    In addition, this report shows how incorporating geologic site condition information alters the values of the dominating magnitudes and distances in deaggregation-5-Hz values for a site near San Quentin, Calif., and 5-Hz and 1-Hz values for Harbor Island near Seattle, Wash. These deaggregations show that the modal event can shift from a larger closer source to a more distant, perhaps smaller source when nonlinear soil behavior is explicitly included in the hazard integral. The potential shift in the mode when considering the soil column's effect ought to be carefully considered by engineers who select scenario events based in part on the distribution in magnitude, distance, and epsilon space.

  17. Time series analysis of contaminant transport in the subsurface: applications to conservative tracer and engineered nanomaterials.

    PubMed

    Bai, Chunmei; Li, Yusong

    2014-08-01

    Accurately predicting the transport of contaminants in the field is subject to multiple sources of uncertainty due to the variability of geological settings, the complexity of field measurements, and the scarcity of data. Such uncertainties can be amplified when modeling some emerging contaminants, such as engineered nanomaterials, when a fundamental understanding of their fate and transport is lacking. Typical field work includes collecting concentration at a certain location for an extended period of time, or measuring the movement of plume for an extended period time, which would result in a time series of observation data. This work presents an effort to evaluate the possibility of applying time series analysis, particularly, autoregressive integrated moving average (ARIMA) models, to forecast contaminant transport and distribution in the subsurface environment. ARIMA modeling was first assessed in terms of its capability to forecast tracer transport at two field sites, which had different levels of heterogeneity. After that, this study evaluated the applicability of ARIMA modeling to predict the transport of engineered nanomaterials at field sites, including field measured data of nanoscale zero valent iron and (nZVI) and numerically generated data for the transport of nano-fullerene aggregates (nC60). This proof-of-concept effort demonstrates the possibility of applying ARIMA to predict the contaminant transport in the subsurface environment. Like many other statistical models, ARIMA modeling is only descriptive and not explanatory. The limitation and the challenge associated with applying ARIMA modeling to contaminant transport in the subsurface are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Time series analysis of contaminant transport in the subsurface: Applications to conservative tracer and engineered nanomaterials

    NASA Astrophysics Data System (ADS)

    Bai, Chunmei; Li, Yusong

    2014-08-01

    Accurately predicting the transport of contaminants in the field is subject to multiple sources of uncertainty due to the variability of geological settings, the complexity of field measurements, and the scarcity of data. Such uncertainties can be amplified when modeling some emerging contaminants, such as engineered nanomaterials, when a fundamental understanding of their fate and transport is lacking. Typical field work includes collecting concentration at a certain location for an extended period of time, or measuring the movement of plume for an extended period time, which would result in a time series of observation data. This work presents an effort to evaluate the possibility of applying time series analysis, particularly, autoregressive integrated moving average (ARIMA) models, to forecast contaminant transport and distribution in the subsurface environment. ARIMA modeling was first assessed in terms of its capability to forecast tracer transport at two field sites, which had different levels of heterogeneity. After that, this study evaluated the applicability of ARIMA modeling to predict the transport of engineered nanomaterials at field sites, including field measured data of nanoscale zero valent iron and (nZVI) and numerically generated data for the transport of nano-fullerene aggregates (nC60). This proof-of-concept effort demonstrates the possibility of applying ARIMA to predict the contaminant transport in the subsurface environment. Like many other statistical models, ARIMA modeling is only descriptive and not explanatory. The limitation and the challenge associated with applying ARIMA modeling to contaminant transport in the subsurface are also discussed.

  19. National Dam Safety Program. Main Tailings Dam (MO 31082), Mississippi - St. Francis Basin, Madison County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1979-06-01

    failure and other information. These reports were prepared by personnel from the Mis- souri Geology and Land Survey, Applied Engineering and Urban...34Report of the National Lead Stifling Basin Washout, Madison County, Missouri", Applied Engineering and Urban Geology, Geo- logy and Land Survey, 30...failure and other information are contained in reports by personnel from the Missouri Geology and Land Survey, Applied Engineering and Urban Geology

  20. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  1. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2014-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  2. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    NASA Technical Reports Server (NTRS)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  3. A Model for Professional Education in the 21st Century: Integrating Humanities and Engineering through Writing.

    ERIC Educational Resources Information Center

    Olds, Barbara M.; Miller, Ronald L.

    The "HumEn" (Humanities/Engineering Integration) program developed at the Colorado School of Mines integrates humanities and engineering through reading and writing. Through integrative reading and writing engineering students are led to make appropriate connections between the humanities and their technical work, connections that will…

  4. Multiscale Phenomena in the Solid-Liquid Transition State of a Granular Material: Analysis, Modeling and Experimentation

    DTIC Science & Technology

    2010-11-21

    The number of undergraduates funded by your agreement who graduated during this period and will receive scholarships or fellowships for further... geology and engineering – to understand and predict the multiscale behaviour of granular materials. Several pioneering achievements have led to...breakage. Purpose of the Research We have recently established, in close collaboration with experimentalists (from geology , physics

  5. An Operations Concept for Integrated Model-Centric Engineering at JPL

    NASA Technical Reports Server (NTRS)

    Bayer, Todd J.; Cooney, Lauren A.; Delp, Christopher L.; Dutenhoffer, Chelsea A.; Gostelow, Roli D.; Ingham, Michel D.; Jenkins, J. Steven; Smith, Brian S.

    2010-01-01

    As JPL's missions grow more complex, the need for improved systems engineering processes is becoming clear. Of significant promise in this regard is the move toward a more integrated and model-centric approach to mission conception, design, implementation and operations. The Integrated Model-Centric Engineering (IMCE) Initiative, now underway at JPL, seeks to lay the groundwork for these improvements. This paper will report progress on three fronts: articulating JPL's need for IMCE; characterizing the enterprise into which IMCE capabilities will be deployed; and constructing an operations concept for a flight project development in an integrated model-centric environment.

  6. 30 CFR 250.1303 - How do I apply for voluntary unitization?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plan of operation; (3) Supporting geological, geophysical, and engineering data; and (4) Other... model unit agreement for you to follow. If MMS revises the model, MMS will publish the revised model in the Federal Register. If you vary your unit agreement from the model agreement, you must obtain the...

  7. Modelling of 3D fractured geological systems - technique and application

    NASA Astrophysics Data System (ADS)

    Cacace, M.; Scheck-Wenderoth, M.; Cherubini, Y.; Kaiser, B. O.; Bloecher, G.

    2011-12-01

    All rocks in the earth's crust are fractured to some extent. Faults and fractures are important in different scientific and industry fields comprising engineering, geotechnical and hydrogeological applications. Many petroleum, gas and geothermal and water supply reservoirs form in faulted and fractured geological systems. Additionally, faults and fractures may control the transport of chemical contaminants into and through the subsurface. Depending on their origin and orientation with respect to the recent and palaeo stress field as well as on the overall kinematics of chemical processes occurring within them, faults and fractures can act either as hydraulic conductors providing preferential pathways for fluid to flow or as barriers preventing flow across them. The main challenge in modelling processes occurring in fractured rocks is related to the way of describing the heterogeneities of such geological systems. Flow paths are controlled by the geometry of faults and their open void space. To correctly simulate these processes an adequate 3D mesh is a basic requirement. Unfortunately, the representation of realistic 3D geological environments is limited by the complexity of embedded fracture networks often resulting in oversimplified models of the natural system. A technical description of an improved method to integrate generic dipping structures (representing faults and fractures) into a 3D porous medium is out forward. The automated mesh generation algorithm is composed of various existing routines from computational geometry (e.g. 2D-3D projection, interpolation, intersection, convex hull calculation) and meshing (e.g. triangulation in 2D and tetrahedralization in 3D). All routines have been combined in an automated software framework and the robustness of the approach has been tested and verified. These techniques and methods can be applied for fractured porous media including fault systems and therefore found wide applications in different geo-energy related topics including CO2 storage in deep saline aquifers, shale gas extraction and geothermal heat recovery. The main advantage is that dipping structures can be integrated into a 3D body representing the porous media and the interaction between the discrete flow paths through and across faults and fractures and within the rock matrix can be correctly simulated. In addition the complete workflow is captured by open-source software.

  8. Modelling DC responses of 3D complex fracture networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beskardes, Gungor Didem; Weiss, Chester Joseph

    Here, the determination of the geometrical properties of fractures plays a critical role in many engineering problems to assess the current hydrological and mechanical states of geological media and to predict their future states. However, numerical modeling of geoelectrical responses in realistic fractured media has been challenging due to the explosive computational cost imposed by the explicit discretizations of fractures at multiple length scales, which often brings about a tradeoff between computational efficiency and geologic realism. Here, we use the hierarchical finite element method to model electrostatic response of realistically complex 3D conductive fracture networks with minimal computational cost.

  9. Modelling DC responses of 3D complex fracture networks

    DOE PAGES

    Beskardes, Gungor Didem; Weiss, Chester Joseph

    2018-03-01

    Here, the determination of the geometrical properties of fractures plays a critical role in many engineering problems to assess the current hydrological and mechanical states of geological media and to predict their future states. However, numerical modeling of geoelectrical responses in realistic fractured media has been challenging due to the explosive computational cost imposed by the explicit discretizations of fractures at multiple length scales, which often brings about a tradeoff between computational efficiency and geologic realism. Here, we use the hierarchical finite element method to model electrostatic response of realistically complex 3D conductive fracture networks with minimal computational cost.

  10. Gas Path On-line Fault Diagnostics Using a Nonlinear Integrated Model for Gas Turbine Engines

    NASA Astrophysics Data System (ADS)

    Lu, Feng; Huang, Jin-quan; Ji, Chun-sheng; Zhang, Dong-dong; Jiao, Hua-bin

    2014-08-01

    Gas turbine engine gas path fault diagnosis is closely related technology that assists operators in managing the engine units. However, the performance gradual degradation is inevitable due to the usage, and it result in the model mismatch and then misdiagnosis by the popular model-based approach. In this paper, an on-line integrated architecture based on nonlinear model is developed for gas turbine engine anomaly detection and fault diagnosis over the course of the engine's life. These two engine models have different performance parameter update rate. One is the nonlinear real-time adaptive performance model with the spherical square-root unscented Kalman filter (SSR-UKF) producing performance estimates, and the other is a nonlinear baseline model for the measurement estimates. The fault detection and diagnosis logic is designed to discriminate sensor fault and component fault. This integration architecture is not only aware of long-term engine health degradation but also effective to detect gas path performance anomaly shifts while the engine continues to degrade. Compared to the existing architecture, the proposed approach has its benefit investigated in the experiment and analysis.

  11. Integrated Control Modeling for Propulsion Systems Using NPSS

    NASA Technical Reports Server (NTRS)

    Parker, Khary I.; Felder, James L.; Lavelle, Thomas M.; Withrow, Colleen A.; Yu, Albert Y.; Lehmann, William V. A.

    2004-01-01

    The Numerical Propulsion System Simulation (NPSS), an advanced engineering simulation environment used to design and analyze aircraft engines, has been enhanced by integrating control development tools into it. One of these tools is a generic controller interface that allows NPSS to communicate with control development software environments such as MATLAB and EASY5. The other tool is a linear model generator (LMG) that gives NPSS the ability to generate linear, time-invariant state-space models. Integrating these tools into NPSS enables it to be used for control system development. This paper will discuss the development and integration of these tools into NPSS. In addition, it will show a comparison of transient model results of a generic, dual-spool, military-type engine model that has been implemented in NPSS and Simulink. It will also show the linear model generator s ability to approximate the dynamics of a nonlinear NPSS engine model.

  12. Geological modelling of mineral deposits for prediction in mining

    NASA Astrophysics Data System (ADS)

    Sides, E. J.

    Accurate prediction of the shape, location, size and properties of the solid rock materials to be extracted during mining is essential for reliable technical and financial planning. This is achieved through geological modelling of the three-dimensional (3D) shape and properties of the materials present in mineral deposits, and the presentation of results in a form which is accessible to mine planning engineers. In recent years the application of interactive graphics software, offering 3D database handling, modelling and visualisation, has greatly enhanced the options available for predicting the subsurface limits and characteristics of mineral deposits. A review of conventional 3D geological interpretation methods, and the model struc- tures and modelling methods used in reserve estimation and mine planning software packages, illustrates the importance of such approaches in the modern mining industry. Despite the widespread introduction and acceptance of computer hardware and software in mining applications, in recent years, there has been little fundamental change in the way in which geology is used in orebody modelling for predictive purposes. Selected areas of current research, aimed at tackling issues such as the use of orientation data, quantification of morphological differences, incorporation of geological age relationships, multi-resolution models and the application of virtual reality hardware and software, are discussed.

  13. Integrated Main Propulsion System Performance Reconstruction Process/Models

    NASA Technical Reports Server (NTRS)

    Lopez, Eduardo; Elliott, Katie; Snell, Steven; Evans, Michael

    2013-01-01

    The Integrated Main Propulsion System (MPS) Performance Reconstruction process provides the MPS post-flight data files needed for postflight reporting to the project integration management and key customers to verify flight performance. This process/model was used as the baseline for the currently ongoing Space Launch System (SLS) work. The process utilizes several methodologies, including multiple software programs, to model integrated propulsion system performance through space shuttle ascent. It is used to evaluate integrated propulsion systems, including propellant tanks, feed systems, rocket engine, and pressurization systems performance throughout ascent based on flight pressure and temperature data. The latest revision incorporates new methods based on main engine power balance model updates to model higher mixture ratio operation at lower engine power levels.

  14. Engineering Geology

    ERIC Educational Resources Information Center

    Hatheway, Allen W.

    1978-01-01

    Engineering geology remains a potpourri of applied classical geology, and 1977 witnessed an upswing in demand for these services. Traditional foundation-related work was slight, but construction related to national needs increased briskly. Major cities turned to concerns of transit waste-water treatment and solid-waste disposal. (Author/MA)

  15. Voxel inversion of airborne electromagnetic data for improved model integration

    NASA Astrophysics Data System (ADS)

    Fiandaca, Gianluca; Auken, Esben; Kirkegaard, Casper; Vest Christiansen, Anders

    2014-05-01

    Inversion of electromagnetic data has migrated from single site interpretations to inversions including entire surveys using spatial constraints to obtain geologically reasonable results. Though, the model space is usually linked to the actual observation points. For airborne electromagnetic (AEM) surveys the spatial discretization of the model space reflects the flight lines. On the contrary, geological and groundwater models most often refer to a regular voxel grid, not correlated to the geophysical model space, and the geophysical information has to be relocated for integration in (hydro)geological models. We have developed a new geophysical inversion algorithm working directly in a voxel grid disconnected from the actual measuring points, which then allows for informing directly geological/hydrogeological models. The new voxel model space defines the soil properties (like resistivity) on a set of nodes, and the distribution of the soil properties is computed everywhere by means of an interpolation function (e.g. inverse distance or kriging). Given this definition of the voxel model space, the 1D forward responses of the AEM data are computed as follows: 1) a 1D model subdivision, in terms of model thicknesses, is defined for each 1D data set, creating "virtual" layers. 2) the "virtual" 1D models at the sounding positions are finalized by interpolating the soil properties (the resistivity) in the center of the "virtual" layers. 3) the forward response is computed in 1D for each "virtual" model. We tested the new inversion scheme on an AEM survey carried out with the SkyTEM system close to Odder, in Denmark. The survey comprises 106054 dual mode AEM soundings, and covers an area of approximately 13 km X 16 km. The voxel inversion was carried out on a structured grid of 260 X 325 X 29 xyz nodes (50 m xy spacing), for a total of 2450500 inversion parameters. A classical spatially constrained inversion (SCI) was carried out on the same data set, using 106054 spatially constrained 1D models with 29 layers. For comparison, the SCI inversion models have been gridded on the same grid of the voxel inversion. The new voxel inversion and the classic SCI give similar data fit and inversion models. The voxel inversion decouples the geophysical model from the position of acquired data, and at the same time fits the data as well as the classic SCI inversion. Compared to the classic approach, the voxel inversion is better suited for informing directly (hydro)geological models and for sequential/Joint/Coupled (hydro)geological inversion. We believe that this new approach will facilitate the integration of geophysics, geology and hydrology for improved groundwater and environmental management.

  16. Quaternary Geologic Map of the Lake of the Woods 4 Degrees x 6 Degrees Quadrangle, United States and Canada

    USGS Publications Warehouse

    Sado, Edward V.; Fullerton, David S.; Goebel, Joseph E.; Ringrose, Susan M.; Edited and Integrated by Fullerton, David S.

    1995-01-01

    The Quaternary Geologic Map of the Lake of the Woods 4 deg x 6 deg Quadrangle, United States and Canada, was mapped as part of the U.S. Geological Survey Quaternary Geologic Atlas of the United States map series (Miscellaneous Investigations Series I-1420, NM-15). The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. This map is a product of collaboration of the Ontario Geological Survey, the Minnesota Geological Survey, the Manitoba Department of Energy and Mines, and the U.S. Geological Survey, and is designed for both scientific and practical purposes. It was prepared in two stages. First, separate maps and map explanations were prepared by the compilers. Second, the maps were combined, integrated, and supplemented by the editor. Map unit symbols were revised to a uniform system of classification and the map unit descriptions were prepared by the editor from information received from the compilers and from additional sources listed under Sources of Information. Diagrams accompanying the map were prepared by the editor. For scientific purposes, the map differentiates Quaternary surficial deposits on the basis of lithology or composition, texture or particle size, structure, genesis, stratigraphic relationships, engineering geologic properties, and relative age, as shown on the correlation diagram and indicated in the description of map units. Deposits of some constructional landforms, such as kame moraine deposits, are distinguished as map units. Deposits of erosional landforms, such as outwash terraces, are not distinguished, although glaciofluvial, ice-contact, and lacustrine deposits that are mapped may be terraced. As a Quaternary geologic map, it serves as a base from which a variety of maps relating Quaternary geologic history can be derived. For practical purposes, the map is a surficial materials map. Materials are distinguished on the basis of lithology or composition, texture or particle size, and other physical, chemical, and engineering characteristics. It is not a map of soils that are recognized and classified in pedology or agronomy. Rather, it is a generalized map of soils as recognized in engineering geology, or of substrata or parent materials in which pedologic or agronomic soils are formed. As a materials map, it serves as a base from which a variety of maps for use in planning engineering, land-use, or land-management projects can be derived.

  17. Computer-assisted photogrammetric mapping systems for geologic studies-A progress report

    USGS Publications Warehouse

    Pillmore, C.L.; Dueholm, K.S.; Jepsen, H.S.; Schuch, C.H.

    1981-01-01

    Photogrammetry has played an important role in geologic mapping for many years; however, only recently have attempts been made to automate mapping functions for geology. Computer-assisted photogrammetric mapping systems for geologic studies have been developed and are currently in use in offices of the Geological Survey of Greenland at Copenhagen, Denmark, and the U.S. Geological Survey at Denver, Colorado. Though differing somewhat, the systems are similar in that they integrate Kern PG-2 photogrammetric plotting instruments and small desk-top computers that are programmed to perform special geologic functions and operate flat-bed plotters by means of specially designed hardware and software. A z-drive capability, in which stepping motors control the z-motions of the PG-2 plotters, is an integral part of both systems. This feature enables the computer to automatically position the floating mark on computer-calculated, previously defined geologic planes, such as contacts or the base of coal beds, throughout the stereoscopic model in order to improve the mapping capabilities of the instrument and to aid in correlation and tracing of geologic units. The common goal is to enhance the capabilities of the PG-2 plotter and provide a means by which geologists can make conventional geologic maps more efficiently and explore ways to apply computer technology to geologic studies. ?? 1981.

  18. Mapping and vessel-based capabilities

    USGS Publications Warehouse

    Raabe, Ellen A.; Robbins, Lisa L.

    2007-01-01

    U.S. Geological Survey (USGS) scientists from the Florida Integrated Science Center (FISC) conduct scientific investigations of submerged coastal and marine resources using new and existing technologies. Each contributing technique, method, or product adds to our understanding of coastal and marine resources and provides information for resource-management decisionmaking. In support of this mission, the USGS St. Petersburg office maintains a fleet of research vessels used for inland, coastal, and open-water marine surveys and investigations. Each vessel has advantages and limitations related to water depth, carrying capacity, speed, operation in open water, and other functions. These research platforms are staffed by experienced technical and scientific professionals with expertise in marine navigation, geology, geophysics, engineering, biology, and oceanography.

  19. Subsurface geological modeling using GIS and remote sensing data: a case study from Platanos landslide, Western Greece

    NASA Astrophysics Data System (ADS)

    Kavoura, K.; Kordouli, M.; Nikolakopoulos, K.; Elias, P.; Sykioti, O.; Tsagaris, V.; Drakatos, G.; Rondoyanni, Th.; Tsiambaos, G.; Sabatakakis, N.; Anastasopoulos, V.

    2014-08-01

    Landslide phenomena constitute a major geological hazard in Greece and especially in the western part of the country as a result of anthropogenic activities, growing urbanization and uncontrolled land - use. More frequent triggering events and increased susceptibility of the ground surface to instabilities as consequence of climate change impacts (continued deforestation mainly due to the devastating forest wildfires and extreme meteorological events) have also increased the landslide risk. The studied landslide occurrence named "Platanos" has been selected within the framework of "Landslide Vulnerability Model - LAVMO" project that aims at creating a persistently updated electronic platform assessing risks related with landslides. It is a coastal area situated between Korinthos and Patras at the northwestern part of the elongated graben of the Corinth Gulf. The paper presents the combined use of geological-geotechnical insitu data, remote sensing data and GIS techniques for the evaluation of a subsurface geological model. High accuracy Digital Surface Model (DSM), airphotos mosaic and satellite data, with a spatial resolution of 0.5m were used for an othophoto base map compilation of the study area. Geological - geotechnical data obtained from exploratory boreholes were digitized and implemented in a GIS platform with engineering geological maps for a three - dimensional subsurface model evaluation. This model is provided for being combined with inclinometer measurements for sliding surface location through the instability zone.

  20. Quaternary Geologic Map of the Lake Nipigon 4 Degrees x 6 Degrees Quadrangle, United States and Canada

    USGS Publications Warehouse

    Sado, Edward V.; Fullerton, David S.; Farrand, William R.; Edited and Integrated by Fullerton, David S.

    1994-01-01

    The Quaternary Geologic Map of the Lake Nipigon 4 degree x 6 degree Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. This map is a product of collaboration of the Ontario Geological Survey, the University of Michigan, and the U.S. Geological Survey, and is designed for both scientific and practical purposes. It was prepared in two stages. First, separate maps and map explanations were prepared by the compilers. Second, the maps were combined, integrated, and supplemented by the editor. Map unit symbols were revised to a uniform system of classification and the map unit descriptions were prepared by the editor from information received from the compilers and from additional sources listed under Sources of Information. Diagrams accompanying the map were prepared by the editor. For scientific purposes, the map differentiates Quaternary surficial deposits on the basis of lithology or composition, texture or particle size, structure, genesis, stratigraphic relationships, engineering geologic properties, and relative age, as shown on the correlation diagram and indicated in the map unit descriptions. Deposits of some constructional landforms, such as kame moraine deposits, are distinguished as map units. Deposits of erosional landforms, such as outwash terraces, are not distinguished, although glaciofluvial, ice-contact, and lacustrine deposits that are mapped may be terraced. As a Quaternary geologic map it serves as a base from which a variety of maps relating Quaternary geologic history can be derived. For practical purposes, the map is a surficial materials map. Materials are distinguished on the basis of lithology or composition, texture or particle size, and other physical, chemical, and engineering characteristics. It is not a map of soils that are recognized and classified in pedology or agronomy. Rather, it is a generalized map of soils as recognized in engineering geology, or of substrata or parent materials in which pedologic or agronomic soils are formed. As a materials map it serves as a base from which a variety of maps for use in planning engineering, land use, or land management projects can be derived.

  1. A Software Tool for Integrated Optical Design Analysis

    NASA Technical Reports Server (NTRS)

    Moore, Jim; Troy, Ed; DePlachett, Charles; Montgomery, Edward (Technical Monitor)

    2001-01-01

    Design of large precision optical systems requires multi-disciplinary analysis, modeling, and design. Thermal, structural and optical characteristics of the hardware must be accurately understood in order to design a system capable of accomplishing the performance requirements. The interactions between each of the disciplines become stronger as systems are designed lighter weight for space applications. This coupling dictates a concurrent engineering design approach. In the past, integrated modeling tools have been developed that attempt to integrate all of the complex analysis within the framework of a single model. This often results in modeling simplifications and it requires engineering specialist to learn new applications. The software described in this presentation addresses the concurrent engineering task using a different approach. The software tool, Integrated Optical Design Analysis (IODA), uses data fusion technology to enable a cross discipline team of engineering experts to concurrently design an optical system using their standard validated engineering design tools.

  2. Geological Education and the Senior Citizen.

    ERIC Educational Resources Information Center

    Larkin, Robert P.

    1982-01-01

    Although most educational programs for senior citizens emphasize arts and crafts, model science programs designed specifically for seniors, emphasizing geological science, have been developed at the University of Colorado (Colorado Springs). The programs have been well received and can be useful in integrating or mainstreaming seniors into the…

  3. Creating global comparative analyses of tectonic rifts, monogenetic volcanism and inverted relief

    NASA Astrophysics Data System (ADS)

    van Wyk de Vries, Benjamin

    2016-04-01

    I have been all around the world, and to other planets and have travelled from the present to the Archaean and back to seek out the most significant tectonic rifts, monogenetic volcanoes and examples of inverted relief. I have done this to provide a broad foundation of the comparative analysis for the Chaîne des Puys - Limagne fault nomination to UNESCO world Heritage. This would have been an impossible task, if not for the cooperation of the scientific community and for Google Earth, Google Maps and academic search engines. In preparing global comparisons of geological features, these quite recently developed tools provide a powerful way to find and describe geological features. The ability to do scientific crowd sourcing, rapidly discussing with colleagues about features, allows large numbers of areas to be checked and the open GIS tools (such as Google Earth) allow a standardised description. Search engines also allow the literature on areas to be checked and compared. I will present a comparative study of rifts of the world, monogenetic volcanic field and inverted relief, integrated to analyse the full geological system represented by the Chaîne des Puys - Limagne fault. The analysis confirms that the site is an exceptional example of the first steps of continental drift in a mountain rift setting, and that this is necessarily seen through the combined landscape of tectonic, volcanic and geomorphic features. The analysis goes further to deepen the understanding of geological systems and stresses the need for more study on geological heritage using such a global and broad systems approach.

  4. Geological hazard zonation in a marble exploitation area (Apuan Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Francioni, M.; Salvini, R.; Riccucci, S.

    2011-12-01

    The present paper describes the hazard mapping of an exploitation area sited in the Apuan Alps marble district (Italy) carried out by the integration of various survey and analysis methodologies. The research, supported by the Massa and Carrara Local Sanitary Agency responsible for workplace health and safety activities, aimed to reduce the high degree hazard of rock fall caused by the presence of potentially unstable blocks located on slopes overhanging the marble quarries. The study of rocky fronts bases on the knowledge of both the structural setting and the physical-mechanical properties of intact material and its discontinuities. In this work the main difficulty in obtaining this information was the inaccessibility of the slope overhanging the area (up to 500 meters high). For this reason, the structural and geological-engineering surveys were integrated by outcomes from digital photogrammetry carried out through terrestrial stereoscopic photos acquired from an aerostatic balloon and a helicopter. In this way, it was possible to derive the geometrical characteristics of joints (such as discontinuities dip, dip direction, spacing and persistence), blocks volumes and slopes morphology also in inaccessible areas. This information, combined with data coming from the geological-engineering survey, was used to perform the stability analysis of the slope. Subsequently, using the topographic map at the scale of 1:2,000, the Digital Terrain Model (DTM) of the slopes and several topographic profiles along it were produced. Assuming that there is a good correspondence between travelling paths and maximum down slope angle, probable trajectories of rock fall along the slope were calculated on the DTM by means of a GIS procedure which utilizes the ArcHydro module of EsriTM ArcMap software. When performing such a 2D numerical modelling of rock falls, lateral dispersion of trajectories has often been hampered by the "a priori" choice of the travelling path. Such a choice can be assessed largely subjective and it leads to possible errors. Thus, rock fall hazard zonation needs spatially distributed analyses including a reliable modelling of lateral dispersion. In this research Conefall software, a freeware QuanterraTM code that estimates the potential run out areas by means of a "so-called" cone method, was used to compute the spatial distribution of rock falls frequency, velocities and kinetic energies. In this way, a modelling approach based on local morphologies was employed to assess the accuracy of the 2D analysis by profiles created "a priori" along the maximum down slope angle. Final results about slope stability and run out analysis allowed to create rock fall hazard map and to advise the most suitable protection works to mitigate the hazard in the most risky sites.

  5. Systems Engineering | Wind | NREL

    Science.gov Websites

    platform to leverage its research capabilities toward integrating wind energy engineering and cost models achieve a better understanding of how to improve system-level performance and achieve system-level cost research capabilities to: Integrate wind plant engineering performance and cost software modeling to enable

  6. An ethnographic object-oriented analysis of explorer presence in a volcanic terrain environment: Claims and evidence

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1994-01-01

    An ethnographic field study was conducted to investigate the nature of presence in field geology, and to develop specifications for domain-based planetary exploration systems utilizing virtual presence. Two planetary geologists were accompanied on a multi-day geologic field trip that they had arranged for their own scientific purposes, which centered on an investigation of the extraordinary xenolith/nodule deposits in the Kaupulehu lava flow of Hualalai Volcano, on the island of Hawaii. The geologists were observed during the course of their field investigations and interviewed regarding their activities and ideas. Analysis of the interview resulted in the identification of key domain entities and their attributes, relations among the entities, and explorer interactions with the environment. The results support and extend the author's previously reported continuity theory of presence, indicating that presence in field geology is characterized by persistent engagement with objects associated by metonymic relations. The results also provide design specifications for virtual planetary exploration systems, including an integrating structure for disparate data integration. Finally, the results suggest that unobtrusive participant observation coupled with field interviews is an effective research methodology for engineering ethnography.

  7. Remote sensing and GIS-based prediction and assessment of copper-gold resources in Thailand

    NASA Astrophysics Data System (ADS)

    Yang, Shasha; Wang, Gongwen; Du, Wenhui; Huang, Luxiong

    2014-03-01

    Quantitative integration of geological information is a frontier and hotspot of prospecting decision research in the world. The forming process of large scale Cu-Au deposits is influenced by complicated geological events and restricted by various geological factors (stratum, structure and alteration). In this paper, using Thailand's copper-gold deposit district as a case study, geological anomaly theory is used along with the typical copper and gold metallogenic model, ETM+ remote sensing images, geological maps and mineral geology database in study area are combined with GIS technique. These techniques create ore-forming information such as geological information (strata, line-ring faults, intrusion), remote sensing information (hydroxyl alteration, iron alteration, linear-ring structure) and the Cu-Au prospect targets. These targets were identified using weights of evidence model. The research results show that the remote sensing and geological data can be combined to quickly predict and assess for exploration of mineral resources in a regional metallogenic belt.

  8. The Diffusion Simulator - Teaching Geomorphic and Geologic Problems Visually.

    ERIC Educational Resources Information Center

    Gilbert, R.

    1979-01-01

    Describes a simple hydraulic simulator based on more complex models long used by engineers to develop approximate solutions. It allows students to visualize non-steady transfer, to apply a model to solve a problem, and to compare experimentally simulated information with calculated values. (Author/MA)

  9. Quantifying uncertainty of measuring gully morphological evolution with close-range digital photogrammetry

    USDA-ARS?s Scientific Manuscript database

    Measurement of geomorphic change may be of interest to researchers and practitioners in a variety of fields including geology, geomorphology, hydrology, engineering, and soil science. Landscapes are often represented by digital elevation models. Surface models generated of the same landscape over a ...

  10. Overcoming the momentum of anachronism: American geologic mapping in a twenty-first-century world

    USGS Publications Warehouse

    House, P. Kyle; Clark, Ryan; Kopera, Joe

    2013-01-01

    The practice of geologic mapping is undergoing conceptual and methodological transformation. Profound changes in digital technology in the past 10 yr have potential to impact all aspects of geologic mapping. The future of geologic mapping as a relevant scientific enterprise depends on widespread adoption of new technology and ideas about the collection, meaning, and utility of geologic map data. It is critical that the geologic community redefine the primary elements of the traditional paper geologic map and improve the integration of the practice of making maps in the field and office with the new ways to record, manage, share, and visualize their underlying data. A modern digital geologic mapping model will enhance scientific discovery, meet elevated expectations of modern geologic map users, and accommodate inevitable future changes in technology.

  11. Sand waves at the mouth of San Francisco Bay, California

    USGS Publications Warehouse

    Gibbons, Helen; Barnard, Patrick L.

    2007-01-01

    The U.S. Geological Survey; California State University, Monterey Bay; U.S. Army Corps of Engineers; National Oceanic and Atmospheric Administration; and Center for Integrative Coastal Observation, Research and Education partnered to map central San Francisco Bay and its entrance under the Golden Gate Bridge using multibeam echosounders. View eastward, through the Golden Gate into central San Francisco Bay. Depth of sea floor color coded: red (less than 10 m deep) to purple (more than 100 m deep). Land from USGS digital orthophotographs (DOQs) overlaid on USGS digital elevation models (DEMs). Sand waves in this view average 6 m in height and 80 m from crest to crest. Golden Gate Bridge is about 2 km long. Vertical exaggeration is approximately 4x for sea floor, 2x for land.

  12. North Dakota geology school receives major gift

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-10-01

    Petroleum geology and related areas of study at the University of North Dakota (UND) received a huge financial boost with the announcement on 24 September of $14 million in private and public partnership funding. The university announced the naming of the Harold Hamm School of Geology and Geological Engineering, formerly a department within the College of Engineering and Mines, in recognition of $10 million provided as a gift by oilman Harold Hamm and Continental Resources, Inc. Hamm is the chair and chief executive officer of Continental, the largest leaseholder in the Bakken Play oil formation in North Dakota and Montana, and he is also an energy policy advisor to Republican presidential candidate Mitt Romney. UND also received $4 million from the Oil and Gas Research Program of the North Dakota Industrial Commission to support geology and geological engineering education and research.

  13. Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction

    NASA Astrophysics Data System (ADS)

    Tóth, Ádám; Havril, Tímea; Simon, Szilvia; Galsa, Attila; Monteiro Santos, Fernando A.; Müller, Imre; Mádl-Szőnyi, Judit

    2016-08-01

    Groundwater flow, driven, controlled and determined by topography, geology and climate, is responsible for several natural surface manifestations and affected by anthropogenic processes. Therefore, flowing groundwater can be regarded as an environmental agent. Numerical simulation of groundwater flow could reveal the flow pattern and explain the observed features. In complex geologic framework, where the geologic-hydrogeologic knowledge is limited, the groundwater flow model could not be constructed based solely on borehole data, but geophysical information could aid the model building. The integrated model construction was presented via the case study of the Tihany Peninsula, Hungary, with the aims of understanding the background and occurrence of groundwater-related environmental phenomena, such as wetlands, surface water-groundwater interaction, slope instability, and revealing the potential effect of anthropogenic activity and climate change. The hydrogeologic model was prepared on the basis of the compiled archive geophysical database and the results of recently performed geophysical measurements complemented with geologic-hydrogeologic data. Derivation of different electrostratigraphic units, revealing fracturing and detecting tectonic elements was achieved by systematically combined electromagnetic geophysical methods. The deduced information can be used as model input for groundwater flow simulation concerning hydrostratigraphy, geometry and boundary conditions. The results of numerical modelling were interpreted on the basis of gravity-driven regional groundwater flow concept and validated by field mapping of groundwater-related phenomena. The 3D model clarified the hydraulic behaviour of the formations, revealed the subsurface hydraulic connection between groundwater and wetlands and displayed the groundwater discharge pattern, as well. The position of wetlands, their vegetation type, discharge features and induced landslides were explained as environmental imprints of groundwater. The highly vulnerable wetlands and groundwater-dependent ecosystems have to be in the focus of water management and natural conservation policy.

  14. From LIDAR Scanning to 3d FEM Analysis for Complex Surface and Underground Excavations

    NASA Astrophysics Data System (ADS)

    Chun, K.; Kemeny, J.

    2017-12-01

    Light detection and ranging (LIDAR) has been a prevalent remote-sensing technology applied in the geological fields due to its high precision and ease to use. One of the major applications is to use the detailed geometrical information of underground structures as a basis for the generation of three-dimensional numerical model that can be used in FEM analysis. To date, however, straightforward techniques in reconstructing numerical model from the scanned data of underground structures have not been well established or tested. In this paper, we propose a comprehensive approach integrating from LIDAR scanning to finite element numerical analysis, specifically converting LIDAR 3D point clouds of object containing complex surface geometry into finite element model. This methodology has been applied to the Kartchner Caverns in Arizona for the stability analysis. Numerical simulations were performed using the finite element code ABAQUS. The results indicate that the highlights of our technologies obtained from LIDAR is effective and provide reference for other similar engineering project in practice.

  15. Properties of the Loess Sediments in Ostrava Region (Czech Republic) and Comparison with Some Other Loess Sediments

    PubMed Central

    Marschalko, Marian; Yilmaz, Işık; Fojtova, Lucie; Lamich, David; Bednarik, Martin

    2013-01-01

    This study deals with a methodical identification and evaluation of physical-mechanical properties of one genetic type of geological structure. This is represented by an engineering-geological zone of eolian sediments, which is regionally rather abundant. The paper contributes to a need to identify typical soil properties for widespread geological environments in a particular region and thus add to good engineering geologists and geotechnical engineers' awareness in the region. Such information is much required as it permits comparing results of newly conducted engineering-geological investigations and research with the results characteristic for the region in question. It is vital for engineering geologists and geotechnical engineers to be sufficiently informed on the foundation soil properties of widespread geological environments because of professionalism and higher quality of their work results. Comparing other loess sediment studies worldwide it was discovered that the physical properties of the most abundant clays of low to medium plasticity, sandy clays, and sands as foundation soils vary as for the plasticity index, porosity, natural water content, and bulk density to a certain extent but not as significantly as once expected. PMID:24391464

  16. A 3D modeling approach to complex faults with multi-source data

    NASA Astrophysics Data System (ADS)

    Wu, Qiang; Xu, Hua; Zou, Xukai; Lei, Hongzhuan

    2015-04-01

    Fault modeling is a very important step in making an accurate and reliable 3D geological model. Typical existing methods demand enough fault data to be able to construct complex fault models, however, it is well known that the available fault data are generally sparse and undersampled. In this paper, we propose a workflow of fault modeling, which can integrate multi-source data to construct fault models. For the faults that are not modeled with these data, especially small-scale or approximately parallel with the sections, we propose the fault deduction method to infer the hanging wall and footwall lines after displacement calculation. Moreover, using the fault cutting algorithm can supplement the available fault points on the location where faults cut each other. Increasing fault points in poor sample areas can not only efficiently construct fault models, but also reduce manual intervention. By using a fault-based interpolation and remeshing the horizons, an accurate 3D geological model can be constructed. The method can naturally simulate geological structures no matter whether the available geological data are sufficient or not. A concrete example of using the method in Tangshan, China, shows that the method can be applied to broad and complex geological areas.

  17. Geology of the Canyon Reservoir site on the Guadalupe River, Comal County, Texas

    USGS Publications Warehouse

    George, William O.; Welder, Frank A.

    1955-01-01

    In response to a request by Colonel Harry O. Fisher, District Engineer of the Fort Worth District of the Corps of Engineers, United States Army (letter of Dec. 13, 1954), a reconnaissance investigation was made of the geology of the Canyon (F-1) reservoir site on the Guadalupe River in Comal County, Tex. The purpose of the investigation was to study the geology in relation to possible leakage - particularly leakage of water that might then be lost from the drainage area of the Guadalupe River - and to add to the general knowledge of the ground-water hydrology of the San Antonio area. The dam (F-1) was originally designed for flood control and conservation only, with provision for the addition of a power unit if feasible. Since the completion of the investigation by the Corps of Engineers, the city of San Antonio has expressed an interest in the reservoir as a possible source of public water supply. The Corps of Engineers has made a thorough engineering and geologic study of the dam site (Corps of Engineers, 1950), which has Congressional approval. The geology and water resources of Comal County have been studied by George (1952). The rocks studied are those within the reservoir area and generally below the 1,000-foot contour as shown on the Smithson Valley quadrangle of the U.S. Geological Survey.

  18. Integrating ergonomics in design processes: a case study within an engineering consultancy firm.

    PubMed

    Sørensen, Lene Bjerg; Broberg, Ole

    2012-01-01

    This paper reports on a case study within an engineering consultancy firm, where engineering designers and ergonomists were working together on the design of a new hospital sterile processing plant. The objective of the paper is to gain a better understanding of the premises for integrating ergonomics into engineering design processes and how different factors either promote or limit the integration. Based on a grounded theory approach a model illustrating these factors is developed and different hypotheses about how these factors either promote and/or limit the integration of ergonomics into design processes is presented along with the model.

  19. Application of geologic-mathematical 3D modeling for complex structure deposits by the example of Lower- Cretaceous period depositions in Western Ust - Balykh oil field (Khanty-Mansiysk Autonomous District)

    NASA Astrophysics Data System (ADS)

    Perevertailo, T.; Nedolivko, N.; Prisyazhnyuk, O.; Dolgaya, T.

    2015-11-01

    The complex structure of the Lower-Cretaceous formation by the example of the reservoir BC101 in Western Ust - Balykh Oil Field (Khanty-Mansiysk Autonomous District) has been studied. Reservoir range relationships have been identified. 3D geologic- mathematical modeling technique considering the heterogeneity and variability of a natural reservoir structure has been suggested. To improve the deposit geological structure integrity methods of mathematical statistics were applied, which, in its turn, made it possible to obtain equal probability models with similar input data and to consider the formation conditions of reservoir rocks and cap rocks.

  20. Compendium of Abstracts on Statistical Applications in Geotechnical Engineering.

    DTIC Science & Technology

    1983-09-01

    research in the application of probabilistic and statistical methods to soil mechanics, rock mechanics, and engineering geology problems have grown markedly...probability, statistics, soil mechanics, rock mechanics, and engineering geology. 2. The purpose of this report is to make available to the U. S...Deformation Dynamic Response Analysis Seepage, Soil Permeability and Piping Earthquake Engineering, Seismology, Settlement and Heave Seismic Risk Analysis

  1. Achieving sustainable ground-water management by using GIS-integrated simulation tools: the EU H2020 FREEWAT platform

    NASA Astrophysics Data System (ADS)

    Rossetto, Rudy; De Filippis, Giovanna; Borsi, Iacopo; Foglia, Laura; Toegl, Anja; Cannata, Massimiliano; Neumann, Jakob; Vazquez-Sune, Enric; Criollo, Rotman

    2017-04-01

    In order to achieve sustainable and participated ground-water management, innovative software built on the integration of numerical models within GIS software is a perfect candidate to provide a full characterization of quantitative and qualitative aspects of ground- and surface-water resources maintaining the time and spatial dimension. The EU H2020 FREEWAT project (FREE and open source software tools for WATer resource management; Rossetto et al., 2015) aims at simplifying the application of EU water-related Directives through an open-source and public-domain, GIS-integrated simulation platform for planning and management of ground- and surface-water resources. The FREEWAT platform allows to simulate the whole hydrological cycle, coupling the power of GIS geo-processing and post-processing tools in spatial data analysis with that of process-based simulation models. This results in a modeling environment where large spatial datasets can be stored, managed and visualized and where several simulation codes (mainly belonging to the USGS MODFLOW family) are integrated to simulate multiple hydrological, hydrochemical or economic processes. So far, the FREEWAT platform is a large plugin for the QGIS GIS desktop software and it integrates the following capabilities: • the AkvaGIS module allows to produce plots and statistics for the analysis and interpretation of hydrochemical and hydrogeological data; • the Observation Analysis Tool, to facilitate the import, analysis and visualization of time-series data and the use of these data to support model construction and calibration; • groundwater flow simulation in the saturated and unsaturated zones may be simulated using MODFLOW-2005 (Harbaugh, 2005); • multi-species advective-dispersive transport in the saturated zone can be simulated using MT3DMS (Zheng & Wang, 1999); the possibility to simulate viscosity- and density-dependent flows is further accomplished through SEAWAT (Langevin et al., 2007); • sustainable management of combined use of ground- and surface-water resources in rural environments is accomplished by the Farm Process module embedded in MODFLOW-OWHM (Hanson et al., 2014), which allows to dynamically integrate crop water demand and supply from ground- and surface-water; • UCODE_2014 (Poeter et al., 2014) is implemented to perform sensitivity analysis and parameter estimation to improve the model fit through an inverse, regression method based on the evaluation of an objective function. Through creating a common environment among water research/professionals, policy makers and implementers, FREEWAT aims at enhancing science and participatory approach and evidence-based decision making in water resource management, hence producing relevant outcomes for policy implementation. Acknowledgements This paper is presented within the framework of the project FREEWAT, which has received funding from the European Union's HORIZON 2020 research and innovation programme under Grant Agreement n. 642224. References Hanson, R.T., Boyce, S.E., Schmid, W., Hughes, J.D., Mehl, S.M., Leake, S.A., Maddock, T., Niswonger, R.G. One-Water Hydrologic Flow Model (MODFLOW-OWHM), U.S. Geological Survey, Techniques and Methods 6-A51, 2014 134 p. Harbaugh A.W. (2005) - MODFLOW-2005, The U.S. Geological Survey Modular Ground-Water Model - the Ground-Water Flow Process. U.S. Geological Survey, Techniques and Methods 6-A16, 253 p. Langevin C.D., Thorne D.T. Jr., Dausman A.M., Sukop M.C. & Guo Weixing (2007) - SEAWAT Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport. U.S. Geological Survey Techniques and Methods 6-A22, 39 pp. Poeter E.P., Hill M.C., Lu D., Tiedeman C.R. & Mehl S. (2014) - UCODE_2014, with new capabilities to define parameters unique to predictions, calculate weights using simulated values, estimate parameters with SVD, evaluate uncertainty with MCMC, and more. Integrated Groundwater Modeling Center Report Number GWMI 2014-02. Rossetto, R., Borsi, I. & Foglia, L. FREEWAT: FREE and open source software tools for WATer resource management, Rendiconti Online Società Geologica Italiana, 2015, 35, 252-255. Zheng C. & Wang P.P. (1999) - MT3DMS, A modular three-dimensional multi-species transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems. U.S. Army Engineer Research and Development Center Contract Report SERDP-99-1, Vicksburg, MS, 202 pp.

  2. A Standard-Driven Data Dictionary for Data Harmonization of Heterogeneous Datasets in Urban Geological Information Systems

    NASA Astrophysics Data System (ADS)

    Liu, G.; Wu, C.; Li, X.; Song, P.

    2013-12-01

    The 3D urban geological information system has been a major part of the national urban geological survey project of China Geological Survey in recent years. Large amount of multi-source and multi-subject data are to be stored in the urban geological databases. There are various models and vocabularies drafted and applied by industrial companies in urban geological data. The issues such as duplicate and ambiguous definition of terms and different coding structure increase the difficulty of information sharing and data integration. To solve this problem, we proposed a national standard-driven information classification and coding method to effectively store and integrate urban geological data, and we applied the data dictionary technology to achieve structural and standard data storage. The overall purpose of this work is to set up a common data platform to provide information sharing service. Research progresses are as follows: (1) A unified classification and coding method for multi-source data based on national standards. Underlying national standards include GB 9649-88 for geology and GB/T 13923-2006 for geography. Current industrial models are compared with national standards to build a mapping table. The attributes of various urban geological data entity models are reduced to several categories according to their application phases and domains. Then a logical data model is set up as a standard format to design data file structures for a relational database. (2) A multi-level data dictionary for data standardization constraint. Three levels of data dictionary are designed: model data dictionary is used to manage system database files and enhance maintenance of the whole database system; attribute dictionary organizes fields used in database tables; term and code dictionary is applied to provide a standard for urban information system by adopting appropriate classification and coding methods; comprehensive data dictionary manages system operation and security. (3) An extension to system data management function based on data dictionary. Data item constraint input function is making use of the standard term and code dictionary to get standard input result. Attribute dictionary organizes all the fields of an urban geological information database to ensure the consistency of term use for fields. Model dictionary is used to generate a database operation interface automatically with standard semantic content via term and code dictionary. The above method and technology have been applied to the construction of Fuzhou Urban Geological Information System, South-East China with satisfactory results.

  3. Publications - RI 2015-5 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    data 7.5 M Metadata - Read me Keywords Active Fault; Akutan; Coastal; Dutch Harbor; Earthquake ; Earthquake Related Slope Failure; Emergency Preparedness; Engineering; Engineering Geology; Fault

  4. Exploring the "what if?" in geology through a RESTful open-source framework for cloud-based simulation and analysis

    NASA Astrophysics Data System (ADS)

    Klump, Jens; Robertson, Jess

    2016-04-01

    The spatial and temporal extent of geological phenomena makes experiments in geology difficult to conduct, if not entirely impossible and collection of data is laborious and expensive - so expensive that most of the time we cannot test a hypothesis. The aim, in many cases, is to gather enough data to build a predictive geological model. Even in a mine, where data are abundant, a model remains incomplete because the information at the level of a blasting block is two orders of magnitude larger than the sample from a drill core, and we have to take measurement errors into account. So, what confidence can we have in a model based on sparse data, uncertainties and measurement error? Our framework consist of two layers: (a) a ground-truth layer that contains geological models, which can be statistically based on historical operations data, and (b) a network of RESTful synthetic sensor microservices which can query the ground-truth for underlying properties and produce a simulated measurement to a control layer, which could be a database or LIMS, a machine learner or a companies' existing data infrastructure. Ground truth data are generated by an implicit geological model which serves as a host for nested models of geological processes as smaller scales. Our two layers are implemented using Flask and Gunicorn, which are open source Python web application framework and server, the PyData stack (numpy, scipy etc) and Rabbit MQ (an open-source queuing library). Sensor data is encoded using a JSON-LD version of the SensorML and Observations and Measurements standards. Containerisation of the synthetic sensors using Docker and CoreOS allows rapid and scalable deployment of large numbers of sensors, as well as sensor discovery to form a self-organized dynamic network of sensors. Real-time simulation of data sources can be used to investigate crucial questions such as the potential information gain from future sensing capabilities, or from new sampling strategies, or the combination of both, and it enables us to test many "what if?" questions, both in geology and in data engineering. What would we be able to see if we could obtain data at higher resolution? How would real-time data analysis change sampling strategies? Does our data infrastructure handle many new real-time data streams? What feature engineering can be deducted for machine learning approaches? By providing a 'data sandbox' able to scale to realistic geological scenarios we hope to start answering some of these questions. Faults happen in real world networks. Future work will investigate the effect of failure on dynamic sensor networks and the impact on the predictive capability of machine learning algorithms.

  5. Integration of borehole and seismic data to unravel complex stratigraphy: Case studies from the Mannville Group, Western Canada

    NASA Astrophysics Data System (ADS)

    Sarzalejo Silva, Sabrina Ester

    Understanding the stratigraphic architecture of geologically complex reservoirs, such as the heavy oil deposits of Western Canada, is essential to achieve an efficient hydrocarbon recovery. Borehole and 3-D seismic data were integrated to define the stratigraphic architecture and generate 3-dimensional geological models of the Mannville Group in Saskatchewan. The Mannville is a stratigraphically complex unit formed of fluvial to marine deposits. Two areas in west-central and southern Saskatchewan were examined in this study. In west-central Saskatchewan, the area corresponds to a stratigraphically controlled heavy oil reservoir with production from the undifferentiated Dina-Cummings Members of the Lower Cretaceous Mannville Group. The southern area, although non-prospective for hydrocarbons, shares many similarities with time-equivalent strata in areas of heavy oil production. Seismic sequence stratigraphic principles together with log signatures permitted the subdivision of the Mannville into different packages. An initial geological model was generated integrating seismic and well-log data Multiattribute analysis and neural networks were used to generate a pseudo-lithology or gamma-ray volume. The incorporation of borehole core data to the model and the subsequent integration with the lithological prediction were crucial to capture the distribution of reservoir and non-reservoir deposits in the study area. The ability to visualize the 3-D seismic data in a variety of ways, including arbitrary lines and stratal or horizon slicing techniques helped the definition of stratigraphic features such as channels and scroll bars that affect fluid flow in hydrocarbon producing areas. Small-scale heterogeneities in the reservoir were not resolved due to the resolution of the seismic data. Although not undertaken in this study, the resulting stratigraphic framework could be used to help construct a static reservoir model. Because of the small size of the 3-D seismic surveys, horizontal slices through the data volume generally imaged only small portions of the paleogeomorphologic features thought to be present in this area. As such, it was only through the integration of datasets that the geological models were established.

  6. A Random Sample

    ERIC Educational Resources Information Center

    Cochran, Wendell

    1976-01-01

    Presented is a review of papers presented at the 25th International Geological Congress held August 16-25, 1976, Sydney, Australia. Topics include precambrian geology, tectonics, biostratigraphy, geochemistry, quaternary geology, engineering geology, planetology, geological education, and stress environments. (SL)

  7. Hypersonic research engine project. Phase 2: Aerothermodynamic integration model development, data item no. 55-4-21

    NASA Technical Reports Server (NTRS)

    Jilly, L. F. (Editor)

    1975-01-01

    The design and development of the Aerothermodynamic Integration Model (AIM) of the Hypersonic Research Engine (HRE) is described. The feasibility of integrating the various analytical and experimental data available for the design of the hypersonic ramjet engine was verified and the operational characteristic and the overall performance of the selected design was determined. The HRE-AIM was designed for operation at speeds of Mach 3 through Mach 8.

  8. Publications - PIR 2002-1D | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS PIR 2002-1D Publication Details Title: Engineering - geologic map of the Eagle A-1 Quadrangle please see our publication sales page for more information. Quadrangle(s): Eagle Bibliographic Reference Stevens, D.S.P., 2012, Engineering - geologic map of the Eagle A-1 Quadrangle, Fortymile mining district

  9. Geologic Map and Map Database of Eastern Sonoma and Western Napa Counties, California

    USGS Publications Warehouse

    Graymer, R.W.; Brabb, E.E.; Jones, D.L.; Barnes, J.; Nicholson, R.S.; Stamski, R.E.

    2007-01-01

    Introduction This report contains a new 1:100,000-scale geologic map, derived from a set of geologic map databases (Arc-Info coverages) containing information at 1:62,500-scale resolution, and a new description of the geologic map units and structural relations in the map area. Prepared as part of the San Francisco Bay Region Mapping Project, the study area includes the north-central part of the San Francisco Bay region, and forms the final piece of the effort to generate new, digital geologic maps and map databases for an area which includes Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Santa Cruz, Solano, and Sonoma Counties. Geologic mapping in Lake County in the north-central part of the map extent was not within the scope of the Project. The map and map database integrates both previously published reports and new geologic mapping and field checking by the authors (see Sources of Data index map on the map sheet or the Arc-Info coverage eswn-so and the textfile eswn-so.txt). This report contains new ideas about the geologic structures in the map area, including the active San Andreas Fault system, as well as the geologic units and their relations. Together, the map (or map database) and the unit descriptions in this report describe the composition, distribution, and orientation of geologic materials and structures within the study area at regional scale. Regional geologic information is important for analysis of earthquake shaking, liquifaction susceptibility, landslide susceptibility, engineering materials properties, mineral resources and hazards, as well as groundwater resources and hazards. These data also assist in answering questions about the geologic history and development of the California Coast Ranges.

  10. The origin of Halley-type comets: probing the inner Oort cloud

    NASA Astrophysics Data System (ADS)

    Levison, H.; Dones, L.; Duncan, M.

    2000-10-01

    We have integrated the orbits of 27,700 test particles initially entering the planetary system from the Oort cloud in order to study the origin of Halley-type comets (HTCs). We included the gravitational influence of the Sun, giant planets, passing stars, and galactic tides. We find that an isotropically distributed Oort cloud does not reproduce the observed orbital element distribution of the HTCs. In order to match the observations, the initial inclination distribution of the progenitors of the HTCs must be similar to the observed HTC inclination distribution. We can match the observations with an Oort cloud that consists of an isotropic outer cloud and a disk-like massive inner cloud. These idealized two-component models have inner disks with median inclinations that range from 10 to 50o. This analysis represents the first link between observations and the structure of the inner Oort cloud. HFL and LD gratefully acknowledges grants provided by the NASA Origins of Solar Systems and Planetary Geology and Geophysics Programs. MJD is grateful for the continuing financial support of the Natural Science and Engineering Research Council of Canada and for financial support for work done inthe U.S.from NASA Planetary Geology and Geophysics Programs.

  11. Oil, gas field growth projections: Wishful thinking or reality?

    USGS Publications Warehouse

    Attanasi, E.D.; Mast, R.F.; Root, D.H.

    1999-01-01

    The observed `field growth' for the period from 1992 through 1996 with the US Geological Survey's (USGS) predicted field growth for the same period are compared. Known field recovery of field size is defined as the sum of past cumulative field production and the field's proved reserves. Proved reserves are estimated quantities of hydrocarbons which geologic and engineering data demonstrate with reasonable certainty to recoverable from known fields under existing economic and operating conditions. Proved reserve estimates calculated with this definition are typically conservative. The modeling approach used by the USGS to characterize `field growth phenomena' is statistical rather that geologic in nature.

  12. Bedrock and structural geologic maps of eastern Candor Sulci, western Ceti Mensa, and southeastern Ceti Mensa, Candor Chasma, Valles Marineris region of Mars

    USGS Publications Warehouse

    Okubo, Chris H.; Gaither, Tenielle A.

    2017-05-12

    This map product contains a set of three 1:18,000-scale maps showing the geology and structure of study areas in the western Candor Chasma region of Valles Marineris, Mars. These maps are part of an informal series of large-scale maps and map-based topical studies aimed at refining current understanding of the geologic history of western Candor Chasma. The map bases consist of digital elevation models and orthorectified images derived from High Resolution Imaging Science Experiment (HiRISE) data. These maps are accompanied by geologic cross sections, colorized elevation maps, and cutouts of HiRISE images showing key superposition relations. Also included in this product is a Correlation of Map Units that integrates units across all three map areas, as well as an integrated Description of Map Units and an integrated Explanation of Map Symbols. The maps were assembled using ArcGIS software produced by Environmental Systems Research Institute (http://www.esri.com). The ArcGIS projects and databases associated with each map are included online as supplemental data.

  13. University Students' Explanatory Models of the Interactions between Electric Charges and Magnetic Fields

    ERIC Educational Resources Information Center

    Saglam, Murat

    2010-01-01

    This study aimed to investigate the models that co-existed in students' cognitive structure to explain the interactions between electric charges and uniform magnetic fields. The sample consisted of 129 first-year civil engineering, geology and geophysics students from a large state university in western Turkey. The students answered five…

  14. A multiscale model of distributed fracture and permeability in solids in all-round compression

    NASA Astrophysics Data System (ADS)

    De Bellis, Maria Laura; Della Vecchia, Gabriele; Ortiz, Michael; Pandolfi, Anna

    2017-07-01

    We present a microstructural model of permeability in fractured solids, where the fractures are described in terms of recursive families of parallel, equidistant cohesive faults. Faults originate upon the attainment of tensile or shear strength in the undamaged material. Secondary faults may form in a hierarchical organization, creating a complex network of connected fractures that modify the permeability of the solid. The undamaged solid may possess initial porosity and permeability. The particular geometry of the superposed micro-faults lends itself to an explicit analytical quantification of the porosity and permeability of the damaged material. The model is the finite kinematics version of a recently proposed porous material model, applied with success to the simulation of laboratory tests and excavation problems [De Bellis, M. L., Della Vecchia, G., Ortiz, M., Pandolfi, A., 2016. A linearized porous brittle damage material model with distributed frictional-cohesive faults. Engineering Geology 215, 10-24. Cited By 0. 10.1016/j.enggeo.2016.10.010]. The extension adds over and above the linearized kinematics version for problems characterized by large deformations localized in narrow zones, while the remainder of the solid undergoes small deformations, as typically observed in soil and rock mechanics problems. The approach is particularly appealing as a means of modeling a wide scope of engineering problems, ranging from the prevention of water or gas outburst into underground mines, to the prediction of the integrity of reservoirs for CO2 sequestration or hazardous waste storage, to hydraulic fracturing processes.

  15. Publications - PDF 99-24B | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska (6.4 M) Keywords Ar-Ar; Bedrock; Bedrock Geologic Map; Bedrock Geology; Economic Geology; Geochronology ; Geologic; Geologic Map; Geology; Gold; Lode; Plutonic; Plutonic Hosted; Porphyry; STATEMAP Project; Silver

  16. Geology Lectures and Laboratories. A Model to Improve Preservice Elementary Science Teacher Development. Volume IV.

    ERIC Educational Resources Information Center

    Webster, Gary

    A group of scientists and science educators at Washington State University has developed and pilot tested an integrated physical science program designed for preservice elementary school teachers. This document includes the syllabus and class materials for the Geology block of the physical science courses developed by the group. Included are…

  17. The geothermal energy potential in Denmark - updating the database and new structural and thermal models

    NASA Astrophysics Data System (ADS)

    Nielsen, Lars Henrik; Sparre Andersen, Morten; Balling, Niels; Boldreel, Lars Ole; Fuchs, Sven; Leth Hjuler, Morten; Kristensen, Lars; Mathiesen, Anders; Olivarius, Mette; Weibel, Rikke

    2017-04-01

    Knowledge of structural, hydraulic and thermal conditions of the subsurface is fundamental for the planning and use of hydrothermal energy. In the framework of a project under the Danish Research program 'Sustainable Energy and Environment' funded by the 'Danish Agency for Science, Technology and Innovation', fundamental geological and geophysical information of importance for the utilization of geothermal energy in Denmark was compiled, analyzed and re-interpreted. A 3D geological model was constructed and used as structural basis for the development of a national subsurface temperature model. In that frame, all available reflection seismic data were interpreted, quality controlled and integrated to improve the regional structural understanding. The analyses and interpretation of available relevant data (i.e. old and new seismic profiles, core and well-log data, literature data) and a new time-depth conversion allowed a consistent correlation of seismic surfaces for whole Denmark and across tectonic features. On this basis, new topologically consistent depth and thickness maps for 16 geological units from the top pre-Zechstein to the surface were drawn. A new 3D structural geological model was developed with special emphasis on potential geothermal reservoirs. The interpretation of petrophysical data (core data and well-logs) allows to evaluate the hydraulic and thermal properties of potential geothermal reservoirs and to develop a parameterized numerical 3D conductive subsurface temperature model. Reservoir properties and quality were estimated by integrating petrography and diagenesis studies with porosity-permeability data. Detailed interpretation of the reservoir quality of the geological formations was made by estimating net reservoir sandstone thickness based on well-log analysis, determination of mineralogy including sediment provenance analysis, and burial history data. New local surface heat-flow values (range: 64-84 mW/m2) were determined for the Danish Basin and predicted temperatures were calibrated and validated by borehole temperature observations. Finally, new temperature maps for major geological reservoir formations (Frederikshavn, Haldager Sand, Gassum and Bunter Sandstone/Skagerrak formations) and selected constant depth intervals (1 km, 2 km, etc.) were compiled. In the future, geothermal energy is likely to be a key component in Denmark's supply of energy and integrated into the district heating infrastructures. A new 3-year project (GEOTHERM) under the Innovation Fund Denmark will focus on addressing and removing remaining geological, technical and commercial obstacles. The presented 3D geothermal model will be an important component in more precise assessments of the geothermal resource, production capacity and thermal lifecycle.

  18. The IDEAL (Integrated Design and Engineering Analysis Languages) modeling methodology: Capabilities and Applications

    NASA Technical Reports Server (NTRS)

    Evers, Ken H.; Bachert, Robert F.

    1987-01-01

    The IDEAL (Integrated Design and Engineering Analysis Languages) modeling methodology has been formulated and applied over a five-year period. It has proven to be a unique, integrated approach utilizing a top-down, structured technique to define and document the system of interest; a knowledge engineering technique to collect and organize system descriptive information; a rapid prototyping technique to perform preliminary system performance analysis; and a sophisticated simulation technique to perform in-depth system performance analysis.

  19. Geo3DML: A standard-based exchange format for 3D geological models

    NASA Astrophysics Data System (ADS)

    Wang, Zhangang; Qu, Honggang; Wu, Zixing; Wang, Xianghong

    2018-01-01

    A geological model (geomodel) in three-dimensional (3D) space is a digital representation of the Earth's subsurface, recognized by geologists and stored in resultant geological data (geodata). The increasing demand for data management and interoperable applications of geomodelscan be addressed by developing standard-based exchange formats for the representation of not only a single geological object, but also holistic geomodels. However, current standards such as GeoSciML cannot incorporate all the geomodel-related information. This paper presents Geo3DML for the exchange of 3D geomodels based on the existing Open Geospatial Consortium (OGC) standards. Geo3DML is based on a unified and formal representation of structural models, attribute models and hierarchical structures of interpreted resultant geodata in different dimensional views, including drills, cross-sections/geomaps and 3D models, which is compatible with the conceptual model of GeoSciML. Geo3DML aims to encode all geomodel-related information integrally in one framework, including the semantic and geometric information of geoobjects and their relationships, as well as visual information. At present, Geo3DML and some supporting tools have been released as a data-exchange standard by the China Geological Survey (CGS).

  20. Publications - RI 97-15D | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Coastal and River; Coastal and River Hazards; Construction Materials; Derivative; Engineering; Engineering

  1. Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.

    2011-03-01

    This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repositorymore » designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are needed for repository modeling are severely lacking. In addition, most of existing reactive transport codes were developed for non-radioactive contaminants, and they need to be adapted to account for radionuclide decay and in-growth. The accessibility to the source codes is generally limited. Because the problems of interest for the Waste IPSC are likely to result in relatively large computational models, a compact memory-usage footprint and a fast/robust solution procedure will be needed. A robust massively parallel processing (MPP) capability will also be required to provide reasonable turnaround times on the analyses that will be performed with the code. A performance assessment (PA) calculation for a waste disposal system generally requires a large number (hundreds to thousands) of model simulations to quantify the effect of model parameter uncertainties on the predicted repository performance. A set of codes for a PA calculation must be sufficiently robust and fast in terms of code execution. A PA system as a whole must be able to provide multiple alternative models for a specific set of physical/chemical processes, so that the users can choose various levels of modeling complexity based on their modeling needs. This requires PA codes, preferably, to be highly modularized. Most of the existing codes have difficulties meeting these requirements. Based on the gap analysis results, we have made the following recommendations for the code selection and code development for the NEAMS waste IPSC: (1) build fully coupled high-fidelity THCMBR codes using the existing SIERRA codes (e.g., ARIA and ADAGIO) and platform, (2) use DAKOTA to build an enhanced performance assessment system (EPAS), and build a modular code architecture and key code modules for performance assessments. The key chemical calculation modules will be built by expanding the existing CANTERA capabilities as well as by extracting useful components from other existing codes.« less

  2. Integrated Sensitivity Analysis Workflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman-Hill, Ernest J.; Hoffman, Edward L.; Gibson, Marcus J.

    2014-08-01

    Sensitivity analysis is a crucial element of rigorous engineering analysis, but performing such an analysis on a complex model is difficult and time consuming. The mission of the DART Workbench team at Sandia National Laboratories is to lower the barriers to adoption of advanced analysis tools through software integration. The integrated environment guides the engineer in the use of these integrated tools and greatly reduces the cycle time for engineering analysis.

  3. Engineering geology model of the Crater Lake outlet, Mt. Ruapehu, New Zealand, to inform rim breakout hazard

    NASA Astrophysics Data System (ADS)

    Cook, Stefan C. W.; Kennedy, Ben M.; Villeneuve, Marlène C.

    2018-01-01

    Mt. Ruapehu, in the central North Island of New Zealand, hosts a hot acidic Crater Lake over the active volcanic vent with a surface elevation of c. 2530 m.a.s.l. Volcanic activity and other montane processes have previously resulted in catastrophic releases of some or all of the c. 10 Mm3 of water retained in the lake, creating serious hazards downstream. A major lahar in March 2007 exposed a 10 m high face representative of the rock units impounding the lake, providing an opportunity to conduct both field and laboratory analysis to characterise the rock mass conditions at the outlet to assess the stability of the outlet area. This paper presents an engineering geology model of Crater Lake outlet. Our model shows three andesitic geological units at the outlet, each with different geological histories and physical and mechanical properties, which impact its stability. Geotechnical methods used to characterise the outlet include laboratory testing of the strength, stiffness, porosity and unit weight, and field-based rock mass characterisation using the geological strength index (GSI) and rock mass rating (RMR). Field observations, geomorphology mapping, historic and contemporary photographs, and laboratory results are combined to create cross sections that provide key information for establishing the engineering geology model. The units are recognised in what is informally termed the Crater Lake Formation: i) The upper surface layer is a c. 2 m thick sub-horizontal dark grey lava unit (Armoured Lava Ledge) with sub-horizontal cooling joints spaced at 0.2 m to 2.0 m intervals. The intact rock has a porosity range of 15-27%, density range of 1723-2101 kg/m3, GSI range of 45-75, and unconfined compressive strength (UCS) range of 19-48 MPa. ii) Below this, and outcropping down the majority of the outlet waterfall is a poorly sorted breccia unit composed of block and matrix material (Lava Breccia). The blocks range from 0.1 m to 0.8 m in diameter with an average porosity of 21%, a density of 1956 kg/m3 and strength of 85 MPa. The matrix has soil-like properties with an estimated UCS of 1.5 MPa. iii) At the base of the waterfall, the material sharply transitions into a light grey, slightly weathered unit (Lower Grey Member). This lower unit has an irregular surface expression with sub-vertical discontinuities. Porosity is 6%, density is 2569 kg/m3, the GSI range is 65-75, and the UCS is 98 MPa. The engineering geology model portrays the relationships between the units in three dimensions, highlights key structures and takes into consideration the material source, transportation and depositional processes. Historical outlet photographs suggest past eruptive and glacial activities are both significant factors controlling the deposition and erosion of material at the outlet. The Lower Grey Member appears to be a sound material for the outlet and water fall to be founded on. The upper aa Armoured Lava Ledge currently has moderate strength and GSI, and is resistive, providing protection for the underlying weaker block and matrix unit, however, continued incision by the outlet stream will eventually expose the weaker block and matrix material of the Lava Breccia. Once exposed, the Lava Breccia could rapidly erode or fail down to the Lower Grey Member and could potentially release 1 Mm3 of hot, acidic Crater Lake water. We recommend that erosion rates for the upper Armoured Lava Ledge be established to aid in preparation for eventual rim breakout.

  4. Implementation of an Integrated On-Board Aircraft Engine Diagnostic Architecture

    NASA Technical Reports Server (NTRS)

    Armstrong, Jeffrey B.; Simon, Donald L.

    2012-01-01

    An on-board diagnostic architecture for aircraft turbofan engine performance trending, parameter estimation, and gas-path fault detection and isolation has been developed and evaluated in a simulation environment. The architecture incorporates two independent models: a realtime self-tuning performance model providing parameter estimates and a performance baseline model for diagnostic purposes reflecting long-term engine degradation trends. This architecture was evaluated using flight profiles generated from a nonlinear model with realistic fleet engine health degradation distributions and sensor noise. The architecture was found to produce acceptable estimates of engine health and unmeasured parameters, and the integrated diagnostic algorithms were able to perform correct fault isolation in approximately 70 percent of the tested cases

  5. Comprehensive gravitational modeling of the vertical cylindrical prism by Gauss-Legendre quadrature integration

    NASA Astrophysics Data System (ADS)

    Asgharzadeh, M. F.; Hashemi, H.; von Frese, R. RB

    2018-01-01

    Forward modeling is the basis of gravitational anomaly inversion that is widely applied to map subsurface mass variations. This study uses numerical least-squares Gauss-Legendre quadrature (GLQ) integration to evaluate the gravitational potential, anomaly and gradient components of the vertical cylindrical prism element. These results, in turn, may be integrated to accurately model the complete gravitational effects of fluid bearing rock formations and other vertical cylinder-like geological bodies with arbitrary variations in shape and density. Comparing the GLQ gravitational effects of uniform density, vertical circular cylinders against the effects calculated by a number of other methods illustrates the veracity of the GLQ modeling method and the accuracy limitations of the other methods. Geological examples include modeling the gravitational effects of a formation washout to help map azimuthal variations of the formation's bulk densities around the borehole wall. As another application, the gravitational effects of a seismically and gravimetrically imaged salt dome within the Laurentian Basin are evaluated for the velocity, density and geometric properties of the Basin's sedimentary formations.

  6. The geological thought process: A help in developing business instincts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epstein, S.A.

    1995-09-01

    Since the beginning of modern-day geology it has been understood that the present is the key to the past. However, when attempting to apply current geological models one discovers that there are no exact look-alikes. Thus, the geological discipline inherently accepts modifications, omissions, and relatively large margins of error compared with engineering. Geologists are comfortable in a world of non-unique solutions. Thus the experience in working with numerous geological settings is extremely critical in selecting the most reasonable geological interpretations, often by using a composite of specific models. One can not simply replace a dynamic geologist`s life-time of experiences andmore » geologic instinct with simply a book-smart young upstart. Petroleum corporations accept geologic risk and manage it by drilling numerous wells in various geological provenances. Oil corporations have attempted to quantify and manage risk by using Monte Carlo simulations, thus invoking a formal discipline of risk. The acceptance of risk, results in an asset allocation approach to investing. Asset allocators attempt to reduce volatility and risk, inherently understanding that in any specific time interval anything can happen. Dollar cost averaging significantly reduces market risk over time, however it requires discipline and commitment. The single most important ingredient to a successful investing plan is to assign a reasonable holding period. Historically, a majority of the investment community demands instant gratification causing unneeded anxiety and failure. As in geology nothing can replace experience.« less

  7. Integrated Turbine Tip Clearance and Gas Turbine Engine Simulation

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Kratz, Jonathan; Guo, Ten-Huei; Litt, Jonathan

    2016-01-01

    Gas turbine compressor and turbine blade tip clearance (i.e., the radial distance between the blade tip of an axial compressor or turbine and the containment structure) is a major contributing factor to gas path sealing, and can significantly affect engine efficiency and operational temperature. This paper details the creation of a generic but realistic high pressure turbine tip clearance model that may be used to facilitate active tip clearance control system research. This model uses a first principles approach to approximate thermal and mechanical deformations of the turbine system, taking into account the rotor, shroud, and blade tip components. Validation of the tip clearance model shows that the results are realistic and reflect values found in literature. In addition, this model has been integrated with a gas turbine engine simulation, creating a platform to explore engine performance as tip clearance is adjusted. Results from the integrated model explore the effects of tip clearance on engine operation and highlight advantages of tip clearance management.

  8. Comparison of free-piston Stirling engine model predictions with RE1000 engine test data

    NASA Technical Reports Server (NTRS)

    Tew, R. C., Jr.

    1984-01-01

    Predictions of a free-piston Stirling engine model are compared with RE1000 engine test data taken at NASA-Lewis Research Center. The model validation and the engine testing are being done under a joint interagency agreement between the Department of Energy's Oak Ridge National Laboratory and NASA-Lewis. A kinematic code developed at Lewis was upgraded to permit simulation of free-piston engine performance; it was further upgraded and modified at Lewis and is currently being validated. The model predicts engine performance by numerical integration of equations for each control volume in the working space. Piston motions are determined by numerical integration of the force balance on each piston or can be specified as Fourier series. In addition, the model Fourier analyzes the various piston forces to permit the construction of phasor force diagrams. The paper compares predicted and experimental values of power and efficiency and shows phasor force diagrams for the RE1000 engine displacer and piston. Further development plans for the model are also discussed.

  9. Localized Smart-Interpretation

    NASA Astrophysics Data System (ADS)

    Lundh Gulbrandsen, Mats; Mejer Hansen, Thomas; Bach, Torben; Pallesen, Tom

    2014-05-01

    The complex task of setting up a geological model consists not only of combining available geological information into a conceptual plausible model, but also requires consistency with availably data, e.g. geophysical data. However, in many cases the direct geological information, e.g borehole samples, are very sparse, so in order to create a geological model, the geologist needs to rely on the geophysical data. The problem is however, that the amount of geophysical data in many cases are so vast that it is practically impossible to integrate all of them in the manual interpretation process. This means that a lot of the information available from the geophysical surveys are unexploited, which is a problem, due to the fact that the resulting geological model does not fulfill its full potential and hence are less trustworthy. We suggest an approach to geological modeling that 1. allow all geophysical data to be considered when building the geological model 2. is fast 3. allow quantification of geological modeling. The method is constructed to build a statistical model, f(d,m), describing the relation between what the geologists interpret, d, and what the geologist knows, m. The para- meter m reflects any available information that can be quantified, such as geophysical data, the result of a geophysical inversion, elevation maps, etc... The parameter d reflects an actual interpretation, such as for example the depth to the base of a ground water reservoir. First we infer a statistical model f(d,m), by examining sets of actual interpretations made by a geological expert, [d1, d2, ...], and the information used to perform the interpretation; [m1, m2, ...]. This makes it possible to quantify how the geological expert performs interpolation through f(d,m). As the geological expert proceeds interpreting, the number of interpreted datapoints from which the statistical model is inferred increases, and therefore the accuracy of the statistical model increases. When a model f(d,m) successfully has been inferred, we are able to simulate how the geological expert would perform an interpretation given some external information m, through f(d|m). We will demonstrate this method applied on geological interpretation and densely sampled airborne electromagnetic data. In short, our goal is to build a statistical model describing how a geological expert performs geological interpretation given some geophysical data. We then wish to use this statistical model to perform semi automatic interpretation, everywhere where such geophysical data exist, in a manner consistent with the choices made by a geological expert. Benefits of such a statistical model are that 1. it provides a quantification of how a geological expert performs interpretation based on available diverse data 2. all available geophysical information can be used 3. it allows much faster interpretation of large data sets.

  10. Presentations - Smith, J.R. and others, 2013 | Alaska Division of

    Science.gov Websites

    Engineering Geology Alaska Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to (1.4 M) Keywords Coastal; Coastal and River; Engineering Geology Posters and Presentations; Seward

  11. A multiple-point geostatistical method for characterizing uncertainty of subsurface alluvial units and its effects on flow and transport

    USGS Publications Warehouse

    Cronkite-Ratcliff, C.; Phelps, G.A.; Boucher, A.

    2012-01-01

    This report provides a proof-of-concept to demonstrate the potential application of multiple-point geostatistics for characterizing geologic heterogeneity and its effect on flow and transport simulation. The study presented in this report is the result of collaboration between the U.S. Geological Survey (USGS) and Stanford University. This collaboration focused on improving the characterization of alluvial deposits by incorporating prior knowledge of geologic structure and estimating the uncertainty of the modeled geologic units. In this study, geologic heterogeneity of alluvial units is characterized as a set of stochastic realizations, and uncertainty is indicated by variability in the results of flow and transport simulations for this set of realizations. This approach is tested on a hypothetical geologic scenario developed using data from the alluvial deposits in Yucca Flat, Nevada. Yucca Flat was chosen as a data source for this test case because it includes both complex geologic and hydrologic characteristics and also contains a substantial amount of both surface and subsurface geologic data. Multiple-point geostatistics is used to model geologic heterogeneity in the subsurface. A three-dimensional (3D) model of spatial variability is developed by integrating alluvial units mapped at the surface with vertical drill-hole data. The SNESIM (Single Normal Equation Simulation) algorithm is used to represent geologic heterogeneity stochastically by generating 20 realizations, each of which represents an equally probable geologic scenario. A 3D numerical model is used to simulate groundwater flow and contaminant transport for each realization, producing a distribution of flow and transport responses to the geologic heterogeneity. From this distribution of flow and transport responses, the frequency of exceeding a given contaminant concentration threshold can be used as an indicator of uncertainty about the location of the contaminant plume boundary.

  12. A psychological model that integrates ethics in engineering education.

    PubMed

    Magun-Jackson, Susan

    2004-04-01

    Ethics has become an increasingly important issue within engineering as the profession has become progressively more complex. The need to integrate ethics into an engineering curriculum is well documented, as education does not often sufficiently prepare engineers for the ethical conflicts they experience. Recent research indicates that there is great diversity in the way institutions approach the problem of teaching ethics to undergraduate engineering students; some schools require students to take general ethics courses from philosophical or religious perspectives, while others integrate ethics in existing engineering courses. The purpose of this paper is to propose a method to implement the integration of ethics in engineering education that is pedagogically based on Kohlberg's stage theory of moral development.

  13. Application of territorial GIS to study of natural environment for regions under mining exploitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirsanov, A.

    1996-07-01

    Mineral resources exploitation becomes one of the leading factors of technogenic impact to natural environment. The processes accompanying exploitation lead to changes of geological/geomorphological, engineering/geological, hydrogeological, geochemical and landscape conditions over the large territories surrounded mining exploitation districts. The types of environmental changes and disturbances are stipulated by several reasons such as kind of exploited resources (ore, petroleum, gas, coal, peat, building materials etc.); the ways of extraction (opened by quarry or closed by mine); natural zone (tundra, taiga, steppe, desert etc.). Expressive revelation and control of these environmental changes is impossible without wide using and analysis of various typesmore » and different times materials of airborne and satellite surveys (MASS). They are the basis of system approach to environmental study because of image is the decreased spatial model of territory. For integrated estimation of natural resources and perspectives of its economical profit using, as well as examination of influence of extraction objects to natural environment necessary to involve different data. Only territorial GIS permits to solve the tasks of collection, keeping, processing and analysis of this data as well as to conduct modelling of situations and presentation of information necessary to accept the decision. The core of GIS is the Data base which consists of initial remote sensing and cartographic data allow in completely obtain various information providing of full value and objectivity of investigations.« less

  14. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    capabilities, and new methodologies that allowed NREL to model operations of the Eastern Interconnection at Analyst Power Systems Modeling Researcher Project Manager Power Systems Engineering Center Research Engineer Power Systems Modeling and Control Get the full list of job postings and learn more about working

  15. Developing a Virtual Rock Deformation Laboratory

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In addition, some web based data collection tools are available to collect student feedback and opinions on their learning experience. The virtual laboratory is designed to be an online education tool that facilitates interactive learning.; Virtual Deformation Laboratory

  16. Examining the Effects of Integrated Science, Engineering, and Nonfiction Literature on Student Learning in Elementary Classrooms

    NASA Astrophysics Data System (ADS)

    Tank, Kristina Maruyama

    In recent years there has been an increasing emphasis on the integration of multiple disciplines in order to help prepare more students to better address the complex challenges they will face in the 21st century. Exposing students to an integrated and multidisciplinary approach will help them to better understand the connections between subjects instead of as individual and separate subjects. Science, Technology, Engineering and Mathematics (STEM) Integration has been suggested as an approach that would model a multidisciplinary approach while also offering authentic and meaningful learning experiences to students. However, there is limited research on STEM integration in the elementary classroom and additional research is needed to better define and explore the effects of this integration for both students and science educators. With the recent recommendations for teaching both science and engineering in elementary classrooms (NRC, 2012), two common models include teaching science through inquiry and teaching science through engineering-design pedagogies. This study will explore both of these models as it seeks to better understand one piece of the larger issue of STEM and STEM integration by examining how the integration of science, engineering, and nonfiction literature affects students learning in elementary classrooms. This study employed an embedded mixed methods design to measure the effects of this integration on student learning in four fifth grade classrooms from the same elementary school. The findings revealed that the students who participated in the nonfiction reading instruction that was integrated with their science instruction showed a greater increase in all measures of student learning in both science and reading when compared to the control students. The findings from the integrated science, engineering and nonfiction literature revealed similar findings with the treatment students showing a greater increase in the measures of student learning in all three of the content areas. These results suggest that integrating nonfiction literature with science or science and engineering instruction can be an effective strategy in improving student learning in elementary classrooms.

  17. Publications - PDF 99-24C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska :63,360 (6.7 M) Keywords Geologic Map; Geology; Geomorphology; Glacial; STATEMAP Project; Slope Instability; Surficial; Surficial Geologic Map; Surficial Geology Top of Page Department of Natural Resources

  18. Publications - PDF 99-24A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Alaska, scale 1:63,360 (6.9 M) Keywords Ar-Ar; Bedrock; Bedrock Geology; Generalized; Geologic; Geologic Map; Geology; Gold; Lode; Non-Metals; Paleontology; Plutonic; Plutonic Hosted; STATEMAP Project

  19. Progress on water data integration and distribution: a summary of select U.S. Geological Survey data systems

    USGS Publications Warehouse

    Blodgett, David L.; Lucido, Jessica M.; Kreft, James M.

    2016-01-01

    Critical water-resources issues ranging from flood response to water scarcity make access to integrated water information, services, tools, and models essential. Since 1995 when the first water data web pages went online, the U.S. Geological Survey has been at the forefront of water data distribution and integration. Today, real-time and historical streamflow observations are available via web pages and a variety of web service interfaces. The Survey has built partnerships with Federal and State agencies to integrate hydrologic data providing continuous observations of surface and groundwater, temporally discrete water quality data, groundwater well logs, aquatic biology data, water availability and use information, and tools to help characterize the landscape for modeling. In this paper, we summarize the status and design patterns implemented for selected data systems. We describe how these systems contribute to a U.S. Federal Open Water Data Initiative and present some gaps and lessons learned that apply to global hydroinformatics data infrastructure.

  20. Integration of safety engineering into a cost optimized development program.

    NASA Technical Reports Server (NTRS)

    Ball, L. W.

    1972-01-01

    A six-segment management model is presented, each segment of which represents a major area in a new product development program. The first segment of the model covers integration of specialist engineers into 'systems requirement definition' or the system engineering documentation process. The second covers preparation of five basic types of 'development program plans.' The third segment covers integration of system requirements, scheduling, and funding of specialist engineering activities into 'work breakdown structures,' 'cost accounts,' and 'work packages.' The fourth covers 'requirement communication' by line organizations. The fifth covers 'performance measurement' based on work package data. The sixth covers 'baseline requirements achievement tracking.'

  1. 3D numerical modelling of the thermal state of deep geological nuclear waste repositories

    NASA Astrophysics Data System (ADS)

    Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, Yu. N.

    2017-09-01

    One of the important aspects of the high-level radioactive waste (HLW) disposal in deep geological repositories is ensuring the integrity of the engineered barriers which is, among other phenomena, considerably influenced by the thermal loads. As the HLW produce significant amount of heat, the design of the repository should maintain the balance between the cost-effectiveness of the construction and the sufficiency of the safety margins, including those imposed on the thermal conditions of the barriers. The 3D finite-element computer code FENIA was developed as a tool for simulation of thermal processes in deep geological repositories. Further the models for mechanical phenomena and groundwater hydraulics will be added resulting in a fully coupled thermo-hydro-mechanical (THM) solution. The long-term simulations of the thermal state were performed for two possible layouts of the repository. One was based on the proposed project of Russian repository, and another features larger HLW amount within the same space. The obtained results describe the spatial and temporal evolution of the temperature filed inside the repository and in the surrounding rock for 3500 years. These results show that practically all generated heat was ultimately absorbed by the host rock without any significant temperature increase. Still in the short time span even in case of smaller amount of the HLW the temperature maximum exceeds 100 °C, and for larger amount of the HLW the local temperature remains above 100 °C for considerable time. Thus, the substantiation of the long-term stability of the repository would require an extensive study of the materials properties and behaviour in order to remove the excessive conservatism from the simulations and to reduce the uncertainty of the input data.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This case history discusses the exploration methods used at the Momotombo Geothermal Field in western Nicaragua, and evaluates their contributions to the development of the geothermal field models. Subsequent reservoir engineering has not been synthesized or evaluated. A geothermal exploration program was started in Nicaragua in 1966 to discover and delineate potential geothermal reservoirs in western Nicaragua. Exploration began at the Momotombo field in 1970 using geological, geochemical, and geophysical methods. A regional study of thermal manifestations was undertaken and the area on the southern flank of Volcan Momotombo was chosen for more detailed investigation. Subsequent exploration by various consultantsmore » produced a number of geotechnical reports on the geology, geophysics, and geochemistry of the field as well as describing production well drilling. Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. This report presents the description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development. Our principal finding is that data developed at each stage were not sufficiently integrated to guide further work at the field, causing inefficient use of resources.« less

  3. Virtual Field Reconnaissance to enable multi-site collaboration in geoscience fieldwork in Chile.

    NASA Astrophysics Data System (ADS)

    Hughes, Leanne; Bateson, Luke; Ford, Jonathan; Napier, Bruce; Creixell, Christian; Contreras, Juan-Pablo; Vallette, Jane

    2017-04-01

    The unique challenges of geological mapping in remote terrains can make cross-organisation collaboration challenging. Cooperation between the British and Chilean Geological Surveys and the Chilean national mining company used the BGS digital Mapping Workflow and virtual field reconnaissance software (GeoVisionary) to undertake geological mapping in a complex area of Andean Geology. The international team undertook a pre-field evaluation using GeoVisionary to integrate massive volumes of data and interpret high resolution satellite imagery, terrain models and existing geological information to capture, manipulate and understand geological features and re-interpret existing maps. This digital interpretation was then taken into the field and verified using the BGS digital data capture system (SIGMA.mobile). This allowed the production of final geological interpretation and creation of a geological map. This presentation describes the digital mapping workflow used in Chile and highlights the key advantages of increased efficiency and communication to colleagues, stakeholders and funding bodies.

  4. How Students and Field Geologists Reason in Integrating Spatial Observations from Outcrops to Visualize a 3-D Geological Structure

    ERIC Educational Resources Information Center

    Kastens, Kim A.; Agrawal, Shruti; Liben, Lynn S.

    2009-01-01

    Geologists and undergraduate students observed eight artificial "rock outcrops" in a realistically scaled field area, and then tried to envision a geological structure that might plausibly be formed by the layered rocks in the set of outcrops. Students were videotaped as they selected which of fourteen 3-D models they thought best…

  5. CIRF.B Reaction-Transport-Mechanical Simulator: Applications to CO2 Injection and Reservoir Integrity Prediction

    NASA Astrophysics Data System (ADS)

    Park, A. J.; Tuncay, K.; Ortoleva, P. J.

    2003-12-01

    An important component of CO2 sequestration in geologic formations is the reactions between the injected fluid and the resident geologic material. In particular, carbonate mineral reaction rates are several orders of magnitude faster than those of siliciclastic minerals. The reactions between resident and injected components can create complex flow regime modifications, and potentially undermine the reservoir integrity by changing their mineralogic and textural compositions on engineering time scale. This process can be further enhanced due to differences in pH and temperature of the injectant from the resident sediments and fluids. CIRF.B is a multi-process simulator originally developed for basin simulations. Implemented processes include kinetic and thermodynamic reactions between minerals and fluid, fluid flow, mass-transfer, composite-media approach to sediment textural description and dynamics, elasto-visco-plastic rheology, and fracturing dynamics. To test the feasibility of applying CIRF.B to CO2 sequestration, a number of engineering scale simulations are carried out to delineate the effects of changing injectant chemistry and injection rates on both carbonate and siliciclastic sediments. Initial findings indicate that even moderate amounts of CO2 introduced into sediments can create low pH environments, which affects feldspar-clay interactions. While the amount of feldspars reacting in engineering time scale may be small, its consequence to clay alteration and permeability modfication can be significant. Results also demonstrate that diffusion-imported H+ can affect sealing properties of both siliciclastic and carbonate formations. In carbonate systems significant mass transfer can occur due to dissolution and reprecipitation. The resulting shifts in in-situ stresses can be sufficient to initiate fracturing. These simulations allow characterization of injectant fluids, thus assisting in the implementation of effective sequestration procedures.

  6. Genetic approach to reconstruct complex regional geological setting of the Baltic basin in 3D geological model

    NASA Astrophysics Data System (ADS)

    Popovs, K.; Saks, T.; Ukass, J.; Jatnieks, J.

    2012-04-01

    Interpretation of geological structures in 3D geological models is a relatively new research topic that is already standardized in many geological branches. Due to its wide practical application, these models are indispensable and become one of the dominant interpretation methods in reducing geological uncertainties in many geology fields. Traditionally, geological concepts complement quantitative as much as qualitative data to obtain a model deemed acceptable, however, available data very often is insufficient and modeling methods primarily focus on spatial data but geological history usually is mostly neglected for the modeling of large sedimentary basins. A need to better integrate the long and often complex geological history and geological knowledge into modeling procedure is very acute to gain geological insight and improve the quality of geological models. During this research, 3D geological model of the Baltic basin (BB) was created. Because of its complex regional geological setting - wide range of the data sources with multiple scales, resolution and density as well as its various source formats, the study area provides a challenge for the 3D geological modeling. In order to create 3D regional geometrical model for the study area algorithmic genetic approach for model geometry reconstruction was applied. The genetic approach is based on the assumption that post-depositional deformation produce no significant change in sedimentary strata volume, assuming that the strata thickness and its length in a cross sectional plane remains unchanged except as a result of erosion. Assuming that the tectonic deformation occurred in sequential cycles and subsequent tectonic stage strata is separated by regional unconformity as is the case of the BB, there is an opportunity for algorithmic approach in reconstructing these conditions by sequentially reconstructing the layer original thickness. Layer thicknesses were sliced along fault lines, where applicable layer thickness was adjusted by taking into account amount of erosion by the presence of the regional unconformities. Borehole data and structural maps of some surfaces were used in creating geological model of the BB. Used approach allowed creating geologically sound geometric model. At first borehole logs were used to reconstruct initial thicknesses of different strata in every tectonic stage, where topography of each strata was obtained sequentially summing thickness to the initial reference surface from structural maps. Thereby each layer reflects the topography and amount of slip along the fault of the overlying layer. Overlying tectonic cycle sequence is implemented into the model structure by using unconformity surface as an initial reference surface. Applied techniques made possible reliably reconstructing and predicting in areas of sparse data layer surface geometry, its thickness distribution and evaluating displacements along the fault planes. Overall results indicate that the used approach has a good potential in development of regional geological models for the sedimentary basins and is valid for spatial interpretation of geological structures, subordinating this process to geological evolution prerequisites. This study is supported by the European Social Fund project No. 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060.

  7. Integration of On-Line and Off-Line Diagnostic Algorithms for Aircraft Engine Health Management

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2007-01-01

    This paper investigates the integration of on-line and off-line diagnostic algorithms for aircraft gas turbine engines. The on-line diagnostic algorithm is designed for in-flight fault detection. It continuously monitors engine outputs for anomalous signatures induced by faults. The off-line diagnostic algorithm is designed to track engine health degradation over the lifetime of an engine. It estimates engine health degradation periodically over the course of the engine s life. The estimate generated by the off-line algorithm is used to update the on-line algorithm. Through this integration, the on-line algorithm becomes aware of engine health degradation, and its effectiveness to detect faults can be maintained while the engine continues to degrade. The benefit of this integration is investigated in a simulation environment using a nonlinear engine model.

  8. Zoning method for environmental engineering geological patterns in underground coal mining areas.

    PubMed

    Liu, Shiliang; Li, Wenping; Wang, Qiqing

    2018-09-01

    Environmental engineering geological patterns (EEGPs) are used to express the trend and intensity of eco-geological environment caused by mining in underground coal mining areas, a complex process controlled by multiple factors. A new zoning method for EEGPs was developed based on the variable-weight theory (VWT), where the weights of factors vary with their value. The method was applied to the Yushenfu mining area, Shaanxi, China. First, the mechanism of the EEGPs caused by mining was elucidated, and four types of EEGPs were proposed. Subsequently, 13 key control factors were selected from mining conditions, lithosphere, hydrosphere, ecosphere, and climatic conditions; their thematic maps were constructed using ArcGIS software and remote-sensing technologies. Then, a stimulation-punishment variable-weight model derived from the partition of basic evaluation unit of study area, construction of partition state-variable-weight vector, and determination of variable-weight interval was built to calculate the variable weights of each factor. On this basis, a zoning mathematical model of EEGPs was established, and the zoning results were analyzed. For comparison, the traditional constant-weight theory (CWT) was also applied to divide the EEGPs. Finally, the zoning results obtained using VWT and CWT were compared. The verification of field investigation indicates that VWT is more accurate and reliable than CWT. The zoning results are consistent with the actual situations and the key of planning design for the rational development of coal resources and protection of eco-geological environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Aircraft Engine Systems

    NASA Technical Reports Server (NTRS)

    Veres, Joseph

    2001-01-01

    This report outlines the detailed simulation of Aircraft Turbofan Engine. The objectives were to develop a detailed flow model of a full turbofan engine that runs on parallel workstation clusters overnight and to develop an integrated system of codes for combustor design and analysis to enable significant reduction in design time and cost. The model will initially simulate the 3-D flow in the primary flow path including the flow and chemistry in the combustor, and ultimately result in a multidisciplinary model of the engine. The overnight 3-D simulation capability of the primary flow path in a complete engine will enable significant reduction in the design and development time of gas turbine engines. In addition, the NPSS (Numerical Propulsion System Simulation) multidisciplinary integration and analysis are discussed.

  10. Student Enrollment in Geoscience Departments. 1982-1983.

    ERIC Educational Resources Information Center

    American Geological Inst., Washington, DC.

    Presented in table format are student enrollment data for geoscience disciplines at colleges and universities in the United States and Canada. Subfields for both countries include: geology; geophysics; oceanography; marine science; geological engineering; geophysical engineering; geochemistry; hydrology; mineralogy; paleontology; soil science;…

  11. The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering

    NASA Technical Reports Server (NTRS)

    Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen

    2006-01-01

    This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.

  12. Mineral resources of the Trinity River tributary area in Texas and Oklahoma

    USGS Publications Warehouse

    Weissenborn, A. E.

    1946-01-01

    In March 1945 Colonel George R. Goethels, Chief of the Civil Works Division of the Corps of Engineers, requested the Director of the Geological Survey, United States Department of the Interior, to prepare a report on the mineral resource of the area that, according to economic studies made by the Corps of Engineers, would be affected by the canalization of the Trinity River to Fort Worth. As a consequence, the staff of the Geological Survey's Regional Office in Rolla, Mo., was assigned the task of preparing the desired information. A. E. Weissenborn, acting Regional Geologist, called on Major H. R. Norman, Division Engineer of the Corps of Engineers, U. S. Army, and discussed with him the purpose, scope, and form of the proposed report. Following this discussion, Dr. John T. Lonsdale, Director of the Bureau of Economic Geology of the University of Texas, at Mr. Weissenborn's request, agreed that the Bureau of Economic Geology should participate in the preparation of the report. My. Weissenborn also called on Robert H. Dott, Director of the Oklahoma State Geological Survey at Norman, Oklahoma. The Oklahoma Geological Survey was unable to participate in writing the report, but was very helpful in supplying published and unpublished or out-of-print information on the mineral resources of Oklahoma.

  13. The TAME Project: Towards improvement-oriented software environments

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Rombach, H. Dieter

    1988-01-01

    Experience from a dozen years of analyzing software engineering processes and products is summarized as a set of software engineering and measurement principles that argue for software engineering process models that integrate sound planning and analysis into the construction process. In the TAME (Tailoring A Measurement Environment) project at the University of Maryland, such an improvement-oriented software engineering process model was developed that uses the goal/question/metric paradigm to integrate the constructive and analytic aspects of software development. The model provides a mechanism for formalizing the characterization and planning tasks, controlling and improving projects based on quantitative analysis, learning in a deeper and more systematic way about the software process and product, and feeding the appropriate experience back into the current and future projects. The TAME system is an instantiation of the TAME software engineering process model as an ISEE (integrated software engineering environment). The first in a series of TAME system prototypes has been developed. An assessment of experience with this first limited prototype is presented including a reassessment of its initial architecture.

  14. P2S--Coupled simulation with the Precipitation-Runoff Modeling System (PRMS) and the Stream Temperature Network (SNTemp) Models

    USGS Publications Warehouse

    Markstrom, Steven L.

    2012-01-01

    A software program, called P2S, has been developed which couples the daily stream temperature simulation capabilities of the U.S. Geological Survey Stream Network Temperature model with the watershed hydrology simulation capabilities of the U.S. Geological Survey Precipitation-Runoff Modeling System. The Precipitation-Runoff Modeling System is a modular, deterministic, distributed-parameter, physical-process watershed model that simulates hydrologic response to various combinations of climate and land use. Stream Network Temperature was developed to help aquatic biologists and engineers predict the effects of changes that hydrology and energy have on water temperatures. P2S will allow scientists and watershed managers to evaluate the effects of historical climate and projected climate change, landscape evolution, and resource management scenarios on watershed hydrology and in-stream water temperature.

  15. Climate model simulations of the mid-Pliocene: Earth's last great interval of global warmth

    USGS Publications Warehouse

    Dolan, A.M.; Haywood, A.M.; Dowsett, H.J.

    2012-01-01

    Pliocene Model Intercomparison Project Workshop; Reston, Virginia, 2–4 August 2011 The Pliocene Model Intercomparison Project (PlioMIP), supported by the U.S. Geological Survey's (USGS) Pliocene Research, Interpretation and Synoptic Mapping (PRISM) project and Powell Center, is an integral part of a third iteration of the Paleoclimate Modelling Intercomparison Project (PMIP3). PlioMIP's aim is to systematically compare structurally different climate models. This is done in the context of the mid-Pliocene (~3.3–3.0 million years ago), a geological interval when the global annual mean temperature was similar to predictions for the next century.

  16. Hypersonic research engine project. Phase 2: Aerothermodynamic Integration Model (AIM) test report

    NASA Technical Reports Server (NTRS)

    Andersen, W. L.; Kado, L.

    1975-01-01

    The Hypersonic Research Engine-Aerothermodynamic Integration Model (HRE-AIM) was designed, fabricated, and tested in the Hypersonic Tunnel Facility. The HRE-AIM is described along with its installation in the wind tunnel facility. Test conditions to which the HRE-AIM was subjected and observations made during the tests are discussed. The overall engine performance, component interaction, and ignition limits for the design are evaluated.

  17. Co-optimization of CO 2 -EOR and Storage Processes under Geological Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ampomah, William; Balch, Robert; Will, Robert

    This paper presents an integrated numerical framework to co-optimize EOR and CO 2 storage performance in the Farnsworth field unit (FWU), Ochiltree County, Texas. The framework includes a field-scale compositional reservoir flow model, an uncertainty quantification model and a neural network optimization process. The reservoir flow model has been constructed based on the field geophysical, geological, and engineering data. A laboratory fluid analysis was tuned to an equation of state and subsequently used to predict the thermodynamic minimum miscible pressure (MMP). A history match of primary and secondary recovery processes was conducted to estimate the reservoir and multiphase flow parametersmore » as the baseline case for analyzing the effect of recycling produced gas, infill drilling and water alternating gas (WAG) cycles on oil recovery and CO 2 storage. A multi-objective optimization model was defined for maximizing both oil recovery and CO 2 storage. The uncertainty quantification model comprising the Latin Hypercube sampling, Monte Carlo simulation, and sensitivity analysis, was used to study the effects of uncertain variables on the defined objective functions. Uncertain variables such as bottom hole injection pressure, WAG cycle, injection and production group rates, and gas-oil ratio among others were selected. The most significant variables were selected as control variables to be used for the optimization process. A neural network optimization algorithm was utilized to optimize the objective function both with and without geological uncertainty. The vertical permeability anisotropy (Kv/Kh) was selected as one of the uncertain parameters in the optimization process. The simulation results were compared to a scenario baseline case that predicted CO 2 storage of 74%. The results showed an improved approach for optimizing oil recovery and CO 2 storage in the FWU. The optimization process predicted more than 94% of CO 2 storage and most importantly about 28% of incremental oil recovery. The sensitivity analysis reduced the number of control variables to decrease computational time. A risk aversion factor was used to represent results at various confidence levels to assist management in the decision-making process. The defined objective functions were proved to be a robust approach to co-optimize oil recovery and CO 2 storage. The Farnsworth CO 2 project will serve as a benchmark for future CO 2–EOR or CCUS projects in the Anadarko basin or geologically similar basins throughout the world.« less

  18. Co-optimization of CO 2 -EOR and Storage Processes under Geological Uncertainty

    DOE PAGES

    Ampomah, William; Balch, Robert; Will, Robert; ...

    2017-07-01

    This paper presents an integrated numerical framework to co-optimize EOR and CO 2 storage performance in the Farnsworth field unit (FWU), Ochiltree County, Texas. The framework includes a field-scale compositional reservoir flow model, an uncertainty quantification model and a neural network optimization process. The reservoir flow model has been constructed based on the field geophysical, geological, and engineering data. A laboratory fluid analysis was tuned to an equation of state and subsequently used to predict the thermodynamic minimum miscible pressure (MMP). A history match of primary and secondary recovery processes was conducted to estimate the reservoir and multiphase flow parametersmore » as the baseline case for analyzing the effect of recycling produced gas, infill drilling and water alternating gas (WAG) cycles on oil recovery and CO 2 storage. A multi-objective optimization model was defined for maximizing both oil recovery and CO 2 storage. The uncertainty quantification model comprising the Latin Hypercube sampling, Monte Carlo simulation, and sensitivity analysis, was used to study the effects of uncertain variables on the defined objective functions. Uncertain variables such as bottom hole injection pressure, WAG cycle, injection and production group rates, and gas-oil ratio among others were selected. The most significant variables were selected as control variables to be used for the optimization process. A neural network optimization algorithm was utilized to optimize the objective function both with and without geological uncertainty. The vertical permeability anisotropy (Kv/Kh) was selected as one of the uncertain parameters in the optimization process. The simulation results were compared to a scenario baseline case that predicted CO 2 storage of 74%. The results showed an improved approach for optimizing oil recovery and CO 2 storage in the FWU. The optimization process predicted more than 94% of CO 2 storage and most importantly about 28% of incremental oil recovery. The sensitivity analysis reduced the number of control variables to decrease computational time. A risk aversion factor was used to represent results at various confidence levels to assist management in the decision-making process. The defined objective functions were proved to be a robust approach to co-optimize oil recovery and CO 2 storage. The Farnsworth CO 2 project will serve as a benchmark for future CO 2–EOR or CCUS projects in the Anadarko basin or geologically similar basins throughout the world.« less

  19. Comprehensive Cross-Training among STEM Disciplines in Geothermal Energy

    NASA Astrophysics Data System (ADS)

    Nunn, J. A.; Dutrow, B. L.

    2012-12-01

    One of the foremost areas of sustainability is society's need for energy. The US uses more energy per capita than any other country in the world with most of this energy coming from fossil fuels. With its link to climate change coupled with declining resources, renewable alternatives are being pursued. Given the high demand for energy, it is not a question of if these alternatives will be utilized but when and where. One of the "greenest" of the green technologies is geothermal energy. It is a renewable resource with a small environmental footprint. To educate advanced undergraduate and graduate students from across STEM disciplines in geothermal energy, a series of three distinct but linked and related courses are being developed and taught. Courses are focused on one of the STEM disciplines to provide students with essential discipline-specific knowledge and taught by different faculty members in the departments of geology, petroleum engineering and mathematics. These courses provide the foundation necessary for interdisciplinary research projects. The first course on Geologic Properties and Processes of Geothermal Energy was developed and taught in 2012. The class had an enrollment of 27 students including: 5 undergraduates and 4 graduate students in Geology, 12 undergraduates and two graduate students in Petroleum Engineering, and 4 non-matriculated undergraduate students. The course began with the essentials of heat and mass transfer, a common deficiency for all students, then progressed to the geologic materials of these systems: minerals, rocks and fluids. To provide students with first hand experience, two short research projects were embedded into the course. The first project involved analyses of cuttings from a well-studied geothermal system (Salton Sea, CA). Students were in teams consisting of both engineers and geologists. The first assignment was to identify minerals in the cuttings. They were then provided with XRD patterns for their cuttings to more precisely identify the mineralogy of the cuttings. Based on this data with depth, they were asked to predict an approximate temperature range and calculate various fluid parameters for these conditions. The second research project was completed individually, each student covered aspects of heat transport and geologic materials on a specific geothermal field of their choice, created a poster, and gave a brief oral presentation of the poster similar to what is done at scientific meetings. This not only helped students develop communication skills it also provide the class and the instructors information on the breath and diversity of geothermal projects already underway throughout the world and helped to improve critical thinking skills. Continued integration of our research and graduate training programs in Geology and Geophysics, Petroleum Engineering, and Mathematics will occur in 2012-2013. The Petroleum Engineering course will be offered in the fall semester of 2012 and the Mathematics class in the spring semester of 2013. Providing this three semester sequence of courses across the STEM disciplines promotes comprehensive cross-training among disciplines and provides a template for future directions of teaching sustainability across the disciplines.

  20. Constructing a Geology Ontology Using a Relational Database

    NASA Astrophysics Data System (ADS)

    Hou, W.; Yang, L.; Yin, S.; Ye, J.; Clarke, K.

    2013-12-01

    In geology community, the creation of a common geology ontology has become a useful means to solve problems of data integration, knowledge transformation and the interoperation of multi-source, heterogeneous and multiple scale geological data. Currently, human-computer interaction methods and relational database-based methods are the primary ontology construction methods. Some human-computer interaction methods such as the Geo-rule based method, the ontology life cycle method and the module design method have been proposed for applied geological ontologies. Essentially, the relational database-based method is a reverse engineering of abstracted semantic information from an existing database. The key is to construct rules for the transformation of database entities into the ontology. Relative to the human-computer interaction method, relational database-based methods can use existing resources and the stated semantic relationships among geological entities. However, two problems challenge the development and application. One is the transformation of multiple inheritances and nested relationships and their representation in an ontology. The other is that most of these methods do not measure the semantic retention of the transformation process. In this study, we focused on constructing a rule set to convert the semantics in a geological database into a geological ontology. According to the relational schema of a geological database, a conversion approach is presented to convert a geological spatial database to an OWL-based geological ontology, which is based on identifying semantics such as entities, relationships, inheritance relationships, nested relationships and cluster relationships. The semantic integrity of the transformation was verified using an inverse mapping process. In a geological ontology, an inheritance and union operations between superclass and subclass were used to present the nested relationship in a geochronology and the multiple inheritances relationship. Based on a Quaternary database of downtown of Foshan city, Guangdong Province, in Southern China, a geological ontology was constructed using the proposed method. To measure the maintenance of semantics in the conversation process and the results, an inverse mapping from the ontology to a relational database was tested based on a proposed conversation rule. The comparison of schema and entities and the reduction of tables between the inverse database and the original database illustrated that the proposed method retains the semantic information well during the conversation process. An application for abstracting sandstone information showed that semantic relationships among concepts in the geological database were successfully reorganized in the constructed ontology. Key words: geological ontology; geological spatial database; multiple inheritance; OWL Acknowledgement: This research is jointly funded by the Specialized Research Fund for the Doctoral Program of Higher Education of China (RFDP) (20100171120001), NSFC (41102207) and the Fundamental Research Funds for the Central Universities (12lgpy19).

  1. Basin deconstruction-construction: Seeking thermal-tectonic consistency through the integration of geochemical thermal indicators and seismic fault mechanical stratigraphy ​- Example from Faras Field, North Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Pigott, John D.; Abouelresh, Mohamed O.

    2016-02-01

    To construct a model of a sedimentary basin's thermal tectonic history is first to deconstruct it: taking apart its geological elements, searching for its initial conditions, and then to reassemble the elements in the temporal order that the basin is assumed to have evolved. Two inherent difficulties implicit to the analysis are that most organic thermal indicators are cumulative, irreversible and a function of both temperature and time and the non-uniqueness of crustal strain histories which complicates tectonic interpretations. If the initial conditions (e.g. starting maturity of the reactants and initial crustal temperature) can be specified and the boundary conditions incrementally designated from changes in the lithospheric heat engine owing to stratigraphic structural constraints, then the number of pathways for the temporal evolution of a basin is greatly reduced. For this investigation, model input uncertainties are reduced through seeking a solution that iteratively integrates the geologically constrained tectonic subsidence, geochemically constrained thermal indicators, and geophysically constrained fault mechanical stratigraphy. The Faras oilfield in the Abu Gharadig Basin, North Western Desert, Egypt, provides an investigative example of such a basin's deconstructive procedure. Multiple episodes of crustal extension and shortening are apparent in the tectonic subsidence analyses which are constrained from the fault mechanical stratigraphy interpreted from reflection seismic profiles. The model was iterated with different thermal boundary conditions until outputs best fit the geochemical observations. In so doing, the thermal iterations demonstrate that general relationship that basin heat flow increases decrease vertical model maturity gradients, increases in surface temperatures shift vertical maturity gradients linearly to higher values, increases in sediment conductivities lower vertical maturities with depth, and the addition of ;ghost; layers (those layers removed) prior to the erosional event increase maturities beneath, and conversely. These integrated constraints upon the basin evolution model indicate that the principal source rocks, Khatatba and the lowest part of the Alam El Bueib formations, entered the oil window at approximately 95 Ma and the gas window at approximately 25 Ma. The upper part of the Alam El Bueib Formation is within the oil window at the present day. Establishing initial and boundary value conditions for a basin's thermal evolution when geovalidated by the integration of seismic fault mechanical stratigraphy, tectonic subsidence analysis, and organic geochemical maturity indicators provides a powerful tool for optimizing petroleum exploration in both mature and frontier basins.

  2. Automatic mapping of the base of aquifer — A case study from Morrill, Nebraska

    USGS Publications Warehouse

    Gulbrandsen, Mats Lundh; Ball, Lyndsay B.; Minsley, Burke J.; Hansen, Thomas Mejer

    2017-01-01

    When a geologist sets up a geologic model, various types of disparate information may be available, such as exposures, boreholes, and (or) geophysical data. In recent years, the amount of geophysical data available has been increasing, a trend that is only expected to continue. It is nontrivial (and often, in practice, impossible) for the geologist to take all the details of the geophysical data into account when setting up a geologic model. We have developed an approach that allows for the objective quantification of information from geophysical data and borehole observations in a way that is easy to integrate in the geologic modeling process. This will allow the geologist to make a geologic interpretation that is consistent with the geophysical information at hand. We have determined that automated interpretation of geologic layer boundaries using information from boreholes and geophysical data alone can provide a good geologic layer model, even before manual interpretation has begun. The workflow is implemented on a set of boreholes and airborne electromagnetic (AEM) data from Morrill, Nebraska. From the borehole logs, information about the depth to the base of aquifer (BOA) is extracted and used together with the AEM data to map a surface that represents this geologic contact. Finally, a comparison between our automated approach and a previous manual mapping of the BOA in the region validates the quality of the proposed method and suggests that this workflow will allow a much faster and objective geologic modeling process that is consistent with the available data.

  3. Special Issue on Earth Science: The View From '76

    ERIC Educational Resources Information Center

    Geotimes, 1976

    1976-01-01

    Presents the latest developments concerning the following topics: astrogeology, coal, deep sea drilling project, engineering geology; environmental geology, exploration geophysics, geochemistry, geodynamics project, hydrology, industrial minerals, international geology, mapping, mathematical geology, metals, mineralogy, oil and gas, invertebrate…

  4. Lessons from Natural Analog Studies for Geologic Disposal of High-Level Nuclear Waste (Invited)

    NASA Astrophysics Data System (ADS)

    Murphy, W. M.

    2009-12-01

    For over fifty years natural analog studies have provided lessons addressing scientific, technical, and social problems concerning geologic disposal of high-level nuclear waste. Idealized concepts for permanent disposal environments evolved from an understanding of the geological, geochemical and hydrological characteristics of analogous rocks including natural salt deposits (as advocated by the US National Academy of Sciences in 1957), ancient cratonic rocks (as investigated at Lac du Bonnet, Canada, Aspö, Sweden, and Vienne, France), and marine sedimentary rock formations (as studied at Mol, Belgium, and Bure, France). Additional multidisciplinary studies have been conducted at natural sites that bear characteristics analogous to potential repository systems, notably at natural uranium (and thorium) deposits including Poços de Caldas, Brazil, Alligator Rivers, Australia, Peña Blanca, Mexico, and Oklo, Gabon. Researchers of natural analogs for geologic disposal have addressed technical uncertainties regarding processes that have transpired over large time and space scales, which are generally inaccessible to laboratory studies. Principal questions for nuclear waste disposal include the geochemical stability and alteration rates of radionuclide bearing minerals and the mechanisms and rates of transport of radionuclides in groundwater. In their most direct applications, natural analogs studies have been devoted to testing specific models for repository performance and the experimental data that support those models. Parameters used in predictive performance assessment modeling have been compared to natural system data, including mineral solubilities, sorption coefficients, diffusion rates, and colloid transport properties. For example, the rate of uraninite oxidation and the natural paragenesis of uranium mineral alteration at Peña Blanca have been compared favorably to results of experimental studies of spent fuel alteration related to the proposed repository at Yucca Mountain, Nevada, USA. These results generally bracket repository conditions between natural and experimental systems providing confidence in the understanding of expected processes. Also, the conceptual bases and numerical techniques for modeling unsaturated zone contaminant transport over periods of thousands of years at Yucca Mountain were tested by modeling the observable record of metal transport from archaeological artifacts buried in Holocene tuff at Akrotiri, Greece. Geologically episodic mineral alteration and contaminant transport have been documented using radioisotope data in numerous analog systems providing insights for the interpretation and validity of predictive models for long term repository performance. The applicability and value of natural analog studies to understanding geologic disposal systems is a persistent question. As proposed disposal sites become increasingly well defined by site characterization and engineering design, the strengths and weaknesses of analogies can be assessed. Confidence in predictive models for complex geologic and engineered phenomena can be enhanced through multiple lines of investigation including studies of natural analog systems.

  5. The Effect of Faster Engine Response on the Lateral Directional Control of a Damaged Aircraft

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Lemon, Kimberly A.; Csank, Jeffrey T.; Litt, Jonathan S.; Guo, Ten-Huei

    2012-01-01

    The integration of flight control and propulsion control has been a much discussed topic, especially for emergencies where the engines may be able to help stabilize and safely land a damaged aircraft. Previous research has shown that for the engines to be effective as flight control actuators, the response time to throttle commands must be improved. Other work has developed control modes that accept a higher risk of engine failure in exchange for improved engine response during an emergency. In this effort, a nonlinear engine model (the Commercial Modular Aero-Propulsion System Simulation 40k) has been integrated with a nonlinear airframe model (the Generic Transport Model) in order to evaluate the use of enhanced-response engines as alternative yaw rate control effectors. Tests of disturbance rejection and command tracking were used to determine the impact of the engines on the aircraft's dynamical behavior. Three engine control enhancements that improve the response time of the engine were implemented and tested in the integrated simulation. The enhancements were shown to increase the engine s effectiveness as a yaw rate control effector when used in an automatic feedback loop. The improvement is highly dependent upon flight condition; the airframe behavior is markedly improved at low altitude, low speed conditions, and relatively unchanged at high altitude, high speed.

  6. NEXT Single String Integration Test Results

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Patterson, Michael J.; Pinero, Luis; Herman, Daniel A.; Snyder, Steven John

    2010-01-01

    As a critical part of NASA's Evolutionary Xenon Thruster (NEXT) test validation process, a single string integration test was performed on the NEXT ion propulsion system. The objectives of this test were to verify that an integrated system of major NEXT ion propulsion system elements meets project requirements, to demonstrate that the integrated system is functional across the entire power processor and xenon propellant management system input ranges, and to demonstrate to potential users that the NEXT propulsion system is ready for transition to flight. Propulsion system elements included in this system integration test were an engineering model ion thruster, an engineering model propellant management system, an engineering model power processor unit, and a digital control interface unit simulator that acted as a test console. Project requirements that were verified during this system integration test included individual element requirements ; integrated system requirements, and fault handling. This paper will present the results of these tests, which include: integrated ion propulsion system demonstrations of performance, functionality and fault handling; a thruster re-performance acceptance test to establish baseline performance: a risk-reduction PMS-thruster integration test: and propellant management system calibration checks.

  7. Engineering geological mapping in Wallonia (Belgium) : present state and recent computerized approach

    NASA Astrophysics Data System (ADS)

    Delvoie, S.; Radu, J.-P.; Ruthy, I.; Charlier, R.

    2012-04-01

    An engineering geological map can be defined as a geological map with a generalized representation of all the components of a geological environment which are strongly required for spatial planning, design, construction and maintenance of civil engineering buildings. In Wallonia (Belgium) 24 engineering geological maps have been developed between the 70s and the 90s at 1/5,000 or 1/10,000 scale covering some areas of the most industrialized and urbanized cities (Liège, Charleroi and Mons). They were based on soil and subsoil data point (boring, drilling, penetration test, geophysical test, outcrop…). Some displayed data present the depth (with isoheights) or the thickness (with isopachs) of the different subsoil layers up to about 50 m depth. Information about geomechanical properties of each subsoil layer, useful for engineers and urban planners, is also synthesized. However, these maps were built up only on paper and progressively needed to be updated with new soil and subsoil data. The Public Service of Wallonia and the University of Liège have recently initiated a study to evaluate the feasibility to develop engineering geological mapping with a computerized approach. Numerous and various data (about soil and subsoil) are stored into a georelational database (the geotechnical database - using Access, Microsoft®). All the data are geographically referenced. The database is linked to a GIS project (using ArcGIS, ESRI®). Both the database and GIS project consist of a powerful tool for spatial data management and analysis. This approach involves a methodology using interpolation methods to update the previous maps and to extent the coverage to new areas. The location (x, y, z) of each subsoil layer is then computed from data point. The geomechanical data of these layers are synthesized in an explanatory booklet joined to maps.

  8. Landslides! Engaging students in natural hazards and STEM principles through the exploration of landslide analog models

    NASA Astrophysics Data System (ADS)

    Gochis, E. E.; Lechner, H. N.; Brill, K. A.; Lerner, G.; Ramos, E.

    2014-12-01

    Graduate students at Michigan Technological University developed the "Landslides!" activity to engage middle & high school students participating in summer engineering programs in a hands-on exploration of geologic engineering and STEM (Science, Technology, Engineering and Math) principles. The inquiry-based lesson plan is aligned to Next Generation Science Standards and is appropriate for 6th-12th grade classrooms. During the activity students focus on the factors contributing to landslide development and engineering practices used to mitigate hazards of slope stability hazards. Students begin by comparing different soil types and by developing predictions of how sediment type may contribute to differences in slope stability. Working in groups, students then build tabletop hill-slope models from the various materials in order to engage in evidence-based reasoning and test their predictions by adding groundwater until each group's modeled slope fails. Lastly students elaborate on their understanding of landslides by designing 'engineering solutions' to mitigate the hazards observed in each model. Post-evaluations from students demonstrate that they enjoyed the hands-on nature of the activity and the application of engineering principles to mitigate a modeled natural hazard.

  9. Evolving technologies drive the new roles of Biomedical Engineering.

    PubMed

    Frisch, P H; St Germain, J; Lui, W

    2008-01-01

    Rapidly changing technology coupled with the financial impact of organized health care, has required hospital Biomedical Engineering organizations to augment their traditional operational and business models to increase their role in developing enhanced clinical applications utilizing new and evolving technologies. The deployment of these technology based applications has required Biomedical Engineering organizations to re-organize to optimize the manner in which they provide and manage services. Memorial Sloan-Kettering Cancer Center has implemented a strategy to explore evolving technologies integrating them into enhanced clinical applications while optimally utilizing the expertise of the traditional Biomedical Engineering component (Clinical Engineering) to provide expanded support in technology / equipment management, device repair, preventive maintenance and integration with legacy clinical systems. Specifically, Biomedical Engineering is an integral component of the Medical Physics Department which provides comprehensive and integrated support to the Center in advanced physical, technical and engineering technology. This organizational structure emphasizes the integration and collaboration between a spectrum of technical expertise for clinical support and equipment management roles. The high cost of clinical equipment purchases coupled with the increasing cost of service has driven equipment management responsibilities to include significant business and financial aspects to provide a cost effective service model. This case study details the dynamics of these expanded roles, future initiatives and benefits for Biomedical Engineering and Memorial Sloan Kettering Cancer Center.

  10. The integrated analyses of digital field mapping techniques and traditional field methods: implications from the Burdur-Fethiye Shear Zone, SW Turkey as a case-study

    NASA Astrophysics Data System (ADS)

    Elitez, İrem; Yaltırak, Cenk; Zabcı, Cengiz; Şahin, Murat

    2015-04-01

    The precise geological mapping is one of the most important issues in geological studies. Documenting the spatial distribution of geological bodies and their contacts play a crucial role on interpreting the tectonic evolution of any region. Although the traditional field techniques are still accepted to be the most fundamental tools in construction of geological maps, we suggest that the integration of digital technologies to the classical methods significantly increases the resolution and the quality of such products. We simply follow the following steps in integration of the digital data with the traditional field observations. First, we create the digital elevation model (DEM) of the region of interest by interpolating the digital contours of 1:25000 scale topographic maps to 10 m of ground pixel resolution. The non-commercial Google Earth satellite imagery and geological maps of previous studies are draped over the interpolated DEMs in the second stage. The integration of all spatial data is done by using the market leading GIS software, ESRI ArcGIS. We make the preliminary interpretation of major structures as tectonic lineaments and stratigraphic contacts. These preliminary maps are controlled and precisely coordinated during the field studies by using mobile tablets and/or phablets with GPS receivers. The same devices are also used in measuring and recording the geologic structures of the study region. Finally, all digitally collected measurements and observations are added to the GIS database and we finalise our geological map with all available information. We applied this integrated method to map the Burdur-Fethiye Shear Zone (BFSZ) in the southwest Turkey. The BFSZ is an active sinistral 60-to-90 km-wide shear zone, which prolongs about 300 km-long between Suhut-Cay in the northeast and Köyceğiz Lake-Kalkan in the southwest on land. The numerous studies suggest contradictory models not only about the evolution but also about the fault geometry of this wide deformation zone. In our study, we have mapped this complicated region since 2008 by using the data and the steps, which are described briefly above. After our joint-analyses, we show that there is no continuous single and narrow fault, the Burdur-Fethiye Fault, as it was previously suggested by many researches. Instead, the whole region is deformed under the oblique-sinistral shearing with considerable amount of extension, which causes a counterclockwise rotation within the zone.

  11. Publications - STATEMAP Project | Alaska Division of Geological &

    Science.gov Websites

    ., 2008, Surficial-geologic map of the Salcha River-Pogo area, Big Delta Quadrangle, Alaska: Alaska , Engineering - geologic map, Alaska Highway corridor, Delta Junction to Dot Lake, Alaska: Alaska Division of geologic map of the Salcha River-Pogo area, Big Delta Quadrangle, Alaska: Alaska Division of Geological

  12. Publications - PDF 96-16 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska fbx_prelim_geology Shapefile 6.5 M Metadata - Read me Keywords Age Dates; Antimony; Ar-Ar; Bedrock; Bedrock Geology ; Birch Hill Sequence; Bismuth; Chatanika Terrane; Construction Materials; Derivative; Economic Geology

  13. Improvement of density models of geological structures by fusion of gravity data and cosmic muon radiographies

    NASA Astrophysics Data System (ADS)

    Jourde, K.; Gibert, D.; Marteau, J.

    2015-04-01

    This paper examines how the resolution of small-scale geological density models is improved through the fusion of information provided by gravity measurements and density muon radiographies. Muon radiography aims at determining the density of geological bodies by measuring their screening effect on the natural flux of cosmic muons. Muon radiography essentially works like medical X-ray scan and integrates density information along elongated narrow conical volumes. Gravity measurements are linked to density by a 3-D integration encompassing the whole studied domain. We establish the mathematical expressions of these integration formulas - called acquisition kernels - and derive the resolving kernels that are spatial filters relating the true unknown density structure to the density distribution actually recovered from the available data. The resolving kernels approach allows to quantitatively describe the improvement of the resolution of the density models achieved by merging gravity data and muon radiographies. The method developed in this paper may be used to optimally design the geometry of the field measurements to perform in order to obtain a given spatial resolution pattern of the density model to construct. The resolving kernels derived in the joined muon/gravimetry case indicate that gravity data are almost useless to constrain the density structure in regions sampled by more than two muon tomography acquisitions. Interestingly the resolution in deeper regions not sampled by muon tomography is significantly improved by joining the two techniques. The method is illustrated with examples for La Soufrière of Guadeloupe volcano.

  14. Publications - PDF 98-37B v. 1.1 | Alaska Division of Geological &

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska ) Digital Geospatial Data Digital Geospatial Data Tanana A-1 and A-2 bedrock geology Data File Format File ; Bedrock; Bedrock Geologic Map; Bedrock Geology; CIPW Norms; Cerium; Dome; Economic Geology; Faults

  15. CONFIG: Integrated engineering of systems and their operation

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Ryan, Dan; Fleming, Land

    1994-01-01

    This article discusses CONFIG 3, a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operations of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. CONFIG supports integration among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. CONFIG is designed to support integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems.

  16. Hypersonic research engine/aerothermodynamic integration model: Experimental results. Volume 3: Mach 7 component integration and performance

    NASA Technical Reports Server (NTRS)

    Andrews, E. H., Jr.; Mackley, E. A.

    1976-01-01

    The NASA Hypersonic Research Engine Project was undertaken to design, develop, and construct a hypersonic research ramjet engine for high performance and to flight test the developed concept on the X-15-2A airplane over the speed range from Mach 3 to 8. Computer program results are presented here for the Mach 7 component integration and performance tests.

  17. Update - Concept of Operations for Integrated Model-Centric Engineering at JPL

    NASA Technical Reports Server (NTRS)

    Bayer, Todd J.; Bennett, Matthew; Delp, Christopher L.; Dvorak, Daniel; Jenkins, Steven J.; Mandutianu, Sanda

    2011-01-01

    The increasingly ambitious requirements levied on JPL's space science missions, and the development pace of such missions, challenge our current engineering practices. All the engineering disciplines face this growth in complexity to some degree, but the challenges are greatest in systems engineering where numerous competing interests must be reconciled and where complex system level interactions must be identified and managed. Undesired system-level interactions are increasingly a major risk factor that cannot be reliably exposed by testing, and natural-language single-viewpoint specifications areinadequate to capture and expose system level interactions and characteristics. Systems engineering practices must improve to meet these challenges, and the most promising approach today is the movement toward a more integrated and model-centric approach to mission conception, design, implementation and operations. This approach elevates engineering models to a principal role in systems engineering, gradually replacing traditional document centric engineering practices.

  18. Utilization of Integrated Assessment Modeling for determining geologic CO2 storage security

    NASA Astrophysics Data System (ADS)

    Pawar, R.

    2017-12-01

    Geologic storage of carbon dioxide (CO2) has been extensively studied as a potential technology to mitigate atmospheric concentration of CO2. Multiple international research & development efforts, large-scale demonstration and commercial projects are helping advance the technology. One of the critical areas of active investigation is prediction of long-term CO2 storage security and risks. A quantitative methodology for predicting a storage site's long-term performance is critical for making key decisions necessary for successful deployment of commercial scale projects where projects will require quantitative assessments of potential long-term liabilities. These predictions are challenging given that they require simulating CO2 and in-situ fluid movements as well as interactions through the primary storage reservoir, potential leakage pathways (such as wellbores, faults, etc.) and shallow resources such as groundwater aquifers. They need to take into account the inherent variability and uncertainties at geologic sites. This talk will provide an overview of an approach based on integrated assessment modeling (IAM) to predict long-term performance of a geologic storage site including, storage reservoir, potential leakage pathways and shallow groundwater aquifers. The approach utilizes reduced order models (ROMs) to capture the complex physical/chemical interactions resulting due to CO2 movement and interactions but are computationally extremely efficient. Applicability of the approach will be demonstrated through examples that are focused on key storage security questions such as what is the probability of leakage of CO2 from a storage reservoir? how does storage security vary for different geologic environments and operational conditions? how site parameter variability and uncertainties affect storage security, etc.

  19. Hypersonic research engine/aerothermodynamic integration model, experimental results. Volume 1: Mach 6 component integration

    NASA Technical Reports Server (NTRS)

    Andrews, E. H., Jr.; Mackley, E. A.

    1976-01-01

    The NASA Hypersonic Research Engine (HRE) Project was initiated for the purpose of advancing the technology of airbreathing propulsion for hypersonic flight. A large component (inlet, combustor, and nozzle) and structures development program was encompassed by the project. The tests of a full-scale (18 in. diameter cowl and 87 in. long) HRE concept, designated the Aerothermodynamic Integration Model (AIM), at Mach numbers of 5, 6, and 7. Computer program results for Mach 6 component integration tests are presented.

  20. Modeling Poroelastic Wave Propagation in a Real 2-D Complex Geological Structure Obtained via Self-Organizing Maps

    NASA Astrophysics Data System (ADS)

    Itzá Balam, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.

    2018-03-01

    Two main stages of seismic modeling are geological model building and numerical computation of seismic response for the model. The quality of the computed seismic response is partly related to the type of model that is built. Therefore, the model building approaches become as important as seismic forward numerical methods. For this purpose, three petrophysical facies (sands, shales and limestones) are extracted from reflection seismic data and some seismic attributes via the clustering method called Self-Organizing Maps (SOM), which, in this context, serves as a geological model building tool. This model with all its properties is the input to the Optimal Implicit Staggered Finite Difference (OISFD) algorithm to create synthetic seismograms for poroelastic, poroacoustic and elastic media. The results show a good agreement between observed and 2-D synthetic seismograms. This demonstrates that the SOM classification method enables us to extract facies from seismic data and allows us to integrate the lithology at the borehole scale with the 2-D seismic data.

  1. Shallow subsurface structure of the Wasatch fault, Provo segment, Utah, from integrated compressional and shear-wave seismic reflection profiles with implications for fault structure and development

    USGS Publications Warehouse

    McBride, J.H.; Stephenson, W.J.; Williams, R.A.; Odum, J.K.; Worley, D.M.; South, J.V.; Brinkerhoff, A.R.; Keach, R.W.; Okojie-Ayoro, A. O.

    2010-01-01

    Integrated vibroseis compressional and experimental hammer-source, shear-wave, seismic reflection profiles across the Provo segment of the Wasatch fault zone in Utah reveal near-surface and shallow bedrock structures caused by geologically recent deformation. Combining information from the seismic surveys, geologic mapping, terrain analysis, and previous seismic first-arrival modeling provides a well-constrained cross section of the upper ~500 m of the subsurface. Faults are mapped from the surface, through shallow, poorly consolidated deltaic sediments, and cutting through a rigid bedrock surface. The new seismic data are used to test hypotheses on changing fault orientation with depth, the number of subsidiary faults within the fault zone and the width of the fault zone, and the utility of integrating separate elastic methods to provide information on a complex structural zone. Although previous surface mapping has indicated only a few faults, the seismic section shows a wider and more complex deformation zone with both synthetic and antithetic normal faults. Our study demonstrates the usefulness of a combined shallow and deeper penetrating geophysical survey, integrated with detailed geologic mapping to constrain subsurface fault structure. Due to the complexity of the fault zone, accurate seismic velocity information is essential and was obtained from a first-break tomography model. The new constraints on fault geometry can be used to refine estimates of vertical versus lateral tectonic movements and to improve seismic hazard assessment along the Wasatch fault through an urban area. We suggest that earthquake-hazard assessments made without seismic reflection imaging may be biased by the previous mapping of too few faults. ?? 2010 Geological Society of America.

  2. Integrating 3D geological information with a national physically-based hydrological modelling system

    NASA Astrophysics Data System (ADS)

    Lewis, Elizabeth; Parkin, Geoff; Kessler, Holger; Whiteman, Mark

    2016-04-01

    Robust numerical models are an essential tool for informing flood and water management and policy around the world. Physically-based hydrological models have traditionally not been used for such applications due to prohibitively large data, time and computational resource requirements. Given recent advances in computing power and data availability, a robust, physically-based hydrological modelling system for Great Britain using the SHETRAN model and national datasets has been created. Such a model has several advantages over less complex systems. Firstly, compared with conceptual models, a national physically-based model is more readily applicable to ungauged catchments, in which hydrological predictions are also required. Secondly, the results of a physically-based system may be more robust under changing conditions such as climate and land cover, as physical processes and relationships are explicitly accounted for. Finally, a fully integrated surface and subsurface model such as SHETRAN offers a wider range of applications compared with simpler schemes, such as assessments of groundwater resources, sediment and nutrient transport and flooding from multiple sources. As such, SHETRAN provides a robust means of simulating numerous terrestrial system processes which will add physical realism when coupled to the JULES land surface model. 306 catchments spanning Great Britain have been modelled using this system. The standard configuration of this system performs satisfactorily (NSE > 0.5) for 72% of catchments and well (NSE > 0.7) for 48%. Many of the remaining 28% of catchments that performed relatively poorly (NSE < 0.5) are located in the chalk in the south east of England. As such, the British Geological Survey 3D geology model for Great Britain (GB3D) has been incorporated, for the first time in any hydrological model, to pave the way for improvements to be made to simulations of catchments with important groundwater regimes. This coupling has involved development of software to allow for easy incorporation of geological information into SHETRAN for any model setup. The addition of more realistic subsurface representation following this approach is shown to greatly improve model performance in areas dominated by groundwater processes. The resulting modelling system has great potential to be used as a resource at national, regional and local scales in an array of different applications, including climate change impact assessments, land cover change studies and integrated assessments of groundwater and surface water resources.

  3. Interpreting geologic maps for engineering purposes: Hollidaysburg quadrangle, Pennsylvania

    USGS Publications Warehouse

    ,

    1953-01-01

    This set of maps has been prepared to show the kinds of information, useful to engineers, that can be derived from ordinary geologic maps. A few additional bits of information, drawn from other sources, are mentioned below. Some of the uses of such maps are well known; they are indispensable tools in the modern search for oil or ore deposits; they are the first essential step in unraveling the story of the earth we live on. Less well known, perhaps, is the fact that topographic and geologic maps contain many of the basic data needed for planning any engineering construction job, big or little. Any structure built by man must fit into the topographic and geologic environment shown on such maps. Moreover, most if not all construction jobs must be based on knowledge of the soils and waters, which also are intimately related to this same environment. The topographic map shows the shape of the land the hills and valleys, the streams and swamps, the man-made features such as roads, railroads, and towns. The geologic map shows the kinds and shapes of the rock bodies that form the land surface and that lie beneath it. These are the facts around which the engineer must build.

  4. Test and evaluation of the HIDEC engine uptrim algorithm. [Highly Integrated Digital Electronic Control for aircraft

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Myers, L. P.

    1986-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemente into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.

  5. Uncertainties have a meaning: Information entropy as a quality measure for 3-D geological models

    NASA Astrophysics Data System (ADS)

    Wellmann, J. Florian; Regenauer-Lieb, Klaus

    2012-03-01

    Analyzing, visualizing and communicating uncertainties are important issues as geological models can never be fully determined. To date, there exists no general approach to quantify uncertainties in geological modeling. We propose here to use information entropy as an objective measure to compare and evaluate model and observational results. Information entropy was introduced in the 50s and defines a scalar value at every location in the model for predictability. We show that this method not only provides a quantitative insight into model uncertainties but, due to the underlying concept of information entropy, can be related to questions of data integration (i.e. how is the model quality interconnected with the used input data) and model evolution (i.e. does new data - or a changed geological hypothesis - optimize the model). In other words information entropy is a powerful measure to be used for data assimilation and inversion. As a first test of feasibility, we present the application of the new method to the visualization of uncertainties in geological models, here understood as structural representations of the subsurface. Applying the concept of information entropy on a suite of simulated models, we can clearly identify (a) uncertain regions within the model, even for complex geometries; (b) the overall uncertainty of a geological unit, which is, for example, of great relevance in any type of resource estimation; (c) a mean entropy for the whole model, important to track model changes with one overall measure. These results cannot easily be obtained with existing standard methods. The results suggest that information entropy is a powerful method to visualize uncertainties in geological models, and to classify the indefiniteness of single units and the mean entropy of a model quantitatively. Due to the relationship of this measure to the missing information, we expect the method to have a great potential in many types of geoscientific data assimilation problems — beyond pure visualization.

  6. National Dam Safety Program. Lake Montowese Dam (M0 30151), Mississippi - Kaskaskia - St. Louis Basin, Jefferson County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1978-11-01

    Williams, Chief Applied Engineering & Urban Geology Geology & Land Survey October 8, 1976 I Chart 2-11 APPENDIX _______--row]h NO. 1 : UPS7TREAM FACE 01...be cut out as indicated by the maintenance people. Otherwise the dam looks to be in a very good condition. I Edwin E. Luzten, Geologist Applied ... Engineering & Urban Geology Missouri Geological Survey lJuly 1i, 1973 hI I Chart 2-7 I ... . , ---- -i- - 3~ i Mf itS 0 I C)E R S. BON D .1%A

  7. Integration of geology, geostatistics, well logs and pressure data to model a heterogeneous supergiant field in Iran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samimi, B.; Bagherpour, H.; Nioc, A.

    1995-08-01

    The geological reservoir study of the supergiant Ahwaz field significantly improved the history matching process in many aspects, particularly the development of a geostatistical model which allowed a sound basis for changes and by delivering much needed accurate estimates of grid block vertical permeabilities. The geostatistical reservoir evaluation was facilitated by using the Heresim package and litho-stratigraphic zonations for the entire field. For each of the geological zones, 3-dimensional electrolithofacies and petrophysical property distributions (realizations) were treated which captured the heterogeneities which significantly affected fluid flow. However, as this level of heterogeneity was at a significantly smaller scale than themore » flow simulation grid blocks, a scaling up effort was needed to derive the effective flow properties of the blocks (porosity, horizontal and vertical permeability, and water saturation). The properties relating to the static reservoir description were accurately derived by using stream tube techniques developed in-house whereas, the relative permeabilities of the grid block were derived by dynamic pseudo relative permeability techniques. The prediction of vertical and lateral communication and water encroachment was facilitated by a close integration of pressure, saturation data, geostatistical modelling and sedimentological studies of the depositional environments and paleocurrents. The nature of reservoir barriers and baffles varied both vertically and laterally in this heterogeneous reservoir. Maps showing differences in pressure between zones after years of production served as a guide to integrating the static geological studies to the dynamic behaviour of each of the 16 reservoir zones. The use of deep wells being drilled to a deeper reservoir provided data to better understand the sweep efficiency and the continuity of barriers and baffles.« less

  8. Introduction to TETHYS—an interdisciplinary GIS database for studying continental collisions

    NASA Astrophysics Data System (ADS)

    Khan, S. D.; Flower, M. F. J.; Sultan, M. I.; Sandvol, E.

    2006-05-01

    The TETHYS GIS database is being developed as a way to integrate relevant geologic, geophysical, geochemical, geochronologic, and remote sensing data bearing on Tethyan continental plate collisions. The project is predicated on a need for actualistic model 'templates' for interpreting the Earth's geologic record. Because of their time-transgressive character, Tethyan collisions offer 'actualistic' models for features such as continental 'escape', collision-induced upper mantle flow magmatism, and marginal basin opening, associated with modern convergent plate margins. Large integrated geochemical and geophysical databases allow for such models to be tested against the geologic record, leading to a better understanding of continental accretion throughout Earth history. The TETHYS database combines digital topographic and geologic information, remote sensing images, sample-based geochemical, geochronologic, and isotopic data (for pre- and post-collision igneous activity), and data for seismic tomography, shear-wave splitting, space geodesy, and information for plate tectonic reconstructions. Here, we report progress on developing such a database and the tools for manipulating and visualizing integrated 2-, 3-, and 4-d data sets with examples of research applications in progress. Based on an Oracle database system, linked with ArcIMS via ArcSDE, the TETHYS project is an evolving resource for researchers, educators, and others interested in studying the role of plate collisions in the process of continental accretion, and will be accessible as a node of the national Geosciences Cyberinfrastructure Network—GEON via the World-Wide Web and ultra-high speed internet2. Interim partial access to the data and metadata is available at: http://geoinfo.geosc.uh.edu/Tethys/ and http://www.esrs.wmich.edu/tethys.htm. We demonstrate the utility of the TETHYS database in building a framework for lithospheric interactions in continental collision and accretion.

  9. The role of integrated high resolution stratigraphic and geophysic surveys for groundwater modelling

    NASA Astrophysics Data System (ADS)

    Margiotta, S.; Mazzone, F.; Negri, S.; Calora, M.

    2008-10-01

    This work sets out a methodology of integrated geological, hydrogeological and geophysical surveys for the characterization of contaminated sites. The flow model of the shallow aquifer in the Brindisi area (recognized to be at significant environmental risk by the Italian government) and the impact of an antrophic structure on the groundwater flow have been evaluated. The stratigraphic and hydrogeological targets used for the calibration phase of the flow model provide a means of assessing calibration quality. The good calibration of the model point out the key role of a detailed knowledge of the physical-stratigraphycal attributes of the area to be studied and field data collection. Geoelectrical tomography focus the attention on an area resulted of particular interest by the flow model obtained. This method permit to reconstruct in detail the lateral and vertical lithological variations in the geological formations improving the spatial resolution of the data and consequently the scale of observation. Besides, anomaly resistivity values have been correlated with pollution. Chemical analysis have confirmed this correlation.

  10. Towards the Integration of APECS with VE-Suite to Create a Comprehensive Virtual Engineering Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCorkle, D.; Yang, C.; Jordan, T.

    2007-06-01

    Modeling and simulation tools are becoming pervasive in the process engineering practice of designing advanced power generation facilities. These tools enable engineers to explore many what-if scenarios before cutting metal or constructing a pilot scale facility. While such tools enable investigation of crucial plant design aspects, typical commercial process simulation tools such as Aspen Plus®, gPROMS®, and HYSYS® still do not explore some plant design information, including computational fluid dynamics (CFD) models for complex thermal and fluid flow phenomena, economics models for policy decisions, operational data after the plant is constructed, and as-built information for use in as-designed models. Softwaremore » tools must be created that allow disparate sources of information to be integrated if environments are to be constructed where process simulation information can be accessed. At the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL), the Advanced Process Engineering Co-Simulator (APECS) has been developed as an integrated software suite that combines process simulation (e.g., Aspen Plus) and high-fidelity equipment simulation (e.g., Fluent® CFD), together with advanced analysis capabilities including case studies, sensitivity analysis, stochastic simulation for risk/uncertainty analysis, and multi-objective optimization. In this paper, we discuss the initial phases of integrating APECS with the immersive and interactive virtual engineering software, VE-Suite, developed at Iowa State University and Ames Laboratory. VE-Suite utilizes the ActiveX (OLE Automation) controls in Aspen Plus wrapped by the CASI library developed by Reaction Engineering International to run the process simulation and query for unit operation results. This integration permits any application that uses the VE-Open interface to integrate with APECS co-simulations, enabling construction of the comprehensive virtual engineering environment needed for the rapid engineering of advanced power generation facilities.« less

  11. Integrating the human element into the systems engineering process and MBSE methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadros, Michael Samir

    In response to the challenges related to the increasing size and complexity of systems, organizations have recognized the need to integrate human considerations in the beginning stages of systems development. Human Systems Integration (HSI) seeks to accomplish this objective by incorporating human factors within systems engineering (SE) processes and methodologies, which is the focus of this paper. A representative set of HSI methods from multiple sources are organized, analyzed, and mapped to the systems engineering Vee-model. These methods are then consolidated and evaluated against the SE process and Models-Based Systems Engineering (MBSE) methodology to determine where and how they couldmore » integrate within systems development activities in the form of specific enhancements. Overall conclusions based on these evaluations are presented and future research areas are proposed.« less

  12. Facilitating CCS Business Planning by Extending the Functionality of the SimCCS Integrated System Model

    DOE PAGES

    Ellett, Kevin M.; Middleton, Richard S.; Stauffer, Philip H.; ...

    2017-08-18

    The application of integrated system models for evaluating carbon capture and storage technology has expanded steadily over the past few years. To date, such models have focused largely on hypothetical scenarios of complex source-sink matching involving numerous large-scale CO 2 emitters, and high-volume, continuous reservoirs such as deep saline formations to function as geologic sinks for carbon storage. Though these models have provided unique insight on the potential costs and feasibility of deploying complex networks of integrated infrastructure, there remains a pressing need to translate such insight to the business community if this technology is to ever achieve a trulymore » meaningful impact in greenhouse gas mitigation. Here, we present a new integrated system modelling tool termed SimCCUS aimed at providing crucial decision support for businesses by extending the functionality of a previously developed model called SimCCS. The primary innovation of the SimCCUS tool development is the incorporation of stacked geological reservoir systems with explicit consideration of processes and costs associated with the operation of multiple CO 2 utilization and storage targets from a single geographic location. In such locations provide significant efficiencies through economies of scale, effectively minimizing CO 2 storage costs while simultaneously maximizing revenue streams via the utilization of CO 2 as a commodity for enhanced hydrocarbon recovery.« less

  13. Facilitating CCS Business Planning by Extending the Functionality of the SimCCS Integrated System Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellett, Kevin M.; Middleton, Richard S.; Stauffer, Philip H.

    The application of integrated system models for evaluating carbon capture and storage technology has expanded steadily over the past few years. To date, such models have focused largely on hypothetical scenarios of complex source-sink matching involving numerous large-scale CO 2 emitters, and high-volume, continuous reservoirs such as deep saline formations to function as geologic sinks for carbon storage. Though these models have provided unique insight on the potential costs and feasibility of deploying complex networks of integrated infrastructure, there remains a pressing need to translate such insight to the business community if this technology is to ever achieve a trulymore » meaningful impact in greenhouse gas mitigation. Here, we present a new integrated system modelling tool termed SimCCUS aimed at providing crucial decision support for businesses by extending the functionality of a previously developed model called SimCCS. The primary innovation of the SimCCUS tool development is the incorporation of stacked geological reservoir systems with explicit consideration of processes and costs associated with the operation of multiple CO 2 utilization and storage targets from a single geographic location. In such locations provide significant efficiencies through economies of scale, effectively minimizing CO 2 storage costs while simultaneously maximizing revenue streams via the utilization of CO 2 as a commodity for enhanced hydrocarbon recovery.« less

  14. Human Factors Interface with Systems Engineering for NASA Human Spaceflights

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    2009-01-01

    This paper summarizes the past and present successes of the Habitability and Human Factors Branch (HHFB) at NASA Johnson Space Center s Space Life Sciences Directorate (SLSD) in including the Human-As-A-System (HAAS) model in many NASA programs and what steps to be taken to integrate the Human-Centered Design Philosophy (HCDP) into NASA s Systems Engineering (SE) process. The HAAS model stresses systems are ultimately designed for the humans; the humans should therefore be considered as a system within the systems. Therefore, the model places strong emphasis on human factors engineering. Since 1987, the HHFB has been engaging with many major NASA programs with much success. The HHFB helped create the NASA Standard 3000 (a human factors engineering practice guide) and the Human Systems Integration Requirements document. These efforts resulted in the HAAS model being included in many NASA programs. As an example, the HAAS model has been successfully introduced into the programmatic and systems engineering structures of the International Space Station Program (ISSP). Success in the ISSP caused other NASA programs to recognize the importance of the HAAS concept. Also due to this success, the HHFB helped update NASA s Systems Engineering Handbook in December 2007 to include HAAS as a recommended practice. Nonetheless, the HAAS model has yet to become an integral part of the NASA SE process. Besides continuing in integrating HAAS into current and future NASA programs, the HHFB will investigate incorporating the Human-Centered Design Philosophy (HCDP) into the NASA SE Handbook. The HCDP goes further than the HAAS model by emphasizing a holistic and iterative human-centered systems design concept.

  15. Geologic characterization of shelf areas using usSEABED for GIS mapping, modeling processes and assessing marine sand and gravel resources

    USGS Publications Warehouse

    Williams, S.J.; Bliss, J.D.; Arsenault, M.A.; Jenkins, C.J.; Goff, J.A.

    2007-01-01

    Geologic maps depicting offshore sedimentary features serve many scientific and applied purposes. Such maps have been lacking, but recent computer technology and software offer promise in the capture and display of diverse marine data. Continental margins contain landforms which provide a variety of important functions and contain important sedimentary records. Some shelf areas also contain deposits regarded as potential aggregate resources. Because proper management of coastal and offshore areas is increasingly important, knowledge of the framework geology and marine processes is critical. Especially valuable are comprehensive and integrated digital databases based on high-quality information from original sources. Products of interest are GIS maps containing thematic information, such as sediment character and texture. These products are useful to scientists modeling nearshore and shelf processes as well as planners and managers. The U.S. Geological Survey is leading a national program to gather a variety of extant marine geologic data into the usSEABED database system. This provides centralized, integrated marine geologic data collected over the past 50 years. To date, over 340,000 sediment data points from the U.S. reside in usSEABED, which combines an array of physical data and analytical and descriptive information about the sea floor and are available to the marine community through three USGS data reports for the Atlantic, Gulf of Mexico, and Pacific published in 2006, and the project web sites: (http://woodshole.er.usg s.gov/project-pages/aggregates/ and http://walrus.wr.usgs.gov/usseabed/)

  16. A generalized computer code for developing dynamic gas turbine engine models (DIGTEM)

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.

    1984-01-01

    This paper describes DIGTEM (digital turbofan engine model), a computer program that simulates two spool, two stream (turbofan) engines. DIGTEM was developed to support the development of a real time multiprocessor based engine simulator being designed at the Lewis Research Center. The turbofan engine model in DIGTEM contains steady state performance maps for all the components and has control volumes where continuity and energy balances are maintained. Rotor dynamics and duct momentum dynamics are also included. DIGTEM features an implicit integration scheme for integrating stiff systems and trims the model equations to match a prescribed design point by calculating correction coefficients that balance out the dynamic equations. It uses the same coefficients at off design points and iterates to a balanced engine condition. Transients are generated by defining the engine inputs as functions of time in a user written subroutine (TMRSP). Closed loop controls can also be simulated. DIGTEM is generalized in the aerothermodynamic treatment of components. This feature, along with DIGTEM's trimming at a design point, make it a very useful tool for developing a model of a specific turbofan engine.

  17. A generalized computer code for developing dynamic gas turbine engine models (DIGTEM)

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.

    1983-01-01

    This paper describes DIGTEM (digital turbofan engine model), a computer program that simulates two spool, two stream (turbofan) engines. DIGTEM was developed to support the development of a real time multiprocessor based engine simulator being designed at the Lewis Research Center. The turbofan engine model in DIGTEM contains steady state performance maps for all the components and has control volumes where continuity and energy balances are maintained. Rotor dynamics and duct momentum dynamics are also included. DIGTEM features an implicit integration scheme for integrating stiff systems and trims the model equations to match a prescribed design point by calculating correction coefficients that balance out the dynamic equations. It uses the same coefficients at off design points and iterates to a balanced engine condition. Transients are generated by defining the engine inputs as functions of time in a user written subroutine (TMRSP). Closed loop controls can also be simulated. DIGTEM is generalized in the aerothermodynamic treatment of components. This feature, along with DIGTEM's trimming at a design point, make it a very useful tool for developing a model of a specific turbofan engine.

  18. Report of the USGS Coastal and Marine Geology Modeling Workshop, Pacific Marine Science Center, Santa Cruz, CA, March 22-23, 2005

    USGS Publications Warehouse

    Sherwood, Christopher R.

    2006-01-01

    A U.S. Geological Survey (USGS) Coastal and Marine Geology (CMG) Modeling Workshop was held to discuss the general topic of coastal modeling, defined broadly to include circulation, waves, sediment transport, water quality, ecology, sediment diagenesis, morphology change, and coastal evolution, on scales ranging from seconds and a few centimeters (individual ripples) to centuries (coastal evolution) and thousands of kilometers (tsunami propagation). The workshop was convened at the suggestion of CMG Program Management to improve communication among modelers and model users, assess modeling-related activities being conducted at the three centers (Florida Integrated Science Center, FISC; Pacific Marine Science Center; PMSC; and Woods Hole Science Center; WHSC), and develop goals, strategies, and plans for future modeling activities. The workshop represents a step toward developing a five-year strategic plan, and was timed to provide input for the FY06 prospectus. The workshop was held at the USGS Pacific Marine Science Center in Santa Cruz on March 22-23, 2005.

  19. Geologic Framework Model Analysis Model Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Clayton

    2000-12-19

    The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompassmore » the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M&O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and the repository design. These downstream models include the hydrologic flow models and the radionuclide transport models. All the models and the repository design, in turn, will be incorporated into the Total System Performance Assessment (TSPA) of the potential radioactive waste repository block and vicinity to determine the suitability of Yucca Mountain as a host for the repository. The interrelationship of the three components of the ISM and their interface with downstream uses are illustrated in Figure 2.« less

  20. Frontier Observatory for Research in Geothermal Energy: Phase 1 Topical Report Fallon, NV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blankenship, Douglas A.; Akerley, John; Blake, Kelly

    The Department of Energy (DOE) Frontier Observatory for Research in Geothermal Energy (FORGE) is to be a dedicated site where the subsurface scientific and engineering community can develop, test, and improve technologies and techniques for the creation of cost-effective and sustainable enhanced geothermal systems (EGS) in a controlled, ideal environment. The establishment of FORGE will facilitate development of an understanding of the key mechanisms controlling a successful EGS. Execution of FORGE is occurring in three phases with five distinct sub-phases (1, 2A, 2B, 2C, and 3). This report focuses on Phase 1 activities. During Phase 1, critical technical and logisticalmore » tasks necessary to demonstrate the viability of the Fallon FORGE Project site were completed and the commitment and capability of the Fallon FORGE team to execute FORGE was demonstrated. As part of Phase 1, the Fallon FORGE Team provided an assessment of available relevant data and integrated these geologic and geophysical data to develop a conceptual 3-D geologic model of the proposed test location. Additionally, the team prepared relevant operational plans for full FORGE implementation, provided relevant site data to the science and engineering community, engaged in outreach and communications with interested stakeholders, and performed a review of the environmental and permitting activities needed to allow FORGE to progress through Phase 3. The results of these activities are provided as Appendices to this report. The Fallon FORGE Team is diverse, with deep roots in geothermal science and engineering. The institutions and key personnel that comprise the Fallon FORGE Team provide a breadth of geoscience and geoengineering capabilities, a strong and productive history in geothermal research and applications, and the capability and experience to manage projects with the complexity anticipated for FORGE. Fallon FORGE Team members include the U.S. Navy, Ormat Nevada Inc., Sandia National Laboratories (SNL), Lawrence Berkeley National Laboratory (LBNL), the United States Geological Survey (USGS), the University of Nevada, Reno (UNR), GeothermEx/Schlumberger (GeothelinEx), and Itasca Consulting Group (Itasca). The site owners (through direct land ownership or via applicable permits)—the U.S. Navy and Ormat Nevada Inc.—are deeply committed to expanding the development of geothermal resources and are fully supportive of FORGE operations taking place on their lands.« less

  1. A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control

    NASA Astrophysics Data System (ADS)

    Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi

    A flyable FADEC system engineering model incorporating Integrated Flight and Propulsion Control (IFPC) concept is developed for a highly maneuverable aircraft and a fighter-class engine. An overview of the FADEC system and functional assignments for its components such as the Engine Control Unit (ECU) and the Integrated Control Unit (ICU) are described. Overall system reliability analysis, convex analysis and multivariable controller design for the engine, fault detection/redundancy management, and response characteristics of a fuel system are addressed. The engine control performance of the FADEC is demonstrated by hardware-in-the-loop simulation for fast acceleration and thrust transient characteristics.

  2. A new strategy for developing Vs30 maps

    USGS Publications Warehouse

    Wald, David J.; McWhirter, Leslie; Thompson, Eric; Hering, Amanda S.

    2011-01-01

    Despite obvious limitations as a proxy for site amplification, the use of time-averaged shear-wave velocity over the top 30m (Vs30) is useful and widely practiced, most notably through its use as an explanatory variable in ground motion prediction equations (and thus hazard maps and ShakeMaps, among other applications). Local, regional, and global Vs30 maps thus have diverse and fundamental uses in earthquake and engineering seismology. As such, we are developing an improved strategy for producing Vs30 maps given the common observational constraints available in any region for various spatial scales. We investigate a hierarchical approach to mapping Vs30, where the baseline model is derived from topographic slope because it is available globally, but geological maps and Vs30 observations contribute, where available. Using the abundant measured Vs30 values in Taiwan as an example, we analyze Vs30 versus slope per geologic unit and observe minor trends that indicate potential interaction of geologic and slope terms. We then regress Vs30 for the geologic Vs30 medians, topographic-slope, and cross-term coefficients for a hybrid model. The residuals of this hybrid model still exhibit a strong spatial correlation structure, so we use the kriging-with-a-trend method (the trend is the hybrid model) to further refine the Vs30 map so as to honor the Vs30 observations. Unlike the geology or slope models alone, this strategytakes advantage of the predictive capabilities of the two models, yet effectively defaults to ordinary kriging in the vicinity of the observed data, thereby achieving consistency with the observed data.

  3. About Us - Employment | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska researching Alaska's geology and implementing technological tools to efficiently collect, interpret, publish

  4. HiRel - Reliability/availability integrated workstation tool

    NASA Technical Reports Server (NTRS)

    Bavuso, Salvatore J.; Dugan, Joanne B.

    1992-01-01

    The HiRel software tool is described and demonstrated by application to the mission avionics subsystem of the Advanced System Integration Demonstrations (ASID) system that utilizes the PAVE PILLAR approach. HiRel marks another accomplishment toward the goal of producing a totally integrated computer-aided design (CAD) workstation design capability. Since a reliability engineer generally represents a reliability model graphically before it can be solved, the use of a graphical input description language increases productivity and decreases the incidence of error. The graphical postprocessor module HARPO makes it possible for reliability engineers to quickly analyze huge amounts of reliability/availability data to observe trends due to exploratory design changes. The addition of several powerful HARP modeling engines provides the user with a reliability/availability modeling capability for a wide range of system applications all integrated under a common interactive graphical input-output capability.

  5. Geological Investigation and analysis in response to Earthquake Induced Landslide in West Sumatra

    NASA Astrophysics Data System (ADS)

    Karnawati, D.; Wilopo, W.; Salahudin, S.; Sudarno, I.; Burton, P.

    2009-12-01

    Substantial socio-economical loss occurred in response to the September 30. 2009 West Sumatra Earthquake with magnitude of 7.6. Damage of houses and engineered structures mostly occurred at the low land of alluvium sediments due to the ground amplification, whilst at the high land of mountain slopes several villages were buried by massive debris of rocks and soils. It was recorded that 1115 people died due to this disasters. Series of geological investigation was carried out by Geological Engineering Department of Gadjah Mada University, with the purpose to support the rehabilitation program. Based on this preliminary investigation it was identified that most of the house and engineered structural damages at the alluvial deposits mainly due to by the poor quality of such houses and engineered structures, which poorly resist the ground amplification, instead of due to the control of geological conditions. On the other hand, the existence and distribution of structural geology (faults and joints) at the mountaineous regions are significant in controlling the distribution of landslides, with the types of rock falls, debris flows and debris falls. Despite the landslide susceptibility mapping conducted by Geological Survey of Indonesia, more detailed investigation is required to be carried out in the region surrounding Maninjau Lake, in order to provide safer places for village relocation. Accordingly Gadjah Mada University in collaboration with the local university (Andalas University) as well as with the local Government of Agam Regency and the Geological Survey of Indonesia, serve the mission for conducting rather more detailed geological and landslide investigation. It is also crucial that the investigation (survey and mapping) on the social perception and expectation of local people living in this landslide susceptible area should also be carried out, to support the mitigation effort of any future potential earthquake induced landslides.

  6. Publications - PIR 2004-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ) Keywords Alaska, State of; Alluvial Deposits; Amy Creek Assemblage; Amy Dolomite; Ar-Ar; Bison Fossils ; Cambrian; Caribou Fossils; Cascaden Ridge Unit; Cenozoic; Colluvial Deposits; Cretaceous; Devonian ; Engineering Geology; Eolian; Fox Fossils; Geochemistry; Geochronology; Geologic Hazards; Geologic Materials

  7. Fundamentals of Structural Geology

    NASA Astrophysics Data System (ADS)

    Pollard, David D.; Fletcher, Raymond C.

    2005-09-01

    Fundamentals of Structural Geology provides a new framework for the investigation of geological structures by integrating field mapping and mechanical analysis. Assuming a basic knowledge of physical geology, introductory calculus and physics, it emphasizes the observational data, modern mapping technology, principles of continuum mechanics, and the mathematical and computational skills, necessary to quantitatively map, describe, model, and explain deformation in Earth's lithosphere. By starting from the fundamental conservation laws of mass and momentum, the constitutive laws of material behavior, and the kinematic relationships for strain and rate of deformation, the authors demonstrate the relevance of solid and fluid mechanics to structural geology. This book offers a modern quantitative approach to structural geology for advanced students and researchers in structural geology and tectonics. It is supported by a website hosting images from the book, additional colour images, student exercises and MATLAB scripts. Solutions to the exercises are available to instructors. The book integrates field mapping using modern technology with the analysis of structures based on a complete mechanics MATLAB is used to visualize physical fields and analytical results and MATLAB scripts can be downloaded from the website to recreate textbook graphics and enable students to explore their choice of parameters and boundary conditions The supplementary website hosts color images of outcrop photographs used in the text, supplementary color images, and images of textbook figures for classroom presentations The textbook website also includes student exercises designed to instill the fundamental relationships, and to encourage the visualization of the evolution of geological structures; solutions are available to instructors

  8. Spatial Modeling for Groundwater Arsenic Levels in North Carolina

    PubMed Central

    Kim, Dohyeong; Miranda, Marie Lynn; Tootoo, Joshua; Bradley, Phil; Gelfand, Alan E.

    2013-01-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area. PMID:21528844

  9. Spatial modeling for groundwater arsenic levels in North Carolina.

    PubMed

    Kim, Dohyeong; Miranda, Marie Lynn; Tootoo, Joshua; Bradley, Phil; Gelfand, Alan E

    2011-06-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area.

  10. True Concurrent Thermal Engineering Integrating CAD Model Building with Finite Element and Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    Panczak, Tim; Ring, Steve; Welch, Mark

    1999-01-01

    Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.

  11. Enhancements to the Engine Data Interpretation System (EDIS)

    NASA Technical Reports Server (NTRS)

    Hofmann, Martin O.

    1993-01-01

    The Engine Data Interpretation System (EDIS) expert system project assists the data review personnel at NASA/MSFC in performing post-test data analysis and engine diagnosis of the Space Shuttle Main Engine (SSME). EDIS uses knowledge of the engine, its components, and simple thermodynamic principles instead of, and in addition to, heuristic rules gathered from the engine experts. EDIS reasons in cooperation with human experts, following roughly the pattern of logic exhibited by human experts. EDIS concentrates on steady-state static faults, such as small leaks, and component degradations, such as pump efficiencies. The objective of this contract was to complete the set of engine component models, integrate heuristic rules into EDIS, integrate the Power Balance Model into EDIS, and investigate modification of the qualitative reasoning mechanisms to allow 'fuzzy' value classification. The results of this contract is an operational version of EDIS. EDIS will become a module of the Post-Test Diagnostic System (PTDS) and will, in this context, provide system-level diagnostic capabilities which integrate component-specific findings provided by other modules.

  12. Enhancements to the Engine Data Interpretation System (EDIS)

    NASA Technical Reports Server (NTRS)

    Hofmann, Martin O.

    1993-01-01

    The Engine Data Interpretation System (EDIS) expert system project assists the data review personnel at NASA/MSFC in performing post-test data analysis and engine diagnosis of the Space Shuttle Main Engine (SSME). EDIS uses knowledge of the engine, its components, and simple thermodynamic principles instead of, and in addition to, heuristic rules gathered from the engine experts. EDIS reasons in cooperation with human experts, following roughly the pattern of logic exhibited by human experts. EDIS concentrates on steady-state static faults, such as small leaks, and component degradations, such as pump efficiencies. The objective of this contract was to complete the set of engine component models, integrate heuristic rules into EDIS, integrate the Power Balance Model into EDIS, and investigate modification of the qualitative reasoning mechanisms to allow 'fuzzy' value classification. The result of this contract is an operational version of EDIS. EDIS will become a module of the Post-Test Diagnostic System (PTDS) and will, in this context, provide system-level diagnostic capabilities which integrate component-specific findings provided by other modules.

  13. Publications - MP 158 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in Alaska Deposits; Bluff; Coastal; Coastal Erosion; Depositional Environment; Dunes; Engineering Geology; Flood

  14. The 3D geological model of the 1963 Vajont rockslide, reconstructed with implicit surface methods

    NASA Astrophysics Data System (ADS)

    Bistacchi, Andrea; Massironi, Matteo; Francese, Roberto; Giorgi, Massimo; Taller, Claudio

    2015-04-01

    The Vajont rockslide has been the object of several studies because of its catastrophic consequences and of its particular evolution. Several qualitative or quantitative models have been presented in the last 50 years, but a complete explanation of all the relevant geological and mechanical processes remains elusive. In order to better understand the mechanics and dynamics of the 1963 event, we have reconstructed the first 3D geological model of the rockslide, which allowed us to accurately investigate the rockslide structure and kinematics. The input data for the model consisted in: pre- and post-rockslide geological maps, pre- and post-rockslide orthophotos, pre- and post-rockslide digital elevation models, structural data, boreholes, and geophysical data (2D and 3D seismics and resistivity). All these data have been integrated in a 3D geological model implemented in Gocad®, using the implicit surface modelling method. Results of the 3D geological model include the depth and geometry of the sliding surface, the volume of the two lobes of the rockslide accumulation, kinematics of the rockslide in terms of the vector field of finite displacement, and high quality meshes useful for mechanical and hydrogeological simulations. The latter can include information about the stratigraphy and internal structure of the rock masses and allow tracing the displacement of different material points in the rockslide from the pre-1963-failure to the post-rockslide state. As a general geological conclusion, we may say that the 3D model allowed us to recognize very effectively a sliding surface, whose non-planar geometry is affected by the interference pattern of two regional-scale fold systems. The rockslide is partitioned into two distinct and internally continuous rock masses with a distinct kinematics, which were characterised by a very limited internal deformation during the slide. The continuity of these two large blocks points to a very localized deformation, occurring along a thin, continuous and weak cataclastic horizon. Finally, the chosen modelling strategy, based on both traditional "explicit" and implicit techniques, was found to be very effective for reconstructing complex folded and faulted geological structures, and could be applied also to other geological environments.

  15. Systems engineering interfaces: A model based approach

    NASA Astrophysics Data System (ADS)

    Fosse, E.; Delp, C. L.

    The engineering of interfaces is a critical function of the discipline of Systems Engineering. Included in interface engineering are instances of interaction. Interfaces provide the specifications of the relevant properties of a system or component that can be connected to other systems or components while instances of interaction are identified in order to specify the actual integration to other systems or components. Current Systems Engineering practices rely on a variety of documents and diagrams to describe interface specifications and instances of interaction. The SysML[1] specification provides a precise model based representation for interfaces and interface instance integration. This paper will describe interface engineering as implemented by the Operations Revitalization Task using SysML, starting with a generic case and culminating with a focus on a Flight System to Ground Interaction. The reusability of the interface engineering approach presented as well as its extensibility to more complex interfaces and interactions will be shown. Model-derived tables will support the case studies shown and are examples of model-based documentation products.

  16. Bridging the Engineering and Medicine Gap

    NASA Technical Reports Server (NTRS)

    Walton, M.; Antonsen, E.

    2018-01-01

    A primary challenge NASA faces is communication between the disparate entities of engineers and human system experts in life sciences. Clear communication is critical for exploration mission success from the perspective of both risk analysis and data handling. The engineering community uses probabilistic risk assessment (PRA) models to inform their own risk analysis and has extensive experience managing mission data, but does not always fully consider human systems integration (HSI). The medical community, as a part of HSI, has been working 1) to develop a suite of tools to express medical risk in quantitative terms that are relatable to the engineering approaches commonly in use, and 2) to manage and integrate HSI data with engineering data. This talk will review the development of the Integrated Medical Model as an early attempt to bridge the communication gap between the medical and engineering communities in the language of PRA. This will also address data communication between the two entities in the context of data management considerations of the Medical Data Architecture. Lessons learned from these processes will help identify important elements to consider in future communication and integration of these two groups.

  17. Thermohydrology of fractured geologic materials

    NASA Astrophysics Data System (ADS)

    Esh, David Whittaker

    1998-11-01

    Thermohydrological and thermohydrochemical modeling as applied to the disposal of radioactive materials in a geologic repository is presented. Site hydrology, chemistry, and mineralogy were summarized and conceptual models of the fundamental system processes were developed. The numerical model TOUGH2 was used to complete computer simulations of thermohydrological processes in fractured, geologic media. Sensitivity studies investigating the impact of dimensionality and different conceptual models to represent fractures (ECM, DK, MINC) on thermohydrological response were developed. Sensitivity to parameter variation within a given conceptual model was also considered. The sensitivity of response was examined against thermohydrological metrics derived from the flow and redistribution of moisture. A simple thermohydrochemical model to investigate a three-process coupling (thermal-hydrological-chemical) was presented. The redistribution of chloride was evaluated because the chemical behavior is well known and defensible. In addition, it is very important to overall system performance. For all of the simulations completed, chloride was found to be extremely concentrated in the fluids that eventually return to the engineered barrier system. Chloride concentration and mass flux were increased from ambient by over a factor of 1000 for some simulations. Thermohydrology was found to have the potential to significantly alter chemistry from ambient conditions.

  18. Jackson Bar Training Structure Study

    DTIC Science & Technology

    2015-05-01

    comparison of the one-dimensional bridge hydraulic routines from: HEC - RAS , HEC -2, and WSPRO. Davis, CA: U.S. Army Corps of Engineers, Hydrologic Engineering...ER D C/ CH L TR -1 5- 4 Jackson Bar Training Structure Study Co as ta l a nd H yd ra ul ic s La bo ra to ry Jeremy A. Sharp and...The hydrodynamic model was validated with gage data from the U.S. Geological Survey 02470050 Tombigbee River at Steamplant near Leroy, AL, gage

  19. Modelling the Mont Terri HE-D experiment for the Thermal–Hydraulic–Mechanical response of a bedded argillaceous formation to heating

    DOE PAGES

    Garitte, B.; Nguyen, T. S.; Barnichon, J. D.; ...

    2017-05-09

    Coupled thermal–hydrological–mechanical (THM) processes in the near field of deep geological repositories can influence several safety features of the engineered and geological barriers. Among those features are: the possibility of damage in the host rock, the time for re-saturation of the bentonite, and the perturbations in the hydraulic regime in both the rock and engineered seals. Within the international cooperative code-validation project DECOVALEX-2015, eight research teams developed models to simulate an in situ heater experiment, called HE-D, in Opalinus Clay at the Mont Terri Underground Research Laboratory in Switzerland. The models were developed from the theory of poroelasticity in ordermore » to simulate the coupled THM processes that prevailed during the experiment and thereby to characterize the in situ THM properties of Opalinus Clay. The modelling results for the evolution of temperature, pore water pressure, and deformation at different points are consistent among the research teams and compare favourably with the experimental data in terms of trends and absolute values. The models were able to reproduce the main physical processes of the experiment. In particular, most teams simulated temperature and thermally induced pore water pressure well, including spatial variations caused by inherent anisotropy due to bedding.« less

  20. Modelling the Mont Terri HE-D experiment for the Thermal–Hydraulic–Mechanical response of a bedded argillaceous formation to heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garitte, B.; Nguyen, T. S.; Barnichon, J. D.

    Coupled thermal–hydrological–mechanical (THM) processes in the near field of deep geological repositories can influence several safety features of the engineered and geological barriers. Among those features are: the possibility of damage in the host rock, the time for re-saturation of the bentonite, and the perturbations in the hydraulic regime in both the rock and engineered seals. Within the international cooperative code-validation project DECOVALEX-2015, eight research teams developed models to simulate an in situ heater experiment, called HE-D, in Opalinus Clay at the Mont Terri Underground Research Laboratory in Switzerland. The models were developed from the theory of poroelasticity in ordermore » to simulate the coupled THM processes that prevailed during the experiment and thereby to characterize the in situ THM properties of Opalinus Clay. The modelling results for the evolution of temperature, pore water pressure, and deformation at different points are consistent among the research teams and compare favourably with the experimental data in terms of trends and absolute values. The models were able to reproduce the main physical processes of the experiment. In particular, most teams simulated temperature and thermally induced pore water pressure well, including spatial variations caused by inherent anisotropy due to bedding.« less

  1. Using 3D Geologic Models to Synthesize Large and Disparate Datasets for Site Characterization and Verification Purposes

    NASA Astrophysics Data System (ADS)

    Hillesheim, M. B.; Rautman, C. A.; Johnson, P. B.; Powers, D. W.

    2008-12-01

    As we are all aware, increases in computing power and efficiency have allowed for the development of many modeling codes capable of processing large and sometimes disparate datasets (e.g., geological, hydrological, geochemical, etc). Because people sometimes have difficulty visualizing in three dimensions (3D) or understanding how multiple figures of various geologic features relate as a whole, 3D geologic models can be excellent tools to illustrate key concepts and findings, especially to lay persons, such as stakeholders, customers, and other concerned parties. In this presentation, we will show examples of 3D geologic modeling efforts using data collected during site characterization and verification work at the Waste Isolation Pilot Plant (WIPP). The WIPP is a U.S. Department of Energy (DOE) facility located in southeastern New Mexico, designed for the safe disposal of transuranic wastes resulting from U.S. defense programs. The 3D geologic modeling efforts focused on refining our understanding of the WIPP site by integrating a variety of geologic data. Examples include: overlaying isopach surfaces of unit thickness and overburden thickness, a map of geologic facies changes, and a transmissivity field onto a 3D structural map of a geologic unit of interest. In addition, we also present a 4D hydrogeologic model of the effects of a large-scale pumping test on water levels. All these efforts have provided additional insights into the controls on transmissivity and flow in the WIPP vicinity. Ultimately, by combining these various types of data we have increased our understanding of the WIPP site's hydrogeologic system, which is a key aspect of continued certification. Sandia is a multi program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04- 94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy.

  2. Application of remote sensor data to geologic analysis of the Bonanza test site Colorado

    NASA Technical Reports Server (NTRS)

    Lee, K. (Compiler); Butler, R. W.; Fisher, J. C.; Huntley, D.; Hulstrom, R. L.; Knepper, D. H., Jr.; Muhm, J. R.; Sawatzky, D. L.; Worman, K. E.; Wychgram, D.

    1973-01-01

    Research activities on geologic remote sensing applications for Colorado are summarized. Projects include: regional and detailed geologic mapping, surficial and engineering geology, fracture studies, uranium exploration, hydrology, and data reduction and enhancement. The acquisition of remote sensor data is also discussed.

  3. Landslides and engineering geology of the Seattle, Washington, area

    USGS Publications Warehouse

    Baum, Rex L.; Godt, Jonathan W.; Highland, Lynn M.

    2008-01-01

    This volume brings together case studies and summary papers describing the application of state-of-the-art engineering geologic methods to landslide hazard analysis for the Seattle, Washington, area. An introductory chapter provides a thorough description of the Quaternary and bedrock geology of Seattle. Nine additional chapters review the history of landslide mapping in Seattle, present case studies of individual landslides, describe the results of spatial assessments of landslide hazard, discuss hydrologic controls on landsliding, and outline an early warning system for rainfall-induced landslides.

  4. Nonlinear Dynamic Modeling and Controls Development for Supersonic Propulsion System Research

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Kopasakis, George; Paxson, Daniel E.; Stuber, Eric; Woolwine, Kyle

    2012-01-01

    This paper covers the propulsion system component modeling and controls development of an integrated nonlinear dynamic simulation for an inlet and engine that can be used for an overall vehicle (APSE) model. The focus here is on developing a methodology for the propulsion model integration, which allows for controls design that prevents inlet instabilities and minimizes the thrust oscillation experienced by the vehicle. Limiting thrust oscillations will be critical to avoid exciting vehicle aeroelastic modes. Model development includes both inlet normal shock position control and engine rotor speed control for a potential supersonic commercial transport. A loop shaping control design process is used that has previously been developed for the engine and verified on linear models, while a simpler approach is used for the inlet control design. Verification of the modeling approach is conducted by simulating a two-dimensional bifurcated inlet and a representative J-85 jet engine previously used in a NASA supersonics project. Preliminary results are presented for the current supersonics project concept variable cycle turbofan engine design.

  5. Advances in Geologic Disposal System Modeling and Application to Crystalline Rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariner, Paul E.; Stein, Emily R.; Frederick, Jennifer M.

    The Used Fuel Disposition Campaign (UFDC) of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of used nuclear fuel (UNF) and high-level nuclear waste (HLW). Two of the high priorities for UFDC disposal R&D are design concept development and disposal system modeling (DOE 2011). These priorities are directly addressed in the UFDC Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic mediamore » (e.g., salt, granite, clay, and deep borehole disposal). This report describes specific GDSA activities in fiscal year 2016 (FY 2016) toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA framework employs the PFLOTRAN thermal-hydrologic-chemical multi-physics code and the Dakota uncertainty sampling and propagation code. Each code is designed for massively-parallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through engineered barriers and natural geologic barriers to the biosphere. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.« less

  6. Integrated System-Level Optimization for Concurrent Engineering With Parametric Subsystem Modeling

    NASA Technical Reports Server (NTRS)

    Schuman, Todd; DeWeck, Oliver L.; Sobieski, Jaroslaw

    2005-01-01

    The introduction of concurrent design practices to the aerospace industry has greatly increased the productivity of engineers and teams during design sessions as demonstrated by JPL's Team X. Simultaneously, advances in computing power have given rise to a host of potent numerical optimization methods capable of solving complex multidisciplinary optimization problems containing hundreds of variables, constraints, and governing equations. Unfortunately, such methods are tedious to set up and require significant amounts of time and processor power to execute, thus making them unsuitable for rapid concurrent engineering use. This paper proposes a framework for Integration of System-Level Optimization with Concurrent Engineering (ISLOCE). It uses parametric neural-network approximations of the subsystem models. These approximations are then linked to a system-level optimizer that is capable of reaching a solution quickly due to the reduced complexity of the approximations. The integration structure is described in detail and applied to the multiobjective design of a simplified Space Shuttle external fuel tank model. Further, a comparison is made between the new framework and traditional concurrent engineering (without system optimization) through an experimental trial with two groups of engineers. Each method is evaluated in terms of optimizer accuracy, time to solution, and ease of use. The results suggest that system-level optimization, running as a background process during integrated concurrent engineering sessions, is potentially advantageous as long as it is judiciously implemented.

  7. Engineering-geological model of the landslide of Güevejar (S Spain) reactivated by historical earthquakes

    NASA Astrophysics Data System (ADS)

    Delgado, José; García-Tortosa, Francisco J.; Garrido, Jesús; Giner, José; Lenti, Luca; López-Casado, Carlos; Martino, Salvatore; Peláez, José A.; Sanz de Galdeano, Carlos; Soler, Juan L.

    2015-04-01

    Landslides are a common ground effect induced by earthquakes of moderate to large magnitude. Most of them correspond to first-time instabilities induced by the seismic event, being the reactivation of pre-existing landslides less frequent in practice. The landslide of Güevejar (Granada province, S Spain) represents a case study of landslide that was reactivated, at least, two times by far field earthquakes: the Mw 8.7, 1755, Lisbon earthquake (with estimated epicentral distance of 680 km), and the Mw 6.5, 1884, Andalucia event (estimated epicentral distance of 45 km), but not by near field events of moderate magnitude (Mw < 6.0 and epicentral distances lower than 25 km). To study the seismic response of this landslide, a study has been conducted to elaborate an engineering-geological model. For this purpose, field work done included the elaboration of a detailed geological map (1:1000) of the landslide and surrounding areas, drilling of deep boreholes (80 m deep), down-hole measurement of both P and S wave velocities in the boreholes drilled, piezometric control of water table, MASW and ReMi profiles for determining the underlying structure of the sites tested (soil profile stratigraphy and the corresponding S-wave velocity of each soil level) and undisturbed sampling of the materials affected by the landslide. These samples were then tested in laboratory according to standard procedures for determination of both static (among which soil density, soil classification and shear strength) and dynamic properties (degradation curves for shear modulus and damping ratio with shear strain) of the landslide-involved materials. The model proposed corresponds to a complex landslide that combines a rototranslational mechanism with an earth-flow at its toe, which is characterized by a deep (> 50 m) sliding surface. The engineering-geological model constitutes the first step in an ongoing research devoted to understand how it could be reactivated during far field events. The authors would like to thank the ERDF of European Union for financial support via project "Monitorización sísmica de deslizamientos. Criterios de reactivación y alerta temprana" of the "Programa Operativo FEDER de Andalucía 2007-2015". We also thank all Public Works Agency and Ministry of Public Works and Housing of the Regional Government of Andalusia.

  8. Student Participation in Rover Field Trials

    NASA Astrophysics Data System (ADS)

    Bowman, C. D.; Arvidson, R. E.; Nelson, S. V.; Sherman, D. M.; Squyres, S. W.

    2001-12-01

    The LAPIS program was developed in 1999 as part of the Athena Science Payload education and public outreach, funded by the JPL Mars Program Office. For the past three years, the Athena Science Team has been preparing for 2003 Mars Exploration Rover Mission operations using the JPL prototype Field Integrated Design and Operations (FIDO) rover in extended rover field trials. Students and teachers participating in LAPIS work with them each year to develop a complementary mission plan and implement an actual portion of the annual tests using FIDO and its instruments. LAPIS is designed to mirror an end-to-end mission: Small, geographically distributed groups of students form an integrated mission team, working together with Athena Science Team members and FIDO engineers to plan, implement, and archive a two-day test mission, controlling FIDO remotely over the Internet using the Web Interface for Telescience (WITS) and communicating with each other by email, the web, and teleconferences. The overarching goal of LAPIS is to get students excited about science and related fields. The program provides students with the opportunity to apply knowledge learned in school, such as geometry and geology, to a "real world" situation and to explore careers in science and engineering through continuous one-on-one interactions with teachers, Athena Science Team mentors, and FIDO engineers. A secondary goal is to help students develop improved communication skills and appreciation of teamwork, enhanced problem-solving skills, and increased self-confidence. The LAPIS program will provide a model for outreach associated with future FIDO field trials and the 2003 Mars mission operations. The base of participation will be broadened beyond the original four sites by taking advantage of the wide geographic distribution of Athena team member locations. This will provide greater numbers of students with the opportunity to actively engage in rover testing and to explore the possibilities of science, engineering, and technology.

  9. Integration of Earth System Models and Workflow Management under iRODS for the Northeast Regional Earth System Modeling Project

    NASA Astrophysics Data System (ADS)

    Lengyel, F.; Yang, P.; Rosenzweig, B.; Vorosmarty, C. J.

    2012-12-01

    The Northeast Regional Earth System Model (NE-RESM, NSF Award #1049181) integrates weather research and forecasting models, terrestrial and aquatic ecosystem models, a water balance/transport model, and mesoscale and energy systems input-out economic models developed by interdisciplinary research team from academia and government with expertise in physics, biogeochemistry, engineering, energy, economics, and policy. NE-RESM is intended to forecast the implications of planning decisions on the region's environment, ecosystem services, energy systems and economy through the 21st century. Integration of model components and the development of cyberinfrastructure for interacting with the system is facilitated with the integrated Rule Oriented Data System (iRODS), a distributed data grid that provides archival storage with metadata facilities and a rule-based workflow engine for automating and auditing scientific workflows.

  10. Systems Engineering Models and Tools | Wind | NREL

    Science.gov Websites

    (tm)) that provides wind turbine and plant engineering and cost models for holistic system analysis turbine/component models and wind plant analysis models that the systems engineering team produces. If you integrated modeling of wind turbines and plants. It provides guidance for overall wind turbine and plant

  11. Conflation and integration of archived geologic maps and associated uncertainties

    USGS Publications Warehouse

    Shoberg, Thomas G.

    2016-01-01

    Old, archived geologic maps are often available with little or no associated metadata. This creates special problems in terms of extracting their data to use with a modern database. This research focuses on some problems and uncertainties associated with conflating older geologic maps in regions where modern geologic maps are, as yet, non-existent as well as vertically integrating the conflated maps with layers of modern GIS data (in this case, The National Map of the U.S. Geological Survey). Ste. Genevieve County, Missouri was chosen as the test area. It is covered by six archived geologic maps constructed in the years between 1928 and 1994. Conflating these maps results in a map that is internally consistent with these six maps, is digitally integrated with hydrography, elevation and orthoimagery data, and has a 95% confidence interval useful for further data set integration.

  12. Integrating Surface Modeling into the Engineering Design Graphics Curriculum

    ERIC Educational Resources Information Center

    Hartman, Nathan W.

    2006-01-01

    It has been suggested there is a knowledge base that surrounds the use of 3D modeling within the engineering design process and correspondingly within engineering design graphics education. While solid modeling receives a great deal of attention and discussion relative to curriculum efforts, and rightly so, surface modeling is an equally viable 3D…

  13. Crustal Seismic Velocity Models of Texas

    NASA Astrophysics Data System (ADS)

    Borgfeldt, T.; Walter, J. I.; Frohlich, C.

    2016-12-01

    Crustal seismic velocity models are used to locate earthquake hypocenters. Typically, one dimensional velocity models are 3 - 8 fixed-thickness layers of varying P and S velocities with depth. On occasion, the layers of the upper crust (0-2 kilometers) are constrained with well log data from nearby wells, when available. Past velocity models used in Texas to locate earthquakes were made with little regard to deeper geologic units because shallow earthquakes with a localized seismic network only require velocity models of the upper crust. A recently funded statewide seismic network, TexNet, will require deeper crustal velocity models. Using data of geologic provinces, tectonics, sonic logs, tomography and receiver function studies, new regional velocity models of the state of Texas will allow researchers to more accurately locate hypocenters of earthquakes. We tested the accuracy of the initial models and then refine the layers of the 1-D regional models by using previously located earthquakes the USArray Transportable Array with earthquake location software. Geologic information will be integrated into a 3D velocity model at 0.5 degreee resolution for the entire state of Texas.

  14. Development of an Anisotropic Geological-Based Land Use Regression and Bayesian Maximum Entropy Model for Estimating Groundwater Radon across Northing Carolina

    NASA Astrophysics Data System (ADS)

    Messier, K. P.; Serre, M. L.

    2015-12-01

    Radon (222Rn) is a naturally occurring chemically inert, colorless, and odorless radioactive gas produced from the decay of uranium (238U), which is ubiquitous in rocks and soils worldwide. Exposure to 222Rn is likely the second leading cause of lung cancer after cigarette smoking via inhalation; however, exposure through untreated groundwater is also a contributing factor to both inhalation and ingestion routes. A land use regression (LUR) model for groundwater 222Rn with anisotropic geological and 238U based explanatory variables is developed, which helps elucidate the factors contributing to elevated 222Rn across North Carolina. Geological and uranium based variables are constructed in elliptical buffers surrounding each observation such that they capture the lateral geometric anisotropy present in groundwater 222Rn. Moreover, geological features are defined at three different geological spatial scales to allow the model to distinguish between large area and small area effects of geology on groundwater 222Rn. The LUR is also integrated into the Bayesian Maximum Entropy (BME) geostatistical framework to increase accuracy and produce a point-level LUR-BME model of groundwater 222Rn across North Carolina including prediction uncertainty. The LUR-BME model of groundwater 222Rn results in a leave-one out cross-validation of 0.46 (Pearson correlation coefficient= 0.68), effectively predicting within the spatial covariance range. Modeled results of 222Rn concentrations show variability among Intrusive Felsic geological formations likely due to average bedrock 238U defined on the basis of overlying stream-sediment 238U concentrations that is a widely distributed consistently analyzed point-source data.

  15. Creating a FIESTA (Framework for Integrated Earth Science and Technology Applications) with MagIC

    NASA Astrophysics Data System (ADS)

    Minnett, R.; Koppers, A. A. P.; Jarboe, N.; Tauxe, L.; Constable, C.

    2017-12-01

    The Magnetics Information Consortium (https://earthref.org/MagIC) has recently developed a containerized web application to considerably reduce the friction in contributing, exploring and combining valuable and complex datasets for the paleo-, geo- and rock magnetic scientific community. The data produced in this scientific domain are inherently hierarchical and the communities evolving approaches to this scientific workflow, from sampling to taking measurements to multiple levels of interpretations, require a large and flexible data model to adequately annotate the results and ensure reproducibility. Historically, contributing such detail in a consistent format has been prohibitively time consuming and often resulted in only publishing the highly derived interpretations. The new open-source (https://github.com/earthref/MagIC) application provides a flexible upload tool integrated with the data model to easily create a validated contribution and a powerful search interface for discovering datasets and combining them to enable transformative science. MagIC is hosted at EarthRef.org along with several interdisciplinary geoscience databases. A FIESTA (Framework for Integrated Earth Science and Technology Applications) is being created by generalizing MagIC's web application for reuse in other domains. The application relies on a single configuration document that describes the routing, data model, component settings and external services integrations. The container hosts an isomorphic Meteor JavaScript application, MongoDB database and ElasticSearch search engine. Multiple containers can be configured as microservices to serve portions of the application or rely on externally hosted MongoDB, ElasticSearch, or third-party services to efficiently scale computational demands. FIESTA is particularly well suited for many Earth Science disciplines with its flexible data model, mapping, account management, upload tool to private workspaces, reference metadata, image galleries, full text searches and detailed filters. EarthRef's Seamount Catalog of bathymetry and morphology data, EarthRef's Geochemical Earth Reference Model (GERM) databases, and Oregon State University's Marine and Geology Repository (http://osu-mgr.org) will benefit from custom adaptations of FIESTA.

  16. System-level modeling for economic evaluation of geological CO2storage in gas reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan

    2006-03-02

    One way to reduce the effects of anthropogenic greenhousegases on climate is to inject carbon dioxide (CO2) from industrialsources into deep geological formations such as brine aquifers ordepleted oil or gas reservoirs. Research is being conducted to improveunderstanding of factors affecting particular aspects of geological CO2storage (such as storage performance, storage capacity, and health,safety and environmental (HSE) issues) as well as to lower the cost ofCO2 capture and related processes. However, there has been less emphasisto date on system-level analyses of geological CO2 storage that considergeological, economic, and environmental issues by linking detailedprocess models to representations of engineering components andassociatedmore » economic models. The objective of this study is to develop asystem-level model for geological CO2 storage, including CO2 capture andseparation, compression, pipeline transportation to the storage site, andCO2 injection. Within our system model we are incorporating detailedreservoir simulations of CO2 injection into a gas reservoir and relatedenhanced production of methane. Potential leakage and associatedenvironmental impacts are also considered. The platform for thesystem-level model is GoldSim [GoldSim User's Guide. GoldSim TechnologyGroup; 2006, http://www.goldsim.com]. The application of the system modelfocuses on evaluating the feasibility of carbon sequestration withenhanced gas recovery (CSEGR) in the Rio Vista region of California. Thereservoir simulations are performed using a special module of the TOUGH2simulator, EOS7C, for multicomponent gas mixtures of methane and CO2.Using a system-level modeling approach, the economic benefits of enhancedgas recovery can be directly weighed against the costs and benefits ofCO2 injection.« less

  17. 10 CFR 63.113 - Performance objectives for the geologic repository after permanent closure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Performance objectives for the geologic repository after permanent closure. 63.113 Section 63.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH... and an engineered barrier system. (b) The engineered barrier system must be designed so that, working...

  18. 10 CFR 63.113 - Performance objectives for the geologic repository after permanent closure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Performance objectives for the geologic repository after permanent closure. 63.113 Section 63.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH... and an engineered barrier system. (b) The engineered barrier system must be designed so that, working...

  19. 10 CFR 63.113 - Performance objectives for the geologic repository after permanent closure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Performance objectives for the geologic repository after permanent closure. 63.113 Section 63.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH... and an engineered barrier system. (b) The engineered barrier system must be designed so that, working...

  20. 10 CFR 63.113 - Performance objectives for the geologic repository after permanent closure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Performance objectives for the geologic repository after permanent closure. 63.113 Section 63.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH... and an engineered barrier system. (b) The engineered barrier system must be designed so that, working...

  1. Improvement of density models of geological structures by fusion of gravity data and cosmic muon radiographies

    NASA Astrophysics Data System (ADS)

    Jourde, K.; Gibert, D.; Marteau, J.

    2015-08-01

    This paper examines how the resolution of small-scale geological density models is improved through the fusion of information provided by gravity measurements and density muon radiographies. Muon radiography aims at determining the density of geological bodies by measuring their screening effect on the natural flux of cosmic muons. Muon radiography essentially works like a medical X-ray scan and integrates density information along elongated narrow conical volumes. Gravity measurements are linked to density by a 3-D integration encompassing the whole studied domain. We establish the mathematical expressions of these integration formulas - called acquisition kernels - and derive the resolving kernels that are spatial filters relating the true unknown density structure to the density distribution actually recovered from the available data. The resolving kernel approach allows one to quantitatively describe the improvement of the resolution of the density models achieved by merging gravity data and muon radiographies. The method developed in this paper may be used to optimally design the geometry of the field measurements to be performed in order to obtain a given spatial resolution pattern of the density model to be constructed. The resolving kernels derived in the joined muon-gravimetry case indicate that gravity data are almost useless for constraining the density structure in regions sampled by more than two muon tomography acquisitions. Interestingly, the resolution in deeper regions not sampled by muon tomography is significantly improved by joining the two techniques. The method is illustrated with examples for the La Soufrière volcano of Guadeloupe.

  2. Hydrologic enforcement of lidar DEMs

    USGS Publications Warehouse

    Poppenga, Sandra K.; Worstell, Bruce B.; Danielson, Jeffrey J.; Brock, John C.; Evans, Gayla A.; Heidemann, H. Karl

    2014-01-01

    Hydrologic-enforcement (hydro-enforcement) of light detection and ranging (lidar)-derived digital elevation models (DEMs) modifies the elevations of artificial impediments (such as road fills or railroad grades) to simulate how man-made drainage structures such as culverts or bridges allow continuous downslope flow. Lidar-derived DEMs contain an extremely high level of topographic detail; thus, hydro-enforced lidar-derived DEMs are essential to the U.S. Geological Survey (USGS) for complex modeling of riverine flow. The USGS Coastal and Marine Geology Program (CMGP) is integrating hydro-enforced lidar-derived DEMs (land elevation) and lidar-derived bathymetry (water depth) to enhance storm surge modeling in vulnerable coastal zones.

  3. Estimation of missing water-level data for the Everglades Depth Estimation Network (EDEN), 2013 update

    USGS Publications Warehouse

    Petkewich, Matthew D.; Conrads, Paul

    2013-01-01

    The Everglades Depth Estimation Network is an integrated network of real-time water-level gaging stations, a ground-elevation model, and a water-surface elevation model designed to provide scientists, engineers, and water-resource managers with water-level and water-depth information (1991-2013) for the entire freshwater portion of the Greater Everglades. The U.S. Geological Survey Greater Everglades Priority Ecosystems Science provides support for the Everglades Depth Estimation Network in order for the Network to provide quality-assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. In a previous study, water-level estimation equations were developed to fill in missing data to increase the accuracy of the daily water-surface elevation model. During this study, those equations were updated because of the addition and removal of water-level gaging stations, the consistent use of water-level data relative to the North American Vertical Datum of 1988, and availability of recent data (March 1, 2006, to September 30, 2011). Up to three linear regression equations were developed for each station by using three different input stations to minimize the occurrences of missing data for an input station. Of the 667 water-level estimation equations developed to fill missing data at 223 stations, more than 72 percent of the equations have coefficients of determination greater than 0.90, and 97 percent have coefficients of determination greater than 0.70.

  4. Test and evaluation of the HIDEC engine uptrim algorithm

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Myers, L. P.

    1986-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemented into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.

  5. Modelling surface water-groundwater interaction with a conceptual approach: model development and application in New Zealand

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zammit, C.; McMillan, H. K.

    2016-12-01

    As in most countries worldwide, water management in lowland areas is a big concern for New Zealand due to its economic importance for water related human activities. As a result, the estimation of available water resources in these areas (e.g., for irrigation and water supply purpose) is crucial and often requires an understanding of complex hydrological processes, which are often characterized by strong interactions between surface water and groundwater (usually expressed as losing and gaining rivers). These processes are often represented and simulated using integrated physically based hydrological models. However models with physically based groundwater modules typically require large amount of non-readily available geologic and aquifer information and are computationally intensive. Instead, this paper presents a conceptual groundwater model that is fully integrated into New Zealand's national hydrological model TopNet based on TopModel concepts (Beven, 1992). Within this conceptual framework, the integrated model can simulate not only surface processes, but also groundwater processes and surface water-groundwater interaction processes (including groundwater flow, river-groundwater interaction, and groundwater interaction with external watersheds). The developed model was applied to two New Zealand catchments with different hydro-geological and climate characteristics (Pareora catchment in the Canterbury Plains and Grey catchment on the West Coast). Previous studies have documented strong interactions between the river and groundwater, based on the analysis of a large number of concurrent flow measurements and associated information along the river main stem. Application of the integrated hydrological model indicates flow simulation (compared to the original hydrological model conceptualisation) during low flow conditions are significantly improved and further insights on local river dynamics are gained. Due to its conceptual characteristics and low level of data requirement, the integrated model could be used at local and national scales to improve the simulation of hydrological processes in non-topographically driven areas (where groundwater processes are important), and to assess impact of climate change on the integrated hydrological cycle in these areas.

  6. A New Handbook for the Development of Space Vehicle Terrestrial Environment Design Requirements.

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Vaughan, William W.

    2008-01-01

    A new NASA document entitled "Terrestrial Environment (Climatic) Criteria Handbook for Use in Aerospace Vehicle Development (NASA-HDBK-1001A) has been developed. The Handbook provides terrestrial environment information, data bases, models, recommendations, etc. for use in the design, development, trade studies, testing, and mission analyses for space (or launch) .vehicles. This document is organized into fourteen specific natural environment disciplines of which some are winds, atmospheric models, thermal radiation, precipitation-for-icing, cloud cover, atmospheric electricity, geologic hazards, toxic chemical release by propulsion systems, and sea state. Atmospheric phenomena play a significant role in the design and flight of aerospace vehicles and in the integrity of the associated aerospace systems and structures. Environmental design criteria guidelines in this document are based on measurements and observations of atmospheric and climatic phenomena relative to various aerospace development, operational, and vehicle launch locations. The natural environment criteria guidelines data presented in this Handbook were formulated based on discussions with and requests from engineers involved in aerospace vehicle development and operations. Therefore, they represent responses to actual engineering problems and are not just a general compilation of environmental data. The Handbook addresses the basis for the information presented, the interpretations of the terrestrial environment guideline given in the Handbook, and its application to the development of aerospace vehicle design requirements. Specific examples of the Handbook content and associated "lessons lenmed" are given in this paper.

  7. A New Handbook for the Development of Space Vehicle Terrestrial Environment Design Requirements

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Vaughan, William W.

    2008-01-01

    A new NASA document entitled "Terrestrial Environment (Climatic) Criteria Handbook for Use in Aerospace Vehicle Development (NASA-HDBK-IOO1A) has been developed. The Handbook provides terrestrial environment information, data bases, models, recommendations, etc. for use in the design, development, trade studies, testing, and mission analyses for space (or launch) vehicles. This document is organized into fourteen specific natural environment disciplines of which some are winds, atmospheric models, thermal radiation, precipitation-for-icing, cloud cover, atmospheric electricity, geologic hazards, toxic chemical release by propulsion systems, and sea state. Atmospheric phenomena play a significant role in the design and flight of aerospace vehicles and in the integrity of the associated aerospace systems and structures. Environmental design criteria guidelines in this document are based on measurements and observations of atmospheric and climatic phenomena relative to various aerospace development, operational, and vehicle launch locations. The natural environment criteria guidelines data presented in this Handbook were formulated based on discussions with and requests from engineers involved in aerospace vehicle development and operations. Therefore, they represent responses to actual engineering problems and are not just a general compilation of environmental data. The Handbook addresses the basis for the information presented, the interpretations of the terrestrial environment guideline given in the Handbook, and its application to the development of aerospace vehicle design requirements. Specific examples of the Handbook content and associated "lessons lenmed" are given in this paper.

  8. Comparison of methods used to estimate conventional undiscovered petroleum resources: World examples

    USGS Publications Warehouse

    Ahlbrandt, T.S.; Klett, T.R.

    2005-01-01

    Various methods for assessing undiscovered oil, natural gas, and natural gas liquid resources were compared in support of the USGS World Petroleum Assessment 2000. Discovery process, linear fractal, parabolic fractal, engineering estimates, PETRIMES, Delphi, and the USGS 2000 methods were compared. Three comparisons of these methods were made in: (1) the Neuquen Basin province, Argentina (different assessors, same input data); (2) provinces in North Africa, Oman, and Yemen (same assessors, different methods); and (3) the Arabian Peninsula, Arabian (Persian) Gulf, and North Sea (different assessors, different methods). A fourth comparison (same assessors, same assessment methods but different geologic models), between results from structural and stratigraphic assessment units in the North Sea used only the USGS 2000 method, and hence compared the type of assessment unit rather than the method. In comparing methods, differences arise from inherent differences in assumptions regarding: (1) the underlying distribution of the parent field population (all fields, discovered and undiscovered), (2) the population of fields being estimated; that is, the entire parent distribution or the undiscovered resource distribution, (3) inclusion or exclusion of large outlier fields; (4) inclusion or exclusion of field (reserve) growth, (5) deterministic or probabilistic models, (6) data requirements, and (7) scale and time frame of the assessment. Discovery process, Delphi subjective consensus, and the USGS 2000 method yield comparable results because similar procedures are employed. In mature areas such as the Neuquen Basin province in Argentina, the linear and parabolic fractal and engineering methods were conservative compared to the other five methods and relative to new reserve additions there since 1995. The PETRIMES method gave the most optimistic estimates in the Neuquen Basin. In less mature areas, the linear fractal method yielded larger estimates relative to other methods. A geologically based model, such as one using the total petroleum system approach, is preferred in that it combines the elements of petroleum source, reservoir, trap and seal with the tectono-stratigraphic history of basin evolution with petroleum resource potential. Care must be taken to demonstrate that homogeneous populations in terms of geology, geologic risk, exploration, and discovery processes are used in the assessment process. The USGS 2000 method (7th Approximation Model, EMC computational program) is robust; that is, it can be used in both mature and immature areas, and provides comparable results when using different geologic models (e.g. stratigraphic or structural) with differing amounts of subdivisions, assessment units, within the total petroleum system. ?? 2005 International Association for Mathematical Geology.

  9. Reservoir Modeling by Data Integration via Intermediate Spaces and Artificial Intelligence Tools in MPS Simulation Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmadi, Rouhollah, E-mail: rouhollahahmadi@yahoo.com; Khamehchi, Ehsan

    Conditioning stochastic simulations are very important in many geostatistical applications that call for the introduction of nonlinear and multiple-point data in reservoir modeling. Here, a new methodology is proposed for the incorporation of different data types into multiple-point statistics (MPS) simulation frameworks. Unlike the previous techniques that call for an approximate forward model (filter) for integration of secondary data into geologically constructed models, the proposed approach develops an intermediate space where all the primary and secondary data are easily mapped onto. Definition of the intermediate space, as may be achieved via application of artificial intelligence tools like neural networks andmore » fuzzy inference systems, eliminates the need for using filters as in previous techniques. The applicability of the proposed approach in conditioning MPS simulations to static and geologic data is verified by modeling a real example of discrete fracture networks using conventional well-log data. The training patterns are well reproduced in the realizations, while the model is also consistent with the map of secondary data.« less

  10. Determination of Cenozoic sedimentary structures using integrated geophysical surveys: A case study in the Barkol Basin, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Chen, Chao; Du, Jinsong; Wang, Limin; Lei, Binhua

    2018-01-01

    Thickness estimation of sedimentary basin is a complex geological problem, especially in an orogenic environment. Intense and multiple tectonic movements and climate changes result in inhomogeneity of sedimentary layers and basement configurations, which making sedimentary structure modelling difficult. In this study, integrated geophysical methods, including gravity, magnetotelluric (MT) sounding and electrical resistivity tomography (ERT), were used to estimate basement relief to understand the geological structure and evolution of the eastern Barkol Basin in China. This basin formed with the uplift of the eastern Tianshan during the Cenozoic. Gravity anomaly map revealed the framework of the entire area, and ERT as well as MT sections reflected the geoelectric features of the Cenozoic two-layer distribution. Therefore, gravity data, constrained by MT, ERT and boreholes, were utilized to estimate the spatial distribution of the Quaternary layer. The gravity effect of the Quaternary layer related to the Tertiary layer was later subtracted to obtain the residual anomaly for inversion. For the Tertiary layer, the study area was divided into several parts because of lateral difference of density contrasts. Gravity data were interpreted to determine the density contrast constrained by the MT results. The basement relief can be verified by geological investigation, including the uplift process and regional tectonic setting. The agreement between geophysical survey and prior information from geology emphasizes the importance of integrated geophysical survey as a complementary means of geological studies in this region.

  11. Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma, Budget Period I, Class Revisit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelkar, Mohan

    2002-04-02

    This report explains the unusual characteristics of West Carney Field based on detailed geological and engineering analyses. A geological history that explains the presence of mobile water and oil in the reservoir was proposed. The combination of matrix and fractures in the reservoir explains the reservoir?s flow behavior. We confirm our hypothesis by matching observed performance with a simulated model and develop procedures for correlating core data to log data so that the analysis can be extended to other, similar fields where the core coverage may be limited.

  12. Orbital maneuvering engine feed system coupled stability investigation

    NASA Technical Reports Server (NTRS)

    Kahn, D. R.; Schuman, M. D.; Hunting, J. K.; Fertig, K. W.

    1975-01-01

    A digital computer model used to analyze and predict engine feed system coupled instabilities over a frequency range of 10 to 1000 Hz was developed and verified. The analytical approach to modeling the feed system hydrodynamics, combustion dynamics, chamber dynamics, and overall engineering model structure is described and the governing equations in each of the technical areas are presented. This is followed by a description of the generalized computer model, including formulation of the discrete subprograms and their integration into an overall engineering model structure. The operation and capabilities of the engineering model were verified by comparing the model's theoretical predictions with experimental data from an OMS-type engine with a known feed system/engine chugging history.

  13. Use of a remotely piloted aircraft system for hazard assessment in a rocky mining area (Lucca, Italy)

    NASA Astrophysics Data System (ADS)

    Salvini, Riccardo; Mastrorocco, Giovanni; Esposito, Giuseppe; Di Bartolo, Silvia; Coggan, John; Vanneschi, Claudio

    2018-01-01

    The use of remote sensing techniques is now common practice in different working environments, including engineering geology. Moreover, in recent years the development of structure from motion (SfM) methods, together with rapid technological improvement, has allowed the widespread use of cost-effective remotely piloted aircraft systems (RPAS) for acquiring detailed and accurate geometrical information even in evolving environments, such as mining contexts. Indeed, the acquisition of remotely sensed data from hazardous areas provides accurate 3-D models and high-resolution orthophotos minimizing the risk for operators. The quality and quantity of the data obtainable from RPAS surveys can then be used for inspection of mining areas, audit of mining design, rock mass characterizations, stability analysis investigations and monitoring activities. Despite the widespread use of RPAS, its potential and limitations still have to be fully understood.In this paper a case study is shown where a RPAS was used for the engineering geological investigation of a closed marble mine area in Italy; direct ground-based techniques could not be applied for safety reasons. In view of the re-activation of mining operations, high-resolution images taken from different positions and heights were acquired and processed using SfM techniques to obtain an accurate and detailed 3-D model of the area. The geometrical and radiometrical information was subsequently used for a deterministic rock mass characterization, which led to the identification of two large marble blocks that pose a potential significant hazard issue for the future workforce. A preliminary stability analysis, with a focus on investigating the contribution of potential rock bridges, was then performed in order to demonstrate the potential use of RPAS information in engineering geological contexts for geohazard identification, awareness and reduction.

  14. Three-Dimensional Geologic Map of the Hayward Fault Zone, San Francisco Bay Region, California

    USGS Publications Warehouse

    Phelps, G.A.; Graymer, R.W.; Jachens, R.C.; Ponce, D.A.; Simpson, R.W.; Wentworth, C.M.

    2008-01-01

    A three-dimensional (3D) geologic map of the Hayward Fault zone was created by integrating the results from geologic mapping, potential field geophysics, and seismology investigations. The map volume is 100 km long, 20 km wide, and extends to a depth of 12 km below sea level. The map volume is oriented northwest and is approximately bisected by the Hayward Fault. The complex geologic structure of the region makes it difficult to trace many geologic units into the subsurface. Therefore, the map units are generalized from 1:24,000-scale geologic maps. Descriptions of geologic units and structures are offered, along with a discussion of the methods used to map them and incorporate them into the 3D geologic map. The map spatial database and associated viewing software are provided. Elements of the map, such as individual fault surfaces, are also provided in a non-proprietary format so that the user can access the map via open-source software. The sheet accompanying this manuscript shows views taken from the 3D geologic map for the user to access. The 3D geologic map is designed as a multi-purpose resource for further geologic investigations and process modeling.

  15. Engineered Barrier System performance requirements systems study report. Revision 02

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balady, M.A.

    This study evaluates the current design concept for the Engineered Barrier System (EBS), in concert with the current understanding of the geologic setting to assess whether enhancements to the required performance of the EBS are necessary. The performance assessment calculations are performed by coupling the EBS with the geologic setting based on the models (some of which were updated for this study) and assumptions used for the 1995 Total System Performance Assessment (TSPA). The need for enhancements is determined by comparing the performance assessment results against the EBS related performance requirements. Subsystem quantitative performance requirements related to the EBS includemore » the requirement to allow no more than 1% of the waste packages (WPs) to fail before 1,000 years after permanent closure of the repository, as well as a requirement to control the release rate of radionuclides from the EBS. The EBS performance enhancements considered included additional engineered components as well as evaluating additional performance available from existing design features but for which no performance credit is currently being taken.« less

  16. An Agent-Based Optimization Framework for Engineered Complex Adaptive Systems with Application to Demand Response in Electricity Markets

    NASA Astrophysics Data System (ADS)

    Haghnevis, Moeed

    The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.

  17. Development of Systematic Approaches for Calibration of Subsurface Transport Models Using Hard and Soft Data on System Characteristics and Behavior

    DTIC Science & Technology

    2011-02-02

    who graduated during this period and will receive scholarships or fellowships for further studies in science, mathematics, engineering or technology...nature or are collected at discrete points or localized areas in the system. The qualitative data includes, geology , large-scale stratigraphy and

  18. Integrating Reliability Analysis with a Performance Tool

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Palumbo, Daniel L.; Ulrey, Michael

    1995-01-01

    A large number of commercial simulation tools support performance oriented studies of complex computer and communication systems. Reliability of these systems, when desired, must be obtained by remodeling the system in a different tool. This has obvious drawbacks: (1) substantial extra effort is required to create the reliability model; (2) through modeling error the reliability model may not reflect precisely the same system as the performance model; (3) as the performance model evolves one must continuously reevaluate the validity of assumptions made in that model. In this paper we describe an approach, and a tool that implements this approach, for integrating a reliability analysis engine into a production quality simulation based performance modeling tool, and for modeling within such an integrated tool. The integrated tool allows one to use the same modeling formalisms to conduct both performance and reliability studies. We describe how the reliability analysis engine is integrated into the performance tool, describe the extensions made to the performance tool to support the reliability analysis, and consider the tool's performance.

  19. Debates—Stochastic subsurface hydrology from theory to practice: A geologic perspective

    NASA Astrophysics Data System (ADS)

    Fogg, Graham E.; Zhang, Yong

    2016-12-01

    A geologic perspective on stochastic subsurface hydrology offers insights on representativeness of prominent field experiments and their general relevance to other hydrogeologic settings. Although the gains in understanding afforded by some 30 years of research in stochastic hydrogeology have been important and even essential, adoption of the technologies and insights by practitioners has been limited, due in part to a lack of geologic context in both the field and theoretical studies. In general, unintentional, biased sampling of hydraulic conductivity (K) using mainly hydrologic, well-based methods has resulted in the tacit assumption by many in the community that the subsurface is much less heterogeneous than in reality. Origins of the bias range from perspectives that are limited by scale and the separation of disciplines (geology, soils, aquifer hydrology, groundwater hydraulics, etc.). Consequences include a misfit between stochastic hydrogeology research results and the needs of, for example, practitioners who are dealing with local plume site cleanup that is often severely hampered by very low velocities in the very aquitard facies that are commonly overlooked or missing from low-variance stochastic models or theories. We suggest that answers to many of the problems exposed by stochastic hydrogeology research can be found through greater geologic integration into the analyses, including the recognition of not only the nearly ubiquitously high variances of K but also the strong tendency for the good connectivity of the high-K facies when spatially persistent geologic unconformities are absent. We further suggest that although such integration may appear to make the contaminant transport problem more complex, expensive and intractable, it may in fact lead to greater simplification and more reliable, less expensive site characterizations and models.

  20. Geo-Engineering through Internet Informatics (GEMINI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doveton, John H.; Watney, W. Lynn

    The program, for development and methodologies, was a 3-year interdisciplinary effort to develop an interactive, integrated Internet Website named GEMINI (Geo-Engineering Modeling through Internet Informatics) that would build real-time geo-engineering reservoir models for the Internet using the latest technology in Web applications.

  1. Deep Borehole Disposal Safety Analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeze, Geoffrey A.; Stein, Emily; Price, Laura L.

    This report presents a preliminary safety analysis for the deep borehole disposal (DBD) concept, using a safety case framework. A safety case is an integrated collection of qualitative and quantitative arguments, evidence, and analyses that substantiate the safety, and the level of confidence in the safety, of a geologic repository. This safety case framework for DBD follows the outline of the elements of a safety case, and identifies the types of information that will be required to satisfy these elements. At this very preliminary phase of development, the DBD safety case focuses on the generic feasibility of the DBD concept.more » It is based on potential system designs, waste forms, engineering, and geologic conditions; however, no specific site or regulatory framework exists. It will progress to a site-specific safety case as the DBD concept advances into a site-specific phase, progressing through consent-based site selection and site investigation and characterization.« less

  2. Mean Line Pump Flow Model in Rocket Engine System Simulation

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Lavelle, Thomas M.

    2000-01-01

    A mean line pump flow modeling method has been developed to provide a fast capability for modeling turbopumps of rocket engines. Based on this method, a mean line pump flow code PUMPA has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The pump code can model axial flow inducers, mixed-flow and centrifugal pumps. The code can model multistage pumps in series. The code features rapid input setup and computer run time, and is an effective analysis and conceptual design tool. The map generation capability of the code provides the map information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of the code permit parametric design space exploration of candidate pump configurations and provide pump performance data for engine system evaluation. The PUMPA code has been integrated with the Numerical Propulsion System Simulation (NPSS) code and an expander rocket engine system has been simulated. The mean line pump flow code runs as an integral part of the NPSS rocket engine system simulation and provides key pump performance information directly to the system model at all operating conditions.

  3. Publications - RI 2001-1D | Alaska Division of Geological & Geophysical

    Science.gov Websites

    -geologic map of the Chulitna region, southcentral Alaska, scale 1:63,360 (16.0 M) Digital Geospatial Data Digital Geospatial Data Chulitna region engineering geology Data File Format File Size Info Download

  4. Geologic constraints on the upper limits of reserve growth

    USGS Publications Warehouse

    Stanley, Richard G.

    2001-01-01

    For many oil and gas fields, estimates of ultimate recovery (the sum of cumulative production plus estimated reserves) tend to increase from one year to the next, and the gain is called reserve growth. Forecasts of reserve growth by the U.S. Geological Survey rely on statistical analyses of historical records of oil and gas production and estimated reserves. The preproposal in this Open-File Report suggests that this traditional petroleum–engineering approach to reserve growth might be supplemented, or at least better understood, by using geological data from individual oil and gas fields, 3–D modeling software, and standard volumetric techniques to estimate in–place volumes of oil and gas. Such estimates, in turn, can be used to constrain the upper limits of reserve growth and ultimate recovery from those fields.

  5. Computer-aided-engineering system for modeling and analysis of ECLSS integration testing

    NASA Technical Reports Server (NTRS)

    Sepahban, Sonbol

    1987-01-01

    The accurate modeling and analysis of two-phase fluid networks found in environmental control and life support systems is presently undertaken by computer-aided engineering (CAE) techniques whose generalized fluid dynamics package can solve arbitrary flow networks. The CAE system for integrated test bed modeling and analysis will also furnish interfaces and subsystem/test-article mathematical models. Three-dimensional diagrams of the test bed are generated by the system after performing the requisite simulation and analysis.

  6. E&P data lifecycle: a case study in Petrobras Company

    NASA Astrophysics Data System (ADS)

    Mastella, Laura; Campinho, Vania; Alonso, João

    2013-04-01

    Petrobras, the biggest Brazilian Petroleum Company, has been studying and working on Brazilian sedimentary basins for nearly 60 years. The corporate database currently registers over 25000 wells and all their associated products (geophysical logs, cores, sidewall samples) and analyses. There are thousands of samples, descriptions, pictures, measures, and other scientific data resulted from petroleum exploration and production. This data constitutes a huge scientific database which is applied to support Petrobras economic strategy. Geological models built during the exploration phase continue to be refined during both the development and production phases: data should be continually manipulated, correlated and integrated. As E&P assets reach maturity, a new cycle starts: data is re-analyzed and new hypotheses are made in order to increase hydrocarbon productivity. Initial geological models then evolve from accumulated knowledge throughout all the E&P phases. Therefore the quality control must be performed in the first phases of data acquisition, i.e., during the exploration phase, to avoid reworking and loss of information. The last decade witnessed a great evolution in petroleum industry technology. As a consequence, the complexity and particulars of the information generated have increased accordingly. Current technology has also facilitated access to networks and databases, making it possible to store large amounts of information. This scenario makes available a large mass of information from difference sources, which uses heterogeneous vocabulary as well as different scales and measurement units. In this context, knowledge might be diluted and the total amount of information cannot be applied in E&P process. In order to provide adequate data governance, data input is controlled by rules, standards and policies, implemented by corporate software systems. Petrobras' integrated E&P database is a centralized repository to which all E&P systems can have access. The quality of the data that goes into the database can be increased by means of information management practices: • data validation, • language internationalization, • dictionaries, patterns, metadata. Moreover, stored data must be kept consistent, and any changes in the data should be registered while maintaining, if possible, the original data, associating the modification with its author, timestamp and reason. These practices lead to the creation of a database that serves and benefits the company's knowledge. Information retrieval and visualization is one of the main issues concerning petroleum industries. In order to make significant information available for end-users, it is fundamental to have an efficient data integration strategy. The integration of E&P data, such as geological, geophysical, geographical and operational data, is the end goal of the exploratory activities. Petrobras corporate systems are evolving towards it so as to make available various data from diverse sources and to create a dashboard that can be easily accessed at any time by geoscientists and reservoir engineers. The main goal is to maintain scientific integrity of information, from generators to consumers, during all E&P data life cycle.

  7. Collaborative Multi-Scale 3d City and Infrastructure Modeling and Simulation

    NASA Astrophysics Data System (ADS)

    Breunig, M.; Borrmann, A.; Rank, E.; Hinz, S.; Kolbe, T.; Schilcher, M.; Mundani, R.-P.; Jubierre, J. R.; Flurl, M.; Thomsen, A.; Donaubauer, A.; Ji, Y.; Urban, S.; Laun, S.; Vilgertshofer, S.; Willenborg, B.; Menninghaus, M.; Steuer, H.; Wursthorn, S.; Leitloff, J.; Al-Doori, M.; Mazroobsemnani, N.

    2017-09-01

    Computer-aided collaborative and multi-scale 3D planning are challenges for complex railway and subway track infrastructure projects in the built environment. Many legal, economic, environmental, and structural requirements have to be taken into account. The stringent use of 3D models in the different phases of the planning process facilitates communication and collaboration between the stake holders such as civil engineers, geological engineers, and decision makers. This paper presents concepts, developments, and experiences gained by an interdisciplinary research group coming from civil engineering informatics and geo-informatics banding together skills of both, the Building Information Modeling and the 3D GIS world. New approaches including the development of a collaborative platform and 3D multi-scale modelling are proposed for collaborative planning and simulation to improve the digital 3D planning of subway tracks and other infrastructures. Experiences during this research and lessons learned are presented as well as an outlook on future research focusing on Building Information Modeling and 3D GIS applications for cities of the future.

  8. A Novel Triggerless Approach for Modeling Mass Wasting Susceptibility

    NASA Astrophysics Data System (ADS)

    Aly, M. H.; Rowden, K. W.

    2017-12-01

    Common approaches for modeling mass wasting susceptibility rely on using triggers, which are catalysts for failure, as critical inputs. Frequently used triggers include removal of the toe of a slope or vegetation and time correlated events such as seismicity or heavy precipitation. When temporal data are unavailable, correlating triggers with a particular mass wasting event (MWE) is futile. Meanwhile, geologic structures directly influence slope stability and are typically avoided in alternative modeling approaches. Depending on strata's dip direction, underlying geology can make a slope either stronger or weaker. To heuristically understand susceptibility and reliably infer risk, without being constrained by the previously mentioned limitations, a novel triggerless approach is conceived in this study. Core requisites include a digital elevation model and digitized geologic maps containing geologic formations delineated as polygons encompassing adequate distribution of structural attitudes. Tolerably simple geology composed of gently deformed, relatively flat-lying Carboniferous strata with minimal faulting or monoclines, ideal for applying this new triggerless approach, is found in the Boston Mountains, NW Arkansas, where 47 MWEs are documented. Two models are then created; one model has integrated Empirical Bayesian Kriging (EBK) and fuzzy logic, while the second model has employed a standard implementation of a weighted overlay. Statistical comparisons show that the first model has identified 83%, compared to only 28% for the latter model, of the failure events in categories ranging from moderate to very high susceptibility. These results demonstrate that the introduced triggerless approach is efficiently capable of modeling mass wasting susceptibility, by incorporating EBK and fuzzy logic, in areas lacking temporal datasets.

  9. Computational modeling for eco engineering: Making the connections between engineering and ecology (Invited)

    NASA Astrophysics Data System (ADS)

    Bowles, C.

    2013-12-01

    Ecological engineering, or eco engineering, is an emerging field in the study of integrating ecology and engineering, concerned with the design, monitoring, and construction of ecosystems. According to Mitsch (1996) 'the design of sustainable ecosystems intends to integrate human society with its natural environment for the benefit of both'. Eco engineering emerged as a new idea in the early 1960s, and the concept has seen refinement since then. As a commonly practiced field of engineering it is relatively novel. Howard Odum (1963) and others first introduced it as 'utilizing natural energy sources as the predominant input to manipulate and control environmental systems'. Mtisch and Jorgensen (1989) were the first to define eco engineering, to provide eco engineering principles and conceptual eco engineering models. Later they refined the definition and increased the number of principles. They suggested that the goals of eco engineering are: a) the restoration of ecosystems that have been substantially disturbed by human activities such as environmental pollution or land disturbance, and b) the development of new sustainable ecosystems that have both human and ecological values. Here a more detailed overview of eco engineering is provided, particularly with regard to how engineers and ecologists are utilizing multi-dimensional computational models to link ecology and engineering, resulting in increasingly successful project implementation. Descriptions are provided pertaining to 1-, 2- and 3-dimensional hydrodynamic models and their use at small- and large-scale applications. A range of conceptual models that have been developed to aid the in the creation of linkages between ecology and engineering are discussed. Finally, several case studies that link ecology and engineering via computational modeling are provided. These studies include localized stream rehabilitation, spawning gravel enhancement on a large river system, and watershed-wide floodplain modeling of the Sacramento River Valley.

  10. West Virginia Geological Survey's role in siting fluidized bed combustion facilities

    USGS Publications Warehouse

    Smith, C.J.; King, Hobart M.; Ashton, K.C.; Kirstein, D.S.; McColloch, G.H.

    1989-01-01

    A project is presented which demonstrates the role of geology in planning and siting a fluidized bed combustion facility. Whenever a project includes natural resource utilization, cooperation between geologists and design engineers will provide an input that could and should save costs, similar to the one stated in our initial premise. Regardless of whether cost reductions stem from a better knowledge of fuel and sorbent availabilities, or a better understanding of the local hydrology, susceptibility to mine-subsidence, or other geologic hazards, the geological survey has a vital role in planning. Input to planning could help the fluidized-bed developer and design-engineer solve some economic questions and stretch the financial resources at their disposal.

  11. Thermal-Hydraulic-Mechanical (THM) Coupled Simulation of a Generic Site for Disposal of High Level Nuclear Waste in Claystone in Germany: Exemplary Proof of the Integrity of the Geological Barrier

    NASA Astrophysics Data System (ADS)

    Massmann, J.; Ziefle, G.; Jobmann, M.

    2016-12-01

    Claystone is investigated as a potential host rock for the disposal of high level nuclear waste (HLW). In Germany, DBE TECHNOLOGY GmbH, the BGR and the "Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)" are developing an integrated methodology for safety assessment within the R&D project "ANSICHT". One part herein is the demonstration of integrity of the geological barrier to ensure safe containment of radionuclides over 1 million years. The mechanical excavation of an underground repository, the ex­po­si­tion of claystone to at­mos­pheric air, the insertion of backfill, buffer, sealing and supporting material as well as the deposition of heat producing waste constitute a sig­nif­i­cant disturbance of the underground system. A complex interacting scheme of thermal, hydraulic and mechanical (THM) processes can be expected. In this work, the finite element software OpenGeoSys, main­ly de­vel­oped at the "Helmholtz Centre for Environmental Research GmbH (UFZ)", is used to simulate and evaluate several THM coupled effects in the repository surroundings up to the surface over a time span of 1 million years. The numerical setup is based on two generic geological models inspired by the representative geology of potentially suitable regions in North- and South Germany. The results give an insight into the evolution of temperature, pore pressure, stresses as well as deformation and enables statements concerning the extent of the significantly influenced area. One important effect among others is the temperature driven change in the densities of the solid and liquid phase and its influence on the stress field. In a further step, integrity criteria have been quantified, based on specifications of the German federal ministry of the environment. The exemplary numerical evaluation of these criteria demonstrates, how numerical simulations can be used to prove the integrity of the geological barrier and detect potential vulnerabilities. Fig.: Calculated zone of increased temperature (blue bubble) around a generic repository of HLW in a representative geological setting, 1000 years after emplacement of HLW

  12. International Space Station Configuration Analysis and Integration

    NASA Technical Reports Server (NTRS)

    Anchondo, Rebekah

    2016-01-01

    Ambitious engineering projects, such as NASA's International Space Station (ISS), require dependable modeling, analysis, visualization, and robotics to ensure that complex mission strategies are carried out cost effectively, sustainably, and safely. Learn how Booz Allen Hamilton's Modeling, Analysis, Visualization, and Robotics Integration Center (MAVRIC) team performs engineering analysis of the ISS Configuration based primarily on the use of 3D CAD models. To support mission planning and execution, the team tracks the configuration of ISS and maintains configuration requirements to ensure operational goals are met. The MAVRIC team performs multi-disciplinary integration and trade studies to ensure future configurations meet stakeholder needs.

  13. Geologic Map and Map Database of the Oakland Metropolitan Area, Alameda, Contra Costa, and San Francisco Counties, California

    USGS Publications Warehouse

    Graymer, R.W.

    2000-01-01

    Introduction This report contains a new geologic map at 1:50,000 scale, derived from a set of geologic map databases containing information at a resolution associated with 1:24,000 scale, and a new description of geologic map units and structural relationships in the mapped area. The map database represents the integration of previously published reports and new geologic mapping and field checking by the author (see Sources of Data index map on the map sheet or the Arc-Info coverage pi-so and the textfile pi-so.txt). The descriptive text (below) contains new ideas about the Hayward fault and other faults in the East Bay fault system, as well as new ideas about the geologic units and their relations. These new data are released in digital form in conjunction with the Federal Emergency Management Agency Project Impact in Oakland. The goal of Project Impact is to use geologic information in land-use and emergency services planning to reduce the losses occurring during earthquakes, landslides, and other hazardous geologic events. The USGS, California Division of Mines and Geology, FEMA, California Office of Emergency Services, and City of Oakland participated in the cooperative project. The geologic data in this report were provided in pre-release form to other Project Impact scientists, and served as one of the basic data layers for the analysis of hazard related to earthquake shaking, liquifaction, earthquake induced landsliding, and rainfall induced landsliding. The publication of these data provides an opportunity for regional planners, local, state, and federal agencies, teachers, consultants, and others outside Project Impact who are interested in geologic data to have the new data long before a traditional paper map could be published. Because the database contains information about both the bedrock and surficial deposits, it has practical applications in the study of groundwater and engineering of hillside materials, as well as the study of geologic hazards and the academic research on the geologic history and development of the region.

  14. Managing Analysis Models in the Design Process

    NASA Technical Reports Server (NTRS)

    Briggs, Clark

    2006-01-01

    Design of large, complex space systems depends on significant model-based support for exploration of the design space. Integrated models predict system performance in mission-relevant terms given design descriptions and multiple physics-based numerical models. Both the design activities and the modeling activities warrant explicit process definitions and active process management to protect the project from excessive risk. Software and systems engineering processes have been formalized and similar formal process activities are under development for design engineering and integrated modeling. JPL is establishing a modeling process to define development and application of such system-level models.

  15. Optimizing longwall mine layouts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minkel, M.J.

    1996-12-31

    Before spending the time to design an underground mine in detail, the mining engineer should be assured of the economic viability of the location of the layout. This has historically been a trial-and-error, iterative process. Traditional underground mine planning usually bases the layout on the geological characteristics of a deposit such as minimum seam height, quality, and the absence of faults. Whether one attempts to make a decision manually. or use traditional mine planning software, the process works something like this: First you build geological model. Then you impose a {open_quotes}best guess{close_quotes} as to which geological layers will become partmore » of the mined product, or will influence mining. Next you place your design where you believe is the best location to make a mine. Then you select equipment which you believe will cost-effectively mine the area. Finally, you schedule your equipment selection through the design over the mine life, run financial analyses and see if the rate of return is acceptable. If the NPV is acceptable, the design is accepted. If the NPV is not acceptable, the engineer has to restart the cycle of redesigning the layout, rescheduling the equipment, and restudying the economics again.« less

  16. Hybrid semi-parametric mathematical systems: bridging the gap between systems biology and process engineering.

    PubMed

    Teixeira, Ana P; Carinhas, Nuno; Dias, João M L; Cruz, Pedro; Alves, Paula M; Carrondo, Manuel J T; Oliveira, Rui

    2007-12-01

    Systems biology is an integrative science that aims at the global characterization of biological systems. Huge amounts of data regarding gene expression, proteins activity and metabolite concentrations are collected by designing systematic genetic or environmental perturbations. Then the challenge is to integrate such data in a global model in order to provide a global picture of the cell. The analysis of these data is largely dominated by nonparametric modelling tools. In contrast, classical bioprocess engineering has been primarily founded on first principles models, but it has systematically overlooked the details of the embedded biological system. The full complexity of biological systems is currently assumed by systems biology and this knowledge can now be taken by engineers to decide how to optimally design and operate their processes. This paper discusses possible methodologies for the integration of systems biology and bioprocess engineering with emphasis on applications involving animal cell cultures. At the mathematical systems level, the discussion is focused on hybrid semi-parametric systems as a way to bridge systems biology and bioprocess engineering.

  17. Geologic database for digital geology of California, Nevada, and Utah: an application of the North American Data Model

    USGS Publications Warehouse

    Bedford, David R.; Ludington, Steve; Nutt, Constance M.; Stone, Paul A.; Miller, David M.; Miller, Robert J.; Wagner, David L.; Saucedo, George J.

    2003-01-01

    The USGS is creating an integrated national database for digital state geologic maps that includes stratigraphic, age, and lithologic information. The majority of the conterminous 48 states have digital geologic base maps available, often at scales of 1:500,000. This product is a prototype, and is intended to demonstrate the types of derivative maps that will be possible with the national integrated database. This database permits the creation of a number of types of maps via simple or sophisticated queries, maps that may be useful in a number of areas, including mineral-resource assessment, environmental assessment, and regional tectonic evolution. This database is distributed with three main parts: a Microsoft Access 2000 database containing geologic map attribute data, an Arc/Info (Environmental Systems Research Institute, Redlands, California) Export format file containing points representing designation of stratigraphic regions for the Geologic Map of Utah, and an ArcView 3.2 (Environmental Systems Research Institute, Redlands, California) project containing scripts and dialogs for performing a series of generalization and mineral resource queries. IMPORTANT NOTE: Spatial data for the respective stage geologic maps is not distributed with this report. The digital state geologic maps for the states involved in this report are separate products, and two of them are produced by individual state agencies, which may be legally and/or financially responsible for this data. However, the spatial datasets for maps discussed in this report are available to the public. Questions regarding the distribution, sale, and use of individual state geologic maps should be sent to the respective state agency. We do provide suggestions for obtaining and formatting the spatial data to make it compatible with data in this report. See section ‘Obtaining and Formatting Spatial Data’ in the PDF version of the report.

  18. Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo

    PubMed Central

    Juhas, Mark; Engelmayr, George C.; Fontanella, Andrew N.; Palmer, Gregory M.; Bursac, Nenad

    2014-01-01

    Tissue-engineered skeletal muscle can serve as a physiological model of natural muscle and a potential therapeutic vehicle for rapid repair of severe muscle loss and injury. Here, we describe a platform for engineering and testing highly functional biomimetic muscle tissues with a resident satellite cell niche and capacity for robust myogenesis and self-regeneration in vitro. Using a mouse dorsal window implantation model and transduction with fluorescent intracellular calcium indicator, GCaMP3, we nondestructively monitored, in real time, vascular integration and the functional state of engineered muscle in vivo. During a 2-wk period, implanted engineered muscle exhibited a steady ingrowth of blood-perfused microvasculature along with an increase in amplitude of calcium transients and force of contraction. We also demonstrated superior structural organization, vascularization, and contractile function of fully differentiated vs. undifferentiated engineered muscle implants. The described in vitro and in vivo models of biomimetic engineered muscle represent enabling technology for novel studies of skeletal muscle function and regeneration. PMID:24706792

  19. The Tsunami Project: Integrating engineering, natural and social sciences into post-tsunami surveys

    NASA Astrophysics Data System (ADS)

    McAdoo, B. G.; Goff, J. R.; Fritz, H. M.; Cochard, R.; Kong, L. S.

    2009-12-01

    Complexities resulting from recent tsunamis in the Solomon Islands (2007), Java (2006) and Sumatra (2004, 2005) have demonstrated the need for an integrated, interdisciplinary team of engineers, natural and social scientists to better understand the nature of the disaster. Documenting the complex interactions in the coupled human-environment system necessitate a coordinated, interdisciplinary approach that combines the strengths of engineering, geoscience, ecology and social science. Engineers, modelers and geoscientists untangle the forces required to leave an imprint of a tsunami in the geologic record. These same forces affect ecosystems that provide services from buffers to food security; therefore coastal ecologists play a vital role. It is also crucial to understand the social structures that contribute to disasters, so local or regional policy experts, planners, economists, etc. should be included. When these experts arrive in a disaster area as part of an Interdisciplinary Tsunami Survey Team, the interactions between the systems can be discussed in the field, and site-specific data can be collected. A diverse team in the field following a tsunami shares critical resources and discoveries in real-time, making the survey more efficient. Following the 2006 Central Java earthquake and tsunami, civil engineers covered broad areas quickly, collecting ephemeral water level data and communicating areas of interest to the geologists, who would follow to do the slower sediment data collection. The 2007 Solomon Islands earthquake and tsunami caused extensive damage to the coral reef, which highlighting the need to have an ecologist on the team who was able to identify species and their energy tolerance. Rather than diluting the quality of post-tsunami data collection, this approach in fact strengthens it- engineers and geoscientists no longer have to indentify coral or mangrove species, nor do ecologists evaluate the velocity of a wave as it impacted a forested coastline. Interviews, a core element of post-tsunami surveys and which most US academic institutions require human-subject training to complete, can be undertaken by social scientists trained to ask pertinent questions to both the natural scientists and engineers, and those that will illuminate the underlying weaknesses of the social institutions that contributed to the magnitude of the disaster. Data collected by interdisciplinary teams provides baseline data that can set the redevelopment process off on the right track. Geoscientists constrain the location, frequency and magnitude of hazards, and how they affect the landscape. Ecologists document the interaction of hazards with ecosystems and evaluate their risk reduction role. Engineers and modelers constrain the effects of a hazard on the built environment. A coupled human-environment approach at the intersection of the physical, ecological and the built environments provides the right kind of data decision makers need to build back better in the most ecologically and economically sustainable manner.

  20. Vertically Integrated Models for Carbon Storage Modeling in Heterogeneous Domains

    NASA Astrophysics Data System (ADS)

    Bandilla, K.; Celia, M. A.

    2017-12-01

    Numerical modeling is an essential tool for studying the impacts of geologic carbon storage (GCS). Injection of carbon dioxide (CO2) into deep saline aquifers leads to multi-phase flow (injected CO2 and resident brine), which can be described by a set of three-dimensional governing equations, including mass-balance equation, volumetric flux equations (modified Darcy), and constitutive equations. This is the modeling approach on which commonly used reservoir simulators such as TOUGH2 are based. Due to the large density difference between CO2 and brine, GCS models can often be simplified by assuming buoyant segregation and integrating the three-dimensional governing equations in the vertical direction. The integration leads to a set of two-dimensional equations coupled with reconstruction operators for vertical profiles of saturation and pressure. Vertically-integrated approaches have been shown to give results of comparable quality as three-dimensional reservoir simulators when applied to realistic CO2 injection sites such as the upper sand wedge at the Sleipner site. However, vertically-integrated approaches usually rely on homogeneous properties over the thickness of a geologic layer. Here, we investigate the impact of general (vertical and horizontal) heterogeneity in intrinsic permeability, relative permeability functions, and capillary pressure functions. We consider formations involving complex fluvial deposition environments and compare the performance of vertically-integrated models to full three-dimensional models for a set of hypothetical test cases consisting of high permeability channels (streams) embedded in a low permeability background (floodplains). The domains are randomly generated assuming that stream channels can be represented by sinusoidal waves in the plan-view and by parabolas for the streams' cross-sections. Stream parameters such as width, thickness and wavelength are based on values found at the Ketzin site in Germany. Results from the vertically-integrated approach are compared to results using TOUGH2, both in terms of depth-averaged saturation and vertical saturation profiles.

  1. INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth D. Luff

    2002-06-30

    Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). Luff Exploration Company is applying these tools for analysis of carbonate reservoirs in the southern Williston Basin. The integrated software programs are designed to be used by small team consisting of an engineer, geologist and geophysicist. The software tools are flexible and robust, allowing application in many environments for hydrocarbon reservoirs. Keystone elements of the software tools include clustering and neural-network techniques. The tools are used to transform seismic attribute data to reservoir characteristics such as storage (phi-h), probable oil-water contacts, structural depths andmore » structural growth history. When these reservoir characteristics are combined with neural network or fuzzy logic solvers, they can provide a more complete description of the reservoir. This leads to better estimates of hydrocarbons in place, areal limits and potential for infill or step-out drilling. These tools were developed and tested using seismic, geologic and well data from the Red River Play in Bowman County, North Dakota and Harding County, South Dakota. The geologic setting for the Red River Formation is shallow-shelf carbonate at a depth from 8000 to 10,000 ft.« less

  2. INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth D. Luff

    2002-09-30

    Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). Luff Exploration Company is applying these tools for analysis of carbonate reservoirs in the southern Williston Basin. The integrated software programs are designed to be used by small team consisting of an engineer, geologist and geophysicist. The software tools are flexible and robust, allowing application in many environments for hydrocarbon reservoirs. Keystone elements of the software tools include clustering and neural-network techniques. The tools are used to transform seismic attribute data to reservoir characteristics such as storage (phi-h), probable oil-water contacts, structural depths andmore » structural growth history. When these reservoir characteristics are combined with neural network or fuzzy logic solvers, they can provide a more complete description of the reservoir. This leads to better estimates of hydrocarbons in place, areal limits and potential for infill or step-out drilling. These tools were developed and tested using seismic, geologic and well data from the Red River Play in Bowman County, North Dakota and Harding County, South Dakota. The geologic setting for the Red River Formation is shallow-shelf carbonate at a depth from 8000 to 10,000 ft.« less

  3. Optimization techniques for integrating spatial data

    USGS Publications Warehouse

    Herzfeld, U.C.; Merriam, D.F.

    1995-01-01

    Two optimization techniques ta predict a spatial variable from any number of related spatial variables are presented. The applicability of the two different methods for petroleum-resource assessment is tested in a mature oil province of the Midcontinent (USA). The information on petroleum productivity, usually not directly accessible, is related indirectly to geological, geophysical, petrographical, and other observable data. This paper presents two approaches based on construction of a multivariate spatial model from the available data to determine a relationship for prediction. In the first approach, the variables are combined into a spatial model by an algebraic map-comparison/integration technique. Optimal weights for the map comparison function are determined by the Nelder-Mead downhill simplex algorithm in multidimensions. Geologic knowledge is necessary to provide a first guess of weights to start the automatization, because the solution is not unique. In the second approach, active set optimization for linear prediction of the target under positivity constraints is applied. Here, the procedure seems to select one variable from each data type (structure, isopachous, and petrophysical) eliminating data redundancy. Automating the determination of optimum combinations of different variables by applying optimization techniques is a valuable extension of the algebraic map-comparison/integration approach to analyzing spatial data. Because of the capability of handling multivariate data sets and partial retention of geographical information, the approaches can be useful in mineral-resource exploration. ?? 1995 International Association for Mathematical Geology.

  4. Recent Seismicity in Texas and Research Design and Progress of the TexNet-CISR Collaboration

    NASA Astrophysics Data System (ADS)

    Hennings, P.; Savvaidis, A.; Rathje, E.; Olson, J. E.; DeShon, H. R.; Datta-Gupta, A.; Eichhubl, P.; Nicot, J. P.; Kahlor, L. A.

    2017-12-01

    The recent increase in the rate of seismicity in Texas has prompted the establishment of an interdisciplinary, interinstitutional collaboration led by the Texas Bureau of Economic Geology which includes the TexNet Seismic Monitoring and Research project as funded by The State of Texas (roughly 2/3rds of our funding) and the industry-funded Center for Integrated Seismicity Research (CISR) (1/3 of funding). TexNet is monitoring and cataloging seismicity across Texas using a new backbone seismic network, investigating site-specific earthquake sequences by deploying temporary seismic monitoring stations, and conducting reservoir modeling studies. CISR expands TexNet research into the interdisciplinary realm to more thoroughly study the factors that contribute to seismicity, characterize the associated hazard and risk, develop strategies for mitigation and management, and develop methods of effective communication for all stakeholders. The TexNet-CISR research portfolio has 6 themes: seismicity monitoring, seismology, geologic and hydrologic description, geomechanics and reservoir modeling, seismic hazard and risk assessment, and seismic risk social science. Twenty+ specific research projects span and connect these themes. We will provide a synopsis of research progress including recent seismicity trends in Texas; Fort Worth Basin integrated studies including geological modeling and fault characterization, fluid injection data syntheses, and reservoir and geomechanical modeling; regional ground shaking characterization and mapping, infrastructure vulnerability assessment; and social science topics of public perception and information seeking behavior.

  5. Dealing with dissatisfaction in mathematical modelling to integrate QFD and Kano’s model

    NASA Astrophysics Data System (ADS)

    Retno Sari Dewi, Dian; Debora, Joana; Edy Sianto, Martinus

    2017-12-01

    The purpose of the study is to implement the integration of Quality Function Deployment (QFD) and Kano’s Model into mathematical model. Voice of customer data in QFD was collected using questionnaire and the questionnaire was developed based on Kano’s model. Then the operational research methodology was applied to build the objective function and constraints in the mathematical model. The relationship between voice of customer and engineering characteristics was modelled using linier regression model. Output of the mathematical model would be detail of engineering characteristics. The objective function of this model is to maximize satisfaction and minimize dissatisfaction as well. Result of this model is 62% .The major contribution of this research is to implement the existing mathematical model to integrate QFD and Kano’s Model in the case study of shoe cabinet.

  6. Spatial modeling for groundwater arsenic levels in North Carolina

    USGS Publications Warehouse

    Kim, D.; Miranda, M.L.; Tootoo, J.; Bradley, P.; Gelfand, A.E.

    2011-01-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area. ?? 2011 American Chemical Society.

  7. Planetary Exploration Education: As Seen From the Point of View of Subject Matter Experts

    NASA Astrophysics Data System (ADS)

    Milazzo, M. P.; Anderson, R. B.; Gaither, T. A.; Vaughan, R. G.

    2016-12-01

    Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) was selected as one of 27 new projects to support the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice. Our goal is to develop and disseminate out-of-school time (OST) curricular and related educator professional development modules that integrate planetary science, technology, and engineering. We are a partnership between planetary science Subject Matter Experts (SMEs), curriculum developers, science and engineering teacher professional development experts and OST teacher networks. The PLANETS team includes the Center for Science Teaching and Learning (CSTL) at Northern Arizona University (NAU); the U.S. Geological Survey (USGS) Astrogeology Science Center (Astrogeology), and the Boston Museum of Science (MOS). Here, we present the work and approach by the SMEs at Astrogeology. As part of this overarching project, we will create a model for improved integration of SMEs, curriculum developers, professional development experts, and educators. For the 2016 and 2017 Fiscal Years, our focus is on creating science material for two OST modules designed for middle school students. We will begin development of a third module for elementary school students in the latter part of FY2017. The first module focuses on water conservation and treatment as applied on Earth, the International Space Station, and at a fictional Mars base. This unit involves the science and engineering of finding accessible water, evaluating it for quality, treating it for impurities (i.e., dissolved and suspended), initial use, a cycle of greywater treatment and re-use, and final treatment of blackwater. The second module involves the science and engineering of remote sensing as it is related to Earth and planetary exploration. This includes discussion and activities related to the electromagnetic spectrum, spectroscopy and various remote sensing systems and techniques. In these activities and discussions we include observation and measurement techniques and tools, as well as collection and use of specific data of interest to scientists. These two modules will be tested and refined based on educator and student feedback, with expected final release in late summer of 2017.

  8. Mining method selection by integrated AHP and PROMETHEE method.

    PubMed

    Bogdanovic, Dejan; Nikolic, Djordje; Ilic, Ivana

    2012-03-01

    Selecting the best mining method among many alternatives is a multicriteria decision making problem. The aim of this paper is to demonstrate the implementation of an integrated approach that employs AHP and PROMETHEE together for selecting the most suitable mining method for the "Coka Marin" underground mine in Serbia. The related problem includes five possible mining methods and eleven criteria to evaluate them. Criteria are accurately chosen in order to cover the most important parameters that impact on the mining method selection, such as geological and geotechnical properties, economic parameters and geographical factors. The AHP is used to analyze the structure of the mining method selection problem and to determine weights of the criteria, and PROMETHEE method is used to obtain the final ranking and to make a sensitivity analysis by changing the weights. The results have shown that the proposed integrated method can be successfully used in solving mining engineering problems.

  9. Computer-aided operations engineering with integrated models of systems and operations

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Ryan, Dan; Fleming, Land

    1994-01-01

    CONFIG 3 is a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operation of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. Integration is supported among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. Support is provided for integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems. CONFIG supports abstracted qualitative and symbolic modeling, for early conceptual design. System models are component structure models with operating modes, with embedded time-related behavior models. CONFIG supports failure modeling and modeling of state or configuration changes that result in dynamic changes in dependencies among components. Operations and procedure models are activity structure models that interact with system models. CONFIG is designed to support evaluation of system operability, diagnosability and fault tolerance, and analysis of the development of system effects of problems over time, including faults, failures, and procedural or environmental difficulties.

  10. Application of information technology to the National Launch System

    NASA Technical Reports Server (NTRS)

    Mauldin, W. T.; Smith, Carolyn L.; Monk, Jan C.; Davis, Steve; Smith, Marty E.

    1992-01-01

    The approach to the development of the Unified Information System (UNIS) to provide in a timely manner all the information required to manage, design, manufacture, integrate, test, launch, operate, and support the Advanced Launch System (NLS), as well as the current and planned capabilities are described. STESYM, the Space Transportation Main Engine (STME) development program, is comprised of a collection of data models which can be grouped into two primary models: the Engine Infrastructure Model (ENGIM) and the Engine Integrated Cast Model (ENGICOM). ENGIM is an end-to-end model of the infrastructure needed to perform the fabrication, assembly, and testing of the STEM program and its components. Together, UNIS and STESYM are to provide NLS managers and engineers with the ability to access various types and files of data quickly and use that data to assess the capabilities of the STEM program.

  11. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPOR EXTRACTION AND BIOVENTING OF ORGANIC CHEMICALS IN UNSATURATED GEOLOGICAL MATERIAL

    EPA Science Inventory

    Soil vapor extraction (SVE) and bioventing (BV) are proven strategies for remediation of unsaturated zone soils. Mathematical models are powerful tools that can be used to integrate and quantify the interaction of physical, chemical, and biological processes occurring in field sc...

  12. Biodiversity and Topographic Complexity: Modern and Geohistorical Perspectives

    PubMed Central

    Badgley, Catherine; Smiley, Tara M.; Terry, Rebecca; Davis, Edward B.; DeSantis, Larisa R.G.; Fox, David L.; Hopkins, Samantha S.B.; Jezkova, Tereza; Matocq, Marjorie D.; Matzke, Nick; McGuire, Jenny L.; Mulch, Andreas; Riddle, Brett R.; Roth, V. Louise; Samuels, Joshua X.; Strömberg, Caroline A.E.; Yanites, Brian J.

    2018-01-01

    Topographically complex regions on land and in the oceans feature hotspots of biodiversity that reflect geological influences on ecological and evolutionary processes. Over geologic time, topographic diversity gradients wax and wane over millions of years, tracking tectonic or climatic history. Topographic diversity gradients from the present day and the past can result from the generation of species by vicariance or from the accumulation of species from dispersal into a region with strong environmental gradients. Biological and geological approaches must be integrated to test alternative models of diversification along topographic gradients. Reciprocal illumination among phylogenetic, phylogeographic, ecological, paleontological, tectonic, and climatic perspectives is an emerging frontier of biogeographic research. PMID:28196688

  13. Receding horizon online optimization for torque control of gasoline engines.

    PubMed

    Kang, Mingxin; Shen, Tielong

    2016-11-01

    This paper proposes a model-based nonlinear receding horizon optimal control scheme for the engine torque tracking problem. The controller design directly employs the nonlinear model exploited based on mean-value modeling principle of engine systems without any linearizing reformation, and the online optimization is achieved by applying the Continuation/GMRES (generalized minimum residual) approach. Several receding horizon control schemes are designed to investigate the effects of the integral action and integral gain selection. Simulation analyses and experimental validations are implemented to demonstrate the real-time optimization performance and control effects of the proposed torque tracking controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Integrated analysis of engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1981-01-01

    The need for light, durable, fuel efficient, cost effective aircraft requires the development of engine structures which are flexible, made from advaced materials (including composites), resist higher temperatures, maintain tighter clearances and have lower maintenance costs. The formal quantification of any or several of these requires integrated computer programs (multilevel and/or interdisciplinary analysis programs interconnected) for engine structural analysis/design. Several integrated analysis computer prorams are under development at Lewis Reseach Center. These programs include: (1) COBSTRAN-Composite Blade Structural Analysis, (2) CODSTRAN-Composite Durability Structural Analysis, (3) CISTRAN-Composite Impact Structural Analysis, (4) STAEBL-StruTailoring of Engine Blades, and (5) ESMOSS-Engine Structures Modeling Software System. Three other related programs, developed under Lewis sponsorship, are described.

  15. Modeling erosion and accretion along the Illinois Lake Michigan shore using integrated airborne, waterborne and ground-based method

    NASA Astrophysics Data System (ADS)

    Mwakanyamale, K. E.; Brown, S.; Larson, T. H.; Theuerkauf, E.; Ntarlagiannis, D.; Phillips, A.; Anderson, A.

    2017-12-01

    Sediment distribution at the Illinois Lake Michigan shoreline is constantly changing in response to increased human activities and complex natural coastal processes associated with wave action, short and long term fluctuations in lake level, and the influence of coastal ice. Understanding changes to volume, distribution and thickness of sand along the shore through time, is essential for modeling shoreline changes and predicting changes due to extreme weather events and lake-level fluctuation. The use of helicopter transient electromagnetic (HTEM) method and integration with ground-based and waterborne geophysical and geologic methods provides high resolution spatial rich data required for modeling the extent of erosion and accretion at this dynamic coastal system. Analysis and interpretation of HTEM, ground and waterborne geophysical and geological data identify spatial distribution and thickness of beach and lake-bottom sand. The results provide information on existence of littoral sand deposits and identify coastal hazards such as lakebed down-cutting that occurs in sand-starved areas.

  16. Simplified models of rates of CO2 mineralization in Geologic Carbon Storage

    NASA Astrophysics Data System (ADS)

    DePaolo, D. J.; Zhang, S.

    2017-12-01

    Geologic carbon storage (GCS) reverses the flow of carbon to the atmosphere, returning the carbon to long-term geologic storage. Models suggest that most of the injected CO2 will be "trapped" in the subsurface by physical means, but the most risk-free and permanent form of carbon storage is as carbonate minerals (Ca,Mg,Fe)CO3. The transformation of CO2 to carbonate minerals requires supply of divalent cations by dissolution of silicate minerals. Available data suggest that rates of transformation are difficult to predict. We show that the chemical kinetic observations and experimental results, when reduced to a single timescale that describes the fractional rate at which cations are released to solution by mineral dissolution, show sufficiently systematic behavior that the rates of mineralization can be estimated with reasonable certainty. Rate of mineralization depends on both the abundance (determined by the reservoir rock mineralogy) and the rate at which cations are released by dissolution into pore fluid that has been acidified with dissolved CO2. Laboratory-measured rates and field observations give values spanning 8 to 10 orders of magnitude, but when evaluated in the context of reservoir-scale reactive transport simulations, this range becomes much smaller. Reservoir scale simulations indicate that silicate mineral dissolution and subsequent carbonate mineral precipitation occur at pH 4.5 to 6, fluid flow velocity less than 5m/yr, and 50-100 years or more after the start of injection. These constraints lead to estimates of 200 to 2000 years for conversion of 60-90% of injected CO2 when the reservoir rock has a sufficient volume fraction of divalent cation-bearing silicate minerals (ca. 20%), and confirms that when reservoir rock mineralogy is not favorable the fraction of CO2 converted to carbonate minerals is minimal over 104 years. A sufficient amount of reactive minerals represents the condition by which the available cations per volume of rock plus pore space exceeds the locally trapped CO2 by a factor of two or more. Our approach may allow for rapid evaluation of mineralization potential of subsurface storage reservoirs, and illustrates how reservoir scale modeling can be integrated with other observations to address key issues for engineering geologic systems.

  17. Extension of the Cerro Prieto field and zones in the Mexicali Valley with geothermal possibilities in the future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca L, H.L.; de la Pena L, A.; Puente C, I.

    This study concerns the possible extension of the Cerro Prieto field and identification of other zones in the Mexicali Valley with geothermal development potential by assessing the structural geologic conditions in relation to the regional tectonic framework and the integration of geologic and geophysical surveys carried out at Cerro Prieto. This study is based on data obtained from the wells drilled to date and the available geological and geophysical information. With this information, a geologic model of the field is developed as a general description of the geometry of what might be the geothermal reservoir of the Cerro Prieto field.more » In areas with geothermal potential within the Mexicali Valley, the location of irrigation wells with anomalous temperatures was taken as a point of departure for subsequent studies. Based on this initial information, gravity and magnetic surveys were made, followed by seismic reflection and refraction surveys and the drilling of 1200-m-deep multiple-use wells. Based on the results of the final integration of these studies with the geology of the region, it is suggested that the following areas should be explored further: east of Cerro Prieto, Tulecheck, Riito, Aeropuerto-Algodones, and San Luis Rio Colorado, Sonora.« less

  18. Petroleum system modeling capabilities for use in oil and gas resource assessments

    USGS Publications Warehouse

    Higley, Debra K.; Lewan, Michael; Roberts, Laura N.R.; Henry, Mitchell E.

    2006-01-01

    Summary: Petroleum resource assessments are among the most highly visible and frequently cited scientific products of the U.S. Geological Survey. The assessments integrate diverse and extensive information on the geologic, geochemical, and petroleum production histories of provinces and regions of the United States and the World. Petroleum systems modeling incorporates these geoscience data in ways that strengthen the assessment process and results are presented visually and numerically. The purpose of this report is to outline the requirements, advantages, and limitations of one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) petroleum systems modeling that can be applied to the assessment of oil and gas resources. Primary focus is on the application of the Integrated Exploration Systems (IES) PetroMod? software because of familiarity with that program as well as the emphasis by the USGS Energy Program on standardizing to one modeling application. The Western Canada Sedimentary Basin (WCSB) is used to demonstrate the use of the PetroMod? software. Petroleum systems modeling quantitatively extends the 'total petroleum systems' (TPS) concept (Magoon and Dow, 1994; Magoon and Schmoker, 2000) that is employed in USGS resource assessments. Modeling allows integration of state-of-the-art analysis techniques, and provides the means to test and refine understanding of oil and gas generation, migration, and accumulation. Results of modeling are presented visually, numerically, and statistically, which enhances interpretation of the processes that affect TPSs through time. Modeling also provides a framework for the input and processing of many kinds of data essential in resource assessment, including (1) petroleum system elements such as reservoir, seal, and source rock intervals; (2) timing of depositional, hiatus, and erosional events and their influences on petroleum systems; (3) incorporation of vertical and lateral distribution and lithologies of strata that compose the petroleum systems; and (4) calculations of pressure-volume-temperature (PVT) histories. As digital data on petroleum systems continue to expand, the models can integrate these data into USGS resource assessments by building and displaying, through time, areas of petroleum generation, migration pathways, accumulations, and relative contributions of source rocks to the hydrocarbon components. IES PetroMod? 1-D, 2-D, and 3-D models are integrated such that each uses the same variables for petroleum systems modeling. 1-D burial history models are point locations, mainly wells. Maps and cross-sections model geologic information in two dimensions and can incorporate direct input of 2-D seismic data and interpretations using various formats. Both 1-D and 2-D models use data essential for assessments and, following data compilation, they can be completed in hours and retested in minutes. Such models should be built early in the geologic assessment process, inasmuch as they incorporate the petroleum system elements of reservoir, source, and seal rock intervals with associated lithologies and depositional and erosional ages. The models can be used to delineate the petroleum systems. A number of 1-D and 2-D models can be constructed across a geologic province and used by the assessment geologists as a 3-D framework of processes that control petroleum generation, migration, and accumulation. The primary limitation of these models is that they only represent generation, migration, and accumulation in two dimensions. 3-D models are generally built at reservoir to basin scales. They provide a much more detailed and realistic representation of petroleum systems than 1-D or 2-D models because they portray more fully the temporal and physical relations among (1) burial history; (2) lithologies and associated changes through burial in porosity, permeability, and compaction; (3) hydrodynamic effects; and (4) other parameters that influence petroleum gen

  19. Digital computer program for generating dynamic turbofan engine models (DIGTEM)

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.; Krosel, S. M.; Szuch, J. R.; Westerkamp, E. J.

    1983-01-01

    This report describes DIGTEM, a digital computer program that simulates two spool, two-stream turbofan engines. The turbofan engine model in DIGTEM contains steady-state performance maps for all of the components and has control volumes where continuity and energy balances are maintained. Rotor dynamics and duct momentum dynamics are also included. Altogether there are 16 state variables and state equations. DIGTEM features a backward-differnce integration scheme for integrating stiff systems. It trims the model equations to match a prescribed design point by calculating correction coefficients that balance out the dynamic equations. It uses the same coefficients at off-design points and iterates to a balanced engine condition. Transients can also be run. They are generated by defining controls as a function of time (open-loop control) in a user-written subroutine (TMRSP). DIGTEM has run on the IBM 370/3033 computer using implicit integration with time steps ranging from 1.0 msec to 1.0 sec. DIGTEM is generalized in the aerothermodynamic treatment of components.

  20. Integrating Engineering Data Systems for NASA Spaceflight Projects

    NASA Technical Reports Server (NTRS)

    Carvalho, Robert E.; Tollinger, Irene; Bell, David G.; Berrios, Daniel C.

    2012-01-01

    NASA has a large range of custom-built and commercial data systems to support spaceflight programs. Some of the systems are re-used by many programs and projects over time. Management and systems engineering processes require integration of data across many of these systems, a difficult problem given the widely diverse nature of system interfaces and data models. This paper describes an ongoing project to use a central data model with a web services architecture to support the integration and access of linked data across engineering functions for multiple NASA programs. The work involves the implementation of a web service-based middleware system called Data Aggregator to bring together data from a variety of systems to support space exploration. Data Aggregator includes a central data model registry for storing and managing links between the data in disparate systems. Initially developed for NASA's Constellation Program needs, Data Aggregator is currently being repurposed to support the International Space Station Program and new NASA projects with processes that involve significant aggregating and linking of data. This change in user needs led to development of a more streamlined data model registry for Data Aggregator in order to simplify adding new project application data as well as standardization of the Data Aggregator query syntax to facilitate cross-application querying by client applications. This paper documents the approach from a set of stand-alone engineering systems from which data are manually retrieved and integrated, to a web of engineering data systems from which the latest data are automatically retrieved and more quickly and accurately integrated. This paper includes the lessons learned through these efforts, including the design and development of a service-oriented architecture and the evolution of the data model registry approaches as the effort continues to evolve and adapt to support multiple NASA programs and priorities.

  1. Integrated modeling of natural and human systems - problems and initiatives

    NASA Astrophysics Data System (ADS)

    Kessler, H.; Giles, J.; Gunnink, J.; Hughes, A.; Moore, R. V.; Peach, D.

    2009-12-01

    Governments and their executive agencies across the world are facing increasing pressure to make decisions about the management of resources in light of population growth and environmental change. In the UK and the Netherlands, for example, groundwater is becoming a scarce resource for large parts of its most densely populated areas. At the same time river and groundwater flooding resulting from high rainfall events are increasing in scale and frequency and sea level rise is threatening the defences of coastal cities. There is also a need for affordable housing, improved transport infrastructure and waste disposal as well as sources of renewable energy and sustainable food production. These challenges can only be resolved if solutions are based on sound scientific evidence. Although we have knowledge and understanding of many individual processes in the natural sciences it is clear that a single science discipline is unable to answer the questions and their inter-relationships. Modern science increasingly employs computer models to simulate the natural, economic and human system. Management and planning requires scenario modelling, forecasts and “predictions”. Although the outputs are often impressive in terms of apparent accuracy and visualisation, they are inherently not suited to simulate the response to feedbacks from other models of the earth system, such as the impact of human actions. Geological Survey Organisations (GSO) are increasingly employing advances in Information Technology to visualise and improve their understanding of geological systems. Instead of 2 dimensional paper maps and reports many GSOs now produce 3 dimensional geological framework models and groundwater flow models as their standard output. Additionally the British Geological Survey and the Geological Survey of the Netherlands have developed standard routines to link geological data to groundwater models, but these models are only aimed at solving one specific part of the earth's system, e.g. the flow of groundwater to an abstraction borehole or the availability of water for irrigation. Particular problems arise when model data from two or more disciplines are incompatible in terms of data formats, scientific concepts or language. Other barriers include the cultural segregation within and between science disciplines as well as impediments to data exchange due to ownership and copyright restrictions. OpenMI and GeoSciML are initiatives that are trying to overcome these barriers by building international communities that share vocabularies and data formats. This paper will give examples of the successful merging of geological and hydrological models from the UK and the Netherlands and will introduce the vision of an open Environmental Modelling Platform which aims to link data, knowledge and concepts seamlessly to numerical process models. Last but not least there is an urgent need to create a Subsurface Management System akin to a Geographic Information System in which all results of subsurface modelling can be visualised and analysed in an integrated manner.

  2. Propulsion control experience used in the Highly Integrated Digital Electronic Control (HIDEC) program

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Burcham, F. W., Jr.

    1984-01-01

    The highly integrated digital electronic control (HIDEC) program will integrate the propulsion and flight control systems on an F-15 airplane at NASA Ames Research Center's Dryden Flight Research Facility. Ames-Dryden has conducted several propulsion control programs that have contributed to the HIDEC program. The digital electronic engine control (DEEC) flight evaluation investigated the performance and operability of the F100 engine equipped with a full-authority digital electronic control system. Investigations of nozzle instability, fault detection and accommodation, and augmentor transient capability provided important information for the HIDEC program. The F100 engine model derivative (EMD) was also flown in the F-15 airplane, and airplane performance was significantly improved. A throttle response problem was found and solved with a software fix to the control logic. For the HIDEC program, the F100 EMD engines equipped with DEEC controls will be integrated with the digital flight control system. The control modes to be implemented are an integrated flightpath management mode and an integrated adaptive engine control system mode. The engine control experience that will be used in the HIDEC program is discussed.

  3. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its results and impact. We will highlight the insights gained by applying the Model Based System Engineering and provide recommendations for its applications and improvements.

  4. Structurally Controlled Geothermal Systems in the Central Cascades Arc-Backarc Regime, Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wannamaker, Philip E.

    The goal of this project has been to analyze available magnetotelluric (MT) geophysical surveys, structural geology based on mapping and LiDAR, and fluid geochemical data, to identify high-temperature fluid upwellings, critically stressed rock volumes, and other evidence of structurally-controlled geothermal resources. Data were to be integrated to create conceptual models of volcanic-hosted geothermal resources along the Central Cascades arc segment, especially in the vicinity of Mt. Jefferson to Three Sisters. LiDAR data sets available at Oregon State University (OSU) allowed detailed structural geology modeling through forest canopy. Copious spring and well fluid chemistries, including isotopes, were modeled using Geo-T andmore » TOUGHREACT software.« less

  5. Science in support of the Deepwater Horizon response

    USGS Publications Warehouse

    Lubchenco, Jane; McNutt, Marcia K.; Dreyfus, Gabrielle; Murawski, Steven A.; Kennedy, David M.; Anastas, Paul T.; Chu, Steven; Hunter, Tom

    2012-01-01

    This introduction to the Special Feature presents the context for science during the Deepwater Horizon oil spill response, summarizes how scientific knowledge was integrated across disciplines and statutory responsibilities, identifies areas where scientific information was accurate and where it was not, and considers lessons learned and recommendations for future research and response. Scientific information was integrated within and across federal and state agencies, with input from nongovernmental scientists, across a diverse portfolio of needs—stopping the flow of oil, estimating the amount of oil, capturing and recovering the oil, tracking and forecasting surface oil, protecting coastal and oceanic wildlife and habitat, managing fisheries, and protecting the safety of seafood. Disciplines involved included atmospheric, oceanographic, biogeochemical, ecological, health, biological, and chemical sciences, physics, geology, and mechanical and chemical engineering. Platforms ranged from satellites and planes to ships, buoys, gliders, and remotely operated vehicles to laboratories and computer simulations. The unprecedented response effort depended directly on intense and extensive scientific and engineering data, information, and advice. Many valuable lessons were learned that should be applied to future events.

  6. Science in support of the Deepwater Horizon response

    PubMed Central

    Lubchenco, Jane; McNutt, Marcia K.; Dreyfus, Gabrielle; Murawski, Steven A.; Kennedy, David M.; Anastas, Paul T.; Chu, Steven; Hunter, Tom

    2012-01-01

    This introduction to the Special Feature presents the context for science during the Deepwater Horizon oil spill response, summarizes how scientific knowledge was integrated across disciplines and statutory responsibilities, identifies areas where scientific information was accurate and where it was not, and considers lessons learned and recommendations for future research and response. Scientific information was integrated within and across federal and state agencies, with input from nongovernmental scientists, across a diverse portfolio of needs—stopping the flow of oil, estimating the amount of oil, capturing and recovering the oil, tracking and forecasting surface oil, protecting coastal and oceanic wildlife and habitat, managing fisheries, and protecting the safety of seafood. Disciplines involved included atmospheric, oceanographic, biogeochemical, ecological, health, biological, and chemical sciences, physics, geology, and mechanical and chemical engineering. Platforms ranged from satellites and planes to ships, buoys, gliders, and remotely operated vehicles to laboratories and computer simulations. The unprecedented response effort depended directly on intense and extensive scientific and engineering data, information, and advice. Many valuable lessons were learned that should be applied to future events. PMID:23213250

  7. Using GA-Ridge regression to select hydro-geological parameters influencing groundwater pollution vulnerability.

    PubMed

    Ahn, Jae Joon; Kim, Young Min; Yoo, Keunje; Park, Joonhong; Oh, Kyong Joo

    2012-11-01

    For groundwater conservation and management, it is important to accurately assess groundwater pollution vulnerability. This study proposed an integrated model using ridge regression and a genetic algorithm (GA) to effectively select the major hydro-geological parameters influencing groundwater pollution vulnerability in an aquifer. The GA-Ridge regression method determined that depth to water, net recharge, topography, and the impact of vadose zone media were the hydro-geological parameters that influenced trichloroethene pollution vulnerability in a Korean aquifer. When using these selected hydro-geological parameters, the accuracy was improved for various statistical nonlinear and artificial intelligence (AI) techniques, such as multinomial logistic regression, decision trees, artificial neural networks, and case-based reasoning. These results provide a proof of concept that the GA-Ridge regression is effective at determining influential hydro-geological parameters for the pollution vulnerability of an aquifer, and in turn, improves the AI performance in assessing groundwater pollution vulnerability.

  8. 30 CFR 203.4 - How do the provisions in this part apply to different types of leases and projects?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... justification report (prescribed format) X (3) Economic viability and relief justification report (Royalty Suspension Viability Program (RSVP) model inputs justified with Geological and Geophysical (G&G), Engineering... template) (6) Determined to be economic only with relief X X X (d) The following table indicates by an X...

  9. 30 CFR 203.4 - How do the provisions in this part apply to different types of leases and projects?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... justification report (prescribed format) X (3) Economic viability and relief justification report (Royalty Suspension Viability Program (RSVP) model inputs justified with Geological and Geophysical (G&G), Engineering...) (6) Determined to be economic only with relief X X X (d) The following table indicates by an X, and...

  10. 30 CFR 203.4 - How do the provisions in this part apply to different types of leases and projects?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... justification report (prescribed format) X (3) Economic viability and relief justification report (Royalty Suspension Viability Program (RSVP) model inputs justified with Geological and Geophysical (G&G), Engineering...) (6) Determined to be economic only with relief X X X (d) The following table indicates by an X, and...

  11. 30 CFR 203.4 - How do the provisions in this part apply to different types of leases and projects?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... report (prescribed format) X (3) Economic viability and relief justification report (Royalty Suspension Viability Program (RSVP) model inputs justified with Geological and Geophysical (G&G), Engineering... template) (6) Determined to be economic only with relief X X X (d) The following table indicates by an X...

  12. 30 CFR 203.4 - How do the provisions in this part apply to different types of leases and projects?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... justification report (prescribed format) X (3) Economic viability and relief justification report (Royalty Suspension Viability Program (RSVP) model inputs justified with Geological and Geophysical (G&G), Engineering...) (6) Determined to be economic only with relief X X X (d) The following table indicates by an X, and...

  13. Reconnaissance mapping from aerial photographs

    NASA Technical Reports Server (NTRS)

    Weeden, H. A.; Bolling, N. B. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Engineering soil and geology maps were successfully made from Pennsylvania aerial photographs taken at scales from 1:4,800 to 1:60,000. The procedure involved a detailed study of a stereoscopic model while evaluating landform, drainage, erosion, color or gray tones, tone and texture patterns, vegetation, and cultural or land use patterns.

  14. Digital Field Mapping with the British Geological Survey

    NASA Astrophysics Data System (ADS)

    Leslie, Graham; Smith, Nichola; Jordan, Colm

    2014-05-01

    The BGS•SIGMA project was initiated in 2001 in response to a major stakeholder review of onshore mapping within the British Geological Survey (BGS). That review proposed a significant change for BGS with the recommendation that digital methods should be implemented for field mapping and data compilation. The BGS•SIGMA project (System for Integrated Geoscience MApping) is an integrated workflow for geoscientific surveying and visualisation using digital methods for geological data visualisation, recording and interpretation, in both 2D and 3D. The project has defined and documented an underpinning framework of best practice for survey and information management, best practice that has then informed the design brief and specification for a toolkit to support this new methodology. The project has now delivered BGS•SIGMA2012. BGS•SIGMA2012 is a integrated toolkit which enables assembly and interrogation/visualisation of existing geological information; capture of, and integration with, new data and geological interpretations; and delivery of 3D digital products and services. From its early days as a system which used PocketGIS run on Husky Fex21 hardware, to the present day system which runs on ruggedized tablet PCs with integrated GPS units, the system has evolved into a complete digital mapping and compilation system. BGS•SIGMA2012 uses a highly customised version of ESRI's ArcGIS 10 and 10.1 with a fully relational Access 2007/2010 geodatabase. BGS•SIGMA2012 is the third external release of our award-winning digital field mapping toolkit. The first free external release of the award-winning digital field mapping toolkit was in 2009, with the third version (BGS-SIGMAmobile2012 v1.01) released on our website (http://www.bgs.ac.uk/research/sigma/home.html) in 2013. The BGS•SIGMAmobile toolkit formed the major part of the first two releases but this new version integrates the BGS•SIGMAdesktop functionality that BGS routinely uses to transform our field data into corporate standard geological models and derivative map outputs. BGS•SIGMA2012 is the default toolkit within BGS for bedrock and superficial geological mapping and other data acquisition projects across the UK, both onshore and offshore. It is used in mapping projects in Africa, the Middle East and the USA, and has been taken to Japan as part of the Tohoku tsunami damage assessment project. It is also successfully being used worldwide by other geological surveys e.g. Norway and Tanzania; by universities including Leicester, Keele and Kyoto, and by organisations such as Vale Mining in Brazil and the Montana Bureau of Mines and Geology. It is used globally, with over 2000 licenses downloaded worldwide to date and in use on all seven continents. Development of the system is still ongoing as a result of both user feedback and the changing face of technology. Investigations into the development of a BGS•SIGMA smartphone app are currently taking place alongside system developments such as a new and more streamlined data entry system.

  15. Modeling and visualizing borehole information on virtual globes using KML

    NASA Astrophysics Data System (ADS)

    Zhu, Liang-feng; Wang, Xi-feng; Zhang, Bing

    2014-01-01

    Advances in virtual globes and Keyhole Markup Language (KML) are providing the Earth scientists with the universal platforms to manage, visualize, integrate and disseminate geospatial information. In order to use KML to represent and disseminate subsurface geological information on virtual globes, we present an automatic method for modeling and visualizing a large volume of borehole information. Based on a standard form of borehole database, the method first creates a variety of borehole models with different levels of detail (LODs), including point placemarks representing drilling locations, scatter dots representing contacts and tube models representing strata. Subsequently, the level-of-detail based (LOD-based) multi-scale representation is constructed to enhance the efficiency of visualizing large numbers of boreholes. Finally, the modeling result can be loaded into a virtual globe application for 3D visualization. An implementation program, termed Borehole2KML, is developed to automatically convert borehole data into KML documents. A case study of using Borehole2KML to create borehole models in Shanghai shows that the modeling method is applicable to visualize, integrate and disseminate borehole information on the Internet. The method we have developed has potential use in societal service of geological information.

  16. The Implementation and Evaluation of a Project-Oriented Problem-Based Learning Module in a First Year Engineering Programme

    ERIC Educational Resources Information Center

    McLoone, Seamus C.; Lawlor, Bob J.; Meehan, Andrew R.

    2016-01-01

    This paper describes how a circuits-based project-oriented problem-based learning educational model was integrated into the first year of a Bachelor of Engineering in Electronic Engineering programme at Maynooth University, Ireland. While many variations of problem based learning exist, the presented model is closely aligned with the model used in…

  17. A Computational Model to Simulate Groundwater Seepage Risk in Support of Geotechnical Investigations of Levee and Dam Projects

    DTIC Science & Technology

    2013-03-01

    Allen 1974, 1978; Bridge and Leeder 1979; Mackey and Bridge 1992) that computes synthetic stratigraphy for a floodplain cross section. The model...typical of that used to record and communicate geologic information for engineering applications. The computed stratigraphy differentiates between...belt dimensions measured for two well-studied river systems: (A) the Linge River within the Rhine-Meuse Delta , Netherlands, and (B) the Lower

  18. NASA Systems Engineering Research Consortium: Defining the Path to Elegance in Systems

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Farrington, Phillip A.

    2016-01-01

    The NASA Systems Engineering Research Consortium was formed at the end of 2010 to study the approaches to producing elegant systems on a consistent basis. This has been a transformative study looking at the engineering and organizational basis of systems engineering. The consortium has engaged in a variety of research topics to determine the path to elegant systems. In the second year of the consortium, a systems engineering framework emerged which structured the approach to systems engineering and guided our research. This led in the third year to set of systems engineering postulates that the consortium is continuing to refine. The consortium has conducted several research projects that have contributed significantly to the understanding of systems engineering. The consortium has surveyed the application of the NASA 17 systems engineering processes, explored the physics and statistics of systems integration, and considered organizational aspects of systems engineering discipline integration. The systems integration methods have included system exergy analysis, Akaike Information Criteria (AIC), State Variable Analysis, Multidisciplinary Coupling Analysis (MCA), Multidisciplinary Design Optimization (MDO), System Cost Modelling, System Robustness, and Value Modelling. Organizational studies have included the variability of processes in change evaluations, margin management within the organization, information theory of board structures, social categorization of unintended consequences, and initial looks at applying cognitive science to systems engineering. Consortium members have also studied the bidirectional influence of policy and law with systems engineering.

  19. NASA Systems Engineering Research Consortium: Defining the Path to Elegance in Systems

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Farrington, Phillip A.

    2016-01-01

    The NASA Systems Engineering Research Consortium was formed at the end of 2010 to study the approaches to producing elegant systems on a consistent basis. This has been a transformative study looking at the engineering and organizational basis of systems engineering. The consortium has engaged in a variety of research topics to determine the path to elegant systems. In the second year of the consortium, a systems engineering framework emerged which structured the approach to systems engineering and guided our research. This led in the third year to set of systems engineering postulates that the consortium is continuing to refine. The consortium has conducted several research projects that have contributed significantly to the understanding of systems engineering. The consortium has surveyed the application of the NASA 17 systems engineering processes, explored the physics and statistics of systems integration, and considered organizational aspects of systems engineering discipline integration. The systems integration methods have included system energy analysis, Akaike Information Criteria (AIC), State Variable Analysis, Multidisciplinary Coupling Analysis (MCA), Multidisciplinary Design Optimization (MDO), System Cost Modeling, System Robustness, and Value Modeling. Organizational studies have included the variability of processes in change evaluations, margin management within the organization, information theory of board structures, social categorization of unintended consequences, and initial looks at applying cognitive science to systems engineering. Consortium members have also studied the bidirectional influence of policy and law with systems engineering.

  20. Thermal design and analysis of a hydrogen-burning wind tunnel model of an airframe-integrated scramjet

    NASA Technical Reports Server (NTRS)

    Guy, R. W.; Mueller, J. N.; Pinckney, S. Z.; Lee, L. P.

    1976-01-01

    An aerodynamic model of a hydrogen burning, airframe integrated scramjet engine has been designed, fabricated, and instrumented. This model is to be tested in an electric arc heated wind tunnel at an altitude of 35.39 km (116,094 ft.) but with an inlet Mach number of 6 simulating precompression on an aircraft undersurface. The scramjet model is constructed from oxygen free, high conductivity copper and is a heat sink design except for water cooling in some critical locations. The model is instrumented for pressure, surface temperature, heat transfer rate, and thrust measurements. Calculated flow properties, heat transfer rates, and surface temperature distributions along the various engine components are included for the conditions stated above. For some components, estimates of thermal strain are presented which indicate significant reductions in plastic strain by selective cooling of the model. These results show that the 100 thermal cycle life of the engine was met with minimum distortion while staying within the 2669 N (600 lbf) engine weight limitation and while cooling the engine only in critical locations.

  1. Modeling Water Filtration

    ERIC Educational Resources Information Center

    Parks, Melissa

    2014-01-01

    Model-eliciting activities (MEAs) are not new to those in engineering or mathematics, but they were new to Melissa Parks. Model-eliciting activities are simulated real-world problems that integrate engineering, mathematical, and scientific thinking as students find solutions for specific scenarios. During this process, students generate solutions…

  2. Biological intrusion of low-level-waste trench covers

    NASA Astrophysics Data System (ADS)

    Hakonson, T. E.; Gladney, E. S.

    The long-term integrity of low-level waste shallow land burialsites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. The need to consider biological processes as being potentially important in reducing the integrity of waste burial site cover treatment is demonstrated. One approach to limiting biological intrusion through the waste cover is to apply a barrier within the profile to limit root and animal penetration with depth. Experiments in the Los Alamos Experimental Engineered Test Facility were initiated to develop and evaluate biological barriers that are effective in minimizing intrusion into waste trenches. The experiments that are described employ four different candidate barrier materials of geologic origin. Experimental variables that will be evaluated, in addition to barrier type, are barrier depth and sil overburden depth.

  3. Theory of chaotic orbital variations confirmed by Cretaceous geological evidence

    NASA Astrophysics Data System (ADS)

    Ma, Chao; Meyers, Stephen R.; Sageman, Bradley B.

    2017-02-01

    Variations in the Earth’s orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System, and provides a constraint for refining numerical solutions for insolation, which will enable a more precise and accurate geological timescale to be produced.

  4. Theory of chaotic orbital variations confirmed by Cretaceous geological evidence.

    PubMed

    Ma, Chao; Meyers, Stephen R; Sageman, Bradley B

    2017-02-22

    Variations in the Earth's orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System, and provides a constraint for refining numerical solutions for insolation, which will enable a more precise and accurate geological timescale to be produced.

  5. Publications - GMC 53C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Paleozoic through Tertiary sandstones, North Slope, Alaska Authors: Alaska Research Associates Publication through Tertiary sandstones, North Slope, Alaska: Alaska Division of Geological & Geophysical Surveys

  6. STOVL Control Integration Program

    NASA Technical Reports Server (NTRS)

    Weiss, C.; Mcdowell, P.; Watts, S.

    1994-01-01

    An integrated flight/propulsion control for an advanced vector thrust supersonic STOVL aircraft, was developed by Pratt & Whitney and McDonnell Douglas Aerospace East. The IFPC design was based upon the partitioning of the global requirements into flight control and propulsion control requirements. To validate the design, aircraft and engine models were also developed for use on a NASA Ames piloted simulator. Different flight control implementations, evaluated for their handling qualities, are documented in the report along with the propulsion control, engine model, and aircraft model.

  7. Fractals for Geoengineering

    NASA Astrophysics Data System (ADS)

    Oleshko, Klaudia; de Jesús Correa López, María; Romero, Alejandro; Ramírez, Victor; Pérez, Olga

    2016-04-01

    The effectiveness of fractal toolbox to capture the scaling or fractal probability distribution, and simply fractal statistics of main hydrocarbon reservoir attributes, was highlighted by Mandelbrot (1995) and confirmed by several researchers (Zhao et al., 2015). Notwithstanding, after more than twenty years, it's still common the opinion that fractals are not useful for the petroleum engineers and especially for Geoengineering (Corbett, 2012). In spite of this negative background, we have successfully applied the fractal and multifractal techniques to our project entitled "Petroleum Reservoir as a Fractal Reactor" (2013 up to now). The distinguishable feature of Fractal Reservoir is the irregular shapes and rough pore/solid distributions (Siler, 2007), observed across a broad range of scales (from SEM to seismic). At the beginning, we have accomplished the detailed analysis of Nelson and Kibler (2003) Catalog of Porosity and Permeability, created for the core plugs of siliciclastic rocks (around ten thousand data were compared). We enriched this Catalog by more than two thousand data extracted from the last ten years publications on PoroPerm (Corbett, 2012) in carbonates deposits, as well as by our own data from one of the PEMEX, Mexico, oil fields. The strong power law scaling behavior was documented for the major part of these data from the geological deposits of contrasting genesis. Based on these results and taking into account the basic principles and models of the Physics of Fractals, introduced by Per Back and Kan Chen (1989), we have developed new software (Muukíl Kaab), useful to process the multiscale geological and geophysical information and to integrate the static geological and petrophysical reservoir models to dynamic ones. The new type of fractal numerical model with dynamical power law relations among the shapes and sizes of mesh' cells was designed and calibrated in the studied area. The statistically sound power law relations were established for the reservoir' hydraulic units distribution in space and time, as well as for the corresponding well testing data. References: 1. Mandelbrot, B., 1995. Foreword to Fractals in Petroleum Geology and Earth Processes, Edited by: Christopher C. Barton and Paul R. La Pointe, Plenum Press, New York: vii-xii. 2. Jin-Zhou Zhao, Cui-Cui Sheng, Yong_Ming Li, and Shun-Chu Li, 2015. A Mathematical Model for the Analysis of the Pressure Transient Response of Fluid Flow in Fractal Reservoir. J. of Chemistry, ID 596597, 8p. 3. Siler, T. , 2007. Fractal Reactor. International Conference Series on Emerging Nuclear Energy Systems 4. Corbett, P. W. M., 2012. The Role of Geoengineering in field development. INTECH, Chapter 8: 181- 198. 5. Nelson, P.H. and J. Kibler, 2003. A Catalog of Porosity and Permeability from core plugs in siliciclastic rocks. U.S. Geological Survey. 6. Per Bak and Kan Chen, 1989. The Physics of Fractals. Physica D 38: 5-12.

  8. Systems Engineering and Integration for Advanced Life Support System and HST

    NASA Technical Reports Server (NTRS)

    Kamarani, Ali K.

    2005-01-01

    Systems engineering (SE) discipline has revolutionized the way engineers and managers think about solving issues related to design of complex systems: With continued development of state-of-the-art technologies, systems are becoming more complex and therefore, a systematic approach is essential to control and manage their integrated design and development. This complexity is driven from integration issues. In this case, subsystems must interact with one another in order to achieve integration objectives, and also achieve the overall system's required performance. Systems engineering process addresses these issues at multiple levels. It is a technology and management process dedicated to controlling all aspects of system life cycle to assure integration at all levels. The Advanced Integration Matrix (AIM) project serves as the systems engineering and integration function for the Human Support Technology (HST) program. AIM provides means for integrated test facilities and personnel for performance trade studies, analyses, integrated models, test results, and validated requirements of the integration of HST. The goal of AIM is to address systems-level integration issues for exploration missions. It will use an incremental systems integration approach to yield technologies, baselines for further development, and possible breakthrough concepts in the areas of technological and organizational interfaces, total information flow, system wide controls, technical synergism, mission operations protocols and procedures, and human-machine interfaces.

  9. High-resolution geological mapping at 3D Environments: A case study from the fold-and-thrust belt in northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chan, Y. C.; Shih, N. C.; Hsieh, Y. C.

    2016-12-01

    Geologic maps have provided fundamental information for many scientific and engineering applications in human societies. Geologic maps directly influence the reliability of research results or the robustness of engineering projects. In the past, geologic maps were mainly produced by field geologists through direct field investigations and 2D topographic maps. However, the quality of traditional geologic maps was significantly compromised by field conditions, particularly, when the map area is covered by heavy forest canopies. Recent developments in airborne LiDAR technology may virtually remove trees or buildings, thus, providing a useful data set for improving geological mapping. Because high-quality topographic information still needs to be interpreted in terms of geology, there are many fundamental questions regarding how to best apply the data set for high-resolution geological mapping. In this study, we aim to test the quality and reliability of high-resolution geologic maps produced by recent technological methods through an example from the fold-and-thrust belt in northern Taiwan. We performed the geological mapping by applying the LiDAR-derived DEM, self-developed program tools and many layers of relevant information at interactive 3D environments. Our mapping results indicate that the proposed methods will considerably improve the quality and consistency of the geologic maps. The study also shows that in order to gain consistent mapping results, future high-resolution geologic maps should be produced at interactive 3D environments on the basis of existing geologic maps.

  10. An Integrated Approach to Conversion, Verification, Validation and Integrity of AFRL Generic Engine Model and Simulation (Postprint)

    DTIC Science & Technology

    2007-02-01

    and Astronautics 11 PS3C W3 P3 T3 FAR3 Ps3 W41 P41 T41 FAR41 Ps41 W4 P4 T4 FAR4 Ps4 7 NozFlow 6 Flow45 5 Flow44 4 Flow41 3 Flow4 2 Flow3 1 N2Bal... Motivation for Modeling and Simulation Work The Augmented Generic Engine Model (AGEM) Model Verification and Validation (V&V) Assessment of AGEM V&V

  11. 34 CFR Appendix to Part 648 - Academic Areas

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Electronic, and Communications Engineering 14.11Engineering Mechanics 14.12Engineering Physics 14.13Engineering Science 14.14Environmental/Environmental Health Engineering 14.15Geological Engineering 14... Arts and Art Studies 50.09Music 51.Health Professions and Related Sciences 51.01Chiropractic (D.C., D.C...

  12. Integrated Modeling Environment

    NASA Technical Reports Server (NTRS)

    Mosier, Gary; Stone, Paul; Holtery, Christopher

    2006-01-01

    The Integrated Modeling Environment (IME) is a software system that establishes a centralized Web-based interface for integrating people (who may be geographically dispersed), processes, and data involved in a common engineering project. The IME includes software tools for life-cycle management, configuration management, visualization, and collaboration.

  13. Foundation integrity assessment using integrated geophysical and geotechnical techniques: case study in crystalline basement complex, southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Olayanju, G. M.; Mogaji, K. A.; Lim, H. S.; Ojo, T. S.

    2017-06-01

    The determination of parameters comprising exact depth to bedrock and its lithological type, lateral changes in lithology, and detection of fractures, cracks, or faults are essential to designing formidable foundations and assessing the integrity of civil engineering structures. In this study, soil and site characterization in a typical hard rock geologic terrain in southwestern Nigeria were carried out employing integrated geophysical and geotechnical techniques to address tragedies in civil engineering infrastructural development. The deployed geophysical measurements involved running both very low frequency electromagnetic (VLF-EM) and electrical resistivity methods (dipole-dipole imaging and vertical electrical sounding (VES) techniques) along the established traverses, while the latter technique entailed conducting geological laboratory sieve analysis and Atterberg limit-index tests upon the collected soil samples in the area. The results of the geophysical measurement, based on the interpreted VLF-EM and dipole-dipole data, revealed conductive zones and linear features interpreted as fractures/faults which endanger the foundations of public infrastructures. The delineation of four distinct geoelectric layers in the area—comprised of topsoil, lateritic/clayey substratum, weathered layer, and bedrock—were based on the VES results. Strong evidence, including high degree of decomposition and fracturing of underlying bedrock revealed by the VES results, confirmed the VLF-EM and dipole-dipole results. Furthermore, values in the range of 74.2%-77.8%, 55%-62.5%, 23.4%-24.5%, 7.7%-8.2%, 19.5%-22.4%, and 31.65%-38.25% were obtained for these geotechnical parameters viz soil percentage passing 0.075 mm sieve size, liquid limit, plasticity index, linear shrinkage, natural moisture content, and plastic limit, respectively, resulting from the geotechnical analysis of the soil samples. The comparatively analyzed geophysical and geotechnical results revealed a high weathering of charnockitic rocks resulting in plastic clay material mapped with a mean resistivity value of 73 Ohm-m, in conformity with the obtained geotechnical parameters, which failed to agree with the standard specification of subsoil foundation materials and which, in turn, can impact negatively on the foundational integrity of infrastructures. Based on these results, the area subsoils’ competence for foundation has been rated poor to low. This study has more widely demonstrated the effective application of integrative geophysical and geotechnical methods in the assessment of subsoil competence.

  14. Army-NASA aircrew/aircraft integration program (A3I) software detailed design document, phase 3

    NASA Technical Reports Server (NTRS)

    Banda, Carolyn; Chiu, Alex; Helms, Gretchen; Hsieh, Tehming; Lui, Andrew; Murray, Jerry; Shankar, Renuka

    1990-01-01

    The capabilities and design approach of the MIDAS (Man-machine Integration Design and Analysis System) computer-aided engineering (CAE) workstation under development by the Army-NASA Aircrew/Aircraft Integration Program is detailed. This workstation uses graphic, symbolic, and numeric prototyping tools and human performance models as part of an integrated design/analysis environment for crewstation human engineering. Developed incrementally, the requirements and design for Phase 3 (Dec. 1987 to Jun. 1989) are described. Software tools/models developed or significantly modified during this phase included: an interactive 3-D graphic cockpit design editor; multiple-perspective graphic views to observe simulation scenarios; symbolic methods to model the mission decomposition, equipment functions, pilot tasking and loading, as well as control the simulation; a 3-D dynamic anthropometric model; an intermachine communications package; and a training assessment component. These components were successfully used during Phase 3 to demonstrate the complex interactions and human engineering findings involved with a proposed cockpit communications design change in a simulated AH-64A Apache helicopter/mission that maps to empirical data from a similar study and AH-1 Cobra flight test.

  15. 3D modeling of a dolerite intrusion from the photogrammetric and geophysical data integration.

    NASA Astrophysics Data System (ADS)

    Duarte, João; Machadinho, Ana; Figueiredo, Fernando; Mira, Maria

    2015-04-01

    The aims of this study is create a methodology based on the integration of data obtained from various available technologies, which allow a credible and complete evaluation of rock masses. In this particular case of a dolerite intrusion, which deployed an exploration of aggregates and belongs to the Jobasaltos - Extracção e Britagem. S.A.. Dolerite intrusion is situated in the volcanic complex of Serra de Todo-o-Mundo, Casais Gaiola, intruded in Jurassic sandstones. The integration of the surface and subsurface mapping, obtained by technology UAVs (Drone) and geophysical surveys (Electromagnetic Method - TEM 48 FAST), allows the construction of 2D and 3D models of the study local. The combination of the 3D point clouds produced from two distinct processes, modeling of photogrammetric and geophysical data, will be the basis for the construction of a single model of set. The rock masses in an integral perspective being visible their development above the surface and subsurface. The presentation of 2D and 3D models will give a perspective of structures, fracturation, lithology and their spatial correlations contributing to a better local knowledge, as well as its potential for the intended purpose. From these local models it will be possible to characterize and quantify the geological structures. These models will have its importance as a tool to assist in the analysis and drafting of regional models. The qualitative improvement in geological/structural modeling, seeks to reduce the value of characterization/cost ratio, in phase of prospecting, improving the investment/benefit ratio. This methodology helps to assess more accurately the economic viability of the projects.

  16. Hypersonic research engine project. Phase 2: Aerothermodynamic Integration Model (AIM) data reduction computer program, data item no. 54.16

    NASA Technical Reports Server (NTRS)

    Gaede, A. E.; Platte, W. (Editor)

    1975-01-01

    The data reduction program used to analyze the performance of the Aerothermodynamic Integration Model is described. Routines to acquire, calibrate, and interpolate the test data, to calculate the axial components of the pressure area integrals and the skin function coefficients, and to report the raw data in engineering units are included along with routines to calculate flow conditions in the wind tunnel, inlet, combustor, and nozzle, and the overall engine performance. Various subroutines were modified and used to obtain species concentrations and transport properties in chemical equilibrium at each of the internal and external engine stations. It is recommended that future test plans include the configuration, calibration, and channel assignment data on a magnetic tape generated at the test site immediately before or after a test, and that the data reduction program be designed to operate in a batch environment.

  17. Integration of Engine, Plume, and CFD Analyses in Conceptual Design of Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Li, Wu; Campbell, Richard; Geiselhart, Karl; Shields, Elwood; Nayani, Sudheer; Shenoy, Rajiv

    2009-01-01

    This paper documents an integration of engine, plume, and computational fluid dynamics (CFD) analyses in the conceptual design of low-boom supersonic aircraft, using a variable fidelity approach. In particular, the Numerical Propulsion Simulation System (NPSS) is used for propulsion system cycle analysis and nacelle outer mold line definition, and a low-fidelity plume model is developed for plume shape prediction based on NPSS engine data and nacelle geometry. This model provides a capability for the conceptual design of low-boom supersonic aircraft that accounts for plume effects. Then a newly developed process for automated CFD analysis is presented for CFD-based plume and boom analyses of the conceptual geometry. Five test cases are used to demonstrate the integrated engine, plume, and CFD analysis process based on a variable fidelity approach, as well as the feasibility of the automated CFD plume and boom analysis capability.

  18. Geology of the Marble exploration hole 4, Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    McKeown, Francis Alexander; Wilmarth, Verl Richard

    1959-01-01

    This report summarizes the information obtained during preparation of the lithologic log of the core and presents results of chemical analyses of marble samples collected from surface near the drill hole. The report was prepared by the U.S. Geological Survey on behalf of the Albuquerque Operations Office, U.S. Atomic Energy Commission. The writers acknowledge the assistance of Mr. John Foster, drilling foreman for Minerals Engineering Company and Mr. Walter A. Johnson, field engineer for Holmes and Narver, Inc., the engineering-contracting firm.

  19. National Dam Safety Program. Hickory Hollow Lake Dam (MO-31068). Mississippi - Kaskaskia - St. Louis Basin, Perry County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1980-03-01

    Charts 2-1 and 2-2, was prepared by Mr. Thomas J. Dean, Geologist, with the Missouri Department of Applied Engineering & Urban Geology. In the report... Applied Engineering & Urban Geology G oolo & Land Survey J o 8, 1976 TJD bh M: Howard Davis, 425 N. Highway 61, Perryville, MO 63775 Soil Conservation

  20. Supercomputing with TOUGH2 family codes for coupled multi-physics simulations of geologic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Yamamoto, H.; Nakajima, K.; Zhang, K.; Nanai, S.

    2015-12-01

    Powerful numerical codes that are capable of modeling complex coupled processes of physics and chemistry have been developed for predicting the fate of CO2 in reservoirs as well as its potential impacts on groundwater and subsurface environments. However, they are often computationally demanding for solving highly non-linear models in sufficient spatial and temporal resolutions. Geological heterogeneity and uncertainties further increase the challenges in modeling works. Two-phase flow simulations in heterogeneous media usually require much longer computational time than that in homogeneous media. Uncertainties in reservoir properties may necessitate stochastic simulations with multiple realizations. Recently, massively parallel supercomputers with more than thousands of processors become available in scientific and engineering communities. Such supercomputers may attract attentions from geoscientist and reservoir engineers for solving the large and non-linear models in higher resolutions within a reasonable time. However, for making it a useful tool, it is essential to tackle several practical obstacles to utilize large number of processors effectively for general-purpose reservoir simulators. We have implemented massively-parallel versions of two TOUGH2 family codes (a multi-phase flow simulator TOUGH2 and a chemically reactive transport simulator TOUGHREACT) on two different types (vector- and scalar-type) of supercomputers with a thousand to tens of thousands of processors. After completing implementation and extensive tune-up on the supercomputers, the computational performance was measured for three simulations with multi-million grid models, including a simulation of the dissolution-diffusion-convection process that requires high spatial and temporal resolutions to simulate the growth of small convective fingers of CO2-dissolved water to larger ones in a reservoir scale. The performance measurement confirmed that the both simulators exhibit excellent scalabilities showing almost linear speedup against number of processors up to over ten thousand cores. Generally this allows us to perform coupled multi-physics (THC) simulations on high resolution geologic models with multi-million grid in a practical time (e.g., less than a second per time step).

  1. Macromodels of digital integrated circuits for program packages of circuit engineering design

    NASA Astrophysics Data System (ADS)

    Petrenko, A. I.; Sliusar, P. B.; Timchenko, A. P.

    1984-04-01

    Various aspects of the generation of macromodels of digital integrated circuits are examined, and their effective application in program packages of circuit engineering design is considered. Three levels of macromodels are identified, and the application of such models to the simulation of circuit outputs is discussed.

  2. Landslide hazard prediction in the North-Eastern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Disperati, L.; Guastaldi, E.; Rindinella, A.

    2003-04-01

    In order to assess the landslide hazard nearby the Pergola city (in the Northern-Eastern Apennines, Italy) a ground survey at a scale of 1:10,000 was performed for an extent of about 370 km^2 (Carmignani, 2001), and a GIS of landslides was built. Following statistical analysis allows to assess the correlation among landslide occurrences and causal factors related to the detachment zone (lithology, engineering geology, elevation, slope, aspect, bedding as related with slope face -RBS- and land use). Consequently, considering the morphological, lithological and anthropic characters of current slides, it was agreed to locate possible future landslides in those area actually stable but characterised by similar conditions. Because of that, a geostatistical analysis was performed. Comparing for every landslide the occurence of either single or combined causal factor, the analysis was carried out in grid format. The spatial analysis of the GIS data layers allowed building the unique condition regions (Chung et al., 1995) and creating statistical data on causal factors in relation of landslides. Afterwards, for every region the susceptibility to development of new occurrences (favourability mapping) was calculated by utilising the certainty factor (CF; Chung &Fabbri, 1993). For landslides where crown was identified, the main scarp was considered as occurrence; a buffer around the highest point of landslide was built for all the others (Disperati et al., 2002). Such procedure was applied both for slides (175 occurrences) and flows (464 occurrences). Furthermore, by the application of the procedure to causal factors and their combination, additional information regarding susceptibility to development of new occurrences was calculated. The selection of the most suitable factors combination can be done through the results accuracy assessment in relation of time and/or space (Chung, 1999), by utilising two different hazard information layers, respectively computed from a training dataset of occurrences and a test dataset, a cross validation is made. The valuation both for flows and slides was performed through Prediction Rate Curves (PRC). By utilising the occurrences of the test dataset, PRC derived from the relation between CF trend in the whole area (cumulative percentage), portion of total area and number of landslides. As result, engineering geology can be indicated as the dominant factor for PRC of flows; likewise engineering geology, land use and RBS combination is the more effective combination. On the other side, slope and aspect resulted less determinative in best PRC trend. Moreover, the combination of engineering geology and slope allowed the computation of best PRC for landslide. References CARMIGNANI L. (2001): Realizzazione della cartografia geologica e geotematica e dei relativi supporti informatici alla scala 1/10.000 -- Progetto 1 -- Zona Nord. Progetti strumentali alla funzione di ricostruzione. Interventi strutturali comunitari obiettivo 5b -- Misura 3.1.4 Azioni di ricostruzione e recupero del tessuto urbano infrastrutturale nei territori colpiti dal sisma (Azione 7). Contratto tra la Regione Marche -- Servizio Urbanistica e Cartografia e l'Università degli Studi di Siena. Rapporto Finale. Università degli Studi di Siena, Dipartimento di Scienze della Terra, Dicembre 200 1, pp. 6 I. CHUNG C. J. (1999): Prediction models in spatial data analysis for landslide hazard mapping -- Natural Resources Canada, Geological Survey of Canada-Mineral Resources Division-Spatial Data Analysis Laboratory, http://www.nrcan.gc.ca/gsc/mrd/sdalweb/landslides/index.htm. CHUNG C. J., FABBRI A.G. (1993): The representation of geoscience information for data integration. Non-renewable Resources, v. 2., n. 3, pp. 1 22-139. CHUNG C. J., FABBRI A.G., VAN WESTEN C.J (1995).- Multivariate regression analysis for landslide hazard zonation. In Carrara, A. and Guzzetti, F., eds.: "Geographical Information Systems in Assessing Natural Hazards". Dordrecht, Kluwer Academic Publishers, pp. 107-133. DISPERATI L., GUASTALDI E., CARMIGNANI L. (2002)-- Landslide mapping and hazard prediction in the Pergola area (Marche, Italy). 8th Annual Conference of the International Association for Mathematical Geology, IAMG 2002, 15-20 September 2002, Berlin, Germany, Terra Nostra 04/2002, 2, pp. 507-512.

  3. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPORT EXTRACTION AND BIOVENTING OF ORGANIC MATERIALS IN UNSATURATED GEOLO-GICAL MATERIAL (EPA/600/SR-97/099)

    EPA Science Inventory

    Soil vapor extraction (SVE) and bioventing (BV) are proven strategies for remediation of unsaturated zone soils. Mathematical models are powerful tools that can be used to integrate and quantify the interaction of physical, chemical, and biological processes occurring in field sc...

  4. Preliminary three-dimensional geohydrologic framework of the San Antonio Creek Groundwater Basin, Santa Barbara County, California

    NASA Astrophysics Data System (ADS)

    Cromwell, G.; Sweetkind, D. S.; O'leary, D. R.

    2017-12-01

    The San Antonio Creek Groundwater Basin is a rural agricultural area that is heavily dependent on groundwater to meet local water demands. The U.S. Geological Survey (USGS) is working cooperatively with Santa Barbara County and Vandenberg Air Force Base to assess the quantity and quality of the groundwater resources within the basin. As part of this assessment, an integrated hydrologic model that will help stakeholders to effectively manage the water resources in the basin is being developed. The integrated hydrologic model includes a conceptual model of the subsurface geology consisting of stratigraphy and variations in lithology throughout the basin. The San Antonio Creek Groundwater Basin is a relatively narrow, east-west oriented valley that is structurally controlled by an eastward-plunging syncline. Basin-fill material beneath the valley floor consists of relatively coarse-grained, permeable, marine and non-marine sedimentary deposits, which are underlain by fine-grained, low-permeability, marine sedimentary rocks. To characterize the system, surficial and subsurface geohydrologic data were compiled from geologic maps, existing regional geologic models, and lithology and geophysical logs from boreholes, including two USGS multiple-well sites drilled as part of this study. Geohydrologic unit picks and lithologic variations are incorporated into a three-dimensional framework model of the basin. This basin (model) includes six geohydrologic units that follow the structure and stratigraphy of the area: 1) Bedrock - low-permeability marine sedimentary rocks; 2) Careaga Formation - fine to coarse grained near-shore sandstone; 3) Paso Robles Formation, lower portion - sandy-gravely deposits with clay and limestone; 4) Paso Robles Formation, middle portion - clayey-silty deposits; 5) Paso Robles Formation, upper portion - sandy-gravely deposits; and 6) recent Quaternary deposits. Hydrologic data show that the upper and lower portions of the Paso Robles Formation are the primary grou­ndwater-bearing units within the basin, and that the fine-grained layer within this Formation locally restricts vertical groundwater flow.

  5. Modeling dolomitized carbonate-ramp reservoirs: A case study of the Seminole San Andres unit. Part 2 -- Seismic modeling, reservoir geostatistics, and reservoir simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, F.P.; Dai, J.; Kerans, C.

    1998-11-01

    In part 1 of this paper, the authors discussed the rock-fabric/petrophysical classes for dolomitized carbonate-ramp rocks, the effects of rock fabric and pore type on petrophysical properties, petrophysical models for analyzing wireline logs, the critical scales for defining geologic framework, and 3-D geologic modeling. Part 2 focuses on geophysical and engineering characterizations, including seismic modeling, reservoir geostatistics, stochastic modeling, and reservoir simulation. Synthetic seismograms of 30 to 200 Hz were generated to study the level of seismic resolution required to capture the high-frequency geologic features in dolomitized carbonate-ramp reservoirs. Outcrop data were collected to investigate effects of sampling interval andmore » scale-up of block size on geostatistical parameters. Semivariogram analysis of outcrop data showed that the sill of log permeability decreases and the correlation length increases with an increase of horizontal block size. Permeability models were generated using conventional linear interpolation, stochastic realizations without stratigraphic constraints, and stochastic realizations with stratigraphic constraints. Simulations of a fine-scale Lawyer Canyon outcrop model were used to study the factors affecting waterflooding performance. Simulation results show that waterflooding performance depends strongly on the geometry and stacking pattern of the rock-fabric units and on the location of production and injection wells.« less

  6. Observational evidence confirms modelling of the long-term integrity of CO 2-reservoir caprocks

    DOE PAGES

    Kampman, N.; Busch, A.; Bertier, P.; ...

    2016-07-28

    Storage of anthropogenic CO 2 in geological formations relies on a caprock as the primary seal preventing buoyant super-critical CO 2 escaping. Although natural CO 2 reservoirs demonstrate that CO 2 may be stored safely for millions of years, uncertainty remains in predicting how caprocks will react with CO 2-bearing brines. The resulting uncertainty poses a significant challenge to the risk assessment of geological carbon storage. We describe mineral reaction fronts in a CO 2 reservoir-caprock system exposed to CO 2 over a timescale comparable with that needed for geological carbon storage. Moreover, the propagation of the reaction front ismore » retarded by redox-sensitive mineral dissolution reactions and carbonate precipitation, which reduces its penetration into the caprock to ~7 cm in ~10 5 years. This distance is an order-of-magnitude smaller than previous predictions. The results attest to the significance of transport-limited reactions to the long-term integrity of sealing behaviour in caprocks exposed to CO 2.« less

  7. Observational evidence confirms modelling of the long-term integrity of CO2-reservoir caprocks

    PubMed Central

    Kampman, N.; Busch, A.; Bertier, P.; Snippe, J.; Hangx, S.; Pipich, V.; Di, Z.; Rother, G.; Harrington, J. F.; Evans, J. P.; Maskell, A.; Chapman, H. J.; Bickle, M. J.

    2016-01-01

    Storage of anthropogenic CO2 in geological formations relies on a caprock as the primary seal preventing buoyant super-critical CO2 escaping. Although natural CO2 reservoirs demonstrate that CO2 may be stored safely for millions of years, uncertainty remains in predicting how caprocks will react with CO2-bearing brines. This uncertainty poses a significant challenge to the risk assessment of geological carbon storage. Here we describe mineral reaction fronts in a CO2 reservoir-caprock system exposed to CO2 over a timescale comparable with that needed for geological carbon storage. The propagation of the reaction front is retarded by redox-sensitive mineral dissolution reactions and carbonate precipitation, which reduces its penetration into the caprock to ∼7 cm in ∼105 years. This distance is an order-of-magnitude smaller than previous predictions. The results attest to the significance of transport-limited reactions to the long-term integrity of sealing behaviour in caprocks exposed to CO2. PMID:27464840

  8. Promoting peace in engineering education: modifying the ABET criteria.

    PubMed

    Catalano, George D

    2006-04-01

    Modifications to the ABET Criterion 3 are suggested in support of the effort to promote the pursuit of peace in engineering education. The proposed modifications are the result of integrating the United Nations' sponsored "Integral Model of Education for Peace, Democracy and Sustainable Development" into the modern engineering curriculum. The key elements of the model are being at peace with oneself, being at peace with others, and being at peace with the planet. In addition to proposing modifications, specific classroom activities are described and implemented, and students' reactions and the effectiveness of the various exercises are discussed.

  9. Ontology-driven data integration and visualization for exploring regional geologic time and paleontological information

    NASA Astrophysics Data System (ADS)

    Wang, Chengbin; Ma, Xiaogang; Chen, Jianguo

    2018-06-01

    Initiatives of open data promote the online publication and sharing of large amounts of geologic data. How to retrieve information and discover knowledge from the big data is an ongoing challenge. In this paper, we developed an ontology-driven data integration and visualization pilot system for exploring information of regional geologic time, paleontology, and fundamental geology. The pilot system (http://www2.cs.uidaho.edu/%7Emax/gts/)

  10. Cartographic services contract...for everything geographic

    USGS Publications Warehouse

    ,

    2003-01-01

    The U.S. Geological Survey's (USGS) Cartographic Services Contract (CSC) is used to award work for photogrammetric and mapping services under the umbrella of Architect-Engineer (A&E) contracting. The A&E contract is broad in scope and can accommodate any activity related to standard, nonstandard, graphic, and digital cartographic products. Services provided may include, but are not limited to, photogrammetric mapping and aerotriangulation; orthophotography; thematic mapping (for example, land characterization); analog and digital imagery applications; geographic information systems development; surveying and control acquisition, including ground-based and airborne Global Positioning System; analog and digital image manipulation, analysis, and interpretation; raster and vector map digitizing; data manipulations (for example, transformations, conversions, generalization, integration, and conflation); primary and ancillary data acquisition (for example, aerial photography, satellite imagery, multispectral, multitemporal, and hyperspectral data); image scanning and processing; metadata production, revision, and creation; and production or revision of standard USGS products defined by formal and informal specification and standards, such as those for digital line graphs, digital elevation models, digital orthophoto quadrangles, and digital raster graphics.

  11. Shuttle Experimental Radar for Geological Exploration (SERGE); antenna and integration concept definition study

    NASA Technical Reports Server (NTRS)

    Kierein, J. W.

    1977-01-01

    The baseline configuration defined has the SERGE antenna panel array mounted on the OFT-2 pallet sufficiently high in the bay that negligible amounts of radiation from the beam are reflected from orbiter surfaces into the shuttle payload bay. The array is symmetrically mounted to the pallet along the array long dimension with the pallet at the center. It utilizes a graphite epoxy trusswork support structure. The antenna panels are of SEASAT engineering model design and construction. The antenna array has 7 panels and a 7-way naturally tapered coax corporate feed system. The performance of the system is predicted to exceed 33 db gain, have -15 db sidelobes in the E-plane and even lower in the H-plane, and have and E-plane beamwidth less than 2.2 deg, all within performance specification. The primary support structure is predicted to exceed the specified greater than 25 hertz fundamental frequency, although individual panels will have hertz fundamental frequency.

  12. Detailed 3D Geophysical Model of the Shallow Subsurface (Zancara River Basin, Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Carbonell, R.; Marzán, I.; Martí, D.; Lobo, A.; Jean, K.; Alvarez-Marrón, J.

    2016-12-01

    Detailed knowledge of the structure and lithologies of the shallow subsurface is required when designing and building singular geological storage facilities this is the case of the study area in Villar de Cañas (Cuenca, Central Spain). In which an extensive multidisciplinary data acquisition program has been carried out. This include studies on: geology, hydrology, geochemistry, geophysics, borehole logging, etc. Because of this data infrastructure, it can be considered a subsurface imaging laboratory to test and validate indirect underground characterization approaches. The field area is located in a Miocene syncline within the Záncara River Basin (Cuenca, Spain). The sedimentary sequence consists in a transition from shales to massive gypsums, and underlying gravels. The stratigraphic succession features a complex internal structure, diffused lithological boundaries and relatively large variability of properties within the same lithology, these makes direct geological interpretation very difficult and requires of the integration of all the measured physical properties. The ERT survey, the seismic tomography data and the logs have been used jointly to build a 3-D multi-parameter model of the subsurface in a surface of 500x500 m. The Vp model (a 10x20x5 m grid) is able to map the high velocities of the massive gypsum, however it was neither able to map the details of the shale-gypsm transition (low velocity contrast) nor to differentiate the outcropping altered gypsum from the weathered shales. The integration of the electrical resistivity and the log data by means of a supervised statistical tools (Linear Discriminant Analysis, LDA) resulted in a new 3D multiparametric subsurface model. This new model integrates the different data sets resolving the uncertainties characteristic of the models obtained independently by the different techniques separately. Furthermore, this test seismic dataset has been used to test FWI approaches in order to study their capacities. (Research supports: CGL2014-56548-P, 2009-SGR-1595, CGL2013-47412-C2-1-P).

  13. Numeric stratigraphic modeling: Testing sequence Numeric stratigraphic modeling: Testing sequence stratigraphic concepts using high resolution geologic examples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armentrout, J.M.; Smith-Rouch, L.S.; Bowman, S.A.

    1996-08-01

    Numeric simulations based on integrated data sets enhance our understanding of depositional geometry and facilitate quantification of depositional processes. Numeric values tested against well-constrained geologic data sets can then be used in iterations testing each variable, and in predicting lithofacies distributions under various depositional scenarios using the principles of sequence stratigraphic analysis. The stratigraphic modeling software provides a broad spectrum of techniques for modeling and testing elements of the petroleum system. Using well-constrained geologic examples, variations in depositional geometry and lithofacies distributions between different tectonic settings (passive vs. active margin) and climate regimes (hothouse vs. icehouse) can provide insight tomore » potential source rock and reservoir rock distribution, maturation timing, migration pathways, and trap formation. Two data sets are used to illustrate such variations: both include a seismic reflection profile calibrated by multiple wells. The first is a Pennsylvanian mixed carbonate-siliciclastic system in the Paradox basin, and the second a Pliocene-Pleistocene siliciclastic system in the Gulf of Mexico. Numeric simulations result in geometry and facies distributions consistent with those interpreted using the integrated stratigraphic analysis of the calibrated seismic profiles. An exception occurs in the Gulf of Mexico study where the simulated sediment thickness from 3.8 to 1.6 Ma within an upper slope minibasin was less than that mapped using a regional seismic grid. Regional depositional patterns demonstrate that this extra thickness was probably sourced from out of the plane of the modeled transect, illustrating the necessity for three-dimensional constraints on two-dimensional modeling.« less

  14. Ground effects in FAA's Integrated Noise Model

    DOT National Transportation Integrated Search

    2000-01-01

    The lateral attenuation algorithm in the Federal Aviation Administration's (FAA) Integrated Noise Model (INM) has historically been based on the two regression equations described in the Society of Automotive Engineers' (SAE) Aerospace Information Re...

  15. Geosciences Information Network (GIN): A modular, distributed, interoperable data network for the geosciences

    NASA Astrophysics Data System (ADS)

    Allison, M.; Gundersen, L. C.; Richard, S. M.; Dickinson, T. L.

    2008-12-01

    A coalition of the state geological surveys (AASG), the U.S. Geological Survey (USGS), and partners will receive NSF funding over 3 years under the INTEROP solicitation to start building the Geoscience Information Network (www.geoinformatics.info/gin) a distributed, interoperable data network. The GIN project will develop standardized services to link existing and in-progress components using a few standards and protocols, and work with data providers to implement these services. The key components of this network are 1) catalog system(s) for data discovery; 2) service definitions for interfaces for searching catalogs and accessing resources; 3) shared interchange formats to encode information for transmission (e.g. various XML markup languages); 4) data providers that publish information using standardized services defined by the network; and 5) client applications adapted to use information resources provided by the network. The GIN will integrate and use catalog resources that currently exist or are in development. We are working with the USGS National Geologic Map Database's existing map catalog, with the USGS National Geological and Geophysical Data Preservation Program, which is developing a metadata catalog (National Digital Catalog) for geoscience information resource discovery, and with the GEON catalog. Existing interchange formats will be used, such as GeoSciML, ChemML, and Open Geospatial Consortium sensor, observation and measurement MLs. Client application development will be fostered by collaboration with industry and academic partners. The GIN project will focus on the remaining aspects of the system -- service definitions and assistance to data providers to implement the services and bring content online - and on system integration of the modules. Initial formal collaborators include the OneGeology-Europe consortium of 27 nations that is building a comparable network under the EU INSPIRE initiative, GEON, Earthchem, and GIS software company ESRI. OneGeology-Europe and GIN have agreed to integrate their networks, effectively adopting global standards among geological surveys that are available across the entire field. ESRI is creating a Geology Data Model for ArcGIS software to be compatible with GIN, and other companies are expressing interest in adapting their services, applications, and clients to take advantage of the large data resources planned to become available through GIN.

  16. Statistical Methodologies to Integrate Experimental and Computational Research

    NASA Technical Reports Server (NTRS)

    Parker, P. A.; Johnson, R. T.; Montgomery, D. C.

    2008-01-01

    Development of advanced algorithms for simulating engine flow paths requires the integration of fundamental experiments with the validation of enhanced mathematical models. In this paper, we provide an overview of statistical methods to strategically and efficiently conduct experiments and computational model refinement. Moreover, the integration of experimental and computational research efforts is emphasized. With a statistical engineering perspective, scientific and engineering expertise is combined with statistical sciences to gain deeper insights into experimental phenomenon and code development performance; supporting the overall research objectives. The particular statistical methods discussed are design of experiments, response surface methodology, and uncertainty analysis and planning. Their application is illustrated with a coaxial free jet experiment and a turbulence model refinement investigation. Our goal is to provide an overview, focusing on concepts rather than practice, to demonstrate the benefits of using statistical methods in research and development, thereby encouraging their broader and more systematic application.

  17. P-Them Response for Geologically Active and Non-Active Areas

    NASA Astrophysics Data System (ADS)

    Vetrov, A.

    2011-12-01

    Time Domain Electromagnetic air-borne systems are widely used in geological exploration for minerals associated with conductive rocks, underground water resources and geological underground mapping. The newly designed P-THEM system has been test-flown at the Reid Mahaffy geological test site in Northern Ontario, Canada; and then over an area near Newmarket, north of Toronto. While the flight in Reid Mahaffy was made to verify real characteristics of the system: stability and repeatability of results, the flight over the Newmarket area was made to verify correct operation of the EM system with a magnetometer and gamma-ray spectrometer. Interesting and significant response of the TDEM observations to geological, agricultural and engineering objects were observed during the test flights. These results demonstrate a possibility of TDEM method for mineral research and environmental tasks. The Reid Mahaffy Test Site is located in the Abitibi Subprovince, immediately east of the Mattagami River Fault in Ontario, Canada. The test site was created in 1999 by the Ontario Geological Survey, initially to enable various airborne geophysical systems to demonstrate their basic performance capabilities. The general geology of the site contains known overburden thickness based on almost 50 diamond drill holes, with geological logs available for these. The survey flights over Reid Mahaffy test site were performed in April 2010. The altitude and direction tests were flown on three lines over the test survey area. The response of early times represents overburden and correlates with its known thickness. The conductive body appears on later time channels and remains detectable over noise level. The electrical inversion of the results allows distinguishing a structure of several vertical conductor slices, forming the conductive body. The Newmarket area selected for tests in June 2010 is a highly developed urban zone in the Greater Toronto Area, Ontario, Canada. Geologically, the area is represented with Quadrennial sediments with underlying bedrocks of the Ordovician formation. The main area is represented with sand and gravel of Glacial lake, River and Moraine deposits. The main purpose of the test flights was to check the functional integration of the P-THEM system with a Magnetometer and Gamma-Ray Spectrometer system. The results indicated a very good agricultural response of the P-THEM system after the interpretation of the observed data. The salty soils along roads, where the salt is spread during winter time, the grounded industrial constructions and powerline towers can be observed on the mapped data (see image). The achieved results of the survey show the possibility of the TDEM airborne system for applications in characterization of environmental and engineering properties, such as detection of surface and near surface pollution, grounding of metal constructions and other, over large areas of interest.

  18. Development of a New Analog Test System Capable of Modeling Tectonic Deformation Incorporating the Effects of Pore Fluid Pressure

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Nakajima, H.; Takeda, M.; Aung, T. T.

    2005-12-01

    Understanding and predicting the tectonic deformation within geologic strata has been a very important research subject in many fields such as structural geology and petroleum geology. In recent years, such research has also become a fundamental necessity for the assessment of active fault migration, site selection for geological disposal of radioactive nuclear waste and exploration for methane hydrate. Although analog modeling techniques have played an important role in the elucidation of the tectonic deformation mechanisms, traditional approaches have typically used dry materials and ignored the effects of pore fluid pressure. In order for analog models to properly depict the tectonic deformation of the targeted, large-prototype system within a small laboratory-scale configuration, physical properties of the models, including geometry, force, and time, must be correctly scaled. Model materials representing brittle rock behavior require an internal friction identical to the prototype rock and virtually zero cohesion. Granular materials such as sand, glass beads, or steel beads of dry condition have been preferably used for this reason in addition to their availability and ease of handling. Modeling protocols for dry granular materials have been well established but such model tests cannot account for the pore fluid effects. Although the concept of effective stress has long been recognized and the role of pore-fluid pressure in tectonic deformation processes is evident, there have been few analog model studies that consider the effects of pore fluid movement. Some new applications require a thorough understanding of the coupled deformation and fluid flow processes within the strata. Taking the field of waste management as an example, deep geological disposal of radioactive waste has been thought to be an appropriate methodology for the safe isolation of the wastes from the human environment until the toxicity of the wastes decays to non-hazardous levels. For the deep geological disposal concept, besides containing the wastes with engineering methods such as the glassification of the radioactive wastes, the geological formation itself is expected to serve as a natural barrier that retards migration of radionuclides. To evaluate the long-term safety of deep geological disposal, a better understanding of the fate and transport of radionuclides in a geologically heterogeneous environment is necessary. To meet such requirements, a new analog test sandbox model system was developed. This model system allows the pore fluid flows to be controlled during the model tests and permits the study of flow and transport phenomena in the deformed heterogeneous model. One- or two-dimensional fluid flow is controlled using a side-wall piston. Deformation processes can be observed through a transparent front panel, and pore fluid movement can be also visualized using a color tracer. In this study, the scaling requirements for analog modeling, including pore water pressure, are discussed based on the theory of dimensional analysis, supplemented by data from a series of laboratory shear tests, and a detailed description of the model system. Preliminary experimental results are presented.

  19. Divisions of geologic time (Bookmark)

    USGS Publications Warehouse

    ,

    2012-05-03

    DescriptionThis bookmark, designed for use with U.S. Geological Survey activities at the second USA Science and Engineering Festival (April 26–29, 2012), is adapted from the more detailed Fact Sheet 2010–3059 "Divisions of Geologic Time." The information that it presents is widely sought by educators and students.

  20. Alaska Division of Geological and Geophysical Surveys

    Science.gov Websites

    ; Divison of Geological & Geophysical Surveys> Engineering Geology Coastal Hazards Alaska's extensive shorelines are incompletely mapped and under-instrumented for the evaluation of coastal dynamics. The Coastal communities Updates to the Alaska Coastal Profile Tool including data in Norton Sound and St. Lawrence Island

  1. Mapping urban geology of the city of Girona, Catalonia

    NASA Astrophysics Data System (ADS)

    Vilà, Miquel; Torrades, Pau; Pi, Roser; Monleon, Ona

    2016-04-01

    A detailed and systematic geological characterization of the urban area of Girona has been conducted under the project '1:5000 scale Urban geological map of Catalonia' of the Catalan Geological Survey (Institut Cartogràfic i Geològic de Catalunya). The results of this characterization are organized into: i) a geological information system that includes all the information acquired; ii) a stratigraphic model focused on identification, characterization and correlation of the geological materials and structures present in the area and; iii) a detailed geological map that represents a synthesis of all the collected information. The mapping project integrates in a GIS environment pre-existing cartographic documentation (geological and topographical), core data from compiled boreholes, descriptions of geological outcrops within the urban network and neighbouring areas, physico-chemical characterisation of representative samples of geological materials, detailed geological mapping of Quaternary sediments, subsurface bedrock and artificial deposits and, 3D modelling of the main geological surfaces. The stratigraphic model is structured in a system of geological units that from a chronostratigrafic point of view are structured in Palaeozoic, Paleogene, Neogene, Quaternary and Anthropocene. The description of the geological units is guided by a systematic procedure. It includes the main lithological and structural features of the units that constitute the geological substratum and represents the conceptual base of the 1:5000 urban geological map of the Girona metropolitan area, which is organized into 6 map sheets. These map sheets are composed by a principal map, geological cross sections and, several complementary maps, charts and tables. Regardless of the geological map units, the principal map also represents the main artificial deposits, features related to geohistorical processes, contours of outcrop areas, information obtained in stations, borehole data, and contour lines of the top of the pre-Quaternary basement surface. The most representative complementary maps are the quaternary map, the subsurface bedrock map and the isopach map of thickness of superficial deposits (Quaternary and anthropogenic). The map sheets also include charts and tables of relevant physic-chemical parameters of the geological materials, harmonized downhole lithological columns from selected boreholes, stratigraphic columns, and, photographs and figures illustrating the geology of the mapped area and how urbanization has changed the natural environment. The development of systematic urban geological mapping projects, such as the example of Girona's case, which provides valuable resources to address targeted studies related to urban planning, geoengineering works, soil pollution and other important environmental issues that society should deal with in the future.

  2. Biodiversity and Topographic Complexity: Modern and Geohistorical Perspectives.

    PubMed

    Badgley, Catherine; Smiley, Tara M; Terry, Rebecca; Davis, Edward B; DeSantis, Larisa R G; Fox, David L; Hopkins, Samantha S B; Jezkova, Tereza; Matocq, Marjorie D; Matzke, Nick; McGuire, Jenny L; Mulch, Andreas; Riddle, Brett R; Roth, V Louise; Samuels, Joshua X; Strömberg, Caroline A E; Yanites, Brian J

    2017-03-01

    Topographically complex regions on land and in the oceans feature hotspots of biodiversity that reflect geological influences on ecological and evolutionary processes. Over geologic time, topographic diversity gradients wax and wane over millions of years, tracking tectonic or climatic history. Topographic diversity gradients from the present day and the past can result from the generation of species by vicariance or from the accumulation of species from dispersal into a region with strong environmental gradients. Biological and geological approaches must be integrated to test alternative models of diversification along topographic gradients. Reciprocal illumination among phylogenetic, phylogeographic, ecological, paleontological, tectonic, and climatic perspectives is an emerging frontier of biogeographic research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Assessment of geothermal resources at Newcastle, Utah

    USGS Publications Warehouse

    Blackett, Robert E.; Shubat, Michael A.; Chapman, David S.; Forster, Craig B.; Schlinger, Charles M.

    1989-01-01

    Integrated geology, geophysics, and geochemistry studies in the Newcastle area of southwest Utah are used to develop a conceptual geologic model of a blind, moderate-temperature hydrothermal system. Studies using 12 existing and 12 new, thermal gradient test holes, in addition to geologic mapping, gravity surveys, and other investigations have helped define the thermal regime. Preliminary results indicate that the up-flow region is located near the west-facing escarpment of an adjacent mountain range, probably related to the bounding range-front fault. Chemical geothermometers suggest equilibration temperatures ranging from 140??C to 170??C. The highest temperature recorded in the system is 130??C from an exploration well drilled by the Unocal Corporation.

  4. Airframe-Jet Engine Integration Noise

    NASA Technical Reports Server (NTRS)

    Tam, Christopher; Antcliff, Richard R. (Technical Monitor)

    2003-01-01

    It has been found experimentally that the noise radiated by a jet mounted under the wing of an aircraft exceeds that of the same jet in a stand-alone environment. The increase in noise is referred to as jet engine airframe integration noise. The objectives of the present investigation are, (1) To obtain a better understanding of the physical mechanisms responsible for jet engine airframe integration noise or installation noise. (2) To develop a prediction model for jet engine airframe integration noise. It is known that jet mixing noise consists of two principal components. They are the noise from the large turbulence structures of the jet flow and the noise from the fine scale turbulence. In this investigation, only the effect of jet engine airframe interaction on the fine scale turbulence noise of a jet is studied. The fine scale turbulence noise is the dominant noise component in the sideline direction. Thus we limit out consideration primarily to the sideline.

  5. Linking MODFLOW with an agent-based land-use model to support decision making

    USGS Publications Warehouse

    Reeves, H.W.; Zellner, M.L.

    2010-01-01

    The U.S. Geological Survey numerical groundwater flow model, MODFLOW, was integrated with an agent-based land-use model to yield a simulator for environmental planning studies. Ultimately, this integrated simulator will be used as a means to organize information, illustrate potential system responses, and facilitate communication within a participatory modeling framework. Initial results show the potential system response to different zoning policy scenarios in terms of the spatial patterns of development, which is referred to as urban form, and consequent impacts on groundwater levels. These results illustrate how the integrated simulator is capable of representing the complexity of the system. From a groundwater modeling perspective, the most important aspect of the integration is that the simulator generates stresses on the groundwater system within the simulation in contrast to the traditional approach that requires the user to specify the stresses through time. Copyright ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.

  6. The California Integrated Seismic Network

    NASA Astrophysics Data System (ADS)

    Hellweg, M.; Given, D.; Hauksson, E.; Neuhauser, D.; Oppenheimer, D.; Shakal, A.

    2007-05-01

    The mission of the California Integrated Seismic Network (CISN) is to operate a reliable, modern system to monitor earthquakes throughout the state; to generate and distribute information in real-time for emergency response, for the benefit of public safety, and for loss mitigation; and to collect and archive data for seismological and earthquake engineering research. To meet these needs, the CISN operates data processing and archiving centers, as well as more than 3000 seismic stations. Furthermore, the CISN is actively developing and enhancing its infrastructure, including its automated processing and archival systems. The CISN integrates seismic and strong motion networks operated by the University of California Berkeley (UCB), the California Institute of Technology (Caltech), and the United States Geological Survey (USGS) offices in Menlo Park and Pasadena, as well as the USGS National Strong Motion Program (NSMP), and the California Geological Survey (CGS). The CISN operates two earthquake management centers (the NCEMC and SCEMC) where statewide, real-time earthquake monitoring takes place, and an engineering data center (EDC) for processing strong motion data and making it available in near real-time to the engineering community. These centers employ redundant hardware to minimize disruptions to the earthquake detection and processing systems. At the same time, dual feeds of data from a subset of broadband and strong motion stations are telemetered in real- time directly to both the NCEMC and the SCEMC to ensure the availability of statewide data in the event of a catastrophic failure at one of these two centers. The CISN uses a backbone T1 ring (with automatic backup over the internet) to interconnect the centers and the California Office of Emergency Services. The T1 ring enables real-time exchange of selected waveforms, derived ground motion data, phase arrivals, earthquake parameters, and ShakeMaps. With the goal of operating similar and redundant statewide earthquake processing systems at both real-time EMCs, the CISN is currently adopting and enhancing the database-centric, earthquake processing and analysis software originally developed for the Caltech/USGS Pasadena TriNet project. Earthquake data and waveforms are made available to researchers and to the public in near real-time through the CISN's Northern and Southern California Eathquake Data Centers (NCEDC and SCEDC) and through the USGS Earthquake Notification System (ENS). The CISN partners have developed procedures to automatically exchange strong motion data, both waveforms and peak parameters, for use in ShakeMap and in the rapid engineering reports which are available near real-time through the strong motion EDC.

  7. Determination of Uniaxial Compressive Strength of Ankara Agglomerate Considering Fractal Geometry of Blocks

    NASA Astrophysics Data System (ADS)

    Coskun, Aycan; Sonmez, Harun; Ercin Kasapoglu, K.; Ozge Dinc, S.; Celal Tunusluoglu, M.

    2010-05-01

    The uniaxial compressive strength (UCS) of rock material is a crucial parameter to be used for design stages of slopes, tunnels and foundations to be constructed in/on geological medium. However, preparation of high quality cores from geological mixtures or fragmented rocks such as melanges, fault rocks, coarse pyroclastic rocks, breccias and sheared serpentinites is often extremely difficult. According to the studies performed in literature, this type of geological materials may be grouped as welded and unwelded birmocks. Success of preparation of core samples from welded bimrocks is slightly better than unwelded ones. Therefore, some studies performed on the welded bimrocks to understand the mechanical behavior of geological mixture materials composed of stronger and weaker components (Gokceoglu, 2002; Sonmez et al., 2004; Sonmez et al., 2006; Kahraman, et al., 2008). The overall strength of bimrocks are generally depends on strength contrast between blocks and matrix; types and strength of matrix; type, size, strength, shape and orientation of blocks and volumetric block proportion. In previously proposed prediction models, while UCS of unwelded bimrocks may be determined by decreasing the UCS of matrix considering the volumetric block proportion, the welded ones can be predicted by considering both UCS of matrix and blocks together (Lindquist, 1994; Lindquist and Goodman, 1994; Sonmez et al., 2006 and Sonmez et al., 2009). However, there is a few attempts were performed about the effect of blocks shape and orientation on the strength of bimrock (Linqduist, 1994 and Kahraman, et al., 2008). In this study, Ankara agglomerate, which is composed of andesite blocks and surrounded weak tuff matrix, was selected as study material. Image analyses were performed on bottom, top and side faces of cores to identify volumetric block portions. In addition to the image analyses, andesite blocks on bottom, top and side faces were digitized for determination of fractal dimensions. To determine fractal dimensions of more than hundred andesite blocks in cores, a computer program namely FRACRUN were developed. Fractal geometry has been used as practical and popular tool to define particularly irregular shaped bodies in literature since the theory of fractal was developed by Mandelbrot (1967) (Hyslip and Vallejo, 1997; Kruhl and Nega, 1996; Bagde etal., 2002; Gulbin and Evangulova, 2003; Pardini, 2003; Kolay and Kayabali, 2006; Hamdi, 2008; Zorlu, 2009 and Sezer, 2009). Although there are some methods to determine fractal dimensions, square grid-cell count method for 2D and segment count method for 1D were followed in the algorithm of FRACRUN. FRACRUN has capable of determine fractal dimensions of many closed polygons on a single surface. In the study, a database composed of uniaxial compressive strength, volumetric block proportion, fractal dimensions and number of blocks for each core was established. Finally, prediction models were developed by regression analyses and compared with the empirical equations proposed by Sonmez et al. (2006). Acknowledgement This study is a product of ongoing project supported by TUBITAK (The Scientific and Technological Research Council of Turkey - Project No: 108Y002). References Bagde, M.N., Raina, A.K., Chakraborty, A.K., Jethwa, J.L., 2002. Rock mass characterization by fractal dimension. Engineering Geology 63, 141-155. Gokceoglu, C., 2002. A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara agglomerates from their petrographic composition. Engineering Geology, 66 (1-2), 39-51. Gulbin, Y.L., Evangulova, E.B., 2003. Morphometry of quartz aggregates in granites: fractal images referring to nucleation and growth processes. Mathematical Geology 35 (7), 819-833 Hamdi, E., 2008. A fractal description of simulated 3D discontinuity networks. Rock Mechanics and Rock Engineering 41, 587-599. Hyslip, J.P., Vallejo, L.E., 1997. Fractals analysis of the roughness and size distribution of granular materials. Engineering Geology 48, 231-244. Kahraman, S., Alber, M., Fener, M. and Gunaydin, O. 2008. Evaluating the geomechanical properties of Misis fault breccia (Turkey). Int. J. Rock Mech. Min. Sci, 45, (8), 1469-1479. Kolay, E., Kayabali, K., 2006. Investigation of the effect of aggregate shape and surface roughness on the slake durability index using the fractal dimension approach. Engineering Geology 86, 271-294. Kruhl, J.H., Nega, M., 1996. The fractal shape of sutured quartz grain boundaries: application as a geothermometer. Geologische Rundschau 85, 38-43. Lindquist E.S. 1994. The strength, deformation properties of melange. PhD thesis, University of California, Berkeley, 1994. 264p. Lindquist E.S. and Goodman R.E. 1994. The strength and deformation properties of the physical model m!elange. In: Nelson PP, Laubach SE, editors. Proceedings of the First North American Rock Mechanics Conference (NARMS), Austin, Texas. Rotterdam: AA Balkema; 1994. Pardini, G., 2003. Fractal scaling of surface roughness in artificially weathered smectite rich soil regoliths. Geoderma 117, 157-167. Sezer E., 2009. A computer program for fractal dimension (FRACEK) with application on type of mass movement characterization. Computers and Geosciences (doi:10.1016/j.cageo.2009.04.006). Sonmez H, Tuncay E, and Gokceoglu C., 2004. Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara Agglomerate. Int. J. Rock Mech. Min. Sci., 41 (5), 717-729. Sonmez, H., Gokceoglu, C., Medley, E.W., Tuncay, E., and Nefeslioglu, H.A., 2006. Estimating the uniaxial compressive strength of a volcanic bimrock. Int. J. Rock Mech. Min. Sci., 43 (4), 554-561. Zorlu K., 2008. Description of the weathering states of building stones by fractal geometry and fuzzy inference system in the Olba ancient city (Southern Turkey). Engineering Geology 101 (2008) 124-133.

  8. 3D Modeling of Landslide in Open-pit Mining on Basis of Ground-based LIDAR Data

    NASA Astrophysics Data System (ADS)

    Hu, H.; Fernandez-Steeger, T. M.; Azzam, R.; Arnhardt, C.

    2009-04-01

    Slope stability is not only an important problem which is related to production and safety in open-pit mining, but also very complex task. There are three main reasons which affect the slope stability as follows: geotechnical factors: Geological structure, lithologic characteristics, water, cohesion, friction, etc.; climate factors: Rainfall and temperature; and external factors: Open-pit mining process, explosion vibration, dynamic load, etc.. The 3rd reason, as a specially one in open-pit mining, not only causes some dynamic problems but also induces the fast geometry changing which must be considered in the following research using numerical simulation and stability analysis. Recently, LIDAR technology has been applied in many fields and places in the world wide. Ground-based LIDAR technology with high accuracy up to 3mm increasingly accommodates to monitoring landslides and detecting changing. LIDAR data collection and preprocessing research have been carried out by Department of Engineering Geology and Hydrogeology at RWTH Aachen University. LIDAR data, so-called a point-cloud of mass data in high density can be obtained in short time for the sensitive open-pit mining area by using ground-based LIDAR. To obtain a consistent surface model, it is necessary to set up multiple scans with the ground-based LIDAR. The framework of data preprocessing which can be implemented by Poly-Works is introduced as follows: gross error detection and elimination, integration of reference frame, model fusion of different scans (re-sampled in overlap region), data reduction without removing the useful information which is a challenge and research front in LIDAR data processing. After data preprocessing, 3D surface model can be directly generated in Poly-Works or generated in other software by building the triangular meshes. The 3D surface landslide model can be applied to further researches such as: real time landslide geometry monitoring due to the fast data collection and processing; change detecting by means of overlying different periods of topographic or geometric data; FEM (Finite Element Method) numerical simulation on basis of combining with the geotechnical properties and parameters to analyze slope stability and predict future movements for designing and rectifying the open-pit mining process; using the reverse engineering thought for developing constitutive models. An improved 3D surface model (HRDEM) which is based on fast data collection and precise data processing on basis of ground-based LIDAR technology is important contribution for further researches of slope stability in open-pit mining area.

  9. Finite element code FENIA verification and application for 3D modelling of thermal state of radioactive waste deep geological repository

    NASA Astrophysics Data System (ADS)

    Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, U. N.

    2017-11-01

    The verification of the FENIA finite element code on some problems and an example of its application are presented in the paper. The code is being developing for 3D modelling of thermal, mechanical and hydrodynamical (THM) problems related to the functioning of deep geological repositories. Verification of the code for two analytical problems has been performed. The first one is point heat source with exponential heat decrease, the second one - linear heat source with similar behavior. Analytical solutions have been obtained by the authors. The problems have been chosen because they reflect the processes influencing the thermal state of deep geological repository of radioactive waste. Verification was performed for several meshes with different resolution. Good convergence between analytical and numerical solutions was achieved. The application of the FENIA code is illustrated by 3D modelling of thermal state of a prototypic deep geological repository of radioactive waste. The repository is designed for disposal of radioactive waste in a rock at depth of several hundred meters with no intention of later retrieval. Vitrified radioactive waste is placed in the containers, which are placed in vertical boreholes. The residual decay heat of radioactive waste leads to containers, engineered safety barriers and host rock heating. Maximum temperatures and corresponding times of their establishment have been determined.

  10. System engineering of aerospace and advanced technology programs at an astronautics company (record of study)

    NASA Astrophysics Data System (ADS)

    Kennedy, Mike O.

    An internship with the Martin Marietta Astronautics Group that was performed in partial fulfillment of the requirements for the Doctor of Engineering degree is documented. The internship included assignments with two Martin Marietta companies, on three different programs and in four areas of engineering. A first-hand look is taken at system engineering, SDI and advanced program management, and the way Martin Marietta conducts business. The five internship objectives were related to assignments in system modeling, system integration, engineering analysis and technical management: (1) The effects of thermally and mechanically induced mirror surface distortions upon the wavefront intensity field of a high energy laser beam passing through the optical train of a space-based laser system were modeled. (2) The restrictive as opposed to the broad interpretation of the 1972 ABM Treaty, and the capability of the Strategic Defense Initiative Zenith Star Program to comply with the Treaty were evaluated. (3) The capability of Martin Marietta to develop an automated analysis system to integrate and analyze Superconducting Super Collider detector designs was investigated. (4) The thermal models that were developed in support of the Small Intercontinental Ballistic Missile flight tests were described. (5) The technical management role of the Product Integrity Engineer assigned to the Zenith Star spacecraft's Beam Control and Transfer Subsystem was discussed. The relationships between the engineering, business, security and social concerns associated with the practice of engineering and the management of programs by a major defense contractor are explored.

  11. BGS·SIGMA - Digital mapping at the British Geological Survey

    NASA Astrophysics Data System (ADS)

    Smith, Nichola; Lawrie, Ken

    2017-04-01

    Geological mapping methods have evolved significantly over recent decades and this has included the transition to digital field data capture. BGS has been developing methodologies and technologies for this since 2001, and has now reached a stage where our custom built data capture and map compilation system (BGS·SIGMAv2015) is the default toolkit, within BGS, for bedrock and superficial mapping across the UK and overseas. In addition, BGS scientists also use the system for other data acquisition projects, such as landslide assessment, geodiversity audits and building stone studies. BGS·SIGMAv2015 is an integrated toolkit which enables assembly, interrogation and visualisation of existing geological information; capture of, and integration with, new data and geological interpretations; and delivery of digital products and services. From its early days as a system which used PocketGIS run on Husky Fex21 hardware, to the present day system, developed using ESRI's ArcGIS built on top of a bespoke relational data model, running on ruggedized tablet PCs with integrated GPS units, the system has evolved into a comprehensive system for digital geological data capture, mapping and compilation. The benefits, for BGS, of digital data capture are huge. Not only are the data being gathered in a standardised format, with the use of dictionaries to ensure consistency, but project teams can start building their digital geological map in the field by merging data collected by colleagues, building line-work and polygons, and subsequently identifying areas for further investigation. This digital data can then be easily incorporated into corporate databases and used in 3D modelling and visualisation software once back in the office. BGS is now at a stage where the free external release of our digital mapping system is in demand across the world, with 3000 licences being issued to date, and is successfully being used by other geological surveys, universities and exploration companies. However, we recognise that in some areas usage is restricted due to access to the software platform used by the system. To combat this, and to try and facilitate access to the system for all, BGS is now developing the BGS·SIGMA companion app. This will be developed for smart phones and tablets, and as well as enabling users of open source software to access to the system it will also facilitate rapid point based mapping, something BGS geologists are increasingly required to carry out. Alongside this, BGS is also developing a set of modular, re-usable tools for data capture, storage, manipulation and delivery that will help organisations, which are just starting their journey into the digital world, to learn from our experiences and implement a system that is already fully integrated and can be customised for specific user requirements.

  12. UAV, LiDAR & ground-based surveying from Stackpole Quay: best practice for accuracy of virtual outcrops and structural models

    NASA Astrophysics Data System (ADS)

    Cawood, A.; Bond, C. E.; Howell, J.; Totake, Y.

    2016-12-01

    Virtual outcrops derived from techniques such as LiDAR and SfM (digital photogrammetry) provide a viable and potentially powerful addition or alternative to traditional field studies, given the large amounts of raw data that can be acquired rapidly and safely. The use of these digital representations of outcrops as a source of geological data has increased greatly in the past decade, and as such, the accuracy and precision of these new acquisition methods applied to geological problems has been addressed by a number of authors. Little work has been done, however, on the integration of virtual outcrops into fundamental structural geology workflows and to systematically studying the fidelity of the data derived from them. Here, we use the classic Stackpole Quay syncline outcrop in South Wales to quantitatively evaluate the accuracy of three virtual outcrop models (LiDAR, aerial and terrestrial digital photogrammetry) compared to data collected directly in the field. Using these structural data, we have built 2D and 3D geological models which make predictions of fold geometries. We examine the fidelity of virtual outcrops generated using different acquisition techniques to outcrop geology and how these affect model building and final outcomes. Finally, we utilize newly acquired data to deterministically test model validity. Based upon these results, we find that acquisition of digital imagery by UAS (Unmanned Autonomous Vehicle) yields highly accurate virtual outcrops when compared to terrestrial methods, allowing the construction of robust data-driven predictive models. Careful planning, survey design and choice of suitable acquisition method are, however, of key importance for best results.

  13. Self-Guided Field Explorations: Integrating Earth Science into Students' Lives

    NASA Astrophysics Data System (ADS)

    Kirkby, K. C.; Kirkby, S.

    2013-12-01

    Self-guided field explorations are a simple way to transform an earth science class into a more pedagogically effective experience. Previous experience demonstrated that self-guided student explorations of museum and aquarium exhibits were both extremely popular and remarkably effective. That success led our program to test an expansion of the concept to include self-guided student explorations in outdoor field settings. Preliminary assessment indicates these self-guided field explorations are nearly as popular with students as the museum and aquarium explorations and are as pedagogically effective. Student gains on post-instruction assessment match or exceed those seen in instructor-assisted, hands-on, small group laboratory activities and completely eclipse gains achieved by traditional lecture instruction. As importantly, self-guided field explorations provide a way to integrate field experiences into large enrollment courses where the sheer scale of class trips makes them logistically impossible. This expands course breadth, integrating new topics that could not be as effectively covered by the original class structure. Our introductory program assessed two models of self-guided field explorations. A walking/cycling exploration of the Saint Anthony Falls area, a mile from campus, focuses on the intersections of geological processes with human history. Students explore the geology behind the waterfalls' evolution as well as its subsequent social and economic impacts on human history. A second exploration focuses on the campus area geology, including its building stones as well as its landscape evolution. In both explorations, the goal was to integrate geology with the students' broader understanding of the world they live in. Although the explorations' creation requires a significant commitment, once developed, self-guided explorations are surprisingly low maintenance. These explorations provide a model of a simple, highly effective pedagogical tool that is easily adapted to almost any campus setting. A number of factors contribute to self-guided explorations' success. For most students, these are novel, particularly memorable experiences. Interactive in nature, self-guided explorations are also relaxed, self-paced instruction without the pressures that can dominate other educational settings. Well designed explorations build on students' prior knowledge, allowing them to integrate new earth science concepts with familiar ideas and settings. By creating connections between geology and human society, these explorations also make earth science more relevant to students who had not previously considered their world from a geological perspective. By their very nature, explorations are place-centered education which helps ground instruction and makes it more relevant to students without strong science backgrounds. Further these explorations give students control over, and responsibility for, their own learning, which is always a pedagogically sound approach. Finally, self-guided explorations can integrate earth science education into students' social lives as most students choose to complete the explorations in groups, often with friends and family who are not enrolled in the course.

  14. Bayesian-information-gap decision theory with an application to CO 2 sequestration

    DOE PAGES

    O'Malley, D.; Vesselinov, V. V.

    2015-09-04

    Decisions related to subsurface engineering problems such as groundwater management, fossil fuel production, and geologic carbon sequestration are frequently challenging because of an overabundance of uncertainties (related to conceptualizations, parameters, observations, etc.). Because of the importance of these problems to agriculture, energy, and the climate (respectively), good decisions that are scientifically defensible must be made despite the uncertainties. We describe a general approach to making decisions for challenging problems such as these in the presence of severe uncertainties that combines probabilistic and non-probabilistic methods. The approach uses Bayesian sampling to assess parametric uncertainty and Information-Gap Decision Theory (IGDT) to addressmore » model inadequacy. The combined approach also resolves an issue that frequently arises when applying Bayesian methods to real-world engineering problems related to the enumeration of possible outcomes. In the case of zero non-probabilistic uncertainty, the method reduces to a Bayesian method. Lastly, to illustrate the approach, we apply it to a site-selection decision for geologic CO 2 sequestration.« less

  15. Teachers' Thoughts on Student Decision Making during Engineering Design Lessons

    ERIC Educational Resources Information Center

    Meyer, Helen

    2018-01-01

    In this paper, I share the results of a study of teachers' ideas about student decision-making at entry into a professional development program to integrate engineering into their instruction. The framework for the Engineering Design Process (EDP) was based on a Challenge-Based Learning (CBL) model. The EDP embedded within the CBL model suggests…

  16. Airborne remote sensors applied to engineering geology and civil works design investigations

    NASA Technical Reports Server (NTRS)

    Gelnett, R. H.

    1975-01-01

    The usefulness of various airborne remote sensing systems in the detection and identification of regional and specific geologic structural features that may affect the design and location of engineering structures on major civil works projects is evaluated. The Butler Valley Dam and Blue Lake Project in northern California was selected as a demonstration site. Findings derived from the interpretation of various kinds of imagery used are given.

  17. The Importance of Field Demonstration Sites: The View from the Unconventional Resource Region of the Appalachian Basin

    NASA Astrophysics Data System (ADS)

    Carr, T.

    2017-12-01

    The Appalachian basin with the Marcellus and Utica shale units is one of the most active unconventional resource plays in North America. Unconventional resource plays are critical and rapidly-growing areas of energy, where research lags behind exploration and production activity. There remains a poor overall understanding of physical, chemical and biological factors that control shale gas production efficiency and possible environmental impacts associated with shale gas development. We have developed an approach that works with local industrial partners and communities and across research organizations. The Marcellus Shale Energy and Environment Laboratory (MSEEL) consists of a multidisciplinary and multi-institutional team undertaking integrated geoscience, engineering and environmental studies in cooperation with the Department of Energy. This approach is being expanded to other sites and to the international arena. MSEEL consists of four horizontal production wells, which are instrumented, a cored and logged vertical pilot bore-hole, and a microseismic observation well. MSEEL has integrated geophysical observations (microseismic and surface), fiber-optic monitoring for distributed acoustic (DAS) and temperature sensing (DTS), well logs, core data and production logging and continued monitoring, to characterize subsurface rock properties, and the propagation pattern of induced fractures in the stimulated reservoir volume. Significant geologic heterogeneity along the lateral affects fracture stimulation efficiency - both completion efficiency (clusters that receive effective stimulation), and production efficiency (clusters effectively contributing to production). MSEEL works to develop new knowledge of subsurface geology and engineering, and surface environmental impact to identify best practices that can optimize hydraulic fracture stimulation to increase flow rates, estimated ultimate recovery in order to reduce the number of wells and environmental impact.

  18. Updated lateral attenuation in FAA's Integrated Noise Model

    DOT National Transportation Integrated Search

    2000-08-27

    The lateral attenuation algorithm in the Federal Aviation Administration's (FAA) Integrated Noise Model (INM) has historically been based on the two regression equations described in the Society of Automotive Engineers' (SAE) Aerospace Information Re...

  19. The United States Geological Survey in Alaska: Accomplishments during 1976

    USGS Publications Warehouse

    Blean, Kathleen M.

    1977-01-01

    United States Geological Survey projects in Alaska include a wide range of topics of economic and scientific interest. Studies in 1976 include economic geology, regional geology, stratigraphy, environmental geology, engineering geology, hydrology, and marine geology. Discussions of the findings or, in some instances, narratives of the course of the investigations are grouped in eight subdivisions corresponding to the six major onshore geographic regions, the offshore projects, and projects that are statewide in scope. Locations of the study areas are shown. In addition, many reports and maps covering various aspects of the geology and mineral and water resources of the State were published. These publications are listed. (Woodard-USGS)

  20. MDO and Cross-Disciplinary Practice in R&D: A Portrait of Principles and Current Practice

    NASA Technical Reports Server (NTRS)

    Rivas McGowan, Anna-Maria; Papalambros, Panos Y.; Baker, Wayne E.

    2014-01-01

    For several decades, Multidisciplinary Design Optimization (MDO) has served an important role in aerospace engineering by incorporating physics based disciplinary models into integrated system or sub-system models for use in research, development, (R&D) and design. This paper examines MDO's role in facilitating the integration of the researchers from different single disciplines during R&D and early design of large-scale complex engineered systems (LaCES) such as aerospace systems. The findings in this paper are summarized from a larger study on interdisciplinary practices and perspectives that included considerable empirical data from surveys, interviews, and ethnography. The synthesized findings were derived by integrating the data with theories from organization science and engineering. The over-arching finding is that issues related to cognition, organization, and social interrelations mostly dominate interactions across disciplines. Engineering issues, such as the integration of hardware or physics-based models, are not as significant. Correspondingly, the data showed that MDO is not the primary integrator of researchers working across disciplines during R&D and early design of LaCES. Cognitive focus such as analysis versus design, organizational challenges such as incentives, and social opportunities such as personal networks often drove the human interactive practices among researchers from different disciplines. Facilitation of the inherent confusion, argument, and learning in crossdisciplinary research was identified as one of several needed elements of enabling successful research across disciplines.

  1. Lithospheric magnetic field modelling of the African continent

    NASA Astrophysics Data System (ADS)

    Hemant, K.; Maus, S.

    2003-04-01

    New magnetic satellite missions in low-earth orbit are providing increasingly accurate maps of the lithospheric magnetic field. These maps can be used to infer the geological structure of regions hidden by Phanerozoic cover, taking into account our knowledge of crustal structure from surface geology and seismic methods. A GIS based modelling technique has been developed to model the various geological units of the continents using the UNESCO geological map of the world, supported by background geological information from various sources. Geological units of each region are assigned a susceptibility value based on laboratory values of the constituent rock types. Then, using the 3SMAC seismic crustal structure, a vertically integrated susceptibility (VIS) model is computed at each point of the region. Starting with this VIS model, the total field anomaly is computed at an altitude of 400 km and compared with the MF2 lithospheric magnetic field model derived from CHAMP data. The modelling results of the Precambrian units of the West African cratons agree well with MF2. The anomaly in the Central African cratonic region also correlates well, although part of it is unaccounted for as yet. Furthermore, the anomalies over the Tanzanian craton and surrounding region agree very well. Most of the regions around the South African cratons are hidden by Phanerozoic cover, yet the results above the Kaapvaal craton and the southern Zimbabwe craton around the Limpopo belt show good correspondence with the observed anomaly map. The results also suggest a probable extension of the Precambrian units below the sediments of younger age. In general, the lower crust is likely to be more mafic than presumed in our current understanding of Central Africa. Deviations in the magnitude of the anomalies in some regions are likely to be due to incomplete seismic information in those regions. Thus, the thickness of crustal layers derived from magnetic anomalies for these locations may help to constrain future geophysical models in the less explored regions of Africa.

  2. Control Data ICEM: A vendors IPAD-like system

    NASA Technical Reports Server (NTRS)

    Feldman, H. D.

    1984-01-01

    The IPAD program's goal which was to integrate aerospace applications used in support of the engineering design process is discussed. It is still the key goal, and has evolved into a design centered around the use of data base management, networking, and global user executive technology. An integrated CAD/CAM system modeled in part after the IPAD program and containing elements of the program's goals was developed. The integrated computer aided engineering and manufacturing (ICEM) program started with the acquisition of AD-2000 and Synthavision. The AD-2000 has evolved to a production geometry creation and drafting system which is called CD/2000. Synthavision has grown to be a full scale 3-dimensional modeling system, the ICEM Modeler.

  3. Augmenting comprehension of geological relationships by integrating 3D laser scanned hand samples within a GIS environment

    NASA Astrophysics Data System (ADS)

    Harvey, A. S.; Fotopoulos, G.; Hall, B.; Amolins, K.

    2017-06-01

    Geological observations can be made on multiple scales, including micro- (e.g. thin section), meso- (e.g. hand-sized to outcrop) and macro- (e.g. outcrop and larger) scales. Types of meso-scale samples include, but are not limited to, rocks (including drill cores), minerals, and fossils. The spatial relationship among samples paired with physical (e.g. granulometric composition, density, roughness) and chemical (e.g. mineralogical and isotopic composition) properties can aid in interpreting geological settings, such as paleo-environmental and formational conditions as well as geomorphological history. Field samples are collected along traverses in the area of interest based on characteristic representativeness of a region, predetermined rate of sampling, and/or uniqueness. The location of a sample can provide relative context in seeking out additional key samples. Beyond labelling and recording of geospatial coordinates for samples, further analysis of physical and chemical properties may be conducted in the field and laboratory. The main motivation for this paper is to present a workflow for the digital preservation of samples (via 3D laser scanning) paired with the development of cyber infrastructure, which offers geoscientists and engineers the opportunity to access an increasingly diverse worldwide collection of digital Earth materials. This paper describes a Web-based graphical user interface developed using Web AppBuilder for ArcGIS for digitized meso-scale 3D scans of geological samples to be viewed alongside the macro-scale environment. Over 100 samples of virtual rocks, minerals and fossils populate the developed geological database and are linked explicitly with their associated attributes, characteristic properties, and location. Applications of this new Web-based geological visualization paradigm in the geosciences demonstrate the utility of such a tool in an age of increasing global data sharing.

  4. PICASSO VISION instrument design, engineering model test results, and flight model development status

    NASA Astrophysics Data System (ADS)

    Näsilä, Antti; Holmlund, Christer; Mannila, Rami; Näkki, Ismo; Ojanen, Harri J.; Akujärvi, Altti; Saari, Heikki; Fussen, Didier; Pieroux, Didier; Demoulin, Philippe

    2016-10-01

    PICASSO - A PICo-satellite for Atmospheric and Space Science Observations is an ESA project led by the Belgian Institute for Space Aeronomy, in collaboration with VTT Technical Research Centre of Finland Ltd, Clyde Space Ltd. (UK) and Centre Spatial de Liège (BE). The test campaign for the engineering model of the PICASSO VISION instrument, a miniaturized nanosatellite spectral imager, has been successfully completed. The test results look very promising. The proto-flight model of VISION has also been successfully integrated and it is waiting for the final integration to the satellite platform.

  5. Discovery of previously unrecognised local faults in London, UK, using detailed 3D geological modelling

    NASA Astrophysics Data System (ADS)

    Aldiss, Don; Haslam, Richard

    2013-04-01

    In parts of London, faulting introduces lateral heterogeneity to the local ground conditions, especially where construction works intercept the Palaeogene Lambeth Group. This brings difficulties to the compilation of a ground model that is fully consistent with the ground investigation data, and so to the design and construction of engineering works. However, because bedrock in the London area is rather uniform at outcrop, and is widely covered by Quaternary deposits, few faults are shown on the geological maps of the area. This paper discusses a successful resolution of this problem at a site in east central London, where tunnels for a new underground railway station are planned. A 3D geological model was used to provide an understanding of the local geological structure, in faulted Lambeth Group strata, that had not been possible by other commonly-used methods. This model includes seven previously unrecognised faults, with downthrows ranging from about 1 m to about 12 m. The model was constructed in the GSI3D geological modelling software using about 145 borehole records, including many legacy records, in an area of 850 m by 500 m. The basis of a GSI3D 3D geological model is a network of 2D cross-sections drawn by a geologist, generally connecting borehole positions (where the borehole records define the level of the geological units that are present), and outcrop and subcrop lines for those units (where shown by a geological map). When the lines tracing the base of each geological unit within the intersecting cross-sections are complete and mutually consistent, the software is used to generate TIN surfaces between those lines, so creating a 3D geological model. Even where a geological model is constructed as if no faults were present, changes in apparent dip between two data points within a single cross-section can indicate that a fault is present in that segment of the cross-section. If displacements of similar size with the same polarity are found in a series of adjacent cross-sections, the presence of a fault can be substantiated. If it is assumed that the fault is planar and vertical, then the pairs of constraining data points in each cross-section form a two-dimensional envelope within which the surface trace of the fault must lie. Generally, the broader the area of the model, the longer the envelope defined by the pairs of boreholes is, resulting in better constraint of the fault zone width and azimuth. Repetition or omission of the local stratigraphy in the constraining boreholes can demonstrate reverse or normal dip-slip motion. Even if this is not possible, borehole intercepts at the base of the youngest bedrock unit or at the top of the oldest bedrock unit can constrain the minimum angle of dip of the fault plane. Assessment of the maximum angle of dip requires intrusive investigation. This work is distributed under the Creative Commons Attribution 3.0 Unported License together with an NERC copyright. This license does not conflict with the regulations of the Crown Copyright.

  6. Impact Cratering Calculations

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    2001-01-01

    We examined the von Mises and Mohr-Coulomb strength models with and without damage effects and developed a model for dilatancy. The models and results are given in O'Keefe et al. We found that by incorporating damage into the models that we could in a single integrated impact calculation, starting with the bolide in the atmosphere produce final crater profiles having the major features found in the field measurements. These features included a central uplift, an inner ring, circular terracing and faulting. This was accomplished with undamaged surface strengths of approximately 0.1 GPa and at depth strengths of approximately 1.0 GPa. We modeled the damage in geologic materials using a phenomenological approach, which coupled the Johnson-Cook damage model with the CTH code geologic strength model. The objective here was not to determine the distribution of fragment sizes, but rather to determine the effect of brecciated and comminuted material on the crater evolution, fault production, ejecta distribution, and final crater morphology.

  7. Subsonic longitudinal aerodynamic characteristics and engine pressure distributions for an aircraft with an integrated scramjet designed for Mach 6 cruise. [conducted in Langley 7 by 10 foot high speed tunnel

    NASA Technical Reports Server (NTRS)

    Huffman, J. K.; Fox, C. H., Jr.; Johnston, P. J.

    1977-01-01

    A 1/10-scale model of a proposed hypersonic aircraft with an integrated scramjet was tested. The investigation took place over a Mach number range from 0.2 to 0.7 and an angle of attack range from 2 deg to approximately 17 deg at a sideslip angle of 0 deg. The primary configuration variables studied were engine location, internal engine geometry, and external engine geometry. The results are presented without analysis.

  8. A 3D geological and geomechanical model of the 1963 Vajont landslide

    NASA Astrophysics Data System (ADS)

    Bistacchi, Andrea; Massironi, Matteo; Francese, Roberto; Giorgi, Massimo; Chistolini, Filippo; Battista Crosta, Giovanni; Castellanza, Riccardo; Frattini, Paolo; Agliardi, Federico; Frigerio, Gabriele

    2014-05-01

    The Vajont rockslide has been the object of several studies because of its catastrophic consequences and particular evolution. Several qualitative or quantitative models have been presented in the last 50 years, but a complete explanation of all relevant geological and mechanical processes remains elusive. In order to better understand the mechanics and dynamics of the 1963 event, we have reconstructed the first 3D geological model of the rockslide, which allowed us to accurately investigate the rockslide structure and kinematics. The input data for the model consisted in: pre- and post-rockslide geological maps, pre- and post-rockslide orthophotos, pre- and post-rockslide digital elevation models, structural data, boreholes, and geophysical data (2D and 3D seismics and resistivity). All these data have been integrated in a 3D geological model implemented in Gocad®, using the implicit surface modelling method. Results of the 3D geological model include the depth and geometry of the sliding surface, the volume of the two lobes of the rockslide accumulation, kinematics of the rockslide in terms of the vector field of finite displacement, and high quality meshes useful for mechanical and hydrogeological simulations. The latter can include information about the stratigraphy and internal structure of the rock masses and allow tracing the displacement of different material points in the rockslide from the pre-1963-failure to the post-rockslide state. As a general geological conclusion, we may say that the 3D model allowed us to recognize very effectively a sliding surface, whose non-planar geometry is affected by the interference pattern of two regional-scale fold systems. The rockslide is partitioned into two distinct and internally continuous rock masses with a distinct kinematics, which were characterised by a very limited internal deformation during the slide. The continuity of these two large blocks points to a very localized deformation, occurring along a thin, continuous and weak cataclastic horizon. The chosen modelling strategy, based on both traditional "explicit" and implicit techniques, was found to be very effective for reconstructing complex folded and faulted geological structures, and could be applied also to other geological environments. Finally 3D FEM analyses using the code MidasGTS have been performed adopting the 3D geological model. A c-phi reduction procedure was employed along the pre-defined failure surface until the onset of the landslide occurred. The initiation of the rock mass movements is properly described by considering the evolution of plastic shear strain in the failure surface. The stress, strain and displacement fields of the rock mass were analysed in detail and compared with the monitored data.

  9. Geological Survey research 1981

    USGS Publications Warehouse

    ,

    1982-01-01

    This U.S. Geological Survey activities report includes a summary of 1981 fiscal year scientific and economic results accompanied by a list of geologic, hydrologic, and cartographic investigations in progress. The summary of results includes: (1) Mineral, (2) Water resources, (3) Engineering geology and hydrology, (4) Regional geology, (5) Principles and processes, (6) Laboratory and field methods, (7) Topographic surveys and mapping, (8) Management of resources on public lands, (9) Land information and analysis, and (10) Investigations in other countries. Also included are lists of investigations in progress.

  10. Mechanical stimulation enhances integration in an in vitro model of cartilage repair.

    PubMed

    Theodoropoulos, John S; DeCroos, Amritha J N; Petrera, Massimo; Park, Sam; Kandel, Rita A

    2016-06-01

    (1) To characterize the effects of mechanical stimulation on the integration of a tissue-engineered construct in terms of histology, biochemistry and biomechanical properties; (2) to identify whether cells of the implant or host tissue were critical to implant integration; and (3) to study cells believed to be involved in lateral integration of tissue-engineered cartilage to host cartilage. We hypothesized that mechanical stimulation would enhance the integration of the repair implant with host cartilage in an in vitro integration model. Articular cartilage was harvested from 6- to 9-month-old bovine metacarpal-phalangeal joints. Constructs composed of tissue-engineered cartilage implanted into host cartilage were placed in spinner bioreactors and maintained on a magnetic stir plate at either 0 (static control) or 90 (experimental) rotations per minute (RPM). The constructs from both the static and spinner bioreactors were harvested after either 2 or 4 weeks of culture and evaluated histologically, biochemically, biomechanically and for gene expression. The extent and strength of integration between tissue-engineered cartilage and native cartilage improved significantly with both time and mechanical stimulation. Integration did not occur if the implant was not viable. The presence of stimulation led to a significant increase in collagen content in the integration zone between host and implant at 2 weeks. The gene profile of cells in the integration zone differs from host cartilage demonstrating an increase in the expression of membrane type 1 matrix metalloproteinase (MT1-MMP), aggrecan and type II collagen. This study shows that the integration of in vitro tissue-engineered implants with host tissue improves with mechanical stimulation. The findings of this study suggests that consideration should be given to implementing early loading (mechanical stimulation) into future in vivo studies investigating the long-term viability and integration of tissue-engineered cartilage for the treatment of cartilage injuries. This could simply be done through the use of continuous passive motion (CPM) in the post-operative period or through a more complex and structured rehabilitation program with a gradual increase in forces across the joint over time.

  11. Automotive Control Systems: For Engine, Driveline, and Vehicle

    NASA Astrophysics Data System (ADS)

    Kiencke, Uwe; Nielsen, Lars

    Advances in automotive control systems continue to enhance safety and comfort and to reduce fuel consumption and emissions. Reflecting the trend to optimization through integrative approaches for engine, driveline, and vehicle control, this valuable book enables control engineers to understand engine and vehicle models necessary for controller design, and also introduces mechanical engineers to vehicle-specific signal processing and automatic control. The emphasis on measurement, comparisons between performance and modeling, and realistic examples derive from the authors' unique industrial experience

  12. Publications - RDF 2015-5 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  13. Publications - RI 2009-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  14. Publications - MP 142 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  15. Publications - RDF 2016-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  16. Publications - SR 70 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  17. Publications - MP 38 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  18. Publications - SR 45 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  19. Publications - RDF 2016-5 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  20. Publications - MP 43 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  1. Publications - MP 149 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Surveys Home Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Tidal Datum

  2. Publications - RDF 2014-22 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska

  3. Integrated geological-geophysical models of unstable slopes in seismogenic areas in NW and SE Europe

    NASA Astrophysics Data System (ADS)

    Mreyen, Anne-Sophie; Micu, Mihai; Onaca, Alexandru; Demoulin, Alain; Havenith, Hans-Balder

    2017-04-01

    We will present a series of new integrated 3D models of landslide sites that were investigated in distinctive seismotectonic and climatic contexts: (1) along the Hockai Fault Zone in Belgium, with the 1692 Verviers Earthquake (M 6 - 6.5) as most prominent earthquake that occurred in that fault zone and (2) in the seismic region of Vrancea, Romania, where four earthquakes with Mw > 7.4 have been recorded during the last two centuries. Both sites present deep-seated failures located in more or less seismically active areas. In such areas, slope stability analyses have to take into account the possible contributions to ground failure. Our investigation methods had to be adapted to capture the deep structure as well as the physico-mechanical characteristics that influence the dynamic behaviour of the landslide body. Field surveys included electrical resistivity tomography profiles, seismic refraction profiles (analysed in terms of both seismic P-wave tomography and surface waves), ambient noise measurements to determine the soil resonance frequencies through H/V analysis, complemented by geological and geomorphic mapping. The H/V method, in particular, is more and more used for landslide investigations or sites marked by topographic relief (in addition to the more classical applications on flat sites). Results of data interpretation were compiled in 3D geological-geophysical models supported by high resolution remote sensing data of the ground surface. Data and results were not only analysed in parallel or successively; to ensure full integration of all inputs-outputs, some data fusion and geostatistical techniques were applied to establish closer links between them. Inside the 3D models, material boundaries were defined in terms of surfaces and volumes. Those models were used as inputs for 2D dynamic numerical simulations completed with the UDEC (Itasca) software. For some sites, a full back-analysis was carried out to assess the possibility of a seismic triggering of the landslides.

  4. Practical Application of Model-based Programming and State-based Architecture to Space Missions

    NASA Technical Reports Server (NTRS)

    Horvath, Gregory A.; Ingham, Michel D.; Chung, Seung; Martin, Oliver; Williams, Brian

    2006-01-01

    Innovative systems and software engineering solutions are required to meet the increasingly challenging demands of deep-space robotic missions. While recent advances in the development of an integrated systems and software engineering approach have begun to address some of these issues, they are still at the core highly manual and, therefore, error-prone. This paper describes a task aimed at infusing MIT's model-based executive, Titan, into JPL's Mission Data System (MDS), a unified state-based architecture, systems engineering process, and supporting software framework. Results of the task are presented, including a discussion of the benefits and challenges associated with integrating mature model-based programming techniques and technologies into a rigorously-defined domain specific architecture.

  5. Installation and Testing of ITER Integrated Modeling and Analysis Suite (IMAS) on DIII-D

    NASA Astrophysics Data System (ADS)

    Lao, L.; Kostuk, M.; Meneghini, O.; Smith, S.; Staebler, G.; Kalling, R.; Pinches, S.

    2017-10-01

    A critical objective of the ITER Integrated Modeling Program is the development of IMAS to support ITER plasma operation and research activities. An IMAS framework has been established based on the earlier work carried out within the EU. It consists of a physics data model and a workflow engine. The data model is capable of representing both simulation and experimental data and is applicable to ITER and other devices. IMAS has been successfully installed on a local DIII-D server using a flexible installer capable of managing the core data access tools (Access Layer and Data Dictionary) and optionally the Kepler workflow engine and coupling tools. A general adaptor for OMFIT (a workflow engine) is being built for adaptation of any analysis code to IMAS using a new IMAS universal access layer (UAL) interface developed from an existing OMFIT EU Integrated Tokamak Modeling UAL. Ongoing work includes development of a general adaptor for EFIT and TGLF based on this new UAL that can be readily extended for other physics codes within OMFIT. Work supported by US DOE under DE-FC02-04ER54698.

  6. Canada in 3D - Toward a Sustainable 3D Model for Canadian Geology from Diverse Data Sources

    NASA Astrophysics Data System (ADS)

    Brodaric, B.; Pilkington, M.; Snyder, D. B.; St-Onge, M. R.; Russell, H.

    2015-12-01

    Many big science issues span large areas and require data from multiple heterogeneous sources, for example climate change, resource management, and hazard mitigation. Solutions to these issues can significantly benefit from access to a consistent and integrated geological model that would serve as a framework. However, such a model is absent for most large countries including Canada, due to the size of the landmass and the fragmentation of the source data into institutional and disciplinary silos. To overcome these barriers, the "Canada in 3D" (C3D) pilot project was recently launched by the Geological Survey of Canada. C3D is designed to be evergreen, multi-resolution, and inter-disciplinary: (a) it is to be updated regularly upon acquisition of new data; (b) portions vary in resolution and will initially consist of four layers (surficial, sedimentary, crystalline, and mantle) with intermediary patches of higher-resolution fill; and (c) a variety of independently managed data sources are providing inputs, such as geophysical, 3D and 2D geological models, drill logs, and others. Notably, scalability concerns dictate a decentralized and interoperable approach, such that only key control objects, denoting anchors for the modeling process, are imported into the C3D database while retaining provenance links to original sources. The resultant model is managed in the database, contains full modeling provenance as well as links to detailed information on rock units, and is to be visualized in desktop and online environments. It is anticipated that C3D will become the authoritative state of knowledge for the geology of Canada at a national scale.

  7. Development of a NASA Integrated Technical Workforce Career Development Model Entitled Requisite Occupation Competencies and Knowledge -- the ROCK

    NASA Technical Reports Server (NTRS)

    Menrad, Robert J.; Larson, Wiley J.

    2008-01-01

    This paper shares the findings of NASA's Integrated Learning and Development Program (ILDP) in its effort to reinvigorate the HANDS-ON practice of space systems engineering and project/program management through focused coursework, training opportunities, on-the job learning and special assignments. Prior to March 2005, NASA responsibility for technical workforce development (the program/project manager, systems engineering, discipline engineering, discipline engineering and associated communities) was executed by two parallel organizations. In March 2005 these organizations merged. The resulting program-ILDP-was chartered to implement an integrated competency-based development model capable of enhancing NASA's technical workforce performance as they face the complex challenges of Earth science, space science, aeronautics and human spaceflight missions. Results developed in collaboration with NASA Field Centers are reported on. This work led to definition of the agency's first integrated technical workforce development model known as the Requisite Occupation Competence and Knowledge (the ROCK). Critical processes and products are presented including: 'validation' techniques to guide model development, the Design-A-CUrriculuM (DACUM) process, and creation of the agency's first systems engineering body-of-knowledge. Findings were validated via nine focus groups from industry and government, validated with over 17 space-related organizations, at an estimated cost exceeding $300,000 (US). Masters-level programs and training programs have evolved to address the needs of these practitioner communities based upon these results. The ROCK reintroduced rigor and depth to the practitioner's development in these critical disciplines enabling their ability to take mission concepts from imagination to reality.

  8. The integration of palaeogeography and tectonics in refining plate tectonic models: an example from SE Asia

    NASA Astrophysics Data System (ADS)

    Masterton, S. M.; Markwick, P.; Bailiff, R.; Campanile, D.; Edgecombe, E.; Eue, D.; Galsworthy, A.; Wilson, K.

    2012-04-01

    Our understanding of lithospheric evolution and global plate motions throughout the Earth's history is based largely upon detailed knowledge of plate boundary structures, inferences about tectonic regimes, ocean isochrons and palaeomagnetic data. Most currently available plate models are either regionally restricted or do not consider palaeogeographies in their construction. Here, we present an integrated methodology in which derived hypotheses have been further refined using global and regional palaeogeographic, palaeotopological and palaeobathymetric maps. Iteration between our self-consistent and structurally constrained global plate model and palaeogeographic interpretations which are built on these reconstructions, allows for greater testing and refinement of results. Our initial structural and tectonic interpretations are based largely on analysis of our extensive global database of gravity and magnetic potential field data, and are further constrained by seismic, SRTM and Landsat data. This has been used as the basis for detailed interpretations that have allowed us to compile a new global map and database of structures, crustal types, plate boundaries and basin definitions. Our structural database is used in the identification of major tectonic terranes and their relative motions, from which we have developed our global plate model. It is subject to an ongoing process of regional evaluation and revisions in an effort to incorporate and reflect new tectonic and geologic interpretations. A major element of this programme is the extension of our existing plate model (GETECH Global Plate Model V1) back to the Neoproterozic. Our plate model forms the critical framework upon which palaeogeographic and palaeotopographic reconstructions have been made for every time stage in the Cretaceous and Cenozoic. Generating palaeogeographies involves integration of a variety of data, such as regional geology, palaeoclimate analyses, lithology, sea-level estimates, thermo-mechanical events and regional tectonics. These data are interpreted to constrain depositional systems and tectonophysiographic terranes. Palaeotopography and palaeobathymetry are derived from these tectonophysiographic terranes and depositional systems, and are further constrained using geological relationships, thermochronometric data, palaeoaltimetry indicators and modern analogues. Throughout this process, our plate model is iteratively tested against our palaeogeographies and their environmental consequences. Both the plate model and the palaeogeographies are refined until we have obtained a consistent and scientifically robust result. In this presentation we show an example from Southeast Asia, where the plate model complexity and wide variation in hypotheses has huge implications for the palaeogeographic interpretation, which can then be tested using geological observations from well and seismic data. For example, the Khorat Plateau Basin, Northeastern Thailand, comprises a succession of fluvial clastics during the Cretaceous, which include the evaporites of the Maha Sarakham Formation. These have been variously interpreted as indicative of saline lake or marine incursion depositional environments. We show how the feasibility of these different hypotheses is dependent on the regional palaeogeography (whether a marine link is possible), which in turn depends on the underlying plate model. We show two models with widely different environmental consequences. A more robust model that takes into account all these consequences, as well as data, can be defined by iterating through the consequences of the plate model and geological observations.

  9. Geological maps and models: are we certain how uncertain they are?

    NASA Astrophysics Data System (ADS)

    Mathers, Steve; Waters, Colin; McEvoy, Fiona

    2014-05-01

    Geological maps and latterly 3D models provide the spatial framework for geology at diverse scales or resolutions. As demands continue to rise for sustainable use of the subsurface, use of these maps and models is informing decisions on management of natural resources, hazards and environmental change. Inaccuracies and uncertainties in geological maps and models can impact substantially on the perception, assessment and management of opportunities and the associated risks . Lithostratigraphical classification schemes predominate, and are used in most geological mapping and modelling. The definition of unit boundaries, as 2D lines or 3D surfaces is the prime objective. The intervening area or volume is rarely described other than by its bulk attributes, those relating to the whole unit. Where sufficient data exist on the spatial and/or statistical distribution of properties it can be gridded or voxelated with integrity. Here we only discuss the uncertainty involved in defining the boundary conditions. The primary uncertainty of any geological map or model is the accuracy of the geological boundaries, i.e. tops, bases, limits, fault intersections etc. Traditionally these have been depicted on BGS maps using three line styles that reflect the uncertainty of the boundary, e.g. observed, inferred, conjectural. Most geological maps tend to neglect the subsurface expression (subcrops etc). Models could also be built with subsurface geological boundaries (as digital node strings) tagged with levels of uncertainty; initial experience suggests three levels may again be practicable. Once tagged these values could be used to autogenerate uncertainty plots. Whilst maps are predominantly explicit and based upon evidence and the conceptual the understanding of the geologist, models of this type are less common and tend to be restricted to certain software methodologies. Many modelling packages are implicit, being driven by simple statistical interpolation or complex algorithms for building surfaces in ways that are invisible and so not controlled by the working geologist. Such models have the advantage of being replicable within a software package and so can discount some interpretational differences between modellers. They can however create geologically implausible results unless good geological rules and control are established prior to model calculation. Comparisons of results from varied software packages yield surprisingly diverse results. This is a significant and often overlooked source of uncertainty in models. Expert elicitation is commonly employed to establish values used in statistical treatments of model uncertainty. However this introduces another possible source of uncertainty created by the different judgements of the modellers. The pragmatic solution appears to be using panels of experienced geologists to elicit the values. Treatments of uncertainty in maps and models yield relative rather than absolute values even though many of these are expressed numerically. This makes it extremely difficult to devise standard methodologies to determine uncertainty or propose fixed numerical scales for expressing the results. Furthermore, these may give a misleading impression of greater certainty than actually exists. This contribution outlines general perceptions with regard to uncertainty in our maps and models and presents results from recent BGS studies

  10. A geological model for the management of subsurface data in the urban environment of Barcelona and surrounding area

    NASA Astrophysics Data System (ADS)

    Vázquez-Suñé, Enric; Ángel Marazuela, Miguel; Velasco, Violeta; Diviu, Marc; Pérez-Estaún, Andrés; Álvarez-Marrón, Joaquina

    2016-09-01

    The overdevelopment of cities since the industrial revolution has shown the need to incorporate a sound geological knowledge in the management of required subsurface infrastructures and in the assessment of increasingly needed groundwater resources. Additionally, the scarcity of outcrops and the technical difficulty to conduct underground exploration in urban areas highlights the importance of implementing efficient management plans that deal with the legacy of heterogeneous subsurface information. To deal with these difficulties, a methodology has been proposed to integrate all the available spatio-temporal data into a comprehensive spatial database and a set of tools that facilitates the analysis and processing of the existing and newly added data for the city of Barcelona (NE Spain). Here we present the resulting actual subsurface 3-D geological model that incorporates and articulates all the information stored in the database. The methodology applied to Barcelona benefited from a good collaboration between administrative bodies and researchers that enabled the realization of a comprehensive geological database despite logistic difficulties. Currently, the public administration and also private sectors both benefit from the geological understanding acquired in the city of Barcelona, for example, when preparing the hydrogeological models used in groundwater assessment plans. The methodology further facilitates the continuous incorporation of new data in the implementation and sustainable management of urban groundwater, and also contributes to significantly reducing the costs of new infrastructures.

  11. Integration of rock physical signatures with depositional environments: A case study from East Coast of India

    NASA Astrophysics Data System (ADS)

    Mondal, Samit; Yadav, Ashok; Chatterjee, Rima

    2018-01-01

    Rock physical crossplots from different geological setup along eastern continental margin of India (ECMI) represent diversified signatures. To characterize the reservoirs in rock physics domain (velocity/modulus versus porosity) and then connecting the interpretation with geological model has been the objectives of the present study. Petrophysical logs (total porosity and volume of shale) from five wells located at sedimentary basins of ECMI have been analyzed to quantify the types of shale such as: laminated, dispersed and structural in reservoir. Presence of various shale types belonging to different depositional environments is coupled to define distinct rock physical crossplot trends for different geological setup. Wells from three different basins in East Coast of India have been used to capture diversity in depositional environments. Contact model theory has been applied to the crossplot to examine the change in rock velocity with change in reservoir properties like porosity and volume of shale. The depositional and diagenetic trends have been shown in the crossplot to showcase the prime controlling factor which reduces the reservoir porosity. Apart from that, the effect of geological factors like effective stress, sorting, packing, grain size uniformity on reservoir properties have also been focused. The rock physical signatures for distinct depositional environments, effect of crucial geological factors on crossplot trends coupled with established sedimentological models in drilled area are investigated to reduce the uncertainties in reservoir characterization for undrilled potentials.

  12. A Mixed Methods Analysis of the Effects of an Integrative Geobiological Study of Petrified Wood in Introductory College Geology Classrooms

    ERIC Educational Resources Information Center

    Clary, Renee M.; Wandersee, James H.

    2007-01-01

    Mixed methods research conducted across three semesters in introductory college geology classes (n=187, 190, 138) attempted to ascertain whether integrated study of petrified wood could serve as a portal to improved student geobiological understanding of fossilization, geologic time, and evolution. The Petrified Wood Survey[TM] was administered as…

  13. Learning Engines - A Functional Object Model for Developing Learning Resources for the WWW.

    ERIC Educational Resources Information Center

    Fritze, Paul; Ip, Albert

    The Learning Engines (LE) model, developed at the University of Melbourne (Australia), supports the integration of rich learning activities into the World Wide Web. The model is concerned with the practical design, educational value, and reusability of software components. The model is focused on the academic teacher who is in the best position to…

  14. A Simplified Model of Human Alcohol Metabolism That Integrates Biotechnology and Human Health into a Mass Balance Team Project

    ERIC Educational Resources Information Center

    Yang, Allen H. J.; Dimiduk, Kathryn; Daniel, Susan

    2011-01-01

    We present a simplified human alcohol metabolism model for a mass balance team project. Students explore aspects of engineering in biotechnology: designing/modeling biological systems, testing the design/model, evaluating new conditions, and exploring cutting-edge "lab-on-a-chip" research. This project highlights chemical engineering's impact on…

  15. Correlated Attack Modeling (CAM)

    DTIC Science & Technology

    2003-10-01

    describing attack models to a scenario recognition engine, a prototype of such an engine was developed, using components of the EMERALD intrusion...content. Results – The attacker gains information enabling remote access to database (i.e., privileged login information, database layout to allow...engine that uses attack specifications written in CAML. The implementation integrates two advanced technologies devel- oped in the EMERALD program [27, 31

  16. Robotic Sample Manipulator for Handling Astromaterials Inside the Geolab Microgravity Glovebox

    NASA Technical Reports Server (NTRS)

    Bell, Mary S.; Calaway, M. J.; Evans, C. A.; Li,Z.; Tong, S.; Zhong, Y.; Dahiwala, R.; Wang, L.; Porter, F.

    2013-01-01

    Future human and robotic sample return missions will require isolation containment systems with strict protocols and procedures for reducing inorganic and organic contamination. Robotic handling and manipulation of astromaterials may be required for preliminary examination inside such an isolation containment system. In addition, examination of astromaterials in microgravity will require constant contact to secure samples during manipulation. The National Space Grant Foundation exploration habitat (XHab) academic innovative challenge 2012 administered through the NASA advanced exploration systems (AES) deep space habitat (DSH) project awarded funding to the University of Bridgeport team to develop an engineering design for tools to facilitate holding and handling geological samples for analysis in a microgravity glovebox environment. The Bridgeport XHab team developed a robotic arm system with a three-finger gripper that could manipulate geologic samples within the existing GeoLab glovebox integrated into NASA's DSH called the GeoLab Robotic Sample Manipulator (see fig. 1 and 2). This hardware was deployed and tested during the 2012 DSH mission operations tests [1].

  17. OneGeology-Europe: architecture, portal and web services to provide a European geological map

    NASA Astrophysics Data System (ADS)

    Tellez-Arenas, Agnès.; Serrano, Jean-Jacques; Tertre, François; Laxton, John

    2010-05-01

    OneGeology-Europe is a large ambitious project to make geological spatial data further known and accessible. The OneGeology-Europe project develops an integrated system of data to create and make accessible for the first time through the internet the geological map of the whole of Europe. The architecture implemented by the project is web services oriented, based on the OGC standards: the geological map is not a centralized database but is composed by several web services, each of them hosted by a European country involved in the project. Since geological data are elaborated differently from country to country, they are difficult to share. OneGeology-Europe, while providing more detailed and complete information, will foster even beyond the geological community an easier exchange of data within Europe and globally. This implies an important work regarding the harmonization of the data, both model and the content. OneGeology-Europe is characterised by the high technological capacity of the EU Member States, and has the final goal to achieve the harmonisation of European geological survey data according to common standards. As a direct consequence Europe will make a further step in terms of innovation and information dissemination, continuing to play a world leading role in the development of geosciences information. The scope of the common harmonized data model was defined primarily by the requirements of the geological map of Europe, but in addition users were consulted and the requirements of both INSPIRE and ‘high-resolution' geological maps were considered. The data model is based on GeoSciML, developed since 2006 by a group of Geological Surveys. The data providers involved in the project implemented a new component that allows the web services to deliver the geological map expressed into GeoSciML. In order to capture the information describing the geological units of the map of Europe the scope of the data model needs to include lithology; age; genesis and metamorphic character. For high resolution maps physical properties, bedding characteristics and weathering also need to be added. Furthermore, Geological data held by national geological surveys is generally described in national language of the country. The project has to deal with the multilingual issue, an important requirement of the INSPIRE directive. The project provides a list of harmonized vocabularies, a set of web services to deal with them, and a web site for helping the geoscientists while mapping the terms used into the national datasets into these vocabularies. The web services provided by each data provider, with the particular component that allows them to deliver the harmonised data model and to handle the multilingualism, are the first part of the architecture. The project also implements a web portal that provides several functionalities. Thanks to the common data model implemented by each web service delivering a part of the geological map, and using OGC SLD standards, the client offers the following option. A user can request for a sub-selection of the map, for instance searching on a particular attribute such as "age is quaternary", and display only the parts of the map according to the filter. Using the web services on the common vocabularies, the data displayed are translated. The project started September 2008 for two years, with 29 partners from 20 countries (20 partners are Geological Surveys). The budget is 3.25 M€, with a European Commission contribution of 2.6 M€. The paper will describe the technical solutions to implement OneGeology-Europe components: the profile of the common data model to exchange geological data, the web services to view and access geological data; and a geoportal to provide the user with a user-friendly way to discover, view and access geological data.

  18. Investigations conducted by the U.S. Geological Survey: A part of Chapter 5 in Twenty-first biennial report of the State Engineer to the governor of Utah: 1936-1938

    USGS Publications Warehouse

    Taylor, G.H.; Thomas, H.E.

    1938-01-01

    A summary of past investigations in Utah and a description of the work done during the 1934-36 biennium are included in the State Engineer’s Twentieth Biennial Report (pp. 91-106). Co-operative investigation with the State Engineer, begun on July 1, 1935, has been continued during the past biennium. To provide for this work, the 1935 Utah State Legislature appropriated \\$10,000 to the State Engineer, this sum being matched by the U. S. Geological Survey during the biennium ending June 30, 1937. During its 1937 session the State Legislature appropriated \\$5000 for continuation of co-operative work in underground waters. An equal sum was provided by the U. S. Geological Survey and investigations have continued during the fiscal year ending June 30, 1938.

  19. An overview of environmental surveillance of waste management activities at the Idaho National Engineering Laboratory

    USGS Publications Warehouse

    Smith, T.H.; Chew, E.W.; Hedahl, T.G.; Mann, L.J.; Pointer, T.F.; Wiersma, G.B.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL), in southeastern Idaho, is a principal center for nuclear energy development for the Department of Energy (DOE) and the U.S. Nuclear Navy. Fifty-two reactors have been built at the INEL, with 15 still operable. Extensive environmental surveillance is conducted at the INEL by DOE's Radiological Environmental Sciences Laboratory (RESL), and the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), EG&G Idaho, Inc., and Westinghouse Idaho Nuclear Company (WINCO). Surveillance of waste management facilities radiation is integrated with the overall INEL Site surveillance program. Air, warer, soil, biota, and environmental radiation are monitored or sampled routinely at INEL. Results to date indicate very small or no impacts from INEL on the surrounding environment. Environmental surveillance activities are currently underway to address key environmental issues at the INEL.

  20. Engineering Infrastructure Diagramming and Modeling. Engineering Education and Practice in The United States.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Engineering and Technical Systems.

    This report forms an integral part of a study conducted by the Committee on the Education and Utilization of the Engineer, under the auspices of the National Research Council. Five major tasks undertaken by the panel were: (1) defining engineering; (2) determining influences on the engineering community, including external influences and internal…

  1. Integrated Synthesis of the Permian Basin: Data and Models for Recovering Existing and Undiscovered Oil Resources from the Largest Oil-Bearing Basin in the U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Jackson; Katherine Jackson

    2008-09-30

    Large volumes of oil and gas remain in the mature basins of North America. This is nowhere more true than in the Permian Basin of Texas and New Mexico. A critical barrier to recovery of this vast remaining resource, however, is information. Access to accurate geological data and analyses of the controls of hydrocarbon distribution is the key to the knowledge base as well as the incentives needed by oil and gas companies. The goals of this project were to collect, analyze, synthesize, and deliver to industry and the public fundamental information and data on the geology of oil andmore » gas systems in the Permian Basin. This was accomplished in two ways. First we gathered all available data, organized it, and placed it on the web for ready access. Data include core analysis data, lists of pertinent published reports, lists of available cores, type logs, and selected PowerPoint presentations. We also created interpretive data such as type logs, geological cross sections, and geological maps and placed them in a geospatially-registered framework in ARC/GIS. Second, we created new written syntheses of selected reservoir plays in the Permian basin. Although only 8 plays were targeted for detailed analysis in the project proposal to DOE, 14 were completed. These include Ellenburger, Simpson, Montoya, Fusselman, Wristen, Thirtyone, Mississippian, Morrow, Atoka, Strawn, Canyon/Cisco, Wolfcamp, Artesia Group, and Delaware Mountain Group. These fully illustrated reports include critical summaries of published literature integrated with new unpublished research conducted during the project. As such these reports provide the most up-to-date analysis of the geological controls on reservoir development available. All reports are available for download on the project website and are also included in this final report. As stated in our proposal, technology transfer is perhaps the most important component of the project. In addition to providing direct access to data and reports through the web, we published 29 papers dealing with aspects of Permian Basin and Fort Worth Basin Paleozoic geology, and gave 35 oral and poster presentations at professional society meetings, and 116 oral and poster presentations at 10 project workshops, field trips, and short courses. These events were attended by hundreds of scientists and engineers representing dozens of oil and gas companies. This project and the data and interpretations that have resulted from it will serve industry, academic, and public needs for decades to come. It will be especially valuable to oil and gas companies in helping to better identify opportunities for development and exploration and reducing risk. The website will be continually added to and updated as additional data and information become available making it a long term source of key information for all interested in better understanding the Permian Basin.« less

  2. Geological and engineering analysis of residual soil for forewarning landslide from highland area in northern Thailand

    NASA Astrophysics Data System (ADS)

    Thongkhao, Thanakrit; Phantuwongraj, Sumet; Choowong, Montri; Thitimakorn, Thanop; Charusiri, Punya

    2015-11-01

    One devastating landslide event in northern Thailand occurred in 2006 at Ban Nong Pla village, Chiang Klang highland of Nan province after, a massive amount of residual soil moved from upstream to downstream, via creek tributaries, into a main stream after five days of unusual heavy rainfall. In this paper, the geological and engineering properties of residual soil derived fromsedimentary rocks were analyzed and integrated. Geological mapping, electrical resistivity survey and test pits were carried out along three transect lines together with systematic collection of undisturbed and disturbed residual soil samples. As a result, the average moisture content in soil is 24.83% with average specific gravity of 2.68,whereas the liquid limit is 44.93%, plastic limit is 29.35% and plastic index is 15.58%. The cohesion of soil ranges between 0.096- 1.196 ksc and the angle of internal friction is between 11.51 and 35.78 degrees. This suggests that the toughness properties of soil change when moisture content increases. Results from electrical resistivity survey reveal that soil thicknesses above the bedrock along three transects range from 2 to 9 m. The soil shear strength reach the rate of high decreases in the range of 72 to 95.6% for residual soil from shale, siltstone and sandstone, respectively. Strength of soil decreaseswhen the moisture content in soil increases. Shear strength also decreases when the moisture content changes. Therefore, the natural soil slope in the study area will be stable when the moisture content in soil level is equal to one, but when the moisture content between soil particle increases, strength of soil will decrease resulting in soil strength decreasing.

  3. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences. Developing models, testing material, characterizing processes, and analyzing performance all have overlapping application regardless of the salt formation of interest.« less

  4. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation, and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences. Developing models, testing material, characterizing processes, and analyzing performance all have overlapping application regardless of the salt formation of interest.« less

  5. Selected Geochemical Data for Modeling Near-Surface Processes in Mineral Systems

    USGS Publications Warehouse

    Giles, Stuart A.; Granitto, Matthew; Eppinger, Robert G.

    2009-01-01

    The database herein was initiated, designed, and populated to collect and integrate geochemical, geologic, and mineral deposit data in an organized manner to facilitate geoenvironmental mineral deposit modeling. The Microsoft Access database contains data on a variety of mineral deposit types that have variable environmental effects when exposed at the ground surface by mining or natural processes. The data tables describe quantitative and qualitative geochemical analyses determined by 134 analytical laboratory and field methods for over 11,000 heavy-mineral concentrate, rock, sediment, soil, vegetation, and water samples. The database also provides geographic information on geology, climate, ecoregion, and site contamination levels for over 3,000 field sites in North America.

  6. Hyper-X Engine Testing in the NASA Langley 8-Foot High Temperature Tunnel

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Rock, Kenneth E.; Witte, David W.; Ruf, Edward G.; Andrews, Earl H., Jr.

    2000-01-01

    Airframe-integrated scramjet engine tests have 8 completed at Mach 7 in the NASA Langley 8-Foot High Temperature Tunnel under the Hyper-X program. These tests provided critical engine data as well as design and database verification for the Mach 7 flight tests of the Hyper-X research vehicle (X-43), which will provide the first-ever airframe- integrated scramjet flight data. The first model tested was the Hyper-X Engine Model (HXEM), and the second was the Hyper-X Flight Engine (HXFE). The HXEM, a partial-width, full-height engine that is mounted on an airframe structure to simulate the forebody features of the X-43, was tested to provide data linking flowpath development databases to the complete airframe-integrated three-dimensional flight configuration and to isolate effects of ground testing conditions and techniques. The HXFE, an exact geometric representation of the X-43 scramjet engine mounted on an airframe structure that duplicates the entire three-dimensional propulsion flowpath from the vehicle leading edge to the vehicle base, was tested to verify the complete design as it will be flight tested. This paper presents an overview of these two tests, their importance to the Hyper-X program, and the significance of their contribution to scramjet database development.

  7. Converting Advances in Seismology into Earthquake Science

    NASA Astrophysics Data System (ADS)

    Hauksson, Egill; Shearer, Peter; Vidale, John

    2004-01-01

    Federal and state agencies and university groups all operate seismic networks in California. The U.S. Geological Survey (USGS) operates seismic networks in California in cooperation with the California Institute of Technology (Caltech) in southern California, and the University of California (UC) at Berkeley in northern California. The California Geological Survey (CGS) and the USGS National Strong Motion Program (NSMP) operate dial-out strong motion instruments in the state, primarily to capture data from large earthquakes for earthquake engineering and, more recently, emergency response. The California Governor's Office of Emergency Services (OES) provides leadership for the most recent project, the California Integrated Seismic Network (CISN), to integrate all of the California efforts, and to take advantage of the emergency response capabilities of the seismic networks. The core members of the CISN are Caltech, UC Berkeley, CGS, USGS Menlo Park, and USGS Pasadena (http://www.cisn.org). New seismic instrumentation is in place across southern California, and significant progress has been made in improving instrumentation in northern California. Since 2001, these new field instrumentation efforts, data sharing, and software development for real-time reporting and archiving have been coordinated through the California Integrated Seismic Network (CISN). The CISN is also the California region of the Advanced National Seismic Network (ANSS). In addition, EarthScope deployments of USArray that will begin in early 2004 in California are coordinated with the CISN. The southern and northern California earthquake data centers (SCEDC and NCEDC) have new capabilities that enable seismologists to obtain large volumes of data with only modest effort.

  8. Applied geointegration to hydrocarbon exploration in the San Pedro-Machango Area, Maracaibo Basin, Venezuela

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca, A.; Navarro, A.; Osorio, R.

    1996-08-01

    Hydrocarbon exploration has nowadays a diversity of technological resources to capture, merge and interpret information from diverse sources. To accomplish this, the integration of geodata for modeling was done through the use of new technologies like Remote Sensing and Geographical Systems of Information and applied to the San Pedro-Machango area, located in the Serrania de Trujillo, west of Costa Bolivar (onshore), eastern Maracaibo Basin, Venezuela. The main purpose of this work was to optimize the design of an exploration program in harmony with environmental conservation procedures. Starting with satellital and radar images that incorporated geophysical, geological and environmental information, theymore » then were analyzed and merged to improve the lithological, structural and tectonic interpretation, generating an integrated model that allowed better project design. The use of a system that combines information of geographical, geodetical, geophysical and geological origins with satellital and radar images produced up to date cartography and refined results of image interpretation.« less

  9. Rates of CO2 Mineralization in Geological Carbon Storage.

    PubMed

    Zhang, Shuo; DePaolo, Donald J

    2017-09-19

    Geologic carbon storage (GCS) involves capture and purification of CO 2 at industrial emission sources, compression into a supercritical state, and subsequent injection into geologic formations. This process reverses the flow of carbon to the atmosphere with the intention of returning the carbon to long-term geologic storage. Models suggest that most of the injected CO 2 will be "trapped" in the subsurface by physical means, but the most risk-free and permanent form of carbon storage is as carbonate minerals (Ca,Mg,Fe)CO 3 . The transformation of CO 2 to carbonate minerals requires supply of the necessary divalent cations by dissolution of silicate minerals. Available data suggest that rates of transformation are highly uncertain and difficult to predict by standard approaches. Here we show that the chemical kinetic observations and experimental results, when they can be reduced to a single cation-release time scale that describes the fractional rate at which cations are released to solution by mineral dissolution, show sufficiently systematic behavior as a function of pH, fluid flow rate, and time that the rates of mineralization can be estimated with reasonable certainty. The rate of mineralization depends on both the abundance (determined by the reservoir rock mineralogy) and the rate at which cations are released from silicate minerals by dissolution into pore fluid that has been acidified with dissolved CO 2 . Laboratory-measured rates and field observations give values spanning 8 to 10 orders of magnitude, but when they are evaluated in the context of a reservoir-scale reactive transport simulation, this range becomes much smaller. The reservoir scale simulations provide limits on the applicable conditions under which silicate mineral dissolution and subsequent carbonate mineral precipitation are likely to occur (pH 4.5 to 6, fluid flow velocity less than 5 m/year, and 50-100 years or more after the start of injection). These constraints lead to estimates of 200 to 2000 years for conversion of 60-90% of injected CO 2 when the reservoir rock has a sufficient volume fraction of divalent cation-bearing silicate minerals and confirms that when reservoir rock mineralogy is not favorable the fraction of CO 2 converted to carbonate minerals is minimal over 10 4 years. A sufficient amount of reactive minerals is typically about 20% by volume. Our approach may allow for rapid evaluation of mineralization potential of subsurface storage reservoirs and illustrates how reservoir scale modeling can be integrated with other observations to address key issues relating to engineering of geologic systems.

  10. A Lithology Based Map Unit Schema For Onegeology Regional Geologic Map Integration

    NASA Astrophysics Data System (ADS)

    Moosdorf, N.; Richard, S. M.

    2012-12-01

    A system of lithogenetic categories for a global lithological map (GLiM, http://www.ifbm.zmaw.de/index.php?id=6460&L=3) has been compiled based on analysis of lithology/genesis categories for regional geologic maps for the entire globe. The scheme is presented for discussion and comment. Analysis of units on a variety of regional geologic maps indicates that units are defined based on assemblages of rock types, as well as their genetic type. In this compilation of continental geology, outcropping surface materials are dominantly sediment/sedimentary rock; major subdivisions of the sedimentary category include clastic sediment, carbonate sedimentary rocks, clastic sedimentary rocks, mixed carbonate and clastic sedimentary rock, colluvium and residuum. Significant areas of mixed igneous and metamorphic rock are also present. A system of global categories to characterize the lithology of regional geologic units is important for Earth System models of matter fluxes to soils, ecosystems, rivers and oceans, and for regional analysis of Earth surface processes at global scale. Because different applications of the classification scheme will focus on different lithologic constituents in mixed units, an ontology-type representation of the scheme that assigns properties to the units in an analyzable manner will be pursued. The OneGeology project is promoting deployment of geologic map services at million scale for all nations. Although initial efforts are commonly simple scanned map WMS services, the intention is to move towards data-based map services that categorize map units with standard vocabularies to allow use of a common map legend for better visual integration of the maps (e.g. see OneGeology Europe, http://onegeology-europe.brgm.fr/ geoportal/ viewer.jsp). Current categorization of regional units with a single lithology from the CGI SimpleLithology (http://resource.geosciml.org/201202/ Vocab2012html/ SimpleLithology201012.html) vocabulary poorly captures the lithologic character of such units in a meaningful way. A lithogenetic unit category scheme accessible as a GeoSciML-portrayal-based OGC Styled Layer Description resource is key to enabling OneGeology (http://oneGeology.org) geologic map services to achieve a high degree of visual harmonization.

  11. The United States Geological Survey in Alaska: Organization and status of programs in 1977

    USGS Publications Warehouse

    Blean, Kathleen M.

    1977-01-01

    United States Geological Survey projects in Alaska include a wide range of topics of economic and scientific interest. Studies in 1976 include economic geology, regional geology, stratigraphy, environmental geology, engineering geology, hydrology, and marine geology. Discussions of the findings or, in some instances, narratives of the course of the investigations are grouped in eight subdivisions corresponding to the six major onshore geographic regions, the offshore projects, and projects that are statewide in scope. Locations of the study areas are shown. In addition, many reports and maps covering various aspects of the geology and mineral and water resources of the State were published. These publications are listed. (Woodard-USGS)

  12. General Pressurization Model in Simscape

    NASA Technical Reports Server (NTRS)

    Servin, Mario; Garcia, Vicky

    2010-01-01

    System integration is an essential part of the engineering design process. The Ares I Upper Stage (US) is a complex system which is made up of thousands of components assembled into subsystems including a J2-X engine, liquid hydrogen (LH2) and liquid oxygen (LO2) tanks, avionics, thrust vector control, motors, etc. System integration is the task of connecting together all of the subsystems into one large system. To ensure that all the components will "fit together" as well as safety and, quality, integration analysis is required. Integration analysis verifies that, as an integrated system, the system will behave as designed. Models that represent the actual subsystems are built for more comprehensive analysis. Matlab has been an instrument widely use by engineers to construct mathematical models of systems. Simulink, one of the tools offered by Matlab, provides multi-domain graphical environment to simulate and design time-varying systems. Simulink is a powerful tool to analyze the dynamic behavior of systems over time. Furthermore, Simscape, a tool provided by Simulink, allows users to model physical (such as mechanical, thermal and hydraulic) systems using physical networks. Using Simscape, a model representing an inflow of gas to a pressurized tank was created where the temperature and pressure of the tank are measured over time to show the behavior of the gas. By further incorporation of Simscape into model building, the full potential of this software can be discovered and it hopefully can become a more utilized tool.

  13. Component-specific modeling

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.

    1985-01-01

    Accomplishments are described for the second year effort of a 3-year program to develop methodology for component specific modeling of aircraft engine hot section components (turbine blades, turbine vanes, and burner liners). These accomplishments include: (1) engine thermodynamic and mission models; (2) geometry model generators; (3) remeshing; (4) specialty 3-D inelastic stuctural analysis; (5) computationally efficient solvers, (6) adaptive solution strategies; (7) engine performance parameters/component response variables decomposition and synthesis; (8) integrated software architecture and development, and (9) validation cases for software developed.

  14. Component-specific modeling. [jet engine hot section components

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Maffeo, R. J.; Tipton, M. T.; Weber, G.

    1992-01-01

    Accomplishments are described for a 3 year program to develop methodology for component-specific modeling of aircraft hot section components (turbine blades, turbine vanes, and burner liners). These accomplishments include: (1) engine thermodynamic and mission models, (2) geometry model generators, (3) remeshing, (4) specialty three-dimensional inelastic structural analysis, (5) computationally efficient solvers, (6) adaptive solution strategies, (7) engine performance parameters/component response variables decomposition and synthesis, (8) integrated software architecture and development, and (9) validation cases for software developed.

  15. Bathymetry and selected perspective views of 6 reef and coastal areas in Northern Lake Michigan

    USGS Publications Warehouse

    Barnes, Peter; Fleisher, Guy; Gardner, James V.; Lee, Kristen

    2003-01-01

    We apply state of the art laser technology and derivative imagery to map the detailed morphology and of principal lake trout spawning sites on reefs in Northern Lake Michigan and to provide a geologic interpretation. We sought to identify the presence of ideal spawning substrate: shallow, "clean" gravel/cobble substrate, adjacent to deeper water. This study is a pilot collaborative effort with the US Army Corps of Engineers SHOALS (Scanning Hydrographic Operational Airborne Lidar Survey) program. The high-definition maps are integrated with known and developing data on fisheries, as well as limited substrate sedimentologic information and underlying Paleozoic carbonate rocks.

  16. Using the USGS Seismic Risk Web Application to estimate aftershock damage

    USGS Publications Warehouse

    McGowan, Sean M.; Luco, Nicolas

    2014-01-01

    The U.S. Geological Survey (USGS) Engineering Risk Assessment Project has developed the Seismic Risk Web Application to combine earthquake hazard and structural fragility information in order to calculate the risk of earthquake damage to structures. Enabling users to incorporate their own hazard and fragility information into the calculations will make it possible to quantify (in near real-time) the risk of additional damage to structures caused by aftershocks following significant earthquakes. Results can quickly be shared with stakeholders to illustrate the impact of elevated ground motion hazard and earthquake-compromised structural integrity on the risk of damage during a short-term, post-earthquake time horizon.

  17. Geomodels of coseismic landslides environments in Central Chile.

    NASA Astrophysics Data System (ADS)

    Serey, A.; Sepulveda, S. A.; Murphy, W.; Petley, D. N.

    2017-12-01

    Landslides are a major source of fatalities and damage during strong earthquakes in mountain areas. Detailed geomodels of coseismic landslides environments are essential parts of seismic landslide hazard analyses. The development of a site specific geological model is required, based on consideration of the regional and local geological and geomorphological history and the current ground surface conditions. An engineering geological model is any approximation of the geological conditions, at varying scales, created for the purpose of solving an engineering problem. In our case, the objective is the development of a methodology for earthquake-induced landslide hazard assessment applicable to urban/territorial planning and disaster prevention strategies assessment at a regional scale adapted for the Chilean tectonic conditions. We have developed the only 2 complete inventories of landslides triggered by earthquakes in Chile. The first from the Mw 6.2, shallow crustal Aysén earthquake in 2007. Second one from the Mw 8.8, megathrust subduction Maule earthquake in 2010. From the comparison of these 2 inventories with others from abroad, as well as analysis of large, prehistoric landslide inventories proposed as likely induced by seismic activity we have determined topographic, geomorphological, geological and seismic controlling factors in the occurrence of earthquake-triggered landslides. With the information collected we have defined different environments for generation of coseismic landslides based on the construction of geomodels. As a result we have built several geomodels in the Santiago Cordillera in central Chile (33°S), based upon the San Ramón Fault, a west-vergent reverse fault that outcrops at the edge of Santiago basin recently found to be active and a likely source of seismic activity in the future, with potential of triggering landslides in the Santiago mountain front as well as inland into the Mapocho and Maipo Cordilleran valleys. In conclusion these geomodels are a powerful tool for earthquake-induced landslide hazard assessment. As an implication we can identify landslide-prone areas, distinguish different seismic scenarios and describe related potential hazards, including burial and river damming by large rock slides and rock avalanches.

  18. Regional methods for mapping major faults in areas of uniform low relief, as used in the London Basin, UK

    NASA Astrophysics Data System (ADS)

    Haslam, Richard; Aldiss, Donald

    2013-04-01

    Most of the London Basin, south-eastern UK, is underlain by the Palaeogene London Clay Formation, comprising a succession of rather uniform marine clay deposits up to 150 m thick, with widespread cover of Quaternary deposits and urban development. Therefore, in this area faults are difficult to delineate (or to detect) by conventional geological surveying methods in the field, and few are shown on the geological maps of the area. However, boreholes and excavations, especially those for civil engineering works, indicate that faults are probably widespread and numerous in the London area. A representative map of fault distribution and patterns of displacement is a pre-requisite for understanding the tectonic development of a region. Moreover, faulting is an important influence on the design and execution of civil engineering works, and on the hydrogeological characteristics of the ground. This paper reviews methods currently being used to map faults in the London Basin area. These are: the interpretation of persistent scatterer interferometry (PSI) data from time-series satellite-borne radar measurements; the interpretation of regional geophysical fields (Bouguer gravity anomaly and aeromagnetic), especially in combination with a digital elevation model; and the construction and interpretation of 3D geological models. Although these methods are generally not as accurate as large-scale geological field surveys, due to the availability of appropriate data in the London Basin they provide the means to recognise and delineate more faults, and with more confidence, than was possible using traditional geological mapping techniques. Together they reveal regional structures arising during Palaeogene crustal extension and subsidence in the North Sea, followed by inversion of a Mesozoic sedimentary basin in the south of the region, probably modified by strike-slip fault motion associated with the relative northward movement of the African Plate and the Alpine orogeny. This work is distributed under the Creative Commons Attribution 3.0 Unported License together with an NERC copyright. This license does not conflict with the regulations of the Crown Copyright.

  19. Spatial database for a global assessment of undiscovered copper resources: Chapter Z in Global mineral resource assessment

    USGS Publications Warehouse

    Dicken, Connie L.; Dunlap, Pamela; Parks, Heather L.; Hammarstrom, Jane M.; Zientek, Michael L.; Zientek, Michael L.; Hammarstrom, Jane M.; Johnson, Kathleen M.

    2016-07-13

    As part of the first-ever U.S. Geological Survey global assessment of undiscovered copper resources, data common to several regional spatial databases published by the U.S. Geological Survey, including one report from Finland and one from Greenland, were standardized, updated, and compiled into a global copper resource database. This integrated collection of spatial databases provides location, geologic and mineral resource data, and source references for deposits, significant prospects, and areas permissive for undiscovered deposits of both porphyry copper and sediment-hosted copper. The copper resource database allows for efficient modeling on a global scale in a geographic information system (GIS) and is provided in an Esri ArcGIS file geodatabase format.

  20. Geological Survey research 1976

    USGS Publications Warehouse

    ,

    1976-01-01

    This U.S. Geological Survey activities report includes a summary of recent (1976 fiscal year) scientific and economic results accompanied by a list of geologic and hydrologic investigations in progress and a report on the status of topographic mapping. The summary of results includes: (1) Mineral resources, Water resources, (2) Engineering geology and hydrology, (3) Regional geology, (4) Principles and processes, (5) Laboratory and field methods, (6) Topographic surveys and mapping, (7) Management of resources on public lands, (8) Land information and analysis, and (9) Investigations in other countries. Also included are lists of cooperating agencies and Geological Survey offices. (Woodard-USGS)

Top