Wantuch, Holly A; Tarpy, David R
2009-12-01
The parasitic mite Varroa destructor Anderson & Trueman (Acari: Varroidae) has plagued European honey bees, Apis mellifera L. (Hymenoptera: Apidae), in the Americas since its introduction in the 1980s. For many years, these mites were sufficiently controlled using synthetic acaricides. Recently, however, beekeepers have experienced increased resistance by mites to chemical pesticides, which are also known to leave residues in hive products such as wax and honey. Thus there has been increased emphasis on nonchemical integrated pest management control tactics for Varroa. Because mites preferentially reproduce in drone brood (pupal males), we developed a treatment strategy focusing on salvaging parasitized drones while removing mites from them. We removed drone brood from colonies in which there was no acaricidal application and banked them in separate "drone-brood receiving" colonies treated with pesticides to kill mites emerging with drones. We tested 20 colonies divided into three groups: 1) negative control (no mite treatment), 2) positive control (treatment with acaricides), and 3) drone-brood removal and placement into drone-brood receiving colonies. We found that drone-brood trapping significantly lowered mite numbers during the early months of the season, eliminating the need for additional control measures in the spring. However, mite levels in the drone-brood removal group increased later in the summer, suggesting that this benefit does not persist throughout the entire season. Our results suggest that this method of drone-brood trapping can be used as an element of an integrated control strategy to control varroa mites, eliminating a large portion of the Varroa population with limited chemical treatments while retaining the benefits of maintaining adult drones in the population.
Environmental Engineering Approaches toward Sustainable Management of Spider Mites.
Suzuki, Takeshi
2012-10-26
Integrated pest management (IPM), which combines physical, biological, and chemical control measures to complementary effect, is one of the most important approaches to environmentally friendly sustainable agriculture. To expand IPM, we need to develop new pest control measures, reinforce existing measures, and investigate interactions between measures. Continued progress in the development of environmental control technologies and consequent price drops have facilitated their integration into plant production and pest control. Here I describe environmental control technologies for the IPM of spider mites through: (1) the disturbance of photoperiod-dependent diapause by artificial light, which may lead to death in seasonal environments; (2) the use of ultraviolet radiation to kill or repel mites; and (3) the use of water vapor control for the long-term cold storage of commercially available natural enemies. Such environmental control technologies have great potential for the efficient control of spider mites through direct physical effects and indirect effects via natural enemies.
Environmental Engineering Approaches toward Sustainable Management of Spider Mites
Suzuki, Takeshi
2012-01-01
Integrated pest management (IPM), which combines physical, biological, and chemical control measures to complementary effect, is one of the most important approaches to environmentally friendly sustainable agriculture. To expand IPM, we need to develop new pest control measures, reinforce existing measures, and investigate interactions between measures. Continued progress in the development of environmental control technologies and consequent price drops have facilitated their integration into plant production and pest control. Here I describe environmental control technologies for the IPM of spider mites through: (1) the disturbance of photoperiod-dependent diapause by artificial light, which may lead to death in seasonal environments; (2) the use of ultraviolet radiation to kill or repel mites; and (3) the use of water vapor control for the long-term cold storage of commercially available natural enemies. Such environmental control technologies have great potential for the efficient control of spider mites through direct physical effects and indirect effects via natural enemies. PMID:26466730
Life cycle and reproduction of house-dust mites: environmental factors influencing mite populations.
Hart, B J
1998-01-01
An understanding of the life cycle of house-dust mites, as well as environmental factors influencing mite populations, can be exploited in mite control. The most important limiting factor for house-dust-mite populations is air humidity. House-dust mites osmoregulate through the cuticle and therefore require a high ambient air humidity to prevent excessive water loss. In addition, the supracoxal glands actively take up ambient water vapour, and the protonynph stage of the life cycle is resistant to desiccation. Larger house-dust-mite populations are found when the absolute indoor air humidity is above 7 g/kg (45% relative humidity at 20 degrees C). Consequently, ventilation by air-conditioning systems is being developed as a means of control. A number of other aspects of the domestic environment are also being manipulated in an integrated approach to render the habitat less suitable for mites. The potential exists for developing models for house-dust mite populations, environmental characteristics, and the effects of various approaches to control.
Bernardi, Daniel; Botton, Marcos; da Cunha, Uemerson Silva; Bernardi, Oderlei; Malausa, Thibaut; Garcia, Mauro Silveira; Nava, Dori Edson
2013-01-01
The spider mite, Tetranychus urticae, is the major strawberry pest in Brazil. The main strategies for its control comprise synthetic acaricides and predatory mites. The recent register of a commercial formula of azadirachtin (Azamax(®) 12 g L(-1) ) can be viable for control of T. urticae. In this work, the effects of azadirachtin on T. urticae and its compatibility with predatory mites Neoseiulus californicus and Phytoseiulus macropilis in the strawberry crop were evaluated. Azadirachtin was efficient against T. urticae, with a mortality rate similar to that of abamectin. In addition, the azadirachtin showed lower biological persistence (7 days) than abamectin (21 days). Azadirachtin did not cause significant mortality of adult predatory mites (N. californicus and P. macropilis), but it did reduce fecundity by 50%. However, egg viability of the azadirachtin treatments was similar to that of the control (>80% viability). The use of azadirachtin and predatory mites is a valuable tool for controlling T. urticae in strawberry crop. Azadirachtin provided effective control of T. urticae and is compatible with the predatory mites N. californicus and P. macropilis. It is an excellent tool to be incorporated into integrated pest management for strawberry crop in Brazil. Copyright © 2012 Society of Chemical Industry.
USDA-ARS?s Scientific Manuscript database
Few studies of honey bee colonies exist where varroa mite control is achieved by integrating broodless conditions, through either total brood removal or queen caging, in combination with oxalic acid (OA) applications. We observed significant varroa mortality after applications of OA in obtaining bro...
Nicetic; Watson, D M; Beattie, G A; Meats, A; Zheng, J
2001-01-01
From 1995 to 1999, four experiments were conducted on greenhouse roses to assess the effectiveness of the nC24 petroleum spray oil (PSO), D-C-Tron Plus, against two-spotted mite, Tetranychus urticae Koch (Acarina: Tetranychidae), and to determine how the oil could be most efficiently and effectively used in combination with the predatory mite Phytoseiulus persimilis Athias-Henriot (Acarina: Phytoseiidae) in an integrated pest management program. The results showed that 0.5% PSO applied fortnightly to roses gave excellent protection from T urticae infestation when the mite population was not already established. However, PSO applied after roses were infested with T. urticae above the economic threshold only stabilised populations without reducing them below that threshold. Populations of P. persimilis in the upper and lower canopies were unchanged after two sprays of PSO at 7-day intervals, and application of PSO to the upper canopy was as effective in controlling T. urticae in the presence of P persimilis as spraying the entire plant. Combining PSO with P. persimilis gave better control of T. urticae than using P. persimilis alone. The most cost-effective use of PSO in the presence of P. persimilis is, therefore, to apply spray only to the upper canopy. This will not affect control of powdery mildew with PSO. Comparison of a control program for T urticae based on the monitored use of synthetic miticides with that based on calendar application of PSO revealed that both gave equally effective control. The benefits of combining PSO and P. persimilis in an integrated pest management program for T. urticae on roses over a program based on synthetic fungicides are discussed.
Sigognault Flochlay, Annie; Thomas, Emmanuel; Sparagano, Olivier
2017-08-01
The poultry red mite, Dermanyssus gallinae, has been described for decades as a threat to the egg production industry, posing serious animal health and welfare concerns, adversely affecting productivity, and impacting public health. Research activities dedicated to controlling this parasite have increased significantly. Their veterinary and human medical impact, more particularly their role as a disease vector, is better understood. Nevertheless, red mite infestation remains a serious concern, particularly in Europe, where the prevalence of red mites is expected to increase, as a result of recent hen husbandry legislation changes, increased acaricide resistance, climate warming, and the lack of a sustainable approach to control infestations. The main objective of the current work was to review the factors contributing to this growing threat and to discuss their recent development in Europe. We conclude that effective and sustainable treatment approach to control poultry red mite infestation is urgently required, included integrated pest management.
Impeding movement of the poultry red mite, Dermanyssus gallinae.
Pritchard, James; Küster, Tatiana; George, David; Sparagano, Olivier; Tomley, Fiona
2016-07-30
The poultry red mite, Dermanyssus gallinae, is an economically important hematophagous parasite of commercial egg laying hens, also affecting domesticated birds and companion animals. Conventional control of D. gallinae through acaricidal spraying is often ineffective, creating an urgent need to identify alternative management strategies for commercial and domestic infestations. Whilst integrated pest management is being considered for D. gallinae, the potential of impeding mite 'migration' routes, to either prevent initial infestation or manage established populations, has not been researched. Here we demonstrate that barriers of insecticidal glue, double sided sticky tape and thyme oil can contain D. gallinae within a specified area of a petri dish (78-88% of total mite population) and this level of containment was significantly greater than for negative controls (p values <0.05). Further studies in poultry houses are recommended to investigate the efficacy of these barriers in real world application and identity potential for barriers as a strategy for mite control. Copyright © 2016 Elsevier B.V. All rights reserved.
Kanga, Lambert H B; Adamczyk, John; Patt, Joseph; Gracia, Carlos; Cascino, John
2010-12-01
A user-friendly method to deliver Metarhizium spores to honey bee colonies for control of Varroa mites was developed and tested. Patty blend formulations protected the fungal spores at brood nest temperatures and served as an improved delivery system of the fungus to bee hives. Field trials conducted in 2006 in Texas using freshly harvested spores indicated that patty blend formulations of 10 g of conidia per hive (applied twice) significantly reduced the numbers of mites per adult bee, mites in sealed brood cells, and residual mites at the end of the 47-day experimental period. Colony development in terms of adult bee populations and brood production also improved. Field trials conducted in 2007 in Florida using less virulent spores produced mixed results. Patty blends of 10 g of conidia per hive (applied twice) were less successful in significantly reducing the number of mites per adult bee. However, hive survivorship and colony strength were improved, and the numbers of residual mites were significantly reduced at the end of the 42-day experimental period. The overall results from 2003 to 2008 field trials indicated that it was critical to have fungal spores with good germination, pathogenicity and virulence. We determined that fungal spores (1 × 10(10) viable spores per gram) with 98% germination and high pathogenicity (95% mite mortality at day 7) provided successful control of mite populations in established honey bee colonies at 10 g of conidia per hive (applied twice). Overall, microbial control of Varroa mite with M. anisopliae is feasible and could be a useful component of an integrated pest management program.
USDA-ARS?s Scientific Manuscript database
With the overall goal to integrate the predatory mite Amblyseius swirskii in the management program of MED whitefly, the specific objective of this study was to evaluate pyrifluquinazon, a pyridine insecticide for whitefly control, and assess its compatibility with swirskii mite, and assess its comp...
CLIMATE CONDITIONS AFFECTING THE WITHIN-PLANT SPREAD OF BROAD MITES ON AZALEA.
Mechant, E; Pauwels, E; Gobin, B
2014-01-01
The broad mite Polyphagotarsonemus latus (Banks) is considered a major pest in potted azalea, Flanders' flagship ornamental crop of Rhododendron simsii hybrids. In addition to severe economic damage, the broad mite is dreaded for its increasing resistance to acaricides. Due to restrictions in the use of broad spectrum acaricides, Belgian azalea growers are left with only three compounds, belonging to two mode of action groups and restricted in their number of applications, for broad mite control: abamectin, milbemectin and pyrethrin. Although P. latus can be controlled with predatory mites, the high cost of this system makes it (not yet) feasible for integration into standard azalea pest management systems. Hence, a maximum efficacy of treatments with available compounds is essential. Because abamectin, milbemectin and pyrethrin are contact acaricides with limited trans laminar flow, only broad mites located on shoot tips of azalea plants will be controlled after spraying. Consequently, the efficacy of chemical treatments is influenced by the location and spread of P. latus on the plant. Unfortunately, little is known on broad mites' within-plant spread or how it is affected by climatic conditions like temperature and relative humidity. Therefore, experiments were set up to verify whether climate conditions have an effect on the location and migration of broad mites on azalea. Broad mite infected azalea plants were placed in standard growth chambers under different temperature (T:2.5-25°C) and relative humidity (RH:55-80%) treatments. Within-plant spread was determined by counting mites on the shoot tips and inner leaves of azalea plants. Results indicate that temperature and relative humidity have no significant effect on the within-plant spread of P. latus. To formulate recommendations for optimal spray conditions to maximize the efficacy of broad mite control with acaricides, further experiments on the effect of light intensity and rain are scheduled.
Rassette, Matthew S W; Pierpont, Elizabeth I; Wahl, Tina; Berres, Mark
2011-11-01
Treatment of Northern fowl mite (Ornithonyssus sylviarum) infestation on poultry in research facilities can be challenging. The mite has a rapid reproductive cycle (egg to adult in 5 to 7 d), and chemical treatments can be toxic to birds, personnel, and the environment. In addition, antimite treatment may interfere with experimental research designs. The current study evaluated the efficacy of topical application of an entomopathogenic fungus, Beauveria bassiana, in the treatment of a naturally occurring infestation of Northern fowl mites in pen-housed roosters (n = 14; age, 18 mo). Two groups of 7 roosters each were used in 2 experiments: Beauveria (30 mL, 2.9 × 10(10) spores per bird) compared with water (30 mL, control), and Beauveria compared with the common topical organophosphate agent tetrachlorvinphos-dichlorvos (30 mL). We also assessed a higher dose of Beauveria (300 mL, 2.9 × 10(11) spores per bird) in the 7 birds that were not exposed to tetrachlorvinphos-dichlorvos. Beauveria reduced mite levels relative to the control group but did not outperform tetrachlorvinphos-dichlorvos when used at an equal volume and frequency. Increasing the volume and frequency of Beauveria application improved outcomes such that visual inspection failed to detect any mites. The results presented here suggest that, when applied in sufficient doses, Beauveria effectively reduces mites on poultry and can be an important part of an integrated pest management program. Additional research is needed to document the most effective dose, frequency, and location of B. bassiana application to control Northern fowl mites in poultry.
Identification of molecular markers associated with mite resistance in coconut (Cocos nucifera L.).
Shalini, K V; Manjunatha, S; Lebrun, P; Berger, A; Baudouin, L; Pirany, N; Ranganath, R M; Prasad, D Theertha
2007-01-01
Coconut mite (Aceria guerreronis 'Keifer') has become a major threat to Indian coconut (Coçcos nucifera L.) cultivators and the processing industry. Chemical and biological control measures have proved to be costly, ineffective, and ecologically undesirable. Planting mite-resistant coconut cultivars is the most effective method of preventing yield loss and should form a major component of any integrated pest management stratagem. Coconut genotypes, and mite-resistant and -susceptible accessions were collected from different parts of South India. Thirty-two simple sequence repeat (SSR) and 7 RAPD primers were used for molecular analyses. In single-marker analysis, 9 SSR and 4 RAPD markers associated with mite resistance were identified. In stepwise multiple regression analysis of SSRs, a combination of 6 markers showed 100% association with mite infestation. Stepwise multiple regression analysis for RAPD data revealed that a combination of 3 markers accounted for 83.86% of mite resistance in the selected materials. Combined stepwise multiple regression analysis of RAPD and SSR data showed that a combination of 5 markers explained 100% of the association with mite resistance in coconut. Markers associated with mite resistance are important in coconut breeding programs and will facilitate the selection of mite-resistant plants at an early stage as well as mother plants for breeding programs.
Agut, Blas
2018-01-01
Tetranychus urticae (T. urticae) Koch is a cosmopolitan, polyphagous mite which causes economic losses in both agricultural and ornamental plants. Some traits of T. urticae hamper its management, including a short life cycle, arrhenotokous parthenogenesis, its haplodiploid sex determination system, and its extraordinary ability to adapt to different hosts and environmental conditions. Currently, the use of chemical and biological control are the major control methods used against this mite. In recent years, some studies have focused on plant defence mechanisms against herbivores. Various families of plant compounds (such as flavonoids, glucosinolates, or acyl sugars) have been shown to behave as acaricides. Plants can be induced upon appropriate stimuli to increase their resistance against spider mites. This knowledge, together with the understanding of mechanisms by which T. urticae detoxifies and adapts to pesticides, may complement the control of this pest. Herein, we describe plant volatile compounds (VOCs) with repellent activity, and new findings about defence priming against spider mites, which interfere with the T. urticae performance. The use of VOCs and defence priming can be integrated into current management practices and reduce the damage caused by T. urticae in the field by implementing new, more sustainable crop management tools. PMID:29466295
Donka, András; Sermann, Helga; Büttner, Carmen
2008-01-01
In biological control, different benefit organisms have to combine for an effective management. If entomopathogenic fungi will be integrated, than it has to be considered also the effect on non-target organisms Like beneficial arthropods. Because of the high importance of predatory mite Phytoseiulus persimilis in biological control it was to determine side effects of Leconicillium muscarium on this species. In two standardised biotests in petri dish and on plants (P. vulgaris) individuals were dipped in suspension or set down on leafs after spraying with L. muscarium at different spore density. Results indicate pathogenicity for the predatory mite in principle. But the dimension of infection risk decrease, all the more conditions approach to practical sequence. Under practical conditions on plants and in practical relevant concentration of 10(6) and 10(7) sp./ml no risk is to expect on the plant.
Rhodes, Elena M; Liburd, Oscar E
2006-08-01
Greenhouse and field experiments were conducted from 2003 to 2005 to determine the effectiveness of two predatory mite species, Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus (McGregor), and a reduced-risk miticide, Acramite 50 WP (bifenazate), for control of twospotted spider mite, Tetranychus urticae Koch, in strawberries (Fragaria x ananassa Duchesne). In greenhouse tests, three treatments consisting of releases of P. persimilis, N. californicus, and an untreated control were evaluated. Both species of predatory mites significantly reduced twospotted spider mite numbers below those found in the control during the first 3 wk of evaluation. However, during week 4, twospotted spider mite numbers on the plants treated with P. persimilis increased and did not differ significantly from the control. Field studies used releases of P. persimilis and N. californicus, applications of Acramite, and untreated control plots. Both N. californicus and P. persimilis significantly reduced populations of twospotted spider mite below numbers recorded in the control plots. During the 2003-2004 field season P. persimilis took longer than N. californicus to bring the twospotted spider mite population under control (< 10 mites per leaflet). Acramite was effective in reducing twospotted spider mite populations below 10 mites per leaflet during the 2003-2004 field season but not during the 2004-2005 field season, possibly because of a late application. These findings indicate that N. californicus releases and properly timed Acramite applications are promising options for twospotted spider mite control in strawberries for growers in north Florida and other areas of the southeast.
Lima, Debora B; Melo, José W S; Gondim, Manoel G C; Guedes, Raul N C; Oliveira, José E M
2016-10-01
The coconut production system, in which the coconut mite Aceria guerreronis is considered a key pest, provides an interesting model for integration of biological and chemical control. In Brazil, the most promising biological control agent for the coconut mite is the phytoseiid predator Neoseiulus baraki. However, acaricides are widely used to control the coconut mite, although they frequently produce unsatisfactory results. In this study, we evaluated the simultaneous direct effect of dry residue contact and contaminated prey ingestion of the main acaricides used on coconut palms (i.e., abamectin, azadirachtin and fenpyroximate) on life-history traits of N. baraki and their offspring. These acaricides are registered, recommended and widely used against A. guerreronis in Brazil, and they were tested at their label rates. The offspring of the exposed predators was also evaluated by estimating the instantaneous rate of population increase (r i ). Abamectin compromised female performance, whereas fenpyroximate did not affect the exposed females (F0). Nonetheless, fenpyroximate strongly compromised the offspring (F1) net reproductive rate (R0), intrinsic rate of population growth (r i ), and doubling time (DT). In contrast, fenpyroximate did not have such effects on the 2nd generation (F2) of predators with acaricide-exposed grandparents. Azadirachtin did not affect the predators, suggesting that this acaricide can be used in association with biological control by this predatory species. In contrast, the use of abamectin and fenpyroximate is likely to lead to adverse consequences in the biological control of A. guerreronis using N. baraki.
Kamczyc, Jacek; Urbanowski, Cezary; Pers-Kamczyc, Emilia
2017-06-01
Density, diversity and assemblage structure of Mesostigmata (cohorts Gamasina and Uropodina) were investigated in Scots pine forests differing in forest age (young: 9-40 years and mature: 83-101 years) in which wildfire occurred. This animal group belongs to the dominant acarine predators playing a crucial role in soil food webs and being important as biological control agents. In total, six forests (three within young and three within mature stands) were inspected in Puszcza Knyszyńska Forest Complex in May 2015. At each forest area, sampling was done from burned and adjacent control sites with steel cylinders for heat extraction of soil fauna. Data were analyzed statistically with nested ANOVA. We found a significant effect on mite density of both fire and forest age, with more mites in mature forests and control plots. In total, 36 mite taxa were identified. Mite diversity differed significantly between forest ages but not between burned versus control. Our study indicated that all studied forests are characterized by unique mite species and that the mite communities are dominated by different mite species depending on age forest and surface wildfire occurrence. Finally, canonical correspondence analysis ranked the mite assemblages from control mature, through burned young and burned mature, away from the control young.
Schilliger, Lionel H; Morel, Damien; Bonwitt, Jesse H; Marquis, Olivier
2013-09-01
The most commonly encountered ectoparasite in captive snakes is the hematophagous snake mite (Ophionyssus natricis). Infected snakes often exhibit lethargy, dysecdysis, pruritus, crusting dermatitis (sometimes progressing to abscesses), and behavioral changes (increased bathing time, rubbing against objects). Anemia and septicemia are occasional complications. Eliminating snake mites from a collection is frustrating. Insecticidal and acaricidal compounds used in mammals can be used against O. natricis infestation in reptiles, but they all are potentially neurotoxic to reptiles. The use of a biological agent to control the snake mite was first developed by using the predatory mites Hypoaspis miles and Hypoaspis aculeifer. However, no data are available regarding the potential of these mites to control O. natricis. Furthermore, the survival and predatory behavior of H. aculeifer and H. miles decreases above 28 degrees C, which is the lower value of the optimal temperature zone range required for rearing snakes. The aim of this study is to identify the ability of the predatory mite Cheyletus eruditus to control O. natricis. In the first experiment, 125 O. natricis mites where placed in separate plastic tubes together with the same number of C. eruditus mites. After 48 hr, the survival rate of snake mites was 6% compared with 92% in the control group (n = 125, P < 0,001). In the second experiment, 11 infested (average of 13 O. natricis per snake) ball pythons, with an average of 13 O. natricis per individual, were placed in separate cages with 1,000 C. eruditus mites + vermiculite After 15 days, only an average of two mites per snake remained, compared with 48 per snake in the control group (t-test, P < 0,01).
Candidate predators for biological control of the poultry red mite Dermanyssus gallinae.
Lesna, Izabela; Wolfs, Peter; Faraji, Farid; Roy, Lise; Komdeur, Jan; Sabelis, Maurice W
2009-06-01
The poultry red mite, Dermanyssus gallinae, is currently a significant pest in the poultry industry in Europe. Biological control by the introduction of predatory mites is one of the various options for controlling poultry red mites. Here, we present the first results of an attempt to identify potential predators by surveying the mite fauna of European starling (Sturnus vulgaris) nests, by assessing their ability to feed on poultry red mites and by testing for their inability to extract blood from bird hosts, i.e., newly hatched, young starlings and chickens. Two genuine predators of poultry red mites are identified: Hypoaspis aculeifer and Androlaelaps casalis. A review of the literature shows that some authors suspected the latter species to parasitize on the blood of birds and mammals, but they did not provide experimental evidence for these feeding habits and/or overlooked published evidence showing the reverse. We advocate careful analysis of the trophic structure of arthropods inhabiting bird nests as a basis for identifying candidate predators for control of poultry red mites.
Roy, Somnath; Muraleedharan, Narayanannair; Mukhopadhyay, Ananda
2014-08-01
Oligonychus coffeae Nietner (Acari: Tetranychidae), the red spider mite (RSM), is a major pest of tea (Camellia sinensis) in most tea-producing countries. Nymphs and adults of RSM lacerate cells, producing minute characteristic reddish brown marks on the upper surface of mature leaves, which turn red in severe cases of infestation, resulting in crop loss. The pest is present on tea all the year round, although numbers vary depending on season. Their number increases as the weather warms up and decreases markedly once rains set in. Under optimal conditions there may be 22 overlapping generations in a year. Parthenogenesis is known to occur; consequently, all mite stages can be found at a given time. Their infestation is mainly confined to the upper surface of the mature leaves and could readily be identified by the bronzing of the leaf. There are several naturally occurring insect predators, such as coccinellid and staphylinid larvae, lacewing larvae, and mite predators, most importantly species of the families Phytoseiidae and Stigmaeidae. Integrated management has been adopted to control this mite pest, involving cultural, mechanical, physical, biological and chemical methods. This review collates the most important works carried out on biology, ecology and management of O. coffeae. Also the scope of future studies for better management of this regular mite pest of tea is discussed.
Yorulmaz Salman, Sibel; Aydınlı, Fatma; Ay, Recep
2015-07-01
Phytoseiulus persimilis of the family Phytoseiidae is an effective predatory mite species that is used to control pest mites. The LC50 and LC60 values of etoxazole were determined on P. persimilis using a leaf-disc method and spraying tower. A laboratory selection population designated ETO6 was found to have a 111.63-fold resistance to etoxazole following 6 selection cycles. This population developed low cross-resistance to spinosad, spiromesifen, acetamiprid, indoxacarb, chlorantraniliprole, milbemectin and moderate cross-resistance to deltamethrin. PBO, IBP and DEM synergised resistance 3.17-, 2.85- and 3.60-fold respectively. Crossing experiments revealed that etoxazole resistance in the ETO6 population was an intermediately dominant and polygenic. In addition, detoxifying enzyme activities were increased 2.71-fold for esterase, 3.09-fold for glutathione S-transferase (GST) and 2.76-fold for cytochrome P450 monooxygenase (P450) in the ETO6 population. Selection for etoxazole under laboratory conditions resulted in the development of etoxazole resistance in the predatory mite P. persimilis that are resistant to pesticides are considered valuable for use in resistance management programmes within integrated pest control strategies. Copyright © 2014 Elsevier Inc. All rights reserved.
Natural biological control of pest mites in Brazilian sun coffee agroecosystems.
Teodoro, Adenir V; Sarmento, Renato A; Rêgo, Adriano S; da Graça S Maciel, Anilde
2010-06-01
Coffee is one of the leading commodities in tropical America. Although plantations are usually established under a canopy of trees in most producing countries in the region, Brazilian coffee is mostly produced under full sun conditions. Such simple, single-crop agroecosystems with intensive agrochemical inputs often suffer with pests like mites. Predatory mites of the family Phytoseiidae are the main natural enemies associated with pest mites in the field. However, these beneficial arthropods struggle to survive in intensive agroecosystems such as coffee monocultures due to unfavorable microclimatic conditions, widespread pesticide use, and lack of alternative food (pollen, nectar). Conservation biological control uses a range of management strategies to sustain and enhance populations of indigenous natural enemies such as predatory mites. We discuss here conservation biological control as a strategy to improve biological control of pest mites by native predatory mites in Brazilian coffee monocultures as well as some related patents.
Manuyakorn, Wiparat; Padungpak, Savitree; Luecha, Orawin; Kamchaisatian, Wasu; Sasisakulporn, Cherapat; Vilaiyuk, Soamarat; Monyakul, Veerapol; Benjaponpitak, Suwat
2015-06-01
House dust mite avoidance is advised in dust mite sensitized patients to decrease the risk to develop allergic symptoms. Maintaining a relative humidity (RH) of less than 50% in households is recommended to prevent dust mite proliferation. To investigate the efficacy of a novel temperature and humidity machine to control the level of dust mite allergens and total nasal symptom score (TNSS) in dust mite sensitized allergic rhinitis children. Children (8-15 years) with dust mite sensitized persistent allergic rhinitis (AR) were enrolled. The temperature and humidity control machine was installed in the bedroom where the enrolled children stayed for 6 months. TNSS was assessed before and every month after machine set up and the level of dust mite allergen (Der p 1 and Der f 1) from the mattress were measured before and every 2 months after machine set up using enzyme-linked immunosorbent assay (ELISA). A total of 7 children were enrolled. Noticeable reduction of Der f 1 was observed as early as 2 months after installing the machine, but proper significant differences appeared 4 months after and remained low until the end of the experiment (p <0.05). Although no correlation was observed between TNSS and the level of dust mite allergens, there was a significant reduction in TNSS at 2 and 4 months (p <0.05) and 70% of the patients were able to stop using their intranasal corticosteroids by the end of the experiment. The level of house dust mite in mattresses was significantly reduced after using the temperature and humidity control machine. This machine may be used as an effective tool to control clinical symptoms of dust mite sensitized AR children.
House dust mites, our intimate associates.
Nadchatram, M
2005-06-01
House dust mites have lived in human contact from time immemorial. Human dander or dead skin constitutes the major organic component of the house dust ecosystem. Because the mites feed on dander, dust mites and human association will continue to co-exist as part of our environment. Efficient house-keeping practice is the best form of control to reduce infestation. However, special precautions are important when individuals are susceptible or sensitive to dust mites. House dust mites are responsible for causing asthma, rhinitis and contact dermatitis. The respiratory allergies are caused by the inhalation of dead or live mites, their faecal matter or other byproducts. Immune factors are of paramount importance in the development of dust related or mite induced respiratory diseases. House dust mites were found in some 1,000 samples of dust taken from approximately 330 dwellings in Peninsular Malaysia and Singapore. Mattresses, carpets, corners of a bedroom, and floor beneath the bed are favourable dust mite habitats. The incriminating species based on studies here and elsewhere, as well as many other species of dust mites of unknown etiological importance are widely distributed in Malaysian homes. Density of dust mites in Malaysia and Singapore is greater than in temperate countries. Prevention and control measures with reference to subjects sensitive to dust mite allergies, including chemical control described in studies conducted in Europe and America are discussed. However, a cost free and most practical way to remove mites, their faecal matter and other products is to resort to sunning the bedding and carpets to kill the living mites, and then beaten and brushed to remove the dust and other components.
Effect of a change to mite-free bedding on children with mite-sensitive asthma: a controlled trial.
Burr, M L; Neale, E; Dean, B V; Verrier-Jones, E R
1980-01-01
Twenty-one children with mite-sensitive asthma took part in a crossover randomised controlled trial of mite-free bedding. Each child was issued with a new sleeping bag and pillow for a month, and twice-daily peak flow readings were compared with those obtained during a month in the child's ordinary bedding. Seventeen of the children had higher mean peak flow readings during the period in the mite-free bedding (p < 0.01). The overall improvement was only modest, however, and some mites had appeared in most of the bedding by the end of the trial. New bedding may be helpful to patients with mite-sensitive asthma, but methods are needed to prevent colonisation by mites. PMID:7001668
Gols, Rieta; Roosjen, Mara; Dijkman, Herman; Dicke, Marcel
2003-12-01
Jasmonic acid (JA) and the octadecanoid pathway are involved in both induced direct and induced indirect plant responses. In this study, the herbivorous mite, Tetranychus urticae, and its predator, Phytoseiulus persimilis, were given a choice between Lima bean plants induced by JA or spider mites and uninduced control plants. Infestation densities resulting in the induction of predator attractants were much lower than thus far assumed, i.e., predatory mites were significantly attracted to plants that were infested for 2 days with only one or four spider mites per plant. Phytoseiulus persimilis showed a density-dependent response to volatiles from plants that were infested with different numbers of spider mites. Similarly, treating plants with increasing concentrations of JA also led to increased attraction of P. persimilis. Moreover, the duration of spider mite infestation was positively correlated with the proportion of predators that were attracted to mite-infested plants. A pretreatment of the plants with JA followed by a spider mite infestation enhanced the attraction of P. persimilis to plant volatiles compared to attraction to volatiles from plants that were only infested with spider mites and did not receive a pretreatment with JA. The herbivore, T. urticae preferred leaf tissue that previously had been infested with conspecifics to uninfested leaf tissue. In the case of choice tests with JA-induced and control leaf tissue, spider mites slightly preferred control leaf tissue. When spider mites were given a choice between leaf discs induced by JA and leaf discs damaged by spider mite feeding, they preferred the latter. The presence of herbivore induced chemicals and/or spider mite products enhanced settlement of the mites, whereas treatment with JA seemed to impede settlement.
Validation of an automated mite counter for Dermanyssus gallinae in experimental laying hen cages.
Mul, Monique F; van Riel, Johan W; Meerburg, Bastiaan G; Dicke, Marcel; George, David R; Groot Koerkamp, Peter W G
2015-08-01
For integrated pest management (IPM) programs to be maximally effective, monitoring of the growth and decline of the pest populations is essential. Here, we present the validation results of a new automated monitoring device for the poultry red mite (Dermanyssus gallinae), a serious pest in laying hen facilities world-wide. This monitoring device (called an "automated mite counter") was validated in experimental laying hen cages with live birds and a growing population of D. gallinae. This validation study resulted in 17 data points of 'number of mites counted' by the automated mite counter and the 'number of mites present' in the experimental laying hen cages. The study demonstrated that the automated mite counter was able to track the D. gallinae population effectively. A wider evaluation showed that this automated mite counter can become a useful tool in IPM of D. gallinae in laying hen facilities.
Anti-mite measurements in mite-sensitive adult asthma. A controlled trial.
Burr, M L; St Leger, A S; Neale, E
1976-02-14
A cross-over controlled trial has been conducted among 32 adult patients with mite-sensitive asthma. The bedclothes and pillows of each subject were laundered and vacuum-cleaned and a plastic cover applied to the mattress for six weeks in an attempt to reduce exposure to mites. No improvement in daily peak-flow reading or drug usage was found in comparison with a control period.
Koenraadt, C J M; Dicke, M
2010-03-01
Infestations with ectoparasitic poultry red mites (Dermanyssus gallinae) pose an increasing threat to poultry health and welfare. Because of resistance to acaricides and higher scrutiny of poultry products, alternative and environmentally safe management strategies are warranted. Therefore, we investigated how volatile cues shape the behavior of D. gallinae and how this knowledge may be exploited in the development of an attract-and-kill method to control mite populations. A Y-tube olfactometer bio-assay was used to evaluate choices of mites in response to cues related to conspecific mites as well as related to their chicken host. Both recently fed and starved mites showed a strong preference (84 and 85%, respectively) for volatiles from conspecific, fed mites as compared to a control stream of clean air. Mites were also significantly attracted to 'aged feathers' (that had remained in the litter for 3-4 days), but not to 'fresh feathers'. Interestingly, an air stream containing 2.5% CO(2), which mimics the natural concentration in air exhaled by chickens, did attract fed mites, but inhibited the attraction of unfed mites towards volatiles from aged feathers. We conclude that both mite-related cues (aggregation pheromones) and host-related cues (kairomones) mediate the behavior of the poultry mite. We discuss the options to exploit this knowledge as the 'attract' component of attract-and-kill strategies for the control of D. gallinae.
Lesna, Izabela; Sabelis, Maurice W; van Niekerk, Thea G C M; Komdeur, Jan
2012-12-01
To assess their potential to control poultry red mites (Dermanyssus gallinae), we tested selected predaceous mites (Androlaelaps casalis and Stratiolaelaps scimitus) that occur naturally in wild bird nests or sometimes spontaneously invade poultry houses. This was done under laboratory conditions in cages, each with 2-3 laying hens, initially 300 poultry red mites and later the release of 1,000 predators. These small-scale tests were designed to prevent mite escape from the cages and they were carried out in three replicates at each of three temperature regimes: 26, 30 (constant day and night) and 33-25 °C (day-night cycle). After 6 weeks total population sizes of poultry red mites and predatory mites were assessed. For the temperature regimes of 26 and 33/25 °C S. scimitus reduced the poultry red mite population relative to the control experiments by a factor 3 and 30, respectively, and A. casalis by a factor of 18 and 55, respectively. At 30 °C the predators had less effect on red mites, with a reduction of 1.3-fold for S. scimitus and 5.6-fold for A. casalis. This possibly reflected hen manure condition or an effect of other invertebrates in the hen feed. Poultry red mite control was not negatively affected by temperatures as high as 33 °C and was always better in trials with A. casalis than in those with S. scimitus. In none of the experiments predators managed to eradicate the population of poultry red mites. This may be due to a prey refuge effect since most predatory mites were found in and around the manure tray at the bottom of the cage, whereas most poultry red mites were found higher up in the cage (i.e. on the walls, the cover, the perch, the nest box and the food box). The efficacy of applying predatory mites in the poultry industry may be promoted by reducing this refuge effect, boosting predatory mite populations using alternative prey and prolonged predator release devices. Biocontrol success, however, will strongly depend on how the poultry is housed in practice (free range, cage or aviary systems) and on which chemicals are applied to disinfect poultry houses and to control other pests.
A review on the factors affecting mite growth in stored grain commodities.
Collins, D A
2012-03-01
A thorough review of the literature has identified the key factors and interactions that affect the growth of mite pests on stored grain commodities. Although many factors influence mite growth, the change and combinations of the physical conditions (temperature, relative humidity and/or moisture content) during the storage period are likely to have the greatest impact, with biological factors (e.g. predators and commodity) playing an important role. There is limited information on the effects of climate change, light, species interactions, local density dependant factors, spread of mycotoxins and action thresholds for mites. A greater understanding of these factors may identify alternative control techniques. The ability to predict mite population dynamics over a range of environmental conditions, both physical and biological, is essential in providing an early warning of mite infestations, advising when appropriate control measures are required and for evaluating control measures. This information may provide a useful aid in predicting and preventing mite population development as part of a risk based decision support system.
Norwegian honey bees surviving Varroa destructor mite infestations by means of natural selection.
Oddie, Melissa A Y; Dahle, Bjørn; Neumann, Peter
2017-01-01
Managed, feral and wild populations of European honey bee subspecies, Apis mellifera , are currently facing severe colony losses globally. There is consensus that the ectoparasitic mite Varroa destructor , that switched hosts from the Eastern honey bee Apis cerana to the Western honey bee A. mellifera , is a key factor driving these losses. For >20 years, breeding efforts have not produced European honey bee colonies that can survive infestations without the need for mite control. However, at least three populations of European honey bees have developed this ability by means of natural selection and have been surviving for >10 years without mite treatments. Reduced mite reproductive success has been suggested as a key factor explaining this natural survival. Here, we report a managed A. mellifera population in Norway, that has been naturally surviving consistent V. destructor infestations for >17 years. Surviving colonies and local susceptible controls were evaluated for mite infestation levels, mite reproductive success and two potential mechanisms explaining colony survival: grooming of adult worker bees and Varroa Sensitive Hygiene (VSH): adult workers specifically detecting and removing mite-infested brood. Mite infestation levels were significantly lower in surviving colonies and mite reproductive success was reduced by 30% when compared to the controls. No significant differences were found between surviving and control colonies for either grooming or VSH. Our data confirm that reduced mite reproductive success seems to be a key factor for natural survival of infested A. mellifera colonies. However, neither grooming nor VSH seem to explain colony survival. Instead, other behaviors of the adult bees seem to be sufficient to hinder mite reproductive success, because brood for this experiment was taken from susceptible donor colonies only. To mitigate the global impact of V. destructor , we suggest learning more from nature, i.e., identifying the obviously efficient mechanisms favored by natural selection.
Norwegian honey bees surviving Varroa destructor mite infestations by means of natural selection
Dahle, Bjørn; Neumann, Peter
2017-01-01
Background Managed, feral and wild populations of European honey bee subspecies, Apis mellifera, are currently facing severe colony losses globally. There is consensus that the ectoparasitic mite Varroa destructor, that switched hosts from the Eastern honey bee Apis cerana to the Western honey bee A. mellifera, is a key factor driving these losses. For >20 years, breeding efforts have not produced European honey bee colonies that can survive infestations without the need for mite control. However, at least three populations of European honey bees have developed this ability by means of natural selection and have been surviving for >10 years without mite treatments. Reduced mite reproductive success has been suggested as a key factor explaining this natural survival. Here, we report a managed A. mellifera population in Norway, that has been naturally surviving consistent V. destructor infestations for >17 years. Methods Surviving colonies and local susceptible controls were evaluated for mite infestation levels, mite reproductive success and two potential mechanisms explaining colony survival: grooming of adult worker bees and Varroa Sensitive Hygiene (VSH): adult workers specifically detecting and removing mite-infested brood. Results Mite infestation levels were significantly lower in surviving colonies and mite reproductive success was reduced by 30% when compared to the controls. No significant differences were found between surviving and control colonies for either grooming or VSH. Discussion Our data confirm that reduced mite reproductive success seems to be a key factor for natural survival of infested A. mellifera colonies. However, neither grooming nor VSH seem to explain colony survival. Instead, other behaviors of the adult bees seem to be sufficient to hinder mite reproductive success, because brood for this experiment was taken from susceptible donor colonies only. To mitigate the global impact of V. destructor, we suggest learning more from nature, i.e., identifying the obviously efficient mechanisms favored by natural selection. PMID:29085753
House dust mites on skin, clothes, and bedding of atopic dermatitis patients.
Teplitsky, Valery; Mumcuoglu, Kosta Y; Babai, Ilan; Dalal, Ilan; Cohen, Rifka; Tanay, Amir
2008-08-01
Atopic dermatitis is a common allergic condition in children, often associated with a positive skin reaction to house dust mite allergens. To determine the presence of house dust mites on the skin, clothes, and bedding of patients with atopic dermatitis. Nineteen patients with atopic dermatitis were examined during a 2-year period. Samples from affected and healthy skin surfaces were obtained with adhesive tape, and dust samples from bedding and clothes were collected with a vacuum cleaner at the start of the study and 3-6 weeks later, and examined for the presence of house dust mites. The findings were compared with those of 21 healthy controls. The most common mite species on skin were Dermatophagoides pteronyssinus and Dermatophagoides farinae, which were found in nine patients and three controls. The patient group showed a significantly larger percentage of samples with mites than did the control group (34.9% and 7.9%, respectively) (P < 0.001), and a significantly larger percentage of individuals with at least one positive sample (84.2% and 14.2%, respectively) (P < 0.0001). No correlation was found between the number of mites on the skin and clothes/bedding of patients, or between patients and controls with regard to the number of mites on the clothes and bedding. Patients with atopic dermatitis showed a higher prevalence of mites on their skin than did healthy individuals, which could be involved in allergic sensitization and disease exacerbation.
Lesna, Izabela; da Silva, Fernando R; Sato, Yukie; Sabelis, Maurice W; Lommen, Suzanne T E
2014-06-01
The dry bulb mite, Aceria tulipae, is the most important pest of stored tulip bulbs in The Netherlands. This tiny, eriophyoid mite hides in the narrow space between scales in the interior of the bulb. To achieve biological control of this hidden pest, candidate predators small enough to move in between the bulb scales are required. Earlier experiments have shown this potential for the phytoseiid mite, Neoseiulus cucumeris, but only after the bulbs were exposed to ethylene, a plant hormone that causes a slight increase in the distance between tulip bulb scales, just sufficient to allow this predator to reach the interior part of the bulb. Applying ethylene, however, is not an option in practice because it causes malformation of tulip flowers. In fact, to prevent this cosmetic damage, bulb growers ventilate rooms where tulip bulbs are stored, thereby removing ethylene produced by the bulbs (e.g. in response to mite or fungus infestation). Recently, studies on the role of predatory mites in controlling another eriophyoid mite on coconuts led to the discovery of an exceptionally small phytoseiid mite, Neoseiulus paspalivorus. This predator is able to move under the perianth of coconuts where coconut mites feed on meristematic tissue of the fruit. This discovery prompted us to test N. paspalivorus for its ability to control A. tulipae on tulip bulbs under storage conditions (ventilated rooms with bulbs in open boxes; 23 °C; storage period June-October). Using destructive sampling we monitored predator and prey populations in two series of replicated experiments, one at a high initial level of dry bulb mite infestation, late in the storage period, and another at a low initial dry bulb mite infestation, halfway the storage period. The first and the second series involved treatment with N. paspalivorus and a control experiment, but the second series had an additional treatment in which the predator N. cucumeris was released. Taking the two series of experiments together we found that N. paspalivorus controlled the populations of dry bulb mites both on the outer scale of the bulbs as well as in the interior part of the bulbs, whereas N. cucumeris significantly reduced the population of dry bulb mites on the outer scale, but not in the interior part of the bulb. Moreover, N. paspalivorus was found predominantly inside the bulb, whereas N. cucumeris was only found on the outer scale, thereby confirming our hypothesis that the small size of N. paspalivorus facilitates access to the interior of the bulbs. We argue that N. paspalivorus is a promising candidate for the biological control of dry bulb mites on tulip bulbs under storage conditions in the Netherlands.
Beyond insects: current status, achievements and future perspectives of RNAi in mite pests.
Niu, Jinzhi; Shen, Guangmao; Christiaens, Olivier; Smagghe, Guy; He, Lin; Wang, Jinjun
2018-05-11
Mites comprise a group of key agricultural pests on a wide range of crops. They cause harm through feeding on the plant and transferring dangerous pathogens, and the rapid evolution of pesticide resistance in mites highlights the need for novel control methods. Currently, RNA interference (RNAi) shows a great potential for insect pest control. Here, we review the literature associated with RNAi in mite pests. We discuss different target genes and RNAi efficiency in various mite species, a promising Varroa control program through RNAi, the synergy of RNAi with plant defense mechanisms and microorganisms, and the current understandings of systemic movement of dsRNA. Based on this, we can conclude that there is a clear potential for an RNAi-based mite control application but further research on several aspects is needed, including: (i) the factors influencing the RNAi efficiency, (ii) the mechanism of environmental RNAi and cross-kingdom dsRNA trafficking, (iii) the mechanism of possible systemic and parental RNAi, and (iv) non-target effects, specifically in predatory mites, should be considered during the RNAi target selection. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Minimal Pruning and Reduced Plant Protection Promote Predatory Mites in Grapevine
Pennington, Theresa; Kraus, Christian; Alakina, Ekatarina; Entling, Martin H.; Hoffmann, Christoph
2017-01-01
Improving natural pest control by promoting high densities of predatory mites (Acari: Phytoseiidae) is an effective way to prevent damage by pest mites (e.g., Eriophyidae, Tetranychidae) and other arthropod taxa that can cause serious damage to vineyards. Here, we investigate the influence of innovative management on predatory mite densities. We compare (i) full versus reduced fungicide applications and (ii) minimal pruning versus a traditional trellis pruning system in four fungus-resistant grapevine varieties. As predatory mites also feed on fungus mycelium, we assessed fungal infection of grapevine leaves in the experimental vineyard. Predatory mites were significantly more abundant in both minimal pruning and under reduced plant protection. Increases in predatory mites appeared to be independent of fungal infection, suggesting mostly direct effects of reduced fungicides and minimal pruning. In contrast to predatory mites, pest mites did not increase under innovative management. Thus, conditions for natural pest control are improved in fungus-resistant grapevines and under minimal pruning, which adds to other advantages such as environmental safety and reduced production cost. PMID:28820436
Field-level sublethal effects of approved bee hive chemicals on Honey Bees (Apis mellifera L).
Berry, Jennifer A; Hood, W Michael; Pietravalle, Stéphane; Delaplane, Keith S
2013-01-01
In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate) and Check Mite+ (coumaphos) and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals.
Field-Level Sublethal Effects of Approved Bee Hive Chemicals on Honey Bees (Apis mellifera L)
Berry, Jennifer A.; Hood, W. Michael; Pietravalle, Stéphane; Delaplane, Keith S.
2013-01-01
In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate) and Check Mite+ (coumaphos) and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals. PMID:24204638
Sheikh, Aziz; Hurwitz, Brian; Sibbald, Bonnie; Barnes, Greta; Howe, Maggie; Durham, Stephen
2002-06-18
The house dust mite is the most important environmental allergen implicated in the aetiology of childhood asthma in the UK. Dust mite barrier bedding is relatively inexpensive, convenient to use, and of proven effectiveness in reducing mattress house dust mite load, but no studies have evaluated its clinical effectiveness in the control of childhood asthma when dispensed in primary care. We therefore aimed to evaluate the effectiveness of house dust mite barrier bedding in children with asthma treated in primary care. Pragmatic, randomised, double-blind, placebo controlled trial conducted in eight family practices in England. Forty-seven children aged 5 to 14 years with confirmed house dust mite sensitive asthma were randomised to receive six months treatment with either house dust mite barrier or placebo bedding. Peak expiratory flow was the main outcome measure of interest; secondary outcome measures included asthma symptom scores and asthma medication usage. No difference was noted in mean monthly peak expiratory flow, asthma symptom score, medication usage or asthma consultations, between children who received active bedding and those who received placebo bedding. Treating house dust mite sensitive asthmatic children in primary care with house dust mite barrier bedding for six months failed to improve peak expiratory flow. Results strongly suggest that the intervention made no impact upon other clinical features of asthma.
Sheikh, Aziz; Hurwitz, Brian; Sibbald, Bonnie; Barnes, Greta; Howe, Maggie; Durham, Stephen
2002-01-01
Background The house dust mite is the most important environmental allergen implicated in the aetiology of childhood asthma in the UK. Dust mite barrier bedding is relatively inexpensive, convenient to use, and of proven effectiveness in reducing mattress house dust mite load, but no studies have evaluated its clinical effectiveness in the control of childhood asthma when dispensed in primary care. We therefore aimed to evaluate the effectiveness of house dust mite barrier bedding in children with asthma treated in primary care. Methods Pragmatic, randomised, double-blind, placebo controlled trial conducted in eight family practices in England. Forty-seven children aged 5 to 14 years with confirmed house dust mite sensitive asthma were randomised to receive six months treatment with either house dust mite barrier or placebo bedding. Peak expiratory flow was the main outcome measure of interest; secondary outcome measures included asthma symptom scores and asthma medication usage. Results No difference was noted in mean monthly peak expiratory flow, asthma symptom score, medication usage or asthma consultations, between children who received active bedding and those who received placebo bedding. Conclusions Treating house dust mite sensitive asthmatic children in primary care with house dust mite barrier bedding for six months failed to improve peak expiratory flow. Results strongly suggest that the intervention made no impact upon other clinical features of asthma. PMID:12079502
Nitric oxide fumigation for control of bulb mites on flower bulbs and tubers
USDA-ARS?s Scientific Manuscript database
Nitric oxide fumigation was studied for efficacy to control bulb mites in the genus Rhizoglyphus and effects on germination and growth of flower bulbs and tubers. Bulb mites on infested peanuts were fumigated with nitric oxide at different concentrations under ultralow oxygen conditions in 1.9L jar...
Integrated varroa control in honey bee colonies (Apis mellifera carnica) with or without brood
USDA-ARS?s Scientific Manuscript database
Studies were conducted in two apiaries in order to assess the comparative efficacy of oxalic acid (OA), formic acid (FA) and Thymovar against varroa mites in honey bee colonies. Treatments were performed using 85% FA and OA consisted of 2.9% oxalic acid dihydrate and 31.9% sugar in water. Consecutiv...
Sensitization of children in the Stockholm area to house dust mites.
Nordvall, S L; Eriksson, M; Rylander, E; Schwartz, B
1988-09-01
Atopic sensitization of children in the Stockholm area to house dust mites (HDM) was investigated in a case-control study. Sixty children with and 60 without positive skin prick tests for HDM were matched for age and sex. HDM-sensitized children had previously more often lived in other areas known to be mite infested than the control children. Sensitization to mites was related to dampness in the homes, but no significant relationship was found to the type of residence, frequent visits to a summer house in the archipelago or parental smoking. Dust samples from mattresses of the children with the strongest positive reactions to mites in skin prick tests and the respective controls were subjected to an enzyme immunoassay, to measure the content of the major allergens of the Dermatophagoides (D.) species D. pterinyssinus, D. farinae and D. microceras. Mattress dust samples from the beds of HDM-sensitized children contained significantly higher HDM antigen concentrations than those from the beds of controls. Private houses contained significantly more HDM antigens than flats and 10 of 11 homes in which a dampness problem was recognized contained mite antigens. It is postulated that mite infestation is increasing in the area, energy-saving measures creating improved conditions for HDM survival.
Rahman, Touhidur; Spafford, Helen; Broughton, Sonya
2011-08-01
Spinosad is a biopesticide widely used for control of Frankliniella occidentalis (Pergande). It is reported to be non-toxic to several predatory mite species used for the biological control of thrips. Predatory mites Typhlodromips montdorensis (Schicha), Neoseiulus cucumeris (Oudemans) and Hypoaspis miles (Berlese) have been used for control of F. occidentalis. This study investigated the impact of direct and residual toxicity of spinosad on F. occidentalis and predatory mites. The repellency of spinosad residues to these predatory mites was also investigated. Direct contact to spinosad effectively reduced the number of F. occidentalis adults and larvae, causing > 96% mortality. Spinosad residues aged 2-96 h were also toxic to F. occidentalis. Direct exposure to spinosad resulted in > 90% mortality of all three mite species. Thresholds for the residual toxicity (contact) of spinosad (LT25 ) were estimated as 4.2, 3.2 and 5.8 days for T. montdorensis, N. cucumeris and H. miles respectively. When mites were simultaneously exposed to spinosad residues and fed spinosad-intoxicated thrips larvae, toxicity increased. Residual thresholds were re-estimated as 5.4, 3.9 and 6.1 days for T. montdorensis, N. cucumeris and H. miles respectively. Residues aged 2-48 h repelled T. montdorensis and H. miles, and residues aged 2-24 h repelled N. cucumeris. Predatory mites can be safely released 6 days after spinosad is applied for the management of F. occidentalis. Copyright © 2011 Society of Chemical Industry.
Kilpinen, Ole; Steenberg, Tove
2016-11-01
Desiccant dusts and entomopathogenic fungi have previously been found to hold potential against the poultry red mite, which is an important pest in egg production and notoriously difficult to control. Both control agents may cause repellence in other arthropods and potentially also influence control levels adversely when used against the poultry red mite. Five desiccant dust products with good efficacy against the poultry red mite Dermanyssus gallinae caused avoidance behavior in mites when tested in bioassays. The repellent activity was correlated with efficacy, which was found to depend on both dose and relative humidity (RH). However, one desiccant dust was significantly less repellent compared to other dusts with similar levels of efficacy. Further, dry conidia of the fungus Beauveria bassiana were also shown to be repellent to poultry red mites, both when applied on its own and when admixed with a low dose of the desiccant dust Diamol. The pick-up of desiccant dust particles and fungus conidia from treated surfaces by mites did not differ depending on RH, whereas the overall efficacy of the two control agents were significantly higher at 75 than at 85 % RH. In addition, the combined effect of the two substances was synergistic when tested in a bioassay where mites could choose whether to cross a treated surface. This is the first time a member of Acari has been shown to be repelled by desiccant dusts and by conidia of an entomopathogenic fungus.
Pheromonal Communication in the European House Dust Mite, Dermatophagoides pteronyssinus
Steidle, Johannes L.M.; Barcari, Elena; Hradecky, Marc; Trefz, Simone; Tolasch, Till; Gantert, Cornelia; Schulz, Stefan
2014-01-01
Despite the sanitary importance of the European house dust mite Dermatophagoides pteronyssinus (Trouessart, 1897), the pheromonal communication in this species has not been sufficiently studied. Headspace analysis using solid phase micro extraction (SPME) revealed that nerol, neryl formate, pentadecane, (6Z,9Z)-6,9-heptadecadiene, and (Z)-8-heptadecene are released by both sexes whereas neryl propionate was released by males only. Tritonymphs did not produce any detectable volatiles. In olfactometer experiments, pentadecane and neryl propionate were attractive to both sexes as well as to tritonymphs. (Z)-8-heptadecene was only attractive to male mites. Therefore it is discussed that pentadecane and neryl propionate are aggregation pheromones and (Z)-8-heptadecene is a sexual pheromone of the European house dust mite D. pteronyssinus. To study the potential use of pheromones in dust mite control, long-range olfactometer experiments were conducted showing that mites can be attracted to neryl propionate over distances of at least 50 cm. This indicates that mite pheromones might be useable to monitor the presence or absence of mites in the context of control strategies. PMID:26462831
Efficacy of Controlled Atmosphere Treatments to Manage Arthropod Pests of Dry-Cured Hams
Hasan, Md. Mahbub; Aikins, Michael J.; Schilling, Wes; Phillips, Thomas W.
2016-01-01
Research here explored the use of controlled atmospheres (CA) for managing arthropod pests that infest dry-cured hams. Experiments were conducted with low oxygen (O2) achieved with low pressure under a vacuum, high carbon dioxide (CO2), and ozone (O3). Results showed that both low O2 and high CO2 levels required exposures up to 144 h to kill 100% of all stages of red-legged ham beetle, Necrobia rufipes (De Geer) (Coleoptera: Cleridae) and ham mite Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae) at 23 °C. In addition, both low O2 and high CO2 had no significant mortality against the ham beetle and ham mites at short exposures ranging from 12 to 48 h. Ham beetles were more tolerant than ham mites to an atmosphere of 75.1% CO2 and low pressure of 25 mm Hg, which imposed an atmosphere estimated at 0.9% O2. Both low O2 and high CO2 trials indicated that the egg stages of both species were more tolerant than other stages tested, but N. rufipes eggs and pupae were more susceptible than larvae and adults to high concentration ozone treatments. The results indicate that O3 has potential to control ham beetles and ham mites, particularly at ≈166 ppm in just a 24 h exposure period, but O3 is known from other work to have poor penetration ability, thus it may be more difficult to apply effectively than low O2 or high CO2. would be. CA treatment for arthropod pests of dry-cured hams show promise as components of integrated pest management programs after methyl bromide is no longer available for use. PMID:27598209
Holt, Kiffnie M; Opit, George P; Nechols, James R; Margolies, David C
2006-01-01
The compatibility of the selective insecticide spinosad (Conserve SC), at rates recommended for thrips control in greenhouses, with release of the predatory mite Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) to control spider mites, was investigated in a crop of ivy geranium Pelargonium peltatum, cultivar 'Amethyst 96.' Plants were inoculated with twospotted spider mites, Tetranychus urticae Koch (Acari: Tetranychidae), 2 weeks before treatments were applied. There were three treatment variables, each at two levels: predators (released or not), spray application (water or Conserve SC at 2 ml/3.79 l), and timing of spray (1 day before or after predators were released). Twospotted spider mite populations then were sampled twice each week over a three-week period. The application or timing of spinosad had no effect on the ability of the predator to reduce the population of spider mites. Spider mite populations in the no-predator treatment continued to expand over the course of the experiment, while those in the predator-release treatment declined. We conclude that P. persimilis can be used in conjunction with spinosad on ivy geraniums without causing obvious detrimental effects to this predator or leading to a reduction in biological control.
USDA-ARS?s Scientific Manuscript database
Sixteen clones of plantain were screened for resistance to red palm mite (RPM), Raoiella indica Hirst. The plantain clones were established in 5kg pots with ten replicates. Mite infestation was carried out by introducing highly infested potted coconut palms between the plantain pots (1:10). Control ...
Atopy patch test reactions to house dust mites in patients with scabies.
Taşkapan, Oktay; Harmanyeri, Yavuz
2005-01-01
It is well known that the house dust and the scabies mites are related phylogenetically. We therefore performed atopy patch tests with house dust mite antigens (Dermatophagoides pteronyssinus (Dp) and/or Dermatophagoides farinae (Df)) in scabies patients without atopy and healthy controls. We studied 25 men with active scabies and 25 healthy controls. Skin prick tests with standardized house dust mite extract were performed for all patients and controls. An intradermal test procedure was carried out in skin prick test-negative patients, and for controls showing positive atopy patch test to Dp and/or Df. While atopy patch tests were performed directly in all healthy controls, patients with scabies were first treated and on the next day, atopy patch tests were performed. Twenty-two of 25 patients with scabies (88%) had skin prick test and/or intradermal test positivity against house dust mites, whereas 17/25 patients (68%) had atopy patch test positivity against house dust mites (Dp and/or Df). There was no statistically significant difference between skin prick test and/or intradermal test positivity and atopy patch test positivity in a regression analysis (p=0.222). The only statistically significant correlation was between atopy patch test positivity and the extent of scabies involvement (p<0.05). Only few of the healthy controls had positive tests. In this study, we have shown that a positive atopy patch test to house dust mite antigens is not specific for patients with atopic dermatitis, but also occurs in scabies patients without a history of atopic dermatitis.
Steenberg, Tove; Kilpinen, Ole
2014-04-01
The poultry red mite, Dermanyssus gallinae, is a major pest in egg production, feeding on laying hens. Widely used non-chemical control methods include desiccant dusts, although their persistence under field conditions is often short. Entomopathogenic fungi may also hold potential for mite control, but these fungi often take several days to kill mites. Laboratory experiments were carried out to study the efficacy of 3 types of desiccant dusts, the fungus Beauveria bassiana and combinations of the two control agents against D. gallinae. There was significant synergistic interaction between each of the desiccant dusts and the fungus, with observed levels of mite mortality significantly higher than those expected for an additive effect (up to 38 % higher). Synergistic interaction between desiccant dust and fungus was found also when different application methods were used for the fungus and at different levels of relative humidity. Although increased levels of mortality were reached due to the synergistic interaction, the speed of lethal action was not influenced by combining the two components. The persistence of the control agents applied separately or in combination did not change over a period of 4 weeks. Overall, combinations of desiccant dusts and fungus conidia seem to hold considerable promise for future non-chemical control of poultry red mites.
Kawasaki syndrome: a controlled study of an outbreak in Wisconsin.
Klein, B S; Rogers, M F; Patrican, L A; White, M C; Burgdorfer, W; Schell, W L; Kochel, R L; Marchette, N J; McPherson, J T; Nelson, D B
1986-08-01
The etiology of Kawasaki syndrome remains unestablished, although a possible role has been suggested for exposure to the application of carpet shampoo, house dust mites, and rickettsial infection. During an outbreak of 20 cases of Kawasaki syndrome that occurred in southeastern Wisconsin from November 1982 through March 1983, a case-control study was done of 15 cases and 30 matched controls. The study included questionnaire administration, dust collection from homes, and serum specimen collection. Only one patient had been exposed to a shampooed carpet within 30 days before onset of illness. No differences were noted between cases and controls in the degree of exposure to house dust mite-associated factors in the home, nor in the occurrence, density and species-specific prevalence of house dust mites in the home. Meadow voles exposed to house dust mites from the homes of patients did not develop serologic or pathologic evidence of infection due to rickettsiae in the spotted fever and typhus groups or Coxiella burnetii. Anti-mite-specific immunoglobulin E was not detected in serum specimens from cases or controls. Results from this study do not support hypotheses suggesting that the development of Kawasaki syndrome is associated with exposure to application of carpet shampoo, house dust mites, or rickettsial infection.
Ecology, Life History, and Management of Tropilaelaps Mites.
de Guzman, Lilia I; Williams, Geoffrey R; Khongphinitbunjong, Kitiphong; Chantawannakul, Panuwan
2017-04-01
Parasitic mites are the major threat to the Western honey bee, Apis mellifera L. For much of the world, Varroa destructor Anderson & Trueman single-handedly inflicts unsurmountable problems to A. mellifera beekeeping. However, A. mellifera in Asia is also faced with another genus of destructive parasitic mite, Tropilaelaps. The life history of these two parasitic mites is very similar, and both have the same food requirements (i.e., hemolymph of developing brood). Hence, parasitism by Tropilaelaps spp., especially Tropilaelaps mercedesae and Tropilaelaps clareae, also results in death of immature brood or wing deformities in infested adult bees. The possible introduction of Tropilaelaps mites outside their current range heightens existing dilemmas brought by Varroa mites. In this review, we provide historic, as well as current information on the taxonomic status, life history, distribution and host range, diagnosis, and control of Tropilaelaps mites. Because the biology of Tropilaelaps mites is not well known, we also suggest areas of research that demand immediate attention. Any biological information about Tropilaelaps mites will provide useful information for the development of control measures against them. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.
Significance and control of the poultry red mite, Dermanyssus gallinae.
Sparagano, O A E; George, D R; Harrington, D W J; Giangaspero, A
2014-01-01
The poultry red mite, Dermanyssus gallinae, poses a significant threat to poultry production and hen health in many parts of the world. With D. gallinae increasingly suspected of being a disease vector, and reports indicating that attacks on alternative hosts, including humans, are becoming more common, the economic importance of this pest has increased greatly. As poultry production moves away from conventional cage systems in many parts of the world, D. gallinae is likely to become more abundant and difficult to control. Control remains dominated by the use of synthetic acaricides, although resistance and treatment failure are widely reported. Alternative control measures are emerging from research devoted to D. gallinae and its management. These alternative control measures are beginning to penetrate the market, although many remain at the precommercial stage. This review compiles the expanding body of research on D. gallinae and assesses options for its current and future control. We conclude that significant advances in D. gallinae control are most likely to come through an integrated approach adopting recent research into existing and novel control strategies; this is being combined with improved monitoring and modeling to better inform treatment interventions.
Nordenfors, H; Höglund, J; Tauson, R; Chirico, J
2001-12-03
The effect of permethrin impregnated plastic strips (Die No Mite Strips) was evaluated on Dermanyssus gallinae populations in aviary systems for layers in Sweden. Two application strategies of the strips were tested: (A) attached in the housing system, allowing the birds to rub against the strips and thereby get the acaricide released onto their plumage, and (B) attached out of reach of the hens, at two different sites (perches and egg-belt lids) of the inner surfaces of the system, where the mites sheltered during the day. On two farms with 2030 (A) and 3384 (B) hens, and existing mite populations, strips were mounted for 20 and 10 weeks, respectively, and mite numbers were monitored by traps. With application A an overall mite reduction of 53% was observed, while with B the mean mite numbers decreased by 39% at the perches and 92% at the egg-belt lid. The strips were originally designed for caged hens afflicted by ectoparasites that stay on the host for most of their life cycle. However, since D. gallinae spends most of its time off the host, it was not possible to control the parasite with application A. Resistance tests performed on mites from both treated and control compartments where application A was used showed no indication of resistance to permethrin, while 95% of the mites survived a 48 h exposure to the compound where application B was performed. Thus, permethrin resistant mites appeared to be the main reason for the failure to control D. gallinae with application B.
George, D R; Olatunji, G; Guy, J H; Sparagano, O A E
2010-04-19
Essential oils from thyme and cade have been shown to be effective acaricides against the poultry red mite, Dermanyssus gallinae (De Geer) when tested over a 24h period. Data on the actual rate of knock-down achieved with these products is lacking and potentially important as essential oils are likely to display only short-term toxicity. When tested over periods of less than 24h, thyme essential oil killed D. gallinae relatively quickly and so may make for an effective acaricide even if the residual toxicity of this product is low. However, cade essential oil did not display such a high level of mite knock-down, suggesting it may hold less promise in D. gallinae management. Comparison of the results with those obtained elsewhere using alternative D. gallinae products further confirms the possibility that thyme essential may be useful in control of this pest. This might be especially true if thyme essential oil were employed as part of an integrated pest management approach.
Cabrera, Ana R; Shirk, Paul D; Teal, Peter E A; Grozinger, Christina M; Evans, Jay D
2014-02-01
When a female varroa mite, Varroa destructor (Anderson & Trueman), invades a honey bee brood cell, the physiology rapidly changes from feeding phoretic to reproductive. Changes in foraging and malvolio transcript levels in the brain have been associated with modulated intra-specific food searching behaviors in insects and other invertebrates. Transcription profiles for both genes were examined during and immediately following brood cell invasion to assess their role as potential control elements. Vdfor and Vdmvl transcripts were found in all organs of varroa mites with the highest Vdfor transcript levels in ovary-lyrate organs and the highest Vdmvl in Malpighian tubules. Changes in transcript levels of Vdfor and Vdmvl in synganglia were not associated with the cell invasion process, remaining comparable between early reproductive mites (collected from the pre-capping brood cells) and phoretic mites. However, Vdfor and Vdmvl transcript levels were lowered by 37 and 53%, respectively, in synganglia from reproductive mites compared to early reproductive mites, but not significantly different to levels in synganglia from phoretic mites. On the other hand, in whole body preparations the Vdfor and Vdmvl had significantly higher levels of transcript in reproductive mites compared to phoretic and early reproductive, mainly due to the presence of both transcripts accumulating in the eggs carried by the ovipositing mite. Varroa mites are a critical component for honey bee population decline and finding varroa mite genes associated with brood cell invasion, reproduction, ion balance and other physiological processes will facilitate development of novel control avenues for this honey bee parasite. © 2013 Wiley Periodicals, Inc.
Endris, R G; Reuter, V E; Nelson, J D; Nelson, J A
2000-01-01
The efficacy of a 65% permethrin topically applied spot-on formulation (Defend EXspot Topical Remedy for Dogs, Schering-Plough Animal Health, Union, NJ) was determined against the dog mite, Cheyletiella yasguri (Smiley, 1965). Female dogs and their litters comprised the experimental unit, and all dogs in an experimental unit were treated on the same day 4 to 6 weeks after whelping. Mites and mite eggs were counted weekly on an untreated control group of six litters (15 pups) and on a group of six litters (14 pups) treated with 65% permethrin. Pups in the untreated control group maintained high numbers of Cheyletiella yasguri throughout the 14- to 21-day observation period. No mites or mite eggs were detected on dogs within 7 to 21 days after application of 65% permethrin. No adverse reactions were noted during the study. Clinical signs of infestation with C. yasguri--which included skin irritation, thickening of the stratum corneum, scratching with resultant scabs, pruritus, and flaky, scaly skin-were eliminated when mites were killed by the 65% permethrin formulation.
Factors affecting the distribution of a predatory mite on greenhouse sweet pepper.
Weintraub, Phyllis G; Kleitman, Sophia; Alchanatis, Victor; Palevsky, Eric
2007-01-01
The predatory mite Neoseiulus cucumeris is used for biological control of phytophagous mites and thrips on greenhouse cucumber and sweet pepper. In a previous study, N. cucumeris provided effective control of broad mite but was only rarely found on the sampled leaves, raising questions about the factors affecting N. cucumeris distribution. To determine the distribution of N. cucumeris, leaves of pepper plants were sampled three times per day: just after sunrise, at noon and just before sunset for two years and throughout a 24 h period in one year. The presence of other mites and insects was recorded. Biotic (pollen) and abiotic (temperature, humidity) factors were monitored from the three plant levels. The effect of direct and indirect sunlight on the mites was assessed. N. cucumeris was found primarily in flowers; however, the mite's distribution was affected by other predators (intraguild predation); in the presence of the predatory bug Orius laevigatus virtually no mites occurred in the flowers. Whereas temperature and humidity varied from the top to the lower level of the plants, apparently neither these factors nor the presence of pollen outside the flowers influenced mite distribution. N. cucumeris was found to be negatively phototropic; therefore N. cucumeris were pre-conditioned to light by rearing under light conditions for 4 months before being released. The light-reared mites were initially more numerous during the noon sampling period, however, rearing conditions caused only a temporary and non-significant change in distribution.
Xu, Zhifeng; Liu, Yanchao; Wei, Peng; Feng, Kaiyang; Niu, Jinzhi; Shen, Guangmao; Lu, Wencai; Xiao, Wei; Wang, Jinjun; Smagghe, Guy J.; Xu, Qiang; He, Lin
2017-01-01
Abamectin has been widely used as an insecticide/acaricide for more than 30 years because of its superior bioactivity. Recently, an interesting phenomenon was identified in the carmine spider mite, Tetranychus cinnabarinus, an important pest in agriculture. The gamma aminobutyric acid (GABA) contents in a laboratory abamectin resistant strain of T. cinnabarinus (AbR) were significantly increased. Decreases in activity and mRNA expression of GABA transaminase (GABA-T) were responsible for GABA accumulation in AbR mites. To clarify the mechanism of GABA accumulation mediated abamectin resistance, three artificial approaches were conducted to increase GABA contents in susceptible mites, including feeding of vigabatrin (a specific inhibitor of GABA-T), feeding of exogenous GABA, and inhibition of GABA-T gene expression. The results showed that susceptible mites developed resistance to abamectin when the GABA contents were artificially increased. We also observed that the mites with higher GABA contents moved more slowly, which is consistent with the fact that GABA is an inhibitory neurotransmitter in arthropods. Subsequently, functional response assays revealed that predation rates of predatory mites on GABA accumulated abamectin-resistant mites were much higher than control groups. The tolerance to abamectin, slow crawling speed, and vulnerability to predators were all resulted from GABA accumulation. This relationship between GABA and predation was also confirmed in a field-collected population. Our finding indicates that predatory mites might be used as a tool for biological control to circumvent the development of abamectin resistance in mites. PMID:28443033
Palevsky, E; Walzer, A; Gal, S; Schausberger, P
2008-06-01
The goal of this study was to evaluate spider mite control efficacy of two dry-adapted strains of Neoseiulus californicus. Performance of these strains were compared to a commercial strain of Phytoseiulus persimilis on whole cucumber, pepper and strawberry plants infested with Tetranychus urticae at 50 +/- 5% RH. Under these dry conditions predators' performance was very different on each host plant. On cucumber, spider mite suppression was not attained by any of the three predators, plants 'burnt out' within 4 weeks of spider mite infestation. On strawberry, all predators satisfactorily suppressed spider mites yet they differed in short term efficacy and persistence. Phytoseiulus persimilis suppressed the spider mites more rapidly than did the BOKU and SI N. californicus strains. Both N. californicus strains persisted longer than did P. persimilis. The BOKU strain was superior to SI in population density reached, efficacy in spider mite suppression and persistence. On pepper, in the first 2 weeks of the experiment the BOKU strain was similar to P. persimilis and more efficacious in spider mite suppression than strain SI. Four weeks into the experiment the efficacy of P. persimilis dropped dramatically and was inferior to the SI and BOKU strains. Overall, mean predator density was highest on plants harbouring the BOKU strain, lowest on plants with P. persimilis and intermediate on plants with the SI strain. Implications for biocontrol of spider mites using phytoseiid species under dry conditions are discussed.
Xu, Zhifeng; Liu, Yanchao; Wei, Peng; Feng, Kaiyang; Niu, Jinzhi; Shen, Guangmao; Lu, Wencai; Xiao, Wei; Wang, Jinjun; Smagghe, Guy J; Xu, Qiang; He, Lin
2017-01-01
Abamectin has been widely used as an insecticide/acaricide for more than 30 years because of its superior bioactivity. Recently, an interesting phenomenon was identified in the carmine spider mite, Tetranychus cinnabarinus , an important pest in agriculture. The gamma aminobutyric acid (GABA) contents in a laboratory abamectin resistant strain of T. cinnabarinus (AbR) were significantly increased. Decreases in activity and mRNA expression of GABA transaminase (GABA-T) were responsible for GABA accumulation in AbR mites. To clarify the mechanism of GABA accumulation mediated abamectin resistance, three artificial approaches were conducted to increase GABA contents in susceptible mites, including feeding of vigabatrin (a specific inhibitor of GABA-T), feeding of exogenous GABA, and inhibition of GABA-T gene expression. The results showed that susceptible mites developed resistance to abamectin when the GABA contents were artificially increased. We also observed that the mites with higher GABA contents moved more slowly, which is consistent with the fact that GABA is an inhibitory neurotransmitter in arthropods. Subsequently, functional response assays revealed that predation rates of predatory mites on GABA accumulated abamectin-resistant mites were much higher than control groups. The tolerance to abamectin, slow crawling speed, and vulnerability to predators were all resulted from GABA accumulation. This relationship between GABA and predation was also confirmed in a field-collected population. Our finding indicates that predatory mites might be used as a tool for biological control to circumvent the development of abamectin resistance in mites.
USDA-ARS?s Scientific Manuscript database
Varroa mites are an external parasite of honey bees and a leading cause of colony losses worldwide. Varroa populations can be controlled with miticides, but mite resistant stocks such as the Russian honey bee (RHB) also are available. RHB and other mite resistant stock limit Varroa population growth...
Maeda, Taro; Sakamoto, Yoshiko
2016-11-01
The first record of tracheal mites, Acarapis woodi, in Japan was made in 2010. These mites have since caused serious damage to the colonies of Japanese honey bees, Apis cerana japonica. In the present study, to control the mites on Japanese honey bees with l-menthol, an agent used for European honey bees, Apis mellifera, we investigated (1) the seasonality of menthol efficacy, (2) the overwintering mortality of menthol-treated colonies, and (3) the menthol residue in honey under field conditions in cooperation with private beekeepers of Japanese honey bees. Seasonal menthol efficacy was tested by applying 30 g of l-menthol for 1 month in different seasons. Mite prevalence was measured by dissecting the honey bee thorax. Overwintering mortality was monitored during winter after checking the mite prevalence in autumn, and was compared with that of untreated colonies reported in our previous study. The residual level of menthol in honey was measured by GC-MS. The results showed that the menthol-treated colonies had a smaller rate of increase in mite prevalence than the untreated colonies. The effects of menthol were highest in March and April. The winter mortality was depressed by menthol treatment. Honey samples extracted from the menthol-treated colonies included 0.4 ppm of menthol residue on average. Our findings suggest that menthol treatment is effective for controlling the tracheal mites on Japanese honey bees.
Argolo, Poliane Sá; Jacas, Josep A; Urbaneja, Alberto
2014-01-01
Conservation and augmentative biological control strategies have been developed to take full advantage of the natural enemies that occur in Spanish citrus orchards. Among them, the predatory mites Euseius stipulatus, Neoseiulus californicus and Phytoseiulus persimilis play an important role in the biological control of tetranychid mites. However, these predatory mites are often affected by pesticides and information about the side-effects of these products against these beneficial arthropods is essential to guarantee their efficacy. The side-effects of some pesticides remain unknown and the primary aim of this study was to fill this gap. We have further used this information and that collected from other sources to compare the response of these three mite species to pesticides. Based on this information, E. stipulatus has the most tolerant species, followed by N. californicus and P. persimilis. Therefore, using E. stipulatus as an indicator species in citrus may have led to the paradox of selecting presumed selective pesticides resulting in excessive impact on N. californicus and, especially on P. persimilis. Because these two latter species are considered key for the biological control of T. urticae in citrus, especially clementines, in Spain, we propose to use P. persimilis as the relevant indicator of such effects on predacious mites occurring in citrus instead of E. stipulatus. This change could have a dramatic impact on the satisfactory control of tetranychid mites in citrus in the near future.
Tessa R. Grasswitz
2012-01-01
The biology, recognition, and impact of eriophyid mites (with emphasis on species associated with trees and shrubs) are briefly reviewed. A case study of a leaf-curling eriophyid mite (Aceria sp.) attacking New Mexico olive (Forestiera pubescens Nutt. var. pubescens) is used to illustrate the complexities of developing control strategies for eriophyids in native plant...
Behavioural responses of two-spotted spider mites induced by predator-borne and prey-borne cues.
Gyuris, Enikő; Szép, Erna; Kontschán, Jenő; Hettyey, Attila; Tóth, Zoltán
2017-11-01
Applying predatory mites as biological control agents is a well established method against spider mites which are major pests worldwide. Although antipredator responses can influence the outcome of predator-prey interactions, we have limited information about what cues spider mites use to adjust their behavioural antipredator responses. We experimentally exposed two-spotted spider mites (Tetranychus urticae) to different predator-borne cues (using a specialist predator, Phytoseiulus persimilis, or a generalist predator, Amblyseius swirskii), conspecific prey-borne cues, or both, and measured locomotion and egg-laying activity. The reactions to predator species compared to each other manifested in reversed tendencies: spider mites increased their locomotion activity in the presence of P. persimilis, whereas they decreased it when exposed to A. swirskii. The strongest response was triggered by the presence of a killed conspecific: focal spider mites decreased their locomotion activity compared to the control group. Oviposition activity was not affected by either treatment. Our results point out that spider mites may change their behaviour in response to predators, and also to the presence of killed conspecifics, but these effects were not enhanced when both types of cues were present. The effect of social contacts among prey conspecifics on predator-induced behavioural defences is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Meyer-Kühling, Borris; Pfister, Kurt; Müller-Lindloff, Jürgen; Heine, Josef
2007-07-20
Infestations with the poultry red mite Dermanyssus gallinae represent a major ectoparasite problem in poultry and can affect egg layers worldwide. There is presently a lack of an ectoparasiticide in Europe for poultry which can assure a 0-day withholding period for eggs. In this study, ByeMite (phoxim 50%, Bayer HealthCare, Animal Health Division) was administered to treat a D. gallinae infestation in a poultry house stocked with egg-laying hens kept in a cage system. A layer house was sprayed twice within a 7-day interval using a solution containing 2000 ppm phoxim and a similar layer house was used as an untreated control unit. Specially developed D. gallinae traps made of cardboard were used to assess the mite density in both layer houses during a 49-day period after the treatment. In order to collect mites, the traps were placed on days--1, 2, 6, 9, 13, 20, 34 and 48 and always removed after 24 h. The collected mites were counted and differentiated according to their developmental stage (mite eggs, larvae, nymphs, adults). Three days after the first spray treatment, the efficacy against all mite stages (larvae, nymphs, adults) was 96.1%, and from day 7 post-treatment until the end of the trial (day 49) the efficacy exceeded 99%. In contrast, in the untreated layer house (negative control group) the mite population showed a 400% increase. No treatment-related side effects in chickens were detectable. It is concluded that two administrations of ByeMite within a 7-day interval are highly effective against D. gallinae infestations in a stocked poultry house.
Yasine, Ahmed; Kumsa, Bersissa; Hailu, Yacob; Ayana, Dinka
2015-05-24
Mites are one of the most common and widely distributed ectoparasites of small ruminants in Ethiopia, contributing to major hindrances in livestock productivity in the country. Despite of this fact, specific study was not conducted on mites of small ruminants in Ethiopia. Therefore, the present study was performed from October 2009 to May 2010 to determine the prevalence and species composition of mites in three agroecological zones in north eastern Ethiopia. In addition, a questionnaire survey on mites was conducted to assess the control practices and awareness of farmers in the study areas. Out of a total of 1280 sheep and 1264 goats examined, 97(7.6 %) of sheep and 174(13.8 %) goats were infested with one or more species of mites. In goats an overall prevalence of 10.3 % Sarcoptes, 2.8 % Demodex and 0.6 % Psoroptes were recorded whereas in sheep an overall prevalence of 3.5 % Sarcoptes, 2.1 % Demodex and 1.6 % Psoroptes were observed. Sarcoptes (P = 0.03; OR = 2.1) and Demodex (OR = 3.25; p = 0.004) were significantly more common in young than in adult sheep. Demodectic mange was significantly higher in young (4.1 %) compared to adult (2.3 %) goats (OR = 2.2; P = 0.02). Significantly higher (P < 0.01) overall prevalence of sarcoptic and demodectic mites in both sheep and goats with poor than with good body condition was recorded. Results of the questionnaire survey supported results of our cross-sectional study. This study demonstrates high prevalence of mange mites in sheep and goats of the study area. The study revealed that Sarcoptes is the predominant mite in both sheep and goats. Animal owners and veterinarians should consider mite control in small ruminants as part of the routine ectoparasite control in Ethiopia.
O'Reilly, Andrias O; Williamson, Martin S; González-Cabrera, Joel; Turberg, Andreas; Field, Linda M; Wallace, B A; Davies, T G Emyr
2014-03-01
The pyrethroid insecticides are a very successful group of compounds that target invertebrate voltage-gated sodium channels and are widely used in the control of insects, ticks and mites. It is well established that some pyrethroids are good insecticides whereas others are more effective as acaricides. This species specificity is advantageous for controlling particular pest(s) in the presence of another non-target invertebrate, for example controlling the Varroa mite in honeybee colonies. We applied in silico techniques to compare the voltage-gated sodium channels of insects versus ticks and mites and their interactions with a range of pyrethroids and DDT analogues. We identified a single amino acid difference within the pyrethroid binding pocket of ticks/mites that may have significant impact on the effectiveness of pyrethroids as acaricides. Other individual amino acid differences within the binding pocket in distinct tick and mite species may provide a basis for future acaricidal selectivity. Three-dimensional modelling of the pyrethroid/DDT receptor site has led to a new hypothesis to explain the preferential binding of acaricidal pyrethroids to the sodium channels of ticks/mites. This is important for understanding pyrethroid selectivity and the potential effects of mutations that can give rise to resistance to pyrethroids in commercially-important pest species. © 2013 Society of Chemical Industry.
Competitive interactions among four pest species of earth mites (Acari: Penthaleidae).
Umina, P A; Hoffmann, A A
2005-04-01
Earth mites are major winter pests of a variety of crops and pastures in southern Australia. Competition between four earth mite species was investigated using field and shadehouse experiments. The influence of different plant hosts on the frequency and intensity of competitive interactions also were examined. This information is important, because control attempts that eradicate one species of mite could be directly followed by an increase in abundance of another earth mite species. There were strong effects of intraspecific competition on the reproductive rate of species, while interspecific interactions between Halotydeus destructor (Tucker) and Penthaleus species and between the three Penthaleus species also were detected. Competitive abilities were altered on the different plant types. On pasture, the competitive advantage swayed between Penthaleus major (Dugés), H. destructor, and Penthaleus falcatus (Qin & Halliday). Penthaleus sp. x was the strongest competitor in a mixture of wheat, Triticum aestivum (L.), and oats, Avena sativa (L.), whereas on canola, Brassica napus (L.), and bristly ox-tongue, Picris echioides (L.), P. falcatus, and H. destructor were superior competitors. These results suggest that competition is a strong force influencing the abundance of earth mites in the field and that host plant factors are important in shaping the type of interactions. This highlights the importance of identifying mite species when considering control options and suggests that effective control recommendations need to be developed for each individual species.
Large-bodied Demodex mite infestation in 4 dogs.
Hillier, Andrew; Desch, Clifford E
2002-03-01
Large-bodied Demodex mites were detected in 4 dogs. The mites were readily detected in material obtained via deep skin scrapings and were most commonly found on the trunk. The mites were distinguishable from D. canis, because adult males were approximately 100% longer and adult females were approximately 50% longer than adult male and female D. canis mites, respectively. The large-bodied mites were found in the hair follicles, sebaceous ducts, and sebaceous glands in histologic sections of skin from 2 dogs. All dogs had adult-onset generalized demodicosis. Two dogs had coexistent iatrogenic hypercortisolism, 1 dog had hypothyroidism, and 1 dog did not have coexistent disease. Infestations responded to miticidal therapy, control of the coexistent disease, or both.
Understanding the biology and control of the poultry red mite Dermanyssus gallinae: a review.
Pritchard, James; Kuster, Tatiana; Sparagano, Olivier; Tomley, Fiona
2015-01-01
Dermanyssus gallinae, the poultry red mite (PRM), is a blood-feeding ectoparasite capable of causing pathology in birds, amongst other animals. It is an increasingly important pathogen in egg layers and is responsible for substantial economic losses to the poultry industry worldwide. Even though PRM poses a serious problem, very little is known about the basic biology of the mite. Here we review the current body of literature describing red mite biology and discuss how this has been, or could be, used to develop methods to control PRM infestations. We focus primarily on the PRM digestive system, salivary glands, nervous system and exoskeleton and also explore areas of PRM biology which have to date received little or no study but have the potential to offer new control targets.
Brauneis, Maria D; Zoller, Hartmut; Williams, Heike; Zschiesche, Eva; Heckeroth, Anja R
2017-12-02
Dermanyssus gallinae, the poultry red mite, is a growing threat to chickens in poultry farms. This nocturnal hematophagous ectoparasite has a rapid rate of proliferation with a negative impact on the birds' health, welfare and productivity resulting in severe economic consequences for poultry farmers. A study was performed with fluralaner, a novel systemic ectoparasiticide, to evaluate its effect on mite vitality and reproduction after oral administration to laying hens. Sixteen healthy hens were randomly allocated to two study groups (n = 8). One group was orally treated with fluralaner by gavage at a dose of 0.5 mg/kg bodyweight twice 7 days apart. The negative control group received no treatment. Hens in each group were repeatedly infested with approximately 200 unfed adult D. gallinae at 1, 5, 8, 12, 15, 19, 22 and 26 days after the initial administration. After infestation and feeding for 2.5 h, 25 engorged mites per hen were collected and incubated in tubes. Mites were assessed for vitality (dead/live) at 4, 8, 12, and 24 h after each infestation. Tubes containing eggs and/or living mites were incubated another 8 days for assessment of mite reproductive capacity. Fluralaner demonstrated a fast speed of kill in mites within 4 h post-infestation for 12 days after treatment initiation. An efficacy (mite mortality) of 98.7-100% was achieved. At 15 days after treatment initiation, 100% efficacy was achieved within 24 h post-infestation, and no mite oviposition occurred during this period. Nineteen days after treatment initiation, the mites' ability to generate nymphs was reduced by 90.8%, which decreased to < 24.1% at later infestations. Fluralaner administered orally to hens twice, 7 days apart, provides efficacy against experimental poultry red mite infestation for at least 2 weeks. The demonstrated rapid speed of kill results in substantial depletion of the mites' oviposition and suggests that fluralaner can be an effective tool in the control of D. gallinae, one of the most urgent problems in poultry farms.
2011-01-01
Background There is a long-standing controversial about how parthenogenetic species can be defined in absence of a generally accepted species concept for this reproductive mode. An integrative approach was suggested, combining molecular and morphological data to identify distinct monophyletic entities. Using this approach, speciation of parthenogenetic lineages was recently demonstrated for groups of bdelloid rotifers and oribatid mites. Trhypochthonius tectorum, an oribatid mite from the entirely parthenogenetic desmonomatan family Trhypochthoniidae, is traditionally treated as a single species in Central Europe. However, two new morphological lineages were recently proposed for some Austrian populations of T. tectorum, and were described as novel subspecies (T. silvestris europaeus) or form (T. japonicus forma occidentalis). We used the morphological and morphometrical data which led to this separation, and added mitochondrial and nuclear DNA sequences and the chemical composition of complex exocrine oil gland secretions to test this taxonomical hypothesis. This is the first attempt to combine these three types of data for integrative taxonomical investigations of oribatid mites. Results We show that the previous European species T. tectorum represents a species complex consisting of three distinct lineages in Austria (T.tectorum, T. silvestris europaeus and T. japonicus forma occidentalis), each clearly separated by morphology, oil gland secretion profiles and mitochondrial cox1 sequences. This diversification happened in the last ten million years. In contrast to these results, no variation among the lineages was found in the nuclear 18S rDNA. Conclusions Our approach combined morphological, molecular and chemical data to investigate diversity and species delineation in a parthenogenetic oribatid mite species complex. To date, hypotheses of a general oribatid mite phylogeny are manifold, and mostly based on single-method approaches. Probably, the integrative approach proposed here can be used to uncover further hidden biodiversity of glandulate Oribatida and help to build up more stable phylogenetic hypotheses in the future. PMID:21303503
Van Leeuwen, Thomas; Tirry, Luc; Yamamoto, Atsushi; Nauen, Ralf; Dermauw, Wannes
2015-06-01
Acaricides are one of the cornerstones of an efficient control program for phytophagous mites. An analysis of the global acaricide market reveals that spider mites such as Tetranychus urticae, Panonychus citri and Panonychus ulmi are by far the most economically important species, representing more than 80% of the market. Other relevant mite groups are false spider mites (mainly Brevipalpus), rust and gall mites and tarsonemid mites. Acaricides are most frequently used in vegetables and fruits (74% of the market), including grape vines and citrus. However, their use is increasing in major crops where spider mites are becoming more important, such as soybean, cotton and corn. As revealed by a detailed case study of the Japanese market, major shifts in acaricide use are partially driven by resistance development and the commercial availability of compounds with novel mode of action. The importance of the latter cannot be underestimated, although some compounds are successfully used for more than 30 years. A review of recent developments in mode of action research is presented, as such knowledge is important for devising resistance management programs. This includes spirocyclic keto-enols as inhibitors of acetyl-CoA carboxylase, the carbazate bifenazate as a mitochondrial complex III inhibitor, a novel class of complex II inhibitors, and the mite growth inhibitors hexythiazox, clofentezine and etoxazole that interact with chitin synthase I. Copyright © 2014 Elsevier Inc. All rights reserved.
Ochiai, Noriaki; Mizuno, Masayuki; Mimori, Norihiko; Miyake, Toshihiko; Dekeyser, Mark; Canlas, Liza Jara; Takeda, Makio
2007-01-01
Bifenazate is a novel carbazate acaricide discovered by Uniroyal Chemical (now Chemtura Corporation) for the control of phytophagous mites infesting agricultural and ornamental crops. Its acaricidal activity and that of its principal active metabolite, diazene, were characterized. Bifenazate and diazene had high toxicity and specificity both orally and topically to all life stages of Tetranychus urticae and Panonychus citri. Acute poisoning was observed with no temperature dependency. No cross-resistance was found to mites resistant to several other classes of acaricides, such as tebufenpyrad, etoxazole, fenbutatin oxide and dicofol. Bifenazate remained effective for a long time with only about a 10% loss of efficacy on T. urticae after 1 month of application in the field. All stages of development of the predatory mites, Phytoseiulus persimilis and Neoseiulus californicus, survived treatment by both bifenazate and diazene. When adult females of the two predatory mite species were treated with either bifenazate or diazene, they showed a normal level of fecundity and predatory activity in the laboratory, effectively suppressing spider mite population growth. Even when the predators were fed spider mite eggs that had been treated previously with bifenazate, they survived. These findings indicate that bifenazate is a very useful acaricide giving high efficacy, long-lasting activity and excellent selectivity for spider mites. It is, therefore, concluded that bifenazate is an ideal compound for controlling these pest mites.
Fine mapping for SNP markers associated with VSH behavior
USDA-ARS?s Scientific Manuscript database
Varroa Sensitive Hygiene (VSH) is a trait that effectively reduces varroa mite populations by removal of brood cells that contain primarily reproductive mites. Breeding for VSH has proven to be a successful control of mite populations in both pure VSH colonies as well as in out-crossed populations....
[Investigation of Acaroid mites breeding in stored dry fruits].
Tao, Ning; Zhan, Xiao-dong; Sun, En-tao; Li, Chao-pin
2015-12-01
To study the species and density of Acaroid mites breeding in stored dry fruits. The samples from the dried fruit stores and warehouses were collected, and the mites breeding in them were separated, then the slides with mites were prepared and observed by a light microscope for species identification and counting. The indexes such as the breeding density, species richness index, diversity index and evenness index were calculated. Totally 12 species of Acaroid mites belonging to 6 families and 10 genera were obtained from the total 49 samples. The dominant mite species were Carpoglyphus lactis, Tyrophagus putrescentiae, Acarus siro, and Caloglyphus berlesei. The breeding densities of mites in longans, filberts and plum candies were 79.78, 48.91, 35.73 mites/g, respectively, which were higher than those in other dry fruits. The seasonal variation experiment of mites found that the average breeding density of acaroid mites was higher in July and October, the richness index and diversity index reached the highest value in July, and the evenness index was higher in January and April. The observation of the growth and decline of Acaroid mites under the artificial condition found the number of Caloglyphus berlesei declined sharply and Tyrophagus putrescentiae first increased and then decreased. The pollution of Acaroid mites is serious in the stored dried fruits, for which the positive prevention and control measures to the mite breeding should be taken to reduce the harm.
Novakova, Silviya M; Novakova, Plamena I; Yakovliev, Plamen H; Staevska, Maria T; Mateva, Nonka G; Dimcheva, Teodora D; Peichev, Jivko L
2018-05-01
Background Allergic rhinitis is the most common allergic disorder. Although the management of the disease is successful in many patients, based on guidelines, some of them remain with symptoms uncontrolled with pharmacotherapy. Presently, there is no substantiated information on the control of allergic rhinitis in patients who underwent sublingual immunotherapy. Objective The purpose of this prospective follow-up study was to assess the control of allergic rhinitis in adults after a three-year course of house dust mite sublingual immunotherapy. Methods This prospective real-life study was designed to include adults with moderate to severe allergic rhinitis sensitized to house dust mite who underwent a three-year course of sublingual immunotherapy. Control of symptoms was assessed by Rhinitis Control Assessment Test (RCAT) after three years of house dust mite sublingual immunotherapy. Additionally, patients assessed their symptoms by utilizing a visual analog scale. Results A total number of 86 consecutively enrolled patients (46 (53.49%) men; mean age 26.10 years (SD = 5.85)) with moderate to severe allergic rhinitis and clinically relevant sensitization to house dust mite were evaluated. When assessed by RCAT on the third year, 74 (86.05%) had well-controlled symptoms and 20 (27.03%) of them were completely controlled. A significant reduction in visual analog scale scores-from 7.52 cm at baseline to 2.31 cm-was established ( P < 0.0001). There was a strong negative correlation between RCAT scores and visual analog scale (r = -0.65; P < 0.01). Conclusion This study provided evidence that a three-year course of house dust mite sublingual immunotherapy appears effective in controlling the symptoms of allergic rhinitis.
Lime sulfur toxicity to broad mite, to its host plants and to natural enemies.
Venzon, Madelaine; Oliveira, Rafael M; Perez, André L; Rodríguez-Cruz, Fredy A; Martins Filho, Sebastião
2013-06-01
An acaricidal effect of lime sulfur has not been demonstrated for Polyphagotarsonemus latus. However, lime sulfur can cause toxicity to natural enemies and to host plants. In this study, the toxicity of different concentrations of lime sulfur to P. latus, to the predatory mite Amblyseius herbicolus and to the predatory insect Chrysoperla externa was evaluated. Additionally, the phytotoxicity of lime sulfur to two P. latus hosts, chili pepper and physic nut plants, was determined. Lime sulfur at a concentration of 9.5 mL L(-1) restrained P. latus population growth. However, this concentration was deleterious to natural enemies. The predatory mite A. herbicolus showed a negative value of instantaneous growth rate, and only 50% of the tested larvae of C. externa reached adulthood when exposed to 10 mL L(-1) . Physic nut had severe injury symptoms when sprayed with all tested lime sulfur concentrations. For chili pepper plants, no phytoxicity was observed at any tested concentration. Lime sulfur might be used for P. latus control on chili pepper but not on physic nut owing to phytotoxicity. Care should be taken when using lime sulfur in view of negative effects on natural enemies. Selective lime sulfur concentration integrated with other management tactics may provide an effective and sustainable P. latus control on chili pepper. © 2012 Society of Chemical Industry.
High infestation levels of Schizotetranychus oryzae severely affects rice metabolism.
Blasi, Édina A R; Buffon, Giseli; Rativa, Angie G S; Lopes, Mara C B; Berger, Markus; Santi, Lucélia; Lavallée-Adam, Mathieu; Yates, John R; Schwambach, Joséli; Beys-da-Silva, Walter O; Sperotto, Raul A
2017-12-01
High levels of Schizotetranychus oryzae phytophagous mite infestation on rice leaves can severely affect productivity. Physiological characterization showed that S. oryzae promotes a decrease in chlorophyll concentration and the establishment of a senescence process in rice leaves. Late-infested leaves also present high levels of superoxide radical and hydrogen peroxide accumulation, along with high levels of membrane integrity loss, which is indicative of cell death. To better understand the rice molecular responses to high levels of mite infestation, we employed the Multidimensional Protein Identification Technology (MudPIT) approach to identify differentially expressed proteins. We identified 83 and 88 proteins uniquely present in control and late-infested leaves, respectively, along with 11 and one proteins more abundant in control and late-infested leaves, respectively. S. oryzae infestation induces a decreased abundance of proteins related to translation, protease inhibition, and photosynthesis. On the other hand, infestation caused increased abundance of proteins involved in protein modification and degradation. Our results also suggest that S. oryzae infestation interferes with intracellular transport, DNA structure maintenance, and amino acid and lipid metabolism in rice leaves. Proteomic data were positively correlated with enzymatic assays and RT-qPCR analysis. Our findings describe the protein expression patterns of late-infested rice leaves and suggest several targets which could be tested in future biotechnological approaches aiming to avoid the population increase of phytophagous mite in rice plants. Copyright © 2017 Elsevier GmbH. All rights reserved.
Mullens, Bradley A; Owen, Jeb P; Kuney, Douglas R; Szijj, Coralie E; Klingler, Kimberly A
2009-03-09
Establishment and spread of Ornithonyssus sylviarum were documented through time on sentinel hens (50 per house of 28,000-30,000 hens) in the first egg production cycle of three large commercial flocks (12 houses) of white leghorn hens. Mites were controlled using acaricide, and the impacts of treatment on mite populations and economic performance were documented. Mite prevalence and intensity increased rapidly and in tandem for 4-8 weeks after infestation. Intensity declined due to immune system involvement, but prevalence remained high, and this would affect mite sampling plan use and development. Early treatment was more effective at controlling mites; 85% of light infestations were eliminated by a pesticide spray (Ravap), versus 24% of heavy infestations. Hens infested later developed lower peak mite intensities, and those mite populations declined more quickly than on hens infested earlier in life. Raw spatial association by distance indices (SADIE), incorporating both the intensity and distribution of mites within a house, were high from week-to-week within a hen house. Once adjusted spatially to reflect variable hen cohorts becoming infested asynchronously, this analysis showed the association index tended to rebound at intervals of 5-6 weeks after the hen immune system first suppressed them. Large, consistent mite differences in one flock (high vs. low infestation levels) showed the economic damage of mite parasitism (assessed by flock indexing) was very high in the initial stages of mite expansion. Unmitigated infestations overall reduced egg production (2.1-4.0%), individual egg weights (0.5-2.2%), and feed conversion efficiency (5.7%), causing a profit reduction of $0.07-0.10 per hen for a 10-week period. Asynchronous infestation patterns among pesticide-treated hens may have contributed to a lack of apparent flock-level economic effects later in the production cycle. Individual egg weights differed with mite loads periodically, but could be either higher or lower, depending on circumstances and interactions with hen weight. Individual hen weight gains were depressed by high/moderate mite loads, but the heavier hens in a flock harbored more mites. This led to compensatory weight gains after mites declined. Tradeoffs between resource allocation to body growth or production versus immune system function appeared to be operating during the early and most damaging mite infestation period, when high egg production was beginning and the hens were gaining weight. The results were related to other studies of mite impact on domestic hens and to wild bird-ectoparasite studies. Much of the mite economic damage probably is due to engaging and maintaining the immune response.
The role of onion-associated fungi in bulb mite infestation and damage to onion seedlings.
Ofek, Tal; Gal, Shira; Inbar, Moshe; Lebiush-Mordechai, Sara; Tsror, Leah; Palevsky, Eric
2014-04-01
In Israel Rhizoglyphus robini is considered to be a pest in its own right, even though the mite is usually found in association with fungal pathogens. Plant protection recommendations are therefore to treat germinating onions seedlings, clearly a crucial phase in crop production, when mites are discovered. The aim of this study was to determine the role of fungi in bulb mite infestation and damage to germinating onion seedlings. Accordingly we (1) evaluated the effect of the mite on onion seedling germination and survival without fungi, (2) compared the attraction of the mite to species and isolates of various fungi, (3) assessed the effect of a relatively non-pathogenic isolate of Fusarium oxysporum on mite fecundity, and (4) determined the effects of the mite and of F. oxysporum separately and together, on onion seedling germination and sprout development. A significant reduction of seedling survival was recorded only in the 1,000 mites/pot treatment, after 4 weeks. Mites were attracted to 6 out of 7 collected fungi isolates. Mite fecundity on onion sprouts infested with F. oxysporum was higher than on non-infested sprouts. Survival of seedlings was affected by mites, fungi, and their combination. Sprouts on Petri dishes after 5 days were significantly longer in the control and mite treatments than both fungi treatments. During the 5-day experiment more mites were always found on the fungi-infected sprouts than on the non-infected sprouts. Future research using suppressive soils to suppress soil pathogens and subsequent mite damage is proposed.
Sommer, D; Heffels-Redmann, U; Köhler, K; Lierz, M; Kaleta, E F
2016-01-01
The aim of this study was to investigate the role of the poultry red mite (Dermanyssus [D.] gallinae) in the horizontal transmission of avian influenza A virus (AIV) to chickens. This mite is the most common ectoparasite in poultry worldwide, and may play a role in the spread of infectious agents including AIV. Currently, the control of mites is difficult due to frequently developed resistance to many acaricides, their nocturnality and their ability to survive hidden without feeding for months. D. gallinae were collected in a commercial layer farm and housed in self-made fibreboard boxes. SPF chickens were intravenously infected with AIV strain A/turkey/Ontario/7732/1966 (H5N9). The viraemia in chickens was monitored and at an appropriate time point about 1000 mites were allowed to suck on the AIV infected chickens. Re-isolation of the virus from blood-filled mites was tried daily for 14 days using chicken embryo fibroblast cultures and embryonated chicken eggs. Subsequently, the virus containing mites were placed into boxes that contained naïve SPF chickens to enable virus transmission from mites to chickens. Possible transmission to the chickens was examined using clinical signs, serology, gross lesions, histopathology and immunohistochemistry. Chickens developed a dose-dependent viraemia one day after infection, therefore this day was chosen for the bloodmeal of the mites. AIV was detected in mites after bloodsucking on AIV-infected chickens over a 10-day period. Naïve SPF chickens were infected during bloodsucking of AIV carrying mites. AIV isolates in mites and in chickens were undistinguishable from the original AIV inoculum by RT-PCR. D. gallinae ingested AIV during bloodmeals on AIV infected chickens and are able to transmit AIV to SPF chickens. Therefore, mites serve as mechanical vector of AIV and may play a major role in the circulation of AIV within a facility or area although the life span of infectious virus in the mite is limited. The proven transmission requires more than ever a systematic control of this ectoparasite in order to maintain poultry health and productivity. The demonstrated vector function of this mite is of great significance for poultry flocks all over the world.
Trandem, Nina; Berdinesen, Ronny; Pell, Judith K; Klingen, Ingeborg
2016-02-01
Introducing the predatory mite Phytoseiulus persimilis into two-spotted spider mite, Tetranychus urticae, populations significantly increased the proportion of T. urticae infected with the spider mite pathogen Neozygites floridana in one of two experiments. By the final sampling occasion, the number of T. urticae in the treatment with both the predator and the pathogen had declined to zero in both experiments, while in the fungus-only treatment T. urticae populations still persisted (20-40 T. urticae/subsample). Releasing P. persimilis into crops in which N. floridana is naturally present has the potential to improve spider mite control more than through predation alone. Copyright © 2016 Elsevier Inc. All rights reserved.
Weber, Marjorie G.; Porturas, Laura D.; Taylor, Scott A.
2016-01-01
Background and Aims Mite domatia are small structures on the underside of plant leaves that provide homes for predacious or fungivorous mites. In turn, mites inhabiting domatia defend the plant by consuming leaf herbivores and pathogens, which can result in a domatia-mediated, plant–mite defence mutualism. Several recent studies have suggested that plants receive enhanced benefits when they provide a foliar food source, such as sugars secreted from extrafloral nectaries, to mite mutualists alongside mite domatia. However, the effect of foliar sugar on reducing leaf pathogen load via domatia-inhabiting mites has not been directly investigated. Methods To fill this gap, the links between foliar sugar addition, domatia-inhabiting mite abundance, and pathogen load were experimentally evaluated in wild grape. Furthermore, because the proposed combined benefits of providing food and housing have been hypothesized to select for the evolutionary correlation of extrafloral nectaries and domatia across plant lineages, a literature survey aimed at determining the overlap of mite domatia and extrafloral nectaries across plant groups was also conducted. Key Results It was found that leaves with artificial addition of foliar sugar had 58–80 % more mites than leaves without foliar sugar addition, and that higher mite abundances translated to reduced powdery mildew (Erysiphe necator) loads on leaves. It was found that mite domatia and extrafloral nectaries occur non-randomly in the same clades across Eudicots. Genera with both traits are reported to highlight candidate lineages for future studies. Conclusions Together, the results demonstrate that foliar sugar can indeed enhance the efficacy of domatia-mediated plant–mite mutualisms, and suggest that this synergism has the potential to influence the co-distribution of foliar nectar and mite domatia across plants. PMID:27343230
Yoo, Yang Sook; Cho, Ok Hee; Kim, Eun Sin; Jeong, Hye Sun
2005-06-01
This study was designed to examine the effect of asthma management education program applied to allergic asthma patients receiving immunotherapy due to house dust mite on their stress and compliance with health care regimens. A quasi experimental design with non-equivalent control group and non-synchronized design was used. The subjects of this study were 61 patients who were receiving immunotherapy at intervals of a week after their symptoms were diagnosed as house dust mite allergic asthma at the pulmonary department of a university hospital in Seoul. They were divided into an experimental group of 29 patients who received asthma management education and a control group of 32 patients. The asthma management education program was composed of group education (once) and reinforcement education (three times) with environmental therapy and immunotherapy to house dust mite. Stress significantly decreased in the experimental group compared to that in the control group. Compliance with health care regimens significantly increased in the experimental group compared to that in the control group. The results suggested that the asthma management education program is effective for the management of stress and the improvement of compliance in patients with allergic asthma to house dust mite.
Sánchez Caraballo, Jorge Mario; Cardona Villa, Ricardo
2012-01-01
Background. Immunotherapy has proven to be an useful tool in the management of allergic respiratory diseases; however, little has been studied in atopic dermatitis. Objective. To evaluate the clinical and immunological impact of immunotherapy with mites allergen extracts in atopic dermatitis. Methods. Patients with atopic dermatitis were assigned with computer-generated randomization to either of the following groups: (a) controls received only topical treatment with steroids and/or tacrolimus and (b) actively treated patients received topical treatment plus immunotherapy. Levels of serum total IgE, mites-specific IgE and IgG4 were assessed at study start and after one year of immunotherapy. Results. 31 patients in the active group and 29 in the control group completed the study. Symptoms and medication scores were significantly reduced in the active group after six months. Three patients in the control group showed new sensitizations to mites, while 3 patients in the active group showed neosensitization to shrimp with negative oral food challenge. We observed significant increase of mites-specific IgG4 levels in active group. Conclusion. Specific allergen immunotherapy induced a tolerogenic IgG4 response to mite allergens associated with favorable clinical effects in atopic dermatitis patients. PMID:23724240
Identification and disruption of bacteria associated with sheep scab mites-novel means of control?
Hall, S A; Mack, K; Blackwell, A; Evans, K A
2015-10-01
Psoroptes ovis mites, which cause psoroptic mange (sheep scab), were investigated to identify potential bacterial targets for endosymbiont control of sheep scab. In addition, transmission of bacteria to the sheep skin was investigated through the characterisation of bacteria present in P. ovis faecal trails and on the fleece environment by internal transcribed spacer (ITS) sequencing. A diverse range of bacteria was identified in addition to a potential endosymbiont candidate, Comamonas sp, which was detected in P. ovis by both ITS PCR and endosymbiont-specific PCR. Disruption of these bacteria within P. ovis, through the use of antibiotics, was explored; with significant reduction in mean mite survival when administered antibiotic diets compared with controls (LR4 = 23.12, P < 0.001). The antibiotic treatments also significantly affected the bacterial density (CFU/mite) within P. ovis, indicating that mite survival may be linked to the bacterial communities that they harbour. Although antibiotics are not suitable for practical application, these results suggest disrupting bacteria associated with P. ovis should be further investigated for novel control. Copyright © 2015 Elsevier Inc. All rights reserved.
Moran, Patrick J; Wibawa, M Irene; Smith, Lincoln
2017-12-01
Aceria salsolae (Acari: Eriophyidae) is being evaluated as a candidate biological control agent of Russian thistle (Salsola tragus, Chenopodiaceae), a major invasive weed of rangelands and dryland crops in the western USA. Prior laboratory host range testing under artificial lighting indicated reproduction on non-native Bassia hyssopifolia and on a native plant, Suaeda calceoliformis. However, in field tests in the native range, mite populations released on these 'nontarget' plants remained low. We hypothesized that UV-A light, which can affect behavior of tetranychid mites, would affect populations of the eriophyid A. salsolae differently on the target and nontarget plant species, decreasing the mite's realized host range. Plants were infested with A. salsolae under lamps that emitted UV-A, along with broad-spectrum lighting, and the size of mite populations and plant growth was compared to infested plants exposed only to broad-spectrum light. Russian thistle supported 3- to 55-fold larger mite populations than nontarget plants regardless of UV-A treatment. UV-A exposure did not affect mite populations on Russian thistle or S. calceoliformis, whereas it increased populations 7-fold on B. hyssopifolia. Main stems on nontarget plants grew 2- to 6-fold faster than did Russian thistle under either light treatment. The two nontarget plants attained greater volume under the control light regime than UV-A, but Russian thistle was unaffected. Although Russian thistle was always the superior host, addition of UV-A light to the artificial lighting regime did not reduce the ability of A. salsolae to reproduce on the two nontarget species, suggesting that UV-B or other environmental factors may be more important in limiting mite populations in the field.
Turgut Erdemir, A; Gurel, M S; Koku Aksu, A E; Bilgin Karahalli, F; Incel, P; Kutlu Haytoğlu, N S; Falay, T
2014-11-01
Reflectance confocal microscopy (RCM) has been recently shown to be effective for measuring the Demodex mite density. To compare and demonstrate the advantages and disadvantages of standardized skin surface biopsy (SSSB) and RCM for measuring the density of Demodex mites. Forty-eight patients (30 female, 18 male) and 47 healthy controls (30 female, 17 male) were enrolled in the study. The patients diagnoses were pityriasis folliculorum (n = 40), papulopustulary rosecea (n = 7) and erythema-telengiectatic rosacea (n = 1). The area with the most intense erythema on the right cheek was selected for imaging with RCM (VivaScope 3000) and SSSB. Forty-two patients demonstrated high Demodex density [(Dd) > 5 mites/cm(2) ] with SSSB (85.7%). RCM identified demodicosis in 48 patients (100%). The mean Dd measured with RCM (409.8 ± 209.2) was significantly higher than SSSB (15.33 ± 18.1) (P < 0.001). In the patients, RCM demonstrated the mean number of mites 40.90 ± 20.9 and 4.11 ± 6.4 in the controls per 10 mm(2) area. The corresponding mean number of 2.63 ± 0.77 mites was detected in the infested follicles per area of view compared to a mean of 0.77 ± 0.98 mites in the infested follicles in the controls (P < 0.001). Reflectance confocal microscopy is a fast, direct and noninvasive method for Demodex-associated diseases and it is superior to SSSB for Demodex mite detection. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
de Moraes, Jamile; Franklin, Elizabeth; de Morais, José Wellington; de Souza, Jorge Luiz Pereira
2011-09-01
Small-scale spatial distribution of oribatid mites has been investigated in Amazonia. In addition, medium- and large-scale studies are needed to establish the utility of these mites in detecting natural environmental variability, and to distinguish this variability from anthropogenic impacts. We are expanding the knowledge about oribatid mites in a wet upland forest reserve, and investigate whether a standardized and integrated protocol is an efficient way to assess the effects of environmental variables on their qualitative and quantitative composition on a large spatial scale inside an ecological reserve in Central Amazonia, Brazil. Samples for Berlese-Tullgren extraction were taken in 72 plots of 250 × 6 m distributed over 64 km(2). In total 3,182 adult individuals, from 82 species and 79 morphospecies were recorded, expanding the number of species known in the reserve from 149 to 254. Galumna, Rostrozetes and Scheloribates were the most speciose genera, and 57 species were rare. Rostrozetes ovulum, Pergalumna passimpuctata and Archegozetes longisetosus were the most abundant species, and the first two were the most frequent. Species number and abundance were not correlated with clay content, slope, pH and litter quantity. However, Principal Coordinate Analysis indicated that as the percentage of clay content, litter quantity and pH changed, the oribatid mite qualitative and quantitative composition also changed. The standardized protocol effectively captured the diversity, as we collected one of the largest registers of oribatid mites' species for Amazonia. Moreover, biological and ecological data were integrated to capture the effects of environmental variables accounting for their diversity and abundance.
Oliveira, D C; de Moraes, G J; Dias, C T S
2012-08-01
The coconut mite, Aceria guerreronis Keifer, is one of the main pests of coconut palms (Cocos nucifera) in northeastern Brazil. The objective of this study was to evaluate the levels of the coconut mite and other mites on coconut palms in the state of São Paulo and to estimate the possible role of predatory mites in the control of this pest. The effect of cultivated genotypes and sampling dates on the mite populations was also estimated. We sampled attached fruits, leaflets, inflorescences, and fallen fruits. The coconut mite was the main phytophagous mite found on attached and fallen fruits, with average densities of 110.0 and 20.5 mites per fruit, respectively. The prevalent predatory mites on attached and fallen fruits were Proctolaelaps bulbosus Moraes, Reis & Gondim Jr. and Proctolaelaps bickleyi (Bram), both Melicharidae. On leaflets, the tenuipalpids Brevipalpus phoenicis (Geijsks) and Tenuipalpus coyacus De Leon and the tetranychid Oligonychus modestus (Banks) were the predominant phytophagous mites. On both leaflets and inflorescences, the predominant predatory mites belonged to the Phytoseiidae. Neoseiulus baraki (Athias-Henriot) and Neoseiulus paspalivorus (De Leon), predators widely associated with the coconut mite in northeastern Brazil and several other countries, were not found. The low densities of the coconut mite in São Paulo could be related to prevailing climatic conditions, scarcity of coconut plantations (hampering the dispersion of the coconut mite between fields), and to the fact that some of the genotypes cultivated in the region are unfavorable for its development.
STUDY OF ACAROID MITES POLLUTION IN STORED FRUIT-DERIVED CHINESE MEDICINAL MATERIALS.
Xu, Li-fa; Li, He-xia; Xu, Peng-fei; Xu, Hai-feng; Li, Chao-pin
2015-08-01
to investigate the species and breeding density of acaroid mites in stored fruit-derived Chinese medicinal materials in Anhui province. samples of stored fruit-derived Chinese medicinal materials were collected from 30 herb stores and storehouses in 17 Anhui cities, where the breeding acaroids mites were detected. 20 species of acaroids mites were found in 33 samples, belonging to 15 genus, 5 families of the acaridae respectively, among which T. putrescentiae, A. farinae, C. lactis, and C. berlesei are predominant species. stored fruit-derived Chinese medicinal materials in Anhui areas suffer from serious acaroid mites pollution. Therefore, proactive measures should be taken to control acaroid mites from breeding in an effort to reduce the harm on medicinal materials. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Makert, Gustavo R; Vorbrüggen, Susanne; Krautwald-Junghanns, Maria-Elisabeth; Voss, Matthias; Sohn, Kai; Buschmann, Tilo; Ulbert, Sebastian
2016-07-01
The poultry red mite (PRM) Dermanyssus gallinae causes high economic losses and is among the most important parasites in poultry farming worldwide. Different chemical, physical, and biological strategies try to control the expansion of PRM. However, effective solutions to this problem still have to be found. Here, we present a method for the development of an immunological control strategy, based on the identification of mite protein antigens which elicit antibodies with anti-mite activity in the immunized chicken. Hens were immunized with different PRM protein extracts formulated with two different adjuvants, and IgY-antibodies were isolated from the eggs. A PRM in vitro feeding assay which used chicken blood spiked with these IgY-preparations was used to detect antibodies which caused PRM mortality. In vitro feeding of mites with IgY isolated from hens immunized with PRM extract formulated with one of the adjuvants showed a statistically significant increase in the mortality as compared to control mites. After the separation of total PRM extracts in two-dimensional gels, several protein spots were recognized by such IgY preparations. Ten protein spots were subjected to mass spectrometry (MS/MS) for the identification of the corresponding proteins. Complete protein sequences were deduced from genomic and transcriptomic assemblies derived from high throughput sequencing of total PRM DNA and RNA. The results may contribute to the development of an immunological control strategy of D. gallinae.
USDA-ARS?s Scientific Manuscript database
Many species of mites and ticks are of agricultural and medical importance. Much can be learned from the study of transcriptomes of acarines which can generate DNA-sequence information of potential target genes for the control of acarine pests. High throughput transcriptome sequencing can also yie...
Thomas, Emmanuel; Chiquet, Mathieu; Sander, Björn; Zschiesche, Eva; Flochlay, Annie Sigognault
2017-10-09
Welfare concerns, production losses caused by Dermanyssus gallinae, the poultry red mite (PRM), and widespread mite resistance to environmentally applied acaricides continue to drive an urgent need for new and effective control measures. Fluralaner is a novel systemic acaricide developed to address that need. A series of field studies was initiated to investigate the safety and efficacy of a fluralaner solution (10 mg/ml) administered in drinking water at a dose rate of 0.5 mg/kg on two occasions with a 7-day interval, for treatment of natural PRM infestations in chickens. Blinded, negative-controlled studies were completed in Europe across eight layer, two breeder, and two replacement chicken farms. At each farm, two similar flocks were housed in similar PRM-infested units (either rooms within a building, or separate buildings) varying from 550 to 100,000 birds per unit. One unit at each farm was allocated to fluralaner treatment, administered in drinking water on Days 0 and 7. One unit remained untreated. Mite traps were placed throughout each unit on Days -1, 0 or 1, 3, 6, 9, and 13 or 14, then at weekly or two-weekly intervals, retrieved after 24 h and processed for mite counts. Efficacy at each farm was assessed by mean PRM count reductions from traps in treated units compared with those from control units. Production parameters and safety were also monitored. Efficacy was 95.3 to 99.8% on Day 3 and 97.8 to 100% on Day 9, thereafter remaining above 90% for 56 to 238 days after treatment initiation. Post-treatment improvement in egg-laying rate was greater by 0.9 to 12.6% in the treated group at 9 of the 10 layer or breeder farms. There were no treatment-related adverse events. Fluralaner administered at 0.5 mg/kg via drinking water twice, 7 days apart, was well tolerated and highly efficacious against the PRM in naturally infested chickens representing a range of production types and management systems. The results indicate that this novel treatment has potential to be the cornerstone of an integrated approach to reducing or eliminating the welfare and productivity costs of this increasingly threatening pest.
Pathogenicity of Fusarium semitectum against crop pests and its biosafety to non-target organisms.
Mikunthan, G; Manjunatha, M
2006-01-01
Microbial control is receiving more attention, since these alternative tactics, compared to chemical control methods, are energy saving, non polluting, ecologically sound and sustainable. A mycopathogen, Fusarium semitectum Berk. and Rav. (ARSEF 7233) was isolated from diseased cadavers of aphid (Aphis gossypii) and cultured in Saboraud Maltose Agar supplemented with Yeast extract medium (SMAY). Being isolated first time from the chilli ecosystem its potential was evaluated. Experiments were conducted to understand its pathogenicity against crop pests as well as to ensure its safety to non target organisms such as silk worm (Bombyx mor), honey bee (Apis indica) and earthworm (Eisenia foetida). A paper-thrips-paper sandwich method for thrips and detached-leaf bioassay method for mites were used. Test insects and mites either reared in laboratory or obtained from the field were topically applied with spore suspension of F. semitectum (1x10(9) spores/ml). Mortality was recorded and dead animals were surface sterilized with 0.5% NaOCl and placed in SMAY medium to confirm pathogenicity. Mulberry leaves sprayed with the fungal suspension were fed to larvae of B. mori and reared. Newly emerged A. indica were topically applied with fungus. The fungus grown in cow dung for two weeks was used to assess the composting ability of E. foetida. F. semitectum produced mycosis and caused mortality to sucking pests such as chilli thrips (Scirtothrips dorsalis), broad mite (Polyphagotarsonemus latus), sugarcane wooly aphid (Ceratavacuna lanigera), spiraling whitefly (Aleyrodicus disperses), whitefly (Bemisia tabaci, A. gossypii and coconut mite (Aceria guerroronis). The fungus did not cause mortality on larvae of lepidopteran insect pests and ladybird beetle (Menochilus sexmaculatus), predatory mite (Amblysius ovalis) and larval parasitoid (Goniozus nephantidis). F. semitectum failed to infect the larvae of B. mori and newly emerged A. indica and its brood. The mycopathogen had no influence on the composting ability and growth of E. foetida. F. semitectum, in general, expressed its selectivity against sucking pests and proved its eco-friendly characteristics to the beneficial organisms and especially safe to Sericulture, Apiculture and Vermiculture industries in Karnataka, India. This novel fungus can be well incorporated as a viable tactics into the integrated management programmes of crop pests.
Pyroglyphid mites as a source of work-related allergens.
Macan, Jelena; Kanceljak-Macan, Božica; Milković-Kraus, Sanja
2012-01-01
Pyroglyphid mites are primarily associated with allergen exposure at home; hence the name house dust mites. However, we have found numerous studies reporting pyroglyhid mite levels in public and occupational settings. This review presents the findings of house dust mite allergens (family Pyroglyphidae, species Dermatophagoides) as potential work-related risk factors and proposes occupations at risk of house dust mite-related diseases. Pyroglyphid mites or their allergens are found in various workplaces, but clinically relevant exposures have been observed in hotels, cinemas, schools, day-care centres, libraries, public transportation (buses, trains, taxies, and airplanes), fishing-boats, submarines, poultry farms, and churches. Here we propose a classification of occupational risk as low (occasional exposure to mite allergen levels up to 2 μg g(-1)), moderate (exposure between 2 μg g(-1) and 10 μg g(-1)), and high (exposure >10 μg g(-1)). The classification of risk should include factors relevant for indoor mite population (climate, building characteristics, and cleaning schedule). To avoid development or aggravation of allergies associated with exposure to house dust mites at work, occupational physicians should assess exposure risk at work, propose proper protection, provide vocational guidance to persons at risk and conduct pre-employment and periodic examinations to diagnose new allergy cases. Protection at work should aim to control dust mite levels at work. Measures may include proper interior design and regular cleaning and building maintenance.
Weed management practices affect the diversity and relative abundance of physic nut mites.
Saraiva, Althiéris de Sousa; Sarmento, Renato A; Erasmo, Eduardo A L; Pedro-Neto, Marçal; de Souza, Danival José; Teodoro, Adenir V; Silva, Daniella G
2015-03-01
Crop management practices determine weed community, which in turn may influence patterns of diversity and abundance of associated arthropods. This study aimed to evaluate whether local weed management practices influence the diversity and relative abundance of phytophagous and predatory mites, as well as mites with undefined feeding habits--of the families Oribatidae and Acaridae--in a physic nut (Jatropha curcas L.) plantation subjected to (1) within-row herbicide spraying and between-row mowing; (2) within-row herbicide spraying and no between-row mowing; (3) within-row weeding and between-row mowing; (4) within-row weeding and no between-row mowing; and (5) unmanaged (control). The herbicide used was glyphosate. Herbicide treatments resulted in higher diversity and relative abundance of predatory mites and mites with undefined feeding habit on physic nut shrubs. This was probably due to the toxic effects of the herbicide on mites or to removal of weeds. Within-row herbicide spraying combined with between-row mowing was the treatment that most contributed to this effect. Our results show that within-row weeds harbor important species of predatory mites and mites with undefined feeding habit. However, the dynamics of such mites in the system can be changed according to the weed management practice applied. Among the predatory mites of the family Phytoseiidae Amblydromalus sp. was the most abundant, whereas Brevipalpus phoenicis was the most frequent phytophagous mite and an unidentified oribatid species was the most frequent mite with undefined feeding habit.
Number of hummingbird visits determines flower mite abundance on hummingbird feeders.
Márquez-Luna, Ubaldo; Vázquez González, María Magdalena; Castellanos, Ignacio; Ortiz-Pulido, Raúl
2016-08-01
Members of several genera of mites from the family Melicharidae (Mesostigmata) use hummingbirds as transport host to move from flower to flower, where they feed on pollen and nectar. The factors that influence hummingbird flower mite abundance on host plant flowers are not currently known. Here we tested whether hummingbird flower mite abundance on an artificial nectar source is determined by number of hummingbird visits, nectar energy content or species richness of visiting hummingbirds. We conducted experiments employing hummingbird feeders with sucrose solutions of low, medium, and high energy concentrations, placed in a xeric shrubland. In the first experiment, we recorded the number of visiting hummingbirds and the number of visiting hummingbird species, as well as the abundance of hummingbird flower mites on each feeder. Feeders with the highest sucrose concentration had the most hummingbird visits and the highest flower mite abundances; however, there was no significant effect of hummingbird species richness on mite abundance. In the second experiment, we recorded flower mite abundance on feeders after we standardized the number of hummingbird visits to them. Abundance of flower mites did not differ significantly between feeders when we controlled for hummingbird visits. Our results suggest that nectar energy concentration determines hummingbird visits, which in turn determines flower mite abundance in our feeders. Our results do not support the hypothesis that mites descend from hummingbird nostrils more on richer nectar sources; however, it does not preclude the possibility that flower mites select for nectar concentration at other spatial and temporal scales.
Mathematical Modeling for Scrub Typhus and Its Implications for Disease Control.
Min, Kyung Duk; Cho, Sung Il
2018-03-19
The incidence rate of scrub typhus has been increasing in the Republic of Korea. Previous studies have suggested that this trend may have resulted from the effects of climate change on the transmission dynamics among vectors and hosts, but a clear explanation of the process is still lacking. In this study, we applied mathematical models to explore the potential factors that influence the epidemiology of tsutsugamushi disease. We developed mathematical models of ordinary differential equations including human, rodent and mite groups. Two models, including simple and complex models, were developed, and all parameters employed in the models were adopted from previous articles that represent epidemiological situations in the Republic of Korea. The simulation results showed that the force of infection at the equilibrium state under the simple model was 0.236 (per 100,000 person-months), and that in the complex model was 26.796 (per 100,000 person-months). Sensitivity analyses indicated that the most influential parameters were rodent and mite populations and contact rate between them for the simple model, and trans-ovarian transmission for the complex model. In both models, contact rate between humans and mites is more influential than morality rate of rodent and mite group. The results indicate that the effect of controlling either rodents or mites could be limited, and reducing the contact rate between humans and mites is more practical and effective strategy. However, the current level of control would be insufficient relative to the growing mite population. © 2018 The Korean Academy of Medical Sciences.
Inactivation of dust mites, dust mite allergen, and mold from carpet.
Ong, Kee-Hean; Lewis, Roger D; Dixit, Anupma; MacDonald, Maureen; Yang, Mingan; Qian, Zhengmin
2014-01-01
Carpet is known to be a reservoir for biological contaminants, such as dust mites, dust mite allergen, and mold, if it is not kept clean. The accumulation of these contaminants in carpet might trigger allergies or asthma symptoms in both children and adults. The purpose of this study is to compare methods for removal of dust mites, dust mite allergens, and mold from carpet. Carpets were artificially worn to simulate 1 to 2 years of wear in a four-person household. The worn carpets were inoculated together with a common indoor mold (Cladosporium species) and house dust mites and incubated for 6 weeks to allow time for dust mite growth on the carpet. The carpets were randomly assigned to one of the four treatment groups. Available treatment regimens for controlling carpet contaminants were evaluated through a literature review and experimentation. Four moderately low-hazard, nondestructive methods were selected as treatments: vacuuming, steam-vapor, Neem oil (a natural tree extract), and benzalkonium chloride (a quaternary ammonium compound). Steam vapor treatment demonstrated the greatest dust mite population reduction (p < 0.05) when compared to other methods. The two physical methods, steam vapor and vacuuming, have no statistically significant efficacy in inactivating dust mite allergens (p = 0.084), but have higher efficacy when compared to the chemical method on dust mite allergens (p = 0.002). There is no statistically significant difference in the efficacy for reducing mold in carpet (p > 0.05) for both physical and chemical methods. The steam-vapor treatment effectively killed dust mites and denatured dust mite allergen in the laboratory environment.
Lu, Fuping; Liang, Xiao; Lu, Hui; Li, Qian; Chen, Qing; Zhang, Peng; Li, kaimian; Liu, Guanghua; Yan, Wei; Song, Jiming; Duan, Chunfang; Zhang, Linhui
2017-01-01
To explore the role of protective enzymes in cassava (Manihot esculenta Crantz) resistance to mites, transgenic cassava lines overproducing copper/zinc superoxide dismutase (MeCu/ZnSOD) and catalase (MeCAT1) were used to evaluate and molecularly confirm cassava resistance to Tetranychus cinnabarinus. Laboratory evaluation demonstrated that, compared with the control cultivar TMS60444 (wild type, WT), the survival, reproduction, development and activities of SOD and CAT in T. cinnabarinus feeding on transgenic cassava lines SC2, SC4, and SC11 significantly inhibited. Furthermore, the activities of SOD and CAT in transgenic cassava lines SC2, SC4, and SC11 damaged by T. cinnabarinus significantly increased. These findings were similar to the results in the mite-resistant cassava cultivars. Besides, field evaluation indicated that the transgenic cassava lines SC2, SC4, and SC11 were slightly damaged as the highly mite-resistant control C1115, while the highly mite-susceptible WT was severely damaged by T. cinnabarinus. Laboratory and field evaluation demonstrated that transgenic cassava lines were resistant to T. cinnabarinus, which directly confirmed that the increase in SOD and CAT activities was positively related to cassava resistance to T. cinnabarinus. These results will help in understanding the antioxidant defense responses in the cassava–mite interaction and molecular breeding of mite-resistant cassava for effective pest control. PMID:28054665
Howell, Anna D; Daugovish, Oleg
2013-02-01
The spider mite, Eotetranychus lewisi (McGregor) (Acari: Tetranychidae), is a new emerging pest in California commercial strawberries. The predatory mite Phytoseiulus persimilis (Athias-Henriot) (Acari: Phytoseiidae), typically used for biocontrol of Tetranychus urticae (Koch) (Acari: Tetranychidae), provided growers little to no control of E. lewisi. Four commonly used phytoseiid predatory mites: P. persimilis, Neoseiulus californicus (McGregor), N. fallacis (Garman), and Amblyseius andersoni (Chant), were used in lab studies to investigate which is best at managing E. lewisi populations. We als o investigated t he interactions between T. urticae and E. lewisi and in relation to phytoseiid efficiency given the potential for indirect effects of biocontrol. When E. lewisi and T. urticae are present on the same leaf, T. urticae populations increase and begin displacing E. lewisi. P. persimilis did not feed on E. lewisi, but the other three predatory mites consumed the spider mites and lowered their populations. When both E. lewisi and T. urticae are present on the same leaf, N. fallacis and A. andersoni fed on both types of mites equally and were capable of decreasing both populations. N. californicus fed on E. lewisi first and decreased its population, but allowed T. urticae populations to increase. P. persimilis may be insufficient at controlling E. lewisi and its use may instead enhance E. lewisi populations.
Weber, Marjorie G; Porturas, Laura D; Taylor, Scott A
2016-09-01
Mite domatia are small structures on the underside of plant leaves that provide homes for predacious or fungivorous mites. In turn, mites inhabiting domatia defend the plant by consuming leaf herbivores and pathogens, which can result in a domatia-mediated, plant-mite defence mutualism. Several recent studies have suggested that plants receive enhanced benefits when they provide a foliar food source, such as sugars secreted from extrafloral nectaries, to mite mutualists alongside mite domatia. However, the effect of foliar sugar on reducing leaf pathogen load via domatia-inhabiting mites has not been directly investigated. To fill this gap, the links between foliar sugar addition, domatia-inhabiting mite abundance, and pathogen load were experimentally evaluated in wild grape. Furthermore, because the proposed combined benefits of providing food and housing have been hypothesized to select for the evolutionary correlation of extrafloral nectaries and domatia across plant lineages, a literature survey aimed at determining the overlap of mite domatia and extrafloral nectaries across plant groups was also conducted. It was found that leaves with artificial addition of foliar sugar had 58-80 % more mites than leaves without foliar sugar addition, and that higher mite abundances translated to reduced powdery mildew (Erysiphe necator) loads on leaves. It was found that mite domatia and extrafloral nectaries occur non-randomly in the same clades across Eudicots. Genera with both traits are reported to highlight candidate lineages for future studies. Together, the results demonstrate that foliar sugar can indeed enhance the efficacy of domatia-mediated plant-mite mutualisms, and suggest that this synergism has the potential to influence the co-distribution of foliar nectar and mite domatia across plants. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
Varroa destructor mites (Vd) are ectoparasites of Apis mellifera honey bees, and the damage they inflict on hosts is a likely causative factor of recent poor honey bee colony performance. Much research has produced an arsenal of control agents against Vd, which have become resistant to many chemical...
The Scotch Broom gall mite: Accidental introduction to classical biological control agent?
J. Andreas; T. Wax; E. Coombs; J. Gaskin; G. Markin; S. Sing
2013-01-01
The gall mite, Aceria genistae (Nal.) Castagnoli s.l., an accidentally introduced natural enemy of Scotch broom (Cytisus scoparius (L.) Link), was first discovered in the Portland OR and Tacoma WA region in 2005. It has since been reported from southern British Columbia to southern Oregon. Observationally, the mite appears to reduce Scotch broom seed production and at...
Semberg, Emilia; Forsgren, Eva; de Miranda, Joachim R.
2017-01-01
Deformed wing virus (DWV) is a lethal virus of honeybees (Apis mellifera) implicated in elevated colony mortality rates worldwide and facilitated through vector transmission by the ectoparasitic mite Varroa destructor. Clinical, symptomatic DWV infections are almost exclusively associated with high virus titres during pupal development, usually acquired through feeding by Varroa mites when reproducing on bee pupae. Control of the mite population, generally through acaricide treatment, is essential for breaking the DWV epidemic and minimizing colony losses. In this study, we evaluated the effectiveness of remedial mite control on clearing DWV from a colony. DWV titres in adult bees and pupae were monitored at 2 week intervals through summer and autumn in acaricide-treated and untreated colonies. The DWV titres in Apistan treated colonies was reduced 1000-fold relative to untreated colonies, which coincided with both the removal of mites and also a turnover of the bee population in the colony. This adult bee population turnover is probably more critical than previously realized for effective clearing of DWV infections. After this initial reduction, subclinical DWV titres persisted and even increased again gradually during autumn, demonstrating that alternative non-Varroa transmission routes can maintain the DWV titres at significant subclinical levels even after mite removal. The implications of these results for practical recommendations to mitigate deleterious subclinical DWV infections and improving honeybee health management are discussed. PMID:28686725
Immediato, Davide; Camarda, Antonio; Iatta, Roberta; Puttilli, Maria Rita; Ramos, Rafael Antonio Nascimento; Di Paola, Giancarlo; Giangaspero, Annunziata; Otranto, Domenico; Cafarchia, Claudia
2015-09-15
The poultry red mite, Dermanyssus gallinae (De Geer, 1778) (Acari: Dermanyssidae) is one of the most economically important ectoparasites of laying hens worldwide. Chemical control of this mite may result in environmental and food contamination, as well as the development of drug resistance. High virulence of Beauveria bassiana sensu lato strains isolated from naturally infected hosts or from their environment has been demonstrated toward many arthropod species, including ticks. However, a limited number of studies have assessed the use of B. bassiana for the control of D. gallinae s.l. and none of them have employed native strains. This study reports the pathogenicity of a native strain of B. bassiana (CD1123) against nymphs and adults of D. gallinae. Batches of nymph and adult mites (i.e., n=720 for each stage) for treated groups (TGs) were placed on paper soaked with a 0.1% tween 80 suspension of B. bassiana (CIS, 10(5), 10(7) and 10(9) conidia/ml), whilst 240 untreated control mites for each stage (CG) were exposed only to 0.1% tween 80. The mites in TG showed a higher mortality at all stages (p<0.01) when compared to CG, depending on the time of exposure and the conidial concentration. A 100% mortality rate was recorded using a CIS of 10(9) conidia/ml 12 days post infection (DPI) in adults and 14 DPI in nymphs. B. bassiana suspension containing 10(9) conidia/ml was highly virulent towards nymph and adult stages of D. gallinae, therefore representing a possible promising natural product to be used in alternative or in combination to other acaricidal compounds currently used for controlling the red mite. Copyright © 2015 Elsevier B.V. All rights reserved.
Peng, Christine Y S; Zhou, Xinsheng; Kaya, Harry K
2002-11-01
The Varroa mite, Varroa destructor, is recognized as the most serious pest of both managed and feral Western honey bee (Apis mellifera) in the world. The mite has developed resistance to fluvalinate, an acaricide used to control it in beehives, and fluvalinate residues have been found in the beeswax, necessitating an urgent need to find alternative control measures to suppress this pest. Accordingly, we investigated the possibility of using the fungus, Hirsutella thompsonii, as a biocontrol agent of the Varroa mite. Among the 9 isolates of H. thompsonii obtained from the University of Florida and the USDA, only the 3 USDA isolates (ARSEF 257, 1947 and 3323) were infectious to the Varroa mite in laboratory tests. The mite became infected when it was allowed to walk on a sporulating H. thompsonii culture for 5 min. Scanning electron micrographs revealed that the membranous arolium of the mite leg sucker is the focus of infection where the fungal conidia adhered and germinated. The infected mites died from mycosis, with the lethal times to kill 50% (LT(50)s) dependent on the fungal isolates. Thus, the LT(50)s were 52.7, 77.2, and 96.7h for isolates 3323, 257, and 1947, respectively. Passage of H. thompsonii through Varroa mite three times significantly reduced the LT(50)s of isolates 257 and 1947 (P<0.05) but not the LT(50) of isolate 3323. The fungus did not infect the honey bee in larval, prepupal, pupal, and adult stages under our laboratory rearing conditions. Our encouraging results suggest that some isolates of H. thompsonii have the potential to be developed as a biocontrol agent for V. destructor. However, fungal infectivity against the mites under beehive conditions needs to be studied before any conclusion can be made.
USDA-ARS?s Scientific Manuscript database
Effective monitoring and alternative strategies to control the ectoparasitic mite, Varroa destructor Anderson and Truemann (Parasitiformes: Varroidae), (varroa) are crucial for determining when to apply effective treatments to honey bee, Apis mellifera L. (Hymenoptera: Apidae), colonies. Using simpl...
Survival and reproductive rate of mites in relation to resistance of their barn swallow hosts.
Møller, A P
2000-08-01
Parasite resistance may act via a number of different mechanisms that regulate or control the survival and the reproductive rate of parasites. Observations and experiments were used to test for effects of host resistance on parasite survival and rate of reproduction. Natural levels of infestation of barn swallow Hirundo rustica nests by the tropical fowl mite Ornithonyssus bursa were positively related to brood size, inversely related to the length of the outermost tail feathers of male nest owners (a secondary sexual character) and affected by time of reproduction by the host. A mite inoculation experiment, in which 50 adult mites were introduced into nests during the laying period of the host, was used to test for differential survival and reproduction of mites as a function of host resistance. The relationship between survival and reproduction of parasites, male tail length and host resistance was investigated. There was a negative relationship between mite numbers per nest after fledging of nestlings and male tail length. This relationship was mainly caused by a reduction in the number of mites in the first and second nymph stage with increasing tail length of male hosts, implying a reduction in rate of reproduction of mites. The proportion of mites that had recently fed was inversely related to tail length of male hosts. The proportion of nymph stages was positively related to the proportion of mites that had recently had a blood meal. Parasite resistance of barn swallows to the tropical fowl mite thus appeared to act through increased mortality rate of adult and nymph stages of mites, and through reduced reproductive rates of mites on resistant hosts. This is the first study demonstating a direct relationship between fitness components of a parasite and the expression of a secondary sexual character of a host.
DeGrandi-Hoffman, Gloria; Ahumada, Fabiana; Danka, Robert; Chambers, Mona; DeJong, Emily Watkins; Hidalgo, Geoff
2017-06-01
Varroa (Varroa destructor Anderson and Trueman) is an external parasite of honey bees (Apis mellifera L.) and a leading cause of colony losses worldwide. Varroa populations can be controlled with miticides, but mite-resistant stocks such as the Russian honey bee (RHB) also are available. Russian honey bee and other mite-resistant stocks limit Varroa population growth by affecting factors that contribute to mite reproduction. However, mite population growth is not entirely due to reproduction. Numbers of foragers with mites (FWM) entering and leaving hives also affect the growth of mite populations. If FWM significantly contribute to Varroa population growth, mite numbers in RHB colonies might not differ from unselected lines (USL). Foragers with mites were monitored at the entrances of RHB and USL hives from August to November, 2015, at two apiary sites. At site 1, RHB colonies had fewer FWM than USL and smaller phoretic mite populations. Russian honey bee also had fewer infested brood cells and lower percentages with Varroa offspring than USL. At site 2, FWM did not differ between RHB and USL, and phoretic mite populations were not significantly different. At both sites, there were sharp increases in phoretic mite populations from September to November that corresponded with increasing numbers of FWM. Under conditions where FWM populations are similar between RHB and USL, attributes that contribute to mite resistance in RHB may not keep Varroa population levels below that of USL. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.
A feeding protocol for delivery of agents to assess development in Varroa mites
2017-01-01
A novel feeding protocol for delivery of bio-active agents to Varroa mites was developed by providing mites with honey bee larva hemolymph supplemented with cultured insect cells and selected materials delivered on a fibrous cotton substrate. Mites were starved, fed on treated hemolymph to deliver selected agents and then returned to bee larvae. Transcript levels of two reference genes, actin and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), as well as for nine selected genes involved in reproductive processes showed that the starvation and feeding protocol periods did not pose a high level of stress to the mites as transcript levels remained comparable between phoretic mites and those completing the protocol. The feeding protocol was used to deliver molecules such as hormone analogs or plasmids. Mites fed with Tebufenozide, an ecdysone analog, had higher transcript levels of shade than untreated or solvent treated mites. In order to extend this feeding protocol, cultured insect cells were incorporated to a final ratio of 1 part cells and 2 parts hemolymph. Although supplementation with Bombyx mori Bm5 cells increased the amount of hemolymph consumed per mite, there was a significant decrease in the percentage of mites that fed and survived. On the other hand, Drosophila melanogaster S2 cells reduced significantly the percentage of mites that fed and survived as well as the amount of hemolymph consumed. The feeding protocol provides a dynamic platform with which to challenge the Varroa mite to establish efficacy of control agents for this devastating honey bee pest. PMID:28448606
Protocols for the delivery of small molecules to the two-spotted spider mite, Tetranychus urticae
Nunes, Maria Andreia; Zhurov, Vladimir; Dermauw, Wannes; Osakabe, Masahiro; Van Leeuwen, Thomas; Grbic, Miodrag
2017-01-01
The two-spotted spider mite, Tetranychus urticae, is a chelicerate herbivore with an extremely wide host range and an extraordinary ability to develop pesticide resistance. Due to its responsiveness to natural and synthetic xenobiotics, the spider mite is becoming a prime pest herbivore model for studies of the evolution of host range, plant-herbivore interactions and mechanisms of xenobiotic resistance. The spider mite genome has been sequenced and its transcriptional responses to developmental and various biotic and abiotic cues have been documented. However, to identify biological and evolutionary roles of T. urticae genes and proteins, it is necessary to develop methods for the efficient manipulation of mite gene function or protein activity. Here, we describe protocols developed for the delivery of small molecules into spider mites. Starting with mite maintenance and the preparation of the experimental mite populations of developmentally synchronized larvae and adults, we describe 3 methods for delivery of small molecules including artificial diet, leaf coating, and soaking. The presented results define critical steps in these methods and demonstrate that they can successfully deliver tracer dyes into mites. Described protocols provide guidelines for high-throughput setups for delivery of experimental compounds that could be used in reverse genetics platforms to modulate gene expression or protein activity, or for screens focused on discovery of new molecules for mite control. In addition, described protocols could be adapted for other Tetranychidae and related species of economic importance such as Varroa, dust and poultry mites. PMID:28686745
Sato, Yukie; Mochizuki, Atsushi
2011-08-01
Two exotic phytoseiid mites, Neoseiulus cucumeris and Amblyseius swirskii, are commercially available in Japan for the control of thrips and other pest insects. As part of a risk assessment of the non-target effects of releasing these two species, we investigated intraguild predation (IGP) between these exotic phytoseiid mites and an indigenous phytoseiid mite Gynaeseius liturivorus, which is promising as an indigenous natural enemy for the control of thrips in Japan. To understand IGP relations between the exotic and indigenous phytoseiid mites after use of the exotic mites for biological control, we investigated IGP between them in the absence of their shared prey. When an IG prey was offered to an IG predator, both exotic and indigenous females consumed the IG prey at all immature stages (egg, larva, protonymph, deutonymph), especially at its larval stages. The propensity for IGP in a no-choice test was measured by the survival time of IG prey corrected using the survival time of thrips offered to the IG predator. There was no significant difference in the propensity for IGP between N. cucumeris and G. liturivorus, but the propensity was significantly higher in A. swirskii than G. liturivorus. The propensity for IGP in a choice test was measured by the prey choice of the IG predator when a conspecific and a heterospecific larva were offered simultaneously as IG prey. Both exotic females consumed the heterospecific larva only. The indigenous female preferentially consumed the heterospecific larva when the heterospecific larva was N. cucumeris, but consumed the conspecific larva when the heterospecific larva was A. swirskii. We concluded that further investigation would be necessary for the exotic mites' risk assessment, since the propensity for IGP of the two exotic females was similar to or higher than that of the indigenous female in both the no-choice and choice tests.
Tetranychus urticae mites do not mount an induced immune response against bacteria
Santos-Matos, Gonçalo; Wybouw, Nicky; Martins, Nelson E.; Zélé, Flore; Riga, Maria; Leitão, Alexandre B.; Vontas, John; Grbić, Miodrag; Van Leeuwen, Thomas; Magalhães, Sara
2017-01-01
The genome of the spider mite Tetranychus urticae, a herbivore, is missing important elements of the canonical Drosophila immune pathways necessary to fight bacterial infections. However, it is not known whether spider mites can mount an immune response and survive bacterial infection. In other chelicerates, bacterial infection elicits a response mediated by immune effectors leading to the survival of infected organisms. In T. urticae, infection by either Escherichia coli or Bacillus megaterium did not elicit a response as assessed through genome-wide transcriptomic analysis. In line with this, spider mites died within days even upon injection with low doses of bacteria that are non-pathogenic to Drosophila. Moreover, bacterial populations grew exponentially inside the infected spider mites. By contrast, Sancassania berlesei, a litter-dwelling mite, controlled bacterial proliferation and resisted infections with both Gram-negative and Gram-positive bacteria lethal to T. urticae. This differential mortality between mite species was absent when mites were infected with heat-killed bacteria. Also, we found that spider mites harbour in their gut 1000-fold less bacteria than S. berlesei. We show that T. urticae has lost the capacity to mount an induced immune response against bacteria, in contrast to other mites and chelicerates but similarly to the phloem feeding aphid Acyrthosiphon pisum. Hence, our results reinforce the putative evolutionary link between ecological conditions regarding exposure to bacteria and the architecture of the immune response. PMID:28592670
Locher, Nina; Al-Rasheid, Khaled A S; Abdel-Ghaffar, Fathy; Mehlhorn, Heinz
2010-07-01
The acaricidal activity of the neem product MiteStop was investigated for its potential use as a botanical acaricide for the control of the poultry red mite Dermanyssus gallinae. This neem product is a special formulation of an extract of the seeds of the neem tree Azadirachta indica A. Juss. The efficacy was tested under laboratory conditions as well as in poultry houses. Four different methods of application were used in a filter paper bioassay to evaluate contact and vapour phase toxicity tests. The neem product proved to be already active in very small doses. In order to investigate the efficacy under field conditions, a poultry house was sprayed twice within a 7-day period using 1:33 and 1:50 diluted MiteStop. Cardboard traps were used to assess the mite population before, during and after the treatment. The mite population could be reduced by 89%. In a second poultry house, the spraying of defined areas with a 1:30, 1:33 or 1:50 dilution of the acaricide proved to be highly efficacious against all mite stages. Three other field trials proved that MiteStop is highly active against the red poultry mite. The most efficient dilution is 1:33 with tap water and spraying two or three times at intervals of 7 days.
Visitsunthorn, Nualanong; Pacharn, Punchama; Jirapongsananuruk, Orathai; Weeravejsukit, Sirirat; Sripramong, Chaweewan; Sookrung, Nitat; Bunnag, Chaweewan
2010-03-01
House dust mite is a major cause of allergic asthma and rhinitis in Thai population. Skin prick test (SPT) is a useful tool for the diagnosis of the IgE-mediated reactions. The imported commercial mite vaccine for SPT is available but it is relatively expensive. Aim of this study is to compare Siriraj Mite Allergen Vaccine (SMAV) with standardized commercial mite allergen vaccine by skin prick testing in normal Thai adults. A double blind, self-controlled study between the SMAV and standardized commercial mite allergen vaccine was performed by SPT in 17 normal Thai adult males and non-pregnant or non-lactating females aged 18-60 years. The study showed that 35.29 % of non atopic adults had positive SPT reaction to Dp and Df of both SMAV and standardized commercial mite allergen vaccine. Mean wheal and flare diameters from SPT of Dp and Df of SMAV showed strong correlation with standardized commercial mite allergen vaccine (r= 0.768 and 0.897 in Dp and Df respectively, p <0.001). The intraclass correlation was also excellent (0.893 and 0.775 in Dp and Df respectively). There was no significant difference in wheal and flare diameter between SMAV and standardized commercial mite allergen vaccine. No systemic or large local reaction was found in any of the study cases.
Tetranychus urticae mites do not mount an induced immune response against bacteria.
Santos-Matos, Gonçalo; Wybouw, Nicky; Martins, Nelson E; Zélé, Flore; Riga, Maria; Leitão, Alexandre B; Vontas, John; Grbić, Miodrag; Van Leeuwen, Thomas; Magalhães, Sara; Sucena, Élio
2017-06-14
The genome of the spider mite Tetranychus urticae , a herbivore, is missing important elements of the canonical Drosophila immune pathways necessary to fight bacterial infections. However, it is not known whether spider mites can mount an immune response and survive bacterial infection. In other chelicerates, bacterial infection elicits a response mediated by immune effectors leading to the survival of infected organisms. In T. urticae , infection by either Escherichia coli or Bacillus megaterium did not elicit a response as assessed through genome-wide transcriptomic analysis. In line with this, spider mites died within days even upon injection with low doses of bacteria that are non-pathogenic to Drosophila Moreover, bacterial populations grew exponentially inside the infected spider mites. By contrast, Sancassania berlesei , a litter-dwelling mite, controlled bacterial proliferation and resisted infections with both Gram-negative and Gram-positive bacteria lethal to T. urticae This differential mortality between mite species was absent when mites were infected with heat-killed bacteria. Also, we found that spider mites harbour in their gut 1000-fold less bacteria than S. berlesei We show that T. urticae has lost the capacity to mount an induced immune response against bacteria, in contrast to other mites and chelicerates but similarly to the phloem feeding aphid Acyrthosiphon pisum Hence, our results reinforce the putative evolutionary link between ecological conditions regarding exposure to bacteria and the architecture of the immune response. © 2017 The Authors.
Acarine attractants: Chemoreception, bioassay, chemistry and control
Carr, Ann L.; Roe, Michael
2016-01-01
The Acari are of significant economic importance in crop production and human and animal health. Acaricides are essential for the control of these pests, but at the same time, the number of available pesticides is limited, especially for applications in animal production. The Acari consist of two major groups, the mites that demonstrate a wide variety of life strategies, i.e., herbivory, predation and ectoparasitism, and ticks which have evolved obligatory hematophagy. The major sites of chemoreception in the acarines are the chelicerae, palps and tarsi on the forelegs. A unifying name, the “foretarsal sensory organ” (FSO), is proposed for the first time in this review for the sensory site on the forelegs of all acarines. The FSO has multiple sensory functions including olfaction, gustation, and heat detection. Preliminary transcriptomic data in ticks suggest that chemoreception in the FSO is achieved by a different mechanism from insects. There are a variety of laboratory and field bioassay methods that have been developed for the identification and characterization of attractants but minimal techniques for electrophysiology studies. Over the past three to four decades, significant progress has been made in the chemistry and analysis of function for acarine attractants in mites and ticks. In mites, attractants include aggregation, immature female, female sex and alarm pheromones; in ticks, the attraction–aggregation–attachment, assembly and sex pheromones; in mites and ticks host kairomones and plant allomones; and in mites, fungal allomones. There are still large gaps in our knowledge of chemical communication in the acarines compared to insects, especially relative to acarine pheromones, and more so for mites than ticks. However, the use of lure-and-kill and lure-enhanced biocontrol strategies has been investigated for tick and mite control, respectively, with significant environmental advantages which warrant further study. PMID:27265828
Ahn, Y J; Kim, Y J; Yoo, J K
2001-02-01
The toxicities of the herbicide glufosinate-ammonium to three predatory insect and two predatory mite species of Tetranychus urticae Koch were determined in the laboratory by the direct contact application. At a concentration of 540 ppm (a field application rate for weed control in apple orchards), glufosinate-ammonium was almost nontoxic to eggs of Amblyseius womersleyi Schicha, Phytoseiulus persimilis Athias-Henriot, and T. urticae but highly toxic to nymphs and adults of these three mite species, indicating that a common mode of action between predatory and phytophagous mites might be involved. In tests with predatory insects using 540 ppm, glufosinate-ammonium revealed little or no harm to larvae and pupae of Chrysopa pallens Rambur but was slightly harmful to eggs (71.2% mortality), nymphs (65.0% mortality), and adults (57.7% mortality) of Orius strigicollis Poppius. The herbicide showed no direct effect on eggs and adults of Harmonia axyridis (Pallas) but was harmful, slightly harmful, and harmless to first instars (100% mortality), fourth instars (51.1% mortality), and pupae (24.5% mortality), respectively. The larvae and nymphs of predators died within 12 h after treatment, suggesting that the larvicidal and nymphicidal action may be attributable to a direct effect rather than an inhibitory action of chitin synthesis. On the basis of our data, glufosinate-ammonium caused smaller effects on test predators than on T. urticae with the exception of P. persimilis, although the mechanism or cause of selectivity remains unknown. Glufosinate-ammonium merits further study as a key component of integrated pest management.
DeGrandi-Hoffman, Gloria; Ahumada, Fabiana; Graham, Henry
2017-08-01
Varroa (Varroa destructor Anderson and Trueman) are a serious pest of European honey bees (Apis mellifera L.), and difficult to control in managed colonies. In our 11-mo longitudinal study, we applied multiple miticide treatments, yet mite numbers remained high and colony losses exceeded 55%. High mortality from varroa in managed apiaries is a departure from the effects of the mite in feral colonies where bees and varroa can coexist. Differences in mite survival strategies and dispersal mechanisms may be contributing factors. In feral colonies, mites can disperse through swarming. In managed apiaries, where swarming is reduced, mites disperse on foragers robbing or drifting from infested hives. Using a honey bee-varroa population model, we show that yearly swarming curtails varroa population growth, enabling colony survival for >5 yr. Without swarming, colonies collapsed by the third year. To disperse, varroa must attach to foragers that then enter other hives. We hypothesize that stress from parasitism and virus infection combined with effects that viruses have on cognitive function may contribute to forager drift and mite and virus dispersal. We also hypothesize that drifting foragers with mites can measurably increase mite populations. Simulations initialized with field data indicate that low levels of drifting foragers with mites can create sharp increases in mite populations in the fall and heavily infested colonies in the spring. We suggest new research directions to investigate factors leading to mite dispersal on foragers, and mite management strategies with consideration of varroa as a migratory pest. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.
Storage mite contamination of commercial dry dog food in south-eastern Australia.
Hibberson, C E; Vogelnest, L J
2014-06-01
To evaluate contamination of unopened and opened stored sources of commercial dry dog food by viable storage mites. Prospective laboratory and field study. Samples were collected from nine brands of previously unopened bags (new bags) of dry food and 20 field sources of stored dry food in homes in Sydney and Canberra, Australia. All samples were initially examined for the presence of mites using a stereo-binocular microscope and then placed in separate filter-paper-sealed containers. Field samples were incubated at an average temperature of 29°C and 78% relative humidity (RH) for 5 weeks and then at average 26°C/83% RH for 8 weeks. Paired new-bag samples were stored under room conditions (average 23°C/47% RH) and controlled incubator conditions (average 26°C/80% RH) for 6 weeks. All samples were thoroughly examined for mites, mite eggs and visible mould once weekly using a stereo-binocular microscope. Storage mites were not visualised in any of the field samples or in new-bag samples stored at room temperature. Storage mites, identified as Tyrophagus putrescentiae, were visualised in increasing numbers in seven of nine new-bag samples after incubation, with first mites and then eggs evident after 3 weeks of incubation. We confirmed the presence of viable storage mites in a range of previously unopened commercial dry dog foods in Australia and confirmed the possibility of heavy storage mite contamination for dry food stored under conditions of moderate temperature and high humidity. These findings have relevance to storage mite and/or dust mite sensitivity in canine atopic dermatitis. © 2014 Australian Veterinary Association.
Isolation of oxalotrophic bacteria associated with Varroa destructor mites.
Maddaloni, M; Pascual, D W
2015-11-01
Bacteria associated with varroa mites were cultivated and genotyped by 16S RNA. Under our experimental conditions, the cultivable bacteria were few in number, and most of them proved to be fastidious to grow. Cultivation with seven different media under O2 /CO2 conditions and selection for colony morphology yielded a panel of species belonging to 13 different genera grouped in two different phyla, proteobacteria and actinobacteria. This study identified one species of actinobacteria that is a known commensal of the honey bee. Some isolates are oxalotrophic, a finding that may carry ramifications into the use of oxalic acid to control the number of phoretic mites in the managed colonies of honey bees. Oxalic acid, legally or brevi manu, is widely used to control phoretic Varroa destructor mites, a major drive of current honey bees' colony losses. Unsubstantiated by sanctioned research are rumours that in certain instances oxalic acid is losing efficacy, forcing beekeepers to increase the frequency of treatments. This investigation fathoms the hypothesis that V. destructor associates with bacteria capable of degrading oxalic acid. The data show that indeed oxalotrophy, a rare trait among bacteria, is common in bacteria that we isolated from V. destructor mites. This finding may have ramifications in the use of oxalic acid as a control agent. © 2015 The Society for Applied Microbiology.
Cruz, Wilton P; Sarmento, Renato A; Teodoro, Adenir V; Neto, Marçal P; Ignacio, Maíra
2013-08-01
Seasonal changes in climate and plant diversity are known to affect the population dynamics of both pests and natural enemies within agroecosystems. In Brazil, spontaneous plants are usually tolerated in small-scale physic nut plantations over the year, which in turn may mediate interactions between pests and natural enemies within this agroecosystem. Here, we aimed to access the influence of seasonal variation of abiotic (temperature, relative humidity and rainfall) and biotic (diversity of spontaneous plants, overall richness and density of mites) factors on the communities of phytophagous and predatory mites found in a physic nut plantation and its associated spontaneous plants. Mite sampling was monthly conducted in dicotyledonous and monocotyledonous leaves of spontaneous plants as well as in physic nut shrubs over an entire year. In the dry season there was a higher abundance of phytophagous mites (Tenuipalpidae, Tarsonemidae and Tetranychidae) on spontaneous plants than on physic nut shrubs, while predatory mites (Phytoseiidae) showed the opposite pattern. The overall density of mites on spontaneous plants increased with relative humidity and diversity of spontaneous plants. Rainfall was the variable that most influenced the density of mites inhabiting physic nut shrubs. Agroecosystems comprising spontaneous plants associated with crops harbour a rich mite community including species of different trophic levels which potentially benefit natural pest control due to increased diversity and abundance of natural enemies.
Association between HLA genes and dust mite sensitivity in a Brazilian population.
da Costa Lima Caniatti, Marcela Caleffi; Borelli, Sueli Donizete; Guilherme, Ana Lúcia Falavigna; Tsuneto, Luiza Tamie
2017-02-01
Type I hypersensitivity, also known as IgE-mediated allergy, is a complex, multifactorial condition whose onset and severity are influenced by both genetic and environmental factors. Mite allergens stimulate the production of humoral response (IgE), especially in children, which is closely involved in atopic asthma and rhinitis. This study aimed to investigate the association between HLA class I (-A, -B, and -C), and HLA class II (-DRB1) genes in individuals sensitive to dust mites (Dermatophagoides farinae, Dermatophagoides pteronyssinus, or Blomia tropicalis) and mite-insensitive controls. 396 participants were grouped as mite-sensitive and mite-insensitive according to immediate hypersensitivity as determined by skin-prick tests, and to HLA genotyping by polymerase chain reaction-sequence specific oligonucleotide (PCR-SSO). After chi-square heterogeneity testing no significant differences were observed in HLA-A, B, and C genes, except for the HLA-DRB1 locus, which, showed a negative association for DRB1∗04, between mite-sensitive and mite-insensitive individuals. In high resolution, DRB1∗04:11 allele was significantly different from all other results (P=0.0042, OR=0.26, and 95%CI=0.09-0.70). The analysis stratified by etiologic agent confirmed these associations. Our results suggest a possible association between HLA-DRB1 genes and hypersensitivity to dust mites. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Insight into the feeding behavior of predatory mites on Beauveria bassiana, an arthropod pathogen
Wu, Shengyong; Zhang, Ye; Xu, Xuenong; Lei, Zhongren
2016-01-01
Interactions between fungal entomopathogens and pest predators are particularly relevant in control of agricultural insect pests. In a laboratory study, we confirmed that the predatory mite, Neoseiulus barkeri, exhibited feeding behavior on the entomopathogenic fungus Beauveria bassiana conidia through DNA extracts. Using transmission electron microscopy, we determined that the majority of conidia found in the mite gut tended to dissolve within 24 h post ingestion, suggesting that the conidia had probably lost their viability. To our knowledge this is the first report of feeding behavior of phytoseiid mites on entomopathogenic fungus. The findings expand our knowledge of fungus–predator interactions. PMID:27041703
Disease dynamics of honeybees with Varroa destructor as parasite and virus vector.
Kang, Yun; Blanco, Krystal; Davis, Talia; Wang, Ying; DeGrandi-Hoffman, Gloria
2016-05-01
The worldwide decline in honeybee colonies during the past 50 years has often been linked to the spread of the parasitic mite Varroa destructor and its interaction with certain honeybee viruses carried by Varroa mites. In this paper, we propose a honeybee-mite-virus model that incorporates (1) parasitic interactions between honeybees and the Varroa mites; (2) five virus transmission terms between honeybees and mites at different stages of Varroa mites: from honeybees to honeybees, from adult honeybees to the phoretic mites, from brood to the reproductive mites, from the reproductive mites to brood, and from adult honeybees to the phoretic mites; and (3) Allee effects in the honeybee population generated by its internal organization such as division of labor. We provide completed local and global analysis for the full system and its subsystems. Our analytical and numerical results allow us have a better understanding of the synergistic effects of parasitism and virus infections on honeybee population dynamics and its persistence. Interesting findings from our work include: (a) due to Allee effects experienced by the honeybee population, initial conditions are essential for the survival of the colony. (b) Low adult honeybees to brood ratios have destabilizing effects on the system which generate fluctuating dynamics that lead to a catastrophic event where both honeybees and mites suddenly become extinct. This catastrophic event could be potentially linked to Colony Collapse Disorder (CCD) of honeybee colonies. (c) Virus infections may have stabilizing effects on the system, and parasitic mites could make disease more persistent. Our model illustrates how the synergy between the parasitic mites and virus infections consequently generates rich dynamics including multiple attractors where all species can coexist or go extinct depending on initial conditions. Our findings may provide important insights on honeybee viruses and parasites and how to best control them. Copyright © 2016 Elsevier Inc. All rights reserved.
Estrada-Bárcenas, Daniel A; Palacios-Vargas, José G; Estrada-Venegas, Edith; Klimov, Pavel B; Martínez-Mena, Alejandro; Taylor, Maria Lucia
2010-03-01
Mites and the mammal pathogenic fungus Histoplasma capsulatum are the major components of bat guano microbiota. Interactions between mites and H. capsulatum were evaluated under laboratory conditions. Acarid mites, mainly Sancassania sp., were the most abundant microarthropod in the sampled guano of the Mexican bat Tadarida brasiliensis mexicana and, based on its morphology, Sancassania sp. was similar to the cosmopolitan species Sancassania sphaerogaster. The mycophagous and vectoring activities of this mite were tested for H. capsulatum and two other fungal species, Sporothrix schenckii (pathogenic) and Aspergillus sclerotiorum (non-pathogenic). S. ca. sphaerogaster was able to reproduce in H. capsulatum and S. schenckii colonies, multiplying in great numbers under controlled fungal mycelial-phase culture conditions. H. capsulatum colonies were completely destroyed after 14 days of in vitro interaction with mites. In contrast, S. ca. sphaerogaster did not reproduce in A. sclerotiorum cultures. S. ca. sphaerogaster was found vectoring H. capsulatum, but not the two other fungal species studied.
Identification of spider-mite species and their endosymbionts using multiplex PCR.
Zélé, Flore; Weill, Mylène; Magalhães, Sara
2018-02-01
Spider mites of the genus Tetranychidae are severe crop pests. In the Mediterranean a few species coexist, but they are difficult to identify based on morphological characters. Additionally, spider mites often harbour several species of endosymbiotic bacteria, which may affect the biology of their hosts. Here, we propose novel, cost-effective, multiplex diagnostic methods allowing a quick identification of spider-mite species as well as of the endosymbionts they carry. First, we developed, and successfully multiplexed in a single PCR, primers to identify Tetranychus urticae, T. evansi and T. ludeni, some of the most common tetranychids found in southwest Europe. Moreover, we demonstrated that this method allows detecting multiple species in a single pool, even at low frequencies (up to 1/100), and can be used on entire mites without DNA extraction. Second, we developed another set of primers to detect spider-mite endosymbionts, namely Wolbachia, Cardinium and Rickettsia in a multiplex PCR, along with a generalist spider-mite primer to control for potential failure of DNA amplification in each PCR. Overall, our method represents a simple, cost-effective and reliable method to identify spider-mite species and their symbionts in natural field populations, as well as to detect contaminations in laboratory rearings. This method may easily be extended to other species.
Mite predators of the southern pine beetle
John c. Moser
1975-01-01
Of 51 mites found with brood of the southern pine beetle, Dendroctonus frontalis zimmermann, and tested in the laboratory, four are primary candidates for use as natural control agents in reducing field infestations: Histiogaster arborsignis Woodring, Proctolaelaps dendroctoni Lindquist & Hunter, ...
Biological control of citrus thrips, Scirtothrips citri, by predaceous phytoseiid mites
Lynell K. Tanigoshi
1991-01-01
Acari of the family Phytoseiidae are important predators of spider mites. Since the taxonomic treatises of Nesbitt (1951) and later by Chant (1959), over 1000 described taxa have been listed by Moraes et al. (1986).
Khodayari, Samira; Abedini, Fatemeh; Renault, David
2018-05-01
The plant stress hypothesis posits that a herbivore's reproductive success increases when it feeds on stressed plants, while the plant vigor hypothesis predicts that a herbivore preferentially feeds on more vigorous plants. We examined these opposing hypotheses by growing spider mites (Tetranychus urticae) on the leaves of stressed and healthy (vigorous) cucumber plants. Host plants were grown under controlled conditions at low, moderate, and high concentrations of NaCl (to induce salinity stress), at low, moderate, and high fertilizer concentrations (to support growth), and without these additions (control). The effects of these treatments were evaluated by measuring fresh and dry plant biomass, carotenoid and chlorophyll content, antioxidant enzyme activity, and concentrations of PO 4 3- , K + , and Na + in plant tissues. The addition of low concentrations of fertilizer increased dry mass, protein, and carotenoid content relative to controls, suggesting a beneficial effect on plants. The highest NaCl treatment (2560 mg L -1 ) resulted in increased Na + and protein content relative to control plants, as well as reduced PO 4 3- , K + , and chlorophyll levels and reduced catalase and ascorbate peroxidase enzyme activity levels. Analysis of life table data of T. urticae mites raised on leaves from the aforementioned plant groups showed the intrinsic rate of increase (r) for mites was 0.167 day -1 in control specimens, 0.125 day -1 for mites reared on plants treated with a moderate concentration of fertilizer (10 mL L -1 ), and was highest (0.241 day -1 ) on plants grown under moderate salinity conditions (1920 mg L -1 NaCl). Reproductive success of T. urticae did not differ on plants watered with a moderate concentration of NaCl or a high concentration of fertilizer. The moderately-stressed plants formed a favorable environment for the development and reproduction of spider mites, supporting the plant stress hypothesis.
Jess, Stephen; Schweizer, Heinrich
2009-11-01
Mushroom cultivation may be adversely affected by insect pests, including sciarids (Lycoriella spp.), which were previously controlled by application of chemical pesticides. However, owing to food safety and environmental concerns, availability of pesticides for use during mushroom cultivation has diminished. Consequently, it is imperative to investigate alternative control strategies, not reliant on chemical pesticides, which may be used in an integrated pest management system. Application of the predatory mite Hypoaspis miles Berlese to commercial mushroom-growing beds at the beginning of spawn run or just prior to casing (830 mites m(-2)) significantly reduced immature sciarids, Lycoriella ingenua (Dufour), in the growing substrate and also adult activity towards the conclusion of cropping. A trend towards lower sciarid emergence from substrates and reduced adult sciarid activity was observed following the application of Steinernema feltiae (Filipjev) (1.5 x 10(6) nematodes m(-2)) at casing. No significant treatment effects on mushroom yield were observed. However, contamination of the mushroom crop by adult sciarids increased in untreated controls. Application of H. miles required a 12-fold increase in labour when compared with application of S. feltiae. Contingent upon the development of an effective application system, H. miles has potential for the biological control of sciarids in commercial mushroom production. (c) 2009 Society of Chemical Industry.
Bartley, Kathryn; Wright, Harry W.; Huntley, John F.; Manson, Erin D.T.; Inglis, Neil F.; McLean, Kevin; Nath, Mintu; Bartley, Yvonne; Nisbet, Alasdair J.
2015-01-01
An aqueous extract of the haematophagous poultry ectoparasite, Dermanyssus gallinae, was subfractionated using anion exchange chromatography. Six of these subfractions were used to immunise hens and the blood from these hens was fed, in vitro, to poultry red mites. Mite mortality following these feeds was indicative of protective antigens in two of the subfractions, with the risks of mites dying being 3.1 and 3.7 times higher than in the control group (P < 0.001). A combination of two-dimensional immunoblotting and immunoaffinity chromatography, using IgY from hens immunised with these subfractions, was used in concert with proteomic analyses to identify the strongest immunogenic proteins in each of these subfractions. Ten of the immunoreactive proteins were selected for assessment as vaccine candidates using the following criteria: intensity of immune recognition; likelihood of exposure of the antigen to the antibodies in a blood meal; proposed function and known vaccine potential of orthologous molecules. Recombinant versions of each of these 10 proteins were produced in Escherichia coli and were used to immunise hens. Subsequent in vitro feeding of mites on blood from these birds indicated that immunisation with Deg-SRP-1 (serpin), Deg-VIT-1 (vitellogenin), Deg-HGP-1 (hemelipoglycoprotein) or Deg-PUF-1 (a protein of unknown function) resulted in significantly increased risk of mite death (1.7–2.8 times higher than in mites fed blood from control hens immunised with adjuvant only, P < 0.001). The potential for using these antigens in a recombinant vaccine is discussed. PMID:26296690
Bartley, Kathryn; Wright, Harry W; Huntley, John F; Manson, Erin D T; Inglis, Neil F; McLean, Kevin; Nath, Mintu; Bartley, Yvonne; Nisbet, Alasdair J
2015-11-01
An aqueous extract of the haematophagous poultry ectoparasite, Dermanyssus gallinae, was subfractionated using anion exchange chromatography. Six of these subfractions were used to immunise hens and the blood from these hens was fed, in vitro, to poultry red mites. Mite mortality following these feeds was indicative of protective antigens in two of the subfractions, with the risks of mites dying being 3.1 and 3.7 times higher than in the control group (P<0.001). A combination of two-dimensional immunoblotting and immunoaffinity chromatography, using IgY from hens immunised with these subfractions, was used in concert with proteomic analyses to identify the strongest immunogenic proteins in each of these subfractions. Ten of the immunoreactive proteins were selected for assessment as vaccine candidates using the following criteria: intensity of immune recognition; likelihood of exposure of the antigen to the antibodies in a blood meal; proposed function and known vaccine potential of orthologous molecules. Recombinant versions of each of these 10 proteins were produced in Escherichia coli and were used to immunise hens. Subsequent in vitro feeding of mites on blood from these birds indicated that immunisation with Deg-SRP-1 (serpin), Deg-VIT-1 (vitellogenin), Deg-HGP-1 (hemelipoglycoprotein) or Deg-PUF-1 (a protein of unknown function) resulted in significantly increased risk of mite death (1.7-2.8times higher than in mites fed blood from control hens immunised with adjuvant only, P<0.001). The potential for using these antigens in a recombinant vaccine is discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The use of synthetic herbivore-induced plant volatiles (HIPV) to attract natural enemies has received interest as a tool to enhance conservation biological control (CBC). Methyl salicylate (MeSA) is a HIPV that is attractive to several key predators of two-spotted spider mite, Tetranychus urticae K...
USDA-ARS?s Scientific Manuscript database
The use of synthetic herbivore-induced plant volatiles (HIPV) to attract natural enemies has received interest as a tool to enhance conservation biological control (CBC). Methyl salicylate (MeSA) is a HIPV that is attractive to several key predators of two-spotted spider mite, Tetranychus urticae K...
Lima, Debora B; Melo, José Wagner S; Guedes, Nelsa Maria P; Gontijo, Lessando M; Guedes, Raul Narciso C; Gondim, Manoel Guedes C
2015-01-01
Synthetic pesticide use has been the dominant form of pest control since the 1940s. However, biopesticides are emerging as sustainable pest control alternatives, with prevailing use in organic agricultural production systems. Foremost among botanical biopesticides is the limonoid azadirachtin, whose perceived environmental safety has come under debate and scrutiny in recent years. Coconut production, particularly organic coconut production, is one of the agricultural systems in which azadirachtin is used as a primary method of pest control for the management of the invasive coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae). The management of this mite species also greatly benefits from predation by Neoseiulus baraki (Athias-Henriot) (Acari: Phytoseiidae). Here, we assessed the potential behavioral impacts of azadirachtin on the coconut mite predator, N. baraki. We explored the effects of this biopesticide on overall predator activity, female searching time, and mating behavior and fecundity. Azadirachtin impairs the overall activity of the predator, reducing it to nearly half; however, female searching was not affected. In contrast, mating behavior was compromised by azadirachtin exposure particularly when male predators were exposed to the biopesticide. Consequently, predator fecundity was also compromised by azadirachtin, furthering doubts about its environmental safety and selectivity towards biological control agents.
40 CFR 180.1178 - Formic acid; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... pesticide formic acid is exempted from the requirement of a tolerance in or on honey and honeycomb when used to control tracheal mites and suppress varroa mites in bee colonies, and applied in accordance with...
40 CFR 180.1178 - Formic acid; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... pesticide formic acid is exempted from the requirement of a tolerance in or on honey and honeycomb when used to control tracheal mites and suppress varroa mites in bee colonies, and applied in accordance with...
40 CFR 180.1178 - Formic acid; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... pesticide formic acid is exempted from the requirement of a tolerance in or on honey and honeycomb when used to control tracheal mites and suppress varroa mites in bee colonies, and applied in accordance with...
40 CFR 180.1178 - Formic acid; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... pesticide formic acid is exempted from the requirement of a tolerance in or on honey and honeycomb when used to control tracheal mites and suppress varroa mites in bee colonies, and applied in accordance with...
40 CFR 180.1178 - Formic acid; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pesticide formic acid is exempted from the requirement of a tolerance in or on honey and honeycomb when used to control tracheal mites and suppress varroa mites in bee colonies, and applied in accordance with...
Macrodinychus mites as parasitoids of invasive ants: an overlooked parasitic association.
Lachaud, Jean-Paul; Klompen, Hans; Pérez-Lachaud, Gabriela
2016-07-21
Mites are frequent ant symbionts, yet the exact nature of their interactions with their hosts is poorly known. Generally, myrmecophilous mites show adaptations for dispersal through phoresis, but species that lack such an adaptation may have evolved unusual specialized relationships with their hosts. The immature stages of Macrodinychus multispinosus develop as ectoparasitoids of pupae of the invasive ant Paratrechina longicornis. Feeding stages show regressed locomotor appendages. These mites complete their development on a single host, sucking all of its body content and therefore killing it. Locally high proportions of parasitized host pupae suggest that M. multispinosus could serve as a biological control agent. This is the ninth species of Macrodinychus reported as ant parasite, and the third known as parasitoid of invasive ants, confirming a unique habit in the evolution of mite feeding strategies and suggesting that the entire genus might be parasitic on ants. Several mites' characteristics, such as their protective morphology, possible viviparity, lack of a specialized stage for phoretic dispersal, and low host specificity, combined with both the general low aggressiveness of invasive P. longicornis towards other ants and its possible susceptibility to generalist ectoparasites would account for the host shift in native macrodinychid mites.
Del Piccolo, F; Nazzi, F; Della Vedova, G; Milani, N
2010-05-01
The parasitic mite, Varroa destructor, is the most important threat for apiculture in most bee-keeping areas of the world. The mite is carried to the bee brood cell, where it reproduces, by a nurse bee; therefore the selection of the bee stage by the parasite could influence its reproductive success. This study investigates the role of the cuticular hydrocarbons of the European honeybee (Apis mellifera) in host-selection by the mite. Preliminary laboratory bioassays confirmed the preference of the varroa mite for nurse bees over pollen foragers. GC-MS analysis of nurse and pollen bees revealed differences in the cuticular hydrocarbons of the two stages; in particular, it appeared that pollen bees have more (Z)-8-heptadecene than nurse bees. Laboratory experiments showed that treatment of nurse bees with 100 ng of the pure compound makes them repellent to the varroa mite. These results suggest that the mite can exploit the differences in the cuticular composition of its host for a refined selection that allows it to reach a brood cell and start reproduction. The biological activity of the alkene encourages further investigations for the development of novel control techniques based on this compound.
Novel insights into an old disease: recent developments in scabies mite biology.
Holt, Deborah C; Fischer, Katja
2013-04-01
Scabies is a serious disease of both humans and other animals caused by infestation of the skin with the ectoparasitic mite Sarcoptes scabiei. Our current understanding of scabies mite biology and disease processes is far outweighed by the significant, worldwide impact of the disease. This review summarizes the recent data which furthers our knowledge of mite biology, host specificity and parasite host evasion mechanisms. Recent data concords with the previous work demonstrating limited gene flow between different host-associated populations of scabies mites. This evidence of the host specificity of scabies mites has important implications for disease control programmes. Other studies have begun to decipher the molecular basis of the complex host-parasite interactions underlying scabies infestations. Scabies mites have developed complex mechanisms to interfere with the host defence processes that may also enhance the survival of the associated skin microbiome, consistent with the epidemiological evidence. Recently developed natural host models of scabies are valuable tools to further study the disease processes and to trial novel therapeutic agents. Although significant progress has been made, further research is needed to understand the biology, host-parasite interactions and pathogenesis of this ubiquitous parasite.
Kuster, Ryan D; Boncristiani, Humberto F; Rueppell, Olav
2014-05-15
The ectoparasitic Varroa destructor mite is a major contributor to the ongoing honey bee health crisis. Varroa interacts with honey bee viruses, exacerbating their pathogenicity. In addition to vectoring viruses, immunosuppression of the developing honey bee hosts by Varroa has been proposed to explain the synergy between viruses and mites. However, the evidence for honey bee immune suppression by V. destructor is contentious. We systematically studied the quantitative effects of experimentally introduced V. destructor mites on immune gene expression at five specific time points during the development of the honey bee hosts. Mites reproduced normally and were associated with increased titers of deformed wing virus in the developing bees. Our data on different immune genes show little evidence for immunosuppression of honey bees by V. destructor. Experimental wounding of developing bees increases relative immune gene expression and deformed wing virus titers. Combined, these results suggest that mite feeding activity itself and not immunosuppression may contribute to the synergy between viruses and mites. However, our results also suggest that increased expression of honey bee immune genes decreases mite reproductive success, which may be explored to enhance mite control strategies. Finally, our expression data for multiple immune genes across developmental time and different experimental treatments indicates co-regulation of several of these genes and thus improves our understanding of the understudied honey bee immune system. © 2014. Published by The Company of Biologists Ltd.
Phytoseiid mites from tropical fruit trees in Bahia State, Brazil (Acari, Phytoseiidae)
de Souza, Izabel Vieira; Sá Argolo, Poliane; Júnior, Manoel Guedes Correa Gondim; de Moraes, Gilberto José; Bittencourt, Maria Aparecida Leão; Oliveira, Anibal Ramadan
2015-01-01
Abstract The cultivation of tropical fruit trees has grown considerably in the state of Bahia, northeastern Brazil. Some of these have been severely attacked by phytophagous mites, which are usually controlled by the use of chemical pesticides. However, there is today a growing interest for the adoption of less aggressive measures of pest control, as for example the use of predatory mites. Most of the plant-inhabiting predatory mites belong to the family Phytoseiidae. The objective of this paper is to report the phytoseiid species found in an intensive survey conducted on cultivated tropical fruit trees in fifteen localities of the southern coast of Bahia. Measurements of relevant morphological characters are provided for each species, to complement the understanding of the morphological variation of these species. Twenty-nine species of sixteen genera were identified. A key was elaborated to assist in the separation of these species. Fifteen species are reported for the first time in the state, raising to sixty-six the number of species of this family now known from Bahia. Seventy-two percent of the species collected belong to Amblyseiinae, followed by Typhlodrominae (21%) and Phytoseiinae (7%). The most diverse genus was Amblyseius. Amblyseius operculatus De Leon was the most frequent and abundant species. Studies should be conducted to evaluate the possible role of the most common predators as control agents of the phytophagous mites co-occurring with them. PMID:26668542
González-Cabrera, Joel; Rodríguez-Vargas, Sonia; Davies, T G Emyr; Field, Linda M; Schmehl, Daniel; Ellis, James D; Krieger, Klemens; Williamson, Martin S
2016-01-01
The parasitic mite Varroa destructor has a significant worldwide impact on bee colony health. In the absence of control measures, parasitized colonies invariably collapse within 3 years. The synthetic pyrethroids tau-fluvalinate and flumethrin have proven very effective at managing this mite within apiaries, but intensive control programs based mainly on one active ingredient have led to many reports of pyrethroid resistance. In Europe, a modification of leucine to valine at position 925 (L925V) of the V. destructor voltage-gated sodium channel was correlated with resistance, the mutation being found at high frequency exclusively in hives with a recent history of pyrethroid treatment. Here, we identify two novel mutations, L925M and L925I, in tau-fluvalinate resistant V. destructor collected at seven sites across Florida and Georgia in the Southeastern region of the USA. Using a multiplexed TaqMan® allelic discrimination assay, these mutations were found to be present in 98% of the mites surviving tau-fluvalinate treatment. The mutations were also found in 45% of the non-treated mites, suggesting a high potential for resistance evolution if selection pressure is applied. The results from a more extensive monitoring programme, using the Taqman® assay described here, would clearly help beekeepers with their decision making as to when to include or exclude pyrethroid control products and thereby facilitate more effective mite management programmes.
Phytoseiid mites from tropical fruit trees in Bahia State, Brazil (Acari, Phytoseiidae).
de Souza, Izabel Vieira; Sá Argolo, Poliane; Júnior, Manoel Guedes Correa Gondim; de Moraes, Gilberto José; Bittencourt, Maria Aparecida Leão; Oliveira, Anibal Ramadan
2015-01-01
The cultivation of tropical fruit trees has grown considerably in the state of Bahia, northeastern Brazil. Some of these have been severely attacked by phytophagous mites, which are usually controlled by the use of chemical pesticides. However, there is today a growing interest for the adoption of less aggressive measures of pest control, as for example the use of predatory mites. Most of the plant-inhabiting predatory mites belong to the family Phytoseiidae. The objective of this paper is to report the phytoseiid species found in an intensive survey conducted on cultivated tropical fruit trees in fifteen localities of the southern coast of Bahia. Measurements of relevant morphological characters are provided for each species, to complement the understanding of the morphological variation of these species. Twenty-nine species of sixteen genera were identified. A key was elaborated to assist in the separation of these species. Fifteen species are reported for the first time in the state, raising to sixty-six the number of species of this family now known from Bahia. Seventy-two percent of the species collected belong to Amblyseiinae, followed by Typhlodrominae (21%) and Phytoseiinae (7%). The most diverse genus was Amblyseius. Amblyseius operculatus De Leon was the most frequent and abundant species. Studies should be conducted to evaluate the possible role of the most common predators as control agents of the phytophagous mites co-occurring with them.
Mites associated with southern pine bark beetles in Allen Parish, Louisiana
John C. Moser; Lawrence M. Roton
1971-01-01
Ninety-six species of mites were associated with the southern pine beetle and allied scolytids in an outbreak area in Allen Parish, La. the complex was evaluated to ascertain which species may be of value as biological control agents.
Mites associated with Southern Pine Bark Beetles in Allen Parish, Louisiana
John C. Moser; Lawrence M. Roton
1971-01-01
Ninety-six species of mites were associated with the southern pine beetle and allied scolytides in an outbreak area in Allen Parish, LA. The complex was evaluated to ascertain which species may be of value as biological control agents.
USDA-ARS?s Scientific Manuscript database
A user-friendly method to deliver Metarhizium spores to honey bee colonies for control of Varroa mites was developed and tested. Patty blend formulations protected the fungal spores at brood nest temperatures and served as an improved delivery system of the fungus to bee hives. Field trials conducte...
Tabari, Mohaddeseh Abouhosseini; Youssefi, Mohammad Reza; Benelli, Giovanni
2017-05-01
The poultry red mite, Dermanyssus gallinae, represents a key threat for the poultry industry worldwide. The control of D. gallinae is mainly achieved by continuous applications of acaricides. However, the fast-growing development of resistance, and the strict laws concerning chemicals admitted for treatments on food animals, highlighted the importance of alternative control tools. Here, we explored the potential of Artemisia sieberi essential oil against D. gallinae. In this study, the A. sieberi essential oil was analyzed using GC and GC-MS. The oil toxicity through contact and fumigant assays on adult mites was evaluated. The oil repellent activity was assessed on adult mites over different time intervals. Lastly, the residual toxicity of various doses of the oil was evaluated on D. gallinae until 14 days post treatment. GC and GC-MS showed that the oil was rich in α-thujone (31.5%), β-thujone (11.92%), camphor (12.3%), and 1,8-cineole (10.09%). Contact toxicity on adult mites showed 50% lethal concentration (LC 50 ), LC 90 , and LC 99 of 15.85, 26.63, and 35.42 μg/cm 3 , respectively. In fumigant assays, the oil was toxic on D. gallinae, and mortality was significantly higher in open containers over closed ones, underlining the key role of highly volatile constituents. Repellent assays showed that after 24 h from the treatment, all doses of the A. sieberi essential oil led to significant repellent activity over the control, except for 2 μg/cm 3 . After 48 h, A. sieberi essential oil tested at all doses led to significant repellent activity, if compared to the control. Residual toxicity assays showed that time exposure and concentration tested had a significant impact on mite mortality after 1, 2, 5, and 7 days from the treatment. Notably, mortality remained significantly higher over the control for 7 days after spraying with oil at 2%. Further field assays with selected molecules from the A. sieberi essential oil are ongoing, testing them in synergistic blends, as well as in microencapsulated formulations.
Moats, Cassandra R; Baxter, Victoria K; Pate, Nathan M; Watson, Julie
2016-01-01
Immunocompetent weanling mice infested with Myocoptes musculinus harbor high mite loads, yet burdens decrease with age. The development of immunity to the parasite may explain this observation. In this study, we followed M. musculinus burdens in Rag1−/− mice and immunocompetent C57BL/6 controls from 4 to 36 wk of age and compared the clinical signs and body weights of noninfested and infested mice of both strains over time. In addition, histopathology of skin lesions and expression of cytokines and transcription factors associated with Th1- and Th2-type immune responses were assessed. Myocoptes burdens decreased and remained low in B6 mice over time, whereas Rag1−/− mice showed an initial decrease in burdens after 4 wk of age followed by an increase from 24 to 36 wk. In addition, Rag1−/− mice had higher burdens than B6 mice over time. Both strains of infested mice exhibited clinical signs of fur mite infestation—including alopecia, poor weight gain, mite-associated debris, and pruritus—and clinical signs positively correlated with the severity of the Myocoptes burden. Histopathology of skin from both strains of infested mice showed decreased lesion severity with age, likely a result of declining mite populations. Finally, compared with noninfested controls, infested B6 mice had increased expression of markers associated with the Th2-type immune response, which increased in magnitude with increasing age and duration of infestation. These results suggest that development of adaptive immunity plays a role in control of fur mite populations and that heavier infestations may result in more severe clinical signs and skin lesions. PMID:27298244
Bi, Jian-Long; Niu, Zi-Mian; Yu, Lu; Toscano, Nick C
2016-02-01
The carmine spider mite, Tetranychus cinnabarinus (Boisduval) and the twospotted spider mite, Tetranychus urticae Koch, are serious pests of strawberries and many other horticultural crops. Control of these pests has been heavily dependent upon chemical acaricides. Objectives of this study were to determine the resistance status of these two pest species to commonly used acaricides on strawberries in a year-round intensive horticultural production region. LC90 of abamectin for adult carmine spider mites was 4% whereas that for adult twospotted spider mites was 24% of the top label rate. LC90s of spiromesifen, etoxazole, hexythiazox and bifenazate were 0.5%, 0.5%, 1.4% and 83% of their respective highest label rates for carmine spider mite eggs, 0.7%, 2.7%, 12.1% and 347% of their respective highest label rates for the nymphs. LC90s of spiromesifen, etoxazole, hexythiazox and bifenazate were 4.6%, 11.1%, 310% and 62% of their respective highest label rates for twospotted spider mite eggs, 3%, 13%, 432,214% and 15% of their respective highest label rates for the nymphs. Our results suggest that T. cinnabarinus have developed resistance to bifenazate and that the T. urticae have developed resistance to hexythiazox. These results strongly emphasize the need to develop resistance management strategies in the region. © 2014 Institute of Zoology, Chinese Academy of Sciences.
Rojas, M Guadalupe; Morales-Ramos, Juan Alfredo
2010-12-01
The impact of linamarin and lotaustralin content in the leaves of lima beans, Phaseolus lunatus L., on the second and third trophic levels was studied in the two-spotted spider mite, Tetranychus urticae (Koch), and its predator Phytoseiulus persimilis Athias-Henriot. The content of linamarin was higher in terminal trifoliate leaves (435.5 ppm) than in primary leaves (142.1 ppm) of Henderson bush lima beans. However, linamarin concentrations were reversed at the second trophic level showing higher concentrations in spider mites feeding on primary leaves (429.8 ppm) than those feeding on terminal trifoliate leaves (298.2 ppm). Concentrations of linamarin in the predatory mites were 18.4 and 71.9 ppm when feeding on spider mites grown on primary and terminal leaves, respectively. The concentration of lotaustralin in primary lima bean leaves was 103.12 ppm, and in spider mites feeding on these leaves was 175.0 ppm. Lotaustralin was absent in lima bean terminal trifoliate leaves and in mites feeding on these leaves. Fecundity of spider mites feeding on lima bean leaves (primary or trifoliate) was not significantly different from mites feeding on red bean, Phaseolus vulgaris L., primary leaves. However, the progeny sex ratio (in females per male) of spider mites feeding on lima bean leaves was significantly lower than progeny of spider mites feeding on red bean leaves (control). Fecundity and progeny sex ratio of P. persimilis were both significantly affected by the concentration of linamarin present in the prey. Changes in concentration of linamarin in living tissue across the three trophic levels are discussed.
Nachman, Gösta; Zemek, Rostislav
2003-01-01
To investigate the relative contributions of bottom-up (plant condition) and top-down (predatory mites) factors on the dynamics of the two-spotted spider mite (Tetranychus urticae), a series of experiments were conducted in which spider mites and predatory mites were released on bean plants. Plants inoculated with 2, 4, 8, 16, and 32 adult female T. urticae were either left untreated or were inoculated with 3 or 5 adult female predators (Phytoseiulus persimilis) one week after the introduction of spider mites. Plant area, densities of T. urticae and P. persimilis, and plant injury were assessed by weekly sampling. Data were analysed by a combination of statistical methods and a tri-trophic mechanistic simulation model partly parameterised from the current experiments and partly from previous data. The results showed a clear effect of predators on the density of spider mites and on the plant injury they cause. Plant injury increased with the initial number of spider mites and decreased with the initial number of predators. Extinction of T. urticae, followed by extinction of P. persimilis, was the most likely outcome for most initial combinations of prey and predators. Eggs constituted a relatively smaller part of the prey population as plant injury increased and of the predator population as prey density decreased. We did not find statistical evidence of P. persimilis having preference for feeding on T. urticae eggs. The simulation model demonstrated that bottom-up and top-down factors interact synergistically to reduce the density of spider mites. This may have important implications for biological control of spider mites by means of predatory mites.
Niven, R; Fletcher, A M; Pickering, A C; Custovic, A; Sivour, J B; Preece, A R; Oldham, L A; Francis, H C
1999-05-01
Allergen avoidance is of considerable interest in the treatment and even prevention of asthma. Attempts to control house dust mites have included environmental manipulation in homes in an attempt to reduce humidity below a level that favors mite survival. This appears to have some benefit in Scandinavia, but a previous attempt with mechanical ventilation heat pump recovery (MVHR) units in the UK failed to achieve the desired results. We report a study using an additional central dehumidification modification of the MVHR (MVHRcd) in an attempt to reduce allergen levels in houses of asthmatic subjects. Ten houses of asthmatic patients allergic to dust mites and 10 architectural control houses were studied. The active houses were fitted with an MVHRcd unit in November/December 1994 and activated in January 1995. The active and control houses were monitored continuously for internal temperature and humidity by using digital sensors in the asthmatic and control bedrooms. Dust samples were collected to determine allergen levels at baseline (January 1994) and 3, 6, 9, and 15 months after switching on the units. The winter seasonal average humidity fell from 50% relative humidity (RH) in control bedrooms to 37% RH in asthmatic bedrooms compared with 72% RH in the ambient air as measured on the intake of the MVHRcd systems. There was no corresponding change in seasonal mean temperature within the houses. Although the temperature and humidity weekly and seasonal means remained below the study target of 45% RH or 7 g/kg absolute humidity at 21 degrees C, there were transient rises in humidity detected by the sensors in the houses with MVHRcd systems. Allergen levels fell both in active and control houses during the study period, but there was no significant advantage gained from the installation of MVHRcd systems. The MVHRcd system failed to confer a benefit in terms of mite allergen reduction despite apparently adequate control of temperature and humidity.
Contrasting diversity patterns of soil mites and nematodes in secondary succession
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kardol, Paul; Newton, Jeffrey S.; Bezemer, T Martijn
2009-01-01
Soil biodiversity has been recognized as a key feature of ecosystem functioning and stability. However, soil biodiversity is strongly impaired by agriculture and relatively little is known on how and at what spatial and temporal scales soil biodiversity is restored after the human disturbances have come to an end. Here, a multi-scale approach was used to compare diversity patterns of soil mites and nematodes at four stages (early, mid, late, reference site) along a secondary succession chronosequence from abandoned arable land to heath land. In each field four soil samples were taken during four successive seasons. We determined soil diversitymore » within samples ({alpha}-diversity), between samples ({beta}-diversity) and within field sites ({gamma}-diversity). The patterns of {alpha}- and {gamma}-diversity developed similarly along the chronosequence for oribatid mites, but not for nematodes. Nematode {alpha}-diversity was highest in mid- and late-successional sites, while {gamma}-diversity was constant along the chronosequence. Oribatid mite {beta}-diversity was initially high, but decreased thereafter, whereas nematode {beta}-diversity increased when succession proceeded; indicating that patterns of within-site heterogeneity diverged for oribatid mites and nematodes. The spatio-temporal diversity patterns after land abandonment suggest that oribatid mite community development depends predominantly on colonization of new taxa, whereas nematode community development depends on shifts in dominance patterns. This would imply that at old fields diversity patterns of oribatid mites are mainly controlled by dispersal, whereas diversity patterns of nematodes are mainly controlled by changing abiotic or biotic soil conditions. Our study shows that the restoration of soil biodiversity along secondary successional gradients can be both scale- and phylum-dependent.« less
Olivry, Thierry; Linder, Keith E; Paps, Judy S; Bizikova, Petra; Dunston, Stan; Donne, Nathalie; Mondoulet, Lucie
2012-12-01
Patch tests with allergens are used for the evaluation of cellular hypersensitivity to food and environmental allergens in dogs and humans with atopic dermatitis. Viaskin is a novel allergen epicutaneous delivery system that enhances epidermal allergen capture by immune cells. To compare the use of Viaskin and Finn chamber patch tests in dogs hypersensitive to mite allergens. Empty control or Dermatophagoides farinae house dust mite-containing Viaskin or Finn chamber patches were applied to the thoracic skin of six mite-hypersensitive Maltese-beagle crossbred atopic dogs. Lesions were graded 49 and 72 h after patch test application, and skin biopsies were collected after 72 h. Overall microscopic inflammation, eosinophil and T-lymphocyte infiltrations were scored. Positive macroscopic patch test reactions developed at five of six Viaskin application sites and four of six Finn chamber application sites. Median microscopic epidermal and dermal inflammation, as well as eosinophil and CD3 T-lymphocyte dermal scores were always higher in biopsies collected at Viaskin than at Finn chamber sites. Microscopic inflammation scores were significantly higher after mite allergen-containing Viaskin compared with empty patches, but this was not the case for mite-containing Finn chambers compared with control chambers. Scores obtained using Viaskin were not significantly different from those obtained using Finn chambers. Macroscopic and microscopic scores were significantly correlated. In mite-allergic dogs, Viaskin epicutaneous delivery systems appear to induce stronger allergen-specific inflammation than currently used Finn chamber patch tests. Consequently, Viaskin patches might offer a better alternative for screening cellular hypersensitivity to food and environmental allergens. © 2012 The Authors. Veterinary Dermatology © 2012 ESVD and ACVD.
Ali, W; George, D R; Shiel, R S; Sparagano, O A E; Guy, J H
2012-06-08
The poultry red mite, Dermanyssus gallinae (De Geer), is the most important ectoparasitic pest of layer hens worldwide and difficult to control through 'conventional' synthetic acaricides. The present study aimed to identify a suitable predator of D. gallinae that could potentially form the basis of biological control in commercial poultry systems. From four selected predatory mite species (Hypoaspis miles (Berlese), Hypoaspis aculeifer (Canestrini), Amblyseius degenerans (Berlese) and Phytoseiulus persimilis (Athias-Henriot)), Hypoaspis mites demonstrated the greatest potential as predators of D. gallinae. Experiments were also conducted to assess the effect of environmental (temperature and dust), physical (presence of harbourages) and biological (presence of alternative prey) factors on the predatory efficacy of H. miles. Predation of D. gallinae per se was observed under all conditions tested, though was found to be temperature-dependent and reduced by the presence of alternative prey. Copyright © 2012 Elsevier B.V. All rights reserved.
Phan, Jennifer A; Kicic, Anthony; Berry, Luke J; Sly, Peter D; Larcombe, Alexander N
2016-01-01
Recent studies have employed animal models to investigate links between rhinovirus infection and allergic airways disease, however, most do not involve early life infection, and none consider the effects of sex on responses. Here, we infected male and female mice with human rhinovirus 1B (or control) on day 7 of life. Mice were then subjected to 7 weeks of exposure to house-dust-mite prior to assessment of bronchoalveolar inflammation, serum antibodies, lung function, and responsiveness to methacholine. There were significant differences in responses between males and females in most outcomes. In males, chronic house-dust-mite exposure increased bronchoalveolar inflammation, house-dust-mite specific IgG1 and responsiveness of the lung parenchyma, however, there was no additional impact of rhinovirus infection. Conversely, in females, there were additive and synergistic effects of rhinovirus infection and house-dust-mite exposure on neutrophilia, airway resistance, and responsiveness of the lung parenchyma. We conclude that early life rhinovirus infection influences the development of house-dust-mite induced lung disease in female, but not male mice.
Tomato Reproductive Success Is Equally Affected by Herbivores That Induce or That Suppress Defenses.
Liu, Jie; Legarrea, Saioa; Kant, Merijn R
2017-01-01
Herbivory induces plant defenses. These responses are often costly, yet enable plants under attack to reach a higher fitness than they would have reached without these defenses. Spider mites ( Tetranychus ssp.) are polyphagous plant-pests. While most strains of the species Tetranychus urticae induce defenses at the expense of their performance, the species Tetranychus evansi suppresses plant defenses and thereby maintains a high performance. Most data indicate that suppression is a mite-adaptive trait. Suppression is characterized by a massive down-regulation of plant gene-expression compared to plants infested with defense-inducing mites as well as compared to control plants, albeit to a lesser extent. Therefore, we hypothesized that suppression may also benefit a plant since the resources saved during down-regulation could be used to increase reproduction. To test this hypothesis, we compared fruit and viable seed production of uninfested tomato plants with that of plants infested with defense-inducing or defense-suppressing mites. Mite-infested plants produced fruits faster than control plants albeit in lower total amounts. The T. evansi -infested plants produced the lowest number of fruits. However, the number of viable seeds was equal across treatments at the end of the experiment. Nonetheless, at this stage control plants were still alive and productive and therefore reach a higher lifetime fitness than mite-infested plants. Our results indicate that plants have plastic control over reproduction and can speed up fruit- and seed production when conditions are unfavorable. Moreover, we showed that although suppressed plants are less productive in terms of fruit production than induced plants, their lifetime fitness was equal under laboratory conditions. However, under natural conditions the fitness of plants such as tomato will also depend on the efficiency of seed dispersal by animals. Hence, we argue that the fitness of induced plants in the field may be promoted more by their higher fruit production relative to that of their suppressed counterparts.
Tomato Reproductive Success Is Equally Affected by Herbivores That Induce or That Suppress Defenses
Liu, Jie; Legarrea, Saioa; Kant, Merijn R.
2017-01-01
Herbivory induces plant defenses. These responses are often costly, yet enable plants under attack to reach a higher fitness than they would have reached without these defenses. Spider mites (Tetranychus ssp.) are polyphagous plant-pests. While most strains of the species Tetranychus urticae induce defenses at the expense of their performance, the species Tetranychus evansi suppresses plant defenses and thereby maintains a high performance. Most data indicate that suppression is a mite-adaptive trait. Suppression is characterized by a massive down-regulation of plant gene-expression compared to plants infested with defense-inducing mites as well as compared to control plants, albeit to a lesser extent. Therefore, we hypothesized that suppression may also benefit a plant since the resources saved during down-regulation could be used to increase reproduction. To test this hypothesis, we compared fruit and viable seed production of uninfested tomato plants with that of plants infested with defense-inducing or defense-suppressing mites. Mite-infested plants produced fruits faster than control plants albeit in lower total amounts. The T. evansi-infested plants produced the lowest number of fruits. However, the number of viable seeds was equal across treatments at the end of the experiment. Nonetheless, at this stage control plants were still alive and productive and therefore reach a higher lifetime fitness than mite-infested plants. Our results indicate that plants have plastic control over reproduction and can speed up fruit- and seed production when conditions are unfavorable. Moreover, we showed that although suppressed plants are less productive in terms of fruit production than induced plants, their lifetime fitness was equal under laboratory conditions. However, under natural conditions the fitness of plants such as tomato will also depend on the efficiency of seed dispersal by animals. Hence, we argue that the fitness of induced plants in the field may be promoted more by their higher fruit production relative to that of their suppressed counterparts. PMID:29326739
Hamiduzzaman, Mollah Md; Emsen, Berna; Hunt, Greg J; Subramanyam, Subhashree; Williams, Christie E; Tsuruda, Jennifer M; Guzman-Novoa, Ernesto
2017-05-01
Honey bee (Apis mellifera) grooming behavior is an important mechanism of resistance against the parasitic mite Varroa destructor. This research was conducted to study associations between grooming behavior and the expression of selected immune, neural, detoxification, developmental and health-related genes. Individual bees tested in a laboratory assay for various levels of grooming behavior in response to V. destructor were also analyzed for gene expression. Intense groomers (IG) were most efficient in that they needed significantly less time to start grooming and fewer grooming attempts to successfully remove mites from their bodies than did light groomers (LG). In addition, the relative abundance of the neurexin-1 mRNA, was significantly higher in IG than in LG, no groomers (NG) or control (bees without mite). The abundance of poly U binding factor kd 68 and cytochrome p450 mRNAs were significantly higher in IG than in control bees. The abundance of hymenoptaecin mRNA was significantly higher in IG than in NG, but it was not different from that of control bees. The abundance of vitellogenin mRNA was not changed by grooming activity. However, the abundance of blue cheese mRNA was significantly reduced in IG compared to LG or NG, but not to control bees. Efficient removal of mites by IG correlated with different gene expression patterns in bees. These results suggest that the level of grooming behavior may be related to the expression pattern of vital honey bee genes. Neurexin-1, in particular, might be useful as a bio-marker for behavioral traits in bees.
Inert dusts and their effects on the poultry red mite (Dermanyssus gallinae).
Kilpinen, Ole; Steenberg, Tove
2009-06-01
The haematophagous poultry red mite (Dermanyssus gallinae) is the most important pest of egg laying hens in many parts of the world. Control has often relied on chemical pesticides, but inert dusts, which are thought to kill target hosts primarily by desiccation, have become one of the most commonly applied alternative control methods for poultry red mite in Europe. This development has occurred despite a lack of knowledge of the efficacy of the different types of inert dusts and how this is affected by environmental parameters, e.g. the high relative humidity found in poultry houses. In this laboratory study the efficacy of different commercial inert dust products against D. gallinae is compared. All tested compounds killed mites, but there was a clear ranking of efficacy (measured as weight loss after 24 h and as time until 50% mortality), particularly at 75% relative humidity (RH). At 85% RH the efficacy was significantly lower for all tested compounds (P < 0.001). Weight changes over time followed an exponential evaporation model until the mites started dying whereafter the rate of evaporation increased again and followed a slightly different exponential evaporation model. A tarsal test showed that 24 h exposure to surfaces treated with doses much lower than those recommended by the producers is sufficient to kill mites as fast as when they were dusted with massive doses. These data emphasise the need for thorough treatment of all surfaces in a poultry house in order to combat D. gallinae.
Rinkevich, Frank D.; Danka, Robert G.; Healy, Kristen B.
2017-01-01
Since Varroa mites may cause devastating losses of honey bees through direct feeding, transmitting diseases, and increasing pathogen susceptibility, chemical and mechanical practices commonly are used to reduce mite infestation. While miticide applications are typically the most consistent and efficacious Varroa mite management method, miticide-induced insecticide synergism in honey bees, and the evolution of resistance in Varroa mites are reasonable concerns. We treated colonies with the miticide amitraz (Apivar®), used IPM practices, or left some colonies untreated, and then measured the effect of different levels of mite infestations on the sensitivity of bees to phenothrin, amitraz, and clothianidin. Sensitivity to all insecticides varied throughout the year among and within treatment groups. Clothianidin sensitivity decreased with increasing mite levels, but no such correlation was seen with phenothrin or amitraz. These results show that insecticide sensitivity is dynamic throughout the 5 months test. In-hive amitraz treatment according to the labeled use did not synergize sensitivity to the pesticides tested and this should alleviate concern over potential synergistic effects. Since IPM practices were largely ineffective at reducing Varroa mite infestation, reliance on chemical methods of Varroa mite management is likely to continue. However, miticides must be used judiciously so the long term effectiveness of these compounds can be maximized. These data demonstrate the complex and dynamic variables that contribute to honey bee colony health. The results underscore the importance of controlling for as many of these variables as possible in order to accurately determine the effects of each of these factors as they act alone or in concert with others. PMID:28085045
Lima, Debora B.; Melo, José Wagner S.; Guedes, Nelsa Maria P.; Gontijo, Lessando M.; Guedes, Raul Narciso C.; Gondim, Manoel Guedes C.
2015-01-01
Synthetic pesticide use has been the dominant form of pest control since the 1940s. However, biopesticides are emerging as sustainable pest control alternatives, with prevailing use in organic agricultural production systems. Foremost among botanical biopesticides is the limonoid azadirachtin, whose perceived environmental safety has come under debate and scrutiny in recent years. Coconut production, particularly organic coconut production, is one of the agricultural systems in which azadirachtin is used as a primary method of pest control for the management of the invasive coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae). The management of this mite species also greatly benefits from predation by Neoseiulus baraki (Athias-Henriot) (Acari: Phytoseiidae). Here, we assessed the potential behavioral impacts of azadirachtin on the coconut mite predator, N. baraki. We explored the effects of this biopesticide on overall predator activity, female searching time, and mating behavior and fecundity. Azadirachtin impairs the overall activity of the predator, reducing it to nearly half; however, female searching was not affected. In contrast, mating behavior was compromised by azadirachtin exposure particularly when male predators were exposed to the biopesticide. Consequently, predator fecundity was also compromised by azadirachtin, furthering doubts about its environmental safety and selectivity towards biological control agents. PMID:25679393
Lau, Susanne; Wahn, Julia; Schulz, Gabriele; Sommerfeld, Christine; Wahn, Ulrich
2002-02-01
We studied the effect of a spray containing 1% benzyl benzoate, an acaricide, and 1% tannic acid ('Lowal'; a protein-denaturing substance), on concentrations of major allergens from house dust mite (HDM) species Dermatophagoides pteronyssinus and D. farinae (Der p 1 and Der f 1, respectively) in carpets. In a double-blind, placebo-controlled study with crossover design, 30 homes of children with HDM sensitization and asthma were included. All houses showed > or = 400 ng/g of Der p 1 + Der f 1 in carpet dust. The first treatment was performed on day 0 (group 1 active treatment, n = 15; group 2 placebo treatment, n = 15). After 2 and 8 weeks, dust samples were collected for quantification of mite allergens. After a 2-week washout period, the second treatment was performed (group 1 placebo treatment; group 2 active treatment). Again, carpet dust was collected after 2 and 8 weeks. Twenty-two of 30 families completed the trial: 14/15 in group 1 and eight of 15 in group 2. On day 0, there was no significant difference in mite allergen exposure between group 1 and group 2 (1,498 vs. 2,239 ng/g of Der p 1 + Der f 1, respectively). In group 1, the geometric mean for the difference of mite allergen concentration comparing day 0 and week 6 was 196 ng/g (95% CI: -7,161 and 8,401) for the first treatment (active) and 15 ng/g (95% CI: -1,079 and 1,292) for the second treatment (control). In group 2, the difference was 66 ng/g (95% CI: -398 and 1,515) for the first treatment (control) and 609 ng/g (95% CI: 186 and 9,264) for the second treatment (active). Comparing placebo and active treatment in total, there was a significant decrease following placebo treatment after 14 days (p = 0.026). After 8 weeks, active treatment was superior to placebo treatment (p = 0.049), but the allergen reduction achieved was < 20% (median 1,500 ng/g on day 0 vs. 1,250 ng/g after 8 weeks). We conclude that the slight mite allergen reduction on carpets achieved by the treatment with 'Lowal' is unlikely to achieve worthwhile clinical benefit either in the treatment of mite-sensitive patients or in primary or secondary prophylaxis.
González-Cabrera, Joel; Rodríguez-Vargas, Sonia; Davies, T. G. Emyr; Field, Linda M.; Schmehl, Daniel; Ellis, James D.; Krieger, Klemens; Williamson, Martin S.
2016-01-01
The parasitic mite Varroa destructor has a significant worldwide impact on bee colony health. In the absence of control measures, parasitized colonies invariably collapse within 3 years. The synthetic pyrethroids tau-fluvalinate and flumethrin have proven very effective at managing this mite within apiaries, but intensive control programs based mainly on one active ingredient have led to many reports of pyrethroid resistance. In Europe, a modification of leucine to valine at position 925 (L925V) of the V. destructor voltage-gated sodium channel was correlated with resistance, the mutation being found at high frequency exclusively in hives with a recent history of pyrethroid treatment. Here, we identify two novel mutations, L925M and L925I, in tau-fluvalinate resistant V. destructor collected at seven sites across Florida and Georgia in the Southeastern region of the USA. Using a multiplexed TaqMan® allelic discrimination assay, these mutations were found to be present in 98% of the mites surviving tau-fluvalinate treatment. The mutations were also found in 45% of the non-treated mites, suggesting a high potential for resistance evolution if selection pressure is applied. The results from a more extensive monitoring programme, using the Taqman® assay described here, would clearly help beekeepers with their decision making as to when to include or exclude pyrethroid control products and thereby facilitate more effective mite management programmes. PMID:27191597
Camarda, A; Pugliese, N; Bevilacqua, A; Circella, E; Gradoni, L; George, D; Sparagano, O; Giangaspero, A
2018-02-08
Dermanyssus gallinae (Mesostigmata: Dermanyssidae) is the most harmful ectoparasite of laying hens, represents an occupational hazard for poultry workers, and a growing threat to medical science per se. There is increasing demand for alternative products, including plant-derived acaricides, with which to control the mite. The present study investigated the efficacy of neem oil against D. gallinae on a heavily infested commercial laying hen farm. A novel formulation of 20% neem oil, diluted from a 2400-p.p.m. azadirachtin-concentrated stock (RP03™), was administered by nebulization three times in 1 week. Using corrugated cardboard traps, mite density was monitored before, during and after treatment and results were statistically analysed. Mite populations in the treated block showed 94.65%, 99.64% and 99.80% reductions after the first, second and third product administrations, respectively. The rate of reduction of the mite population was significantly higher in the treated block (P < 0.001) compared with the control and buffer blocks. The results suggest the strong bioactivity of neem, and specifically of the patented neem-based formulation RP03™, against D. gallinae. The treatment was most effective in the 10 days following the first application and its effects persisted for over 2 months. Further studies will aim to overcome observed side effects of treatment represented by an oily layer on equipment and eggs. © 2018 The Royal Entomological Society.
Zhu, Yu-xi; Yang, Qun-fang; Huang, Yu-bi; Li, Qing
2015-09-01
In the present study, we investigated the systematically induced production of defense-related compounds, including DIMBOA, total phenol, trypsin inhibitors (TI) and chymotrypsin inhibitor (CI), by Tetranychus cinnabarinus infestation in Zea mays. The first leaves of two corn in-bred line seedlings, the mite-tolerant line ' H1014168' and the mite-sensitive line 'H1014591', were sucked by T. cinnabarinus adult female for seven days, and then the contents of DIMBOA, total phenol, TI and CI were measured in the second leaf and in the roots, respectively. Results showed that as compared to the unsucked control, all contents of DIMBOA, total phenol, TI and CI induced by T. cinnabarinus sucking were significantly higher in the second leaf of both inbred lines as well as in the roots of the mite-tolerant 'H1014168'. However, in the roots of 'H1014591', these defense compounds had different trends, where there was a higher induction of TI and a lower level of total phenol than that of the healthy control, while had almost no difference in DIMBOA and CI. These findings suggested that the infestation of T. cinnabarinus could systematically induce accumulation of defense-related compounds, and this effect was stronger in the mite-tolerant inbred line than in the mite-sensitive inbred line.
Deformed wing virus implicated in overwintering honeybee colony losses.
Highfield, Andrea C; El Nagar, Aliya; Mackinder, Luke C M; Noël, Laure M-L J; Hall, Matthew J; Martin, Stephen J; Schroeder, Declan C
2009-11-01
The worldwide decline in honeybee colonies during the past 50 years has often been linked to the spread of the parasitic mite Varroa destructor and its interaction with certain honeybee viruses. Recently in the United States, dramatic honeybee losses (colony collapse disorder) have been reported; however, there remains no clear explanation for these colony losses, with parasitic mites, viruses, bacteria, and fungal diseases all being proposed as possible candidates. Common characteristics that most failing colonies share is a lack of overt disease symptoms and the disappearance of workers from what appears to be normally functioning colonies. In this study, we used quantitative PCR to monitor the presence of three honeybee viruses, deformed wing virus (DWV), acute bee paralysis virus (ABPV), and black queen cell virus (BQCV), during a 1-year period in 15 asymptomatic, varroa mite-positive honeybee colonies in Southern England, and 3 asymptomatic colonies confirmed to be varroa mite free. All colonies with varroa mites underwent control treatments to ensure that mite populations remained low throughout the study. Despite this, multiple virus infections were detected, yet a significant correlation was observed only between DWV viral load and overwintering colony losses. The long-held view has been that DWV is relatively harmless to the overall health status of honeybee colonies unless it is in association with severe varroa mite infestations. Our findings suggest that DWV can potentially act independently of varroa mites to bring about colony losses. Therefore, DWV may be a major factor in overwintering colony losses.
Johnson, C. A.
1982-01-01
House-dust allergy is a common cause of perennial allergic rhinitis and extrinsic asthma. Symptoms tend to be worse when the patient is in bed. A positive skin test properly performed and interpreted confirms the diagnosis. The house-dust mite is the most important antigenic component of house-dust. Treatment consists of environmental control directed at reducing the mite content of bedroom dust, plus control of symptoms with drugs. Immunotherapy is controversial. ImagesFig. 1 PMID:21286201
Use of Selamectin and Moxidectin in the Treatment of Mouse Fur Mites
Mook, Deborah M; Benjamin, Kimberly A
2008-01-01
A breeding colony consisting of 250 different strains of mice was treated with the topical acaricide selamectin for the mouse fur mite Myocoptes musculinus, with no apparent ill effect, suggesting that this drug is safe for use in mice. To further evaluate their efficacy in treating Myocoptes spp., we compared selamectin with another acaricide, moxidectin, in a controlled manner. Infested mice were treated with selamectin or moxidectin at the time of cage change, and a subset of mice was retreated 10 d later. Mice underwent routine cellophane tape examination of the pelage for 1 y. Although no adult mites were found in any group at 1 mo after treatment, egg casings were found in the selamectin treatment group as late as 6 mo after treatment, prompting concern about its effectiveness. Moxidectin used in combination with cage changing was effective in eradicating mites, with mice negative for traces of mites on cellophane tape examination of the pelage from months 2 through 12 after treatment. PMID:18459708
Dong, Xiaofeng; Armstrong, Stuart D; Xia, Dong; Makepeace, Benjamin L; Darby, Alistair C; Kadowaki, Tatsuhiko
2017-03-01
The number of managed honey bee colonies has considerably decreased in many developed countries in recent years and ectoparasitic mites are considered as major threats to honey bee colonies and health. However, their general biology remains poorly understood. We sequenced the genome of Tropilaelaps mercedesae, the prevalent ectoparasitic mite infesting honey bees in Asia, and predicted 15 190 protein-coding genes that were well supported by the mite transcriptomes and proteomic data. Although amino acid substitutions have been accelerated within the conserved core genes of two mites, T. mercedesae and Metaseiulus occidentalis, T. mercedesae has undergone the least gene family expansion and contraction between the seven arthropods we tested. The number of sensory system genes has been dramatically reduced, but T. mercedesae contains all gene sets required to detoxify xenobiotics. T. mercedesae is closely associated with a symbiotic bacterium (Rickettsiella grylli-like) and Deformed Wing Virus, the most prevalent honey bee virus. T. mercedesae has a very specialized life history and habitat as the ectoparasitic mite strictly depends on the honey bee inside a stable colony. Thus, comparison of the genome and transcriptome sequences with those of a tick and free-living mites has revealed the specific features of the genome shaped by interaction with the honey bee and colony environment. Genome and transcriptome sequences of T. mercedesae, as well as Varroa destructor (another globally prevalent ectoparasitic mite of honey bee), not only provide insights into the mite biology, but may also help to develop measures to control the most serious pests of the honey bee. © The Author 2017. Published by Oxford University Press.
Behaviour of coconut mites preceding take-off to passive aerial dispersal.
Melo, J W S; Lima, D B; Sabelis, M W; Pallini, A; Gondim, M G C
2014-12-01
For more than three decades the coconut mite Aceria guerreronis Keifer is one of the most important pests of coconut palms and has recently spread to many coconut production areas worldwide. Colonization of coconut palms is thought to arise from mites dispersing aerially after take-off from other plants within the same plantation or other plantations. The underlying dispersal behaviour of the mite at take-off, in the airborne state and after landing is largely unknown and this is essential to understand how they spread from tree to tree. In this article we studied whether take-off to aerial dispersal of coconut mites is preceded by characteristic behaviour, whether there is a correlation between the body position preceding aerial dispersal and the direction of the wind, and whether the substrate (outer surface of coconut bracts or epidermis) and the wind speed matter to the decision to take-off. We found that take-off can sometimes be preceded by a raised body stance, but more frequently take-off occurs while the mite is walking or resting on its substrate. Coconut mites that become airborne assumed a body stance that had no relation to the wind direction. Take-off was suppressed on a substrate providing food to coconut mites, but occurred significantly more frequently on the outer surface of coconut bracts than on the surface of the fruit. For both substrates, take-off frequency increased with wind speed. We conclude that coconut mites have at least some degree of control over take-off for aerial dispersal and that there is as yet no reason to infer that a raised body stance is necessary to become airborne.
Kappers, Iris F; Verstappen, Francel W A; Luckerhoff, Ludo L P; Bouwmeester, Harro J; Dicke, Marcel
2010-05-01
Cucumber plants (Cucumis sativus L.) respond to spider-mite (Tetranychus urticae) damage with the release of specific volatiles that are exploited by predatory mites, the natural enemies of the spider mites, to locate their prey. The production of volatiles also can be induced by exposing plants to the plant hormone jasmonic acid. We analyzed volatile emissions from 15 cucumber accessions upon herbivory by spider mites and upon exposure to jasmonic acid using gas chromatography-mass spectrometry. Upon induction, cucumber plants emitted over 24 different compounds, and the blend of induced volatiles consisted predominantly of terpenoids. The total amount of volatiles was higher in plants treated with jasmonic acid than in those infested with spider mites, with (E)-4,8-dimethyl-1,3,7-nonatriene, (E,E)-alpha-farnesene, and (E)-beta-ocimene as the most abundant compounds in all accessions in both treatments. Significant variation among the accessions was found for the 24 major volatile compounds. The accessions differed strongly in total amount of volatiles emitted, and displayed very different odor profiles. Principal component analysis performed on the relative quantities of particular compounds within the blend revealed clusters of highly correlated volatiles, which is suggestive of common metabolic pathways. A number of cucumber accessions also were tested for their attractiveness to Phytoseiulus persimilis, a specialist predator of spider mites. Differences in the attraction of predatory mites by the various accessions correlated to differences in the individual chemical profiles of these accessions. The presence of genetic variation in induced plant volatile emission in cucumber shows that it is possible to breed for cucumber varieties that are more attractive to predatory mites and other biological control agents.
Verstappen, Francel W. A.; Luckerhoff, Ludo L. P.; Bouwmeester, Harro J.; Dicke, Marcel
2010-01-01
Cucumber plants (Cucumis sativus L.) respond to spider–mite (Tetranychus urticae) damage with the release of specific volatiles that are exploited by predatory mites, the natural enemies of the spider mites, to locate their prey. The production of volatiles also can be induced by exposing plants to the plant hormone jasmonic acid. We analyzed volatile emissions from 15 cucumber accessions upon herbivory by spider mites and upon exposure to jasmonic acid using gas chromatography—mass spectrometry. Upon induction, cucumber plants emitted over 24 different compounds, and the blend of induced volatiles consisted predominantly of terpenoids. The total amount of volatiles was higher in plants treated with jasmonic acid than in those infested with spider mites, with (E)-4,8-dimethyl-1,3,7-nonatriene, (E,E)-α-farnesene, and (E)-β-ocimene as the most abundant compounds in all accessions in both treatments. Significant variation among the accessions was found for the 24 major volatile compounds. The accessions differed strongly in total amount of volatiles emitted, and displayed very different odor profiles. Principal component analysis performed on the relative quantities of particular compounds within the blend revealed clusters of highly correlated volatiles, which is suggestive of common metabolic pathways. A number of cucumber accessions also were tested for their attractiveness to Phytoseiulus persimilis, a specialist predator of spider mites. Differences in the attraction of predatory mites by the various accessions correlated to differences in the individual chemical profiles of these accessions. The presence of genetic variation in induced plant volatile emission in cucumber shows that it is possible to breed for cucumber varieties that are more attractive to predatory mites and other biological control agents. PMID:20383796
Chromated copper arsenate (CCA) is a wood preservative pesticide containing chromium, copper, and arsenic that protects wood against termites, fungi, mites and other pests that can degrade or threaten the integrity of wood products.
Macrodinychus mites as parasitoids of invasive ants: an overlooked parasitic association
Lachaud, Jean-Paul; Klompen, Hans; Pérez-Lachaud, Gabriela
2016-01-01
Mites are frequent ant symbionts, yet the exact nature of their interactions with their hosts is poorly known. Generally, myrmecophilous mites show adaptations for dispersal through phoresis, but species that lack such an adaptation may have evolved unusual specialized relationships with their hosts. The immature stages of Macrodinychus multispinosus develop as ectoparasitoids of pupae of the invasive ant Paratrechina longicornis. Feeding stages show regressed locomotor appendages. These mites complete their development on a single host, sucking all of its body content and therefore killing it. Locally high proportions of parasitized host pupae suggest that M. multispinosus could serve as a biological control agent. This is the ninth species of Macrodinychus reported as ant parasite, and the third known as parasitoid of invasive ants, confirming a unique habit in the evolution of mite feeding strategies and suggesting that the entire genus might be parasitic on ants. Several mites’ characteristics, such as their protective morphology, possible viviparity, lack of a specialized stage for phoretic dispersal, and low host specificity, combined with both the general low aggressiveness of invasive P. longicornis towards other ants and its possible susceptibility to generalist ectoparasites would account for the host shift in native macrodinychid mites. PMID:27444515
Yu, Huahua; Yue, Yang; Dong, Xiangli; Li, Rongfeng; Li, Pengcheng
2016-01-01
The carmine spider mite Tetranychus cinnabarinus (T. cinnabarinus) is a common polyphagous pest that attacks crops, vegetables, flowers, and so on. It is necessary to find lead compounds for developing novel, powerful, and environmentally-friendly acaricides as an alternative approach to controlling the carmine spider mite because of the serious resistance and residual agrochemicals in the environment. In addition, the study on the acaricidal activities of marine bioactive substances is comparatively deficient. In the present study, the acaricidal activity of venom (NnFV) from the jellyfish Nemopilema nomurai against the carmine spider mite T. cinnabarinus was determined for the first time. The venom had contact toxicity, and the 24-h LC50-value was 29.1 μg/mL. The mite body wall was affected by the venom, with the mite body having no luster and being seriously shrunken after 24 h. T. cinnabarinus was a potential target pest of NnFV, which had potential as a type of natural bioacaricide. The repellent activity and systemic toxicity of the venom against T. cinnabarinus were also studied. However, NnFV had no repellent activity and systemic toxicity against T. cinnabarinus. PMID:27294957
Mite fauna and fungal flora in house dust from homes of asthmatic children.
Ishii, A; Takaoka, M; Ichinoe, M; Kabasawa, Y; Ouchi, T
1979-12-01
Mite fauna and fungal flora in the house dust from homes of asthmatic children with positive and negative skin test to house dust allergen and non-asthmatic controls were examined. There was no conspicuous difference in mite species distribution among the three groups. Pyroglyphid mites dominate the mite fauna in house dust more than half of which being Dermatophagoides: D. pteronyssinus and D. farinae. There was no statistically significant difference in numbers between the two species and either species could dominate depending on the conditions of the individual houses. The average number of acarina in 0.5 g of fine dust did not differ statistically among the three groups; however, mite number per square meter floor differed between patients with positive skin test and negative skin test. The results suggest that house-cleaning might influence the possible sensitization of children. The genetic distribution of mould fungi in house dust was largely similar to that of airborne fungi. The average number of fungal colonies detected in 0.5 g of dust did not differ statistically among the three groups. Wallemia with its minute spores may cause sensitization but has so far been insufficiently investigated.
Bostanian, Noubar J; Akalach, Mohammed
2006-04-01
A laboratory study assessed the contact toxicity of indoxacarb, abamectin, endosulfan, insecticidal soap, S-kinoprene and dimethoate to Amblyseius fallacis (Garman), Phytoseiulus persimilis Athias-Henriot and nymphs of Orius insidiosus (Say). Amblyseius fallacis is a predacious phytoseiid mite and an integral part of integrated pest management (IPM) programmes in North American apple orchards. The other two beneficials are widely used in greenhouses to manage various arthropod pests infesting vegetable and ornamental crops. Indoxacarb is a slow-acting insecticide, so toxicity data were recorded 7 days post-treatment when the data had stabilised. It showed no toxicity to O. insidiosus nymphs or to A. fallacis or P. persimilis adults. The LC50 values for O. insidiosus nymphs and P. persimilis could not be estimated with their associated confidence limits, because the g values were greater than 0.5 and under such circumstances the lethal concentration would lie outside the limits. The LC50 for A. fallacis was 7.6x the label rate. The fecundity of P. persimilis was reduced by 26.7%. The eclosion of treated eggs from both species of beneficial mites was not affected adversely. Among the other pest control products, S-kinoprene and endosulfan affected adversely at least one species of the predators, whereas dimethoate, abamectin and insecticidal soap were very toxic to all three beneficials. Indoxacarb should be evaluated as a pest control product in IPM programmes. Copyright (c) 2006 Crown in the right of Canada.
Fusarium semitectum, a potential mycopathogen against thrips and mites in chilli, Capsicum annuum.
Mikunthan, G; Manjunatha, M
2006-01-01
In India, chilli (Capsicum annuum L.) suffers with a characteristic leaf curl symptoms due to the attack of mite, Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae) and thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) or both. Experiments were conducted in the fields of College of Agriculture, Shimoga, India during kharif (September 2003 to January 2004) and summer (March-June) 2004. After proving its pathogenicity, the potential of the mycopathogen, Fusarium semitectum was evaluated under field conditions using the popular chilli variety "Byadagi". Different combinations of Fusarium semitectum formulations with monocrotophos (0.025% and 0.05%) were tested. Oil-emulsion and dust-water formulations (DWF) at 1x 10(8) spore/ml, DWF with monocrotophos and 5% Neem Seed Kernal Extract (NSKE) were evaluated. Population of S. dorsalis, P. latus, predatory mite Amblyseius ovalis and damage index were estimated. Populations of thrips, mite and the predatory mite were estimated at 15 days interval after 30 days of transplanting. Damage index was assessed using a visual rating method. Plant height, fruit length and dry chilli yield of each treatment were also taken. Among the treatments, oil-emulsion formulation and dust water formulation of F. semitectum in combination with monocrotophos (0.05%) reduced the population of thrips significantly over other treatments. Dust water formulation was achieved a significant decline of thrips population in chilli plants after 60 days of transplanting. This reduction of thrips population could be achieved due to the effect of second spraying, which was given at 50 days after transplanting. Chilli plant height and fruit length did not vary significantly among the treatment in both seasons. The highest dry chilli yield of 512 and 1058 kg/ha was recorded in dust water formulation in combination with monocrotophos (0.05%) followed by oil formulation (432 kg/ha and 763 kg/ha) in Kharif and summer seasons, respectively. Fusarium formulation sprayed plots were recorded low damage index than NSKE, water sprayed plots including control. Oil-emulsion formulation treated plot adjusted the highest benefit cost ratio of 6.07:1. Oil emulsion formulation (refined sunflower oil-Safola) was next best to the dust water formulation of F. semitectum. and monocrotophos combination and more-over equal to the monocrotophos 0.05% alone in suppressing the thrips and mite population. These results revealed that dust water formulation in combination with monocrotophos (0.05%) was able to suppress the population of thrips and mites and thus was able to give highest dry chilli yield. Oil emulsion formulation of F. semitectum can also be used as the next best choice in an environment friendly integrated chilli pest management programme.
The mites associated with Ips typographus in Sweden
John C. Moser; Hubertus H. Eidmann; Jan R. Regnander
1989-01-01
Twenty-four species of mites were found associated with Ips typographus (Linnaeus) collected from pherommone traps in Sweden, bringing to 38 the total recorded for this scolytid. Because three of the species are parasites, it may be possible to use them in biological control of I. typographus. Couplets from an earlier key to these...
USDA-ARS?s Scientific Manuscript database
The varroa mite, Varroa destructor, is a honeybee ectoparasite considered the most important pest in apiaries throughout the US. Ecdysone receptor is a hormone secreted by the prothoracic gland of insects that controls ecdysis and stimulates metamorphosis. The ecdysone receptor is a nuclear receptor...
USDA-ARS?s Scientific Manuscript database
Varroa mites (V. destructor) are a major threat to honey bees (Apis melilfera) and beekeeping worldwide and likely lead to colony decline if colonies are not treated. Most treatments involve chemical control of the mites; however, Varroa has evolved resistance to many of these miticides, leaving be...
USDA-ARS?s Scientific Manuscript database
Transgenic crops containing pyramid-stacked genes for Bacillus thuringiensis derived toxins for controlling coleopteran and lepidopteran pests are increasingly common. As part of environmental risk assessments, these crops are evaluated for toxicity against non-target organisms, and for their poten...
Maurer, Veronika; Perler, Erika; Heckendorn, Felix
2009-06-01
The aim of this study was to test the effectiveness of physically acting substances (oils and silicas) and plant preparations for the control of the poultry red mite Dermanyssus gallinae (De Geer 1778). Reproduction and survival of fed D. gallinae females were evaluated in vitro for a total of 168 h using the "area under the survival curve" (AUC) to compare survival of the mites between treatments. Four oils (two plant oils, one petroleum spray oil and diesel), one soap, three silicas (one synthetic amorphous silica, one diatomaceous earth (DE) and one DE with 2% pyrethrum extract) and seven plant preparations (derived from Chrysanthemum cineariaefolium, Allium sativum, Tanacetum vulgare, Yucca schidigera, Quillaja saponaria, Dryopteris filix-mas, and Thuja occidentalis) were tested at various concentrations. All the oils, diesel and soap significantly reduced D. gallinae survival. All silicas tested inhibited reproduction. DE significantly reduced mite survival, but amorphous silica was less effective in vitro. Except for pure A. sativum juice and the highest concentration of C. cineariaefolium extract, the plant preparations tested resulted in statistically insignificant control of D. gallinae.
Clark, Larry; Russell Mason, J
1988-11-01
The European starling Sturnus vulgaris preferentially incorporates fresh sprigs of particular plant species for use as nesting material. Chemicals found in these plants may act to reduce pathogen and ectoparasite populations normally found in nest environments. The present experiments were performed to test this Nest Protection Hypothesis. In the fild, we experimentally determined that wild carrot Daucus carota, a plant species preferred as nest material, effectively reduced the number of hematophagous mites found within nests relative to control nests without green vegetation. Chicks from nests containing wild carrot had higher levels of blood hemoglobin than chicks from control nests. However, there were no differences in weight or feather development. In the laboratory, we found that wild carrot and fleabane, Erigeron philadelphicus, (also preferred by starlings as nest material) substantially reduced the emergence of feeding instars of mites, while garlic mustard, Alliaria officinalis, (commonly available but not preferred) had little effect on the emergence of mites. We infer that preferred plant material may act to inhibit feeding or otherwise delay reproduction of mites, thereby reducing risk of anemia to developing nestlings.
Li, Li; Xu, Ju; Zhong, Nan-shan
2003-09-01
To investigate the effect of antisense endothelin converting enzyme (ECE) RNA on levels of cytokines released from CD(4)(+) lymphocytes in patients with allergic diseases responsive to house dust mites. Peripheral blood mononuclear cells (PBMCs) were separated from 21 patients who were sensitive to dust mites. PBMCs from those patients were divided into two groups. No stimulation group (A group) induded A(1) group (anti-ECE epithelial cells + PBMCs) and A(2) group (control cells + PBMCs). Stimulation group (B group) included B(1) group (anti-ECE epithelial cells + PBMCs + dust mites extract) and B(2) group (control cells + PBMCs + dust mites extract). House dust mite extract (20 microg/ml) was added to the culture of stimulation group as described above. After 72 hours, supernatants from both groups were collected and the levels of IL-5 and IFN-ggr; released into the supernatants were detected by enzyme-linked immunoabsorbent assay. IL-5 levels were increased significantly after treatment with dust mite in twelve of 21 cases. No significant differences of IL-5 were found between the groups of A(1)[(6.0 +/- 1.3) x 10(-9) g/L] and A(2) [(7.5 +/- 1.1) x 10(-9) g/L] before house dust mite stimulation in the 12 cases (P > 0.05), and no significant differences in IFN-ggr; were found between the groups of A(1) [(63 +/- 26) x 10(-9) g/L] and A(2) [(70 +/- 52) x 10(-9) g/L] before house dust mite stimulation (P > 0.05). IL-5 level was increased in both groups after stimulation but it was significantly lower in the B(1) group [(8.2 +/- 1.6) x 10(-9) g/L] than that in the B(2) [(12.0 +/- 1.8) x 10(-9) g/L] (P = 0.047). It seemed that increased IFN-ggr; level after stimulation was higher in B(2) [(153 +/- 71) x 10(-9) g/L] than that in the B(1) group (100 +/- 41) x 10(-9) g/L], but there was no statistic significance (P > 0.05). In addition, our results also showed that the release of IL-5 was significantly increased in those cases with asthma, or asthma plus allergic rhinitis after dust mites stimulation [(44 +/- 15)%] compared with that in those with urticaria [(7 +/- 4)%] (P = 0.047). Antisense-ECE downregulated the IL-5 secretion from Th2 lymphocytes in patients with allergic asthma after being challenged with dust mites. It is indicated that ET-1 is an important cytokine involved with allergic airway inflammation. Antisense-ECE RNA management in airways may be of value in treating allergic asthma.
House Dust Mite Der p 1 Effects on Sinonasal Epithelial Tight Junctions
Henriquez, Oswaldo A.; Beste, Kyle Den; Hoddeson, Elizabeth K.; Parkos, Charles A.; Nusrat, Asma; Wise, Sarah K.
2013-01-01
Background Epithelial permeability is highly dependent upon the integrity of tight junctions, cell-cell adhesion complexes located at the apical aspect of the lateral membrane of polarized epithelial cells. We hypothesize that sinonasal epithelial exposure to Der p 1 house dust mite antigen decreases expression of tight junction proteins (TJPs), representing a potential mechanism for increased permeability and presentation of antigens across the sinonasal epithelial layer. Methods Confluent cultured primary human sinonasal epithelial cells were exposed to recombinant Der p 1 antigen versus control, and transepithelial resistance measurements were performed over 24 hours. Antibody staining for a panel of tight junction proteins was examined with immunofluorescence/confocal microscopy and Western blotting. Tissue for these experiments was obtained from 4 patients total. Results Der p 1 exposed sinonasal cells showed a marked decrease in transepithelial resistance when compared to control cells. In addition, results of Western immunoblot and immunofluorescent labeling demonstrated decreased expression of TJPs claudin-1 and junction adhesion molecule-A (JAM-A) in Der p 1 exposed cultured sinonasal cells versus controls. Conclusion Der p 1 antigen exposure decreases sinonasal epithelium TJP expression, most notably seen in JAM-A and claudin-1 in these preliminary experiments. This decreased TJP expression likely contributes to increased epithelial permeability and represents a potential mechanism for transepithelial antigen exposure in allergic rhinitis. PMID:23592402
House dust mite allergen Der p 1 effects on sinonasal epithelial tight junctions.
Henriquez, Oswaldo A; Den Beste, Kyle; Hoddeson, Elizabeth K; Parkos, Charles A; Nusrat, Asma; Wise, Sarah K
2013-08-01
Epithelial permeability is highly dependent upon the integrity of tight junctions, which are cell-cell adhesion complexes located at the apical aspect of the lateral membrane of polarized epithelial cells. We hypothesize that sinonasal epithelial exposure to Der p 1 house dust mite antigen decreases expression of tight junction proteins (TJPs), representing a potential mechanism for increased permeability and presentation of antigens across the sinonasal epithelial layer. Confluent cultured primary human sinonasal epithelial cells were exposed to recombinant Der p 1 antigen vs control, and transepithelial resistance measurements were performed over 24 hours. Antibody staining for a panel of TJPs was examined with immunofluorescence/confocal microscopy and Western blotting. Tissue for these experiments was obtained from 4 patients total. Der p 1 exposed sinonasal cells showed a marked decrease in transepithelial resistance when compared to control cells. In addition, results of Western immunoblot and immunofluorescent labeling demonstrated decreased expression of TJPs claudin-1 and junction adhesion molecule-A (JAM-A) in Der p 1-exposed cultured sinonasal cells vs controls. Der p 1 antigen exposure decreases sinonasal epithelium TJP expression, most notably seen in JAM-A and claudin-1 in these preliminary experiments. This decreased TJP expression likely contributes to increased epithelial permeability and represents a potential mechanism for transepithelial antigen exposure in allergic rhinitis. © 2013 ARS-AAOA, LLC.
Schöler, Arne; Maier, Walter A; Kampen, Helge
2006-01-01
The harvest mite Neotrombicula autumnalis (Trombiculidae) has become a great nuisance in various vegetated areas in Germany over the last 15 years. According to reports of dermatologists, this species appears to have propagated and spread significantly. Moreover, cases of severe trombidiosis or trombidiosis-like skin reactions have been noticed at unusually early times of the year. Due to the lack of scientific studies, little is known about the ecology of N. autumnalis and its distribution, and preferred habitats cannot be predicted. A four-year study was conducted to identify trombiculid foci in different areas of Bonn in order (1) to determine the timing of larvae appearance in different years, (2) to identify the factors that lead to high larvae abundances at the mite foci ('multiple factor analysis'), and (3) to develop an ecological control strategy. By means of the 'tile catch method' (TCM) which turned out to be most appropriate to collect data on the distribution and abundances of trombiculid mites, larvae of N. autumnalis were caught from mid July until the end of October/beginning of November. The distribution of the mites was patchy, supporting the hypothesis that certain factors cause a concentration in foci. Most of the mite foci had a fixed location for at least three years. Efforts to isolate nymphs and adults in larger quantities to gain knowledge about their preferred soil areas and soil depths failed. Only some nymphs of N. autumnalis could be found living 10-40 cm deep in the soil. Due to the restriction that the nymphs and adults can only rarely be isolated in the ground, the analysis of environmental factors was executed based on abundances of questing larvae on the soil surface. The detailed analysis of soil-physical, soil-chemical and meso-faunistic factors could not finally explain the unequal distribution of the mites, although the porosity of the soil had a statistically significant slight influence on the abundance of larvae, and soil pH bordered significance, also suggesting a slight influence. Furthermore, soil temperatures during the winter seasons in three subsequent years appeared too high to affect the harvest mite. The field experiments suggest that N. autumnalis and particularly its larval stages are extremely euryoecious (meaning tolerating very different environmental conditions). Further studies are necessary: additional investigations on the influence of certain abiotic environmental factors on N. autumnalis, the search for factors underlying the rhythmicity of its life cycle ('zeitgeber'), and the reasons and mechanisms for heterogeneous distribution of soil fauna in general. Ecological control of the mite is, in principle, possible but only after identifying the foci and ascertaining their approximate dimensions with the TCM. This control strategy is the most promising one, albeit very laborious, emphasising the need of further research on the ecology of the harvest mite.
2010-01-01
Background The ectoparasitic mite Varroa destructor has emerged as the primary pest of domestic honey bees (Apis mellifera). Here we present an initial survey of the V. destructor genome carried out to advance our understanding of Varroa biology and to identify new avenues for mite control. This sequence survey provides immediate resources for molecular and population-genetic analyses of Varroa-Apis interactions and defines the challenges ahead for a comprehensive Varroa genome project. Results The genome size was estimated by flow cytometry to be 565 Mbp, larger than most sequenced insects but modest relative to some other Acari. Genomic DNA pooled from ~1,000 mites was sequenced to 4.3× coverage with 454 pyrosequencing. The 2.4 Gbp of sequencing reads were assembled into 184,094 contigs with an N50 of 2,262 bp, totaling 294 Mbp of sequence after filtering. Genic sequences with homology to other eukaryotic genomes were identified on 13,031 of these contigs, totaling 31.3 Mbp. Alignment of protein sequence blocks conserved among V. destructor and four other arthropod genomes indicated a higher level of sequence divergence within this mite lineage relative to the tick Ixodes scapularis. A number of microbes potentially associated with V. destructor were identified in the sequence survey, including ~300 Kbp of sequence deriving from one or more bacterial species of the Actinomycetales. The presence of this bacterium was confirmed in individual mites by PCR assay, but varied significantly by age and sex of mites. Fragments of a novel virus related to the Baculoviridae were also identified in the survey. The rate of single nucleotide polymorphisms (SNPs) in the pooled mites was estimated to be 6.2 × 10-5per bp, a low rate consistent with the historical demography and life history of the species. Conclusions This survey has provided general tools for the research community and novel directions for investigating the biology and control of Varroa mites. Ongoing development of Varroa genomic resources will be a boon for comparative genomics of under-represented arthropods, and will further enhance the honey bee and its associated pathogens as a model system for studying host-pathogen interactions. PMID:20973996
MITEE: A Compact Ultralight Nuclear Thermal Propulsion Engine for Planetary Science Missions
NASA Astrophysics Data System (ADS)
Powell, J.; Maise, G.; Paniagua, J.
2001-01-01
A new approach for a near-term compact, ultralight nuclear thermal propulsion engine, termed MITEE (Miniature Reactor Engine) is described. MITEE enables a wide range of new and unique planetary science missions that are not possible with chemical rockets. With U-235 nuclear fuel and hydrogen propellant the baseline MITEE engine achieves a specific impulse of approximately 1000 seconds, a thrust of 28,000 newtons, and a total mass of only 140 kilograms, including reactor, controls, and turbo-pump. Using higher performance nuclear fuels like U-233, engine mass can be reduced to as little as 80 kg. Using MITEE, V additions of 20 km/s for missions to outer planets are possible compared to only 10 km/s for H2/O2 engines. The much greater V with MITEE enables much faster trips to the outer planets, e.g., two years to Jupiter, three years to Saturn, and five years to Pluto, without needing multiple planetary gravity assists. Moreover, MITEE can utilize in-situ resources to further extend mission V. One example of a very attractive, unique mission enabled by MITEE is the exploration of a possible subsurface ocean on Europa and the return of samples to Earth. Using MITEE, a spacecraft would land on Europa after a two-year trip from Earth orbit and deploy a small nuclear heated probe that would melt down through its ice sheet. The probe would then convert to a submersible and travel through the ocean collecting samples. After a few months, the probe would melt its way back up to the MITEE lander, which would have replenished its hydrogen propellant by melting and electrolyzing Europa surface ice. The spacecraft would then return to Earth. Total mission time is only five years, starting from departure from Earth orbit. Other unique missions include Neptune and Pluto orbiter, and even a Pluto sample return. MITEE uses the cermet Tungsten-UO2 fuel developed in the 1960's for the 710 reactor program. The W-UO2 fuel has demonstrated capability to operate in 3000 K hydrogen for many hours - a much longer period than the approximately one hour burn time for MITEE. Using this cermet fuel, and technology available from other nuclear propulsion programs, MITEE could be developed and ready for implementation in a relatively short time, i.e., approximately seven years. An overview description of the MITEE engine and its performance capabilities is provided.
Creosote is a wood preservative pesticide used in outdoor settings such as in railroad ties and utility poles. It protects wood against termites, fungi, mites and other pests that can degrade or threaten the integrity of wood products.
Traps containing carvacrol, a biological approach for the control of Dermanyssus gallinae.
Barimani, Alireza; Youssefi, Mohammad Reza; Tabari, Mohaddeseh Abouhosseini
2016-09-01
Resistance to conventional synthetic pesticides has been widely reported in Dermanyssus gallinae in different aviary systems. Cardboard traps containing acaricides had been introduced as a successive device for collection and control of the poultry red mite. The present study assessed field efficacy of traps containing carvacrol in the control and reduction of D. gallinae in laying poultry farm. Two different carvacrol-based formulations were tested for their toxicity and possible repellent activity on D. gallinae to determine the most appropriate formulation and concentration to be used in the field study. In vitro tests confirmed that 1 % carvacrol formulation with ethoxylated castor oil as emulsifier was significantly toxic to D. gallinae without any dissuading effect in comparison to ethanol and higher concentrations of carvacrol (p < 0.05). A subsequent in vivo experiment in a cage system laying farm demonstrated significant acaricidal activity for traps containing 1 % carvacrol. Throughout the study, untreated cardboard traps were used for monitoring mite populations. Carvacrol-impregnated traps were efficacious in the control of D. gallinae and led to over 92 % reduction in mite's population after 2 week of application. Toxic effects of carvacrol maintained through 2 weeks after the last application of traps. Results of the present study suggested that effective control of the poultry red mite can be achieved by traps containing carvacrol. These traps can be used safely in poultry facilities without any concern about residues in eggs, meat, and environment.
Tavassoli, M; Allymehr, M; Pourseyed, S H; Ownag, A; Bernousi, I; Mardani, K; Ghorbanzadegan, M; Shokrpoor, S
2011-06-10
The poultry red mite, Dermanyssus gallinae is one of the most economically deleterious ectoparasite of laying hens worldwide. To evaluate the efficacy of three strains (V245, 3247 and 715C) of entomopathogenic fungus Metarhizium anisopliae with potential as acaricides against D. gallinae, this investigation was carried out in a commercial caged laying poultry farm in Naghedeh, West Azarbaijan of Iran. The parasite infestation already existed in the farm. Sunflower oil suspension of all fungal strains, each in two concentrations (1×10(7) and 1×10(9) conidia/ml) were used separately as spray on hens and cages, and in the control group the cages were only sprayed with sunflower oil and sterile distilled water. For estimating the population rate of mites before and after treatment, special cardboard traps were fixed to cages during a 1-month period. The traps were placed on weeks -1, 0, 1, 2 and 3 and always removed after 1 w. The results showed that the population rates post fungal treatment with the lower concentration were not significantly different compared to the control group. However, the reduction in mite numbers induced by all three strains at the concentration of 1×10(9) conidia/ml was significantly higher than the control (P<0.05). The results revealed that under field conditions, higher concentrations of M. anisopliae will be required for controlling D. gallinae. Copyright © 2011 Elsevier B.V. All rights reserved.
Terreehorst, I; Duivenvoorden, H J; Tempels-Pavlica, Z; Oosting, A J; de Monchy, J G R; Bruijnzeel-Koomen, C A F M; van Wijk, R Gerth
2005-07-01
Environmental control has been put forward as an integral part of the management of house dust mite (HDM) allergy in sensitized patients. To validate this statement allergic disorders involved in HDM allergy--allergic asthma, rhinitis and atopic eczema/dermatitis syndrome (AEDS)--should be taken together and studied in terms of the efficacy of environmental control. Because a generic quality of life questionnaire exceeds the border of disease, this may be used as major outcome parameter. To study the effects of bedding encasings in HDM allergic patients with asthma, rhinitis and AEDS. A total of 224 adult HDM allergic patients with rhinitis and/or asthma and/or dermatitis were randomly allocated impermeable or nonimpermeable encasings for mattress, pillow and duvet. Short form 36 (SF-36) was filled in at baseline and after 12 months. Lower physical (P = 0.01) and emotional (P < 0.001) sumscores were seen in females. Also, the presence of asthma resulted in lower physical sumscore (P = 0.01). However, no effect was seen of encasings on either sumscore. Bedding encasings do not improve quality of life in a mixed population of subjects with combinations with rhinitis, asthma and atopic dermatitis and sensitized to HDMs.
Khanamani, Mostafa; Fathipour, Yaghoub; Talebi, Ali Asghar; Mehrabadi, Mohammad
2017-02-01
It has been shown that pollen as a dietary supplement may increase the establishment of generalist predatory mites, and therefore pest control by these mites can be provided. Life table studies were performed to evaluate the nutritional value of seven different pollens (almond, castor-bean, date-palm, maize, bitter-orange, sunflower and mixed bee pollen) as a supplementary food source for the spider mite predator Neoseiulus californicus McGregor. In addition, the nutritional quality of each pollen species was assessed through morphological and chemical analysis. Preadult duration was longer when the predator fed on castor-bean pollen (10.01 days) and bee pollen (9.94 days) compared with the others (5.58-7.27 days). The cohort reared on almond pollen had the highest intrinsic rate of increase (r) (0.231 day -1 ), and those on mixed bee pollen had the lowest r (0.005 day -1 ). The levels of nutritional content (sugar, lipid and protein) were significantly different among tested pollens. Comparison of N. californicus life table parameters on different diets revealed that the almond pollen (and after that the maize pollen) was a more suitable diet than the others. These findings will be useful in developing appropriate strategies for conservation of N. californicus to control spider mites. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Glasgow, Nicholas J; Ponsonby, Anne-Louise; Kemp, Andrew; Tovey, Euan; van Asperen, Peter; McKay, Karen; Forbes, Samantha
2011-06-01
Observational studies report inverse associations between the use of feather upper bedding (pillow and/or quilt) and asthma symptoms but there is no randomised controlled trial (RCT) evidence assessing the role of feather upper bedding as a secondary prevention measure. To determine whether, among children not using feather upper bedding, a new feather pillow and feather quilt reduces asthma severity among house dust mite (HDM) sensitised children with asthma over a 1-year period compared with standard dust mite avoidance advice, and giving children a new mite-occlusive mattress cover. RCT. The Calvary Hospital in the Australian Capital Territory and the Children's Hospital at Westmead, Sydney, New South Wales. 197 children with HDM sensitisation and moderate to severe asthma. Intervention New upper bedding duck feather pillow and quilt and a mite-occlusive mattress cover (feather) versus standard care and a mite-occlusive mattress cover (standard). The proportion of children reporting four or more episodes of wheeze in the past year; an episode of speech-limiting wheeze; or one or more episodes of sleep disturbance caused by wheezing; and spirometry with challenge testing. Statistical analysis included multiple logistic and linear regression. No differences between groups were found for primary end points--frequent wheeze (OR 1.51, 95% CI 0.83 to 2.76, p=0.17), speech-limiting wheeze (OR 0.70, 95% CI 0.32 to 1.48, p=0.35), sleep disturbed because of wheezing (OR 1.17, 95% CI 0.64 to 2.13, p=0.61) or for any secondary end points. Secondary analyses indicated the intervention reduced the risk of sleep being disturbed because of wheezing and severe wheeze to a greater extent for children who slept supine. No differences in respiratory symptoms or lung function were observed 1 year after children with moderate-severe asthma and HDM sensitisation were given a mite-occlusive mattress cover and then received either feather upper bedding (pillow and quilt) or standard bedding care.
Ghosh, Amlan; Dutta, Shampa; Podder, Sanjoy; Mondal, Priti; Laha, Arghya; Saha, Nimai Chandra; Moitra, Saibal; Saha, Goutam Kumar
2018-01-10
India is the home to around 15-20 million asthmatics, and asthma prevalence is increasing in Indian metropolitan area, including Kolkata, West Bengal. Complex interactions of genetic and environmental factors are involved in asthma. Genome-wide search for susceptible loci regulating IgE response (atopy) have identified a candidate gene CD14 which is most important in the context of allergic responses of respiratory system. This study was aimed to investigate the role of house dust and house dust mites in development of bronchial asthma and to explore the possible association of candidate gene CD14 with disease manifestation among Kolkata patient population. Skin-prick test was done among 950 asthmatic patients against 8 aeroallergens, including house dust and house dust mites and total serum IgE and allergen-specific IgE were measured. Polymerase chain reaction-restriction fragment length polymorphism was done in patients and nonasthmatic control (n = 255 in each) to characterize a functional polymorphism, C(-159)T, of CD14, a positional candidate gene for allergy. We identified house dust as the most common aeroallergen sensitizer among atopic patients in Kolkata followed by Dermatophagoides pteronyssinus and Dermatophagoides farinae Hughes (Acari: Pyroglyphidae) mites. Patient's sera contain significantly higher IgE level than that of control. Allergen-specific IgE antibody test revealed that 76.36% patients had specific IgE antibody against D. pteronyssinus mite. There was a significant difference in the distribution of alleles and genotypes for CD14 polymorphism with an increase in disease severity. So, in Kolkata, house dust mite is a common aeroallergen and D. pteronyssinus is predominant among mites. The present study revealed that bronchial asthma has a genetic background. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Bartley, Kathryn; Nisbet, Alasdair J; Offer, Jill E; Sparks, Nicholas H C; Wright, Harry W; Huntley, John F
2009-03-01
A cDNA encoding a 174-amino-acid orthologue of a tick histamine release factor (HRF) was identified from the haematophagous poultry red mite Dermanyssus gallinae. The predicted D. gallinae HRF protein (Dg-HRF-1) sequence is highly conserved with the tick HRFs (identity 52-54%) and to a lesser degree with translationally controlled tumour proteins (TCTP) from mammals and other invertebrates (range 38-47%). Phylogenetically, Dg-HRF-1 partitions with the tick HRF clade suggesting a shared linage and potentially similar function(s). A recombinant Dg-HRF-1 protein (rDg-HRF-1) was produced and shown to induce degranulation of rat peritoneal mast cells in vitro, confirming conservation of the histamine-releasing function in D. gallinae. Polyclonal antibodies were generated in rabbits and hens to rDg-HRF-1. Western blotting demonstrated that native Dg-HRF is a soluble protein and immunohistochemical staining of mite sections revealed that the distribution of Dg-HRF, although ubiquitous, is more common in mite reproductive, digestive and synganglion tissues. A survey of hens housed continuously in a mite-infested commercial poultry unit failed to identify IgY specific for recombinant or native Dg-HRF, indicating that Dg-HRF is not exposed to the host during infestation/feeding and may therefore have potential as a vaccine using the concealed antigen approach. To test the protective capability of rDg-HRF-1, fresh heparinised chicken blood was enriched with yolk-derived anti-Dg-HRF IgY antibodies and fed to semi-starved mites using an in vitro feeding system. A statistically significant increase in mortality was shown (P=0.004) in mites fed with anti-Dg-HRF IgY after just one blood meal. The work presented here demonstrates, to our knowledge for the first time, the feasibility of vaccinating hens with recombinant D. gallinae antigens to control mite infestation and the potential of rDg-HRF-1 as a vaccine antigen.
siRNAs and piRNAs Collaborate for Transposon Control in the Two-Spotted Spider Mite.
Mondal, Mosharrof; Mansfield, Kody; Flynt, Alex
2018-04-20
RNAi has revolutionized genetic research, and is being commercialized as an insect pest control technology. Mechanisms exploited for this purpose are antiviral and therefore rapidly evolving. Ideally, RNAi will also be used for non-insect pests, however, differences in RNAi biology makes this uncertain. Tetranychus urticae (two-spotted spider mite) is a destructive non-insect pest, which has a proclivity to develop pesticide resistance. Here we provide a comprehensive study of the endogenous RNAi pathways of spider mites to inform design of exogenous RNAi triggers. This effort revealed unexpected roles for small RNAs and novel genome surveillance pathways. Spider mites have an expanded RNAi machinery relative to insects, encoding RNA dependent RNA polymerase (Rdrp) and extra Piwi-class effectors. Through analyzing T. urticae transcriptome data we explored small RNA biogenesis, and discovered five siRNA loci that appear central to genome surveillance. These RNAs are expressed in the gonad, which we hypothesize to trigger production of piRNAs for control of transposable elements (TEs). This work highlights the need to investigate endogenous RNAi biology as lessons from model organisms may not hold in other species, impacting development of an RNAi strategy. Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Skirvin, D J; de Courcy Williams, M
1999-06-01
The influence of plant species on the population dynamics of the spider mite pest, Tetranychus urticae, and its predator, Phytoseiulus persimilis, was examined as a prerequisite to effective biological control on ornamental nursery stock. Experiments have been done to investigate how the development, fecundity and movement of T. urticae, and the movement of P. persimilis were affected by plant species. A novel experimental method, which incorporates plant structure, was used to investigate the functional response of P. persimilis. Development times for T. urticae were consistent with published data and did not differ with plant species in a biologically meaningful way. Plant species was shown to have a major influence on fecundity (P < 0.001) and movement of the pest mite (P < 0.01), but no influence on the movement of the predator. The movement of both pest and predator was shown to be related to the density of the adult pest mites on the plant (P < 0.001). Plant structure affected the functional response, particularly in relation to the ability of the predator to locate prey at low densities. The impact of these findings on the effective use of biological control on ornamental nursery stock is discussed.
Saad, El-Zemity; Hussien, Rezk; Saher, Farok; Ahmed, Zaitoon
2006-01-01
The acaricidal activities of fourteen essential oils and fourteen of their major monoterpenoids were tested against house dust mites Dermatophagoides pteronyssinus. Five concentrations were used over two different time intervals 24 and 48 h under laboratory conditions. In general, it was noticed that the acaricidal effect based on LC 50 of either essential oils or monoterpenoids against the mite was time dependant. The LC 50 values were decreased by increasing of exposure time. Clove, matrecary, chenopodium, rosemary, eucalyptus and caraway oils were shown to have high activity. As for the monoterpenoids, cinnamaldehyde and chlorothymol were found to be the most effective followed by citronellol. This study suggests the use of the essential oils and their major constituents as ecofriendly biodegradable agents for the control of house dust mite, D. pteronyssinus. PMID:17111463
Saad, El-Zemity; Hussien, Rezk; Saher, Farok; Ahmed, Zaitoon
2006-12-01
The acaricidal activities of fourteen essential oils and fourteen of their major monoterpenoids were tested against house dust mites Dermatophagoides pteronyssinus. Five concentrations were used over two different time intervals 24 and 48 h under laboratory conditions. In general, it was noticed that the acaricidal effect based on LC(50) of either essential oils or monoterpenoids against the mite was time dependant. The LC(50) values were decreased by increasing of exposure time. Clove, matrecary, chenopodium, rosemary, eucalyptus and caraway oils were shown to have high activity. As for the monoterpenoids, cinnamaldehyde and chlorothymol were found to be the most effective followed by citronellol. This study suggests the use of the essential oils and their major constituents as ecofriendly biodegradable agents for the control of house dust mite, D. pteronyssinus.
Kalev, Haim; Shafir, Sharoni; Sela, Ilan
2012-01-01
The mite Varroa destructor is an obligatory ectoparasite of the honey bee (Apis mellifera) and is one of the major threats to apiculture worldwide. We previously reported that honey bees fed on double-stranded RNA (dsRNA) with a sequence homologous to that of the Israeli acute paralysis virus are protected from the viral disease. Here we show that dsRNA ingested by bees is transferred to the Varroa mite and from mite on to a parasitized bee. This cross-species, reciprocal exchange of dsRNA between bee and Varroa engendered targeted gene silencing in the latter, and resulted in an over 60% decrease in the mite population. Thus, transfer of gene-silencing-triggering molecules between this invertebrate host and its ectoparasite could lead to a conceptually novel approach to Varroa control. PMID:23308063
Study on the ability of a new barrier to reduce airborne mite allergens.
Rigamonti, I E; Di Berardino, L; Lozzia, G C
1996-03-01
Environmental control, especially means for blocking the release into the air of mite allergens embedded in padded furniture (mattress, pillows), represents the first important step in the treatment of IgE-mediated allergic diseases. New to the market is a home hygiene spray that creates a protective barrier on padded furniture and is thereby able to contain the dispersion into the air of allergic particles. We tested the effectiveness of the spray in vitro. Since mites, especially D. Pteronyssinus, are considered the foremost allergens, we verified the ability of the invisible barrier to impede the diffusion of the allergen and the mobile forms of these mites (Der p 1, Der 2). The product under exam created a barrier that totally blocked the passage of mobile forms and almost totally prevented the passage of allergens (> 99%).
Biological studies of Oligonychus punicae (Acari: Tetranychidae) on grapevine cultivars.
Vásquez, Carlos; Aponte, Orlando; Morales, José; Sanabria, María E; García, Grisaly
2008-06-01
Life cycle, fecundity and longevity of the avocado brown mite, Oligonychus punicae (Hirst), were studied on six grapevine cultivars (Tucupita, Villanueva, Red Globe, Sirah, Sauvignon and Chenin Blanc), under laboratory conditions at 27 +/- 2 degrees C, 80 +/- 10% RH, and L12:D12 photoperiod. Mite-infested leaves were collected from vineyards, placed in paper bags and taken to the laboratory. A laboratory mite culture was established using the grape cultivar Criolla Negra as host plant. To elucidate potential effects on avocado brown mite parameters, we assessed levels of secondary metabolites, such as alkaloids, flavonoids, tannins and polyphenols, of leaves of the six grape cultivars, as well as the thickness of the adaxial cuticle-epidermis. The life cycle of O. punicae differed among cultivars with average values ranging between 8.2 days on Tucupita leaves and 9.1 days on Sirah. Relatively high fecundity was found on Tucupita leaves (2.8 eggs/female/day) during 11.4 oviposition days, while low fecundity values occurred on Sirah and Villanueva leaves, with 0.9 and 1.8 eggs/female/day during 7.9 and 6.7 days, respectively. Average longevity of O. punicae females ranged from 8.1 to 17.5 days on Sirah and Sauvignon leaves, respectively. Intrinsic rate of increase (r (m)) was highest on Sauvignon (0.292) and Tucupita (0.261), and lowest on Sirah (0.146) and Villanueva (0.135). Although significant differences in cuticle-epidermis thickness were detected among the six cultivars, it seemed not to affect mite parameters. Secondary metabolite content also varied between the cultivars. Generally, increasing flavonoid content coincided with decreasing reproductive parameters. The natural plant resistance observed in this study could be useful in the development of an integrated pest management program for mite pests in grape production.
New associations of phoretic mites on Pityokteines curvidens (Coleoptera, Curculionidae, Scolytinae)
Milan Pernek; Stefan Wirth; Stacy R. Blomquist; Dimitrios N. Avtzis; John C. Moser
2012-01-01
Abstract: The species composition and abundance of phoretic mites of the bark beetle Pityokteines curvidens caught in pheromone traps were investigated in Croatia. The P. curvidens trapping programs have been in an experimental phase in Croatia since 2004 as a possible monitoring and control system. The trapping program also permits the opportunity to sample phoretic...
Cabrera, Ana R; Donohue, Kevin V; Khalil, Sayed M S; Scholl, Elizabeth; Opperman, Charles; Sonenshine, Daniel E; Roe, R Michael
2011-01-01
Many species of mites and ticks are of agricultural and medical importance. Much can be learned from the study of transcriptomes of acarines which can generate DNA-sequence information of potential target genes for the control of acarine pests. High throughput transcriptome sequencing can also yield sequences of genes critical during physiological processes poorly understood in acarines, i.e., the regulation of female reproduction in mites. The predatory mite, Phytoseiulus persimilis, was selected to conduct a transcriptome analysis using 454 pyrosequencing. The objective of this project was to obtain DNA-sequence information of expressed genes from P. persimilis with special interest in sequences corresponding to vitellogenin (Vg) and the vitellogenin receptor (VgR). These genes are critical to the understanding of vitellogenesis, and they will facilitate the study of the regulation of mite female reproduction. A total of 12,556 contiguous sequences (contigs) were assembled with an average size of 935bp. From these sequences, the putative translated peptides of 11 contigs were similar in amino acid sequences to other arthropod Vgs, while 6 were similar to VgRs. We selected some of these sequences to conduct stage-specific expression studies to further determine their function. 2010 Elsevier Ltd. All rights reserved.
Salinas-Vargas, D; Santillán-Galicia, M T; Valdez-Carrasco, J; Mora-Aguilera, G; Atanacio-Serrano, Y; Romero-Pescador, P
2013-08-01
We studied the abundance of Brevipalpus spp. in citrus orchards in the Mexican states of Yucatan, Quintana Roo and Campeche. Mites were collected from 100 trees containing a mixture of citrus species where sweet orange was always the main species. Eight collections were made at each location from February 2010 to February 2011. Mites from the genus Brevipalpus were separated from other mites surveyed and their abundance and relationships with the different citrus species were quantified throughout the collection period. A subsample of 25% of the total Brevipalpus mites collected were identified to species level and the interaction of mite species and citrus species were described. Brevipalpus spp. were present on all collection dates and their relative abundance was similar on all citrus species studies. The smallest number of mites collected was during the rainy season. Brevipalpus phoenicis (Geijskes) and Brevipalpus californicus (Banks) were the only two species present and they were found in all locations except Campeche, where only B. phoenicis was present. Yucatan and Campeche are at greater risk of leprosis virus transmission than Quintana Roo because the main vector, B. phoenicis, was more abundant than B. californicus. The implications of our results for the design of more accurate sampling and control methods for Brevipalpus spp. are discussed.
Can we disrupt the sensing of honey bees by the bee parasite Varroa destructor?
Eliash, Nurit; Singh, Nitin Kumar; Kamer, Yosef; Pinnelli, Govardhana Reddy; Plettner, Erika; Soroker, Victoria
2014-01-01
The ectoparasitic mite, Varroa destructor, is considered to be one of the most significant threats to apiculture around the world. Chemical cues are known to play a significant role in the host-finding behavior of Varroa. The mites distinguish between bees from different task groups, and prefer nurses over foragers. We examined the possibility of disrupting the Varroa--honey bee interaction by targeting the mite's olfactory system. In particular, we examined the effect of volatile compounds, ethers of cis 5-(2'-hydroxyethyl) cyclopent-2-en-1-ol or of dihydroquinone, resorcinol or catechol. We tested the effect of these compounds on the Varroa chemosensory organ by electrophysiology and on behavior in a choice bioassay. The electrophysiological studies were conducted on the isolated foreleg. In the behavioral bioassay, the mite's preference between a nurse and a forager bee was evaluated. We found that in the presence of some compounds, the response of the Varroa chemosensory organ to honey bee headspace volatiles significantly decreased. This effect was dose dependent and, for some of the compounds, long lasting (>1 min). Furthermore, disruption of the Varroa volatile detection was accompanied by a reversal of the mite's preference from a nurse to a forager bee. Long-term inhibition of the electrophysiological responses of mites to the tested compounds was a good predictor for an alteration in the mite's host preference. These data indicate the potential of the selected compounds to disrupt the Varroa--honey bee associations, thus opening new avenues for Varroa control.
The predatory mite Phytoseiulus persimilis adjusts patch-leaving to own and progeny prey needs.
Vanas, V; Enigl, M; Walzer, A; Schausberger, P
2006-01-01
Integration of optimal foraging and optimal oviposition theories suggests that predator females should adjust patch leaving to own and progeny prey needs to maximize current and future reproductive success. We tested this hypothesis in the predatory mite Phytoseiulus persimilis and its patchily distributed prey, the two-spotted spider mite Tetranychus urticae. In three separate experiments we assessed (1) the minimum number of prey needed to complete juvenile development, (2) the minimum number of prey needed to produce an egg, and (3) the ratio between eggs laid and spider mites left when a gravid P. persimilis female leaves a patch. Experiments (1) and (2) were the pre-requirements to assess the fitness costs associated with staying or leaving a prey patch. Immature P. persimilis needed at least 7 and on average 14+/-3.6 (SD) T. urticae eggs to reach adulthood. Gravid females needed at least 5 and on average 8.5+/-3.1 (SD) T. urticae eggs to produce an egg. Most females left the initial patch before spider mite extinction, leaving prey for progeny to develop to adulthood. Females placed in a low density patch left 5.6+/-6.1 (SD) eggs per egg laid, whereas those placed in a high density patch left 15.8+/-13.7 (SD) eggs per egg laid. The three experiments in concert suggest that gravid P. persimilis females are able to balance the trade off between optimal foraging and optimal oviposition and adjust patch-leaving to own and progeny prey needs.
Reducing risk of house dust mite and cockroach allergen exposure in inner-city children with asthma.
Kuster, P A
1996-01-01
Asthma prevalence among disadvantaged and minority children is disproportionately higher in inner-city populations. Environmental allergen exposure, particularly that of house dust mites and cockroaches, is known to contribute to asthma exacerbations in children. Environmental control of these particular triggers is a necessary component of asthma education and should be incorporated into the teaching plan for these children. The costs surrounding environmental control may not be within the means of many families living in urban, inner-city environments; therefore nurses should offer families creative ideas and cost effective suggestions for controlling environmental triggers.
A review of Sarcoptes scabiei: past, present and future.
Arlian, Larry G; Morgan, Marjorie S
2017-06-20
The disease scabies is one of the earliest diseases of humans for which the cause was known. It is caused by the mite, Sarcoptes scabiei, that burrows in the epidermis of the skin of humans and many other mammals. This mite was previously known as Acarus scabiei DeGeer, 1778 before the genus Sarcoptes was established (Latreille 1802) and it became S. scabiei. Research during the last 40 years has tremendously increased insight into the mite's biology, parasite-host interactions, and the mechanisms it uses to evade the host's defenses. This review highlights some of the major advancements of our knowledge of the mite's biology, genome, proteome, and immunomodulating abilities all of which provide a basis for control of the disease. Advances toward the development of a diagnostic blood test to detect a scabies infection and a vaccine to protect susceptible populations from becoming infected, or at least limiting the transmission of the disease, are also presented.
Histopathological study of the mite biting (Dermanyssus gallinae) in poultry skin
Hobbenaghi, Rahim; Tavassoli, Mousa; Alimehr, Manochehr; Shokrpoor, Sara; Ghorbanzadeghan, Mohammad
2012-01-01
The red mite of poultry, Dremanyssus gallinae, is the most important hematophagous ectoparasite of poultry. In this study, pathologic changes of its biting on the poultry skin have been investigated. Thirty-two (Control = 16 and Treatment = 16) four weeks old Ross broilers (308) were infested with the mite on skin of hock joins. Samples were collected after 1, 24, 72 hours and 10 days. The skin samples were fixed in 10% buffered formalin and histological sections were prepared using routine Hematoxylin & Eosin staining method. Results showed that in all cases, except within first hour of infestation, lymphocytic infiltration was always a constant pathologic feature. Necrosis of feather's follicles was a prominent pathologic feature ensued due to vascular disturbances and resulted in loss of feather. Hyperkeratosis, parakeratosis and acanthosis were observed after 72 hours. These findings reveal that mite biting induces local epidermal hyperplasia. PMID:25610570
Histopathological study of the mite biting (Dermanyssus gallinae) in poultry skin.
Hobbenaghi, Rahim; Tavassoli, Mousa; Alimehr, Manochehr; Shokrpoor, Sara; Ghorbanzadeghan, Mohammad
2012-01-01
The red mite of poultry, Dremanyssus gallinae, is the most important hematophagous ectoparasite of poultry. In this study, pathologic changes of its biting on the poultry skin have been investigated. Thirty-two (Control = 16 and Treatment = 16) four weeks old Ross broilers (308) were infested with the mite on skin of hock joins. Samples were collected after 1, 24, 72 hours and 10 days. The skin samples were fixed in 10% buffered formalin and histological sections were prepared using routine Hematoxylin & Eosin staining method. Results showed that in all cases, except within first hour of infestation, lymphocytic infiltration was always a constant pathologic feature. Necrosis of feather's follicles was a prominent pathologic feature ensued due to vascular disturbances and resulted in loss of feather. Hyperkeratosis, parakeratosis and acanthosis were observed after 72 hours. These findings reveal that mite biting induces local epidermal hyperplasia.
The poultry red mite (Dermanyssus gallinae): a potential vector of pathogenic agents.
Valiente Moro, Claire; De Luna, Carlos J; Tod, Alexander; Guy, Jonathan H; Sparagano, Olivier A E; Zenner, Lionel
2009-06-01
The poultry red mite, D. gallinae has been involved in the transmission of many pathogenic agents, responsible for serious diseases both in animals and humans. Nowadays, few effective methods are available to control the ectoparasite in poultry farms. Consequently, this is an emerging problem which must be taken into account to maintain good health in commercial egg production. This paper addresses the vector capacity of the ectoparasite with special emphasis on salmonellae, pathogenic agents responsible for many of the most important outbreaks of food-borne diseases worlwide. It has been experimentally shown that D. gallinae could act as a biological vector of S. enteritidis and natural carriage of these bacteria by the mite on poultry premises has also been reported. It was also found that D. gallinae carried other pathogens such as E. coli, Shigella sp., and Staphylococcus, thus increasing the list of pathogenic agents potentially transmitted by the mite.
Control of insects and mites in grain using a high temperature/short time (HTST) technique.
Mourier; Poulsen
2000-07-01
Wheat infested with grain mites (Acari) and Sitophilus granarius, and maize infested with Prostephanus truncatus, were exposed to hot air in a CIMBRIA HTST Microline toaster((R)). Inlet temperatures of the hot air were in the range of 150-750 degrees C decreasing to outlet temperatures in the range of 100-300 degrees C during the exposure period. A rotating drum, connected to a natural-gas burner was fed with grain which was in constant movement along the drum and thereby mixed thoroughly during the process. The capacity of the toaster was 1000 kg per hour.Complete control of grain mites and adult S. granarius in wheat was obtained with an inlet temperature of 300-350 degrees C and an average residence time in the drum of 6 s. More than 99% mortality was obtained for all stages of S. granarius with an inlet temperature of 300-350 degrees C and an average exposure period of 40 s. For control of P. truncatus in maize, an inlet temperature of 700 degrees C resulted in a complete disinfestation when the exposure time was 19 s.The reduction in grain moisture content was 0.5-1% at treatments giving 100% control. Germination tests indicate that it is possible to choose a combination of inlet temperatures and exposure periods which effectively kills mites and insects in small grains, without harming the functional properties of the grain.Economy of the method was considered to be competitive with fumigation using phosphine.
USDA-ARS?s Scientific Manuscript database
The equivalent of US$ 75 million is spent each year in Brazil to control Brevipalpus phoenicis, a mite vector of Citrus leprosis virus C (CiLV-C). In this study we investigated the possibility that hedgerows, windbreaks, and weeds normally found in citrus orchards could host CiLV-C. Mites reared on ...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-17
... of Agriculture to use hop beta acids (CAS Reg. No. none specified) to treat up to 181,000 honey bee... exemption regional request for use of hop beta acids in honey bee hives to control varroa mites. Information... effect on honey bee populations. The parasitic mite is considered the primary pest of honeybees and its...
A Framework for Identifying Selective Chemical Applications for IPM in Dryland Agriculture
Umina, Paul A.; Jenkins, Sommer; McColl, Stuart; Arthur, Aston; Hoffmann, Ary A.
2015-01-01
Shifts to Integrated Pest Management (IPM) in agriculture are assisted by the identification of chemical applications that provide effective control of pests relative to broad-spectrum pesticides but have fewer negative effects on natural enemy (beneficial) groups that assist in pest control. Here, we outline a framework for identifying such applications and apply this framework to field trials involving the crop establishment phase of Australian dryland cropping systems. Several chemicals, which are not presently available to farmers in Australia, were identified as providing moderate levels of pest control and seedling protection, with the potential to be less harmful to beneficial groups including predatory mites, predatory beetles and ants. This framework highlights the challenges involved in chemically controlling pests while maintaining non-target populations when pest species are present at damaging levels. PMID:26694469
Meikle, William G; Mercadier, Guy; Holst, Niels; Girod, Vincent
2008-12-01
Bee colonies in southern France were treated with conidia (asexual spores) from two strains of Beauveria bassiana, an entomopathogenic fungus. One strain was commercial (GHA) and the other had been isolated from Varroa mites in the region (Bb05002). Objectives were to evaluate treatment effect on colony weight, adult bee mass, capped brood, and on Varroa fall onto sticky boards. Treatments included conidia formulated with either carnauba or candelilla wax powder, candelilla wax powder alone, or control; in two treatment groups formulation was applied a second time after one week. Treatment did not affect colony health. Colonies treated twice with Bb05002 conidia and carnauba wax powder had significantly higher mite fall compared to colonies treated with blank candelilla wax powder. The proportion of fallen mites that were infected in both conidia treatments was higher than controls for 18 days after the second treatment. The number of fungal propagules on the bees themselves remained elevated for about 14 days after the second treatment. These results were compared to published results from previous experiments with regard to infection duration.
Saber, Moosa; Ahmadi, Zeinab; Mahdavinia, Gholamreza
2018-05-01
Two-spotted spider mite, Tetranychus urticae Koch, is one of the economically most important pests on a wide range of crops in greenhouses and orchards worldwide. Control of T. urticae has been largely based on the use of acaricides. Sublethal effects of spirodiclofen, pyridaben and abamectin were studied on life-table parameters of T. urticae females treated with the acaricides. LC 25 values of spirodiclofen, abamectin and pyridaben (3.84, 0.04 and 136.96 µg a.i./ml, respectively) were used for sublethal studies. All acaricides showed significant effects on T. urticae biological parameters including developmental time, survival rate, and fecundity. The females treated with spirodiclofen, abamectin and pyridaben at LC 25 exhibited significantly reduced net reproductive rate (R 0 ), finite rate of increase (λ) and intrinsic rate of increase (r). The intrinsic rate of increase in spirodiclofen, abamectin and pyridaben treated groups and control were 0.0138, 0.0273, 0.039 and 0.2481 female offspring per female per day, respectively. The results indicated that sublethal concentrations of tested pesticides strongly affected the life characteristics of spider mite and consequently may influence mite population growth in future generations.
Wu, J; Liu, Z G; Ran, P X; Wang, B
2009-12-01
To investigate mites in the dust of air-conditioner filters (MACF) in China, a total of 652 dust samples were collected from six cities: Guangzhou (n = 129), Nanchang (n = 127), Shanghai (n = 113), Xian (n = 93), Beijing (n = 93), and Shenyang (n = 79). Tarsonemus granarius was the most dominant species (87.2%). Dermatophagoides pteronyssinus and Dermatophagoides farinae only represented 7.0 and 3.0% of total mites, respectively. With latitude increasing, both mite occurrence rate (P < 0.001) and density (mites/g dust) (P < 0.001) were significantly decreasing. Multivariate regression analysis suggested that the annual average temperature and minimum temperature in different cities had dominant influences on MACF density. The logistic regression analysis revealed that the presence of MACF was positively associated with air-conditioner age, utilization time and power. Wall and window type air-conditioner had higher risk of finding MACF than the floor type air-conditioner. As far as the cleaning interval time of ACF was concerned, higher risk ratio and the highest density of MACF were found in the time stage of >3, < or =12 months. It was also suggested that house type could influence the presence of MACF. A negative association between the house floor and the MACF prevalence was found as well. Mites present in the dust of air-conditioner filters are potential indoor threat to asthma and allergy sufferers. In this study, we find that the storage mite Tarsonemus granarius is the predominant species of mites in the dust of air-conditioner filters (MACF). Thus, the possible clinical importance of T. granarius should cause more our attentions in the future. The abundance and distribution of MACF are also found significantly varied in different climatic regions of China. When we try to assess the possible risk of MACF, more attentions should be focused on subtropical region than temperate region. The influence analysis of environmental characteristics on the prevalence of MACF will shed light on the establishment of mite control strategy and the design of mite defense air-conditioner.
Swe, Pearl M; Zakrzewski, Martha; Kelly, Andrew; Krause, Lutz; Fischer, Katja
2014-01-01
The resident skin microbiota plays an important role in restricting pathogenic bacteria, thereby protecting the host. Scabies mites (Sarcoptes scabiei) are thought to promote bacterial infections by breaching the skin barrier and excreting molecules that inhibit host innate immune responses. Epidemiological studies in humans confirm increased incidence of impetigo, generally caused by Staphylococcus aureus and Streptococcus pyogenes, secondary to the epidermal infestation with the parasitic mite. It is therefore possible that mite infestation could alter the healthy skin microbiota making way for the opportunistic pathogens. A longitudinal study to test this hypothesis in humans is near impossible due to ethical reasons. In a porcine model we generated scabies infestations closely resembling the disease manifestation in humans and investigated the scabies associated changes in the skin microbiota over the course of a mite infestation. In a 21 week trial, skin scrapings were collected from pigs infected with S. scabies var. suis and scabies-free control animals. A total of 96 skin scrapings were collected before, during infection and after acaricide treatment, and analyzed by bacterial 16S rDNA tag-encoded FLX-titanium amplicon pyrosequencing. We found significant changes in the epidermal microbiota, in particular a dramatic increase in Staphylococcus correlating with the onset of mite infestation in animals challenged with scabies mites. This increase persisted beyond treatment from mite infection and healing of skin. Furthermore, the staphylococci population shifted from the commensal S. hominis on the healthy skin prior to scabies mite challenge to S. chromogenes, which is increasingly recognized as being pathogenic, coinciding with scabies infection in pigs. In contrast, all animals in the scabies-free cohort remained relatively free of Staphylococcus throughout the trial. This is the first experimental in vivo evidence supporting previous assumptions that establishment of pathogens follow scabies infection. Our findings provide an explanation for a biologically important aspect of the disease pathogenesis. The methods developed from this pig trial will serve as a guide to analyze human clinical samples. Studies building on this will offer implications for development of novel intervention strategies against the mites and the secondary infections.
Swe, Pearl M.; Zakrzewski, Martha; Kelly, Andrew; Krause, Lutz; Fischer, Katja
2014-01-01
Background The resident skin microbiota plays an important role in restricting pathogenic bacteria, thereby protecting the host. Scabies mites (Sarcoptes scabiei) are thought to promote bacterial infections by breaching the skin barrier and excreting molecules that inhibit host innate immune responses. Epidemiological studies in humans confirm increased incidence of impetigo, generally caused by Staphylococcus aureus and Streptococcus pyogenes, secondary to the epidermal infestation with the parasitic mite. It is therefore possible that mite infestation could alter the healthy skin microbiota making way for the opportunistic pathogens. A longitudinal study to test this hypothesis in humans is near impossible due to ethical reasons. In a porcine model we generated scabies infestations closely resembling the disease manifestation in humans and investigated the scabies associated changes in the skin microbiota over the course of a mite infestation. Methodology/Principal Findings In a 21 week trial, skin scrapings were collected from pigs infected with S. scabies var. suis and scabies-free control animals. A total of 96 skin scrapings were collected before, during infection and after acaricide treatment, and analyzed by bacterial 16S rDNA tag-encoded FLX-titanium amplicon pyrosequencing. We found significant changes in the epidermal microbiota, in particular a dramatic increase in Staphylococcus correlating with the onset of mite infestation in animals challenged with scabies mites. This increase persisted beyond treatment from mite infection and healing of skin. Furthermore, the staphylococci population shifted from the commensal S. hominis on the healthy skin prior to scabies mite challenge to S. chromogenes, which is increasingly recognized as being pathogenic, coinciding with scabies infection in pigs. In contrast, all animals in the scabies-free cohort remained relatively free of Staphylococcus throughout the trial. Conclusions/Significance This is the first experimental in vivo evidence supporting previous assumptions that establishment of pathogens follow scabies infection. Our findings provide an explanation for a biologically important aspect of the disease pathogenesis. The methods developed from this pig trial will serve as a guide to analyze human clinical samples. Studies building on this will offer implications for development of novel intervention strategies against the mites and the secondary infections. PMID:24875186
Rhodes, Elena M; Liburd, Oscar E; Kelts, Crystal; Rondon, Silvia I; Francis, Roger R
2006-01-01
Greenhouse and field experiments were conducted from 2003 to 2005 to determine the effectiveness of combining releases of two predatory mite species, Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus (McGregor), and a reduced-risk miticide, Acramite (bifenazate), for control of twospotted spider mite (TSSM) (Tetranychus urticae Koch) in strawberries. In the greenhouse experiment, a combination treatment of P. persimilis and N. californicus was compared with single treatments of each species, Acramite application, and untreated control. All treatments significantly reduced TSSM numbers compared with the control. Field studies employed two approaches: one investigating the same five treatments as the greenhouse experiment and a second, comparing combination treatments of P. persimilis/N. californicus, Acramite/N. californicus, and Acramite/P. persimilis to single treatments of each and to control plots. Among the combination treatments, the P. persimilis/N. californicus treatment significantly reduced TSSM numbers compared with the control, but was not as effective as N. californicus alone during the 2003-2004 field season. Also, combination treatments of Acramite/N. californicus, and Acramite/P. persimilis significantly reduced TSSM populations compared with the control. These findings indicate that all three combination treatments are promising options for TSSM control in strawberries for growers in northern Florida and other strawberry producing areas of the world.
Gregorc, Aleš; Alburaki, Mohamed; Sampson, Blair; Knight, Patricia R; Adamczyk, John
2018-05-10
The efficacies of various acaricides in order to control a parasitic mite, the Varroa mite, Varroa destructor , of honey bees, were measured in two different settings, namely, in laboratory caged honey bees and in queen-right honey bee colonies. The Varroa infestation levels before, during, and after the acaricide treatments were determined in two ways, namely: (1) using the sugar shake protocol to count mites on bees and (2) directly counting the dead mites on the hive bottom inserts. The acaricides that were evaluated were coumaphos, tau-fluvalinate, amitraz, thymol, and natural plant compounds (hop acids), which were the active ingredients. The acaricide efficacies in the colonies were evaluated in conjunction with the final coumaphos applications. All of the tested acaricides significantly increased the overall Varroa mortality in the laboratory experiment. Their highest efficiencies were recorded at 6 h post-treatment, except for coumaphos and thymol, which exhibited longer and more consistent activity. In the honey bee colonies, a higher Varroa mortality was recorded in all of the treatments, compared with the natural Varroa mortality during the pretreatment period. The acaricide toxicity to the Varroa mites was consistent in both the caged adult honey bees and workers in the queen-right colonies, although, two of these acaricides, coumaphos at the highest doses and hop acids, were comparatively more toxic to the worker bees.
Complex Odor from Plants under Attack: Herbivore's Enemies React to the Whole, Not Its Parts
van Wijk, Michiel; de Bruijn, Paulien J. A.; Sabelis, Maurice W.
2011-01-01
Background Insect herbivory induces plant odors that attract herbivores' natural enemies. Assuming this attraction emerges from individual compounds, genetic control over odor emission of crops may provide a rationale for manipulating the distribution of predators used for pest control. However, studies on odor perception in vertebrates and invertebrates suggest that olfactory information processing of mixtures results in odor percepts that are a synthetic whole and not a set of components that could function as recognizable individual attractants. Here, we ask if predators respond to herbivore-induced attractants in odor mixtures or to odor mixture as a whole. Methodology/Principal Findings We studied a system consisting of Lima bean, the herbivorous mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. We found that four herbivore-induced bean volatiles are not attractive in pure form while a fifth, methyl salicylate (MeSA), is. Several reduced mixtures deficient in one component compared to the full spider-mite induced blend were not attractive despite the presence of MeSA indicating that the predators cannot detect this component in these odor mixtures. A mixture of all five HIPV is most attractive, when offered together with the non-induced odor of Lima bean. Odors that elicit no response in their pure form were essential components of the attractive mixture. Conclusions/Significance We conclude that the predatory mites perceive odors as a synthetic whole and that the hypothesis that predatory mites recognize attractive HIPV in odor mixtures is unsupported. PMID:21765908
Investigation of Demodex folliculorum frequency in patients with polycystic ovary syndrome.
Eser, Ayla; Erpolat, Seval; Kaygusuz, Ikbal; Balci, Hatice; Kosus, Aydin
2017-01-01
Background: Demodex mites are acari that reside in the pilosebaceous unit of the skin and have been associated with skin disorders. The objective of this study was to investigate the prevalence of Demodex folliculorum (D. folliculorum) mites in polycystic ovary syndrome patients as well as to examine the relationship between Demodex infestation and the presence of acne and oily or dry skin types in polycystic ovary syndrome patients. 41 polycystic ovary syndrome patients and 47 non-polycystic ovary syndrome control subjects were enrolled in the study. polycystic ovary syndrome was diagnosed according to the revised 2003 ESHRE/ASRM polycystic ovary syndrome Consensus Workshop Group diagnostic criteria. Microscopic examination of D. folliculorum mites was carried out by standardized skin surface biopsy. The result was considered positive when there were more than 5 mites per cm2. D. folliculorum was positive in 53.7% of the polycystic ovary syndrome patients and 31.9% of the non-polycystic ovary syndrome group (p=0.052). Demodex positivity was significantly associated with acne (p=0.003) and oily skin (p=0.005) in the polycystic ovary syndrome patients but not in the controls. Our study is limited by the relatively small number of subjects and the observational nature of the study design. Demodex mites might have a role in acne pathogenesis in patients with polycystic ovary syndrome. Anti-Demodex treatment may increase the response to treatment of acne. Further studies are indicated.
Abdel-Ghaffar, Fathy; Semmler, Margit; Al-Rasheid, Khaled; Mehlhorn, Heinz
2009-10-01
The present in vitro study shows the efficacy of two antimite products (ByeMite = phoxim, Mite-Stop = neem seed extract) against all developing stages of the important red chicken mite Dermanyssus gallinae (obtained at two farms in France and Germany). While permanent contact with the active compound led to an efficacy of 100% in the case of Mite-Stop on mites in both farms, there was only a 96.2% killing effect of ByeMite on the mites of the French farm. Even short contacts of only 4 s killed 100% of mites in the case of Mite-Stop at the French farm and only 84.5% in the German farm. ByeMite, on the other hand, killed only 27.8% (Germany) and 30% (France) when mites got the chance to escape from the treated grounds to untreated ones. When using only the half doses of both products, Mite-Stop(R) still reached, after permanent contact, 100% activity on the German farm and 98.2% in France, while ByeMite killed 93.8% (Germany) and 90.6% (France). Short contact to half doses of course reduced the activity of both products (Mite-Stop = 59.3% in France, 22.1% in Germany; ByeMite = 28.8% in France, 18.8% in Germany). With respect to the fumigant activity of the products, the strains of D. gallinae reacted differently. While Mite-Stop(R) showed a clear fumigant activity in the case of the German mites, this product did not affect the French mites by air distribution, neither did ByeMite in both cases. Therefore, mites have to come in contact with both products. Against Mite-Stop, there was apparently no resistance and low doses have high efficacy after even short contacts, which regularly occur in a treated stable, where mites have the chance to leave treated places to untreated hidden spots.
Evaluation of impermeable covers for bedding in patients with allergic rhinitis.
Terreehorst, Ingrid; Hak, Eelko; Oosting, Albert J; Tempels-Pavlica, Zana; de Monchy, Jan G R; Bruijnzeel-Koomen, Carla A F M; Aalberse, Rob C; Gerth van Wijk, Roy
2003-07-17
Encasing bedding in impermeable covers reduces exposure to house-dust mites, but the clinical benefit of this intervention as part of mite-avoidance measures for patients with allergic rhinitis is not known. We performed a multicenter, randomized, placebo-controlled trial of one year of use of impermeable bedding covers in the bedrooms of patients with rhinitis who were sensitized to house-dust mites to determine the effects on the signs and symptoms of disease. Three participating university medical centers enrolled 279 patients with allergic rhinitis who were randomly assigned to receive impermeable or non-impermeable (control) covers for their mattress, pillow, and duvet or blanket. At the start of the study, all participants received information on general allergen-avoidance measures. The severity of rhinitis was measured on a rhinitis-specific visual-analogue scale and by means of a daily symptom score and nasal allergen provocation testing. We also measured the concentrations of Dermatophagoides pteronyssinus (Der p1) and D. farinae (Der f1) in dust from patients' mattresses, bedroom floors, and living-room floors at base line and after 12 months as a measure of the efficacy of the intervention. A total of 232 patients completed the study. There was a significant reduction in Der p1 and Der f1 concentrations in the mattresses of the impermeable-cover group, whereas there was no significant reduction in the control group. However, there was no significant effect on the clinical outcome measures. Analyses of subgroups defined according to age, level of exposure, type and severity of sensitization, or characteristics of the patient's home had similar results. Mite-proof bedding covers, as part of a structured allergy-control program, reduced the level of exposure to mite allergens. Despite the success of the intervention, this single avoidance measure did not lead to a significant improvement of clinical symptoms in patients with allergic rhinitis. Copyright 2003 Massachusetts Medical Society
Opit, George P; Perret, Jamis; Holt, Kiffnie; Nechols, James R; Margolies, David C; Williams, Kimberly A
2009-02-01
Efficacy, costs, and impact on crop salability of various biological and chemical control strategies for Tetranychus urticae Koch (Acari: Tetranychidae) were evaluated on mixed plantings of impatiens, Impatiens wallerana Hook.f (Ericales: Balsaminaceae), and ivy geranium, Pelargonium peltatum (1.) L'Hér. Ex Aiton (Geraniales: Geraniaceae), cultivars in commercial greenhouses. Chemical control consisting of the miticide bifenazate (Floramite) was compared with two biological control strategies using the predatory mite Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). Treatments were 1) a single, early application of bifenazate; 2) a single, early release of predatory mites at a 1:4 predator:pest ratio based on leaf samples to estimate pest density; 3) a weekly release of predatory mites at numbers based on the area covered by the crop; and 4) an untreated control. T. urticae populations were monitored for 3 wk after the earliest treatment. When plants were ready for market, their salability was estimated. Bifenazate and density-based P. persimilis treatments effectively reduced T. urticae numbers starting 1 wk after plants had been treated, whereas the scheduled, area-based P. persimilis treatment had little or no effect. The percentage of flats that could be sold at the highest market wholesale price ranged from 15 to 33%, 44 to 86%, 84 to 95%, and 92 to 100%, in the control, weekly area-based P. persimilis, bifenazate, and single density-based P. persimilis treatments, respectively. We have shown that in commercial greenhouse production of herbaceous ornamental bedding plants, estimating pest density to determine the appropriate number of predators to release is as effective and offers nearly the same economic benefit as prophylactic use of pesticides.
Allen, L. Niel; Ramirez, Ricardo A.
2018-01-01
Spider mites, a cosmopolitan pest of agricultural and landscape plants, thrive under hot and dry conditions, which could become more frequent and extreme due to climate change. Recent work has shown that neonicotinoids, a widely used class of systemic insecticides that have come under scrutiny for non-target effects, can elevate spider mite populations. Both water-stress and neonicotinoids independently alter plant resistance against herbivores. Yet, the interaction between these two factors on spider mites is unclear, particularly for Banks grass mite (Oligonychus pratensis; BGM). We conducted a field study to examine the effects of water-stress (optimal irrigation = 100% estimated evapotranspiration (ET) replacement, water stress = 25% of the water provided to optimally irrigated plants) and neonicotinoid seed treatments (control, clothianidin, thiamethoxam) on resident mite populations in corn (Zea mays, hybrid KSC7112). Our field study was followed by a manipulative field cage study and a parallel greenhouse study, where we tested the effects of water-stress and neonicotinoids on BGM and plant responses. We found that water-stress and clothianidin consistently increased BGM densities, while thiamethoxam-treated plants only had this effect when plants were mature. Water-stress and BGM herbivory had a greater effect on plant defenses than neonicotinoids alone, and the combination of BGM herbivory with the two abiotic factors increased the concentration of total soluble proteins. These results suggest that spider mite outbreaks by combinations of changes in plant defenses and protein concentration are triggered by water-stress and neonicotinoids, but the severity of the infestations varies depending on the insecticide active ingredient. PMID:29489819
Can We Disrupt the Sensing of Honey Bees by the Bee Parasite Varroa destructor?
Eliash, Nurit; Singh, Nitin Kumar; Kamer, Yosef; Pinnelli, Govardhana Reddy; Plettner, Erika; Soroker, Victoria
2014-01-01
Background The ectoparasitic mite, Varroa destructor, is considered to be one of the most significant threats to apiculture around the world. Chemical cues are known to play a significant role in the host-finding behavior of Varroa. The mites distinguish between bees from different task groups, and prefer nurses over foragers. We examined the possibility of disrupting the Varroa – honey bee interaction by targeting the mite's olfactory system. In particular, we examined the effect of volatile compounds, ethers of cis 5-(2′-hydroxyethyl) cyclopent-2-en-1-ol or of dihydroquinone, resorcinol or catechol. We tested the effect of these compounds on the Varroa chemosensory organ by electrophysiology and on behavior in a choice bioassay. The electrophysiological studies were conducted on the isolated foreleg. In the behavioral bioassay, the mite's preference between a nurse and a forager bee was evaluated. Principal findings We found that in the presence of some compounds, the response of the Varroa chemosensory organ to honey bee headspace volatiles significantly decreased. This effect was dose dependent and, for some of the compounds, long lasting (>1 min). Furthermore, disruption of the Varroa volatile detection was accompanied by a reversal of the mite's preference from a nurse to a forager bee. Long-term inhibition of the electrophysiological responses of mites to the tested compounds was a good predictor for an alteration in the mite's host preference. Conclusions These data indicate the potential of the selected compounds to disrupt the Varroa - honey bee associations, thus opening new avenues for Varroa control. PMID:25226388
Koveos, Dimitrios S; Suzuki, Takeshi; Terzidou, Anastasia; Kokkari, Anastasia; Floros, George; Damos, Petros; Kouloussis, Nikos A
2017-01-01
Egg hatchability of four predatory mites-Phytoseiulus persimilis Athias-Henriot, Iphiseius [Amblyseius] degenerans Berlese, Amblyseius swirskii Athias-Henriot, and Euseius finlandicus Oudemans (Acari: Phytoseiidae)-and the spider mite Tetranychus urticae Koch (Acari: Tetranychidae) was determined under various UV-B doses either in constant darkness (DD) or with simultaneous irradiation using white light. Under UV-B irradiation and DD or simultaneous irradiation with white light, the predator's eggs hatched in significantly lower percentages than in the control non-exposed eggs, which indicates deleterious effects of UV-B on embryonic development. In addition, higher hatchability percentages were observed under UV-B irradiation and DD in eggs of the predatory mites than in eggs of T. urticae. This might be caused by a higher involvement of an antioxidant system, shield effects by pigments or a mere shorter duration of embryonic development in predatory mites than in T. urticae, thus avoiding accumulative effects of UV-B. Although no eggs of T. urticae hatched under UV-B irradiation and DD, variable hatchability percentages were observed under simultaneous irradiation with white light, which suggests the involvement of a photoreactivation system that reduces UV-B damages. Under the same doses with simultaneous irradiation with white light, eggs of T. urticae displayed higher photoreactivation and were more tolerant to UV-B than eggs of the predatory mites. Among predators variation regarding the tolerance to UV-B effects was observed, with eggs of P. persimilis and I. degenerans being more tolerant to UV-B radiation than eggs of A. swirskii and E. finlandicus.
Modelling the effect of pyrethroid use intensity on mite population density for walnuts.
Zhan, Yu; Fan, Siqi; Zhang, Minghua; Zalom, Frank
2015-01-01
Published studies relating pyrethroid use and subsequent mite outbreaks have largely been based on laboratory and field experiments, with some inferring a result of increased miticide use. The present study derived a mathematical model proposed to quantify the effect of pyrethroid use intensity on mite population density. The model was validated against and parameterized with actual field-level pyrethroid and miticide use data from 1995 to 2009 for California walnuts, where the miticide use intensity was a proxy of the mite population density. The parameterized model was MI = 1.61 - 0.89 · exp(-93.31PI) (RMSE = 0.13; R(2) = 0.69; P < 0.01), where PI and MI are the average pyrethroid and miticide use intensity in small intervals respectively. A three-range scheme was presented to quantify pesticide applications based on the change rate of MI to PI. Specific for California walnuts, the PI range of 0-0.025 kg ha(-1) was identified as the rapidly increasing range where MI increased vastly when PI increased. Results confirmed that more miticide was used, presumably to prevent or control mite resurgence when pyrethroids were applied, a practice that is not only costly but might be expected to aggravate mite resistance to miticides and increase risk associated with these chemicals to the environment and human health. © 2014 Society of Chemical Industry.
USDA-ARS?s Scientific Manuscript database
Varroa mites are the most serious pest of honey bees worldwide, and difficult to control in managed colonies. We show in a longitudinal study that even with multiple miticide treatments in the summer and fall, mite numbers remained high and colony losses exceeded 55%. Furthermore, large heavily infe...
Glasgow, Nicholas J; Ponsonby, Anne-Louise; Kemp, Andrew; Tovey, Euan; van Asperen, Peter; McKay, Karen; Forbes, Samantha
2011-01-01
Introduction Observational studies report inverse associations between the use of feather upper bedding (pillow and/or quilt) and asthma symptoms but there is no randomised controlled trial (RCT) evidence assessing the role of feather upper bedding as a secondary prevention measure. Objective To determine whether, among children not using feather upper bedding, a new feather pillow and feather quilt reduces asthma severity among house dust mite (HDM) sensitised children with asthma over a 1-year period compared with standard dust mite avoidance advice, and giving children a new mite-occlusive mattress cover. Design RCT. Setting The Calvary Hospital in the Australian Capital Territory and the Children's Hospital at Westmead, Sydney, New South Wales. Patients 197 children with HDM sensitisation and moderate to severe asthma. Intervention New upper bedding duck feather pillow and quilt and a mite-occlusive mattress cover (feather) versus standard care and a mite-occlusive mattress cover (standard). Main outcome measures The proportion of children reporting four or more episodes of wheeze in the past year; an episode of speech-limiting wheeze; or one or more episodes of sleep disturbance caused by wheezing; and spirometry with challenge testing. Statistical analysis included multiple logistic and linear regression. Results No differences between groups were found for primary end points – frequent wheeze (OR 1.51, 95% CI 0.83 to 2.76, p=0.17), speech-limiting wheeze (OR 0.70, 95% CI 0.32 to 1.48, p=0.35), sleep disturbed because of wheezing (OR 1.17, 95% CI 0.64 to 2.13, p=0.61) or for any secondary end points. Secondary analyses indicated the intervention reduced the risk of sleep being disturbed because of wheezing and severe wheeze to a greater extent for children who slept supine. Conclusion No differences in respiratory symptoms or lung function were observed 1 year after children with moderate–severe asthma and HDM sensitisation were given a mite-occlusive mattress cover and then received either feather upper bedding (pillow and quilt) or standard bedding care. PMID:21451166
Indoor mite allergens in patients with respiratory allergy living in Porto, Portugal.
Plácido, J L; Cuesta, C; Delgado, L; da Silva, J P; Miranda, M; Ventas, P; Vaz, M
1996-09-01
We investigated the levels of mite allergens (Der p 1, Der f 1, Der 2, and Lep d 1) in dust samples from the homes of 59 patients with asthma, 36 sensitized to house-dust mites (HDM) and 23 to grass pollen (controls), living in Porto, northern Portugal. The relationship between exposure and sensitization to HDM and the influence of housing conditions on mite-allergen levels were also evaluated. Der p 1 (median 9.2 micrograms/g) and Der 2 (4.6 micrograms/g) were the main allergens, while Der f 1 and Lep d 1 levels were always < 1 microgram/g dust and undetectable in 11% and 47% of samples, respectively. All HDM-sensitized asthmatics were exposed to Der p 1 levels > 2 micrograms/g and their homes contained significantly higher levels of Der p 1 (median 12.5 vs 6.4 micrograms/g; P = 0.008) and Der 2 (6.2 vs 3.0 micrograms/g; P = 0.004) when compared to the control group. A significant correlation was observed between the exposure to Der p 1 and the wheal area at skin testing with the Dermatophagoides pteronyssinus (Dp) extract (P = 0.01) as well as with serum specific IgE levels to Dp (P = 0.03). Patients with higher levels of serum specific IgE (> or = 17.5 HRU/ml) were also more frequently exposed to Der p 1 levels > or = 10 micrograms/g (P = 0.002). Old homes, presence of carpets, and signs of dampness were conditions associated with significantly higher levels of mite allergens. In conclusion, we found high levels of Der p 1 and Der 2 particularly in the homes of HDM-sensitized patients and we confirm the relationship between exposure and sensitization to HDM, assessed by both in vivo and in vitro methods. In additional to a favorable outdoor climate, we found in our region housing conditions propitious to mite growth, suggesting that specific geographic characteristics must also be taken into account for the correct planning of mite-avoidance measures.
Xue, Yingen; Meats, Alan; Beattie, G Andrew C; Spooner-Hart, Robert; Herron, Grant A
2009-08-01
Occasional pesticide application in integrated pest management to at least part of a crop requires that any biological control agents must re-invade previously sprayed areas in order that resurgent pests can be constrained. The ability of the phytoseiid predatory mite Phytoseiulus persimilis to feed on adult two-spotted spider mite (TSSM) Tetranychus urticae on excised leaf discs in both control conditions and in a treatment with a sub lethal residue of agricultural mineral oil (AMO) was assessed. The predator exhibited a Type II functional response with the asymptote significantly higher in the AMO conditions due to the fact that the prey grew slower and reached a smaller size in this treatment. In terms of prey volume eaten, the satiation level of the predator was unchanged by the AMO deposits. The numbers of eggs produced by adult P. persimilis females at densities of 4, 8 and 16 TSSM adult females/disc in the control were significantly higher than those in the AMO treatment, but were similar for the higher density levels, 32 and 64 prey per disc. Thus the functional response in terms of volume of prey eaten explained the numerical response in terms of predator eggs produced. The presence of AMO deposits when the prey were at high density had no effect on predator efficiency (volume eaten) but resulted in a lower intake than that in control conditions when there was a greater distance between prey.
Pneumonyssoides caninum infection--a risk factor for gastric dilatation-volvulus in dogs.
Bredal, W P
1998-06-01
The pathophysiology, clinical course and therapeutic management of gastric dilatation-volvulus (GDV) in dogs are well known. However, the aetiology remains elusive. Aerophagia has often been put forward as a contributing cause of GDV. The most common clinical sign in dogs with nasal mite (Pneumonyssoides caninum) infection is 'reversed sneezing', which may result in aerophagia. A prospective one-year necropsy study was conducted. Of 250 dogs, 17 were GDV cases and, of these, 35% had concurrent nasal mite infection compared to 5% in the control population. Multivariate logistic regression analyses performed using the 187 dogs with complete records included nasal mite infection status, age, weight and gender. Nasal mite infection was found to be the most important risk factor for GDV in this study, with an odds ratio and confidence interval of 27.6 (4.8-157.5). Other risk factors that were marginally significant included weight and age with odds ratios of 1.08 (1.02-1.13) and 1.37 (1.04-1.79), respectively. Gender was not found to be a significant risk factor for GDV. This study suggests that nasal mite infection may contribute to the development of GDV in otherwise predisposed dogs.
Sampling plans for pest mites on physic nut.
Rosado, Jander F; Sarmento, Renato A; Pedro-Neto, Marçal; Galdino, Tarcísio V S; Marques, Renata V; Erasmo, Eduardo A L; Picanço, Marcelo C
2014-08-01
The starting point for generating a pest control decision-making system is a conventional sampling plan. Because the mites Polyphagotarsonemus latus and Tetranychus bastosi are among the most important pests of the physic nut (Jatropha curcas), in the present study, we aimed to establish sampling plans for these mite species on physic nut. Mite densities were monitored in 12 physic nut crops. Based on the obtained results, sampling of P. latus and T. bastosi should be performed by assessing the number of mites per cm(2) in 160 samples using a handheld 20× magnifying glass. The optimal sampling region for T. bastosi is the abaxial surface of the 4th most apical leaf on the branch of the middle third of the canopy. On the abaxial surface, T. bastosi should then be observed on the side parts of the middle portion of the leaf, near its edge. As for P. latus, the optimal sampling region is the abaxial surface of the 4th most apical leaf on the branch of the apical third of the canopy on the abaxial surface. Polyphagotarsonemus latus should then be assessed on the side parts of the leaf's petiole insertion. Each sampling procedure requires 4 h and costs US$ 7.31.
Acaricidal Activity of Eugenol Based Compounds against Scabies Mites
Pasay, Cielo; Mounsey, Kate; Stevenson, Graeme; Davis, Rohan; Arlian, Larry; Morgan, Marjorie; Vyszenski-Moher, DiAnn; Andrews, Kathy; McCarthy, James
2010-01-01
Backgound Human scabies is a debilitating skin disease caused by the “itch mite” Sarcoptes scabiei. Ordinary scabies is commonly treated with topical creams such as permethrin, while crusted scabies is treated with topical creams in combination with oral ivermectin. Recent reports of acaricide tolerance in scabies endemic communities in Northern Australia have prompted efforts to better understand resistance mechanisms and to identify potential new acaricides. In this study, we screened three essential oils and four pure compounds based on eugenol for acaricidal properties. Methodology/Principal Findings Contact bioassays were performed using live permethrin-sensitive S. scabiei var suis mites harvested from pigs and permethrin-resistant S. scabiei var canis mites harvested from rabbits. Results of bioassays showed that clove oil was highly toxic against scabies mites. Nutmeg oil had moderate toxicity and ylang ylang oil was the least toxic. Eugenol, a major component of clove oil and its analogues –acetyleugenol and isoeugenol, demonstrated levels of toxicity comparable to benzyl benzoate, the positive control acaricide, killing mites within an hour of contact. Conclusions The acaricidal properties demonstrated by eugenol and its analogues show promise as leads for future development of alternative topical acaricides to treat scabies. PMID:20711455
Behavioural response of Phytoseiulus persimilisin inert materials for technical application.
Wendorf, Dennis; Sermann, Helga; Katz, Peter; Lerche, Sandra; Büttner, Carmen
2009-01-01
A large scale application of the predatory mite Phytoseiulus persimilis Athias-Henriot for use in the biological control of spider mites in the field requires testing the behaviour of Phytoseiulus persimilis in inert materials, like millet pelts and Vermiculite (1-3 mm). In laboratory studies, the distribution of the individuals in such materials, the time of remaining in the material were proved. To examine the abiotic influences on the time of remaining in the material, the dampness of the materials was varied (0%, 5% and 10%). Moreover, the influence of attitude of materials was tested. The time of emigration from the material was noted for each individual. Emigration from all dry materials was completed 15 minutes at the latest after set up of the mites. The increase of dampness had an obvious effect on the time of remaining in the material. In this respect the material millet pelts showed the most favourable effect with 10% dampness. Increasing attitude of material the mobility of predatory mites will be influenced negatively above 75 cm. Up to 50 cm, mites have not a problem to move in the material and the time of remaining can be prolonged considerably.
Thyresson, N
1994-01-01
The scabies mite (acarus or sarcoptes scabiei) was known already to Aristoteles, to the Arabic medicine during the early and to European physicians as well as laymen during the later Middle Ages, depicted in 1687 by Bonomo in Italy and by Schwiebe in Germany during the beginning of the eighteenth century. Later in the middle of the century three pupils to Linnaeus in their doctor's theses stated that the scabies mite (Acarus humanus subcutaneus) was the cause of scabies. The best pictures of the scabies-mite as well as of the flour- and cheese-mite was given by the Swedish entomologist Charles de Geer in 1778. In spite of all these facts the real aetiology of scabies seemed to be unknown in France and in most parts of Europe. This was probably due to the fact that no one had learned the rather simple method to extract the mite from the skin with a needle and thereby verify its existence. In the beginning of the twentieth century scabies was a real problem for the health authorities. In Paris l'Académie de Médecine even offered a reward to the person who could solve the enigma of the itch. Jean Chrysanthe Galés was the pharmacist at l'Hôpital St. Louis, the famous skin hospital in Paris, where at this time about 65 percent of the beds were occupied by patients suffering from scabies. Galés also studied medicine and wanted to write a doctor's thesis. As the theme of a dissertation he was given the cause of the itch. In 1812 he published his thesis ("Essai sur la Gale") including a plate with sketches of mites that he claimed to have extracted from vesicules on the skin of his scabies patients. His findings could not be verified by other investigators. Galés however refused to take part in any control experiments and left the hospital. The debate concerning the supposed cause of the itch continued for two decades both inside and outside the hospital. F.C. Raspail, a famous natural scientist, was interested. After having studied the literature and especially the drawings by de Geer he was convinced that the mites depicted by Galés were similar to de Geers' flour-and cheese mite and that they had no resemblence to his picture of scabies-mite. In a control experiment Raspail could show how Galés had cheated by contaminating his slide with cheese-mites. However, a Corsican student at l'Hôpital St. Louis named S.F. Renucci knew the answer to the riddle. He had long ago been taught by peasant women of his home island how to extract the mite and he could now show the method to the doctors at l'Hôpital St. Louis. this was on August 13 in 1834, which usually in the literature is looked upon as the day when the discovery of the aethiology of scabies was made. Maybe we have a different view in Sweden.
Mul, Monique F; van Riel, Johan W; Roy, Lise; Zoons, Johan; André, Geert; George, David R; Meerburg, Bastiaan G; Dicke, Marcel; van Mourik, Simon; Groot Koerkamp, Peter W G
2017-10-15
The poultry red mite, Dermanyssus gallinae, is the most significant pest of egg laying hens in many parts of the world. Control of D. gallinae could be greatly improved with advanced Integrated Pest Management (IPM) for D. gallinae in laying hen facilities. The development of a model forecasting the pests' population dynamics in laying hen facilities without and post-treatment will contribute to this advanced IPM and could consequently improve implementation of IPM by farmers. The current work describes the development and demonstration of a model which can follow and forecast the population dynamics of D. gallinae in laying hen facilities given the variation of the population growth of D. gallinae within and between flocks. This high variation could partly be explained by house temperature, flock age, treatment, and hen house. The total population growth variation within and between flocks, however, was in part explained by temporal variation. For a substantial part this variation was unexplained. A dynamic adaptive model (DAP) was consequently developed, as models of this type are able to handle such temporal variations. The developed DAP model can forecast the population dynamics of D. gallinae, requiring only current flock population monitoring data, temperature data and information of the dates of any D. gallinae treatment. Importantly, the DAP model forecasted treatment effects, while compensating for location and time specific interactions, handling the variability of these parameters. The characteristics of this DAP model, and its compatibility with different mite monitoring methods, represent progression from existing approaches for forecasting D. gallinae that could contribute to advancing improved Integrated Pest Management (IPM) for D. gallinae in laying hen facilities. Copyright © 2017 Elsevier B.V. All rights reserved.
Ullah, Mohammad Shaef; Lim, Un Taek
2017-09-01
Tetranychus urticae Koch (Acari: Tetranychidae), a major pest of many agricultural crops, is mainly controlled with chemical acaricides. However, predatory mites and entomopathogens have been proposed as alternative control agents. In this study, the effect of the BotaniGard ® GHA strain of Beauveria bassiana on the survival, longevity, fecundity, and egg hatch rate of the predatory mite Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) were studied under laboratory conditions. When B. bassiana was applied directly to P. persimilis eggs at a concentration of 1×10 8 conidia/ml, corrected hatchability was less than 5%, and the corrected mortality of nymphs and adults was not significantly different from control 10days after treatment. Phytoseiulus persimilis nymphs that hatched from treated eggs showed no significant change in their development time, adult female longevity, hatch rate, survival rates over time, or offspring sex ratio. However, significant negative effects on fecundity and life table parameters (net reproductive rate, intrinsic rate of natural increase, mean generation time, finite rate of increase, and doubling time) were found when B. bassiana was applied to the adult stage. Spraying B. bassiana at 1×10 8 conidia/ml on newly emerged adults of P. persimilis caused 44% reduction in the oviposition period, 26% in adult longevity, and 63% in fecundity. Due to these negative effects, B. bassiana should be used with careful adjustment of application timing (first spray B. bassiana and then release P. persimilis) to supplement biological mite control systems using P. persimilis. Copyright © 2017 Elsevier Inc. All rights reserved.
Pirali-Kheirabadi, Khodadad; Teixeira-da-Silva, Jaime A; Razzaghi-Abyaneh, Mehdi; Nazemnia, Mehdi
2013-01-01
The protective effect of two isolates of an entomopathogenic fungus, Metarhizium anisopliae (DEMI 002 and Iran 437C) on the adult stage of Varroa destructor was evaluated in comparison with fluvalinate strips in the field. A total of 12 honey bee colonies were provided from an apiculture farm. The selected hives were divided into 4 groups (3 hives per group). The first group was the control, treated with distilled water. The other two groups were exposed to different fungi (M. anisopliae isolates DEMI 002 and Iran 437C) and the last group was treated with one strip of fluvalinate per colony. The number of fallen mites was counted using sticky traps during a 6-day period, six days before and after treatments. A fungal suspension at a concentration of 5× 10(6) conidia/mL was sprayed onto the frames and the number of fallen mites was counted. Metarhizium anisopliae DEMI 002 and Iran 437C isolates were as effective (i.e., caused as much mite fall) as the fluvalinate strip in controlling bee colonies than no treatment. Both M. anisopliae isolates are promising candidates as agents in the control of Varroa mites under field conditions. Isolate DEMI 002 can be considered as a possible non-chemical biocontrol agent for controlling bee infestation with V. destructor in the field. In order to substantiate this hypothesis, tests are currently being performed using larger colonies and larger doses than tested in the present study in our beekeeping.
Pirali-kheirabadi, Khodadad; Teixeira-da-Silva, Jaime A; Razzaghi-Abyaneh, Mehdi; Nazemnia, Mehdi
2013-01-01
Background: The protective effect of two isolates of an entomopathogenic fungus, Metarhizium anisopliae (DEMI 002 and Iran 437C) on the adult stage of Varroa destructor was evaluated in comparison with fluvalinate strips in the field. Methods: A total of 12 honey bee colonies were provided from an apiculture farm. The selected hives were divided into 4 groups (3 hives per group). The first group was the control, treated with distilled water. The other two groups were exposed to different fungi (M. anisopliae isolates DEMI 002 and Iran 437C) and the last group was treated with one strip of fluvalinate per colony. The number of fallen mites was counted using sticky traps during a 6-day period, six days before and after treatments. A fungal suspension at a concentration of 5× 106 conidia/mL was sprayed onto the frames and the number of fallen mites was counted. Results: Metarhizium anisopliae DEMI 002 and Iran 437C isolates were as effective (i.e., caused as much mite fall) as the fluvalinate strip in controlling bee colonies than no treatment. Conclusion: Both M. anisopliae isolates are promising candidates as agents in the control of Varroa mites under field conditions. Isolate DEMI 002 can be considered as a possible non-chemical biocontrol agent for controlling bee infestation with V. destructor in the field. In order to substantiate this hypothesis, tests are currently being performed using larger colonies and larger doses than tested in the present study in our beekeeping. PMID:23785691
Efficacy of afoxolaner in a clinical field study in dogs naturally infested with Sarcoptes scabiei.
Beugnet, Frédéric; de Vos, Christa; Liebenberg, Julian; Halos, Lénaïg; Larsen, Diane; Fourie, Josephus
2016-01-01
The acaricidal efficacy of afoxolaner (NexGard(®), Merial) was evaluated against Sarcoptes scabiei var. canis in a field efficacy study, when administered orally at a minimum dose of 2.5 mg/kg to dogs naturally infested with the mites. Twenty mixed-breed dogs of either sex (6 males and 14 females), aged over 6 months and weighing 4-18 kg, were studied in this randomised controlled field efficacy trial. Dogs, naturally infested with Sarcoptes scabiei var. canis confirmed by skin scrapings collected prior to allocation, were randomly divided into two equal groups. Dogs in Group 1 were not treated. Dogs in Group 2 were treated on Days 0 and 28. On Days 0 (pre-treatment), 28 (pre-treatment) and 56, five skin scrapings of similar size were taken from different sites with lesions suggestive of sarcoptic mange. The extent of lesions was also recorded on Days 0, 28 and 56, and photographs were taken. Dogs treated orally with afoxolaner had significantly (p < 0.001) lower mite counts than untreated control animals at Days 28 and 56 with no mites recovered from treated dogs at these times (100% efficacy based on mite counts). In addition, dogs treated with NexGard had significantly (p < 0.05) better lesion resolution at Day 56 than Day 0; no treated dog showed pruritus compared to 7/10 dogs in the control group, 1/9 treated dogs had crusts compared to 5/10 controls and 8/9 dogs recovered 90% of hairs on lesions compared to 0/10 control dogs. © F. Beugnet et al., published by EDP Sciences, 2016.
Efficacy of afoxolaner in a clinical field study in dogs naturally infested with Sarcoptes scabiei
Beugnet, Frédéric; de Vos, Christa; Liebenberg, Julian; Halos, Lénaïg; Larsen, Diane; Fourie, Josephus
2016-01-01
The acaricidal efficacy of afoxolaner (NexGard®, Merial) was evaluated against Sarcoptes scabiei var. canis in a field efficacy study, when administered orally at a minimum dose of 2.5 mg/kg to dogs naturally infested with the mites. Twenty mixed-breed dogs of either sex (6 males and 14 females), aged over 6 months and weighing 4–18 kg, were studied in this randomised controlled field efficacy trial. Dogs, naturally infested with Sarcoptes scabiei var. canis confirmed by skin scrapings collected prior to allocation, were randomly divided into two equal groups. Dogs in Group 1 were not treated. Dogs in Group 2 were treated on Days 0 and 28. On Days 0 (pre-treatment), 28 (pre-treatment) and 56, five skin scrapings of similar size were taken from different sites with lesions suggestive of sarcoptic mange. The extent of lesions was also recorded on Days 0, 28 and 56, and photographs were taken. Dogs treated orally with afoxolaner had significantly (p < 0.001) lower mite counts than untreated control animals at Days 28 and 56 with no mites recovered from treated dogs at these times (100% efficacy based on mite counts). In addition, dogs treated with NexGard had significantly (p < 0.05) better lesion resolution at Day 56 than Day 0; no treated dog showed pruritus compared to 7/10 dogs in the control group, 1/9 treated dogs had crusts compared to 5/10 controls and 8/9 dogs recovered 90% of hairs on lesions compared to 0/10 control dogs. PMID:27317462
Wang, Jin-Jun; Zhang, Jian-Ping; He, Lin; Zhao, Zhi-Mo
2006-01-01
Development, reproduction and acaricide susceptibility of Tetranychus cinnabarinus (Boisduvals) (Acari: Tetranychidae) were investigated after long-term (about 40 generations) exposure to various levels of acid rain; pH 2.5, 3.0, 4.0, and 5.6. Deionized water (pH 6.8) served as a control. The mites were reared on eggplant leaves at 28°C, 80%RH and a photoperiod of 14:10 (L:D) in the laboratory. The results showed that the duration of the immature stage was significantly affected by acid rain exposure. The shortest duration (8.90 days) was recorded for populations exposed to pH 5.6 acid rain, while the longest duration (9.37 days) occurred after exposure to pH 2.5 acid rain. Compared with the control population, adult longevity was shortened with an increase in acidity. Similarly, the oviposition duration was also shortened by an increase in acidity. Statistically, female fecundity did not differ significantly between pH 5.6, pH 4.0 and control populations, but did differ significantly between the control population and those exposed to pH 2.5 and pH 3.0 acid rain. This suggested that the mite suffered reproductive defects after long-term exposure to acid rain with higher acidity (pH 2.5 and 3.0). The intrinsic rate of increase among different populations was not significantly affected, but the net reproductive rate of populations exposed to pH 2.5 and 3.0 acid rain was significantly less than pH4.0, 5.6, and control populations. Bioassay results showed that after long-term exposure to acid rain, susceptibility of the mites to two acaricides, dichlorvos and fenpropathrin, did not change significantly. PMID:19537978
Bahreini, Rassol; Currie, Robert W
2015-10-01
The objective of this study was to manipulate ventilation rate to characterize interactions between stocks of honey bees (Apis mellifera L.) and ventilation setting on varroa mite (Varroa destructor Anderson and Trueman) mortality in honey bee colonies kept indoors over winter. The first experiment used colonies established from stock selected locally for wintering performance under exposure to varroa (n = 6) and unselected bees (n = 6) to assess mite and bee mortality and levels of carbon dioxide (CO2) and oxygen (O2) in the bee cluster when kept under a simulated winter condition at 5°C. The second experiment, used colonies from selected bees (n = 10) and unselected bees (n = 12) that were exposed to either standard ventilation (14.4 liter/min per hive) or restricted ventilation (0.24 liter/min per hive, in a Plexiglas ventilation chamber) during a 16-d treatment period to assess the influence of restricted air flow on winter mortality rates of varroa mites and honey bees. Experiment 2 was repeated in early, mid-, and late winter. The first experiment showed that under unrestricted ventilation with CO2 concentrations averaging <2% there was no correlation between CO2 and varroa mite mortality when colonies were placed under low temperature. CO2 was negatively correlated with O2 in the bee cluster in both experiments. When ventilation was restricted, mean CO2 level (3.82 ± 0.31%, range 0.43-8.44%) increased by 200% relative to standard ventilation (1.29 ± 0.31%; range 0.09-5.26%) within the 16-d treatment period. The overall mite mortality rates and the reduction in mean abundance of varroa mite over time was greater under restricted ventilation (37 ± 4.2%) than under standard ventilation (23 ± 4.2%) but not affected by stock of bees during the treatment period. Selected bees showed overall greater mite mortality relative to unselected bees in both experiments. Restricting ventilation increased mite mortality, but did not affect worker bee mortality relative to that for colonies under standard ventilation. Restricted ventilation did not affect the overall level of Nosema compared with the control. However, there was an interaction between stock, season, and time of the trial. Unselected stock showed an increase in Nosema over time in the late winter trial that did not occur in the selected stock. In conclusion, these findings suggested that restricted ventilation has potential to suppress varroa mite in overwintering honey bee colonies via a low-cost and environmentally friendly measure. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Szelecz, Ildikó; Lösch, Sandra; Seppey, Christophe V W; Lara, Enrique; Singer, David; Sorge, Franziska; Tschui, Joelle; Perotti, M Alejandra; Mitchell, Edward A D
2018-01-08
Criminal investigations of suspected murder cases require estimating the post-mortem interval (PMI, or time after death) which is challenging for long PMIs. Here we present the case of human remains found in a Swiss forest. We have used a multidisciplinary approach involving the analysis of bones and soil samples collected beneath the remains of the head, upper and lower body and "control" samples taken a few meters away. We analysed soil chemical characteristics, mites and nematodes (by microscopy) and micro-eukaryotes (by Illumina high throughput sequencing). The PMI estimate on hair 14 C-data via bomb peak radiocarbon dating gave a time range of 1 to 3 years before the discovery of the remains. Cluster analyses for soil chemical constituents, nematodes, mites and micro-eukaryotes revealed two clusters 1) head and upper body and 2) lower body and controls. From mite evidence, we conclude that the body was probably brought to the site after death. However, chemical analyses, nematode community analyses and the analyses of micro-eukaryotes indicate that decomposition took place at least partly on site. This study illustrates the usefulness of combining several lines of evidence for the study of homicide cases to better calibrate PMI inference tools.
Elzen, Gary W; Hardee, Dick D
2003-01-01
Insecticide resistance has developed within many classes of pesticide, and over 500 species of insects and mites are resistant to one or more insecticides. Insecticide resistance and the consequent losses of food and fiber caused by failure to control insect and mite pests causes economic losses of several billion dollars worldwide each year. It is the goal of insect resistance management (IRM) to preserve useful pesticides by slowing, preventing or reversing development of resistance in pests. Important aspects of this goal are understanding the development of resistance and monitoring to determine ways to prevent its development. We describe programs specific to missions of the US Department of Agriculture, Agricultural Research Service, which are designed to characterize insecticide resistance in insects and mites with the goal of managing pests in an ecologically acceptable manner. Resistance management of cotton, potatoes, vegetables, melons, ornamentals, greenhouse crops, corn, stored grains, livestock, honeybees and mites, as well as management of transgenic crops are evaluated. We conclude that IRM is a vital part of stewardship of any pest management product and must be a combined effort of manufacturers, growers, consultants, extension services and grower organizations, working closely with regulators, to achieve logistically and economically feasible systems that prolong the effectiveness of all pest-control products.
Oliveira, Natália N F C; Galvão, Andreia S; Amaral, Ester A; Santos, Auderes W O; Sena-Filho, José G; Oliveira, Eugenio E; Teodoro, Adenir V
2017-05-01
The coconut mite, Aceria guerreronis (Acari: Eriophyidae), is a major tropical pest of coconut. Here, we assessed the chemical profiles and the potential use of babassu, degummed soybean, and coconut oils to control A. guerreronis as well as their side-effects on the predatory mite Neoseiulus baraki (Acari: Phytoseiidae), a key natural enemy of the coconut mite. Babassu and coconut oils had similar fatty acids chemical profiles. All vegetable oils showed toxicity to A. guerreronis; degummed soybean oil exhibited the highest toxicity (LC 50 = 0.15 µL/cm 2 ). Although all oils were less toxic to N. baraki, their potential to attract/repel this predatory mite differed. Whereas N. baraki females were unresponsive to coconut oil at both concentrations (i.e., LC 50 and LC 99 estimated for A. guerreronis), irrespective of exposure period (i.e., 1 or 24 h), the babassu oil repelled the predator, independent of exposure period, when applied at its LC 99 (1.48 µL/cm 2 ). Intriguingly, this oil also exhibited attractiveness to N. baraki 24 h after exposure when applied at its LC 50 (0.26 µL/cm 2 ). A similar attractiveness pattern was recorded 24 h after N. baraki was exposed to degummed soybean oil at both concentrations tested (LC 50 = 0.15 µL/cm 2 ; LC 99 = 1.39 µL/cm 2 ). However, N. baraki was repelled by degummed soybean oil at its LC 50 after 1 h of exposure. Therefore, the present study demonstrated that all the vegetable oils used here had higher toxicity to the coconut mite and considerable selectivity to the predator N. baraki, indicating they are promising tools that can potentially be included in management programs to control A. guerreronis in commercial coconut plantations.
Schulz, Johanna; Berk, Jutta; Suhl, Johanna; Schrader, Lars; Kaufhold, Stefan; Mewis, Inga; Hafez, Hafez Mohammed; Ulrichs, Christian
2014-09-01
Poultry red mite infestation still is an unsolved problem in poultry farms. Legal regulations, residue risks, and resistances limit chemical control of mites. Alternatives to chemical acaricides for control of poultry red mite are silica-based products, which have as a main constituent silicon dioxide. The acaricidal effect is attributed to sorptive properties of the particles, which result in the mite's death by desiccation. In the present study, the acaricidal efficacy of 12 products containing natural or synthetic silica, 9 in powder form, and 3 for liquid application was tested under laboratory conditions. Mite mortality was measured at several intervals and the mean lethal time (LT₅₀) determined by Probit analysis after Abbott's correction. The LT₅₀ values of the products significantly differed (Tukey's HSD p < 0.05). LT₅₀ values of powdery formulations ranged from 5.1 to 18.7 h and overlapped with those of the fluid ones which ranged from 5.5 to 12.7 h. In order to explain the differences in efficacy of the tested silica products, further characterizations were carried out. X-ray fluorescence, specific surface, cation exchange capacity (CEC), and water absorption capacity (WAC) were measured. Furthermore, electron microscopy was conducted and different products compared. Silicon dioxide content (ranging from 65 to 89% for powders and 57 to 80% for fluids) had no significant impact on efficacy, while specific surface and CEC (2.4-23.2 mEq 100(-1) g(-1) for powders and 18-30.8 mEq 100(-1) g(-1)) were positively and WAC (1.3-4.4 wt% for powders and 3.3-4.8 wt% for fluids) negatively related to the acaricidal efficacy. Influence of these parameters on acaricidal efficacy was significant according to the results of a stepwise regression analysis (p < 0.01).
Dermatoses associated with mites other than Sarcoptes.
Ken, Kimberly M; Shockman, Solomon C; Sirichotiratana, Melissa; Lent, Megan P; Wilson, Morgan L
2014-09-01
Mites are arthropods of the subclass Acari (Acarina). Although Sarcoptes is the mite most commonly recognized as a cause of human skin disease in the United States, numerous other mite-associated dermatoses have been described, and merit familiarity on the part of physicians treating skin disease. This review discusses several non-scabies mites and their associated diseases, including Demodex, chiggers, Cheyletiella, bird mites, grain itch, oak leaf itch, grocer's itch, tropical rat mite, snake mite, and Psoroptes.
Clarke, D; Dix, E; Liddy, S; Gormally, M; Byrne, M
2016-03-01
Allergenic mites are responsible for inducing hypersensitive reactions in genetically predisposed people worldwide. Mites in dust from 30 Irish homes with pets (dogs, n = 23; cats, n = 7) were compared with those in 30 homes without pets. House dust mites constituted 78% of all mites recorded, with Dermatophagoides pteronyssinus (Acariformes: Pyroglyphidae) representing 57-72% of mites in furniture and mattresses in both home types compared with only 22% of mites in pet beds. Although storage mites accounted for just 13% of all mites recorded, they represented 46% of mites recorded in pet beds. Median levels of the dust mite allergen Der p 1 (µg/g) in dust samples from mattresses in homes without pets were significantly greater than in mattresses from homes with pets, reflecting the greater densities of D. pteronyssinus found in the former home category. Mite species richness was greater in homes with pets (17 species) than in homes without pets (13 species). This suggests that although the presence of pets can result in a wider variety of epidemiologically important mite species within households, increased competition among mite species may result in a more balanced mite fauna in the home, inhibiting the dominance of any one species and hence lowering allergen-associated risks. © 2015 The Royal Entomological Society.
MATI, a Novel Protein Involved in the Regulation of Herbivore-Associated Signaling Pathways
Santamaría, M. Estrella; Martinez, Manuel; Arnaiz, Ana; Ortego, Félix; Grbic, Vojislava; Diaz, Isabel
2017-01-01
The defense response of the plants against herbivores relies on a complex network of interconnected signaling pathways. In this work, we characterized a new key player in the response of Arabidopsis against the two-spotted spider mite Tetranychus urticae, the MATI (Mite Attack Triggered Immunity) gene. This gene was differentially induced in resistant Bla-2 strain relative to susceptible Kon Arabidopsis accessions after mite attack, suggesting a potential role in the control of spider mites. To study the MATI gene function, it has been performed a deep molecular characterization of the gene combined with feeding bioassays using modified Arabidopsis lines and phytophagous arthropods. The MATI gene belongs to a new gene family that had not been previously characterized. Biotic assays showed that it confers a high tolerance not only to T. urticae, but also to the chewing lepidopteran Spodoptera exigua. Biochemical analyses suggest that MATI encodes a protein involved in the accumulation of reducing agents upon herbivore attack to control plant redox homeostasis avoiding oxidative damage and cell death. Besides, molecular analyses demonstrated that MATI is involved in the modulation of different hormonal signaling pathways, affecting the expression of genes involved in biosynthesis and signaling of the jasmonic acid and salicylic acid hormones. The fact that MATI is also involved in defense through the modulation of the levels of photosynthetic pigments highlights the potential of MATI proteins to be exploited as biotechnological tools for pest control. PMID:28649257
Fauna-associated changes in chemical and biochemical properties of soil.
Tripathi, G; Sharma, B M
2006-12-01
To study the impacts of abundance of woodlice, termites, and mites on some functional aspects of soil in order to elucidate the specific role of soil fauna in improving soil fertility in desert. Fauna-rich sites were selected as experimental sites and adjacent areas were taken as control. Soil samples were collected from both sites. Soil respiration was measured at both sites. The soil samples were sent to laboratory, their chemical and biochemical properties were analyzed. Woodlice showed 25% decrease in organic carbon and organic matter as compared to control site. Whereas termites and mites showed 58% and 16% decrease in organic carbon and organic matter. In contrast, available nitrogen (nitrate and ammonical both) and phosphorus exhibited 2-fold and 1.2-fold increase, respectively. Soil respiration and dehydrogenase activity at the sites rich in woodlice, termites and mites produced 2.5-, 3.5- and 2-fold increases, respectively as compared to their control values. Fauna-associated increase in these biological parameters clearly reflected fauna-induced microbial activity in soil. Maximum decrease in organic carbon and increase in nitrate-nitrogen and ammonical-nitrogen, available phosphorus, soil respiration and dehydrogenase activity were produced by termites and minimum by mites reflecting termite as an efficient soil improver in desert environment. The soil fauna-associated changes in chemical (organic carbon, nitrate-nitrogen, ammonical-nitrogen, phosphorus) and biochemical (soil respiration, dehydrogenase activity) properties of soil improve soil health and help in conservation of desert pedoecosystem.
Biology and control of Varroa destructor.
Rosenkranz, Peter; Aumeier, Pia; Ziegelmann, Bettina
2010-01-01
The ectoparasitic honey bee mite Varroa destructor was originally confined to the Eastern honey bee Apis cerana. After a shift to the new host Apis mellifera during the first half of the last century, the parasite dispersed world wide and is currently considered the major threat for apiculture. The damage caused by Varroosis is thought to be a crucial driver for the periodical colony losses in Europe and the USA and regular Varroa treatments are essential in these countries. Therefore, Varroa research not only deals with a fascinating host-parasite relationship but also has a responsibility to find sustainable solutions for the beekeeping. This review provides a survey of the current knowledge in the main fields of Varroa research including the biology of the mite, damage to the host, host tolerance, tolerance breeding and Varroa treatment. We first present a general view on the functional morphology and on the biology of the Varroa mite with special emphasis on host-parasite interactions during reproduction of the female mite. The pathology section describes host damage at the individual and colony level including the problem of transmission of secondary infections by the mite. Knowledge of both the biology and the pathology of Varroa mites is essential for understanding possible tolerance mechanisms in the honey bee host. We comment on the few examples of natural tolerance in A. mellifera and evaluate recent approaches to the selection of Varroa tolerant honey bees. Finally, an extensive listing and critical evaluation of chemical and biological methods of Varroa treatments is given. This compilation of present-day knowledge on Varroa honey bee interactions emphasizes that we are still far from a solution for Varroa infestation and that, therefore, further research on mite biology, tolerance breeding, and Varroa treatment is urgently needed. Copyright 2009 Elsevier Inc. All rights reserved.
A selective sweep in a Varroa destructor resistant honeybee (Apis mellifera) population.
Lattorff, H Michael G; Buchholz, Josephine; Fries, Ingemar; Moritz, Robin F A
2015-04-01
The mite Varroa destructor is one of the most dangerous parasites of the Western honeybee (Apis mellifera) causing enormous colony losses worldwide. Various chemical treatments for the control of the Varroa mite are currently in use, which, however, lead to residues in bee products and often to resistance in mites. This facilitated the exploration of alternative treatment methods and breeding for mite resistant honeybees has been in focus for breeders in many parts of the world with variable results. Another approach has been applied to a honeybee population on Gotland (Sweden) that was exposed to natural selection and survived Varroa-infestation for more than 10years without treatment. Eventually this population became resistant to the parasite by suppressing the reproduction of the mite. A previous QTL mapping study had identified a region on chromosome 7 with major loci contributing to the mite resistance. Here, a microsatellite scan of the significant candidate QTL regions was used to investigate potential footprints of selection in the original population by comparing the study population on Gotland before (2000) and after selection (2007). Genetic drift had caused an extreme loss of genetic diversity in the 2007 population for all genetic markers tested. In addition to this overall reduction of heterozygosity, two loci on chromosome 7 showed an even stronger and significant reduction in diversity than expected from genetic drift alone. Within the selective sweep eleven genes are annotated, one of them being a putative candidate to interfere with reduced mite reproduction. A glucose-methanol-choline oxidoreductase (GMCOX18) might be involved in changing volatiles emitted by bee larvae that might be essential to trigger oogenesis in Varroa. Copyright © 2015 Elsevier B.V. All rights reserved.
Disentangling mite predator-prey relationships by multiplex PCR.
Pérez-Sayas, Consuelo; Pina, Tatiana; Gómez-Martínez, María A; Camañes, Gemma; Ibáñez-Gual, María V; Jaques, Josep A; Hurtado, Mónica A
2015-11-01
Gut content analysis using molecular techniques can help elucidate predator-prey relationships in situations in which other methodologies are not feasible, such as in the case of trophic interactions between minute species such as mites. We designed species-specific primers for a mite community occurring in Spanish citrus orchards comprising two herbivores, the Tetranychidae Tetranychus urticae and Panonychus citri, and six predatory mites belonging to the Phytoseiidae family; these predatory mites are considered to be these herbivores' main biological control agents. These primers were successfully multiplexed in a single PCR to test the range of predators feeding on each of the two prey species. We estimated prey DNA detectability success over time (DS50), which depended on the predator-prey combination and ranged from 0.2 to 18 h. These values were further used to weight prey detection in field samples to disentangle the predatory role played by the most abundant predators (i.e. Euseius stipulatus and Phytoseiulus persimilis). The corrected predation value for E. stipulatus was significantly higher than for P. persimilis. However, because this 1.5-fold difference was less than that observed regarding their sevenfold difference in abundance, we conclude that P. persimilis is the most effective predator in the system; it preyed on tetranychids almost five times more frequently than E. stipulatus did. The present results demonstrate that molecular tools are appropriate to unravel predator-prey interactions in tiny species such as mites, which include important agricultural pests and their predators. © 2015 John Wiley & Sons Ltd.
Cleaner mites: sanitary mutualism in the miniature ecosystem of neotropical bee nests.
Biani, Natalia B; Mueller, Ulrich G; Wcislo, William T
2009-06-01
Cleaning symbioses represent classic models of mutualism, and some bee mites are thought to perform cleaning services for their hosts in exchange for suitable environments for reproduction and dispersal. These mutual benefits, however, have not been rigorously demonstrated. We tested the sanitary role of bee mites by correlating mite loads with fungal contamination in natural nests of Megalopta genalis and Megalopta ecuadoria and by experimentally manipulating mite loads in artificial cells with developing brood. Field observations revealed significant correlations between the presence of mites and the absence of fungi inside the brood cells, as well as between the absence of mites and increased bee mortality. Likewise, experimental brood cells with mites have fewer fungal colonies than do cells without mites. Field observations and experimental manipulations, therefore, provide clear evidence of the sanitary effect of mites in nests of Megalopta bees. This bee-mite association constitutes one of the few examples of terrestrial cleaning mutualisms.
Association between KIR genes and dust mite sensitization in a Brazilian population.
Caniatti, Marcela Caleffi da Costa Lima; Borelli, Sueli Donizete; Guilherme, Ana Lúcia Falavigna; Franzener, Soraya Barrionuevo; Tsuneto, Luiza Tamie
2018-01-01
Killer cell immunoglobulin-like receptors (KIRs), found on the surface of natural killer (NK) cells, play a key role in controlling the innate response. Such response depends on a series of cellular interactions between these receptors and HLA activating/inhibiting ligands. Atopic diseases have been associated with genes that regulate cytokine production and HLA genes, which may either protect or predispose to hypersensitivity. To verify an association study of KIR genes with sensitization to the following mites: Dermatophagoides farinae, Dermatophagoides pteronyssinus, and Blomia tropicalis. A total of 341 children aged up to 14 years, were classified as mite-sensitive or mite-insensitive after undergoing a skin prick test for immediate allergic reactions. The presence/absence of KIR genes and their human leukocyte antigen (HLA) ligands was determined by polymerase chain reaction-sequence specific oligonucleotide (PCR-SSO) with the commercial kit LabType™ using Luminex™. The frequencies of KIR genes and their respective class I HLA ligands and the frequency of haplotypes were performed in sensitive and insensitive individuals, and no significant differences were found. Our results suggest no influence of KIR genes on resistance/susceptibility to sensitization to dust mites. Copyright © 2017 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Detecting pyrethroid resistance in predatory mites inhabiting soil and litter: an in vitro test.
El Adouzi, Marine; Bonato, Olivier; Roy, Lise
2017-06-01
While resistance against insecticides is widely known in pest arthropods, it remains poorly known in non-target arthropods of the same agrosystems. This may be of crucial importance in the context of organic pest management or integrated pest management. First, stopping of pesticide pressure during farm conversion may lead to important rearrangements of non-target communities due to fitness cost of resistance in populations of some species. Second, resistant biological agents may be useful to farms with low synthetic pesticide use. Communities of mesostigmatid mites, encompassing numerous predatory species, are supposed to be involved in important ecological processes in both crop soils and animal litter/manure. Here we provide a tarsal contact method for assessing resistance in different populations from various species of mesostigmatid mites. Analyses of data from repeated tests on three populations from different mesostigmatid families proved the method to be robust and able to generate consistent and reliable mortality percentages according to insecticide concentration. Our bioassay system allows for both one-shot estimate of pyrethroid sensitivity in mite populations and estimation of how it changes over time, making possible survival analyses and assessment of recovery from knockdown. The rating system retained makes it possible to score response to insecticides in a consistent and standard way in species from different mesostigmatid families. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Rosado, Jander F; Picanço, Marcelo C; Sarmento, Renato A; da Silva, Ricardo Siqueira; Pedro-Neto, Marçal; Carvalho, Marcos Alberto; Erasmo, Eduardo A L; Silva, Laila Cristina Rezende
2015-07-01
Studies on the seasonal variation of agricultural pest species are important for the establishment of integrated pest control programs. The seasonality of pest attacks on crops is affected by biotic and abiotic factors, for example, climate and natural enemies. Besides that, characteristics of the host plant, crop management, location and the pests' bioecology also affect this seasonality. The mites Polyphagotarsonemus latus (Prostigmata: Tarsonemidae) and Tetranychus bastosi (Prostigmata: Tetranychidae) are the most important pests in the cultivation of physic nut, Jatropha curcas (Euphorbiaceae). All parts of J. curcas can be used for a wide range of purposes. In addition many researchers have studied its potential for use as neat oil, as transesterified oil (biodiesel), or as a blend with diesel. However studies about physic nut pests have been little known. The objective of this study was to assess the seasonal variation of P. latus and T. bastosi in physic nut. This study was conducted at three sites in the state of Tocantins, Brazil. We monitored climatic elements and the densities of the two mite species and of their natural enemies for a period of 2 years. Attack by P. latus occurred during rainy seasons, when the photoperiod was short and the physic nut had new leaves. In contrast, attack by T. bastosi occurred during warmer seasons with longer photoperiods and stronger winds. Populations of both mites and their natural enemies were greater in sites with greater plant diversity adjacent to the plantations. The predators found in association with P. latus and T. bastosi were Euseius concordis (Acari: Phytoseiidae), spiders, Stethorus sp. (Coleoptera: Coccinellidae) and Chrysoperla sp. (Neuroptera: Chrysopidae).
Hallas, T E; Gislason, D; Björnsdottir, U S; Jörundsdottir, K B; Janson, C; Luczynska, C M; Gislason, T
2004-05-01
House dust mites are common sources of indoor allergens. In Reykjavik, Iceland, 9% of the young adult population had serum-specific IgE to Dermatophagoides pteronyssinus. Sensitization to mites is usually assumed to be due to exposure to house dust mites in the indoor environment. This investigation was carried out to measure the concentrations of house dust mite allergens and to investigate which species of mites were present in beds in Iceland. A total of 197 randomly selected adults were visited at home using the European Community Respiratory Health Survey (ECRHS) II Indoor protocol. Dust samples were collected from mattresses for measurement of house dust mite allergen concentrations and to estimate the number and type of house dust mites. Additional samples from mattresses and floors were collected from the homes of 10 patients with positive skin prick tests (SPT) to D. pteronyssinus. House dust mite allergen concentrations were measured using ELISA and examination of mite species was carried out using microscopy. Climatic parameters were assessed using psychrometer readings in the bedrooms and outdoors. We found two single mite specimens, both D. pteronyssinus, in two dust samples. Mite allergen analyses indicated that two other dust samples had Der f 1 results close to the cut-off of 0.1 microg/g of dust. No samples were positive for Der p 1. In an additional collection of dust from the homes of 10 SPT-positive patients no Dermatophagoides spp. were found. Reykjavik citizens are exposed to extremely low amounts of house dust mite allergens in their homes. Possible alternative sources for sensitization are discussed, such as bird nests, exposure from travelling abroad, or other mites or invertebrates that cross-react with house dust mite allergens. Our findings suggest that exposures other than to house dust mites indoors are possible sources of mite allergen exposure.
Sarcoptes-World Molecular Network (Sarcoptes-WMN): integrating research on scabies.
Alasaad, Samer; Walton, Shelley; Rossi, Luca; Bornstein, Set; Abu-Madi, Marawan; Soriguer, Ramón C; Fitzgerald, Scott; Zhu, Xing-Quan; Zimmermann, Werner; Ugbomoiko, Uade Samuel; Pei, Kurtis Jai-Chyi; Heukelbach, Jörg
2011-05-01
Parasites threaten human and animal health globally. It is estimated that more than 60% of people on planet Earth carry at least one parasite, many of them several different species. Unfortunately, parasite studies suffer from duplications and inconsistencies between different investigator groups. Hence, groups need to collaborate in an integrated manner in areas including parasite control, improved therapy strategies, diagnostic and surveillance tools, and public awareness. Parasite studies will be better served if there is coordinated management of field data and samples across multidisciplinary approach plans, among academic and non-academic organizations worldwide. In this paper we report the first 'Living organism-World Molecular Network', with the cooperation of 167 parasitologists from 88 countries on all continents. This integrative approach, the 'Sarcoptes-World Molecular Network', seeks to harmonize Sarcoptes epidemiology, diagnosis, treatment, and molecular studies from all over the world, with the aim of decreasing mite infestations in humans and animals. Copyright © 2011 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
A preliminary study of the acaricidal activity of clove oil, Eugenia caryophyllus.
Mahakittikun, Vanna; Soonthornchareonnon, Noppamas; Foongladda, Sooporn; Boitano, John Joseph; Wangapai, Teerapong; Ninsanit, Prapakorn
2014-03-01
The search for more eco-friendly acaricides has prompted testing of medicinal plants from botanical sources. To evaluate the eradication of house dust mites (HDM), Dermatophagoides pteronyssinus, by direct contact using the essential clove oil (Eugenia caryophyllus). A pilot study was initiated to determine the killing power of clove oil. Synthetic fibers were immersed in 2% clove oil for 30 min, dried in a hot air oven at 60°C for 2 hrs after which 0.5 gm of HDMs were exposed to these coated fibers placed in the Siriraj Chamber (SC). Two additional long-term methods were employed. Ten mites were placed in the SC and 10 μl of clove oil was pipetted or sprayed onto them. These latter two procedures were each carried out for 3 consecutive days at 0, 1, 3 and 6 months. The solutions antimicrobial and antifungal properties were evaluated by exposing common bacteria and fungi to sterile filter disks impregnated with the mixture, and after overnight incubation, the disc diffusion method on nutrient agar was used. Ethyl alcohol served as the placebo. 99% and 81%, respectively, while the placebo mortality was <5%. The zone of inhibition indicated significant clearance for all the bacteria and fungi indicating greater biocidal activity when compared to the controls. SEMs revealed dead mites on the fibers. The effectiveness of pipetting and spraying was 99% and 81%, respectively, while the placebo mortality was <5%. The zone of inhibition indicated significant clearance for all the bacteria and fungi indicating greater biocidal activity when compared to the controls. Clove oil is a promising agent for killing dust mites with a potential use in dust-mite laden mattresses. Spraying diminishes in efficiency after 3 months.
Inefficacy of alcohol-based hand rub on mites in a patient with hyperkeratotic scabies.
Cinotti, E; Perrot, J L; Labeille, B; Maguet, H; Couzan, C; Flori, P; Cambazard, F
2015-03-01
The World Health Organization is strongly promoting alcohol-based hand rubs to interrupt transmission of pathogens within the healthcare environment, and in some hospitals they are being recommended in cases of scabies. However, there are no studies that demonstrate the efficacy of such hand rubs against scabies. To evaluate the viability of Sarcoptes scabiei after the application of various topical antiseptics used for hand hygiene, and the effect of hand washing on the number of parasites present on the skin surface of a patient with scabies. We applied three different topical antiseptics (two alcohol-based and one povidone-iodine-based) to the skin of one hand that was affected by scabies, and took a skin scraping of each area to evaluate the viability of the mites over time. A skin scraping of a control area without antiseptic application was also taken. We also tested the antiseptics directly on the mites. Statistical comparison between the percentages of vital mites in the different samples was assessed using the χ(2) test. We also captured a dermoscopic image of the other hand before and after hand washing to count the number of parasites on the skin surface. Topical antiseptics did not reduce the number of living mites compared with control skin, and hand washing did not reduce the number of parasites on the skin surface. Application of topical antiseptics does not reduce the viability of S. scabiei, and is therefore unable to prevent the transmission of scabies. The usefulness of hand washing in preventing transmission of scabies to new subjects remains to be investigated. © 2014 British Association of Dermatologists.
Calderone, N W
2005-06-01
The efficacy of drone brood removal for the management of Varroa destructor Anderson & Trueman in colonies of the honey bee, A. mellifera L., was evaluated. Colonies were treated with CheckMite+ in the fall of 2002. The following spring, quantities of bees and brood were equalized, but colonies were not retreated. The brood nest of each colony consisted of 18 full-depth worker combs and two full-depth drone combs. Each worker comb had <12.9 cm2 of drone cells. Standard management practices were used throughout the season. Colonies were randomly assigned to one of two groups. In the control group, drone combs remained in place throughout the season. In the treatment group, drone combs were removed on 16 June, 16 July, 16 August, and 16 September and replaced with empty drone combs (16 June) or with drone combs removed on the previous replacement date. In the early fall, the average mite-to-bee ratio in the control group was significantly greater than the corresponding ratio in the treatment group. Drone brood removal did not adversely affect colony health as measured by the size of the worker population or by honey production. Fall worker populations were similar in the two groups. Honey production in treatment colonies was greater than or similar to production in control colonies. These data demonstrate that drone brood removal can serve as a valuable component in an integrated pest management program for V. destructor and may reduce the need for other treatments on a colony-by-colony basis.
Influence of spatio-temporal resource availability on mushroom mite diversity.
Okabe, Kimiko
2013-11-01
Although biodiversity in nature is of fundamental importance because it improves the sustainability of ecosystems, communities of microscopic organisms are generally excluded from conservation targets for biodiversity. Here, I hypothesize that mushroom mite species richness is correlated with both spatial (i.e., mushroom size) and temporal (i.e., longevity of fruiting bodies) resource availability. I collected fruiting bodies in an old-growth forest over 4 years to collect mites and insects inhabiting the mushrooms. Mites were collected from 47 % of the fruiting bodies and approximately 60 % of the mite species were collected only once. Mite species richness was significantly correlated with the availability of long-lasting fruiting bodies. For example, bracket fungi contained more mite species than ephemeral fruiting bodies. Insect presence was also correlated with mushroom mite richness, probably as phoretic hosts and food resources for predacious mites. On the other hand, mushroom size seemed to be less important; small fruiting bodies sometimes harbored several mite species. Although mite species richness was correlated with mushroom species richness, mushroom specificity by mites was not clear except for a preference for long-lasting fruiting bodies. Therefore, I suggest that a constant supply of coarse woody debris is crucial for maintaining preferred resources for mushroom mites (e.g., bracket fungi) and their associated insects (mycophilous and possibly saproxylic insects).
van den Boom, C E M; van Beek, T A; Dicke, M
2002-12-01
Plants infested with the spider mite Tetranychus urticae Koch, may indirectly defend themselves by releasing volatiles that attract the predatory mite Phytoseiulus persimilis Athias-Henriot. Several plants from different plant families that varied in the level of spider mite acceptance were tested in an olfactometer. The predatory mites were significantly attracted to the spider mite-infested leaves of all test plant species. No differences in attractiveness of the infested plant leaves were found for predatory mites reared on spider mites on the different test plants or on lima bean. Thus, experience with the spider mite-induced plant volatiles did not affect the predatory mites. Jasmonic acid was applied to ginkgo leaves to induce a mimic of a spider mite-induced volatile blend, because the spider mites did not survive when incubated on ginkgo. The volatile blend induced in ginkgo by jasmonic acid was slightly attractive to predatory mites. Plants with a high degree of direct defence were thought to invest less in indirect defence than plants with a low degree of direct defence. However, plants that had a strong direct defence such as ginkgo and sweet pepper, did emit induced volatiles that attracted the predatory mite. This indicates that a combination of direct and indirect defence is to some extent compatible in plant species.
[Active miniature inverted-repeat transposable elements transposon in plants: a review].
Hu, Bingjie; Zhou, Mingbing
2018-02-25
Miniature inverted-repeat transposable elements transposon is a special transposon that could transpose by "cut-paste" mechanism, which is one of characteristics of DNA transposons. Otherwise, the copy number of MITEs is very high, which is one of characteristics of RNA transposons. Many MITE families have been reported, but little about active MITEs. We summarize recent advances in studying active MITEs. Most the MITEs belong to the Tourist-like family, such as mPing, mGing, PhTourist1, Tmi1 and PhTst-3. Additionally, DTstu1 and MITE-39 belong to Stowaway-like family, and AhMITEs1 belongs to Mutator-like family. Moreover, we summarize the structure (terminal inverse repeats and target site duplications), copy number, evolution pattern and transposition characteristics of these active MITEs, to provide the foundation for the identification of other active MITEs and subsequent research on MITE transposition and amplification mechanism.
Smith, Margaret G.; Blattner, Russell J.; Heys, Florence M.
1946-01-01
A colony of chicken mites (Dermanyssus gallinae) was established from a single adult female mite and her offspring. This colony of mites was shown to be free of the virus of St. Louis encephalitis. Infection of mites from this homogeneous colony with the virus of St. Louis encephalitis was accomplished by feeding on chickens having viremia. The virus was recovered as readily from mites which had not been allowed to feed for 8 days as from mites freshly engorged, showing that the demonstration of virus in the mites does not depend on the presence of fresh infective chicken blood. Transovarian passage of the St. Louis virus into the second generation has been demonstrated in mites infected experimentally. The female mite infected as an adult can pass the St. Louis virus through eggs laid after additional feeding on normal blood. Persistence of the virus for a period of 6 months has been shown in a colony of mites infected experimentally in the laboratory. PMID:19871548
Cross Reference Index for Bioenvironmental Engineer and Military Public Health Offices
1992-03-01
Food Recall AFR 161-42 DOD Hazardous Food and Nonprescription Drug Recall System Insects and Mite Pests in Food AGR-HB-655 Insects and Mite Pests in Food...Solution, 11 Hazard Communication, 12 Hazardous Energy Control, 21, 22 Hazardous Food Recall Program, 9 Hazardous Waste, 11, 26 Hazardous Materials...34Institutional Meat Purchase Specification" NAMPS "National Association of Meat Purveyor’s" DPSC Support DOD 4155.6 Subsistence Inspection Manual Hazardous
Walzer, Andreas; Schausberger, Peter
2013-01-01
Intraguild (IG) prey is commonly confronted with multiple IG predator species. However, the IG predation (IGP) risk for prey is not only dependent on the predator species, but also on inherent (intraspecific) characteristics of a given IG predator such as its life-stage, sex or gravidity and the associated prey needs. Thus, IG prey should have evolved the ability to integrate multiple IG predator cues, which should allow both inter- and intraspecific threat-sensitive anti-predator responses. Using a guild of plant-inhabiting predatory mites sharing spider mites as prey, we evaluated the effects of single and combined cues (eggs and/or chemical traces left by a predator female on the substrate) of the low risk IG predator Neoseiulus californicus and the high risk IG predator Amblyseius andersoni on time, distance and path shape parameters of the larval IG prey Phytoseiulus persimilis. IG prey discriminated between traces of the low and high risk IG predator, with and without additional presence of their eggs, indicating interspecific threat-sensitivity. The behavioural changes were manifest in distance moved, activity and path shape of IG prey. The cue combination of traces and eggs of the IG predators conveyed other information than each cue alone, allowing intraspecific threat-sensitive responses by IG prey apparent in changed velocities and distances moved. We argue that graded responses to single and combined IG predator cues are adaptive due to minimization of acceptance errors in IG prey decision making. PMID:23750040
Bartley, Kathryn; Huntley, John F; Wright, Harry W; Nath, Mintu; Nisbet, Alasdair J
2012-05-01
Vaccination is a feasible strategy for controlling the haematophagous poultry red mite Dermanyssus gallinae. A cDNA library enriched for genes upregulated after feeding was created to identify potential vaccine antigens. From this library, a gene (Dg-CatD-1) encoding a 383 amino acid protein (Dg-CatD-1) with homology to cathepsin D lysosomal aspartyl proteinases was identified as a potential vaccine candidate. A second gene (Dg-CatL-1) encoding a 341 amino acid protein (Dg-CatL-1) with homology to cathepsin L cysteine proteinases was also selected for further study. IgY obtained from naturally infested hens failed to detect Dg-CatD-1 suggesting that it is a concealed antigen. Conversely, Dg-CatL-1 was detected by IgY derived from natural-infestation, indicating that infested hens are exposed to Dg-CatL-1. Mortality rates 120 h after mites had been fed anti-Dg-CatD-1 were significantly higher than those fed control IgY (PF<0·01). In a survival analysis, fitting a proportional hazards model to the time of death of mites, anti-Dg-CatD-1 and anti-Dg-CatL-1 IgY had 4·42 and 2·13 times higher risks of dying compared with controls (PF<0·05). Dg-CatD-1 and L-1 both have potential as vaccine antigens as part of a multi-component vaccine and have the potential to be improved as vaccine antigens using alternative expression systems.
Hoy, Marjorie A.; Waterhouse, Robert M.; Wu, Ke; Estep, Alden S.; Ioannidis, Panagiotis; Palmer, William J.; Pomerantz, Aaron F.; Simão, Felipe A.; Thomas, Jainy; Jiggins, Francis M.; Murphy, Terence D.; Pritham, Ellen J.; Robertson, Hugh M.; Zdobnov, Evgeny M.; Gibbs, Richard A.; Richards, Stephen
2016-01-01
Metaseiulus occidentalis is an eyeless phytoseiid predatory mite employed for the biological control of agricultural pests including spider mites. Despite appearances, these predator and prey mites are separated by some 400 Myr of evolution and radically different lifestyles. We present a 152-Mb draft assembly of the M. occidentalis genome: Larger than that of its favored prey, Tetranychus urticae, but considerably smaller than those of many other chelicerates, enabling an extremely contiguous and complete assembly to be built—the best arachnid to date. Aided by transcriptome data, genome annotation cataloged 18,338 protein-coding genes and identified large numbers of Helitron transposable elements. Comparisons with other arthropods revealed a particularly dynamic and turbulent genomic evolutionary history. Its genes exhibit elevated molecular evolution, with strikingly high numbers of intron gains and losses, in stark contrast to the deer tick Ixodes scapularis. Uniquely among examined arthropods, this predatory mite’s Hox genes are completely atomized, dispersed across the genome, and it encodes five copies of the normally single-copy RNA processing Dicer-2 gene. Examining gene families linked to characteristic biological traits of this tiny predator provides initial insights into processes of sex determination, development, immune defense, and how it detects, disables, and digests its prey. As the first reference genome for the Phytoseiidae, and for any species with the rare sex determination system of parahaploidy, the genome of the western orchard predatory mite improves genomic sampling of chelicerates and provides invaluable new resources for functional genomic analyses of this family of agriculturally important mites. PMID:26951779
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liburd, O.E.; White, J.C.; Rhodes, E.M.
2007-03-15
The residual effects of several reduced-risk and conventional miticides were evaluated in strawberries (Fragaria z ananassa Duchesne) on the twospotted spider mite (TSSM), Tetranychus urticae Koch (Acari: Tetranychidae) and on 2 predatory mites, Neoseiulus californicus McGregor and Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). Experiments were conducted in the laboratory and greenhouse. The greenhouse experiments also tested the direct effects of the miticides on TSSM. The efficacy of conventional and reduced-risk miticides was evaluated on strawberry leaf discs and on whole plants for control of TSSM. Furthermore, the residual effects of these miticides were evaluated on whole strawberry plants against selective predatorymore » mites. For TSSM, 5 treatments were evaluated: a conventional miticide; fenbutatin-oxide (Vendex[reg]) and 3 reduced-risk miticides; binfenazate (Acramite 50WP[reg]), activated garlic extract (Repel[reg]), sesame seed and castor oil (Wipeout[reg]), and a water-treated control. For predatory mites, the residual effects of only Acramite[reg] and Vendex[reg] were evaluated. Acramite[reg] was the most effective acaricide in reducing TSSM populations in both the laboratory and greenhouse experiments. Vendex[reg] and Wipeout[reg] were also effective in the laboratory, but did not cause significant reduction of TSSM in the greenhouse. Repel[reg] was the least effective of the 4 pesticides evaluated. Neither Acramite[reg] nor Vendex[reg] had a significant effect on either predatory mite species. However, there appeared to be more predatory mites on the Vendex[reg]-treated plants than on the Acramite[reg]-treated plants. There were significantly more predatory mites of both species on the cue plants, which were inoculated with TSSM versus the non-cue plants, which were not inoculated. (author) [Spanish] Los efectos residuales en poblaciones de la 'arana roja', Tetranychus urticae Koch (Acari: Tetranichidae) y de los acaros predadores Neoseiulus californicus McGregor y Phytoseilus persimilis Athias-Henriot (Acari: Phytoseiidae) causados por varios acaricidas convencionales y de riesgo-reducido fueron evaluados en fresas (Fragaria x ananassa Duchense). Los experimentos fueron realizados en laboratorio e invernadero. Los experimentos en el invernadero evaluaron tambien el efecto directo de los acaricidas en la 'arana roja'. La eficacia para controlar la 'arana roja' de los acaricidas convencionales y de riesgo-reducido fue evaluada en discos de las hojas y en plantas de fresa, y los efectos residuales de los acaricidas en los acaros predadores fueron evaluados en plantas completas. Para la 'arana roja' se evaluaron cinco tratamientos: el acaricida convencional fenbutatin-oxido (Vendex[reg]), 3 acaricidas de riesgo-reducido binfenazate (Acaramite 50WP[reg]), extracto de ajo activado (Repel[reg]), aceite de semillas de ajonjoli y ricino (Wipeout[reg]) y un control tratado con agua. Para los acaros predadores solamente los efectos de Acaramite[reg] y Vendex[reg] fueron evaluados. Acaramite[reg] fue el tratamiento mas efectivo para la 'arana roja' en el laboratorio y el invernadero. Vendex[reg] y Wipeout[reg] fueron tambien efectivos en el laboratorio, pero no causaron una reduccion significativa de 'aranas rojas' en el invernadero. Repel[reg] fue el tratamiento evaluado menos eficaz. Ni Acaramite[reg] ni Vendex[reg] redujeron significativamente las poblaciones de acaros predadores. Sin embargo, aparentemente hay mas acaros predadores en Vendex[reg] que en Acaramite[reg]. Tambien se encontraron significativamente mas acaros predadores en plantas inoculadas que en plantas no inoculadas. (author)« less
Avocado pests in Florida: Not what you expected
USDA-ARS?s Scientific Manuscript database
Avocado, Persea americana Mill., is Florida's second most important fruit crop after citrus. Until recently, the complex of spider mite and insect pests that affected avocado in south Florida was under a 20 year Integrated Pest Management (IPM) program. The recent invasion of avocado orchards by a...
Chemotherapeutic treatment of naturally acquired generalized demodicosis.
Folz, S D; Kratzer, D D; Conklin, R D; Nowakowski, L H; Kakuk, T J; Rector, D L
1983-08-01
Fifty-two dogs naturally parasitized with Demodex canis and having the generalized form of the disease were utilized to evaluate the efficacy and safety of single or multiple topical treatments with a liquid concentrate formulation of amitraz. Ten dogs (5 treated, 5 controls) were utilized to evaluate a single treatment. A single topical treatment with the miticide did not significantly reduce the incidence of dogs with mites, however, significant clinical improvement resulted. Side-effects were not observed after treatment. Forty-two dogs (26 treated, 16 controls) were utilized to evaluate multiple topical treatments with the liquid concentrate. A series of 3-6 treatments was applied topically at 14-day intervals. The dogs treated with the miticide received an average of 4.5 topical treatments. All (100%) of the dogs responded clinically, and the mean rate of improvement at four weeks post-treatment was 99.1%. Most dogs (96.2%) were cleared of mites after 3-6 treatments, and Mitaban did not cause any dermatologic, ocular, or other clinical side-effects. Multiple treatments with the liquid concentrate were highly efficacious and safe for treatment of generalized demodicosis. Control dogs did not improve clinically and retained mite populations.
Takahashi, Kentaro; Taniguchi, Masami; Fukutomi, Yuma; Sekiya, Kiyoshi; Watai, Kentaro; Mitsui, Chihiro; Tanimoto, Hidenori; Oshikata, Chiyako; Tsuburai, Takahiro; Tsurikisawa, Naomi; Minoguchi, Kenji; Nakajima, Hiroshi; Akiyama, Kazuo
2014-03-01
Anaphylaxis after the ingestion of foods contaminated with mites has recently been recognized. Case series and case reports thus far have shown that mite-contaminated wheat flour is the major cause of oral mite anaphylaxis. However, we have found 8 cases of oral mite anaphylaxis which were caused by mite-contaminated okonomiyaki-mix, a savory Japanese style pancake mix, in our hospital. In addition to our 8 cases, the databases of MEDLINE and ICHUSHI were systematically searched for patients with oral mite anaphylaxis in Japan. Thirty-six patients including our 8 cases with oral mite anaphylaxis were identified. Thirty-four out of 36 cases (94%) ingested okonomiyaki or takoyaki, prepared at home using okonomiyaki-mix or takoyaki-mix which was previously opened and stored for months at ambient temperature. Microscopic examination of culprit mixes of 16 cases including our 1 case revealed contamination of mites such as Dermatophagoides farina (Der f) (5 cases), Tyrophagus putrescentiae (Tyr p) (4 cases), and Dermatophagoides pteronyssinus (Der p) (3 cases). The specific IgE to each mite is generally upregulated in these patients. Especially, the titers of specific IgE to Der p and Der f were more than class 2 in all cases. Mite-contaminated flavored flour is the major cause of oral mite anaphylaxis in Japan.
Takahashi, Kentaro; Taniguchi, Masami; Fukutomi, Yuma; Sekiya, Kiyoshi; Watai, Kentaro; Mitsui, Chihiro; Tanimoto, Hidenori; Oshikata, Chiyako; Tsuburai, Takahiro; Tsurikisawa, Naomi; Minoguchi, Kenji; Nakajima, Hiroshi; Akiyama, Kazuo
2013-12-25
Background: Anaphylaxis after the ingestion of foods contaminated with mites has recently been recognized. Case series and case reports thus far have shown that mite-contaminated wheat flour is the major cause of oral mite anaphylaxis. However, we have found 8 cases of oral mite anaphylaxis which were caused by mite-contaminated okonomiyaki-mix, a savory Japanese style pancake mix, in our hospital. Methods: In addition to our 8 cases, the databases of MEDLINE and ICHUSHI were systematically searched for patients with oral mite anaphylaxis in Japan. Results: Thirty-six patients including our 8 cases with oral mite anaphylaxis were identified. Thirty-four out of 36 cases (94%) ingested okonomiyaki or takoyaki, prepared at home using okonomiyaki-mix or takoyaki-mix which was previously opened and stored for months at ambient temperature. Microscopic examination of culprit mixes of 16 cases including our 1 case revealed contamination of mites such as Dermatophagoides farina (Der f) (5 cases), Tyrophagus putrescentiae (Tyr p) (4 cases), and Dermatophagoides pteronyssinus (Der p) (3 cases). The specific IgE to each mite is generally upregulated in these patients. Especially, the titers of specific IgE to Der p and Der f were more than class 2 in all cases. Conclusions: Mite-contaminated flavored flour is the major cause of oral mite anaphylaxis in Japan.
Guzman-Novoa, Ernesto; Emsen, Berna; Unger, Peter; Espinosa-Montaño, Laura G; Petukhova, Tatiana
2012-07-01
The objective of this study was to demonstrate genotypic variability and analyze the relationships between the infestation levels of the parasitic mite Varroa destructor in honey bee (Apis mellifera) colonies, the rate of damage of fallen mites, and the intensity with which bees of different genotypes groom themselves to remove mites from their bodies. Sets of paired genotypes that are presumably susceptible and resistant to the varroa mite were compared at the colony level for number of mites falling on sticky papers and for proportion of damaged mites. They were also compared at the individual level for intensity of grooming and mite removal success. Bees from the "resistant" colonies had lower mite population rates (up to 15 fold) and higher percentages of damaged mites (up to 9 fold) than bees from the "susceptible" genotypes. At the individual level, bees from the "resistant" genotypes performed significantly more instances of intense grooming (up to 4 fold), and a significantly higher number of mites were dislodged from the bees' bodies by intense grooming than by light grooming (up to 7 fold) in all genotypes. The odds of mite removal were high and significant for all "resistant" genotypes when compared with the "susceptible" genotypes. The results of this study strongly suggest that grooming behavior and the intensity with which bees perform it, is an important component in the resistance of some honey bee genotypes to the growth of varroa mite populations. The implications of these results are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.
Wari, David; Yamashita, Jun; Kataoka, Yoko; Kohara, Yoko; Hinomoto, Norihide; Kishimoto, Hidenari; Toyoshima, Shingo; Sonoda, Shoji
2014-07-01
A population survey of phytoseiid mites and spider mites was conducted on peach leaves and wild plants in Japanese peach orchards having different pesticide practices. The phytoseiid mite species composition on peach leaves and wild plants, as estimated using quantitative sequencing, changed during the survey period. Moreover, it varied among study sites. The phytoseiid mite species compositions were similar between peach leaves and some wild plants, such as Veronica persica, Paederia foetida, Persicaria longiseta, and Oxalis corniculata with larger quantities of phytoseiid mites, especially after mid-summer. A PCR-based method to detect the ribosomal ITS sequences of Tetranychus kanzawai and Panonychus mori from phytoseiid mites was developed. Results showed that Euseius sojaensis (specialized pollen feeder/generalist predator) uses both spider mites as prey in the field.
Zhao, Ya-E; Xu, Ji-Ru; Hu, Li; Wu, Li-Ping; Wang, Zheng-Hang
2012-05-01
The study for the first time attempted to accomplish 18S ribosomal DNA (rDNA) complete sequence amplification and analysis for three Demodex species (Demodex folliculorum, Demodex brevis and Demodex canis) based on gDNA extraction from individual mites. The mites were treated by DNA Release Additive and Hot Start II DNA Polymerase so as to promote mite disruption and increase PCR specificity. Determination of D. folliculorum gDNA showed that the gDNA yield reached the highest at 1 mite, tending to descend with the increase of mite number. The individual mite gDNA was successfully used for 18S rDNA fragment (about 900 bp) amplification examination. The alignments of 18S rDNA complete sequences of individual mite samples and those of pooled mite samples ( ≥ 1000mites/sample) showed over 97% identities for each species, indicating that the gDNA extracted from a single individual mite was as satisfactory as that from pooled mites for PCR amplification. Further pairwise sequence analyses showed that average divergence, genetic distance, transition/transversion or phylogenetic tree could not effectively identify the three Demodex species, largely due to the differentiation in the D. canis isolates. It can be concluded that the individual Demodex mite gDNA can satisfy the molecular study of Demodex. 18S rDNA complete sequence is suitable for interfamily identification in Cheyletoidea, but whether it is suitable for intrafamily identification cannot be confirmed until the ascertainment of the types of Demodex mites parasitizing in dogs. Copyright © 2012 Elsevier Inc. All rights reserved.
Bożek, Andrzej; Kołodziejczyk, Krzysztof; Kozłowska, Renata; Canonica, Giorgio Walter
2017-01-01
Allergen specific immunotherapy (AIT) in elderly patients is controversial, and there is still little evidence supporting the safety and efficacy of this treatment in this population. The study objective was to evaluate the safety and efficacy of AIT for house dust mite allergens in patients over 65 years of age with allergic rhinitis (AR) and a documented allergy to house dust mites. The primary endpoint was the change from baseline in the mean average adjusted symptom score (AAdSS) and the total combined rhinitis score (TCRS) difference in the least square means for the label compared to placebo. Fifty-eight AR elderly patients who were monosensitized to house dust mites were individually randomized in comparable numbers to one of two parallel groups with the following interventions: 2 years of perennial AIT using PURETHAL Mites or placebo. The symptoms and medication scores were presented as the AAdSS and TCRS. Quality of life, based on the rhinoconjunctivitis quality of life questionnaire (RQLQ), nasal allergen provocation responsiveness, serum allergen-specific IgG4 to D. pteronyssinus and D. farinae and Der p1 and Der p2 were monitored. The intent-to-treat population was analysed. After 24 months of AIT, AAdSS significantly decreased from 4.27 ± 1.58 to 1.82 ± 0.71 ( p < 0.05). The TCRS was significantly decreased after 2 years of AIT. Serum-specific IgG4 against D. pteronyssinus , D. farinae, Der p1 , and Der p2 increased during the AIT trial in the study group. The RQLQ score was significantly improved in patients who received AIT, from 1.86 (95% CI 1.51-1.78) to 1.26 (95% CI 1.09-1.55). Two mild systemic anaphylactic reactions (degree I) were reported after injections in the active group during the AIT therapy. The DBPC trial showed AIT for house dust mite allergens was effective and safe in elderly patients with allergic rhinitis. This randomized, double-blinded placebo-controlled (DBPC) trial was conducted at one centre (ClinicalTrials.gov no. NCT03209245).
Arther, R G; Davis, W L; Jacobsen, J A; Lewis, V A; Settje, T L
2015-05-30
A clinical field investigation was conducted to evaluate the safety and efficacy of 10% imidacloprid/2.5% moxidectin for the treatment of ear mites (Otodectes cynotis) in dogs. The study was a multi-centered, blinded, positive controlled, randomized clinical trial conducted under field conditions with privately owned pets. A total of 17 veterinary clinics enrolled cases for the study. An otoscopic examination was performed to confirm the presence of O. cynotis residing in the ear of the dog prior to enrollment. A single-dog household was enrolled in the study if the dog had 5 or more ear mites and an acceptable physical examination. A multi-dog household was eligible if at least one dog in the household had 5 or more mites and all dogs in the household had acceptable physical exams and met the inclusion criteria. Qualified households were randomly assigned to treatments to receive either 10% imidacloprid+2.5% moxidectin topical solution or topical selamectin solution (positive control product) according to a pre-designated enrollment ratio of 2:1, respectively. If more than one dog in a multiple dog household had adequate numbers of ear mites, one dog was randomly selected to represent the household for efficacy evaluation prior to treatment. Treatments were administered twice per label and dose banding directions for each product approximately 28 days apart (Days 0 and 28), by the dog's owner at the study site. All dogs in a household were treated on the same day and with the same product. The owners completed a post-treatment observation form one day after each treatment. Post-treatment otoscopic examinations were performed by the investigators or attending veterinarian on Days 28 and 56. Physical examinations were performed on Days 0 and 56. One hundred and four (104) households were evaluated for efficacy on SD 28, and 102 households were evaluated for efficacy on SD 56. The dogs' ages ranged from 2 months to 16 years. A total of 247 dogs were evaluated for safety. Percent efficacy was based on the percentage of dogs cleared of ear mites. Mite clearance on Day 28 was 71% for the imidacloprid+moxidectin group and 69% for the selamectin group. Mite clearance on Day 56 was 82% for the imidacloprid+moxidectin group and 74% for the selamectin group. No serious adverse events associated with either product were observed during the study. The study demonstrated that 10% imidacloprid+2.5% moxidectin applied using two topical treatments, 28 days apart, was safe and achieved similar efficacy against O. cynotis as selamectin treatments applied and evaluated under the same conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Varroa-Virus Interaction in Collapsing Honey Bee Colonies
Francis, Roy M.; Nielsen, Steen L.; Kryger, Per
2013-01-01
Varroa mites and viruses are the currently the high-profile suspects in collapsing bee colonies. Therefore, seasonal variation in varroa load and viruses (Acute-Kashmir-Israeli complex (AKI) and Deformed Wing Virus (DWV)) were monitored in a year-long study. We investigated the viral titres in honey bees and varroa mites from 23 colonies (15 apiaries) under three treatment conditions: Organic acids (11 colonies), pyrethroid (9 colonies) and untreated (3 colonies). Approximately 200 bees were sampled every month from April 2011 to October 2011, and April 2012. The 200 bees were split to 10 subsamples of 20 bees and analysed separately, which allows us to determine the prevalence of virus-infected bees. The treatment efficacy was often low for both treatments. In colonies where varroa treatment reduced the mite load, colonies overwintered successfully, allowing the mites and viruses to be carried over with the bees into the next season. In general, AKI and DWV titres did not show any notable response to the treatment and steadily increased over the season from April to October. In the untreated control group, titres increased most dramatically. Viral copies were correlated to number of varroa mites. Most colonies that collapsed over the winter had significantly higher AKI and DWV titres in October compared to survivors. Only treated colonies survived the winter. We discuss our results in relation to the varroa-virus model developed by Stephen Martin. PMID:23526946
A rapid survey technique for Tropilaelaps mite (Mesostigmata: Laclapidae) detection
USDA-ARS?s Scientific Manuscript database
Parasitic mites affect pollinator helath and the varroa mite (Varroa destructor Anderson and Trueman) is the most serious single threat to honey bees. Another group of mites with similar life histories to varroa mites, Tropilaelaps (Delfinado and Baker) species, have become a damaging pest of Europe...
Bee Mite ID: Bee-associated mite genera of the world
USDA-ARS?s Scientific Manuscript database
Bee Mite ID contains an interactive key, fact sheets, an image gallery, and abundant supporting information. The interactive key allows you to choose characters to obtain a list of mite genera possibly matching your specimen. Consult fact sheets to find images and information for a particular mite g...
Xu, Xuenong; Enkegaard, Annie
2010-01-01
The prey preference of polyphagous predators plays an important role in suppressing different species of pest insects. In this study the prey preference of the predatory mite, Amblyseius swirskii (Athias-Henriot) (Acari: Phytoseiidae) was examined between nymphs of the twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) and first instar larvae of the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), as well as between active and chrysalis spider mite protonymphs and active and chrysalis spider mite deutonymphs. The study was done in the laboratory on bean leaf discs at 25 ± 1° C and 70 ± 5% RH. Amblyseius swirskii had a clear preference for thrips compared to both spider mite protonymphs and deutonymphs. About twice as many thrips as spider mites were consumed. Amblyseius swirskii did not show a preference between active and chrysalis stages of spider mites.
Evolutionary genomics of miniature inverted-repeat transposable elements (MITEs) in Brassica.
Nouroz, Faisal; Noreen, Shumaila; Heslop-Harrison, J S
2015-12-01
Miniature inverted-repeat transposable elements (MITEs) are truncated derivatives of autonomous DNA transposons, and are dispersed abundantly in most eukaryotic genomes. We aimed to characterize various MITEs families in Brassica in terms of their presence, sequence characteristics and evolutionary activity. Dot plot analyses involving comparison of homoeologous bacterial artificial chromosome (BAC) sequences allowed identification of 15 novel families of mobile MITEs. Of which, 5 were Stowaway-like with TA Target Site Duplications (TSDs), 4 Tourist-like with TAA/TTA TSDs, 5 Mutator-like with 9-10 bp TSDs and 1 novel MITE (BoXMITE1) flanked by 3 bp TSDs. Our data suggested that there are about 30,000 MITE-related sequences in Brassica rapa and B. oleracea genomes. In situ hybridization showed one abundant family was dispersed in the A-genome, while another was located near 45S rDNA sites. PCR analysis using primers flanking sequences of MITE elements detected MITE insertion polymorphisms between and within the three Brassica (AA, BB, CC) genomes, with many insertions being specific to single genomes and others showing evidence of more recent evolutionary insertions. Our BAC sequence comparison strategy enables identification of evolutionarily active MITEs with no prior knowledge of MITE sequences. The details of MITE families reported in Brassica enable their identification, characterization and annotation. Insertion polymorphisms of MITEs and their transposition activity indicated important mechanism of genome evolution and diversification. MITE families derived from known Mariner, Harbinger and Mutator DNA transposons were discovered, as well as some novel structures. The identification of Brassica MITEs will have broad applications in Brassica genomics, breeding, hybridization and phylogeny through their use as DNA markers.
Kort, H S; Schober, G; Koren, L G; Scharringa, J
1997-08-01
Measurement of guanine in dust proved a good assessment of mite allergen exposure. Exposure to mite allergens may lead to atopic inflictions. In a semi-natural test system the development of Dermatophagoides pteronyssinus (Trouessart) and Glycyphagus domesticus (De Geer), and the presence of their guanine excretion, was examined in a dust-soiled and mouldy environment. Mites were counted after heat-escape, and guanine was detected by means of capillary zone electrophoresis. For each species, 50 mites randomly taken, were inoculated on soiled test-surfaces of 10 x 10 cm. Rough wooden board, gypsum board, tufted carpet, and a self-made mattress representing wall surfaces and home-textiles, respectively, were used. Eight weeks after inoculation with mites only, the surfaces were all mould ridden, and mite and guanine measurements were taken. The Spearman rank correlation test and the Mann-Whitney U-test were used in statistical analysis. The confidence limit was set at 1%. Among the various test-surfaces, no differences were found regarding total mite numbers and amount of guanine present (P > 0.01). For the dust-eating mite D. pteronyssinus, total mite numbers correlated with the amount of guanine present (P = 0.002) on all inoculated surfaces, indicating feeding on the protein-rich dust. For the mould devouring mite G. domesticus, however, no such correlation was found (P = 0.72). Apparently, they mainly consumed fungal carbohydrates during this experiment. The allergological relevance of storage mites has been under discussion for the last 25 years. In humid homes, these mites will feed almost exclusively on fungi and may produce allergenic or irritating substances different from those arising on protein-rich laboratory media used in allergen extract production or present in carpets, bedding and furniture.
Pfammatter, Jesse A; Raffa, Kenneth F
2015-12-01
Ips grandicollis (Eichhoff) can be an important pest of plantation trees in the Great Lakes region. Mites commonly occur in phoretic association with this beetle, but little is known about their effects on beetle population dynamics. We assessed the effects of phoretic mites on the reproductive success of I. grandicollis using complementary correlative and manipulative approaches. First, we allowed beetles to colonize Pinus resinosa (Ait) logs from sites across Wisconsin, reared them in a common environment, and related the species identities and abundances of mites with beetle production from each log. We found a positive relationship between I. grandicollis abundance and the presence of five mite species, Histiostoma spp., Dendrolaelaps quadrisetus (Berlese), Iponemus confusus (Lindquist), Trichouropoda australis Hirschmann, and Tarsonemus spp. While the abundance of individual mite species was positively correlated with beetle abundance, assessments of mite community structure did not explain beetle reproduction. Next, we introduced beetles that either had a natural complement of mites or whose mites were mechanically reduced into logs, and compared reproductive success between these beetles. We found no difference in colonization rates or beetle emergence between mite-present and mite-reduced treatments. Collectively, these results suggest a correlative, rather than causal, link between beetle reproductive success and mite incidence and abundances. These mites and beetles likely benefit from mutually suitable environments rather than exerting strong reciprocal impacts. Although mites may have some effects on I. grandicollis reproductive success, they likely play a minimal role compared to factors such as tree quality, beetle predation, and weather. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Takahashi, Kentaro; Taniguchi, Masami; Fukutomi, Yuma; Sekiya, Kiyoshi; Watai, Kentaro; Mitsui, Chihiro; Tanimoto, Hidenori; Oshikata, Chiyako; Tsuburai, Takahiro; Tsurikisawa, Naomi; Minoguchi, Kenji; Nakajima, Hiroshi; Akiyama, Kazuo
2014-01-01
Anaphylaxis after the ingestion of foods contaminated with mites has recently been recognized. Case series and case reports thus far have shown that mite-contaminated wheat flour is the major cause of oral mite anaphylaxis. However, we have found 8 cases of oral mite anaphylaxis which were caused by mitecontaminated okonomiyaki-mix, a savory Japanese style pancake mix, in our hospital. In addition to our 8 cases, the databases of MEDLINE and ICHUSHI were systematically searched for patients with oral mite anaphylaxis in Japan. Thirty-six patients including our 8 cases with oral mite anaphylaxis were identified. Thirty-four out of 36 cases (94%) ingested okonomiyaki or takoyaki, prepared at home using okonomiyaki-mix or takoyaki-mix which was previously opened and stored for months at ambient temperature. Microscopic examination of culprit mixes of 16 cases including our 1 case revealed contamination of mites such as Dermatophagoides farina (Der f) (5 cases), Tyrophagus putrescentiae (Tyr p) (4 cases), and Dermatophagoides pteronyssinus (Der p) (3 cases). The specific IgE to each mite is generally upregulated in these patients. Especially, the titers of specific IgE to Der p and Der f were more than class 2 in all cases. Mite-contaminated flavored flour is the major cause of oral mite anaphylaxis in Japan. © 2014 Japanese Society of Allergology.
The role of mites in insect-fungus associations
R. W. Hofstetter; J. C. Moser
2014-01-01
The interactions among insects, mites, and fungi are diverse and complex but poorly understood in most cases. Associations among insects, mites, and fungi span an almost incomprehensible array of ecological interactions and evolutionary histories. Insects and mites often share habitats and resources and thus interact within communities. Many mites and insects rely on...
Maria J. Lombardero; Matthew P. Ayres; Richard W. Hofstetter; John C. Moser; Kier D. Lepzig
2003-01-01
Phoretic mites of bark beetles are classic examples of commensal ectosymbionts. However, many such mites appear to have mutualisms with fungi that could themselves interact with beetles. We tested for indirect effects of phoretic mites on Dendroctonus frontalis, which auacks and kills pine trees in North America. Tarsonemus mites...
Abundances and host relationships of chigger mites in Yunnan Province, China.
Zhan, Y-Z; Guo, X-G; Speakman, J R; Zuo, X-H; Wu, D; Wang, Q-H; Yang, Z-H
2013-06-01
This paper reports on ectoparasitic chigger mites found on small mammals in Yunnan Province, southwest China. Data were accumulated from 19 investigation sites (counties) between 2001 and 2009. A total of 10 222 small mammal hosts were captured and identified; these represented 62 species, 34 genera and 11 families in five orders. From the body surfaces of these 10 222 hosts, a total of 92 990 chigger mites were collected and identified microscopically. These represented 224 species, 22 genera and three subfamilies in the family Trombiculidae (Trombidiformes). Small mammals were commonly found to be infested by chigger mites and most host species harboured several species of mite. The species diversity of chigger mites in Yunnan was much higher than diversities reported previously in other provinces of China and in other countries. A single species of rodent, Eothenomys miletus (Rodentia: Cricetidae), carried 111 species of chigger mite, thus demonstrating the highest species diversity and heaviest mite infestation of all recorded hosts. This diversity is exceptional compared with that of other ectoparasites. Of the total 224 mite species, 21 species accounted for 82.2% of all mites counted. Two species acting as major vectors for scrub typhus (tsutsugamushi disease), Leptotrombidium scutellare and Leptotrombidium deliense, were identified as the dominant mite species in this sample. In addition to these two major vectors, 12 potential or suspected vector species were found. Most species of chigger mite had a wide range of hosts and low host specificity. For example, L. scutellare parasitized 30 species of host. The low host specificity of chigger mites may increase their probability of encountering humans, as well as their transmission of scrub typhus among different hosts. Hierarchical clustering analysis showed that similarities between different chigger mite communities on the 18 main species of small mammal host did not accord with the taxonomic affinity of the hosts. This suggests that the distribution of chigger mites may be strongly influenced by the environment in which hosts live. © 2012 The Royal Entomological Society.
The Role of Dust Mites in Allergy.
Miller, Jeffrey D
2018-06-23
House dust mites are an unsurpassed cause of atopic sensitization and allergic illness throughout the world. The major allergenic dust mites Dermatophagoides pteronyssinus, Dermatophagoides farinae, Euroglyphus maynei, and Blomia tropicalis are eight-legged members of the Arachnid class. Their approximately 3-month lifespan comprises egg, larval, protonymph, tritonymph, and adult stages, with adults, about one fourth to one third of a millimeter in size, being at the threshold of visibility. The geographic and seasonal distributions of dust mites are determined by their need for adequate humidity, while their distribution within substrates is further determined by their avoidance of light. By contacting the epithelium of the eyes, nose, lower airways, skin, and gut, the allergen-containing particles of dust mites can induce sensitization and atopic symptoms in those organs. Various mite allergens, contained primarily in mite fecal particles but also in shed mite exoskeletons and decaying mite body fragments, have properties that include proteolytic activity, homology with the lipopolysaccharide-binding component of Toll-like receptor 4, homology with other invertebrate tropomyosins, and chitin-cleaving and chitin-binding activity. Mite proteases have direct epithelial effects including the breaching of tight junctions and the stimulation of protease-activated receptors, the latter inducing pruritus, epithelial dysfunction, and cytokine release. Other components, including chitin, unmethylated mite and bacterial DNA, and endotoxin, activate pattern recognition receptors of the innate immune system and act as adjuvants promoting sensitization to mite and other allergens. Clinical conditions resulting from mite sensitization and exposure include rhinitis, sinusitis, conjunctivitis, asthma, and atopic dermatitis. Systemic allergy symptoms can also occur from the ingestion of cross-reacting invertebrates, such as shrimp or snail, or from the accidental ingestion of mite-contaminated foods. Beyond their direct importance as a major allergen source, an understanding of dust mites leads to insights into the nature of atopy and of allergic sensitization in general.
Are humans the initial source of canine mange?
Andriantsoanirina, Valérie; Fang, Fang; Ariey, Frédéric; Izri, Arezki; Foulet, Françoise; Botterel, Françoise; Bernigaud, Charlotte; Chosidow, Olivier; Huang, Weiyi; Guillot, Jacques; Durand, Rémy
2016-03-25
Scabies, or mange as it is called in animals, is an ectoparasitic contagious infestation caused by the mite Sarcoptes scabiei. Sarcoptic mange is an important veterinary disease leading to significant morbidity and mortality in wild and domestic animals. A widely accepted hypothesis, though never substantiated by factual data, suggests that humans were the initial source of the animal contamination. In this study we performed phylogenetic analyses of populations of S. scabiei from humans and from canids to validate or not the hypothesis of a human origin of the mites infecting domestic dogs. Mites from dogs and foxes were obtained from three French sites and from other countries. A part of cytochrome c oxidase subunit 1 (cox1) gene was amplified and directly sequenced. Other sequences corresponding to mites from humans, raccoon dogs, foxes, jackal and dogs from various geographical areas were retrieved from GenBank. Phylogenetic analyses were performed using the Otodectes cynotis cox1 sequence as outgroup. Maximum Likelihood and Bayesian Inference analysis approaches were used. To visualize the relationship between the haplotypes, a median joining haplotype network was constructed using Network v4.6 according to host. Twenty-one haplotypes were observed among mites collected from five different host species, including humans and canids from nine geographical areas. The phylogenetic trees based on Maximum Likelihood and Bayesian Inference analyses showed similar topologies with few differences in node support values. The results were not consistent with a human origin of S. scabiei mites in dogs and, on the contrary, did not exclude the opposite hypothesis of a host switch from dogs to humans. Phylogenetic relatedness may have an impact in terms of epidemiological control strategy. Our results and other recent studies suggest to re-evaluate the level of transmission between domestic dogs and humans.
Kamler, Martin; Nesvorna, Marta; Stara, Jitka; Erban, Tomas; Hubert, Jan
2016-05-01
The parasitic mite Varroa destructor is a major pest of the western honeybee, Apis mellifera. The development of acaricide resistance in Varroa populations is a global issue. Discriminating concentrations of acaricides are widely used to detect pest resistance. Two methods, using either glass vials or paraffin capsules, are used to screen for Varroa resistance to various acaricides. We found the glass vial method to be useless for testing Varroa resistance to acaridices, so we developed a polypropylene vial bioassay. This method was tested on tau-fluvalinate-, acrinathrin-, and amitraz-resistant mite populations from three apiaries in Czechia. Acetone was used as a control and technical grade acaricide compounds diluted in acetone were applied to the polypropylene vials. The solutions were spread on the vial surface by rolling the vial, and were then evaporated. Freshly collected Varroa females were placed in the vials and the mortality of the exposed mites was measured after 24 h. The Varroa populations differed in mortality between the apiaries and the tested compounds. Mites from the Kyvalka site were resistant to acrinathrin, tau-fluvalinate, and amitraz, while mites from the Postrizin site were susceptible to all three acaricides. In Prelovice apiary, the mites were susceptible to acrinathrin and amitraz, but not to tau-fluvalinate. The calculated discriminating concentrations for tau-fluvalinate, acrinathrin, and amitraz were 0.66, 0.26 and 0.19 µg/mL, respectively. These results indicate that polyproplyne vial tests can be used to determine discriminating concentrations for the early detection of acaricide resistant Varroa. Finally, multiple-resistance in Kyvalka may indicate metabolic resistance.
Homma, R; Ando, T; Miyahara, A; Kimura, H; Ito, G; Uesato, N; Ino, Y; Iwaki, M
1994-12-01
We have examined the antigenic relationship between the house dust mite Dermatophagoides farinae and the predacious mite Phytoseiulus persimilis. Immunoblotting analysis demonstrated that there was a very weak antigenic cross-reactivity between these different suborder of mites but that this cross-reactivity was not attributed to D. farinaes major allergen's, Der fI and Der fII. These results suggest that P. persimilis might scarcely provoke allergic symptoms in patients sensitized to house dust mites.
Tsuruda, Jennifer M; Harris, Jeffrey W; Bourgeois, Lanie; Danka, Robert G; Hunt, Greg J
2012-01-01
Varroa mites (V. destructor) are a major threat to honey bees (Apis melilfera) and beekeeping worldwide and likely lead to colony decline if colonies are not treated. Most treatments involve chemical control of the mites; however, Varroa has evolved resistance to many of these miticides, leaving beekeepers with a limited number of alternatives. A non-chemical control method is highly desirable for numerous reasons including lack of chemical residues and decreased likelihood of resistance. Varroa sensitive hygiene behavior is one of two behaviors identified that are most important for controlling the growth of Varroa populations in bee hives. To identify genes influencing this trait, a study was conducted to map quantitative trait loci (QTL). Individual workers of a backcross family were observed and evaluated for their VSH behavior in a mite-infested observation hive. Bees that uncapped or removed pupae were identified. The genotypes for 1,340 informative single nucleotide polymorphisms were used to construct a high-resolution genetic map and interval mapping was used to analyze the association of the genotypes with the performance of Varroa sensitive hygiene. We identified one major QTL on chromosome 9 (LOD score = 3.21) and a suggestive QTL on chromosome 1 (LOD = 1.95). The QTL confidence interval on chromosome 9 contains the gene 'no receptor potential A' and a dopamine receptor. 'No receptor potential A' is involved in vision and olfaction in Drosophila, and dopamine signaling has been previously shown to be required for aversive olfactory learning in honey bees, which is probably necessary for identifying mites within brood cells. Further studies on these candidate genes may allow for breeding bees with this trait using marker-assisted selection.
Napier, F. E.; Shearer, M. A.; Temple, D. M.
1990-01-01
1. The effects of nedocromil sodium on antigen-induced release of sulphidopeptide-leukotrienes and histamine from passively sensitized fragments of human lung, and on antigen-induced contraction of sensitized strips of human lung parenchyma and bronchus, have been studied. 2. Nedocromil sodium 0.1 and 1 microM inhibited leukotriene release from fragments of human lung by 30% and 38% respectively, and histamine release by 43% for both concentrations, but 10 microM was ineffective. The lung fragments, which were passively sensitized to house dust mite, Dermataphagoides pteronyssinus, in control experiments released leukotrienes (6.58 +/- 0.12 nmol equiv. leukotriene C4 per g, n = 6) and histamine (10.3 +/- 1.8 of total tissue histamine, n = 5) when challenged with house dust mite extract. 3. Isolated strips of human lung parenchyma, passively sensitized to D. pteronyssinus, contracted when treated with house dust mite extract to a mean value of 40% of the maximal histamine response for each strip. Nedocromil sodium 0.1 and 1 microM inhibited these contractions by 50% and 70% of the control response, but 10 microM had no inhibitory effect. 4. Isolated rings from human bronchus, also passively sensitized to D. pteronyssinus, contracted when treated with house dust mite extract to a mean value of 86% of the maximal histamine response. Nedocromil sodium 1 microM, but not 0.1 or 10 microM, inhibited contractions by 48% of the control response. 5. The therapeutic effects of nedocromil sodium in allergic asthma may depend, partly, on its inhibition of antigen-induced release of leukotrienes and histamine in human lung and its consequent inhibition of antigen-induced contractions of parenchymal and bronchial tissue. PMID:1696152
Kim, Soon-Ii; Kim, Hyun-Kyung; Koh, Young-Yull; Clark, J Marshall; Ahn, Young-Joon
2006-08-01
The toxicity of formulations of oil of cassia, Cinnamomum cassia Blume, (20 and 50 g L(-1) sprays and 100% oil-based fumigant) to adult Dermatophagoides farinae Hughes and D. pteronyssinus Trouessart was examined using contact and vapour-phase toxicity bioassays. Results were compared with the lethal activity of three commercial acaricides: benzyl benzoate, dibutyl phthalate and diethyl-m-toluamide (deet). The contact toxicity of cassia oil to both dust mite species was comparable with that of benzyl benzoate but was higher than that of the other two acaricides. Sprays containing 20 and 50 g L(-1) cassia oil were effective against both mite species when applied to fabric, glass, paper, plastic, tin or wood substrates. Applications of the 50 g L(-1) spray to different space volumes and surface areas determined that 50-60 mg of cassia oil was needed to control dust mites in 3.4 m(3) or in 1 m(2). In tests with fumigant devices, toxicity varied according to the thickness of non-woven fabric covering the device, the exposure time, the number of fumigant devices used and the volume of the space sprayed. Fumigant toxicity to adult D. pteronyssinus was more pronounced with devices enclosed in thinner (40 microm) versus thicker (45 or 50 microm) non-woven fabric covers. A single fumigant device with a 40 microm thick non-woven fabric cover resulted in substantial control in a space of 0.05 m(3) but exhibited only moderate to weak control in spaces >or= 0.097 m(3) at 4 days after application. Two fumigant devices gave 88% mortality in a space of 1.73 m(3). Cassia oil applied as sprays or in fumigant devices appears to provide effective protection of humans from house dust mites.
Tsuruda, Jennifer M.; Harris, Jeffrey W.; Bourgeois, Lanie; Danka, Robert G.; Hunt, Greg J.
2012-01-01
Varroa mites (V. destructor) are a major threat to honey bees (Apis melilfera) and beekeeping worldwide and likely lead to colony decline if colonies are not treated. Most treatments involve chemical control of the mites; however, Varroa has evolved resistance to many of these miticides, leaving beekeepers with a limited number of alternatives. A non-chemical control method is highly desirable for numerous reasons including lack of chemical residues and decreased likelihood of resistance. Varroa sensitive hygiene behavior is one of two behaviors identified that are most important for controlling the growth of Varroa populations in bee hives. To identify genes influencing this trait, a study was conducted to map quantitative trait loci (QTL). Individual workers of a backcross family were observed and evaluated for their VSH behavior in a mite-infested observation hive. Bees that uncapped or removed pupae were identified. The genotypes for 1,340 informative single nucleotide polymorphisms were used to construct a high-resolution genetic map and interval mapping was used to analyze the association of the genotypes with the performance of Varroa sensitive hygiene. We identified one major QTL on chromosome 9 (LOD score = 3.21) and a suggestive QTL on chromosome 1 (LOD = 1.95). The QTL confidence interval on chromosome 9 contains the gene ‘no receptor potential A’ and a dopamine receptor. ‘No receptor potential A’ is involved in vision and olfaction in Drosophila, and dopamine signaling has been previously shown to be required for aversive olfactory learning in honey bees, which is probably necessary for identifying mites within brood cells. Further studies on these candidate genes may allow for breeding bees with this trait using marker-assisted selection. PMID:23133626
Martin, C D; Mullens, B A
2012-09-01
Hen housing (cage or cage-free) did not impact overall abundances of northern fowl mites, Ornithonyssus sylviarum (Canestrini & Fanzago) (Acari: Macronyssidae), or chicken body lice, Menacanthus stramineus (Nitzsch) (Phthiraptera: Menoponidae). Cage-free hens received a dustbox with sand plus diatomaceous earth (DE), kaolin clay or sulphur. Weekly use varied from none to 100% of hens; 73% of hens used the dustbox at least once. Ectoparasite populations on dustbathing hens (users) were compared with those on non-user cage-free and caged hens. All materials reduced ectoparasites on user hens by 80-100% after 1 week of dustbox use. Diatomaceous earth and kaolin failed to reduce ectoparasites on non-user hens, and ectoparasites on user hens recovered after dustbox removal. A sulphur dustbox eliminated mites from all hens (including non-users) within 2-4 weeks. Residual sulphur controlled mites until the end of the experiment (up to 9 weeks), even after the dustbox was removed. Louse populations on hens using the sulphur dustbox were reduced in 1-2 weeks. Residual sulphur effects were less evident in lice, but the use of a sulphur dustbox by a higher proportion of hens extended louse control to all hens. This is the first experimental study to show that bird dustbathing in naturally and widely available dust materials (particularly kaolin) can suppress ectoparasites and thus the behaviour is probably adaptive. © 2012 The Authors. Medical and Veterinary Entomology © 2012 The Royal Entomological Society.
Tachi, Fuyuki; Osakabe, Masahiro
2012-12-01
Ambient ultraviolet-B (UVB) radiation impacts plant-dwelling arthropods including herbivorous and predatory mites. However, the effects of UVB on prey-predator systems, such as that between the herbivorous spider mite and predatory phytoseiid mite, are poorly understood. A comparative study was conducted to determine the vulnerability and behavioral responses of these mites to ultraviolet (UV) radiation. First, we analyzed dose-response (cumulative irradiance-mortality) curves for the eggs of phytoseiid mites (Neoseiulus californicus, Neoseiulus womersleyi, and Phytoseiulus persimilis) and the spider mite (Tetranychus urticae) to UVB radiation from a UV lamp. This indicated that the phytoseiid mites were more vulnerable than the spider mite, although P. persimilis was slightly more tolerant than the other two phytoseiid mites. Second, we compared the avoidance behavior of adult female N. californicus and two spider mite species (T. urticae, a lower leaf surface user; Panonychus citri, an upper leaf surface user) in response to solar UV and visible light. N. californicus actively avoided both types of radiation, whereas P. citri showed only minimal avoidance behavior. T. urticae actively avoided UV as well as N. californicus but exhibited a slow response to visible light as well as P. citri. Such variation in vulnerability and avoidance behavior accounts for differences in the species adaptations to solar UVB radiation. This may be the primary factor determining habitat use among these mites on host plant leaves, subsequently affecting accessibility by predators and also intraguild competition.
Roda, A; Nachman, G; Hosein, F; Rodrigues, J C V; Peña, J E
2012-08-01
The red palm mite (Raoiella indica), an invasive pest of coconut, entered the Western hemisphere in 2004, then rapidly spread through the Caribbean and into Florida, USA. Developing effective sampling methods may aid in the timely detection of the pest in a new area. Studies were conducted to provide and compare intra tree spatial distribution of red palm mite populations on coconut in two different geographical areas, Trinidad and Puerto Rico, recently invaded by the mite. The middle stratum of a palm hosted significantly more mites than fronds from the upper or lower canopy and fronds from the lower stratum, on average, had significantly fewer mites than the two other strata. The mite populations did not vary within a frond. Mite densities on the top section of the pinna had significantly lower mite densities than the two other sections, which were not significantly different from each other. In order to improve future sampling plans for the red palm mite, the data was used to estimate the variance components associated with the various levels of the hierarchical sampling design. Additionally, presence-absence data were used to investigate the probability of no mites being present in a pinna section randomly chosen from a frond inhabited by mites at a certain density. Our results show that the most precise density estimate at the plantation level is to sample one pinna section per tree from as many trees as possible.
NASA Astrophysics Data System (ADS)
Tachi, Fuyuki; Osakabe, Masahiro
2012-12-01
Ambient ultraviolet-B (UVB) radiation impacts plant-dwelling arthropods including herbivorous and predatory mites. However, the effects of UVB on prey-predator systems, such as that between the herbivorous spider mite and predatory phytoseiid mite, are poorly understood. A comparative study was conducted to determine the vulnerability and behavioral responses of these mites to ultraviolet (UV) radiation. First, we analyzed dose-response (cumulative irradiance-mortality) curves for the eggs of phytoseiid mites ( Neoseiulus californicus, Neoseiulus womersleyi, and Phytoseiulus persimilis) and the spider mite ( Tetranychus urticae) to UVB radiation from a UV lamp. This indicated that the phytoseiid mites were more vulnerable than the spider mite, although P. persimilis was slightly more tolerant than the other two phytoseiid mites. Second, we compared the avoidance behavior of adult female N. californicus and two spider mite species ( T. urticae, a lower leaf surface user; Panonychus citri, an upper leaf surface user) in response to solar UV and visible light. N. californicus actively avoided both types of radiation, whereas P. citri showed only minimal avoidance behavior. T. urticae actively avoided UV as well as N. californicus but exhibited a slow response to visible light as well as P. citri. Such variation in vulnerability and avoidance behavior accounts for differences in the species adaptations to solar UVB radiation. This may be the primary factor determining habitat use among these mites on host plant leaves, subsequently affecting accessibility by predators and also intraguild competition.
Integration of multiple intraguild predator cues for oviposition decisions by a predatory mite
Walzer, Andreas; Schausberger, Peter
2012-01-01
In mutual intraguild predation (IGP), the role of individual guild members is strongly context dependent and, during ontogeny, can shift from an intraguild (IG) prey to a food competitor or to an IG predator. Consequently, recognition of an offspring's predator is more complex for IG than classic prey females. Thus, IG prey females should be able to modulate their oviposition decisions by integrating multiple IG predator cues and by experience. Using a guild of plant-inhabiting predatory mites sharing the spider mite Tetranychus urticae as prey and passing through ontogenetic role shifts in mutual IGP, we assessed the effects of single and combined direct cues of the IG predator Amblyseius andersoni (eggs and traces left by a female on the substrate) on prey patch selection and oviposition behaviour of naïve and IG predator-experienced IG prey females of Phytoseiulus persimilis. The IG prey females preferentially resided in patches without predator cues when the alternative patch contained traces of predator females or the cue combination. Preferential egg placement in patches without predator cues was only apparent in the choice situation with the cue combination. Experience increased the responsiveness of females exposed to the IG predator cue combination, indicated by immediate selection of the prey patch without predator cues and almost perfect oviposition avoidance in patches with the cue combination. We argue that the evolution of the ability of IG prey females to evaluate offspring's IGP risk accurately is driven by the irreversibility of oviposition and the functionally complex relationships between predator guild members. PMID:23264692
John C. Moser
1976-01-01
Sticky traps caught large numbers of mites that adhere tightly or ride in protected places on attacking southern pine beetles and tetreived seom of the mites that are loosely attached. Of the 2539 beetles surveyed, only 39.6% carried mites. Seven species of phoretic mites were found; thw two most common, Tarsonemus krantzi and Trichouropoda...
Ectoparasitic mites and their Drosophila hosts.
Perez-Leanos, Alejandra; Loustalot-Laclette, Mariana Ramirez; Nazario-Yepiz, Nestor; Markow, Therese Ann
2017-01-02
Only two parasite interactions are known for Drosophila to date: Allantonematid nematodes associated with mycophagous Drosophilids and the ectoparasitic mite Macrocheles subbadius with the Sonoran Desert endemic Drosophila nigrospiracula. Unlike the nematode-Drosophila association, breadth of mite parasitism on Drosophila species is unknown. As M. subbadius is a generalist, parasitism of additional Drosophilids is expected. We determined the extent and distribution of mite parasitism in nature Drosophilids collected in Mexico and southern California. Thirteen additional species of Drosophilids were infested. Interestingly, 10 belong to the repleta species group of the subgenus Drosophila, despite the fact that the majority of flies collected were of the subgenus Sophophora. In all cases but 2, the associated mites were M. subbadius. Drosophila hexastigma was found to have not only M. subbadius, but another Mesostigmatid mite, Paragarmania bakeri, as well. One D. hydei was also found to have a mite from genus Lasioseius attached. In both choice and no-choice experiments, mites were more attracted to repleta group species than to Sophophoran. The extent of mite parasitism clearly is much broader than previously reported and suggests a host bias mediated either by mite preference and/or some mechanism of resistance in particular Drosophilid lineages.
Ectoparasitic mites and their Drosophila hosts
Perez-Leanos, Alejandra; Loustalot-Laclette, Mariana Ramirez; Nazario-Yepiz, Nestor; Markow, Therese Ann
2017-01-01
ABSTRACT Only two parasite interactions are known for Drosophila to date: Allantonematid nematodes associated with mycophagous Drosophilids and the ectoparasitic mite Macrocheles subbadius with the Sonoran Desert endemic Drosophila nigrospiracula. Unlike the nematode-Drosophila association, breadth of mite parasitism on Drosophila species is unknown. As M. subbadius is a generalist, parasitism of additional Drosophilids is expected. We determined the extent and distribution of mite parasitism in nature Drosophilids collected in Mexico and southern California. Thirteen additional species of Drosophilids were infested. Interestingly, 10 belong to the repleta species group of the subgenus Drosophila, despite the fact that the majority of flies collected were of the subgenus Sophophora. In all cases but 2, the associated mites were M. subbadius. Drosophila hexastigma was found to have not only M. subbadius, but another Mesostigmatid mite, Paragarmania bakeri, as well. One D. hydei was also found to have a mite from genus Lasioseius attached. In both choice and no-choice experiments, mites were more attracted to repleta group species than to Sophophoran. The extent of mite parasitism clearly is much broader than previously reported and suggests a host bias mediated either by mite preference and/or some mechanism of resistance in particular Drosophilid lineages. PMID:27540774
Liu, Jie; Gao, Meixiang; Liu, Jinwen; Guo, Yuxi; Liu, Dong; Zhu, Xinyu; Wu, Donghui
2018-01-01
Spatial distribution is an important topic in community ecology and a key to understanding the structure and dynamics of populations and communities. However, the available information related to the spatial patterns of soil mite communities in long-term tillage agroecosystems remains insufficient. In this study, we examined the spatial patterns of soil mite communities to explain the spatial relationships between soil mite communities and soil parameters. Soil fauna were sampled three times (August, September and October 2015) at 121 locations arranged regularly within a 400 m × 400 m monitoring plot. Additionally, we estimated the physical and chemical parameters of the same sampling locations. The distribution patterns of the soil mite community and the edaphic parameters were analyzed using a range of geostatistical tools. Moran's I coefficient showed that, during each sampling period, the total abundance of the soil mite communities and the abundance of the dominant mite populations were spatially autocorrelated. The soil mite communities demonstrated clear patchy distribution patterns within the study plot. These patterns were sampling period-specific. Cross-semivariograms showed both negative and positive cross-correlations between soil mite communities and environmental factors. Mantel tests showed a significant and positive relationship between soil mite community and soil organic matter and soil pH only in August. This study demonstrated that in the cornfield, the soil mite distribution exhibited strong or moderate spatial dependence, and the mites formed patches with sizes less than one hundred meters. In addition, in this long-term tillage agroecosystem, soil factors had less influence on the observed pattern of soil mite communities. Further experiments that take into account human activity and spatial factors should be performed to study the factors that drive the spatial distribution of soil microarthropods.
Santamaria, M E; Diaz, Isabel; Martinez, Manuel
2018-01-01
Under natural conditions, plants suffer different stresses simultaneously or in a sequential way. At present, the combined effect of biotic and abiotic stressors is one of the most important threats to crop production. Understanding how plants deal with the panoply of potential stresses affecting them is crucial to develop biotechnological tools to protect plants. As well as for drought stress, the economic importance of the spider mite on agriculture is expected to increase due to climate change. Barley is a host of the polyphagous spider mite Tetranychus urticae and drought produces important yield losses. To obtain insights on the combined effect of drought and mite stresses on the defensive response of this cereal, we have analyzed the transcriptomic responses of barley plants subjected to dehydration (water-deficit) treatment, spider mite attack, or to the combined dehydration-spider mite stress. The expression patterns of mite-induced responsive genes included many jasmonic acid responsive genes and were quickly induced. In contrast, genes related to dehydration tolerance were later up-regulated. Besides, a higher up-regulation of mite-induced defenses was showed by the combined dehydration and mite treatment than by the individual mite stress. On the other hand, the performance of the mite in dehydration stressed and well-watered plants was tested. Despite the stronger defensive response in plants that suffer dehydration and mite stresses, the spider mite demonstrates a better performance under dehydration condition than in well-watered plants. These results highlight the complexity of the regulatory events leading to the response to a combination of stresses and emphasize the difficulties to predict their consequences on crop production.
Ardestani, Masoud M; Ebadi, Rahim; Tahmasbi, Gholamhossein
2011-07-01
The frequency of damaged Varroa destructor Anderson and Trueman (Mesostigmata: Varroidae) found on the bottom board of hives of the honey bee, Apis mellifera L. (Hymenoptera: Apidae) has been used as an indicator of the degree of tolerance or resistance of honey bee colonies against mites. However, it is not clear that this measure is adequate. These injuries should be separated from regular dorsal dimples that have a developmental origin. To investigate damage to Varroa mites and regular dorsal dimples, 32 honey bee (A. mellifera) colonies were selected from four Iranian provinces: Isfahan, Markazi, Qazvin, and Tehran. These colonies were part of the National Honey bee Breeding Program that resulted in province-specific races. In April, Varroa mites were collected from heavily infested colonies and used to infest the 32 experimental colonies. In August, 20 of these colonies were selected (five colonies from each province). Adult bees from these colonies were placed in cages and after introducing mites, damaged mites were collected from each cage every day. The average percentage of injured mites ranged from 0.6 to 3.0% in four provinces. The results did not show any statistical differences between the colonies within provinces for injuries to mites, but there were some differences among province-specific lines. Two kinds of injuries to the mites were observed: injuries to legs and pedipalps, and injuries to other parts of the body. There were also some regular dorsal dimples on dorsal idiosoma of the mites that were placed in categories separate from mites damaged by bees. This type of classification helps identifying damage to mites and comparing them with developmental origin symptoms, and may provide criteria for selecting bees tolerant or resistant to this mite.
Santamaria, M. E.; Diaz, Isabel; Martinez, Manuel
2018-01-01
Under natural conditions, plants suffer different stresses simultaneously or in a sequential way. At present, the combined effect of biotic and abiotic stressors is one of the most important threats to crop production. Understanding how plants deal with the panoply of potential stresses affecting them is crucial to develop biotechnological tools to protect plants. As well as for drought stress, the economic importance of the spider mite on agriculture is expected to increase due to climate change. Barley is a host of the polyphagous spider mite Tetranychus urticae and drought produces important yield losses. To obtain insights on the combined effect of drought and mite stresses on the defensive response of this cereal, we have analyzed the transcriptomic responses of barley plants subjected to dehydration (water-deficit) treatment, spider mite attack, or to the combined dehydration-spider mite stress. The expression patterns of mite-induced responsive genes included many jasmonic acid responsive genes and were quickly induced. In contrast, genes related to dehydration tolerance were later up-regulated. Besides, a higher up-regulation of mite-induced defenses was showed by the combined dehydration and mite treatment than by the individual mite stress. On the other hand, the performance of the mite in dehydration stressed and well-watered plants was tested. Despite the stronger defensive response in plants that suffer dehydration and mite stresses, the spider mite demonstrates a better performance under dehydration condition than in well-watered plants. These results highlight the complexity of the regulatory events leading to the response to a combination of stresses and emphasize the difficulties to predict their consequences on crop production. PMID:29681917
Peng, Pei-Ying; Guo, Xian-Guo; Ren, Tian-Guang; Song, Wen-Yu
2015-08-01
This paper studied the species diversity and fauna distribution of chigger mites on small mammals in Yunnan province, southwest Yunnan. In total, 120,138 individuals of chigger mites were collected from 13,760 individual small mammals, and these mites were identified as comprising two families, 26 genera, and 274 species. Of the five zoogeographical subregions, the mite species diversity in subregions I and II was higher than that in subregions III, IV, and V. Four mite species (Leptotrombidium scutellare, Leptotrombidium sinicum, Leptotrombidium deliense, and Helenicula simena) were the most dominant species in the whole province. Several vector species of chigger mites co-existed in Yunnan, and L. deliense (a main vector of scrub typhus in China) was mainly distributed in subregions IV and V with lower latitude and average altitude whereas L. scutellare (also a main vector in China) was mainly distributed in subregions I, II, and III with higher latitude and average altitude. Some geographically widely distributed mite species were also the mites with wide host ranges and low host specificity. The dominant mite species and their clustering tendency in the dendrogram of hierarchical clustering analysis were highly in accordance with the zoogeographical divisions. The species diversity of chigger mites showed a parabolic tendency from the low altitude (<500 m) to the high altitude (>3,500 m) along the vertical gradients and reached the highest value in the middle altitude regions in 2,000-2,500 m. The highest species diversity of the mites and their small mammal hosts happened in the regions around the Hengduan Mountains, which is a hotspot of biodiversity in Asia continent. The host and its sample size, geographical scope, landscape, topography, and some other factors comprehensively influence the species diversity and faunal distribution of chigger mites. A systematic field investigation with a wide geographical scope and large host sample is strongly recommended in the fauna study of chigger mites and other ectoparasites.
Environmental Impacts of Arthropod Biological Control: An Ecological Perspective
USDA-ARS?s Scientific Manuscript database
Arthropod biological control has long been used against insect and mite pests in agriculture production systems, forests, and other natural ecosystems. Depending on the methods of deploying natural enemies and the type of control agents (herbivores, parasitoids, and/or predators), potential environ...
Evaluation of home allergen sampling devices.
Sercombe, J K; Liu-Brennan, D; Garcia, M L; Tovey, E R
2005-04-01
Simple, inexpensive methods of sampling from allergen reservoirs are necessary for large-scale studies or low-cost householder-operated allergen measurement. We tested two commercial devices: the Indoor Biotechnologies Mitest Dust Collector and the Drager Bio-Check Allergen Control; two devices of our own design: the Electrostatic Cloth Sampler (ECS) and the Press Tape Sampler (PTS); and a Vacuum Sampler as used in many allergen studies (our Reference Method). Devices were used to collect dust mite allergen samples from 16 domestic carpets. Results were examined for correlations between the sampling methods. With mite allergen concentration expressed as microg/g, the Mitest, the ECS and the PTS correlated with the Reference Method but not with each other. When mite allergen concentration was expressed as microg/m2 the Mitest and the ECS correlated with the Reference Method but the PTS did not. In the high allergen conditions of this study, the Drager Bio-Check did not relate to any methods. The Mitest Dust Collector, the ECS and the PTS show performance consistent with the Reference Method. Many techniques can be used to collect dust mite allergen samples. More investigation is needed to prove any method as superior for estimating allergen exposure.
Wu, Jiang-Li; Zhou, Chun-Xue; Wu, Peng-Jie; Xu, Jin; Guo, Yue-Qin; Xue, Fei; Getachew, Awraris; Xu, Shu-Fa
2017-01-01
The mite Varroa destructor is currently the greatest threat to apiculture as it is causing a global decrease in honey bee colonies. However, it rarely causes serious damage to its native hosts, the eastern honey bees Apis cerana. To better understand the mechanism of resistance of A. cerana against the V. destructor mite, we profiled the metabolic changes that occur in the honey bee brain during V. destructor infestation. Brain samples were collected from infested and control honey bees and then measured using an untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based global metabolomics method, in which 7918 and 7462 ions in ESI+ and ESI- mode, respectively, were successfully identified. Multivariate statistical analyses were applied, and 64 dysregulated metabolites, including fatty acids, amino acids, carboxylic acid, and phospholipids, amongst others, were identified. Pathway analysis further revealed that linoleic acid metabolism; propanoate metabolism; and glycine, serine, and threonine metabolism were acutely perturbed. The data obtained in this study offer insight into the defense mechanisms of A. cerana against V. destructor mites and provide a better method for understanding the synergistic effects of parasitism on honey bee colonies.
Wu, Peng-Jie; Xu, Jin; Guo, Yue-Qin; Xue, Fei; Getachew, Awraris; Xu, Shu-Fa
2017-01-01
The mite Varroa destructor is currently the greatest threat to apiculture as it is causing a global decrease in honey bee colonies. However, it rarely causes serious damage to its native hosts, the eastern honey bees Apis cerana. To better understand the mechanism of resistance of A. cerana against the V. destructor mite, we profiled the metabolic changes that occur in the honey bee brain during V. destructor infestation. Brain samples were collected from infested and control honey bees and then measured using an untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based global metabolomics method, in which 7918 and 7462 ions in ESI+ and ESI- mode, respectively, were successfully identified. Multivariate statistical analyses were applied, and 64 dysregulated metabolites, including fatty acids, amino acids, carboxylic acid, and phospholipids, amongst others, were identified. Pathway analysis further revealed that linoleic acid metabolism; propanoate metabolism; and glycine, serine, and threonine metabolism were acutely perturbed. The data obtained in this study offer insight into the defense mechanisms of A. cerana against V. destructor mites and provide a better method for understanding the synergistic effects of parasitism on honey bee colonies. PMID:28403242
Chaaban, Sameh Ben; Chermiti, Brahim; Kreiter, Serge
2011-01-01
The date palm mite, Oligonychus afrasiaticus (McGregor) (Acari: Tetranychidae), is a serious pest of palm date fruits. Life cycle, fecundity, and longevity of this mite were studied on fruits of four date palms, Phoenix dactylifera L. (Arecales: Arecaceae)(varieties: Deglet Noor, Alig, Kentichi, and Besser), under laboratory conditions at 27 = 1 °C, 60 ± 10% RH. Total development time of immature female was shorter on Deglet Noor fruits than on the other cultivars. O. afrasiaticus on Deglet Noor had the highest total fecundity per female, while low fecundity values occurred on Besser. The comparison of intrinsic rates of natural increase (rm), net reproductive rates (Ro), and the survival rates of immature stage of O. afrasiaticus on the host plants suggests that O. afrasiaticus performs better on Deglet Noor fruits. The mite feeding on Alig showed the lowest intrinsic rate of natural population increase (rm = 0.103 day 1). The estimation of difference in susceptibility of cultivars to O. afrasiaticus is crucial for developing efficient pest control programs. Indeed, less susceptible cultivars can either be left unsprayed or sprayed at low threshold. PMID:22233420
Dong, Xiaofeng; Kashio, Makiko; Peng, Guangda; Wang, Xinyue; Tominaga, Makoto
2016-01-01
We identified and characterized the TRPA1 channel of Tropilaelaps mercedesae (TmTRPA1), one of two major species of honeybee ectoparasitic mite. Three TmTRPA1 isoforms with unique N-terminal sequences were activated by heat, and the isoform highly expressed in the mite's front legs, TmTRPA1b, was also activated by 27 plant-derived compounds including electrophiles. This suggests that the heat- and electrophile-dependent gating mechanisms as nocisensitive TRPA1 channel are well conserved between arthropod species. Intriguingly, one TmTRPA1 isoform, TmTRPA1a, was activated by only six compounds compared with two other isoforms, demonstrating that the N-terminal sequences are critical determinants for the chemical sensitivity. This is the first example of isoform-specific modulation of chemical sensitivity of TRPA1 channel in one species. α-terpineol showed repellent activity towards T. mercedesae in a laboratory assay and repressed T. mercedesae entry for reproduction into the brood cells with fifth instar larvae in hives. Thus, α-terpineol could be used as the potential compound to control two major honeybee ectoparasitic mites, T. mercedesae and Varroa destructor, in the apiculture industry. PMID:27307515
Mösges, R; Ritter, B; Kayoko, G; Allekotte, S
2010-10-01
Lais® allergoid tablets contain allergens that are modified by carbamylation. Due to their modified chemical structure, they are suitable for sublingual immunotherapy (SLIT) (13, 16, 17, 24). Based on their small molecule size of 12 to 40 kDa, they can be easily absorbed via the oral mucosa (1). In this review, we studied the efficacy of SLIT with carbamylated monomeric allergoid tablets in the treatment of grass pollen- and dust mite-induced allergic rhinoconjunctivitis on the basis of symptom and medication score improvements. Following a selective internet and databank search, six trials-some placebo-controlled-regarding the treatment of grass pollen- (n = 266) and dust mite-induced (n = 241) allergic rhinoconjunctivitis were used to draw conclusions regarding the clinical efficacy of allergoid tablets. The primary endpoints in these trials were decreases in the need for allergy medications and/or reductions in the occurrence of rhinoconjunctivitis symptoms. Data was recorded from patient diaries regarding their symptoms and medications used and conclusions were then drawn about the effectiveness and tolerabieity of Lais® tablets. The average improvement in symptom score in three trials of grass pollen allergy treatment was 34% in comparison to the placebo group. The treatment of dust mite-induced rhinoconjunctivitis produced an average symptom score improvement of 22% compared to the placebo or control groups. The intake of symptomatic rescue medication during allergoid tablet therapy declined. Treatment of grass pollen allergies and dust mite-induced rhinoconjunctivitis showed an average medication score improvement of 49% and 24%, respectively. Few side effects were documented in the trials and predominantly local effects were observed. Severe systemic side effects did not occur. On the basis of the trial results summarized in this review, we suggest that SLIT using Lais® sublingual tablets is an effective and well-tolerated form of treatment.
George, D R; Smith, T J; Shiel, R S; Sparagano, O A E; Guy, J H
2009-05-12
This paper describes a series of experiments to examine the mode of action and toxicity of three plant essential oils (thyme, manuka and pennyroyal) to the poultry red mite, Dermanyssus gallinae (De Geer), a serious ectoparasitic pest of laying hens. All three oils were found to be toxic to D. gallinae in laboratory tests with LC(50), LC(90) and LC(99) values below 0.05, 0.20 and 0.30mg/cm(3), respectively, suggesting that these products may make for effective acaricides against this pest. Further experiments demonstrated that when mites were exposed to only the vapour phase of the essential oil without contact with the oil itself, mortality was consistently higher in closed arenas than in arenas open to the surrounding environment, or in control arenas. This suggests that all three essential oils were toxic to D. gallinae by fumigant action. In addition, in an experiment where mites were allowed contact with the essential oil in either open or closed arenas, mortality was always reduced in the open arenas where this was comparable to control mortality for thyme and pennyroyal essential oil treatments. This supports the findings of the previous experiment and also suggests that, with the possible exception of manuka, the selected essential oils were not toxic to D. gallinae on contact. Statistical comparisons were made between the toxicity of the selected essential oils to D. gallinae in the current work and in a previous study conducted in the same laboratory. The results demonstrated considerable variation in LC(50), LC(90) and LC(99) values. Since both the essential oils and the mites were obtained from identical sources in the two studies, it is hypothesized that this variation resulted from the use of different 'batches' of essential oil, which could have varied in chemistry and hence acaricidal activity.
Plant insects and mites uptake double-stranded RNA upon its exogenous application on tomato leaves.
Gogoi, Anupam; Sarmah, Nomi; Kaldis, Athanasios; Perdikis, Dionysios; Voloudakis, Andreas
2017-12-01
Exogenously applied double-stranded RNA (dsRNA) molecules onto tomato leaves, moved rapidly from local to systemic leaves and were uptaken by agricultural pests namely aphids, whiteflies and mites. Four small interfering RNAs, deriving from the applied dsRNA, were molecularly detected in plants, aphids and mites but not in whiteflies. Double-stranded RNA (dsRNA) acts as the elicitor molecule of the RNA silencing (RNA interference, RNAi), the endogenous and evolutionary conserved surveillance system present in all eukaryotes. DsRNAs and their subsequent degradation products, namely the small interfering RNAs (siRNAs), act in a sequence-specific manner to control gene expression. Exogenous application of dsRNAs onto plants elicits resistance against plant viruses. In the present work, exogenously applied dsRNA molecules, derived from Zucchini yellow mosaic virus (ZYMV) HC-Pro region, onto tomato plants were detected in aphids (Myzus persicae), whiteflies (Trialeurodes vaporariorum) and mites (Tetranychus urticae) that were fed on treated as well as systemic tomato leaves. Furthermore, four siRNAs, deriving from the dsRNA applied, were detected in tomato and the agricultural pests fed on treated tomato plants. More specifically, dsRNA was detected in agricultural pests at 3 and 10 dpt (days post treatment) in dsRNA-treated leaves and at 14 dpt in systemic leaves. In addition, using stem-loop RT-PCR, siRNAs were detected in agricultural pests at 3 and 10 dpt in aphids and mites. Surprisingly, in whiteflies carrying the applied dsRNA, siRNAs were not molecularly detected. Our results showed that, upon exogenous application of dsRNAs molecules, these moved rapidly within tomato and were uptaken by agricultural pests fed on treated tomato. As a result, this non-transgenic method has the potential to control important crop pests via RNA silencing of vital genes of the respective pests.
[Life cycle of Proprioseiopsis cannaensis (Muma) (Acari: Phytoseiidae) on different types of food].
Bellini, Marcos R; de Araujo, Ralf V; Silva, Edmilson S; de Moraes, Gilberto J; Berti Filho, Evoneo
2010-01-01
Several annual and perennial crops are severely attacked by mites from the family Eriophyidae, Tenuipalpidae and Tetranychidae. A suitable alternative commonly used in several countries for the control of these pest mites involve the use of predatory mites in the family Phytoseiidae. The phytoseiid fauna in the Brazilian natural vegetation is very rich, but nothing is known about the biology of most of these species, as it is the case with Proprioseiopsis cannaensis (Muma). The objective of this study was to determine biological parameters of P. cannaensis fed on pest mite species such as Phyllocoptruta oleivora (Ashmead) (Eriophyidae), Brevipalpus phoenicis (Geijskes) (Tenuipalpidae) and Tetranychus urticae Koch (Tetranychidae). To enable a comparison for different food sources, one of the treatments consisted of pollen from Typha angustifolia L. The study was conducted in the laboratory at 25+/-1 masculineC, 80+/-10% RH and Photophase of 12 h. Proprioseiopsis cannaensis did not complete the development when it was fed on P. oleivora. Its fecundity was very low with all other food sources (maximum of 3.3 eggs/female with pollen of T. angustifolia). The values of r m for P. cannaensis were -0.05, -0.09 and 0.002 when fed on B. phoenicis, T. urticae and pollen respectively. The unsatisfactory results from the four types of food sources do not permit us to conclude that P. cannaensis utilizes mites from the family Eriophyidae, Tenuipalpidae, Tetranychidae or pollen from different plant species as principal sources of food in nature.
Seasonal exposure to drought and air warming affects soil Collembola and mites.
Xu, Guo-Liang; Kuster, Thomas M; Günthardt-Goerg, Madeleine S; Dobbertin, Matthias; Li, Mai-He
2012-01-01
Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment) at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4 °C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length ≤ 0.20 mm) increased, but the percentage of large mites (body length >0.40 mm) decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type.
Seasonal Exposure to Drought and Air Warming Affects Soil Collembola and Mites
Xu, Guo-Liang; Kuster, Thomas M.; Günthardt-Goerg, Madeleine S.; Dobbertin, Matthias; Li, Mai-He
2012-01-01
Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment) at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4°C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length 0.20 mm) increased, but the percentage of large mites (body length >0.40 mm) decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type. PMID:22905210
Zhang, Xiaona; Jin, Daochao; Zou, Xiao; Guo, Jianjun
2016-05-01
The two-spotted mite, Tetranychus urticae Koch, is one of the most serious mite pests of crops throughout the world. Biocontrol of the mite with fungal agents has long been paid much attention because of the development of insecticide resistance and the severe restriction of chemical pesticides. In this study, the efficacy of submerged conidia of the entomopathogenic fungus Isaria cateniannulata strain 08XS-1 against T. urticae eggs, larvae and female adults was evaluated at different temperatures and humidity in the laboratory and under field conditions. The results showed that a suspension of 2 × 10(7) submerged conidia mL(-1) caused the highest mortalities of mite eggs, larvae and females (100, 100 and 70% respectively) at 100% relative humidity and 25 °C in the laboratory. In the field experiments against the mites, a suspension of 2 × 10(8) submerged conidia mL(-1) achieved significant efficiency - the relative control effects were 88.6, 83.8 and 83%, respectively, in cucumber, eggplant and bean fields after 10 days of treatment. The results suggest that the I. cateniannulata strain 08XS-1 is a potential fungal agent, with acceptable production cost of conidia, against T. urticae in the field in an area such as southwestern China with higher air humidity. © 2016 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Abdel-Salam, Bahaa K A
2012-01-01
Mites are the main factor involved in respiratory disorder. Acarus siro is the most allergenic species of mite detected in the samples collected from flour mills. This work aimed to ameliorate the A. siro faeces allergenic disorder by garlic extract. Albino experimental rats were classified into three groups (native, inhaled and treated). Mites extract, ELISA and leukocytes differential counts techniques were used. The data obtained showed that the highest densities of A. siro in the samples collected from flour mills in El-Minia governorate during the period of February 2009 to January 2010 were recorded during the spring and autumn seasons. In addition, significantly higher serum levels of INF-γ and IgE were found in rats treated with faeces than the other groups, especially the garlic-treated group. In contrast, IL-4 was lower in faeces-treated rats than the others; however, the native group had the highest level of IL-4. The leukocytes differential count showed that eosinophil and basophil percentages in faeces-inhaled group are higher than both the native group and the garlic-treated group. Statistical analysis of data showed significant difference between garlic-treated group and either control or faeces-treated group (P<0.05). The population of A. siro mites peaked in spring and autumn. The immunological disorder caused by repeated exposure to A. siro faeces might be modulated by garlic. Copyright © 2010 SEICAP. Published by Elsevier Espana. All rights reserved.
Gadino, Angela N; Walton, Vaughn M; Dreves, Amy J
2011-06-01
Laboratory bioassays were conducted to evaluate the effects of six vineyard pesticides on Typhlodromus pyri Scheuten (Acari: Phytoseiidae), a key predator of the mite Calepitrimerus vitis Nalepa (Acari: Eriophyoidae), in Pacific coastal vineyards. Materials tested were whey powder, 25% boscalid + 13% pyraclostrobin (Pristine), 40% myclobutanil (Rally), micronized sulfur (92% WP), 75% ethylene bisdithiocarbamate (mancozeb; Manzate), and 91.2% paraffinic oil (JMS Stylet), all applied at three concentrations. Pesticide dilutions were directly sprayed onto T. pyri adult females and juveniles, and each treatment was assessed to determine effects on direct mortality and fecundity. Five of the six pesticides tested resulted in < 50% mortality to adult and juvenile T. pyri for all concentrations 7 d after treatment. Paraffinic oil treatments displayed direct mortality > 50% for adult and juvenile assays and resulted in significantly higher mortality. Sublethal effects were more pronounced than acute pesticide toxicity, particularly in juvenile mite bioassays. Significant decreases in fecundity were detected in the sulfur and mancozeb treatments compared with the control in juvenile tests. The relative percentage of fecundity reduction for juvenile mites was highest when applying mancozeb (> 70%), sulfur (> 25%), or myclobutanil (> 20%). Adult mites displayed the greatest reductions in fecundity from applications of paraffinic oil (> 20%) or mancozeb (> 15%) treatments. Boscalid (+ pyraclostrobin) and whey displayed the least effect on fecundity across all bioassays. These results can be used to develop management guidelines in vineyard pest management practices to help conserve and enhance predatory mite populations.
Chemurot, Moses; Akol, Anne M; Masembe, Charles; de Smet, Lina; Descamps, Tine; de Graaf, Dirk C
2016-04-01
Varroa mites are ecto-parasites of honeybees and are a threat to the beekeeping industry. We identified the haplotype of Varroa mites and evaluated potential factors that influence their prevalence and infestation levels in the eastern and western highland agro-ecological zones of Uganda. This was done by collecting samples of adult worker bees between December 2014 and September 2015 in two sampling moments. Samples of bees were screened for Varroa using the ethanol wash method and the mites were identified by molecular techniques. All DNA sequences obtained from sampled mite populations in the two zones were 100 % identical to the Korean Haplotype (AF106899). Mean mite prevalence in the apiaries was 40 and 53 % for the western and eastern zones, respectively, during the first sampling. Over the second sampling, mean mite prevalence increased considerably in the western (59 %) but not in the eastern (51 %) zone. Factors that were associated with Varroa mite infestation levels include altitude, nature of apiary slope and apiary management practices during the first sampling. Our results further showed that Varroa mites were spreading from lower to higher elevations. Feral colonies were also infested with Varroa mites at infestation levels not significantly different from those in managed colonies. Colony productivity and strength were not correlated to mite infestation levels. We recommend a long-term Varroa mite monitoring strategy in areas of varying landscape and land use factors for a clear understanding of possible changes in mite infestation levels among African honeybees for informed decision making.
The effect of sub-floor heating on house-dust-mite populations on floors and in furniture.
de Boer, Rob
2003-01-01
It is well known that dehydrating conditions for house dust mites can be created by simply raising the temperature, causing loss of body water and eventually death. Thus, it can be expected that conditions for dust mites are less favourable on floors supplied with sub-floor heating. This was examined in a study of 16 houses with sub-floor heating and 21 without. The pattern of changes in air humidity and temperature on the floors was investigated and compared to known data of the tolerance of dust mites. Also the resident mite populations were compared. Floors with sub-floor heating had, on average, fewer mites, but the difference with unheated floors was small. It was remarkable that mite numbers were also lower in upholstered furniture. Another important observation was that some houses with sub-floor heating had high mite numbers, indicating that this type of heating is compatible with a thriving mite population. Temperature and humidity conditions of heated floors may allow mites not only to survive, but also to remain active in winter. A moderate increase in temperature, a moderate decrease in (absolute) air humidity, or a combination of both, will suffice to keep the humidity all winter below the Critical Equilibrium Humidity, the level of air humidity that is critical for mite growth and reproduction, hence for allergen production. However, it is argued that measures to suppress allergen production by house dust mites are likely to be far more effective if taken in summer rather than in winter.
Dynamics of house dust mite transfer in modern clothing fabrics.
Clarke, David; Burke, Daniel; Gormally, Michael; Byrne, Miriam
2015-04-01
Clothing is largely presumed as being the mechanism by which house dust mites are distributed among locations in homes, yet little research to date has investigated the capacity with which various clothing fabric types serve as vectors for their accumulation and dispersal. Although previous research has indicated that car seats provide a habitat for mite populations, dynamics involved in the transfer of mites to clothing via car seat material is still unknown. To investigate the dynamics involved in the transfer of house dust mites from car seat material to modern clothing fabrics. A total of 480 samples of car seat material were seeded with mites and subjected to contact with plain woven cotton, denim, and fleece. Contact forces equivalent to the mass of a typical adult and child were administered for different durations of contact. Mean transfer efficiencies of mites from car seat material to receiving clothing fabrics ranged from 7.2% to 19.1%. Fabric type, mite condition (live or dead), and the force applied all revealed a significant effect (P < .001 for each variable) on the transfer efficiency of house dust mites from seeded material to receiving fabrics, whereas duration of contact revealed no effect (P = .20). In particular, mean numbers of mites transferred to fleece (compared with denim and plain woven cotton) were greater for each treatment. These findings indicate that clothing type can have important implications for the colonization of other biotopes by house dust mites, with potential for affecting an individuals' personal exposure to dust mite allergens. Copyright © 2015 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Bahreini, Rassol; Currie, Robert W
2015-07-01
The objective of this study was to assess the effects of honey bees (Apis mellifera L.) with different grooming ability and queen pheromone status on mortality rates of Varroa mites (Varroa destructor Anderson and Trueman), mite damage, and mortality rates of honey bees. Twenty-four small queenless colonies containing either stock selected for high rates of mite removal (n = 12) or unselected stock (n = 12) were maintained under constant darkness at 5 °C. Colonies were randomly assigned to be treated with one of three queen pheromone status treatments: (1) caged, mated queen, (2) a synthetic queen mandibular pheromone lure (QMP), or (3) queenless with no queen substitute. The results showed overall mite mortality rate was greater in stock selected for grooming than in unselected stock. There was a short term transitory increase in bee mortality rates in selected stock when compared to unselected stock. The presence of queen pheromone from either caged, mated queens or QMP enhanced mite removal from clusters of bees relative to queenless colonies over short periods of time and increased the variation in mite mortality over time relative to colonies without queen pheromone, but did not affect the proportion of damaged mites. The effects of source of bees on mite damage varied with time but damage to mites was not reliably related to mite mortality. In conclusion, this study showed differential mite removal of different stocks was possible under low temperature. Queen status should be considered when designing experiments using bioassays for grooming response.
Calderón, Rafael A; Zamora, Luis G; Van Veen, Johan W; Quesada, Mariela V
2007-01-01
Colony infestation by the parasitic mite, Varroa destructor is one of the most serious problems for beekeeping worldwide. In order to reproduce varroa females, enter worker or drone brood shortly before the cell is sealed. To test the hypothesis that, due to the preference of mites to invade drone brood to reproduce, a high proportion of the mite reproduction should occur in drone cells, a comparative study of mite reproductive rate in worker and drone brood of Africanized honey bees (AHB) was done for 370 mites. After determining the number, developmental stage and sex of the offspring in worker cells, the foundress female mite was immediately transferred into an uninfested drone cell. Mite fertility in single infested worker and drone brood cells was 76.5 and 79.3%, respectively. There was no difference between the groups (X(2)= 0.78, P = 0.37). However, one of the most significant differences in mite reproduction was the higher percentage of mites producing viable offspring (cells that contain one live adult male and at least one adult female mite) in drone cells (38.1%) compared to worker cells (13.8%) (X(2)= 55.4, P < 0.01). Furthermore, a high level of immature offspring occurred in worker cells and not in drone cells (X(2)= 69, P < 0.01). Although no differences were found in the percentage of non-reproducing mites, more than 74% (n = 85) of the mites that did not reproduce in worker brood, produced offspring when they were transferred to drone brood.
Properties and actions of bridged diphenyl acaricides.
March, R B
1976-01-01
The properties and actions of the bridged diphenyl acaricides are discussed. These pesticides, which are more or less structurally related to DDT, were the first of the specific acaricides to be developed. They exhibit remarkable properties of specificity, being primarily toxic to phytophagous mites but of very low toxicity to most nontarget species, including insects, fish, birds, and mammals. Although many important facets of their broad mode of action are understood, virtually nothing is known of their primary mode of action or the underlying bases of their specificities. In most ways they are model compounds for integrated control and pest management activities and thus merit greater attention than they have received to elucidate the fundamentals underlying their unusual properties and actions. PMID:789071
Rueda-Ramírez, Diana; Varela, Amanda; Moraes, Gilberto J De
2016-06-24
Soil mites of the Ascidae sensu Lindquist & Evans (1965) are poorly known in Colombia. This group, presently represented by the families Ascidae sensu stricto, Blattisociidae and Melicharidae, contains species known to prey on small arthropods and nematodes, thus having the potential to be used for the control of soil pests. The aim of this study was to identify species of this group from a fragment of Andean forest and a nearby grassland at the municipality of La Calera, Cundinamarca Department, Colombia, at about 2800 m of elevation. Nine species were found, including five new species, namely Gamasellodes andinus sp. nov., Gamasellodes intermedius sp. nov., Protogamasellus caleraensis sp. nov., Cheiroseius mesae sp. nov. and Proctolaelaps colombianus sp. nov. Morphological characterisation of all the species and relevant soil characteristics of the sites where the mites were collected are presented.
Ecology of Varroa destructor, the Major Ectoparasite of the Western Honey Bee, Apis mellifera.
Nazzi, Francesco; Le Conte, Yves
2016-01-01
Varroa destructor is the most important ectoparasite of Apis mellifera. This review addresses the interactions between the varroa mite, its environment, and the honey bee host, mediated by an impressive number of cues and signals, including semiochemicals regulating crucial steps of the mite's life cycle. Although mechanical stimuli, temperature, and humidity play an important role, chemical communication is the most important channel. Kairomones are used at all stages of the mite's life cycle, and the exploitation of bees' brood pheromones is particularly significant given these compounds function as primer and releaser signals that regulate the social organization of the honey bee colony. V. destructor is a major problem for apiculture, and the search for novel control methods is an essential task for researchers. A detailed study of the ecological interactions of V. destructor is a prerequisite for creating strategies to sustainably manage the parasite.
Recer, G M
2004-02-01
Sensitization and exposure to dust-mite antigens are causative factors in the development and exacerbation of asthma. Impermeable bedding encasements are considered a first-line treatment to reduce dust-mite antigen exposure in clinical asthma-management guidelines. Public-health recommendations for environmental asthma treatments should be based on the weight of evidence supporting the reliability of environmental interventions so that uncertainties regarding their effectiveness can be accurately communicated to patients, and so that limited public-health resources can be most effectively utilized. To evaluate the strength of a clinical-trial evidence supporting the efficacy of bedding encasements as an asthma treatment. A narrative review was conducted of all clinical trials involving bedding encasement for the treatment of asthma. Collective statistical analyses were also performed to characterize the quantitative effect of bedding encasement on dust-mite allergen exposure and bronchial hyper-responsiveness (BHR) when used by asthma patients. Over 30 clinical trials were reviewed. Of those studies reporting adequate exposure and BHR results, four reported significant reduction in dust-mite allergen exposure and concomitant BHR reduction in active-treatment groups using bedding encasements. In 10 studies, mite-allergen exposure was reportedly decreased during the study, but BHR was not changed in the active-treatment group or was reduced to a similar degree in the active-treatment and control groups. Five other studies reported a lack of significant effect of the intervention on exposure and BHR. Collective paired analyses found that the effect of bedding encasement on allergen exposure and BHR tended toward only a modest, non-significant improvement. Collectively, effects of bedding encasement on BHR and dust-mite allergen exposure were modestly correlated only when the baseline exposure was above 2 microg Type 1 antigen per gram settled dust. Although bedding encasement might be an effective asthma treatment under some conditions, when implemented in clinical trials by asthma patients, its effectiveness is inconsistent and appears to be, at best, modest. Therefore, its significance as a reliable asthma management modality for any individual asthma patient is uncertain. Where resource constraints are significant, targeting the use of variably effective interventions such as bedding encasements toward those patient sub-populations most likely to derive substantial benefit may gain the largest net public-health benefit.
[Dust mites as occupational allergens in two bakeries of La Habana, Cuba].
Fernández-Duro, Bárbara I; Alvarez-Castelló, Mirta; Mateo-Morejón, Mayteé; Luis-Rodríguez, Bárbara; Labrada-Rosado, Alexis
2014-01-01
Occupational allergies are becoming more frequent. The allergens present in the working environment of bakeries, such as mites, are not well identified despite being known risk factors of respiratory diseases. To isolate and identify the species of mites present in two bakeries in La Habana, Cuba, with high sensitization of mites on their workers. A descriptive study was done in which samples were taken by tripled from potential sources of mites in bakeries -as flourin use, spills of wheat on the floors, wheat flour stored in sealed bags, sugar, yeast, granulated baker- that were processed, according to the method of flotation of Hart and Fain (1987) to isolate, identify and count the mites present. Mites were found in samples of wheat flourin use, spills on the floorsand in the wheat flourstored in sealed bags. The species identified were Blomia tropicalis (70%), Tyrophagus putrescentiae (20%) and to a lesser degree Dermatophagoides pteronyssinus and Dermatophagoides siboney. There is a high exposure to house dust mites, particularly to store mites, which constitute a risk factor of occupational allergy to consider.
House-dust mites in our homes are a contamination from outdoor sources.
Hallas, Thorkil E
2010-05-01
Avoidance advices for house-dust mite sensitized persons are currently based upon the idea, that the mites (Dermatophagoides spp.) are part of the indoor fauna. A closer look at development stages in the house-dust samples shows, however, that only the mites' active stages are present there and that the stages between them, the inactive moulting stages, are absent. Therefore the mites probably do not carry out their life cycles in our dwellings, but are more likely contaminations from the open. Findings of low level concentrations can be explained by mites coming from outdoors and sedimented in accordance with known physical laws. The occasional finding of higher concentrations is the result of synchronized populations of the mites developing outdoors and being passively transported into our homes by wind and dust. The hypothesis explains why we find mites in our homes but nonetheless have no effect of avoidance measures. The verification of the entire hypothesis or part of it may have great impact on the management of the disease house-dust mite allergy.
Azandémè-Hounmalon, Ginette Y.; Fellous, Simon; Kreiter, Serge; Fiaboe, Komi K. M.; Subramanian, Sevgan; Kungu, Miriam; Martin, Thibaud
2014-01-01
Studying distribution is necessary to understand and manage the dynamics of species with spatially structured populations. Here we studied the distribution in Tetranychus evansi and T. urticae, two mite pests of tomato, in the scope of evaluating factors that can influence the effectiveness of Integrated Pest Management strategies. We found greater positive density-dependent distribution with T. evansi than T. urticae when assayed on single, detached tomato leaves. Indeed, T. evansi distribution among leaflets increased with initial population density while it was high even at low T. urticae densities. Intensity and rate of damage to whole plants was higher with T. evansi than T. urticae. We further studied the circadian migration of T. evansi within plant. When T. evansi density was high the distribution behavior peaked between 8 am and 3 pm and between 8 pm and 3 am local time of Kenya. Over 24 h the total number of mites ascending and descending was always similar and close to the total population size. The gregarious behavior of T. evansi combined with its rapid population growth rate, may explain why few tomato plants can be severely damaged by T. evansi and how suddenly all the crop can be highly infested. However the localisation and elimination of the first infested plants damaged by T. evansi could reduce the risk of outbreaks in the entire crop. These findings suggest also that an acaricide treated net placed on the first infested plants could be very effective to control T. evansi. Moreover circadian migration would therefore accentuate the efficiency of an acaricide treated net covering the infested plants. PMID:24743580
What's eating you? Cheyletiella mites.
Reynolds, H Harris; Elston, Dirk M
2017-05-01
Cheyletiella are nonburrowing mites commonly found on rabbits, dogs, and cats. The mites have been known to cause disease in humans, ranging from mild dermatitis to more severe illness with systemic symptoms. Because these mites do not complete any part of their life cycle in humans, diagnosis can be challenging. Herein, we review various clinical presentations associated with Cheyletiella mites as well as diagnostic techniques and treatment options for both humans and animals.
Morsy, T A; Mazyad, S A; Younis, M S
1999-08-01
The study of the role played by birds in the distribution of various bacterial, viral and parasitic infections is increasingly from year to year, taking into consideration the flying ability of birds and their migration for food and vital processes. Two of the common Egyptian resident birds, house sparrow (Passer d. niloticus) and laughing dove (Streptopelia s. aegyptiaca) were chosen to study their mite fauna. The overall mite index was 4.74 on the house sparrow and 7.22 on the laughing dove. As to mites, a total of 31 species belonging to 23 genera, 17 families and 3 suborders were collected. The common mites on both types of birds were 22 species. Three species only on house sparrow, and six species only on laughing dove. The house sparrow served host for 25 mite species and the laughing dove served host for 28 mite species. The infestation rates of mites on house sparrow ranged between 1.11% to 23.33% and 0.21% to 34.54% in Sharkia and Qalyobia governorates respectively. For laughing dove, the mite infestation rates ranged between 0.82% to 50% and 3.45% to 55.17% for both governorates respectively. Some of the collected mites have medical and/or veterinary importance. The whole results were discussed.
Ataide, Livia M S; Pappas, Maria L; Schimmel, Bernardus C J; Lopez-Orenes, Antonio; Alba, Juan M; Duarte, Marcus V A; Pallini, Angelo; Schuurink, Robert C; Kant, Merijn R
2016-11-01
Inducible anti-herbivore defenses in plants are predominantly regulated by jasmonic acid (JA). On tomato plants, most genotypes of the herbivorous generalist spider mite Tetranychus urticae induce JA defenses and perform poorly on it, whereas the Solanaceae specialist Tetranychus evansi, who suppresses JA defenses, performs well on it. We asked to which extent these spider mites and the predatory mite Phytoseiulus longipes preying on these spider mites eggs are affected by induced JA-defenses. By artificially inducing the JA-response of the tomato JA-biosynthesis mutant def-1 using exogenous JA and isoleucine (Ile), we first established the relationship between endogenous JA-Ile-levels and the reproductive performance of spider mites. For both mite species we observed that they produced more eggs when levels of JA-Ile were low. Subsequently, we allowed predatory mites to prey on spider mite-eggs derived from wild-type tomato plants, def-1 and JA-Ile-treated def-1 and observed that they preferred, and consumed more, eggs produced on tomato plants with weak JA defenses. However, predatory mite oviposition was similar across treatments. Our results show that induced JA-responses negatively affect spider mite performance, but positively affect the survival of their offspring by constraining egg-predation. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Geostatistics as a tool to study mite dispersion in physic nut plantations.
Rosado, J F; Picanço, M C; Sarmento, R A; Pereira, R M; Pedro-Neto, M; Galdino, T V S; de Sousa Saraiva, A; Erasmo, E A L
2015-08-01
Spatial distribution studies in pest management identify the locations where pest attacks on crops are most severe, enabling us to understand and predict the movement of such pests. Studies on the spatial distribution of two mite species, however, are rather scarce. The mites Polyphagotarsonemus latus and Tetranychus bastosi are the major pests affecting physic nut plantations (Jatropha curcas). Therefore, the objective of this study was to measure the spatial distributions of P. latus and T. bastosi in the physic nut plantations. Mite densities were monitored over 2 years in two different plantations. Sample locations were georeferenced. The experimental data were analyzed using geostatistical analyses. The total mite density was found to be higher when only one species was present (T. bastosi). When both the mite species were found in the same plantation, their peak densities occurred at different times. These mites, however, exhibited uniform spatial distribution when found at extreme densities (low or high). However, the mites showed an aggregated distribution in intermediate densities. Mite spatial distribution models were isotropic. Mite colonization commenced at the periphery of the areas under study, whereas the high-density patches extended until they reached 30 m in diameter. This has not been reported for J. curcas plants before.
Bakolis, I; Heinrich, J; Zock, J P; Norbäck, D; Svanes, C; Chen, C M; Accordini, S; Verlato, G; Olivieri, M; Jarvis, D
2015-06-01
Exposure to house dust has been associated with asthma in adults, and this is commonly interpreted as a direct immunologic response to dust-mite allergens in those who are IgE sensitized to house dust-mite. Mattress house dust-mite concentrations were measured in a population-based sample of 2890 adults aged between 27 and 56 years living in 22 centers in 10 countries. Generalized linear mixed models were employed to explore the association of respiratory symptoms with house dust-mite concentrations, adjusting for individual and household confounders. There was no overall association of respiratory outcomes with measured house dust-mite concentrations, even in those who reported they had symptoms on exposure to dust and those who had physician-diagnosed asthma. However, there was a positive association of high serum specific IgE levels to HDM (>3.5 kUA /l) with mattress house dust-mite concentrations and a negative association of sensitization to cat with increasing house dust-mite concentrations. In conclusion, there was no evidence that respiratory symptoms in adults were associated with exposure to house dust-mite allergen in the mattress, but an association of house mite with strong sensitization was observed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Xue, Xiao-Feng; Guo, Jing-Feng; Dong, Yan; Hong, Xiao-Yue; Shao, Renfu
2016-01-01
The subclass Acari (mites and ticks) comprises two super-orders: Acariformes and Parasitiformes. Most species of the Parasitiformes known retained the ancestral pattern of mitochondrial (mt) gene arrangement of arthropods, and their mt tRNAs have the typical cloverleaf structure. All of the species of the Acariformes known, however, have rearranged mt genomes and truncated mt tRNAs. We sequenced the mt genomes of two species of Eriophyoidea: Phyllocoptes taishanensis and Epitrimerus sabinae. The mt genomes of P. taishanensis and E. sabinae are 13,475 bp and 13,531 bp, respectively, are circular and contain the 37 genes typical of animals; most mt tRNAs are highly truncated in both mites. On the other hand, these two eriophyoid mites have the least rearranged mt genomes seen in the Acariformes. Comparison between eriophyoid mites and other Aacariformes mites showed that: 1) the most recent common ancestor of Acariformes mites retained the ancestral pattern of mt gene arrangement of arthropods with slight modifications; 2) truncation of tRNAs for cysteine, phenylalanine and histidine occurred once in the most recent common ancestor of Acariformes mites whereas truncation of other tRNAs occurred multiple times; and 3) the placement of eriophyoid mites in the order Trombidiformes needs to be reviewed. PMID:26732998
Challenges for developing biopesticides against Varroa destructor (Mesostigamata: Varroidae)
USDA-ARS?s Scientific Manuscript database
Control of the major pest of apiculture, the ectoparasitic mite Varroa destructor, using biopesticides would resolve many of the problems experienced with other forms of control, such as chemical control, hive manipulation or selection of resistant strains. Several research groups have developed and...
Fombong, Ayuka T.; Yusuf, Abdullahi A.; Pirk, Christian W. W.; Stuhl, Charles
2017-01-01
Varroa destructor is an ectoparasitic pest of honeybees, and a threat to the survival of the apiculture industry. Several studies have shown that unlike European honeybees, African honeybee populations appear to be minimally affected when attacked by this mite. However, little is known about the underlying drivers contributing to survival of African honeybee populations against the mite. We hypothesized that resistant behavioral defenses are responsible for the survival of African honeybees against the ectoparasite. We tested this hypothesis by comparing grooming and hygienic behaviors in the African savannah honeybee Apis mellifera scutellata in Kenya and A. mellifera hybrids of European origin in Florida, USA against the mite. Grooming behavior was assessed by determining adult mite infestation levels, daily mite fall per colony and percentage mite damage (as an indicator of adult grooming rate), while hygienic behavior was assessed by determining the brood removal rate after freeze killing a section of the brood. Our results identified two additional undescribed damaged mite categories along with the six previously known damage categories associated with the grooming behavior of both honeybee subspecies. Adult mite infestation level was approximately three-fold higher in A. mellifera hybrids of European origin than in A. m. scutellata, however, brood removal rate, adult grooming rate and daily natural mite fall were similar in both honeybee subspecies. Unlike A. mellifera hybrids of European origin, adult grooming rate and brood removal rate did not correlate with mite infestation levels on adult worker honeybee of A. m. scutellata though they were more aggressive towards the mites than their European counterparts. Our results provide valuable insights into the tolerance mechanisms that contribute to the survival of A. m. scutellata against the mite. PMID:28622341
Niche Partitioning of Feather Mites within a Seabird Host, Calonectris borealis
Stefan, Laura M.; Gómez-Díaz, Elena; Elguero, Eric; Proctor, Heather C.; McCoy, Karen D.; González-Solís, Jacob
2015-01-01
According to classic niche theory, species can coexist in heterogeneous environments by reducing interspecific competition via niche partitioning, e.g. trophic or spatial partitioning. However, support for the role of competition on niche partitioning remains controversial. Here, we tested for spatial and trophic partitioning in feather mites, a diverse and abundant group of arthropods. We focused on the two dominant mite species, Microspalax brevipes and Zachvatkinia ovata, inhabiting flight feathers of the Cory’s shearwater, Calonectris borealis. We performed mite counts across and within primary and tail feathers on free-living shearwaters breeding on an oceanic island (Gran Canaria, Canary Islands). We then investigated trophic relationships between the two mite species and the host using stable isotope analyses of carbon and nitrogen on mite tissues and potential host food sources. The distribution of the two mite species showed clear spatial segregation among feathers; M. brevipes showed high preference for the central wing primary feathers, whereas Z. ovata was restricted to the two outermost primaries. Morphological differences between M. brevipes and Z. ovata support an adaptive basis for the spatial segregation of the two mite species. However, the two mites overlap in some central primaries and statistical modeling showed that Z. ovata tends to outcompete M. brevipes. Isotopic analyses indicated similar isotopic values for the two mite species and a strong correlation in carbon signatures between mites inhabiting the same individual host suggesting that diet is mainly based on shared host-associated resources. Among the four candidate tissues examined (blood, feather remains, skin remains and preen gland oil), we conclude that the diet is most likely dominated by preen gland oil, while the contribution of exogenous material to mite diets is less marked. Our results indicate that ongoing competition for space and resources plays a central role in structuring feather mite communities. They also illustrate that symbiotic infracommunities are excellent model systems to study trophic ecology, and can improve our understanding of mechanisms of niche differentiation and species coexistence. PMID:26650672
Variability in Population Density of House Dust Mites of Bitlis and Muş, Turkey.
Aykut, M; Erman, O K; Doğan, S
2016-05-01
This study was conducted to investigate the relationship between the number of house dust mites/g dust and different physical and environmental variables. A total of 1,040 house dust samples were collected from houses in Bitlis and Muş Provinces, Turkey, between May 2010 and February 2012. Overall, 751 (72.2%) of dust samples were mite positive. The number of mites/g dust varied between 20 and 1,840 in mite-positive houses. A significant correlation was detected between mean number of mites and altitude of houses, frequency of monthly vacuum cleaning, number of individuals in the household, and relative humidity. No association was found between the number of mites and temperature, type of heating, existence of allergic diseases, age and structure of houses. A maximum number of mites were detected in summer and a minimum number was detected in autumn. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Petanović, Radmila; Kielkiewicz, Malgorzata
2010-07-01
This review is a comprehensive study of recent advances related to cytological, biochemical and physiological changes induced in plants in response to eriophyoid mite attack. It has been shown that responses of host plants to eriophyoids are variable. Most of the variability is due to individual eriophyoid mite-plant interactions. Usually, the direction and intensity of changes in eriophyoid-infested plant organs depend on mite genotype, density, or the feeding period, and are strongly differentiated relative to host plant species, cultivar, age and location. Although the mechanisms of changes elicited by eriophyoid mites within plants are not fully understood, in many cases the qualitative and quantitative biochemical status of mite-infested plants are known to affect the performance of consecutive herbivorous arthropods. In future, elucidation of the pathways from eriophyoid mite damage to plant gene activation will be necessary to clarify plant responses and to explain variation in plant tissue damage at the feeding and adjacent sites.
Bartley, Kathryn; Turnbull, Frank; Wright, Harry W; Huntley, John F; Palarea-Albaladejo, Javier; Nath, Mintu; Nisbet, Alasdair J
2017-09-15
Vaccination is a desirable emerging strategy to combat poultry red mite (PRM), Dermanyssus gallinae. We performed trials, in laying hens in a commercial-style cage facility, to test the vaccine efficacy of a native preparation of soluble mite extract (SME) and of a recombinant antigen cocktail vaccine containing bacterially-expressed versions of the immunogenic SME proteins Deg-SRP-1, Deg-VIT-1 and Deg-PUF-1. Hens (n=384 per group) were injected with either vaccine or adjuvant only (control group) at 12 and 17 weeks of age and then challenged with PRM 10days later. PRM counts were monitored and, at the termination of the challenge period (17 weeks post challenge), average PRM counts in cages containing birds vaccinated with SME were reduced by 78% (p<0.001), compared with those in the adjuvant-only control group. When the trial was repeated using the recombinant antigen cocktail vaccine, no statistically significant differences in mean PRM numbers were observed in cages containing vaccinated or adjuvant-only immunised birds. The roles of antigen-specific antibody levels and duration in providing vaccine-induced and exposure-related protective immunity are discussed. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Peng, Pei-Ying; Guo, Xian-Guo; Ren, Tian-Guang; Song, Wen-Yu; Dong, Wen-Ge; Fan, Rong
2016-09-01
Chigger mites are a large group of arthropods and the larvae of mites are ectoparasites. Some species of ectoparasitic mites (larvae) can be the transmitting vectors of tsutsugamushi disease (scrub typhus). Yunnan Province is located in the southwest of China with complicated topographic landform and high biodiversity, where there are five zoogeographical subregions. Rodents and some other small mammals were trapped and examined for ectoparasitic chigger mites in 29 investigation sites in Yunnan during 2001-2013. From 13,760 individuals and 76 species of small mammal hosts, we collected 274 species of mites, which were identified as comprising 26 genera in two families. The species diversity of chigger mites (274 species) in the present study were not only much higher than that from other provinces of China but also largely exceeded that recorded from other regions and countries in the world. Of the five zoogeographical subregions, both the species diversity and Shannon-Weiner's diversity of mites were the highest in subregion II (southern subregion of Hengduan Mountains) with middle altitudes and middle latitude. Both the species diversity of mites and Shannon-Wiener diversity index showed a parabolic tendency from the low altitude (<500 m) to the high altitude (>3500 m) along the vertical gradients with the peak occurring in the middle-altitude regions (2000-2500 m). Of four dominant hosts, the species richness of mites was highest on Eothenomys miletus (S = 165) and Shannon-Wiener diversity index was highest on Rattus norvegicus (H = 3.13). Along latitude gradients, species richness of chigger mites increased first and then decreased, peaking at 25° to 26° N with 193 mite species. The geographical location, complex topography, and landscape with diverse small mammal hosts in Yunnan Province have contributed to the extremely high species diversity of mites in the province. The large sampling size of small mammal hosts in a wide geographical scope within a long time span also made it possible to have collected so many species of chigger mites.
Macrocyclic lactones in the treatment and control of parasitism in small companion animals.
Nolan, Thomas J; Lok, James B
2012-05-01
Macrocyclic lactones (MLs) have many anti-parasitic applications in small companion animal medicine. They were first developed as chemoprophylactics against heartworm (Dirofilaria immitis) infection to be applied monthly for retroactive killing of third- and fourth-stage larvae. ML-containing products formulated for oral (ivermectin, milbemycin oxime), topical (selamectin, moxidectin) or injectable sustained release (moxidectin, ivermectin) are approved for heartworm prevention in dogs or cats. Clearance of microfilariae and gradual or "soft" killing of adult heartworms constitute increasingly prevalent extra-label uses of MLs against D. immitis. Some commercial ML formulations contain sufficient levels of active ingredient (milbemycin oxime, selamectin, moxidectin) to support additional label claims against gastrointestinal nematode parasites such as hookworms (Ancylostoma spp.) and ascarid round worms (Toxocara spp. and Toxascaris leonina). Beyond these approved applications, safe, extra-label uses of MLs against nematodes parasitizing the urinary tract, such as Capillaria spp., and parasites of the tissues, such as Dipetalonema reconditum, Dirofilaria repens, Thelazia spp. and Spirocerca lupi, in dogs and cats as well as exotic pets have been reported. MLs as a group have intrinsic insecticidal and acaricidal activity, and topical or otic formulations of certain compounds (selamectin, moxidectin, milbemycin oxime or ivermectin) are approved for treatment and control of fleas, certain ixodid ticks, sarcoptiform and demodectic mange mites and psoroptiform ear mites. Extra-label applications of MLs against ectoparasites include notoedric mange mites, dermanyssids such as Ornythonussus bacoti, numerous species of fur mite (e.g. Cheyletiella spp. and Lynxacarus) and trombiculids ("chiggers") in cats, dogs and nontraditional or exotic pets.
Wang, Jian; Huang, Ying; Zhang, Xue-Li; Huang, Xia; Xu, Xiao-Wen; Liang, Fan-Mei
2016-04-01
To study the skin prick test (SPT) reactivity to house dust mite allergens in overweight and normal weight children with allergic asthma before and after standard subcutaneous specific immunotherapy. Two hundred and fifteen children with allergic asthma who had positive SPT responses to Dermatophagoides pteronyssinus (DP) and Dermatophagoides farinae (DF) were enrolled. According to the weight index, they were classified into overweight (n=63) and normal weight groups (n=152). Skin indices (SI) to DP and DF were compared between the two groups at 6 months and 1 year after standard subcutaneous specific immunotherapy. The overweight group had a significantly larger histamine wheal diameter than the normal weight group after controlling the variation in testing time (P<0.05). After controlling the variation in weights, there were significant differences in the SIs to DP and DF before specific immunotherapy and at 6 months and 1 year after specific immunotherapy. At 6 months and 1 year after specific immunotherapy, the SIs to DP and DF were significantly reduced in both groups (P<0.05), and the overweight group had greater decreases in the SIs to DP and DF than the normal weight group. The overweight children with allergic asthma have stronger responses to histamine than the normal weight patients. Specific immunotherapy can reduce the reactivity to dust mite allergens in children with allergic asthma. Within one year after specific immunotherapy, the overweight children with allergic asthma have a significantly greater decrease in the reactivity to dust mite allergens than the normal weight patients.
Abad-Moyano, Raquel; Urbaneja, Alberto; Hoffmann, Daniela; Schausberger, Peter
2010-04-01
The two-spotted spider mite, Tetranychus urticae, is one of the most problematic phytophagous pests in Spanish clementine orchards. The most abundant predatory mites in this ecosystem are Euseius stipulatus, Phytoseiulus persimilis and Neoseiulus californicus. Euseius stipulatus is dominant but poorly adapted to utilize T. urticae as prey. It mainly persists on pollen and citrus red mite, Panonychus citri. A recent study suggested that the more efficacious T. urticae predators P. persimilis and N. californicus are negatively affected by lethal and non-lethal intraguild interactions with E. stipulatus. Here, we investigated the potential of N. californicus and P. persimilis to colonize and thrive on young clementine trees infested by T. urticae in presence and absence of E. stipulatus. Presence of E. stipulatus interfered with establishment and abundance of P. persimilis and negatively affected the efficacy of N. californicus in T. urticae suppression. In contrast, the abundance of E. stipulatus was not affected by introduction of a second predator. Trait-mediated effects of E. stipulatus changing P. persimilis and N. californicus behavior and/or life history were the most likely explanations for these outcomes. We conclude that superiority of E. stipulatus in intraguild interactions may indeed contribute to the currently observed predator species composition and abundance, rendering natural control of T. urticae in Spanish clementine orchards unsatisfactory. Nonetheless, stronger reduction of T. urticae and/or plant damage in the predator combination treatments as compared to E. stipulatus alone indicates the possibility to improve T. urticae control via repeated releases of N. californicus and/or P. persimilis.
Ectoparasitic chigger mites on large oriental vole (Eothenomys miletus) across southwest, China.
Peng, Pei-Ying; Guo, Xian-Guo; Song, Wen-Yu; Hou, Peng; Zou, Yun-Ji; Fan, Rong
2016-02-01
An investigation of chigger mites on the large oriental vole, Eothenomys miletus (Rodentia: Cricetidae), was conducted between 2001 and 2013 at 39 localities across southwest China, and 2463 individuals of the vole hosts were captured and examined, which is a big host sample size. From the body surface of E. miletus, 49,850 individuals of chigger mites were collected, and they were identified as comprising 175 species, 13 genera, and 3 subfamilies in 2 families (Trombiculidae and Leeuwenhoekiidae). The 175 species of chigger mites from such a single rodent species (E. miletus) within a certain region (southwest China) extremely exceeded all the species of chigger mites previously recorded from multiple species of hosts in a wide region or a whole country in some other countries, and this suggests that E. miletus has a great potential to harbor abundant species of chigger mites on its body surface. Of 175 mite species, Leptotrombidium scutellare was the most dominant species, which has been proved as one of the main vectors of scrub typhus and the potential vector of haemorrhagic fever with renal syndrome (HFRS) in China. The patchiness index (m*/m) was used to measure the spatial patterns of the dominant chigger mite species, and all the three dominant mite species (L. scutellare, Leptotrombidium sinicum, and Helenicula simena) showed aggregated distributions among the different host individuals. The coefficient of association (V) was adopted to measure the interspecies interaction between the dominant mite species and a slightly positive association existed between L. scutellare and L. sinicum (V = 0.28, P < 0.01), which implies that these two mite species can co-exist on the same species of the host, E. miletus. The tendency curve of species abundance showed that the number of chigger mite species gradually decreased with the increase of mite individuals, and this revealed that most chigger mite species were rare with very few individuals, but few dominant species had abundant individuals. The species-sample relationship indicated that the number of chigger mite species increased with the increase of the host samples. The results suggest that a big host sample size over a wide realm of geographical regions is needed in the field investigation in order to obtain a true picture of species diversity and species composition.
Aratchige, Nayanie S.; Lesna, Izabela
2007-01-01
Being minute in size, eriophyoid mites can reach places that are small enough to be inaccessible to their predators. The coconut mite, Aceria guerreronis, is a typical example; it finds partial refuge under the perianth of the coconut fruit. However, some predators can move under the perianth of the coconut fruits and attack the coconut mite. In Sri Lanka, the phytoseiid mite Neoseiulus baraki, is the most common predatory mite found in association with the coconut mite. The cross-diameter of this predatory mite is c. 3 times larger than that of the coconut mite. Nevertheless, taking this predator’s flat body and elongated idiosoma into account, it is—relative to many other phytoseiid mites—better able to reach the narrow space under the perianth of infested coconut fruits. On uninfested coconut fruits, however, they are hardly ever observed under the perianth. Prompted by earlier work on the accessibility of tulip bulbs to another eriophyoid mite and its predators, we hypothesized that the structure of the coconut fruit perianth is changed in response to damage by eriophyoid mites and as a result predatory mites are better able to enter under the perianth of infested coconut fruits. This was tested in an experiment where we measured the gap between the rim of the perianth and the coconut fruit surface in three cultivars (‘Sri Lanka Tall’, ‘Sri Lanka Dwarf Green’ and ‘Sri Lanka Dwarf Green × Sri Lanka Tall’ hybrid) that are cultivated extensively in Sri Lanka. It was found that the perianth-fruit gap in uninfested coconut fruits was significantly different between cultivars: the cultivar ‘Sri Lanka Dwarf Green’ with its smaller and more elongated coconut fruits had a larger perianth-fruit gap. In the uninfested coconut fruits this gap was large enough for the coconut mite to creep under the perianth, yet too small for its predator N. baraki. However, when the coconut fruits were infested by coconut mites, the perianth-rim-fruit gap was not different among cultivars and had increased to such an extent that the space under the perianth became accessible to the predatory mites. PMID:17899401
[Animal mite-induced epizoonoses and their significance in dermatology].
Beck, W
1996-10-01
Different mite species may infest humans temporarily; such arthropods should be considered a possible cause of pruritic skin reactions of unclear origin. Pseudo-scabies is a common problem. This self-limiting dermatosis may often be misdiagnosed. Several mite species including Sarcoptes scabiei var. canis, Sarcoptes scabiei var. bovis, Notoedres cati, Cheyletiella yasguri, Cheyletiella blakei, Dermanyssus gallinae and Ophionyssus natricis may infest human skin, causing symptoms. Other less common animal mites, Neotrombicula autumnalis and foodstuff mites are also discussed.
Pakwan, Chonthicha; Kaltenpoth, Martin; Weiss, Benjamin; Chantawannakul, Panuwan; Jun, Guo; Disayathanoowat, Terd
2017-12-01
Varroa and Tropilaelaps mites have been reported as serious ectoparasites of the honey bee (Apis mellifera). In this study, bacterial communities associated with Varroa destructor and Tropilaelaps mercedesae from northern Thailand were determined, using both culture-dependent and culture-independent approaches. Adult female mites were collected from apiaries in Chiang Mai and Lampang provinces. Culturable bacteria were isolated from individual mites. On average, we observed approximately 1340 and 1140 CFU/mite in Varroa and Tropilaelaps, respectively. All isolates were assigned to the genus Enterococcus. Six samples of genomic DNA from 30-50 mites were extracted and subjected to pyrosequencing of bacterial 16S rRNA amplicons. The resulting 81 717 sequences obtained from Varroa were grouped into 429 operational taxonomic units. The most abundant bacteria in Varroa mites belonged to the family Enterobacteriaceae, especially the genera Arsenophonus, Enterobacter and Proteus. For Tropilaelaps mites, 84 075 sequences were obtained and clustered into 166 operational taxonomic units, within which the family Enterococcaceae (particularly the genus Enterococcus) was predominant. Localization of bacteria in the mites using fluorescence in situ hybridization with two universal bacterial probes revealed that these bacteria were in the cecum of the mites. Taxon-specific Enterobacteriaceae and Arsenophonus probes also confirmed their localization in the cecum of Varroa. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lee, K V; Moon, R D; Burkness, E C; Hutchison, W D; Spivak, M
2010-08-01
The parasitic mite Varroa destructor Anderson & Trueman (Acari: Varroidae) is arguably the most detrimental pest of the European-derived honey bee, Apis mellifera L. Unfortunately, beekeepers lack a standardized sampling plan to make informed treatment decisions. Based on data from 31 commercial apiaries, we developed sampling plans for use by beekeepers and researchers to estimate the density of mites in individual colonies or whole apiaries. Beekeepers can estimate a colony's mite density with chosen level of precision by dislodging mites from approximately to 300 adult bees taken from one brood box frame in the colony, and they can extrapolate to mite density on a colony's adults and pupae combined by doubling the number of mites on adults. For sampling whole apiaries, beekeepers can repeat the process in each of n = 8 colonies, regardless of apiary size. Researchers desiring greater precision can estimate mite density in an individual colony by examining three, 300-bee sample units. Extrapolation to density on adults and pupae may require independent estimates of numbers of adults, of pupae, and of their respective mite densities. Researchers can estimate apiary-level mite density by taking one 300-bee sample unit per colony, but should do so from a variable number of colonies, depending on apiary size. These practical sampling plans will allow beekeepers and researchers to quantify mite infestation levels and enhance understanding and management of V. destructor.
Molecular identification of house dust mites and storage mites.
Wong, Shew Fung; Chong, Ai Ling; Mak, Joon Wah; Tan, Jessie; Ling, Suk Jiun; Ho, Tze Ming
2011-10-01
Mites are known causes of allergic diseases. Currently, identification of mites based on morphology is difficult if only one mite is isolated from a (dust) sample, or when only one gender is found, or when the specimen is not intact especially with the loss of the legs. The purpose of this study was to use polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of the ITS2 gene, to complement the morphological data for the identification of mites to the species level. For this, six species were cultured: Dermatophagoides pteronyssinus, D. farinae, Blomia tropicalis, Tyrophagus putrescentiae, Aleuroglyphus ovatus and Glycycometus malaysiensis. Genomic DNA of the mites was extracted, quantified, amplified and digested individually with restriction enzymes. Hinf I and Ple I differentiated the restriction patterns of D. pteronyssinus and D. farinae. Bfa I and Alu I enzymes differentiated B. tropicalis and G. malaysiensis. Ple I enzyme was useful for the differentiation between T. putrescentiae and A. ovatus. Bfa I was useful for the differentiation of G. malaysiensis from the rest of the species. In conclusion, different species of mites can be differentiated using PCR-RFLP of ITS2 region. With the established PCR-RFLP method in this study, identification of these mites to the species level is possible even if complete and intact adult specimens of both sexes are not available. As no study to date has reported PCR-RFLP method for the identification of domestic mites, the established method should be validated for the identification of other species of mites that were not included in this study.
Comparison of Preferred Bite Sites between Mites and Ticks on Humans in Korea
Jang, Mi-Sun; Kim, Choon-Mee; Kim, Dong-Min; Yoon, Na Ra; Han, Mi Ah; Kim, Hyun-Kuk; Oh, Won Sup; Yoon, Hee-Jung; Wie, Seong-Heon; Hur, Jian
2016-01-01
Identification of mite and tick bite sites provides important clinical information. The predominant mite species in Korea associated with scrub typhus are Leptotrombidium pallidum and Leptotrombidium scutellare. The most abundant tick species is Haemaphysalis longicornis. To date, there has been no comparative study on preferred bite sites between mites and ticks in humans. This study included a review of medical records and a field study. For mite bite sites, eschars were checked on 506 patients with scrub typhus, confirmed by indirect immunofluorescence assay or nested polymerase chain reaction on the 56-kDa type-specific antigen gene of Orientia tsutsugamushi. Tick bite sites were identified and marked on a diagram for 91 patients who experienced tick bites within the previous year through a field epidemiological investigation. The mite and tick bite sites in Koreans were compared. The most frequently observed mite bite sites were the anterior chest, including the axillae (29.1%) and the abdominal region, including the inguinal area (26.1%). Tick bite sites were most frequent on the lower extremities (33.0%), followed by the abdominal region, including the inguinal area (26.4%), and upper extremities (26.4%). The distribution was significantly different between mite and tick bite sites (P < 0.001). There was a statistically significant difference in the mite bite (P = 0.001), but not tick bite sites (P = 0.985), between men and women. This is the first report on the differences between tick and mite bite sites, and may help clinicians reach a rapid diagnosis of mite- or tick-borne infection. PMID:27645781
Mites and fungi in heavily infested stores in the Czech Republic.
Hubert, J; Stejskal, V; Munzbergová, Z; Kubátová, A; Vánová, M; Zd'árková, E
2004-12-01
Toxigenic and allergen-producing fungi represent a serious hazard to human food and animal feed safety. Ninety-four fungal species were isolated from mite-infested samples of seeds taken from Czech seed stores. Fungi were isolated from the surface of four kinds of seeds (wheat, poppy, lettuce, and mustard) and from the gut and external surface of five species of mites (i.e., Acarus siro L., 1758, Caloglyphus rhizoglyphoides (Zachvatkin, 1973), Lepidoglyphus destructor (Schrank, 1781), Tyrophagus putrescentnae (Schrank, 1781) and Cheyletus malaccensis Oudemans 1903) separately. Multivariate analysis of fungi complex composition showed that the frequency of fungal was species significantly influenced by the kind of seed. Fungal frequencies differed between mites gut and exoskeleton surface and between the surfaces of mites and seeds. Three groups of fungal species were recognized: 1) mite surface-associated fungi: Penicillium brevicompactum, Alternaria alternata, and Aspergillus versicolor; 2) mite surface- and seed-associated fungi: Aspergillus niger, Penicillium crustosum, Penicillium aurantiogriseum, Penicillium chrysogenum, and Aspergillus flavus; and 3) seed-associated fungi: Cladosporium herbarum, Mucor dimorphosporus f. dimorphosporus, Botrytis cinerea, Penicillium griseofulvum, and Eurotium repens. Mite-carried species of microfungi are known to produce serious mycotoxins (e.g., aflatoxin B1, cyclopiazonic acid, sterigmatocystin, ochratoxin A, and nephrotoxic glycopeptides) as well as allergen producers (e.g., A. alternata and P. brevicompactum). Storage mites may play an important role in the spread of some medically hazardous micromycetes. In addition, these mite-fungi associations may heighten the risk of occurrence of mycotoxins in food and feed stuffs and cause mixed contamination by fungal and mite allergens.
A feeding protocol for delivery of agents to assess development in Varroa mites
USDA-ARS?s Scientific Manuscript database
A novel feeding protocol for delivery of bio-active agents to Varroa mites was developed by providing mites with honey bee larva hemolymph supplemented with cultured insect cells and selected materials suspended delivered on a fibrous cotton substrate. Mites were starved, fed on treated hemolymph to...
Spectral response of spider mite infested cotton: Mite density and miticide rate study
USDA-ARS?s Scientific Manuscript database
Two-spotted spider mites are important pests in many agricultural systems. Spider mites (Acari: Tetranychidae) have been found to cause economic damage in corn, cotton, and sorghum. Adult glass vial bioassays indicate that Temprano™ (abamectin) is the most toxic technical miticide for adult two-spot...
Responses to Varroa by honey bees with different levels of Varroa Sensitive Hygiene
USDA-ARS?s Scientific Manuscript database
The mite-resistance trait called suppression of mite reproduction (SMR) is a form of hygienic behavior that we have named varroa sensitive hygiene (VSH). With VSH, adult worker bees (Apis mellifera) disrupt the population growth of parasitic mites (Varroa destructor) by removing mite-infested bee p...
Zhang, Xiao-Na; Guo, Jian-Jun; Zou, Xiao; Jin, Dao-Chao
2018-05-01
Isaria cateniannulata and Euseius nicholsi are two important biological control agents currently being used in many areas of China to control a variety of pests. In order to determine the possibility of a concomitant application with the two agents in a biocontrol program involving the two-spotted spider mite, Tetranychus urticae, we quantified the pathogenicity of a strain of I. cateniannulata (08XS-1) against females of both T. urticae and E. nicholsi. We observed the infection process using scanning electron microscopy and fluorescence microscopy to distinguish differences in fungal performance. The female mites were infected by I. cateniannulata at 2 × 10 7 conidia/ml. The mortality of T. urticae was 100% when treated with submerged conidia and 92% when treated with aerial conidia (spray), and that of E. nicholsi was 4.2 and 6.7%, correspondingly. Following infection with aerial or submerged conidia, mated E. nicholsi females displayed no significant differences between treatments and control, indicating the fungus had no obvious effect on their vitality and fertility. This demonstrates that I. cateniannulata is safe to E. nicholsi when used to control T. urticae. The two types of propagules of I. cateniannulata are readily produced by common culture, and the submerged conidia, because of their substantially higher mortality, are preferable to the aerial conidia. Our results indicate that I. cateniannulata and E. nicholsi are viable candidates to be concomitantly applied in the biocontrol programs of T. urticae.
A survey of fur mites in domestic rabbits.
Flatt, R E; Wiemers, J
1976-10-01
A survey of six commercial rabbit colonies was conducted to determine the prevalence of the mite Cheyletiella parasitvorax. This mite was present in all six colonies, and 43.2% of 220 rabbits examined were infested. Listrophorus gibbus, reported only once previously in domestic rabbits in the United States, was found in four of the six colonies, and in 7.3% of the 220 rabbits examined. Non-parasitic mites were found in 3.2% of the samples. Over 50% of the rabbits examined had inapparent mite infestations.
Demoly, P; Kleine-Tebbe, J; Rehm, D
2017-10-01
Treatment with SQ (standardised quality) house dust mite sublingual tablet for 1 year resulted in a decreased probability of having an allergic rhinitis (AR) exacerbation day (from 11% [placebo] to 5% [SQ house dust mite sublingual tablet]) and an increased probability of having a mild AR day (from 16% [placebo] to 34% [SQ house dust mite sublingual tablet]). © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.
In vitro activity of ten essential oils against Sarcoptes scabiei.
Fang, Fang; Candy, Kerdalidec; Melloul, Elise; Bernigaud, Charlotte; Chai, Ling; Darmon, Céline; Durand, Rémy; Botterel, Françoise; Chosidow, Olivier; Izri, Arezki; Huang, Weiyi; Guillot, Jacques
2016-11-22
The development of alternative approaches in ectoparasite management is currently required. Essential oils have been demonstrated to exhibit fumigant and topical toxicity to a number of arthropods. The aim of the present study was to assess the potential efficacy of ten essential oils against Sarcoptes scabiei. The major chemical components of the oils were identified by GC-MS analysis. Contact and fumigation bioassays were performed on Sarcoptes mites collected from experimentally infected pigs. For contact bioassays, essential oils were diluted with paraffin to get concentrations at 10, 5, and even 1% for the most efficient ones. The mites were inspected under a stereomicroscope 10, 20, 30, 40, 50, 60, 90, 120, 150, and 180min after contact. For fumigation bioassay, a filter paper was treated with 100 μL of the pure essential oil. The mites were inspected under a stereomicroscope for the first 5min, and then every 5min until 1h. Using contact bioassays, 1% clove and palmarosa oil killed all the mites within 20 and 50min, respectively. The oils efficacy order was: clove > palmarosa > geranium > tea tree > lavender > manuka > bitter orange > eucalyptus > Japanese cedar. In fumigation bioassays, the efficacy order was: tea tree > clove > eucalyptus > lavender > palmarosa > geranium > Japanese cedar > bitter orange > manuka. In both bioassays, cade oil showed no activity. Essential oils, especially tea tree, clove, palmarosa, and eucalyptus oils, are potential complementary or alternative products to treat S. scabiei infections in humans or animals, as well as to control the mites in the environment.
Martins, Luís Miguel Lourenço; Marques, Andreia Grilo; Pereira, Luísa Maria Dotti Silva; Goicoa, Ana; Semião-Santos, Saul José; Bento, Ofélia Pereira
2015-04-01
Specific immunotherapy has shown to be very useful for allergy control in dogs, with a common success rate ranging from 65% to 70%. However, this efficacy could probably be improved and the identification of individual allergomes, with the choice of more adequate molecular allergen pools for specific immunotherapy, being the strategy. To map Dermatophagoides pteronyssinus (Der p) allergens for mite-sensitized atopic dogs, for better understanding how individual allergograms may influence the response to house-dust mite immunotherapy. To identify the Der p mite allergome for dogs, 20 individuals allergic to dust-mites and sensitized to Der p, were selected. The extract from Der p was submitted to isoelectric focusing (IEF), one-dimensional (1-D) and two-dimensional (2-D) sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Separated proteins were blotted onto polyvinylidene difluoride (PVDF) membranes and immunoblottings were performed with patient sera. Allergen-bound specific IgE was detected. Eleven allergens were identified from isoelectric focusing (IEF), as well as from 1-D SDS PAGE. From 2-D SDS-PAGE, 24 spots were identified. Several similarities were found between dog and human allergograms and no absolute correlation between sensitization and allergy was observed either. As in humans, different individual allergograms do not seem to implicate different clinical patterns, but may influence the response to specific immunotherapy. The molecular epidemiology approach in veterinary allergy management, by the characterization of individual patients' allergoms and by choosing the best molecular allergen pool for each patient could also improve the efficacy of allergy immunotherapy.
Whole transcriptome analysis of the poultry red mite Dermanyssus gallinae (De Geer, 1778).
Schicht, Sabine; Qi, Weihong; Poveda, Lucy; Strube, Christina
2014-03-01
SUMMARY Although the poultry red mite Dermanyssus gallinae (De Geer, 1778) is the major parasitic pest in poultry farming causing substantial economic losses every year, nucleotide data are rare in the public databases. Therefore, de novo sequencing covering the transcriptome of D. gallinae was carried out resulting in a dataset of 232 097 singletons and 42 130 contiguous sequences (contigs) which were subsequently clustered into 24 140 isogroups consisting of 35 788 isotigs. After removal of sequences possibly originating from bacteria or the chicken host, 267 464 sequences (231 657 singletons, 56 contigs and 35 751 isotigs) remained, of which 10·3% showed homology to proteins derived from other organisms. The most significant Blast top-hit species was the mite Metaseiulus occidentalis followed by the tick Ixodes scapularis. To gain functional knowledge of D. gallinae transcripts, sequences were mapped to Gene Ontology terms, Kyoto Encyclopedia of Gene and Genomes (KEGG) pathways and parsed to InterProScan. The transcriptome dataset provides new insights in general mite genetics and lays a foundation for future studies on stage-specific transcriptomics as well as genomic, proteomic, and metabolomic explorations and might provide new perspectives to control this parasitic mite by identifying possible drug targets or vaccine candidates. It is also worth noting that in different tested species of the class Arachnida no 28S rRNA was detectable in the rRNA profile, indicating that 28S rRNA might consists of two separate, hydrogen-bonded fragments, whose (heat-induced) disruption may led to co-migration with 18S rRNA.
NASA Astrophysics Data System (ADS)
Powell, James; Maise, George; Paniagua, John; Borowski, Stanley
2003-01-01
Nuclear thermal propulsion (NTP) enables unique new robotic planetary science missions that are impossible with chemical or nuclear electric propulsion systems. A compact and ultra lightweight bi-modal nuclear engine, termed MITEE-B (MInature ReacTor EnginE - Bi-Modal) can deliver 1000's of kilograms of propulsive thrust when it operates in the NTP mode, and many kilowatts of continuous electric power when it operates in the electric generation mode. The high propulsive thrust NTP mode enables spacecraft to land and takeoff from the surface of a planet or moon, to hop to multiple widely separated sites on the surface, and virtually unlimited flight in planetary atmospheres. The continuous electric generation mode enables a spacecraft to replenish its propellant by processing in-situ resources, provide power for controls, instruments, and communications while in space and on the surface, and operate electric propulsion units. Six examples of unique and important missions enabled by the MITEE-B engine are described, including: (1) Pluto lander and sample return; (2) Europa lander and ocean explorer; (3) Mars Hopper; (4) Jupiter atmospheric flyer; (5) SunBurn hypervelocity spacecraft; and (6) He3 mining from Uranus. Many additional important missions are enabled by MITEE-B. A strong technology base for MITEE-B already exists. With a vigorous development program, it could be ready for initial robotic science and exploration missions by 2010 AD. Potential mission benefits include much shorter in-space times, reduced IMLEO requirements, and replenishment of supplies from in-situ resources.
A Tractable Experimental Model for Study of Human and Animal Scabies
Mounsey, Kate; Ho, Mei-Fong; Kelly, Andrew; Willis, Charlene; Pasay, Cielo; Kemp, David J.; McCarthy, James S.; Fischer, Katja
2010-01-01
Background Scabies is a parasitic skin infestation caused by the burrowing mite Sarcoptes scabiei. It is common worldwide and spreads rapidly under crowded conditions, such as those found in socially disadvantaged communities of Indigenous populations and in developing countries. Pruritic scabies lesions facilitate opportunistic bacterial infections, particularly Group A streptococci. Streptococcal infections cause significant sequelae and the increased community streptococcal burden has led to extreme levels of acute rheumatic fever and rheumatic heart disease in Australia's Indigenous communities. In addition, emerging resistance to currently available therapeutics emphasizes the need to identify potential targets for novel chemotherapeutic and/or immunological intervention. Scabies research has been severely limited by the availability of parasites, and scabies remains a truly neglected infectious disease. We report development of a tractable model for scabies in the pig, Sus domestica. Methodology/Principal Findings Over five years and involving ten independent cohorts, we have developed a protocol for continuous passage of Sarcoptes scabiei var. suis. To increase intensity and duration of infestation without generating animal welfare issues we have optimised an immunosuppression regimen utilising daily oral treatment with 0.2mg/kg dexamethasone. Only mild, controlled side effects are observed, and mange infection can be maintained indefinitely providing large mite numbers (>6000 mites/g skin) for molecular-based research on scabies. In pilot experiments we explore whether any adaptation of the mite population is reflected in genetic changes. Phylogenetic analysis was performed comparing sets of genetic data obtained from pig mites collected from naturally infected pigs with data from pig mites collected from the most recent cohort. Conclusions/Significance A reliable pig/scabies animal model will facilitate in vivo studies on host immune responses to scabies including the relations to the associated bacterial pathogenesis and more detailed studies of molecular evolution and host adaption. It is a most needed tool for the further investigation of this important and widespread parasitic disease. PMID:20668508
Harris, Adrian L; Ullah, Roshan; Fountain, Michelle T
2017-08-01
Tetranychus urticae is a widespread polyphagous mite, found on a variety of fruit crops. Tetranychus urticae feeds on the underside of the leaves perforating plant cells and sucking the cell contents. Foliar damage and excess webbing produced by T. urticae can reduce fruit yield. Assessments of T. urticae populations while small provide reliable and accurate ways of targeting control strategies and recording their efficacy against T. urticae. The aim of this study was to evaluate four methods for extracting low levels of T. urticae from leaf samples, representative of developing infestations. These methods were compared to directly counting of mites on leaves under a dissecting microscope. These methods were ethanol washing, a modified paraffin/ethanol meniscus technique, Tullgren funnel extraction and the Henderson and McBurnie mite brushing machine with consideration to: accuracy, precision and simplicity. In addition, two physically different leaf morphologies were compared; Prunus leaves which are glabrous with Malus leaves which are setaceous. Ethanol extraction consistently yielded the highest numbers of mites and was the most rapid method for recovering T. urticae from leaf samples, irrespective of leaf structure. In addition the samples could be processed and stored before final counting. The advantages and disadvantages of each method are discussed in detail.
We studied the relationship between dust mite antigen concentrations in house dust samples and the occurrence and frequency of wheezing in 58 children with dust mite allergy (wheal > 4 mm. mean diameter in response to a prick test with either D-. farinae or D pteronyssinus antige...
Key Mites Commonly Associated With the Southern Pine Beetle
D.N. Kinn
1976-01-01
This paper outlines a method of preparing mites for microscopic examination and contains a simple key to the 15 species of mites commonly associated with the southern pine bark beetle. Research workers wanting to identify these mites and others curious about them, but untrained in acarology, should find little difficulty in making identifications.
USDA-ARS?s Scientific Manuscript database
Wheat streak mosaic virus (WSMV; genus Tritimovirus; family Potyviridae), is transmitted by the wheat curl mite (Aceria tosichella Keifer). The requirement of coat protein (CP) for WSMV transmission by the wheat curl mite was examined using a series of viable deletion and point mutations. Mite trans...
USDA-ARS?s Scientific Manuscript database
The taxonomy of two economically important eriophyoid species, Aceria tosichella (wheat curl mite, WCM) and A. tulipae (dry bulb mite, DBM), was confounded in the world literature until the late 20th century due to their morphological similarity and ambiguous data from plant-transfer and virus-trans...
USDA-ARS?s Scientific Manuscript database
Eriophyoidea are minute phytophagous mites with great economic importance and great invasive potential. In spite of their impact on ecosystem functions, the knowledge of eriophyoid mites fauna in Arctic is lacking. Until now, only eight eriophyoid mite species were known from this region. Svalbard a...
Recent amplification and impact of MITEs on the genome of grapevine (Vitis vinifera L.)
Benjak, Andrej; Boué, Stéphanie; Forneck, Astrid
2009-01-01
Miniature inverted-repeat transposable elements (MITEs) are a particular type of defective class II transposons present in genomes as highly homogeneous populations of small elements. Their high copy number and close association to genes make their potential impact on gene evolution particularly relevant. Here, we present a detailed analysis of the MITE families directly related to grapevine “cut-and-paste” transposons. Our results show that grapevine MITEs have transduplicated and amplified genomic sequences, including gene sequences and fragments of other mobile elements. Our results also show that although some of the MITE families were already present in the ancestor of the European and American Vitis wild species, they have been amplified and have been actively transposing accompanying grapevine domestication and breeding. We show that MITEs are abundant in grapevine and some of them are frequently inserted within the untranslated regions of grapevine genes. MITE insertions are highly polymorphic among grapevine cultivars, which frequently generate transcript variability. The data presented here show that MITEs have greatly contributed to the grapevine genetic diversity which has been used for grapevine domestication and breeding. PMID:20333179
Chigger Mite (Acari: Trombiculidae) Survey of Rodents in Shandong Province, Northern China
Huang, Xiao-Dan; Cheng, Peng; Zhao, Yu-Qiang; Li, Wen-Juan; Zhao, Jiu-Xu; Liu, Hong-Mei; Kou, Jing-Xuan; Gong, Mao-Qing
2017-01-01
Chigger mites are parasites of rodents and other vertebrates, invertebrates, and other arthropods, and are the only vectors of scrub typhus, in addition to other zoonoses. Therefore, investigating their distribution, diversity, and seasonal abundance is important for public health. Rodent surveillance was conducted at 6 districts in Shandong Province, northern China (114–112°E, 34–38°N), from January to December 2011. Overall, 225/286 (78.7%) rodents captured were infested with chigger mites. A total of 451 chigger mites were identified as belonging to 5 most commonly collected species and 3 genera in 1 family. Leptotrombidium scutellare and Leptotrombidium intermedia were the most commonly collected chigger mites. L. scutellare (66.2%, 36.7%, and 49.0%) was the most frequently collected chigger mite from Apodemus agrarius, Rattus norvegicus, and Microtus fortis, respectively, whereas L. intermedia (61.5% and 63.2%) was the most frequently collected chigger mite from Cricetulus triton and Mus musculus, respectively. This study demonstrated a relatively high prevalence of chigger mites that varied seasonally in Shandong Province, China. PMID:29103271
Chigger Mite (Acari: Trombiculidae) Survey of Rodents in Shandong Province, Northern China.
Huang, Xiao-Dan; Cheng, Peng; Zhao, Yu-Qiang; Li, Wen-Juan; Zhao, Jiu-Xu; Liu, Hong-Mei; Kou, Jing-Xuan; Gong, Mao-Qing
2017-10-01
Chigger mites are parasites of rodents and other vertebrates, invertebrates, and other arthropods, and are the only vectors of scrub typhus, in addition to other zoonoses. Therefore, investigating their distribution, diversity, and seasonal abundance is important for public health. Rodent surveillance was conducted at 6 districts in Shandong Province, northern China (114-112°E, 34-38°N), from January to December 2011. Overall, 225/286 (78.7%) rodents captured were infested with chigger mites. A total of 451 chigger mites were identified as belonging to 5 most commonly collected species and 3 genera in 1 family. Leptotrombidium scutellare and Leptotrombidium intermedia were the most commonly collected chigger mites. L. scutellare (66.2%, 36.7%, and 49.0%) was the most frequently collected chigger mite from Apodemus agrarius, Rattus norvegicus, and Microtus fortis, respectively, whereas L. intermedia (61.5% and 63.2%) was the most frequently collected chigger mite from Cricetulus triton and Mus musculus, respectively. This study demonstrated a relatively high prevalence of chigger mites that varied seasonally in Shandong Province, China.
Two simple techniques for the safe Sarcoptes collection and individual mite DNA extraction.
Soglia, Dominga; Rambozzi, Luisa; Maione, Sandra; Spalenza, Veronica; Sartore, Stefano; Alasaad, Samer; Sacchi, Paola; Rossi, Luca
2009-10-01
Availability of mites is a recognized limiting factor of biological and genetic investigations of the genus Sarcoptes. Current methods of deoxyribonucleic acid (DNA) extraction from individual mites also need substantial improvement in efficiency and operator friendliness. We have first developed a technique for efficient and safe extraction of living mites from scabietic skin samples (crusts or deep skin scrapings). Its core device is a large plastic syringe connected with a 1.5-ml Eppendorf tube. The source material is introduced in the syringe and the device in a shoe box with the tip half of the tube emerging. Mites migrate towards a heat source during a minimum of 36 h. Then, the tube is detached and the mites utilized without risks for the operators. A second technique allows operator-friendly manipulation of individual mites for DNA extraction. Fixed mites are isolated by adhesion to a small strip of polyvinyl chloride (PVC) adhesive tape operated with tweezers. Then, mite and strip are plunged in the lyses buffer and the sample twice submitted to thermal shock for disruption of the chitinous exoskeleton. Data show that the tape does not interfere with successive DNA extraction with a commercial kit. The corresponding protocol, that we briefly name "PVC adhesive tape + thermal shock + kit DNA extraction," compares favorably with the available ones.
van Strien, R T; Gehring, U; Belanger, K; Triche, E; Gent, J; Bracken, M B; Leaderer, B P
2004-06-01
Information about the influence of housing and occupant characteristics on mite allergen concentrations is crucial to determine which methods could be used to decrease exposure of susceptible subjects. To identify housing and occupant characteristics that are associated with mite allergen concentrations in house dust collected from living rooms and mattresses. We collected dust samples from 750 homes in the northeastern US. The influence of various characteristics on concentrations of mite allergens (Der p 1 and Der f 1) was studied using multiple linear regression analysis. Some characteristics, like absence of air conditioners, the presence of mold or mildew, and a lower temperature were consistently associated with higher concentrations of both mite allergens in dust from all sampling locations. However, none of these factors changed Der p 1 or Der f 1 concentrations by more than a factor of 2. People of white ethnic background had roughly two times higher mite allergen concentrations, while family income, family size, and education level only marginally influenced mite allergen concentrations. Various housing characteristics have some influence on mite allergen concentrations, and could possibly be used to decrease exposure of susceptible subjects. However, only a limited percentage of the variation in mite allergen concentrations was explained by these characteristics.
Alatalo, Juha M; Jägerbrand, Annika K; Juhanson, Jaanis; Michelsen, Anders; Ľuptáčik, Peter
2017-03-15
High-altitude and alpine areas are predicted to experience rapid and substantial increases in future temperature, which may have serious impacts on soil carbon, nutrient and soil fauna. Here we report the impact of 20 years of experimental warming on soil properties and soil mites in three contrasting plant communities in alpine/subarctic Sweden. Long-term warming decreased juvenile oribatid mite density, but had no effect on adult oribatids density, total mite density, any major mite group or the most common species. Long-term warming also caused loss of nitrogen, carbon and moisture from the mineral soil layer in mesic meadow, but not in wet meadow or heath or from the organic soil layer. There was a significant site effect on the density of one mite species, Oppiella neerlandica, and all soil parameters. A significant plot-scale impact on mites suggests that small-scale heterogeneity may be important for buffering mites from global warming. The results indicated that juvenile mites may be more vulnerable to global warming than adult stages. Importantly, the results also indicated that global warming may cause carbon and nitrogen losses in alpine and tundra mineral soils and that its effects may differ at local scale.
Mahmood, Wajahat; Viberg, Linda T.; Fischer, Katja; Walton, Shelley F.; Holt, Deborah C.
2013-01-01
Background Scabies is a disease of worldwide significance, causing considerable morbidity in both humans and other animals. The scabies mite Sarcoptes scabiei burrows into the skin of its host, obtaining nutrition from host skin and blood. Aspartic proteases mediate a range of diverse and essential physiological functions such as tissue invasion and migration, digestion, moulting and reproduction in a number of parasitic organisms. We investigated whether aspartic proteases may play role in scabies mite digestive processes. Methodology/Principle Findings We demonstrated the presence of aspartic protease activity in whole scabies mite extract. We then identified a scabies mite aspartic protease gene sequence and produced recombinant active enzyme. The recombinant scabies mite aspartic protease was capable of digesting human haemoglobin, serum albumin, fibrinogen and fibronectin, but not collagen III or laminin. This is consistent with the location of the scabies mites in the upper epidermis of human skin. Conclusions/Significance The development of novel therapeutics for scabies is of increasing importance given the evidence of emerging resistance to current treatments. We have shown that a scabies mite aspartic protease plays a role in the digestion of host skin and serum molecules, raising the possibility that interference with the function of the enzyme may impact on mite survival. PMID:24244770
Arthur, Aston L; Hoffmann, Ary A; Umina, Paul A
2015-10-01
A key component for spray decision-making in IPM programmes is the establishment of economic injury levels (EILs) and economic thresholds (ETs). We aimed to establish an EIL for the redlegged earth mite (Halotydeus destructor Tucker) on canola. Complex interactions between mite numbers, feeding damage and plant recovery were found, highlighting the challenges in linking H. destructor numbers to yield. A guide of 10 mites plant(-1) was established at the first-true-leaf stage; however, simple relationships were not evident at other crop development stages, making it difficult to establish reliable EILs based on mite number. Yield was, however, strongly associated with plant damage and plant densities, reflecting the impact of mite feeding damage and indicating a plant-based alternative for establishing thresholds for H. destructor. Drawing on data from multiple field trials, we show that plant densities below 30-40 plants m(-2) could be used as a proxy for mite damage when reliable estimates of mite densities are not possible. This plant-based threshold provides a practical tool that avoids the difficulties of accurately estimating mite densities. The approach may be applicable to other situations where production conditions are unpredictable and interactions between pests and plant hosts are complex. © 2015 Society of Chemical Industry.
Miťková, Katarína; Berthová, Lenka; Kalúz, Stanislav; Kazimírová, Mária; Burdová, Lenka; Kocianová, Elena
2015-07-01
Information on circulation of rickettsiae between small mammals and their ectoparasitic mites is scarce. In this study, we investigated infestation rates of rodents with mites in some areas of SW Slovakia and the role of mites as possible vectors of pathogenic rickettsiae. A total of 615 rodents of five species were caught during 2010-2012. All individuals were examined for ectoparasites which resulted in 2821 mites belonging to three species of Laelapidae and six species of Trombiculidae. The most common Laelapidae species was Laelaps agilis (81.25 %), followed by Haemogamasus nidi, and Eulaelaps stabularis. Hirsutiella zachvatkini (16.52 %) was the dominant species of the family Trombiculidae. DNA extracted from rodent blood and ectoparasitic mites was examined for the presence of rickettsiae by PCR. By pooling mites, 345 pool samples were created, of which 112 (32.46 %) were found to be positive for the rickettsial DNA. From 487 examined rodent blood samples, rickettsial DNA was found in 46 (9.44 %). Sequencing DNA from the positive blood samples and mites revealed the identity of Rickettsia helvetica and Rickettsia monacensis. The results of the study suggest that ectoparasitic mites may be reservoirs as well as vectors of some pathogenic rickettsiae.
NASA Astrophysics Data System (ADS)
Alatalo, Juha M.; Jägerbrand, Annika K.; Juhanson, Jaanis; Michelsen, Anders; Ľuptáčik, Peter
2017-03-01
High-altitude and alpine areas are predicted to experience rapid and substantial increases in future temperature, which may have serious impacts on soil carbon, nutrient and soil fauna. Here we report the impact of 20 years of experimental warming on soil properties and soil mites in three contrasting plant communities in alpine/subarctic Sweden. Long-term warming decreased juvenile oribatid mite density, but had no effect on adult oribatids density, total mite density, any major mite group or the most common species. Long-term warming also caused loss of nitrogen, carbon and moisture from the mineral soil layer in mesic meadow, but not in wet meadow or heath or from the organic soil layer. There was a significant site effect on the density of one mite species, Oppiella neerlandica, and all soil parameters. A significant plot-scale impact on mites suggests that small-scale heterogeneity may be important for buffering mites from global warming. The results indicated that juvenile mites may be more vulnerable to global warming than adult stages. Importantly, the results also indicated that global warming may cause carbon and nitrogen losses in alpine and tundra mineral soils and that its effects may differ at local scale.
van Strien, Rob T; Koopman, Laurens P; Kerkhof, Marjan; Spithoven, Jack; de Jongste, Johan C; Gerritsen, Jorrit; Neijens, Herman J; Aalberse, Rob C; Smit, Henriette A; Brunekreef, Bert
2002-11-01
The Prevention and Incidence of Asthma and Mite Allergy (PIAMA) study is a birth cohort study that investigates the influence of allergen exposure on the development of allergy and asthma in the first several years of life. The objectives of this study were to investigate the relationship between a family history of allergy and/or asthma and exposure of newborn children to mite and pet allergen and to study the influence of different home and occupant characteristics on mite allergen exposure. Dust was sampled from the child's mattress and the parental mattress at 3 months after birth of the index child and analyzed for mite and pet allergens. Subjects were divided in groups according to history of asthma and allergy in their parents, and allergen exposure was studied in the different groups. Cat allergen exposure was significantly lower on parental mattresses in families with allergic mothers, but dog allergen exposure was not different. Mite allergen exposure was lower on parental mattresses in families with allergic mothers. Use of mite allergen-impermeable mattress covers reduced mite allergen exposure. Some other characteristics such as age of home and mattress were also found to influence mite allergen exposure. Parental mattresses in homes of allergic mothers had lower cat and mite (but not dog) allergen loadings than mattresses in homes of nonallergic parents. Paternal (as opposed to maternal) allergy seemed to have little influence.
Václav, Radovan; Kalúz, Stanislav
2014-03-01
Oribatid mites may be of epidemiological and medical importance because several species have been shown to serve as intermediate hosts for anoplocephalid tapeworms of wild and domestic animals. Despite their economic and conservation significance, relatively few studies examined factors influencing the effective number of oribatid mites that can serve as intermediate hosts. We examined variation in the structure of the edaphic arthropod community in functionally different territory parts of the Alpine marmot (Marmota marmota latirostris), a known definitive host of a prevalent anoplocephalid tapeworm, Ctenotaenia marmotae. We used a field experiment to test whether the abundance of oribatid mites in marmot pastures is affected by the presence of fresh herbivore faeces. We found that the abundance of soil and litter dwelling oribatid mites in marmot pastures did not change shortly after faeces addition. In contrast, numbers of other predominant soil-litter and phoretic microarthropods increased after faeces addition. The abundance of the two predominant phoretic mites colonizing the faeces was inversely related to the abundance of oribatid mites. In contrast, the abundance of a ubiquitous soil-litter mesostigmatid mite was a positive function of oribatid numbers. Although absolute numbers of oribatid mites did not change after faeces addition, our study suggests that, depending on soil quality or type, the probability of tapeworm egg ingestion by oribatid mites can be reduced due to increased interspecific prey-predatory and trophic interactions. Latrine site selection in Alpine marmots is consistent with a reduced probability of tapeworm transmission by oribatids.
Fischer, Barbara M; Schatz, Heinrich; Maraun, Mark
2010-11-01
The community structure, stable isotope ratios ((15)N/(14)N, (13)C/(12)C) and reproductive mode of oribatid mites (Acari, Oribatida) were investigated in four habitats (upper tree bark, lower tree bark, dry grassland soil, forest soil) at two sites in the Central Alps (Tyrol, Austria). We hypothesized that community structure and trophic position of oribatid mites of dry grassland soils and bark of trees are similar since these habitats have similar abiotic characteristics (open, dry) compared with forest soil. Further, we hypothesized that derived taxa of oribatid mites reproducing sexually dominate on the bark of trees since species in this habitat consume living resources such as lichens. In contrast to our hypothesis, the community structure of oribatid mites differed among grassland, forest and bark indicating the existence of niche differentiation in the respective oribatid mite species. In agreement with our hypothesis, sexually reproducing taxa of oribatid mites dominated on the bark of trees whereas parthenogenetic species were more frequent in soil. Several species of bark-living oribatid mites had stable isotope signatures that were similar to lichens indicating that they feed on lichens. However, nine species that frequently occurred on tree bark did not feed on lichens according to their stable isotope signatures. No oribatid mite species could be ascribed to moss feeding. We conclude that sexual reproduction served as preadaptation for oribatid mites allowing them to exploit new habitats and new resources on the bark of trees. Abiotic factors likely are of limited importance for bark-living oribatid mites since harsh abiotic conditions are assumed to favor parthenogenesis.
Sastre, Natalia; Francino, Olga; Curti, Joseph N; Armenta, Tiffany C; Fraser, Devaughn L; Kelly, Rochelle M; Hunt, Erin; Silbermayr, Katja; Zewe, Christine; Sánchez, Armand; Ferrer, Lluís
2016-01-01
This study was conceived to detect skin mites in social mammals through real-time qPCR, and to estimate taxonomic Demodex and further Prostigmata mite relationships in different host species by comparing sequences from two genes: mitochondrial 16S rRNA and nuclear 18S rRNA. We determined the mite prevalence in the hair follicles of marmots (13%) and bats (17%). The high prevalence found in marmots and bats by sampling only one site on the body may indicate that mites are common inhabitants of their skin. Since we found three different mites (Neuchelacheles sp, Myobia sp and Penthaleus sp) in three bat species (Miotis yumanensis, Miotis californicus and Corynorhinus townsendii) and two different mites (both inferred to be members of the Prostigmata order) in one marmot species (Marmota flaviventris), we tentatively concluded that these skin mites 1) cannot be assigned to the same genus based only on a common host, and 2) seem to evolve according to the specific habitat and/or specific hair and sebaceous gland of the mammalian host. Moreover, two M. yumanensis bats harbored identical Neuchelacheles mites, indicating the possibility of interspecific cross-infection within a colony. However, some skin mites species are less restricted by host species than previously thought. Specifically, Demodex canis seems to be more transmissible across species than other skin mites. D. canis have been found mostly in dogs but also in cats and captive bats. In addition, we report the first case of D. canis infestation in a domestic ferret (Mustela putorius). All these mammalian hosts are related to human activities, and D. canis evolution may be a consequence of this relationship. The monophyletic Demodex clade showing closely related dog and human Demodex sequences also supports this likely hypothesis.
Sastre, Natalia; Francino, Olga; Curti, Joseph N.; Armenta, Tiffany C.; Fraser, Devaughn L.; Kelly, Rochelle M.; Hunt, Erin; Silbermayr, Katja; Zewe, Christine; Sánchez, Armand; Ferrer, Lluís
2016-01-01
This study was conceived to detect skin mites in social mammals through real-time qPCR, and to estimate taxonomic Demodex and further Prostigmata mite relationships in different host species by comparing sequences from two genes: mitochondrial 16S rRNA and nuclear 18S rRNA. We determined the mite prevalence in the hair follicles of marmots (13%) and bats (17%). The high prevalence found in marmots and bats by sampling only one site on the body may indicate that mites are common inhabitants of their skin. Since we found three different mites (Neuchelacheles sp, Myobia sp and Penthaleus sp) in three bat species (Miotis yumanensis, Miotis californicus and Corynorhinus townsendii) and two different mites (both inferred to be members of the Prostigmata order) in one marmot species (Marmota flaviventris), we tentatively concluded that these skin mites 1) cannot be assigned to the same genus based only on a common host, and 2) seem to evolve according to the specific habitat and/or specific hair and sebaceous gland of the mammalian host. Moreover, two M. yumanensis bats harbored identical Neuchelacheles mites, indicating the possibility of interspecific cross-infection within a colony. However, some skin mites species are less restricted by host species than previously thought. Specifically, Demodex canis seems to be more transmissible across species than other skin mites. D. canis have been found mostly in dogs but also in cats and captive bats. In addition, we report the first case of D. canis infestation in a domestic ferret (Mustela putorius). All these mammalian hosts are related to human activities, and D. canis evolution may be a consequence of this relationship. The monophyletic Demodex clade showing closely related dog and human Demodex sequences also supports this likely hypothesis. PMID:27802314
Fernando, Deepani D; Reynolds, Simone L; Zakrzewski, Martha; Mofiz, Ehtesham; Papenfuss, Anthony T; Holt, Deborah; Fischer, Katja
2018-05-16
Scabies is worldwide one of the most common, yet neglected, parasitic skin infections, affecting a wide range of mammals including humans. Limited treatment options and evidence of emerging mite resistance against the currently used drugs drive our research to explore new therapeutic candidates. Previously, we discovered a multicopy family of genes encoding cysteine proteases with their catalytic sites inactivated by mutation (SMIPP-Cs). This protein family is unique in parasitic scabies mites and is absent in related non-burrowing mites. We postulated that the SMIPP-Cs have evolved as an adaptation to the parasitic lifestyle of the scabies mite. To formulate testable hypotheses for their functions and to propose possible strategies for translational research we investigated whether the SMIPP-Cs are common to all scabies mite varieties and where within the mite body as well as when throughout the parasitic life-cycle they are expressed. SMIPP-C sequences from human, pig and dog mites were analysed bioinformatically and the phylogenetic relationships between the SMIPP-C multi-copy gene families of human, pig and dog mites were established. Results suggest that amplification of the SMIPP-C genes occurred in a common ancestor and individual genes evolved independently in the different mite varieties. Recombinant human mite SMIPP-C proteins were produced and used for murine polyclonal antibody production. Immunohistology on skin sections from human patients localised the SMIPP-Cs in the mite gut and in mite faeces within in the epidermal skin burrows. SMIPP-C transcription into mRNA in different life stages was assessed in human and pig mites by reverse transcription followed by droplet digital PCR (ddPCR). High transcription levels of SMIPP-C genes were detected in the adult female life stage in comparison to all other life stages. The fact that the SMIPP-Cs are unique to three Sarcoptes varieties, present in all burrowing life stages and highly expressed in the digestive system of the infective adult female life stage may highlight an essential role in parasitism. As they are excreted from the gut in scybala they presumably are able to interact or interfere with host proteins present in the epidermis.
Yamasaki, Youki K.; Graves, Emily E.; Kysar, Patricia E.; Straub, Mary H.
2018-01-01
Proctophyllodes huitzilopochtlii Atyeo & Braasch 1966 (Acariformes: Astigmata: Proctophyllodidae), a feather mite, was found on feathers collected from five hummingbird species in California. This mite has not been previously documented on feathers from Anna’s (Calypte anna [Lesson 1829]) or Black-chinned (Archilochus alexandri [Bourcier & Mulsant 1846]) Hummingbirds. A total of 753 hummingbirds were evaluated for the presence of mites by species (Allen’s n = 112; Anna’s n = 500; Black-chinned n = 122; Rufous n = 18; Calliope n = 1), sex (males n = 421; females n = 329; 3 unidentified), and age (juvenile n = 199; after-hatch-year n = 549; 5 unidentified). Of these 753 hummingbirds evaluated, mites were present on the rectrices of 40.9% of the birds. Significantly more Anna’s Hummingbirds were positive for rectricial mites (59.2%) compared with 8.2% of Black-chinned, 0.9% of Allen’s, 5.6% of Rufous Hummingbirds, and 0% for Calliope (p-value < 0.0001). Across all hummingbird species, male hummingbirds (44.9%) had a higher prevalence of rectricial mites compared to female hummingbirds (36.2%; p-value = 0.004), while juvenile hummingbirds (46.2%) had a non-significantly higher prevalence compared to after-hatch-year hummingbirds (39.0%; p-value = 0.089). On average, the percentage of the long axis of the rachis occupied by mites for the outer rectrices (R4 and R5) was 19%, compared to 11% for inner rectrices (R1 and R2), a significant difference (p-value = <0.0001). There was a marginal lack of significance for symmetrical distribution of tail mites with the mean left side percentage of long axis of the rachis occupied by mites being 16% and very close to the mean right side score of 18% (p-value = 0.003). The identification of the feather mite species was based on light microscopic morphometry, and mite distribution on feathers was further evaluated using tabletop scanning electron microscopy (TSEM). The hummingbird–feather mite relationship is not well understood, but the specialized TSEM technique may be especially useful in examining natural positioning and developmental aspects of the mites since it allows in situ feather examination of live mites. PMID:29444089
Yamasaki, Youki K; Graves, Emily E; Houston, Robin S; OConnor, Barry M; Kysar, Patricia E; Straub, Mary H; Foley, Janet E; Tell, Lisa A
2018-01-01
Proctophyllodes huitzilopochtlii Atyeo & Braasch 1966 (Acariformes: Astigmata: Proctophyllodidae), a feather mite, was found on feathers collected from five hummingbird species in California. This mite has not been previously documented on feathers from Anna's (Calypte anna [Lesson 1829]) or Black-chinned (Archilochus alexandri [Bourcier & Mulsant 1846]) Hummingbirds. A total of 753 hummingbirds were evaluated for the presence of mites by species (Allen's n = 112; Anna's n = 500; Black-chinned n = 122; Rufous n = 18; Calliope n = 1), sex (males n = 421; females n = 329; 3 unidentified), and age (juvenile n = 199; after-hatch-year n = 549; 5 unidentified). Of these 753 hummingbirds evaluated, mites were present on the rectrices of 40.9% of the birds. Significantly more Anna's Hummingbirds were positive for rectricial mites (59.2%) compared with 8.2% of Black-chinned, 0.9% of Allen's, 5.6% of Rufous Hummingbirds, and 0% for Calliope (p-value < 0.0001). Across all hummingbird species, male hummingbirds (44.9%) had a higher prevalence of rectricial mites compared to female hummingbirds (36.2%; p-value = 0.004), while juvenile hummingbirds (46.2%) had a non-significantly higher prevalence compared to after-hatch-year hummingbirds (39.0%; p-value = 0.089). On average, the percentage of the long axis of the rachis occupied by mites for the outer rectrices (R4 and R5) was 19%, compared to 11% for inner rectrices (R1 and R2), a significant difference (p-value = <0.0001). There was a marginal lack of significance for symmetrical distribution of tail mites with the mean left side percentage of long axis of the rachis occupied by mites being 16% and very close to the mean right side score of 18% (p-value = 0.003). The identification of the feather mite species was based on light microscopic morphometry, and mite distribution on feathers was further evaluated using tabletop scanning electron microscopy (TSEM). The hummingbird-feather mite relationship is not well understood, but the specialized TSEM technique may be especially useful in examining natural positioning and developmental aspects of the mites since it allows in situ feather examination of live mites.
Ornamental and Shade Tree Pest Control: A Guide for Commercial Applicators.
ERIC Educational Resources Information Center
Khan, M. S.
This is a training manual for commercial pesticide applicators. It gives information for identification and control of diseases, insects, mites, weeds, and vertebrate pests of shade and ornamental trees. Phytotoxicity, environmental concerns, and pesticide application information is also given. (BB)
Mites associated with bark beetles and their hyperphoretic ophiostomatoid fungi
Richard W. Hofstetter; John Moser; Stacy Blomquist
2014-01-01
The role that mites play in many ecosystems is often overlooked or ignored. Within bark beetle habitats, more than 100 mite species exist and they have important impacts on community dynamics, ecosystem processes, and biodiversity of bark beetle systems. Mites use bark beetles to access and disperse among beetle-infested trees and the associations may range from...
USDA-ARS?s Scientific Manuscript database
The ectoparasitic mite Varroa destuctor is a serious threat to beekeeping and crops that rely on honey bee for pollination. The Varroa mite not only causes significant damage to honey bees by feeding on their haemolymph, but also serves as a vector of disease. In addition, the Varroa mite has develo...
USDA-ARS?s Scientific Manuscript database
A rapid method for extracting eriophyoid mites was adapted from previous studies to provide growers and IPM consultants with a practical, efficient, and reliable tool to monitor for rust mites in vineyards. The rinse in bag (RIB) method allows quick extraction of mites from collected plant parts (sh...
Hygienic Activity Toward Varroa Mites in Capped Brood is not Dependent on Mite Reproductive Status
USDA-ARS?s Scientific Manuscript database
- The varroa resistance of bees selectively bred for high levels of varroa sensitive hygiene (VSH) is characterized by a reduction of (1) the mite infestation rate (Harris 2007 J. Apic. Res. / Bee World 46: 134-139) and (2) the percentage of fertile mites (Harris and Harbo 1999 J. Econ. Entomol. 92:...
A method for rapidly marking adult varroa mites for use in brood inoculation experiments
USDA-ARS?s Scientific Manuscript database
We explored a method for marking varroa mites using correction fluid (PRESTO!TM Jumbo Correction Pen, Pentel Co., Ltd., Japan). Individual mites were placed on a piece of nylon mesh (165 mesh) to prevent the mites from moving during marking. A small piece of nylon fishing line (diameter = 0.30 mm)...
Scanning electron microscopy description of a new species of Demodex canis spp.
Tamura, Y; Kawamura, Y; Inoue, I; Ishino, S
2001-10-01
Between 1997 and 1999, the prevalence of Demodex canis mites was determined in 150 dogs. In two dogs, we found two different species of mites; Demodex canis and another, unidentified, Demodex mite. The unidentified Demodex mite species had several different morphological features. First, it had a short opisthosoma and an obtuse end. In addition, the fourth coxisternal plate was rectangular and there was a band-like segmental plate between the fourth coxisternal plate and opisthosoma. Although all of the morphology and the development of male mites could not be investigated in this study, the location of the opisthosoma and the genital pore clearly differed from Demodex canis, suggesting that this unidentified mite is a new species.
Audenaert, J; Vangansbeke, D; Verhoeven, R; De Clercq, P; Tirry, L; Gobin, B
2014-01-01
Predatory mites like Phytoseiulus persimilis Athias-Henriot, Neoseiulus californicus McGregor and N. fallacis (Garman) (Acari: Phytoseiidae) are essential in sustainable control strategies of the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) in warm greenhouse cultures to complement imited available pesticides and to tackle emerging resistance. However, in response to high energy prices, greenhouse plant breeders have recently changed their greenhouse steering strategies, allowing more variation in temperature and humidity. The impact of these variations on biological control agents is poorly understood. Therefore, we constructed functional response models to demonstrate the impact of realistic climate variations on predation efficiency. First, two temperature regimes were compared at constant humidity (70%) and photoperiod (16L:8D): DIF0 (constant temperature) and DIF15 (variable temperature with day-night difference of 15°C). At mean temperatures of 25°C, DIF15 had a negative influence on the predation efficiency of P. persimilis and N. californicus, as compared to DIF0. At low mean temperatures of 15°C, however, DIF15 showed a higher predation efficiency for P. persimilis and N. californicus. For N. fallacis no difference was observed at both 15°C and 25°C. Secondly, two humidity regimes were compared, at a mean temperature of 25°C (DIFO) and constant photoperiod (16L:8D): RHCTE (constant 70% humidity) and RHALT (alternating 40% L:70%D humidity). For P. persimilis and N. fallacis RHCTE resulted in a higher predation efficiency than RHALT, for N. californicus this effect was opposite. This shows that N. californicus is more adapted to dry climates as compared to the other predatory mites. We conclude that variable greenhouse climates clearly affect predation efficiency of P. persimilis, N. californicus and N. fallacis. To obtain optimal control efficiency, the choice of predatory mites (including dose and application frequency) should be adapted to the actual greenhouse climate.
Cheng, Shenhang; Lin, Ronghua; Zhang, Nan; Yuan, Shankui; Zhou, Xinxin; Huang, Jian; Ren, Xiaodong; Wang, Shoushan; Jiang, Hui; Yu, Caihong
2018-06-22
Amblyseius cucumeris (Oudemans) is a beneficial non-target arthropod (NTA) and a key predator of tetranychid mites in integrated pest management (IPM) programs across China. Evaluating the toxic effects of insecticides on such predatory mites is essential for the success and development of IPM. We tested six insecticides to determine the risk of neonicotinoid insecticide toxicity to predatory mites, using the 'open glass plate method' and adult female A. cucumeris in a "worst case laboratory exposure" scenario. A 48-h toxicity test was performed using the hazard quotient (HQ) approach to evaluate the risk of each insecticide. The LR 50 values (application rate that caused 50% mortality) of acetamiprid, thiamethoxam, imidacloprid, and dinotefuran were 76.4, 104.5, 84.9, and 224.6 g active ingredient (a.i.) ha -1 , respectively, with in-field HQ values of 0.40, 1.28, 0.49, and 0.82, respectively. The HQ values were lower than the trigger value of 2, and were consistent with off-field values. The risks of the four neonicotinoid insecticides to adult female A. cucumeris were acceptable in two exposure scenarios in field and off field. The 48-h LR 50 values for bifenthrin and malathion were 0.008 and 0.062 g. a.i. ha -1 , respectively, which were much lower than the recommended field application rates. The HQ values were much higher than the trigger values for both in- and off-field, indicating that the risks of these two insecticides were unacceptable. Bifenthrin and malathion posed an extremely high risk to the test species, and their use should be restricted to reduce risks to the field with augmentative releases of A. cucumeris. Copyright © 2018 Elsevier Inc. All rights reserved.
Ribeiro, Leandro do Prado; Zanardi, Odimar Zanuzo; Vendramim, José Djair; Yamamoto, Pedro Takao
2014-01-01
Acetogenins, a class of natural compounds produced by some Annonaceae species, are potent inhibitors of mitochondrial electron transport systems. Although the cellular respiration processes are an important biochemical site for the acaricidal action of compounds, few studies have been performed to assess the bioactivity of acetogenin-based biopesticides on spider mites, mainly against species that occur in orchards. Using residual contact bioassays, this study aimed to evaluate the bioactivity of an ethanolic extract from Annona mucosa seeds (ESAM) (Annonaceae) against the citrus red mite Panonychus citri (McGregor) (Acari: Tetranychidae), an important pest of the Brazilian citriculture. ESAM is a homemade biopesticide which was previously characterized by its high concentration of acetogenins. It caused both high mortality of P. citri females (LC50 = 7,295, 4,662, 3,463, and 2,608 mg l(-1), after 48, 72, 96, and 120 h of exposure, respectively) and significant oviposition deterrence (EC50 = 3.194,80 mg l(-1)). However, there was no effect on P. citri female fertility (hatching rate). In addition, the ESAM efficacy (in terms of its LC90) was compared with commercial acaricides/insecticides (at its recommended rate) of both natural [Anosom(®) 1 EC (annonin), Derisom(®) 2 EC (karanjin), and Azamax(®) 1.2 EC (azadirachtin + 3-tigloylazadirachtol)] and synthetic origin [Envidor(®) 24 SC (spirodiclofen)]. Based on all of the analyzed variables, the ESAM exhibited levels of activity superior to other botanical commercial acaricides and similar to spirodiclofen. Thus, our results indicate that ESAM may constitute a biorational acaricide for citrus red mite integrated pest management in Brazilian citrus orchards, particularly for local use.
Mironov, S V; Malyshev, L L
2002-01-01
A process of infecting the chaffinch nestlings Fringilla coelebs with three analgoid feather mites, Analges passerinus L., 1758, Monojoubertia microphylla (Robin, 1877), and Pteronyssoides striatus (Robin, 1977), commonly occurred on this bird species was investigated. 15 nests contained totally 65 nestlings, from 2 to 6 individuals in a brood, have been examined from the day of hatching till 11th day. Observations were held in the neighbourhood of the bird banding station "Rybachy" (Russia, Kaliningrad Province) in June of 1982. Number of mites on alive nestlings taken temporarily from their nest was counted by means of binocular lens under the magnification x12.5 and x25. The nestlings receive the mites from the chaffinch female during the night time, when the female sits together with the young birds and heats them. In the condition of this prolonged direct contact the mites migrate from the female onto the nestlings. As it was shown in our study of seasonal dynamics of mites on the chaffinch (Mironov, 2000), the chaffinch female only gives its mites to young generation and looses about three quarter of its mite micropopulation during the nesting period (June), hile in the chaffinch males the number of mites continues to increase during all summer. The infections with three feather mite species happen in the second part of the nestling's stay in the nest. The starting time of this process, its intensity, and sex and age structure of mite micropopulations on the nestlings just before their leaving the nest are different in the mite species examined. These peculiarities of feather mite species are determined by the biology of examined species, and first of all by their morphological characteristic and specialisation to different microhabitats, i.e. certain structural zones of plumage. Pteronyssoides striatus (Pteronyssidae) is rather typical mite specialised to feathers with vanes. In adult birds with completely developed plumage this species occupies the ventral surface of the big upper coverts of primary flight feathers. This species appears on the chaffinch nestlings in a significant number on 7th day. The mites occupy the basal parts of primary flight feathers represented in that moment by the rods only. They sit on practically open and smooth surface of this microhabitat, which is uncommon for them, because the vanes of the big upper coverts are not yet open and also represented by thin rods. During the period of the last 5 days (from 7 to 11th day) the mean number of mites per one nestling increases from 2.3 +/- 0.5 to 17.1 +/- 1.8 mites. Just before the day, when the nestling leave the nest, the tritonymphs absolutely predominate (82.4%) in the micropopulation of P. striatus. Analges passerinus (Analgidae) is specialised to live in the friable layer formed by numerous not-engaged thread barbles of the down feathers and basal parts of the body covert feathers. Mites have special hooks on legs used for hard attaching to the barbles and for fast moving in the friable layer of feathers. On the chaffinch nestlings, these mites appear usually on 8th day, when the rod-like body covert feathers begin to open on apices and form short brushes; however some individuals occur on the skin of nestlings even on 6th day. The mean number of mites per nestling on the 11th day reaches 16.5 +/- 1.4 individuals. The micropopulation of A. passerinus is represented on the nestlings mainly by the females (45.5%), tritonymphs (23.6%) and males (11.5%). Monojobertia microphylla (Proctophyllodidae) is a typical dweller of feathers with large vanes. Mites of this species commonly occupy the ventral surface of primary and secondary flight feathers and also respective big upper covert feathers of wings. M. microphylla appears on the nestlings in a significant number (7.1 +/- 1.2 mites) on 9th day, only when the primary flight feathers already have short vanes about 10 mm in length. In next three days the number of mites increases very fast and reaches on 11th day 60.3 +/- 5.7 mites per nestling. In the micropopulation of this species, the tritonymphs count 38.3%, and the quota of males and females is 25.3% each. The migration of this species goes most intensively, than in two other species. An analitic selection of logistic curves shows, that the increasing of mite number during the process of infection with three mite species may be most adequately described by the sigmoid curves with clearly recognizable levels of saturation, which can be theoretically reached. Indeed, the number of mite individuals being able to migrate onto the nestlings is limited by their number on a respective chaffinch female. In a contrast, the increasing of plumage indices, for instance the length of flight feathers, has almost linear character during the period of observation. The beginning of mite migration is determined by the development of respective microhabitats in the plumage of nestlings, or at least by the development of certain structure elements of plumage, where mites are able to attach for a while, before that moment, when the nestlings will develop the plumage completely and begin to fly. In three mite species examined, the process of infection was performed by older stages, namely by the imago and/or tritonymphs. This can be explained by two reasons. On the one hand, the older stages are most active in their movement, resistible and able to survive successfully on new host individuals. On the other hand, the older stage are ready for the reproduction or will be ready after one moulting. The older stages of mites can quickly create a large and self-supporting micropopulations on the birds, therefore this strategy ensures a successful subsequent existence of the parasite species. In cases, when mites (A. passerinus, M. microphylla) migrate into the respective microhabitats structurally corresponding to their normal microhabitats on adult birds, the micropopulations of these mite species include a significant or dominant quota of females and males. When the normal microhabitat is not yet formed, feather mites migrate into neighboring structure elements of plumage, where they can survive and wait for the development of normal microhabitat, to which they are well adapted. Therefore, in the case of P. striatus, its micropopulations on the chaffinch nestlings are represented mainly by the tritonymphs.
Encapsulation of plant oils in porous starch microspheres
USDA-ARS?s Scientific Manuscript database
Natural plant products such as essential oils have gained interest for use in pest control in place of synthetic pesticides because of their low environmental impact. Essential oils can be effective in controlling parasitic mites that infest honeybee colonies but effective encapsulants are needed to...
Duarte, Mércia E; Navia, Denise; dos Santos, Lucas R; Rideiqui, Pedro J S; Silva, Edmilson S
2015-08-01
In some Brazilian regions the Atlantic forest biome is currently restrict to fragments occurring amid monocultures, as sugarcane crops in the Northeast region. Important influence of forest remnants over mite fauna of permanent crops have been showed, however it has been poorly explored on annual crops. The first step for understanding ecological relationship in an agricultural systems is known its composition. The objective of this study was to investigate the plant-inhabiting mite fauna associated with sugarcane crop (Saccharum officinarum L.) (Poaceae) and caboatã (Cupania oblongifolia Mart.) (Sapindaceae) trees in the state of Alagoas, Brazil. Sugarcane stalks and sugarcane and caboatã apical, middle and basal leaves were sampled. A total of 2565 mites were collected from sugarcane and classified into seven families of Trombidiformes and Mesostigmata orders, with most individuals belonging to the Eriophyidae, Tetranychidae and Tarsonemidae families. Among predatory mites, the Phytoseiidae were the most common. A total of 1878 mites were found on C. oblongifolia and classified into 13 families of Trombidiformes and Mesostigmata orders. The most abundant phytophagous mite family on caboatã was also Eriophyidae. In contrast to sugarcane, Ascidae was the most common predatory mite family observed in caboatã. No phytophagous species were common to both sugarcane and C. oblongifolia. However two predatory mites were shared between host plants. Although mites associated with only one native species in the forest fragment were evaluated in this study, our preliminary results suggest Atlantic forest native vegetation can present an important role in the sugarcane agricultural system as a source of natural enemies.
Hubert, Jan; Kamler, Martin; Nesvorna, Marta; Ledvinka, Ondrej; Kopecky, Jan; Erban, Tomas
2016-08-01
The ectoparasitic mite Varroa destructor is a major pest of the honeybee Apis mellifera. In a previous study, bacteria were found in the guts of mites collected from winter beehive debris and were identified using Sanger sequencing of their 16S rRNA genes. In this study, community comparison and diversity analyses were performed to examine the microbiota of honeybees and mites at the population level. The microbiota of the mites and honeybees in 26 colonies in seven apiaries in Czechia was studied. Between 10 and 50 Varroa females were collected from the bottom board, and 10 worker bees were removed from the peripheral comb of the same beehive. Both bees and mites were surface sterilized. Analysis of the 16S rRNA gene libraries revealed significant differences in the Varroa and honeybee microbiota. The Varroa microbiota was less diverse than was the honeybee microbiota, and the relative abundances of bacterial taxa in the mite and bee microbiota differed. The Varroa mites, but not the honeybees, were found to be inhabited by Diplorickettsia. The relative abundance of Arsenophonus, Morganella, Spiroplasma, Enterococcus, and Pseudomonas was higher in Varroa than in honeybees, and the Diplorickettsia symbiont detected in this study is specific to Varroa mites. The results demonstrated that there are shared bacteria between Varroa and honeybee populations but that these bacteria occur in different relative proportions in the honeybee and mite bacteriomes. These results support the suggestion of bacterial transfer via mites, although only some of the transferred bacteria may be harmful.
Lozano, Jaime; Cruz, María-Jesús; Piquer, Mónica; Giner, Maria-Teresa; Plaza, Ana María
2014-01-01
The aim of this study was to evaluate the effectiveness of specific immunotherapy (SIT) management with allergoids in children with allergic asthma by monitoring changes in clinical parameters and inflammatory markers in exhaled breath. The study population included 43 patients (24 males) of 6-14 years of age, who had allergic asthma and were sensitized to mites. Twenty-three individuals were treated with subcutaneous SIT (PURETHAL® Mites, HAL Allergy) for 8 months, i.e. the SIT group, and 20 were given medication to treat symptoms only, i.e. the control group. Before treatment and after 4 and 8 months, several clinical parameters, the levels of exhaled nitric oxide and the pH of exhaled breath condensate (EBC) were determined. The SIT group presented with an improvement in asthma classification, a reduction in maintenance drug therapy and improved scores on the quality-of-life questionnaire. These changes were not observed in the control group. Both groups presented significant decreases in EBC pH values at 4 and 8 months after treatment compared to at baseline. However, analysis of the variable 'ratio' showed an increase in the EBC pH values after 8 months of treatment in the SIT group compared with the values at 4 months. SIT with standardized mite extract reduces asthma symptoms in children. A decrease in EBC pH values was observed in both groups, although the SIT group presented a tendency of recovered values after 8 months. Future studies of EBC pH monitoring in the longer term are needed to determine the effectiveness of this marker. © 2014 S. Karger AG, Basel.
Li, Yanqing; Cheng, Lei; Chen, Xiaoning; Yang, Beibei; Wang, Dehui
2015-01-01
To further evaluate the efficacy and safety of a pollen blocker cream against dust-mite allergy. A multicenter, randomized, double-blind, placebo-controlled, crossover trial was conducted in a Chinese population. Patients diagnosed with perennial allergic rhinitis, sensitive to dust-mite allergy including Dermatophagoides farinae and Dermatophagoides pteronyssinus were randomly allocated to receive a pollen blocker cream or placebo, which was applied and spread evenly to the lower internal nose region three times daily for a total of 30 days. The primary outcome measurements for efficacy were total nasal symptom score (TNSS) and individual nasal symptom score (iNSS). Adverse events were also monitored. After application of a pollen blocker, the mean TNSS decreased from 23.1 to 13.8, the decrease of the pollen blocker group (9.3) was highly significant compared with the placebo group (5.2; p < 0.001). Similarly, the decreases in iNSSs (rhinorrhea, congestion, sneezing, and itching) between the pollen blocker group and the placebo group were also significant (p < 0.05). In addition, in adults, the pollen blocker led to a remarkably significant decrease in TNSS (9.5) compared with placebo (5.4; p < 0.001); in children, the pollen blocker led to a significant decrease in TNSS (8.6) compared with placebo (4.8; p < 0.05). No statistical difference was found in the incidence of adverse events between the two groups (p > 0.05), and no severe systematic reactions were observed. Pollen Blocker is a safe and effective alternative to the drugs for treatment of AR, especially for Chinese people allergic to dust-mite allergy.
Godinho, Diogo P; Janssen, Arne; Dias, Teresa; Cruz, Cristina; Magalhães, Sara
2016-01-01
Herbivorous spider mites occurring on tomato plants (Solanum lycopersicum L.) cope with plant defences in various manners: the invasive Tetranychus evansi reduces defences below constitutive levels, whereas several strains of T. urticae induce such defences and others suppress them. In the Mediterranean region, these two species co-occur on tomato plants with T. ludeni, another closely related spider mite species. Unravelling how this third mite species affects plant defences is thus fundamental to understanding the outcome of herbivore interactions in this system. To test the effect of T. ludeni on tomato plant defences, we measured (1) the activity of proteinase inhibitors, indicating the induction of plant defences, in those plants, and (2) mite performance on plants previously infested with each mite species. We show that the performance of T. evansi and T. ludeni on plants previously infested with T. ludeni or T. evansi was better than on clean plants, indicating that these two mite species down-regulate plant defences. We also show that plants attacked by these mite species had lower activity of proteinase inhibitors than clean plants, whereas herbivory by T. urticae increased the activity of these proteins and resulted in reduced spider mite performance. This study thus shows that the property of down-regulation of plant defences below constitutive levels also occurs in T. ludeni.
Ward, Kenneth; Danka, Robert; Ward, Rufina
2008-06-01
The utility of USDA-developed Russian and varroa sensitive hygiene (VSH) honey bees, Apis mellifera L. (Hymenoptera: Apidae), was compared with that of locally produced, commercial Italian bees during 2004-2006 in beekeeping operations in Alabama, USA. Infestations of varroa mites, Varroa destructor Anderson & Truman (Acari: Varroidae), were measured twice each year, and colonies that reached established economic treatment thresholds (one mite per 100 adult bees in late winter; 5-10 mites per 100 adult bees in late summer) were treated with acaricides. Infestations of tracheal mites, Acarapis woodi (Rennie) (Acari: Tarsonemidae), were measured autumn and compared with a treatment threshold of 20% mite prevalence. Honey production was measured in 2005 and 2006 for colonies that retained original test queens. Throughout the three seasons of measurement, resistant stocks required less treatment against parasitic mites than the Italian stock. The total percentages of colonies needing treatment against varroa mites were 12% of VSH, 24% of Russian, and 40% of Italian. The total percentages requiring treatment against tracheal mites were 1% of Russian, 8% of VSH and 12% of Italian. The average honey yield of Russian and VSH colonies was comparable with that of Italian colonies each year. Beekeepers did not report any significant behavioral problems with the resistant stocks. These stocks thus have good potential for use in nonmigratory beekeeping operations in the southeastern United States.
Krips, O E; Willems, P E; Gols, R; Posthumus, M A; Gort, G; Dicke, M
2001-07-01
We investigated whether volatiles produced by spider mite-damaged plants of four gerbera cultivars differ in attractiveness to Phytoseiulus persimilis, a specialist predator of spider mites, and how the mite-induced odor blends differ in chemical composition. The gerbera cultivars differed in resistance, as expressed in terms of spider mite intrinsic rate of population increase (rm). In order of increasing resistance these were Sirtaki, Rondena, Fame, and Bianca. To correct for differences in damage inflicted on the cultivars, we developed a method to compare the attractiveness of the blends, based on the assumption that a larger amount of spider mite damage leads to higher attraction of P persimilis. Spider mite-induced volatiles of cultivars Rondena and Bianca were preferred over those of cultivar Sirtaki. Spider mite-induced volatiles of cultivars Sirtaki and Fame did not differ in attractiveness to P. persimilis. Sirtaki plants had a lower relative production of terpenes than the other three cultivars. This was attributed to a low production of cis-alpha-bergamotene, trans-alpha-bergamotene, trans-beta-bergamotene, and (E)-beta-farnesene. The emission of (E)-beta-ocimene and linalool was lower in Sirtaki and Fame leaves than in Bianca and Rondena. The importance of these chemical differences in the differential attraction of predatory mites is discussed.
J.C. Moser; T.J. Perry; K. Furuta
1997-01-01
Flying Ips typographus japonicus from Hokkaido (Japan) carried 12 species of phoretic mites, three of which were not previously recorded in Europe. The mite biologies were diverse, including specialists feeding on microorganisms, beetle eggs, and nematodes which were common under beetle elytra. Hyperphoretic on these mites were seven distinct species of fungal spores...
USDA-ARS?s Scientific Manuscript database
Dry bulb mite (DBM), Aceria tulipae, is an economically important mite with a worldwide distribution and a broad host range. As a generalist, it is the most important eriophyoid mite attacking bulbous plants such as garlic, onion, and tulip. To date, DBM has been recorded on host plants belonging to...
USDA-ARS?s Scientific Manuscript database
Varroa Sensitive Hygiene (VSH) is a trait of honey bees, Apis mellifera L., which supports resistance to Varroa destructor mites. VSH is the hygienic removal of mite-infested pupae from capped brood. Bees selectively bred for VSH produce colonies in which the fertility of mites decreases over time...
Van Tilborg, Merijn; Sabelis, Maurice W; Roessingh, Peter
2004-01-01
Anemotaxis in the predatory mite Phytoseiulus persimilis (both well-fed and starved), has previously been studied on a wire grid under slight turbulent airflow conditions yielding weak, yet distinct, gradients in wind speed and odour concentration (Sabelis and Van der Weel 1993). Such conditions might have critically influenced the outcome of the study. We repeated these experiments, under laminar airflow conditions on a flat surface in a wind tunnel, thereby avoiding variation in wind speed and odour concentration. Treatments for starved and well-fed mites were (1) still-air without herbivore-induced plant volatiles (HIPV) (well-fed mites only), (2) an HIPV-free air stream, and (3) an air stream with HIPV (originating from Lima bean plants infested by two-spotted spider mites, Tetranychus urticae). Well-fed mites oriented in random directions in still-air without HIPV. In an air stream, starved mites always oriented upwind, whether plant odours were present or not. Well-fed mites oriented downwind in an HIPV-free air stream, but in random directions in an air stream with HIPV. Only under the last treatment our results differed from those of Sabelis and Van der Weel (1993).
Stored product mites (Acari: Astigmata) infesting food in various types of packaging.
Hubert, Jan; Nesvorna, Marta; Volek, Vlado
2015-02-01
From 2008 to 2014, stored product mites have been reported from prepackaged dried food on the market in the Czech Republic. The infestation was by Carpoglyphus lactis (L.) in dried fruits and Tyrophagus putrescentiae (Schrank) in dog feed. The infestation is presumably caused by poor protection of the packages. We compared various packaging methods for their resistance to mites using dried apricots and dog feed in laboratory experiments. The trial packages included nine different plastic films, monofilm, duplex and triplex, and one type of plastic cup (ten replicates per packaging type). All packaging materials are available on the Czech market for dried food products. The samples of dried food were professionally packed in a factory and packaged dried apricots were exposed to C. lactis and dog food to T. putrescentiae. After 3 months of exposure, the infestation and mite density of the prepackaged food was assessed. Mites were found to infest six types of packages. Of the packaging types with mites, 1-5 samples were infested and the maximum abundance was 1,900 mites g(-1) of dried food. Mites entered the prepackaged food by faulty sealing. Inadequate sealing is suggested to be the major cause of the emerged infestation of dried food.
Lin, Yu-Ping; Nelson, Charmaine; Kramer, Holger; Parekh, Anant B
2018-04-19
The house dust mite is the principal source of perennial aeroallergens in man. How these allergens activate innate and adaptive immunity is unclear, and therefore, there are no therapies targeting mite allergens. Here, we show that house dust mite extract activates store-operated Ca 2+ channels, a common signaling module in numerous cell types in the lung. Activation of channel pore-forming Orai1 subunits by mite extract requires gating by STIM1 proteins. Although mite extract stimulates both protease-activated receptor type 2 (PAR2) and PAR4 receptors, Ca 2+ influx is more tightly coupled to the PAR4 pathway. We identify a major role for the serine protease allergen Der p3 in stimulating Orai1 channels and show that a therapy involving sub-maximal inhibition of both Der p3 and Orai1 channels suppresses mast cell activation to house dust mite. Our results reveal Der p3 as an important aeroallergen that activates Ca 2+ channels and suggest a therapeutic strategy for treating mite-induced asthma. Copyright © 2018 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The temporal development of biological control of arthropod pests in perennial cropping systems is largely unreported. In this study, the development of biological control of twospotted spider mite, Tetranychus urticae Koch and hop aphid, Phorodon humuli (Schrank) in a new planting of hop in Oregon...
Pest Control and Related Orchard Practices in Commercial Fruit Plantings. Circular 1151.
ERIC Educational Resources Information Center
Ries, S. M.; And Others
This circular brings together suggestions from the Illinois Agricultural Experiment Station and the Illinois State Natural History Survey relating to orchard practices and pest control. It provides some basic steps in pest control and discusses some specific orchard pests such as grasshoppers, mites, mice, and rabbits. In addition, it gives some…
[Mites in mattress dust and relevant environmental factors in student dormitories in Shenzhen].
Wang, Bin; Wu, Jie; Liu, Zhi-gang; Ran, Pi-xin; Gao, Qiao; Luo, Chun-hui; Ai, Mei
2009-02-28
Three hundred and eight mattress dust samples were collected from college dormitories in Shenzhen with a mite prevalence of 88% (271/308). From the samples, 6163 mites were isolated and identified. Dermatophagoides farinae, D. pteronyssinus and Blomia tropicalis were three most abundant species, occupying 29.7%, 21.7% and 17.9%, respectively. It was found that sex of the students, mattress cover (bamboo mat or bed sheet), with or without air conditioner installation, and daily using of air conditioner (<2 h, 2-8 h and >8 h) had no significant influence on the mite prevalence (P>0.05). However, logistic regression analysis revealed that the risk of mite sensitization in male student dormitory was significantly lower than that in female dormitory (OR=0.55, P=0.038), and the risk of using bed sheets was significantly higher than using bamboo mats (OR=2.13, P=0.040). Both mite prevalence and the risk of mite sensitization significantly decreased with higher floor of the dormitory building.
House dust and forage mite allergens and their role in human and canine atopic dermatitis.
Nuttall, T J; Hill, Peter B; Bensignor, E; Willemse, T
2006-08-01
This article reviews the literature regarding the role of house dust and forage mite allergens in canine atopic dermatitis. The presence of immunoglobulin E (IgE) to these mites, especially to Dermatophagoides farinae, is common in both normal and atopic dogs. Exposure of dogs to the different mites is described both in the direct environment and in the coat of animals for house dust mites and in the food for forage mites. Allergens causing allergic disease in dogs seem to be different from those in humans. Dogs seem to react to high molecular weight allergens, compared to the low molecular weight group 1 and group 2 proteases that are commonly implicated in humans with atopic diseases. Despite numerous published studies dealing with this subject, a number of questions still need to be addressed to better understand the exact role of these mites in the pathogenesis of canine atopic dermatitis and to improve the quality of the allergens used in practice.
Outbreak of tropical rat mite (Ornithonyssus bacoti) dermatitis in a home for disabled persons.
Baumstark, J; Beck, W; Hofmann, H
2007-01-01
Five mentally handicapped individuals living in a home for disabled persons in Southern Germany were seen in our outpatient department with pruritic, red papules predominantly located in groups on the upper extremities, neck, upper trunk and face. Over several weeks 40 inhabitants and 5 caretakers were affected by the same rash. Inspection of their home and the sheds nearby disclosed infestation with rat populations and mites. Finally the diagnosis of tropical rat mite dermatitis was made by the identification of the arthropod Ornithonyssus bacoti or so-called tropical rat mite. The patients were treated with topical corticosteroids and antihistamines. After elimination of the rats and disinfection of the rooms by a professional exterminator no new cases of rat mite dermatitis occurred. The tropical rat mite is an external parasite occurring on rats, mice, gerbils, hamsters and various other small mammals. When the principal animal host is not available, human beings can become the victim of mite infestation. 2007 S. Karger AG, Basel
Treatment of mites folliculitis with an ornidazole-based sequential therapy: A randomized trial.
Luo, Yang; Sun, Yu-Jiao; Zhang, Li; Luan, Xiu-Li
2016-07-01
Treatment of Demodex infestations is often inadequate and associated with low effective rate. We sought to evaluate the efficacy of an ornidazole-based sequential therapy for mites folliculitis treatment. Two-hundred patients with mites folliculitis were sequentially treated with either an ornidazole- or metronidazole-based regimen. Sebum cutaneum was extruded from the sebaceous glands of each patient's nose and the presence of Demodex mites were examined by light microscopy. The clinical manifestations of relapse of mites folliculitis were recorded and the subjects were followed up at 2, 4, 8, and 12 weeks post-treatment. Patients treated with the ornidazole-based regimen showed an overall effective rate of 94.0%. Additionally, at the 2, 4, 8, and 12-week follow-up, these patients had significantly lower rates of Demodex mite relapse and new lesion occurrence compared with patients treated with the metronidazole-based regimen (P < 0.05). Sequential therapy using ornidazole, betamethasone, and recombinant bovine basic fibroblast growth factor (rbFGF) gel is highly effective for treating mites folliculitis.
Hill, William A; Randolph, Mildred M; Boyd, Keli L; Mandrell, Timothy D
2005-09-01
The tropical rat mite, Ornithonyssus bacoti, was identified in a colony of mutagenized and transgenic mice at a large academic institution. O. bacoti is an obligate, blood-feeding ectoparasite with an extensive host range. Although the source of the infestation was likely feral rodents, none were found in the room housing infested mice. We hypothesize that construction on the floor above the vivarium and compromised ceiling integrity within the animal room provided for vermin entry and subsequent O. bacoti infestation. O. bacoti infestation was eliminated by environmental decontamination with synthetic pyrethroids and weekly application of 7.4% permethrin-impregnated cotton balls to mouse caging for five consecutive weeks. Visual examination of the macroenvironment, microenvironment, and colony for 38 days confirmed the efficacy of treatment. We noted no treatment-related toxicities or effects on colony production.
Predatory mites double the economic injury level of Frankliniella occidentalis in strawberry.
Sampson, Clare; Kirk, William D J
2016-01-01
The western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) causes bronzing to strawberry fruit. Management of insecticide-resistant strains relies on the integration of predators with carefully timed use of the few insecticides available. Effective management requires better understanding of economic injury levels (EILs) and the factors that affect them. The densities of F. occidentalis and the predatory mite Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae) were manipulated in field experiments. All stages of flower and fruit were susceptible to thrips damage, but larvae caused nearly twice as much damage as adults per individual. The EIL was about four adult thrips per flower in the absence of predators, but increased to over eight at densities of N. cucumeris typical of good establishment in crops. The EIL could be increased by about 0.7 adult thrips per flower for every N. cucumeris per flower. The results were supported by measurements of EILs in commercial crops.
The predicted secretome and transmembranome of the poultry red mite Dermanyssus gallinae.
Schicht, Sabine; Qi, Weihong; Poveda, Lucy; Strube, Christina
2013-09-11
The worldwide distributed hematophagous poultry red mite Dermanyssus gallinae (De Geer, 1778) is one of the most important pests of poultry. Even though 35 acaricide compounds are available, control of D. gallinae remains difficult due to acaricide resistances as well as food safety regulations. The current study was carried out to identify putative excretory/secretory (pES) proteins of D. gallinae since these proteins play an important role in the host-parasite interaction and therefore represent potential targets for the development of novel intervention strategies. Additionally, putative transmembrane proteins (pTM) of D. gallinae were analyzed as representatives of this protein group also serve as promising targets for new control strategies. D. gallinae pES and pTM protein prediction was based on putative protein sequences of whole transcriptome data which was parsed to different bioinformatical servers (SignalP, SecretomeP, TMHMM and TargetP). Subsequently, pES and pTM protein sequences were functionally annotated by different computational tools. Computational analysis of the D. gallinae proteins identified 3,091 pES (5.6%) and 7,361 pTM proteins (13.4%). A significant proportion of pES proteins are considered to be involved in blood feeding and digestion such as salivary proteins, proteases, lipases and carbohydrases. The cysteine proteases cathepsin D and L as well as legumain, enzymes that cleave hemoglobin during blood digestion of the near related ticks, represented 6 of the top-30 BLASTP matches of the poultry red mite's secretome. Identified pTM proteins may be involved in many important biological processes including cell signaling, transport of membrane-impermeable molecules and cell recognition. Ninjurin-like proteins, whose functions in mites are still unknown, represent the most frequently occurring pTM. The current study is the first providing a mite's secretome as well as transmembranome and provides valuable insights into D. gallinae pES and pTM proteins operating in different metabolic pathways. Identifying a variety of molecules putatively involved in blood feeding may significantly contribute to the development of new therapeutic targets or vaccines against this poultry pest.
Pevec, Branko; Radulovic Pevec, Mira; Stipic Markovic, Asja; Batista, Irena; Rijavec, Matija; Silar, Mira; Kosnik, Mitja; Korosec, Peter
2012-01-01
Regulatory T (Treg) cells and IgE-mediated signaling pathways could play important roles in the induction of allergen tolerance during house dust mite-specific subcutaneous immunotherapy (HDM-SCIT). Our aim was to compare the basal expression levels of Treg, T helper 1 (Th1) and Th2 transcription factors and components involved in IgE-mediated signaling in healthy subjects with those in HDM-allergic patients both untreated and successfully treated with HDM-SCIT. Thirty-nine HDM-allergic patients who completed a 3- to 5-year course of mite extract SCIT, 20 mite-allergic controls and 25 healthy controls participated in this study. The efficacy of SCIT was monitored using skin-prick tests (SPTs), total immunoglobulin E (tIgE), specific IgE (sIgE), sIgG(4), nasal challenge and visual analog scale (VAS) scores at several time points. The mRNA levels of forkhead box protein 3 (FOXP3), T-BET, GATA-3, FcεRI, spleen tyrosine kinase (Syk), phosphatidylinositol 3 kinase (PI3K) and SH2 domain-containing inositol phosphatase (SHIP) were quantified by real-time RT-PCR using nonstimulated whole blood samples. Decreased wheal sizes and VAS scores, negative challenges and increased sIgG(4) levels indicated that SCIT was effective in the treated patients. Basal expression levels of FOXP3 and GATA-3 decreased and T-BET levels increased in both treated patients and in healthy controls compared to untreated patients. The IgE-mediated pathway kinases Syk and PI3K exhibited reduced expression, whereas SHIP phosphatase levels were elevated in both treated patients and healthy controls relative to untreated patients. The expression levels of FcεRI were not significantly altered. Immunotherapy using HDM extracts results in a modification of the basal expression levels of several IgE-related signaling factors and induces a highly significant upregulation of Th1-response and downregulation of Th2-response transcription factors. Interestingly, this therapy also appears to reduce the basal expression of FOXP3. Copyright © 2012 S. Karger AG, Basel.
Buffon, Giseli; Blasi, Édina A. R.; Adamski, Janete M.; Ferla, Noeli J.; Berger, Markus; Santi, Lucélia; Lavallée-Adam, Mathieu; Yates, John R.; Beys-da-Silva, Walter O.; Sperotto, Raul A.
2016-01-01
Infestation of phytophagous mite Schizotetranychus oryzae in rice causes critical yield losses. To better understand this interaction, we employed Multidimensional Protein Identification Technology (MudPIT) approach to identify differentially expressed proteins. We detected 18 unique proteins in control and 872 in infested leaves, respectively, along with 32 proteins more abundant in control leaves. S. oryzae infestation caused decreased abundance of proteins related to photosynthesis (mostly photosystem II-related), carbon assimilation and energy production, chloroplast detoxification, defense, fatty acid and gibberellin synthesis. On the other hand, infestation caused increased abundance of proteins involved in protein modification and degradation, gene expression at the translation level, protein partitioning to different organelles, lipid metabolism, actin cytoskeleton remodeling, and synthesis of jasmonate, amino acid and molecular chaperones. Our results also suggest that S. oryzae infestation promotes cell wall remodeling and interferes with ethylene biosynthesis in rice leaves. Proteomic data were positively correlated with enzymatic assays and RT-qPCR analysis. Our findings describe the protein expression patterns of infested rice leaves, and suggest that the acceptor side of PSII is probably the major damaged target in the photosynthetic apparatus. These data will be useful in future biotechnological approaches aiming to induce phytophagous mite resistance in rice. PMID:26667653
Erban, Tomas; Rybanska, Dagmar; Harant, Karel; Hortova, Bronislava; Hubert, Jan
2016-01-01
Tyrophagus putrescentiae (Schrank, 1781) is an emerging source of allergens in stored products and homes. Feces proteases are the major allergens of astigmatid mites (Acari: Acaridida). In addition, the mites are carriers of microorganisms and microbial adjuvant compounds that stimulate innate signaling pathways. We sought to analyze the mite feces proteome, proteolytic activities, and mite-bacterial interaction in dry dog food (DDF). Proteomic methods comprising enzymatic and zymographic analysis of proteases and 2D-E-MS/MS were performed. The highest protease activity was assigned to trypsin-like proteases; lower activity was assigned to chymotrypsin-like proteases, and the cysteine protease cathepsin B-like had very low activity. The 2D-E-MS/MS proteomic analysis identified mite trypsin allergen Tyr p3, fatty acid-binding protein Tyr p13 and putative mite allergens ferritin (Grp 30) and (poly)ubiquitins. Tyr p3 was detected at different positions of the 2D-E. It indicates presence of zymogen at basic pI, and mature-enzyme form and enzyme fragment at acidic pI. Bacillolysins (neutral and alkaline proteases) of Bacillus cereus symbiont can contribute to the protease activity of the mite extract. The bacterial exo-chitinases likely contribute to degradation of mite exuviae, mite bodies or food boluses consisting of chitin, including the peritrophic membrane. Thus, the chitinases disrupt the feces and facilitate release of the allergens. B. cereus was isolated and identified based on amplification and sequencing of 16S rRNA and motB genes. B. cereus was added into high-fat, high-protein (DDF) and low-fat, low-protein (flour) diets to 1 and 5% (w/w), and the diets palatability was evaluated in 21-day population growth test. The supplementation of diet with B. cereus significantly suppressed population growth and the suppressive effect was higher in the high-fat, high-protein diet than in the low-fat, low-protein food. Thus, B. cereus has to coexist with the mite in balance to be beneficial for the mite. The mite-B. cereus symbiosis can be beneficial-suppressive at some level. The results increase the veterinary and medical importance of the allergens detected in feces. The B. cereus enzymes/toxins are important components of mite allergens. The strong symbiotic association of T. putrescentiae with B. cereus in DDF was indicated. PMID:26941650
Alix E. Matthews; Jeffery L. Larkin; Douglas W. Raybuck; Morgan C. Slevin; Scott H. Stoleson; Than J. Boves
2017-01-01
Feather mites are obligatory ectosymbionts of birds that primarily feed on the oily secretions from the uropygial gland. Feather mite abundance varies within and among host species and has various effects on host condition and fitness, but there is little consensus on factors that drive variation of this symbiotic system. We tested hypotheses regarding how within-...
Urbanization of Scrub Typhus Disease in South Korea
Park, Sang-Won; Ha, Na-Young; Ryu, Boyeong; Bang, Ji Hwan; Song, Hoyeon; Kim, Yuri; Kim, Gwanghun; Oh, Myoung-don; Cho, Nam-Hyuk; Lee, Jong-koo
2015-01-01
Background Scrub typhus is an endemic disease in Asia. It has been a rural disease, but indigenous urban cases have been observed in Seoul, South Korea. Urban scrub typhus may have a significant impact because of the large population. Methods Indigenous urban scrub typhus was epidemiologically identified in Seoul, the largest metropolitan city in South Korea, using national notifiable disease data from 2010 to 2013. For detailed analysis of clinical features, patients from one hospital that reported the majority of cases were selected and compared to a historic control group. Chigger mites were prospectively collected in the city using a direct chigger mite-collecting trap, and identified using both phenotypic and 18S rDNA sequencing analyses. Their infection with Orientia tsutsugamushi was confirmed by sequencing the 56-kDa antigen gene. Results Eighty-eight cases of urban scrub typhus were determined in Seoul. The possible sites of infection were mountainous areas (56.8%), city parks (20.5%), the vicinity of one’s own residence (17.0%), and riversides (5.7%). Eighty-seven chigger mites were collected in Gwanak mountain, one of the suspected infection sites in southern Seoul, and seventy-six (87.4%) of them were identified as Helenicula miyagawai and eight (9.2%) as Leptotrombidium scutellare. Pooled DNA extracted from H. miyagawai mites yielded O. tsutsugamushi Boryong strain. Twenty-six patients from one hospital showed low APACHE II score (3.4 ± 2.7), low complication rate (3.8%), and no hypokalemia. Conclusions We identified the presence of indigenous urban scrub typhus in Seoul, and a subgroup of them had mild clinical features. The chigger mite H. miyagawai infected with O. tsutsugamushi within the city was found. In endemic area, urban scrub typhus needs to be considered as one of the differential febrile diseases and a target for prevention. PMID:26000454
Saari, Seppo AM; Juuti, Kirsi H; Palojärvi, Joanna H; Väisänen, Kirsi M; Rajaniemi, Riitta-Liisa; Saijonmaa-Koulumies, Leena E
2009-01-01
Background Demodex gatoi is unique among demodectic mites. It possesses a distinct stubby appearance, and, instead of residing in the hair follicles, it dwells in the keratin layer of the epidermis, causing a pruritic and contagious skin disease in cats. Little is known of the occurrence of D. gatoi in Europe or control of D. gatoi infestation. Case presentation We describe D. gatoi in 10 cats, including five Cornish Rex, two Burmese, one Exotic, one Persian and one Siamese, living in six multi-cat households in different locations in Finland containing 21 cats in total. Intense pruritus was the main clinical sign. Scaling, broken hairs, alopecia and self-inflicted excoriations were also observed. Diagnosis was based on finding typical short-bodied demodectic mites in skin scrapings, skin biopsies or on tape strips. Other pruritic skin diseases, such as allergies and dermatophytoses, were ruled out. In one household, despite finding several mites on one cat, all six cats of the household remained symptomless. Amitraz used weekly at a concentration of 125-250 ppm for 2-3 months, proved successful in three households, 2% lime sulphur weekly dips applied for six weeks in one household and peroral ivermectin (1 mg every other day for 10 weeks) in one household. Previous trials in four households with imidacloprid-moxidectin, selamectin or injected ivermectin given once or twice a month appeared ineffective. Conclusion D. gatoi-associated dermatitis is an emerging contagious skin disease in cats in Finland. Although pruritus is common, some cats may harbour the mites without clinical signs. In addition, due to translucency of the mites and fastidious feline grooming habits, the diagnosis may be challenging. An effective and convenient way to treat D. gatoi infestations has yet to emerge. PMID:19843334
Dolezal, Adam G; Carrillo-Tripp, Jimena; Miller, W Allen; Bonning, Bryony C; Toth, Amy L
2016-01-01
As key pollinators, honey bees are crucial to many natural and agricultural ecosystems. An important factor in the health of honey bees is the availability of diverse floral resources. However, in many parts of the world, high-intensity agriculture could result in a reduction in honey bee forage. Previous studies have investigated how the landscape surrounding honey bee hives affects some aspects of honey bee health, but to our knowledge there have been no investigations of the effects of intensively cultivated landscapes on indicators of individual bee health such as nutritional physiology and pathogen loads. Furthermore, agricultural landscapes in different regions vary greatly in forage and land management, indicating a need for additional information on the relationship between honey bee health and landscape cultivation. Here, we add to this growing body of information by investigating differences in nutritional physiology between honey bees kept in areas of comparatively low and high cultivation in an area generally high agricultural intensity in the Midwestern United States. We focused on bees collected directly before winter, because overwintering stress poses one of the most serious problems for honey bees in temperate climates. We found that honey bees kept in areas of lower cultivation exhibited higher lipid levels than those kept in areas of high cultivation, but this effect was observed only in colonies that were free of Varroa mites. Furthermore, we found that the presence of mites was associated with lower lipid levels and higher titers of deformed wing virus (DWV), as well as a non-significant trend towards higher overwinter losses. Overall, these results show that mite infestation interacts with landscape, obscuring the effects of landscape alone and suggesting that the benefits of improved foraging landscape could be lost without adequate control of mite infestations.
Urbanization of scrub typhus disease in South Korea.
Park, Sang-Won; Ha, Na-Young; Ryu, Boyeong; Bang, Ji Hwan; Song, Hoyeon; Kim, Yuri; Kim, Gwanghun; Oh, Myoung-don; Cho, Nam-Hyuk; Lee, Jong-koo
2015-05-01
Scrub typhus is an endemic disease in Asia. It has been a rural disease, but indigenous urban cases have been observed in Seoul, South Korea. Urban scrub typhus may have a significant impact because of the large population. Indigenous urban scrub typhus was epidemiologically identified in Seoul, the largest metropolitan city in South Korea, using national notifiable disease data from 2010 to 2013. For detailed analysis of clinical features, patients from one hospital that reported the majority of cases were selected and compared to a historic control group. Chigger mites were prospectively collected in the city using a direct chigger mite-collecting trap, and identified using both phenotypic and 18S rDNA sequencing analyses. Their infection with Orientia tsutsugamushi was confirmed by sequencing the 56-kDa antigen gene. Eighty-eight cases of urban scrub typhus were determined in Seoul. The possible sites of infection were mountainous areas (56.8%), city parks (20.5%), the vicinity of one's own residence (17.0%), and riversides (5.7%). Eighty-seven chigger mites were collected in Gwanak mountain, one of the suspected infection sites in southern Seoul, and seventy-six (87.4%) of them were identified as Helenicula miyagawai and eight (9.2%) as Leptotrombidium scutellare. Pooled DNA extracted from H. miyagawai mites yielded O. tsutsugamushi Boryong strain. Twenty-six patients from one hospital showed low APACHE II score (3.4 ± 2.7), low complication rate (3.8%), and no hypokalemia. We identified the presence of indigenous urban scrub typhus in Seoul, and a subgroup of them had mild clinical features. The chigger mite H. miyagawai infected with O. tsutsugamushi within the city was found. In endemic area, urban scrub typhus needs to be considered as one of the differential febrile diseases and a target for prevention.
Wei, Liya; Gu, Lianfeng; Song, Xianwei; Cui, Xiekui; Lu, Zhike; Zhou, Ming; Wang, Lulu; Hu, Fengyi; Zhai, Jixian; Meyers, Blake C.; Cao, Xiaofeng
2014-01-01
Transposable elements (TEs) and repetitive sequences make up over 35% of the rice (Oryza sativa) genome. The host regulates the activity of different TEs by different epigenetic mechanisms, including DNA methylation, histone H3K9 methylation, and histone H3K4 demethylation. TEs can also affect the expression of host genes. For example, miniature inverted repeat TEs (MITEs), dispersed high copy-number DNA TEs, can influence the expression of nearby genes. In plants, 24-nt small interfering RNAs (siRNAs) are mainly derived from repeats and TEs. However, the extent to which TEs, particularly MITEs associated with 24-nt siRNAs, affect gene expression remains elusive. Here, we show that the rice Dicer-like 3 homolog OsDCL3a is primarily responsible for 24-nt siRNA processing. Impairing OsDCL3a expression by RNA interference caused phenotypes affecting important agricultural traits; these phenotypes include dwarfism, larger flag leaf angle, and fewer secondary branches. We used small RNA deep sequencing to identify 535,054 24-nt siRNA clusters. Of these clusters, ∼82% were OsDCL3a-dependent and showed significant enrichment of MITEs. Reduction of OsDCL3a function reduced the 24-nt siRNAs predominantly from MITEs and elevated expression of nearby genes. OsDCL3a directly targets genes involved in gibberellin and brassinosteroid homeostasis; OsDCL3a deficiency may affect these genes, thus causing the phenotypes of dwarfism and enlarged flag leaf angle. Our work identifies OsDCL3a-dependent 24-nt siRNAs derived from MITEs as broadly functioning regulators for fine-tuning gene expression, which may reflect a conserved epigenetic mechanism in higher plants with genomes rich in dispersed repeats or TEs. PMID:24554078
Beugnet, Frédéric; Bouhsira, Emilie; Halos, Lénaïg; Franc, Michel
2014-01-01
A study based on naturally infested cats was designed to evaluate the effectiveness of a single treatment with a topical formulation containing fipronil, (S)-methoprene, eprinomectin and praziquantel, for the prevention of Otodectes cynotis infestation in cats. Six treated cats and six untreated cats were housed with three chronically Otodectes cynotis-infested cats, respectively. The cats of each group were kept together in a 20-m(2) room for 1 month. Both clinical examination and ear mite counts were conducted on Day 28. All donor cats were confirmed to be chronically infested with Otodectes cynotis on Day -1 and Day 28. From untreated control cats, 129 live mites were recovered on Day 28 and all cats were found to be infested. In the treated group, three cats were found to be infested, with a total of five live mites recovered, the difference between the two groups being significant (p = 0.003). One treatment corresponded to 96% preventive efficacy at Day 28 based on ear mite counts. With regard to cerumen, the clinical score increased significantly for untreated cats between Day -1 and Day 28 (p = 0.00026) and not for treated cats (p = 0.30). The difference in cerumen abundance was significant between untreated and treated cats on Day 28 (p = 0.0035). Concerning the pruritic reflex in at least one ear, all cats were negative at inclusion. All six untreated cats became positive and showed a reflex on Day 28, whereas no treated cat showed ear pruritus (p = 0.00026). © F. Beugnet et al., published by EDP Sciences, 2014.
De Bruijn, Paulien J. A.; Sabelis, Maurice W.
2008-01-01
Predatory mites locate herbivorous mites, their prey, by the aid of herbivore-induced plant volatiles (HIPV). These HIPV differ with plant and/or herbivore species, and it is not well understood how predators cope with this variation. We hypothesized that predators are attracted to specific compounds in HIPV, and that they can identify these compounds in odor mixtures not previously experienced. To test this, we assessed the olfactory response of Phytoseiulus persimilis, a predatory mite that preys on the highly polyphagous herbivore Tetranychus urticae. The responses of the predatory mite to a dilution series of each of 30 structurally different compounds were tested. They mites responded to most of these compounds, but usually in an aversive way. Individual HIPV were no more attractive (or less repellent) than out-group compounds, i.e., volatiles not induced in plants fed upon by spider-mites. Only three samples were significantly attractive to the mites: octan-1-ol, not involved in indirect defense, and cis-3-hexen-1-ol and methyl salicylate, which are both induced by herbivory, but not specific for the herbivore that infests the plant. Attraction to individual compounds was low compared to the full HIPV blend from Lima bean. These results indicate that individual HIPV have no a priori meaning to the mites. Hence, there is no reason why they could profit from an ability to identify individual compounds in odor mixtures. Subsequent experiments confirmed that naive predatory mites do not prefer tomato HIPV, which included the attractive compound methyl salicylate, over the odor of an uninfested bean. However, upon associating each of these odors with food over a period of 15 min, both are preferred. The memory to this association wanes within 24 hr. We conclude that P. persimilis possesses a limited ability to identify individual spider mite-induced plant volatiles in odor mixtures. We suggest that predatory mites instead learn to respond to prey-associated mixtures of volatiles and, thus, to odor blends as a whole. PMID:18521678
Lira, A C S; Zanardi, O Z; Beloti, V H; Bordini, G P; Yamamoto, P T; Parra, J R P; Carvalho, G A
2015-10-01
The use of synthetic acaricides for management of pest mites may alter the efficacy of the ectoparasitoid Tamarixia radiata (Waterston) in biological control of Diaphorina citri Kuwayama, the vector of the bacteria associated with huanglongbing (HLB) in citrus orchards. We evaluated the toxicity of 16 acaricides that are recommended for the control of citrus-pest mites to T. radiata. Acrinathrin, bifenthrin, carbosulfan, and fenpropathrin caused high acute toxicity and were considered harmful (mortality >77%) to T. radiata. Abamectin, diflubenzuron, etoxazole, fenbutatin oxide, fenpyroximate, flufenoxuron, hexythiazox, propargite, spirodiclofen, and sulfur caused low acute toxicity and affected the parasitism rate and emergence rate of adults (F1 generation), and were considered slightly harmful to T. radiata. Dicofol and pyridaben did not affect the survival and action of the ectoparasitoid, and were considered harmless. In addition to its acute toxicity, carbosulfan caused mortality higher than 25% for >30 d after application, and was considered persistent. Acrinathrin, bifenthrin, fenpropathrin, fenpyroximate, propargite, and sulfur caused mortalities over 25% until 24 d after application and were considered moderately persistent; abamectin was slightly persistent, and fenbutatin oxide was short lived. Our results suggest that most acaricides used to control pest mites in citrus affect the density and efficacy of T. radiata in the biological control of D. citri. However, further evaluations are needed in order to determine the effect of these products on this ectoparasitoid under field conditions. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The neutrophil-lymphocyte ratio in children with atopic dermatitis: a case-control study.
Dogru, M; Citli, R
2017-01-01
Neutrophil-lymphocyte ratio(NLR) is a novel marker for the evaluation of inflammation and has not been evaluated previously in patients with AD. To investigate the relationship between NLR and the clinical findings of AD. Sixty-six children with AD were included in the study.The control group was included 66 children who have no allergic and chronic diseases.The immunoglobulin(Ig)E levels and complete blood count were measured. Skin prick tests were performed using the same antigens for all patients. NLR was not significant between the patient and control groups (p>0.05).The patients with AD were divided into 3 groups according to their SCORAD score as mild, moderate and severe AD.No statistically significant difference was present between groups in terms of demographic and clinical characteristics,eosinohil-lymphocyte ratio,eosinophil-neutrophil ratio,the percentage of eosinophil, IgE,the sensitivity of skin tests(p>0.05). However,NLR and sensitivity to house dust mite were significantly different among groups(respectively,p=0.037,p:0.043).SCORAD scores were weak positively correlated with NLR levels,eosinophil-lymphocyte ratio and the sensitivity of house dust mite (respectively,r:0.329;p:0.007,r:0.264;p:00035,r:0.325;p:0.008). We didn't found significant difference in term of mean NLR betweeen patients with AD and control group. NLR was found significantly higher in severe AD patients than mild AD patients.The house dust mite sensitivity, eosinohil-lymphocyte ratio and NLR were correlated with AD severity.
Apply Pesticides Correctly, A Guide for Commercial Applicators: Agricultural Pest Control -- Animal.
ERIC Educational Resources Information Center
Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.
This guide contains basic information to meet specific standards for pesticide applicators. The text is concerned with the common pests of agricultural animals such as flies, ticks, bots, lice and mites. Methods for controlling these pests and appropriate pesticides are discussed. (CS)
Ornamental and Turfgrass Pest Control. Sale Publication 4074.
ERIC Educational Resources Information Center
Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.
This guide gives information for recognition and control of ornamental and turf pests. Included are disease agents, insects and mites, weeds, and vertebrates. Symptoms and causes of phytotoxicity are given, and a discussion is presented of environmental concerns. Application methods and area measurement are also discussed. (BB)
Arena, Gabriella D.; Ramos-González, Pedro L.; Nunes, Maria A.; Ribeiro-Alves, Marcelo; Camargo, Luis E. A.; Kitajima, Elliot W.; Machado, Marcos A.; Freitas-Astúa, Juliana
2016-01-01
Leprosis is a serious disease of citrus caused by Citrus leprosis virus C (CiLV-C, genus Cilevirus) whose transmission is mediated by false spider mites of the genus Brevipalpus. CiLV-C infection does not systemically spread in any of its known host plants, thus remaining restricted to local lesions around the feeding sites of viruliferous mites. To get insight into this unusual pathosystem, we evaluated the expression profiles of genes involved in defense mechanisms of Arabidopsis thaliana and Citrus sinensis upon infestation with non-viruliferous and viruliferous mites by using reverse-transcription qPCR. These results were analyzed together with the production of reactive oxygen species (ROS) and the appearance of dead cells as assessed by histochemical assays. After interaction with non-viruliferous mites, plants locally accumulated ROS and triggered the salicylic acid (SA) and jasmonate/ethylene (JA/ET) pathways. ERF branch of the JA/ET pathways was highly activated. In contrast, JA pathway genes were markedly suppressed upon the CiLV-C infection mediated by viruliferous mites. Viral infection also intensified the ROS burst and cell death, and enhanced the expression of genes involved in the RNA silencing mechanism and SA pathway. After 13 days of infestation of two sets of Arabidopsis plants with non-viruliferous and viruliferous mites, the number of mites in the CiLV-C infected Arabidopsis plants was significantly higher than in those infested with the non-viruliferous ones. Oviposition of the viruliferous mites occurred preferentially in the CiLV-C infected leaves. Based on these results, we postulated the first model of plant/Brevipalpus mite/cilevirus interaction in which cells surrounding the feeding sites of viruliferous mites typify the outcome of a hypersensitive-like response, whereas viral infection induces changes in the behavior of its vector. PMID:27933078
Chang, Runlei; Duong, Tuan A.; Taerum, Stephen J.; Wingfield, Michael J.; Zhou, Xudong; de Beer, Z. Wilhelm
2017-01-01
Abstract The Ophiostomatales is an Ascomycete order of fungi that accommodates several tree pathogens and many species that degrade wood. These fungi are commonly vectored by Scolytine bark and ambrosia beetles. In recent years it has also been shown that hyperphoretic mites on these beetles can vector some Ophiostomatales. Little is known regarding the Ophiostomatales in China and we have consequently explored the diversity of these fungi associated with conifer-infesting beetles and mites in Yunnan province. Galleries and beetles were collected for 17 beetle species, while 13 mite species were obtained from six of these beetle species. Collectively, 340 fungal isolates were obtained, 45 from beetles, 184 from mites, 56 from galleries and 55 isolates where the specific niche was not clear. DNA sequences for five gene regions (ITS, LSU, BT, EF, and CAL) were determined for fungal isolates representing different morphological groups. Phylogenetic analyses confirmed the presence of 19 fungal taxa, including five novel species described here as Ophiostoma acarorum sp. nov., Ophiostoma brevipilosi sp. nov., Graphilbum kesiyae sp. nov., Graphilbum puerense sp. nov., and Leptographium ningerense sp. nov. Ophiostoma ips was the most frequently isolated species, representing approximately 31% of all isolates. Six of 19 taxa were present on mites, beetles and in the galleries of the beetles, while three species were found on mites and galleries. Two species were found only on mites and one species only on a beetle. Although the numbers of beetles and mites were insufficient to provide statistical inferences, this study confirmed that mites are important vectors of the Ophiostomatales in China. We hypothesize that these mites are most likely responsible for horizontal transfer of fungal species between galleries of different beetle species. The fact that half of the fungal species found were new to science, suggests that the forests of east Asia include many undescribed Ophiostomatales yet to be discovered. PMID:29559821
Bahreini, Rassol; Currie, Robert W
2015-11-01
The objectives of this study were to quantify the costs and benefits of co-parasitism with Varroa (Varroa destructor Anderson and Trueman) and Nosema (Nosema ceranae Fries and Nosema apis Zander) on honey bees (Apis mellifera L.) with different defense levels. Newly-emerged worker bees from either high-mite-mortality-rate (high-MMR) bees or low-mite-mortality-rate (low-MMR) bees were confined in forty bioassay cages which were either inoculated with Nosema spores [Nosema (+) group] or were left un-inoculated [Nosema (-) group]. Caged-bees were then inoculated with Varroa mites [Varroa (+) group] or were left untreated [Varroa (-) group]. This established four treatment combinations within each Nosema treatment group: (1) low-MMR Varroa (-), (2) high-MMR Varroa (-), (3) low-MMR Varroa (+) and (4) high-MMR Varroa (+), each with five replicates. Overall mite mortality in high-MMR bees (0.12±0.02 mites per day) was significantly greater than in the low-MMR bees (0.06±0.02 mites per day). In the Nosema (-) groups bee mortality was greater in high-MMR bees than low-MMR bees but only when bees had a higher mite burden. Overall, high-MMR bees in the Nosema (-) group showed greater reductions in mean abundance of mites over time compared with low-MMR bees, when inoculated with additional mites. However, high-MMR bees could not reduce mite load as well as in the Nosema (-) group when fed with Nosema spores. Mean abundance of Nosema spores in live bees and dead bees of both strains of bees was significantly greater in the Nosema (+) group. Molecular analyses confirmed the presence of both Nosema species in inoculated bees but N. ceranae was more abundant than N. apis and unlike N. apis increased over the course of the experiment. Collectively, this study showed differential mite mortality rates among different genotypes of bees, however, Nosema infection restrained Varroa removal success in high-MMR bees. Copyright © 2015 Elsevier Inc. All rights reserved.
Peng, Pei-Ying; Guo, Xian-Guo; Ren, Tian-Guang; Dong, Wen-Ge; Song, Wen-Yu
2016-05-01
Trombiculid mites (or chigger mites) are a large group of arthropods, and some of these species are vectors of Orientia tsutsugamushi, the causative agent of tsutsugamushi disease (scrub typhus). Yunnan Province is situated in the southwest of China, and its complicated topography, special altitude gradients, and high biodiversity have aroused the interest of many scientists to study the fauna and species diversity of plants and animals. To replenish our former faunal study, this paper listed all the scientific names of trombiculid mites in Yunnan Province, together with their hosts and collection sites (geographical distribution). A total of 120,138 individuals of trombiculid mites were collected from the body surface of 13,760 small mammal hosts (89.06 % of them are rodents) in 29 collection sites (counties) of Yunnan Province from 2001 to 2013. The 120,138 mites were identified as comprising 2 families (Trombiculidae and Leeuwenhoekiidae), 26 genera, and 274 species. The genus Leptotrombidium had the most abundant species (109 species) of 26 genera. Of the six main vectors of scrub typhus in China, five of them were found in Yunnan. Of the 274 chigger mite species, 23 were determined as the newly recorded species (new records), which were found in Yunnan Province for the first time. The identified 274 species of trombiculid mites in the present paper are much more than those from other provinces in China and even largely exceeded the species of trombiculid mites recorded from some other regions and countries in the world. Based on the formula of Chao 1, the total number of chigger mite species in Yunnan was approximately estimated to be 346 species, and about 72 species might have been missed in our sampling process.
Szydło, W; Hein, G; Denizhan, E; Skoracka, A
2015-08-01
Recent research on the wheat curl mite species complex has revealed extensive genetic diversity that has distinguished several genetic lineages infesting bread wheat (Triticum aestivum L.) and other cereals worldwide. Turkey is the historical region of wheat and barley (Hordeum vulgare L.) domestication and diversification. The close relationship between these grasses and the wheat curl mite provoked the question of the genetic diversity of the wheat curl mite in this region. The scope of the study was to investigate genetic differentiation within the wheat curl mite species complex on grasses in Turkey. Twenty-one wheat curl mite populations from 16 grass species from nine genera (Agropyron sp., Aegilops sp., Bromus sp., Elymus sp., Eremopyrum sp., Hordeum sp., Poa sp., Secale sp., and Triticum sp.) were sampled in eastern and southeastern Turkey for genetic analyses. Two molecular markers were amplified: the cytochrome oxidase subunit I coding region of mtDNA (COI) and the D2 region of 28S rDNA. Phylogenetic analyses revealed high genetic variation of the wheat curl mite in Turkey, primarily on Bromus and Hordeum spp., and exceptionally high diversity of populations associated with bread wheat. Three wheat-infesting wheat curl mite lineages known to occur on other continents of the world, including North and South America, Australia and Europe, were found in Turkey, and at least two new genetic lineages were discovered. These regions of Turkey exhibit rich wheat curl mite diversity on native grass species. The possible implications for further studies on the wheat curl mite are discussed. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Short form of Demodex species mite in the dog: occurrence and measurements.
Chesney, C J
1999-02-01
A form of Demodex species mite shorter in length than Demodex canis was found in six consecutive cases of canine demodicosis. The mean length of the parasite was 122.6 microns (SD 12.0 microns, 39 mites counted), significantly shorter than either male or female forms of D canis (P < 0.0001). The proportion of short to long mites in each case varied from 0.5 to 22 per 100. In young dogs, skin signs associated with the presence of mites were first noted after about seven months, while in the oldest subject the disease became apparent at 10 years of age. This form of mite has now been found in four countries over three continents, the findings suggesting that it is not uncommon and is acquired in puppyhood, although it may be carried unnoticed for many years.
PCR amplification and DNA sequencing of Demodex injai from otic secretions of a dog.
Milosevic, Milivoj A; Frank, Linda A; Brahmbhatt, Rupal A; Kania, Stephen A
2013-04-01
The identification of Demodex mites from dogs is usually based on morphology and location. Mites with uncharacteristic features or from unusual locations, hosts or disease manifestations could represent new species not previously described; however, this is difficult to determine based on morphology alone. The goal of this study was to identify and confirm Demodex injai in association with otitis externa in a dog using PCR amplification and DNA sequencing. Otic samples were obtained from a beagle in which a long-bodied Demodex mite was identified. For comparison, Demodex mite samples were collected from a swab and scraping of the dorsal skin of a wire-haired fox terrier and an otic sample from a dog with generalized and otic demodicosis. To identify the Demodex mite, DNA was extracted, and 16S rRNA was amplified by PCR, sequenced and compared with Demodex sequences available in public databases and from separate samples morphologically diagnosed as D. injai and Demodex canis. PCR amplification of the long-bodied mite rRNA DNA obtained from otic samples was approximately 330 bp and was identical to that from the mite morphologically identified as D. injai obtained from the dorsal skin of a dog. Furthermore, the examined mite did not have any significant homology to any of the reported genes from Demodex spp. These results confirmed that the demodex mites in this case were D. injai. © 2013 The Authors. Veterinary Dermatology © 2013 ESVD and ACVD.
House Dust Mite Prevalence in the House of Patients with Atopic Dermatitis in Mashhad, Iran.
Ziyaei, Toktam; Berenji, Fariba; Jabbari-Azad, Farahzad; Fata, Abdolmajid; Jarahi, Lida; Fereidouni, Mohammad
2017-06-01
Being exposed to house dust mites intensifies atopic dermatitis. This study has investigated the contamination rate with Dermatophagoides mites in patient's residential home with atopic dermatitis. In this cross-sectional study, 40 patients took part with atopic dermatitis (positive or negative for mites by prick Dermal Test). Samples were collected from 3 locations (living room, bedroom and bed) by vacuum cleaner. Dust samples (transferred to freezer -20 °C) were examined by direct method and flotation. The data were analyzed using statistical SPSS vr.20 software. Twenty patients of positive prick test included 8 (40%) male and 12 (60%) female. The results of direct observation of mites: 7 cases (35%) in bedding sheets, 6 cases (30%) bedrooms' carpet, 3 cases (15%) living room's carpet. Twenty patients of negative prick test included 8 (40%) male and 12 (60%) female. Only mites were found (5%) in living room's carpets of negative prick test patients. Dermatophagoides pteronyssinus was more frequent than Dermatophagoides farina e. (98% vs 83%). Fifty-five percent of residential homes of prick test positive patients and only 5% of residential homes of prick test negative patients were positive for mite. Sunshine provided home had fewer mites than home where sunshine is not provided. Prick test positive patients used handmade carpets more than machine made ones. In positive prick test patients, mites were found in bed sheet and bedroom's carpet more than negative prick test patient's sheets and carpets.
Dust Mites Population in Indoor Houses of Suspected Allergic Patients of South Assam, India
Sharma, Dhruba; Dutta, B. K.; Singh, A. B.
2011-01-01
Background. In the present study, quality and quantity of indoor dust mites was evaluated at the residence of 150 atopic allergic patients from four different districts of South Assam. Methods. Suspected patients with case history of allergic disease were selected for indoor survey. Dust samples (500 mg) were collected from the selected patient's house and were analyzed using standard methods. Results. About 60% of the selected patients were found suffering from respiratory disorders and rest 40% from skin allergy. The dominant mites recorded from indoor dust samples were Dermatophagoides followed by Blomia, Acarus, and Cheyletus while Caloglyphus was recorded in least number. The distribution of mites on the basis of housing pattern indicates that RCC type of buildings supports maximum dust mite's population followed by Assam type (semi-RCC) buildings, and the lowest count was observed in wooden houses. Environmental factors like temperature, rainfall, and relative humidity are found to determine the indoor mite's population. Severity of allergic attack in some of the typical cases was found to be proportional to the allergen load of mites in the dust samples. Conclusions. The economic status, housing pattern, and local environmental factors determine the diversity and abundance of dust mites in indoor environment. PMID:23724231
Rocha, C F D; Cunha-Barros, M; Menezes, V A; Fontes, A f; Vrcibradic, D; Van Sluys, M
2008-06-01
We studied the parasitism by the chigger mite Eutrombicula alfreddugesi on four sympatric lizard species of the genus Tropidurus in Morro do Chapéu, Bahia state, Brazil: T. hispidus, T. cocorobensis, T. semitaeniatus and T. erythrocephalus. For each species, we investigated the patterns of infestation and analyzed to which extent they varied among the hosts. We calculated the spatial niche breadth of the chigger mite on the body of each host species and the distribution of mites along the hosts' bodies for each Tropidurus species. All four species of Tropidurus at Morro do Chapéu were parasited by the chigger mite, with high (97-100%) prevalences. Host body size significantly explained the intensity of mite infestation for all species, except T. erythrocephalus. The body regions with highest intensity of infestation in the four lizard species were the mite pockets. The spacial niche width of the chigger varied consistently among the four lizards species studied being highest for T. erytrocephalus and lowest for T. cocorobensis. We conclude that the distribution and intensity with which lizards of the genus Tropidurus are infested by Eutrombicula alfreddugesi larvae results from the interaction between aspects of host morphology (such as body size and the occurrence and distribution of mite pockets) and ecology (especially microhabitat use).
Odaka, Makiko; Ogino, Kazumasa; Shikada, Michitaka; Asada, Kenichi; Kasa, Syoujirou; Inoue, Takahiro; Maeda, Ken
2017-12-01
The poultry red mite (Dermanyssus gallinae) is a serious problem for the poultry industry worldwide. However, the relationship between the mite population and the damage that they cause is still unclear. In this study, the mite population in poultry houses was examined using an established trap method, and the risk of blood-stained eggs caused by the mites was assessed. Traps were placed once a week outside the egg channels and/or on the floor in two poultry farms in Fukuoka Prefecture, Japan, from April 2012 to July 2014. The numbers of blood-stained eggs and total eggs were counted at weekly intervals. The results showed that the number of mites increased from April to May, and reached a peak around the beginning of June when the average temperature and humidity were >24°C and 70-90%, respectively. In the segmented model, the correlation between the proportion of blood-stained eggs and the number of mites or temperature was positive over a threshold. In conclusion, our established trap method is useful for monitoring mites and can be used to predict when poultry farms should be treated to prevent appearance of blood-stained eggs. © 2017 Japanese Society of Animal Science.
Bu, Chunya; Li, Jinling; Wang, Xiao-Qin; Shi, Guanglu; Peng, Bo; Han, Jingyu; Gao, Pin; Wang, Younian
2015-01-01
Tetranychus cinnabarinus (Acari: Tetranychidae) is a worldwide polyphagous agricultural pest that has the title of resistance champion among arthropods. We reported previously the identification of the acaricidal compound β-sitosterol from Mentha piperita and Inula japonica. However, the acaricidal mechanism of β-sitosterol is unclear. Due to the limited genetic research carried out, we de novo assembled the transcriptome of T. cinnabarinus using Illumina sequencing and conducted a differential expression analysis of control and β-sitosterol-treated mites. In total, we obtained >5.4 G high-quality bases for each sample with unprecedented sequencing depth and assembled them into 22,941 unigenes. We identified 617 xenobiotic metabolism-related genes involved in detoxification, binding, and transporting of xenobiotics. A highly expanded xenobiotic metabolic system was found in mites. T. cinnabarinus detoxification genes—including carboxyl/cholinesterase and ABC transporter class C—were upregulated after β-sitosterol treatment. Defense-related proteins, such as Toll-like receptor, legumain, and serine proteases, were also activated. Furthermore, other important genes—such as the chloride channel protein, cytochrome b, carboxypeptidase, peritrophic membrane chitin binding protein, and calphostin—may also play important roles in mites' response to β-sitosterol. Our results demonstrate that high-throughput-omics tool facilitates identification of xenobiotic metabolism-related genes and illustration of the acaricidal mechanisms of β-sitosterol. PMID:26078964
Cakmak, Ibrahim; Janssen, Arne; Sabelis, Maurice W
2006-01-01
Species at the same trophic level may interact through competition for food, but can also interact through intraguild predation. Intraguild predation is widespread at the second and third trophic level and the effects may cascade down to the plant level. The effects of intraguild predation can be modified by antipredator behaviour in the intraguild prey. We studied intraguild predation and antipredator behaviour in two species of predatory mite, Neoseiulus californicus and Phytoseiulus persimilis, which are both used for control of the two-spotted spider mite in greenhouse and outdoor crops. Using a Y-tube olfactometer, we assessed in particular whether each of the two predators avoids odours emanating from prey patches occupied by the heterospecific predator. Furthermore, we measured the occurrence and rate of intraguild predation of different developmental stages of P. persimilis and N. californicus on bean leaves in absence or in presence of the shared prey. Neither of the two predator species avoided prey patches with the heterospecific competitor, both when inexperienced with the other predator and when experienced with prey patches occupied by the heterospecific predator. Intraguild experiments showed that N. californicus is a potential intraguild predator of P. persimilis. However, P. persimilis did not suffer much from intraguild predation as long as the shared prey was present. This is probably because N. californicus prefers to feed on two-spotted spider mites rather than on its intraguild prey.
McDonald, L G; Tovey, E
1992-10-01
The effects of various laundry procedures on house dust mites and their allergens have been established. All mites were killed by water temperatures 55 degrees C or greater. Killing at lower temperatures was not enhanced by any of the pure detergents or laundry products tested. A cold cycle of laundry washing with or without laundry powder did not remove most live mites from bedding, however, the allergen concentration (Der p I/gm fine dust) was reduced by more than 90%. Dry cleaning did not reduce the allergen concentration of the dust, although most, if not all, mites were killed.
[Animal mites transmissible to humans and associated zoonosis].
Jofré M, Leonor; Noemí H, Isabel; Neira O, Patricia; Saavedra U, Tirza; Díaz L, Cecilia
2009-06-01
Mites that affect animals (acariasis) can occasionally be transmitted to humans by incidental contact producing pruritus and dermatitis. Animals such as dogs, cats, mice, birds and reptiles, harbour several mite species. Hemophage mites and those that feed on lymph have the potential of transmitting important zoonotic agents (cuales??). The presence of lesions of unclear origin and a history of contact with pets or wild animals should alert towards the possibility of acariasis. Diagnosis is based on direct visualization of the mite,analysis of its morphology and obtaining information on the animal host. Awareness of these acarosis and the responsible care of pets and animals are the most relevant preventive measures.
Ectoparasitic mite and fungus on Harmonia axyridis
USDA-ARS?s Scientific Manuscript database
Ectoparasitic mites (Acarina: Podapolipidae) and ectoparasitic fungi (Laboulbeniales: Laboulbeniaceae) occur on ladybirds (Coleoptera: Coccinellidae) throughout the world (Riddick et al., 2009). This study documents the interaction of a coccinellid-specific mite Coccipolipus hippodamiae (McDaniel &...
Soh, J Y; Thalayasingam, M; Ong, S; Loo, E X L; Shek, L P; Chao, S S
2016-03-01
Sublingual immunotherapy in patients with allergic rhinitis sensitised to house dust mites is safe, but its efficacy is controversial and sublingual immunotherapy with Blomia tropicalis has not yet been studied. This study sought to evaluate the efficacy of sublingual immunotherapy with house dust mite extract in children and adults with house dust mite allergic rhinitis over a period of two years. A prospective observational study was conducted of children and adults diagnosed with house dust mite allergic rhinitis who were treated with sublingual immunotherapy from 2008 to 2012. Total Nasal Symptom Scores, Mini Rhinoconjunctivitis Quality of Life scores and medication usage scores were assessed prospectively. Thirty-nine patients, comprising 24 children and 15 adults, were studied. Total Nasal Symptom Scores and Mini Rhinoconjunctivitis Quality of Life scores dropped significantly at three months into therapy, and continued to improve. Medication usage scores improved at one year into immunotherapy. Sublingual immunotherapy with house dust mite extracts, including B tropicalis, is efficacious as a treatment for patients with house dust mite allergic rhinitis.
Larval Chigger Mites Collected from Small Mammals in 3 Provinces, Korea
Lee, In-Yong; Song, Hyeon-Je; Choi, Yeon-Joo; Shin, Sun-Hye; Choi, Min-Kyung; Kwon, So-Hyun; Shin, E-Hyun; Park, Chan; Kim, Heung-Chul; Klein, Terry A.; Park, Kyung-Hee
2014-01-01
A total of 9,281 larval chigger mites were collected from small mammals captured at Hwaseong-gun, Gyeonggi-do (Province) (2,754 mites from 30 small mammals), Asan city, Chungcheongnam-do (3,358 mites from 48 mammals), and Jangseong-gun, Jeollanam-do (3,169 for 62 mammals) from April-November 2009 in the Republic of Korea (= Korea) and were identified to species. Leptotrombidium pallidum was the predominant species in Hwaseong (95.8%) and Asan (61.2%), while Leptotrombidium scutellare was the predominant species collected from Jangseong (80.1%). Overall, larval chigger mite indices decreased from April (27.3) to June (4.9), then increased in September (95.2) and to a high level in November (169.3). These data suggest that L. pallidum and L. scutellare are the primary vectors of scrub typhus throughout their range in Korea. While other species of larval chigger mites were also collected with some implications in the transmission of Orientia tsutsugamushi, they only accounted for 11.2% of all larval chigger mites collected from small mammals. PMID:24850971
Brännström, Sara; Hansson, Ingrid; Chirico, Jan
2010-04-01
The vector potential of the poultry red mite, Dermanyssus gallinae De Geer (Acari: Dermanyssidae), in relation to chicken erysipelas was investigated under experimental conditions. Chickens were inoculated intramuscularly with the bacterium Erysipelothrix rhusiopathiae, and mites were allowed to feed on the inoculated chickens for 5 days. After 20 days of starvation, the mites were allowed to feed on healthy chickens to enable transmission of bacteria. Blood samples were collected from the birds and analysed for the presence of E. rhusiopathiae, and ELISA tests were performed for seropositivity. The internal presence of E. rhusiopathiae in the mites after feeding of inoculated birds was also investigated. It could not be demonstrated that mites take up and transmit E. rhusiopathiae under the experimental conditions described. However, since there are case reports as well as other in vitro studies indicating the potential of D. gallinae to act as a reservoir and potential vector for infections agents, we cannot exclude the possibility that the red poultry mite transmits E. rhusiopathiae between chickens under field conditions.
Treatment of mites folliculitis with an ornidazole-based sequential therapy
Luo, Yang; Sun, Yu-Jiao; Zhang, Li; Luan, Xiu-Li
2016-01-01
Abstract Objective: Treatment of Demodex infestations is often inadequate and associated with low effective rate. We sought to evaluate the efficacy of an ornidazole-based sequential therapy for mites folliculitis treatment. Methods: Two-hundred patients with mites folliculitis were sequentially treated with either an ornidazole- or metronidazole-based regimen. Sebum cutaneum was extruded from the sebaceous glands of each patient's nose and the presence of Demodex mites were examined by light microscopy. The clinical manifestations of relapse of mites folliculitis were recorded and the subjects were followed up at 2, 4, 8, and 12 weeks post-treatment. Results: Patients treated with the ornidazole-based regimen showed an overall effective rate of 94.0%. Additionally, at the 2, 4, 8, and 12-week follow-up, these patients had significantly lower rates of Demodex mite relapse and new lesion occurrence compared with patients treated with the metronidazole-based regimen (P < 0.05). Conclusion: Sequential therapy using ornidazole, betamethasone, and recombinant bovine basic fibroblast growth factor (rbFGF) gel is highly effective for treating mites folliculitis. PMID:27399141
Abou El-Atta, Doaa Abd El-Maksoud; Osman, Mohamed Ali
2016-04-01
This study investigated development, reproduction and life table parameters of the astigmatid mold mite Tyrophagus putrescentiae (Schrank) (Acari: Acaridae) feeding on egg-masses or adult females of the nematode Meloidogyne incognita, egg-masses of the nematode Rotylenchulus reniformis, ras cheese or yeast at 25 ± 1 °C, 70 ± 10 % RH in the dark. Immature developmental times were shorter when the mite was fed females of M. incognita followed by yeast. Different prey/diet types had no significant effect on longevity and lifespan of both males and females. Daily oviposition rate (eggs/female/day) was highest for mites fed yeast (20.8 ± 1.8 eggs) and lowest for mites fed females of M. incognita (6.6 ± 0.5). Intrinsic rate of natural increase (r m) was highest for mites fed yeast compared to other prey/diet; no significant differences in r m were observed among mites fed on non-yeast diets. This result may suggest a role of T. putrescentiae as biocontrol agent of plant-parasitic nematodes and the yeast may be used for mite mass-production purposes.
1980-02-01
fungus killers), miticides (mite killers) and herbicides (plant killers). More than 60,000 pesticides products are registered with EPA. They are all...Water Act of 1977 ..................... 22 Federal Environmental Pesticide Control Act of 1972 .......... 23 Federal Environmental Pesticide Control Act...Amendments of 1975 ..... ................... ... 25 Federal Environmental Pesticide Control Act Amendments of 1978 ..................... 26 Safe
Safe, Effective Use of Pesticides, A Manual for Commercial Applicators: Fruit Pest Control.
ERIC Educational Resources Information Center
Brunner, J.; And Others
This manual is intended to assist pesticide applicators prepare for certification under the Michigan Pesticide Control Act of 1976. The primary focus of this publication is on fruit pest control. Sections included are: (1) Causes of fruit diseases; (2) Fruit fungicides and bactericides; (3) Insect and mite pests; (4) Insecticides and miticides;…
Ann E. Hajek; Michael L. McManus; Italo Delalibera Junior
2007-01-01
Compared with parasitoids and predators, classical biological control programs targeting arthropod pests have used pathogens and nematodes very little. However, some pathogens and nematodes that have been introduced have become established and provided excellent control and have been introduced in increasing numbers of areas over decades, often after distributions of...
Varroa destructor Mites Can Nimbly Climb from Flowers onto Foraging Honey Bees.
Peck, David T; Smith, Michael L; Seeley, Thomas D
2016-01-01
Varroa destructor, the introduced parasite of European honey bees associated with massive colony deaths, spreads readily through populations of honey bee colonies, both managed colonies living crowded together in apiaries and wild colonies living widely dispersed in natural settings. Mites are hypothesized to spread between most managed colonies via phoretically riding forager bees when they engage in robbing colonies or they drift between hives. However, widely spaced wild colonies show Varroa infestation despite limited opportunities for robbing and little or no drifting of bees between colonies. Both wild and managed colonies may also exchange mites via another mechanism that has received remarkably little attention or study: floral transmission. The present study tested the ability of mites to infest foragers at feeders or flowers. We show that Varroa destructor mites are highly capable of phoretically infesting foraging honey bees, detail the mechanisms and maneuvers by which they do so, and describe mite behaviors post-infestation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schowalter, T.D.; Crossley, D.A. Jr.
1982-03-01
This paper describes rates of Chromium-51 and Strontium-85 assimilation and bioelimination by the hissing cockroach, Gromphadorhina portentosa (Schaum), when the symbiotic mite, Gromphadorholaelaps schaeferi Till, was present or removed. Mite-infested cockroaches had significantly higher rates of /sup 51/Cr elimination relative to mite-free cockroaches, implying more rapid gut clearance times. We did not find a significant mite effect on /sup 85/Sr elimination by the host, but mite effects could have been masked by the apparently unique process of nutrient assimilation and elimination by G. portentosa. Conventional models of radioactive tracer bioelimination predict a rapid initial loss of tracer due to gutmore » clearance, followed by a slower loss due to excretion of assimilated tracer. Our results indicated that assimilated /sup 85/Sr was eliminated earlier than unassimilated /sup 85/Sr was lost by defecation.« less
Mites (acari) infesting commensal rats in Suez Canal zone, Egypt.
el Kady, G A; Shoukry, A; Ragheb, D A; el Said, A M; Habib, K S; Morsy, T A
1995-08-01
Mites are arthropods distinguished from ticks by usually being microscopical in size and have a hypostome unarmed with tooth-like anchoring processes. They are group in a number of suborders, each with super-families and families including many genera of medical and economic importance. In this paper, commensal rodents (Rattus norvegicus, R. r. alexandrinus and R. r. frugivorous) were surveyed in the Suez Canal Zone for their acari ectoparasites. Four species of mites were recovered. In a descending order of mite indices, they were Eulaelaps stabularis (4.83 on 6 rats), Laelaps nuttalli (3.11 on 27 rats), Ornithonyssus bacoti (1.66 on 9 rats) and Dermanyssus gallinae (0.66 on 24 rats). The overall mite indices in the three governorates were 3.66 in Suez, 2.82 in Ismailia and zero in Port Said. The medical and economic importance of the mites were discussed.
Pyroglyphid mites, xerophilic fungi and allergenic activity in dust from hospital mattresses.
v d Lustgraaf, B; Jorde, W
1977-12-01
Dust from mattresses of different composition and age was analysed for mites, xerophilic fungi and allergenic activity. The mites of the genus Demodex were the most abundant (58.2 per cent). Also pyroglyphid mites occurred commonly (36.6 per cent). Pyroglyphid mites were present in small numbers (mean: 1 specimen/0.2 g of dust) in 12 out of the 17 older polyester-foam mattresses. The 11 cotton-horsechair mattresses and the newly used polyester-foam mattresses (three tested) were without them. The dust from the cotton-horsehair mattresses had a significantly higher allergenic activity than from those of polyester-foam. Xerophilic fungi were isolated in three out of 31 mattresses. The species isolated belonged to the genus Aspergillus and Eurotium. E. repens occurred most frequently. Disinfection of mattresses was suggested to have a negative influence on the occurrence of mites and fungi.