Sample records for integrated modeling environment

  1. Research environments that promote integrity.

    PubMed

    Jeffers, Brenda Recchia; Whittemore, Robin

    2005-01-01

    The body of empirical knowledge about research integrity and the factors that promote research integrity in nursing research environments remains small. To propose an internal control model as an innovative framework for the design and structure of nursing research environments that promote integrity. An internal control model is adapted to illustrate its use for conceptualizing and designing research environments that promote integrity. The internal control model integrates both the organizational elements necessary to promote research integrity and the processes needed to assess research environments. The model provides five interrelated process components within which any number of research integrity variables and processes may be used and studied: internal control environment, risk assessment, internal control activities, monitoring, and information and communication. The components of the proposed research integrity internal control model proposed comprise an integrated conceptualization of the processes that provide reasonable assurance that research integrity will be promoted within the nursing research environment. Schools of nursing can use the model to design, implement, and evaluate systems that promote research integrity. The model process components need further exploration to substantiate the use of the model in nursing research environments.

  2. Analysis of methods. [information systems evolution environment

    NASA Technical Reports Server (NTRS)

    Mayer, Richard J. (Editor); Ackley, Keith A.; Wells, M. Sue; Mayer, Paula S. D.; Blinn, Thomas M.; Decker, Louis P.; Toland, Joel A.; Crump, J. Wesley; Menzel, Christopher P.; Bodenmiller, Charles A.

    1991-01-01

    Information is one of an organization's most important assets. For this reason the development and maintenance of an integrated information system environment is one of the most important functions within a large organization. The Integrated Information Systems Evolution Environment (IISEE) project has as one of its primary goals a computerized solution to the difficulties involved in the development of integrated information systems. To develop such an environment a thorough understanding of the enterprise's information needs and requirements is of paramount importance. This document is the current release of the research performed by the Integrated Development Support Environment (IDSE) Research Team in support of the IISEE project. Research indicates that an integral part of any information system environment would be multiple modeling methods to support the management of the organization's information. Automated tool support for these methods is necessary to facilitate their use in an integrated environment. An integrated environment makes it necessary to maintain an integrated database which contains the different kinds of models developed under the various methodologies. In addition, to speed the process of development of models, a procedure or technique is needed to allow automatic translation from one methodology's representation to another while maintaining the integrity of both. The purpose for the analysis of the modeling methods included in this document is to examine these methods with the goal being to include them in an integrated development support environment. To accomplish this and to develop a method for allowing intra-methodology and inter-methodology model element reuse, a thorough understanding of multiple modeling methodologies is necessary. Currently the IDSE Research Team is investigating the family of Integrated Computer Aided Manufacturing (ICAM) DEFinition (IDEF) languages IDEF(0), IDEF(1), and IDEF(1x), as well as ENALIM, Entity Relationship, Data Flow Diagrams, and Structure Charts, for inclusion in an integrated development support environment.

  3. An Integrated Computer Modeling Environment for Regional Land Use, Air Quality, and Transportation Planning

    DOT National Transportation Integrated Search

    1997-04-01

    The Land Use, Air Quality, and Transportation Integrated Modeling Environment (LATIME) represents an integrated approach to computer modeling and simulation of land use allocation, travel demand, and mobile source emissions for the Albuquerque, New M...

  4. The ANISA Model of Education: A Critique. Issues in Native Education.

    ERIC Educational Resources Information Center

    Four Worlds Development Project, Lethbridge (Alberta).

    The ANISA model of education (D. Streets and D. Jordan) classifies curriculum content into four areas--the physical environment, the human environment, the unknown environment, and the self--and encourages horizontal integration between content areas. The ANISA model holds that the process of learning consists of differentiation, integration, and…

  5. A Model for Integrating New Technologies into Pre-Service Teacher Training Programs Ajman University (A Case Study)

    ERIC Educational Resources Information Center

    Shaqour, Ali Zuhdi H.

    2005-01-01

    This study introduces a "Technology Integration Model" for a learning environment utilizing constructivist learning principles and integrating new technologies namely computers and the Internet into pre-service teacher training programs. The technology integrated programs and learning environments may assist learners to gain experiences…

  6. Using animal models of enriched environments to inform research on sensory integration intervention for the rehabilitation of neurodevelopmental disorders.

    PubMed

    Reynolds, Stacey; Lane, Shelly J; Richards, Lorie

    2010-09-01

    The field of behavioral neuroscience has been successful in using an animal model of enriched environments for over five decades to measure the rehabilitative and preventative effects of sensory, cognitive and motor stimulation in animal models. Several key principles of enriched environments match those used in sensory integration therapy, a treatment used for children with neurodevelopmental disorders. This paper reviews the paradigm of environmental enrichment, compares animal models of enriched environments to principles of sensory integration treatment, and discusses applications for the rehabilitation of neurodevelopmental disorders. Based on this review, the essential features in the enriched environment paradigm which should be included in sensory integration treatment are multiple sensory experiences, novelty in the environment, and active engagement in challenging cognitive, sensory, and motor tasks. Use of sensory integration treatment may be most applicable for children with anxiety, hypersensitivity, repetitive behaviors or heightened levels of stress. Additionally, individuals with deficits in social behavior, social participation, or impairments in learning and memory may show gains with this type of treatment.

  7. Integrated Modeling Environment

    NASA Technical Reports Server (NTRS)

    Mosier, Gary; Stone, Paul; Holtery, Christopher

    2006-01-01

    The Integrated Modeling Environment (IME) is a software system that establishes a centralized Web-based interface for integrating people (who may be geographically dispersed), processes, and data involved in a common engineering project. The IME includes software tools for life-cycle management, configuration management, visualization, and collaboration.

  8. A collaborative molecular modeling environment using a virtual tunneling service.

    PubMed

    Lee, Jun; Kim, Jee-In; Kang, Lin-Woo

    2012-01-01

    Collaborative researches of three-dimensional molecular modeling can be limited by different time zones and locations. A networked virtual environment can be utilized to overcome the problem caused by the temporal and spatial differences. However, traditional approaches did not sufficiently consider integration of different computing environments, which were characterized by types of applications, roles of users, and so on. We propose a collaborative molecular modeling environment to integrate different molecule modeling systems using a virtual tunneling service. We integrated Co-Coot, which is a collaborative crystallographic object-oriented toolkit, with VRMMS, which is a virtual reality molecular modeling system, through a collaborative tunneling system. The proposed system showed reliable quantitative and qualitative results through pilot experiments.

  9. Automating an integrated spatial data-mining model for landfill site selection

    NASA Astrophysics Data System (ADS)

    Abujayyab, Sohaib K. M.; Ahamad, Mohd Sanusi S.; Yahya, Ahmad Shukri; Ahmad, Siti Zubaidah; Aziz, Hamidi Abdul

    2017-10-01

    An integrated programming environment represents a robust approach to building a valid model for landfill site selection. One of the main challenges in the integrated model is the complicated processing and modelling due to the programming stages and several limitations. An automation process helps avoid the limitations and improve the interoperability between integrated programming environments. This work targets the automation of a spatial data-mining model for landfill site selection by integrating between spatial programming environment (Python-ArcGIS) and non-spatial environment (MATLAB). The model was constructed using neural networks and is divided into nine stages distributed between Matlab and Python-ArcGIS. A case study was taken from the north part of Peninsular Malaysia. 22 criteria were selected to utilise as input data and to build the training and testing datasets. The outcomes show a high-performance accuracy percentage of 98.2% in the testing dataset using 10-fold cross validation. The automated spatial data mining model provides a solid platform for decision makers to performing landfill site selection and planning operations on a regional scale.

  10. Open source integrated modeling environment Delta Shell

    NASA Astrophysics Data System (ADS)

    Donchyts, G.; Baart, F.; Jagers, B.; van Putten, H.

    2012-04-01

    In the last decade, integrated modelling has become a very popular topic in environmental modelling since it helps solving problems, which is difficult to model using a single model. However, managing complexity of integrated models and minimizing time required for their setup remains a challenging task. The integrated modelling environment Delta Shell simplifies this task. The software components of Delta Shell are easy to reuse separately from each other as well as a part of integrated environment that can run in a command-line or a graphical user interface mode. The most components of the Delta Shell are developed using C# programming language and include libraries used to define, save and visualize various scientific data structures as well as coupled model configurations. Here we present two examples showing how Delta Shell simplifies process of setting up integrated models from the end user and developer perspectives. The first example shows coupling of a rainfall-runoff, a river flow and a run-time control models. The second example shows how coastal morphological database integrates with the coastal morphological model (XBeach) and a custom nourishment designer. Delta Shell is also available as open-source software released under LGPL license and accessible via http://oss.deltares.nl.

  11. A Collaborative Molecular Modeling Environment Using a Virtual Tunneling Service

    PubMed Central

    Lee, Jun; Kim, Jee-In; Kang, Lin-Woo

    2012-01-01

    Collaborative researches of three-dimensional molecular modeling can be limited by different time zones and locations. A networked virtual environment can be utilized to overcome the problem caused by the temporal and spatial differences. However, traditional approaches did not sufficiently consider integration of different computing environments, which were characterized by types of applications, roles of users, and so on. We propose a collaborative molecular modeling environment to integrate different molecule modeling systems using a virtual tunneling service. We integrated Co-Coot, which is a collaborative crystallographic object-oriented toolkit, with VRMMS, which is a virtual reality molecular modeling system, through a collaborative tunneling system. The proposed system showed reliable quantitative and qualitative results through pilot experiments. PMID:22927721

  12. Vendor-buyer inventory models with trade credit financing under both non-cooperative and integrated environments

    NASA Astrophysics Data System (ADS)

    Teng, Jinn-Tsair; Chang, Chun-Tao; Chern, Maw-Sheng

    2012-11-01

    Most researchers studied vendor-buyer supply chain inventory policies only from the perspective of an integrated model, which provides us the best cooperative solution. However, in reality, not many vendors and buyers are wholly integrated. Hence, it is necessary to study the optimal policies not only under an integrated environment but also under a non-cooperative environment. In this article, we develop a supply chain vendor-buyer inventory model with trade credit financing linked to order quantity. We then study the optimal policies for both the vendor and the buyer under a non-cooperative environment first, and then under a cooperative integrated situation. Further, we provide some numerical examples to illustrate the theoretical results, compare the differences between these two distinct solutions, and obtain some managerial insights. For example, in a cooperative environment, to reduce the total cost for both parties, the vendor should either provide a simple permissible delay without order quantity restriction or offer a long permissible delay linked order quantity. By contrast, in a non-cooperative environment, the vendor should provide a short permissible delay to reduce its total cost.

  13. Diagnostic, Predictive and Compositional Modeling with Data Mining in Integrated Learning Environments

    ERIC Educational Resources Information Center

    Lee, Chien-Sing

    2007-01-01

    Models represent a set of generic patterns to test hypotheses. This paper presents the CogMoLab student model in the context of an integrated learning environment. Three aspects are discussed: diagnostic and predictive modeling with respect to the issues of credit assignment and scalability and compositional modeling of the student profile in the…

  14. Probabilistic Model Development

    NASA Technical Reports Server (NTRS)

    Adam, James H., Jr.

    2010-01-01

    Objective: Develop a Probabilistic Model for the Solar Energetic Particle Environment. Develop a tool to provide a reference solar particle radiation environment that: 1) Will not be exceeded at a user-specified confidence level; 2) Will provide reference environments for: a) Peak flux; b) Event-integrated fluence; and c) Mission-integrated fluence. The reference environments will consist of: a) Elemental energy spectra; b) For protons, helium and heavier ions.

  15. Integrating Collaborative and Decentralized Models to Support Ubiquitous Learning

    ERIC Educational Resources Information Center

    Barbosa, Jorge Luis Victória; Barbosa, Débora Nice Ferrari; Rigo, Sandro José; de Oliveira, Jezer Machado; Rabello, Solon Andrade, Jr.

    2014-01-01

    The application of ubiquitous technologies in the improvement of education strategies is called Ubiquitous Learning. This article proposes the integration between two models dedicated to support ubiquitous learning environments, called Global and CoolEdu. CoolEdu is a generic collaboration model for decentralized environments. Global is an…

  16. Design and implementation of space physics multi-model application integration based on web

    NASA Astrophysics Data System (ADS)

    Jiang, Wenping; Zou, Ziming

    With the development of research on space environment and space science, how to develop network online computing environment of space weather, space environment and space physics models for Chinese scientific community is becoming more and more important in recent years. Currently, There are two software modes on space physics multi-model application integrated system (SPMAIS) such as C/S and B/S. the C/S mode which is traditional and stand-alone, demands a team or workshop from many disciplines and specialties to build their own multi-model application integrated system, that requires the client must be deployed in different physical regions when user visits the integrated system. Thus, this requirement brings two shortcomings: reducing the efficiency of researchers who use the models to compute; inconvenience of accessing the data. Therefore, it is necessary to create a shared network resource access environment which could help users to visit the computing resources of space physics models through the terminal quickly for conducting space science research and forecasting spatial environment. The SPMAIS develops high-performance, first-principles in B/S mode based on computational models of the space environment and uses these models to predict "Space Weather", to understand space mission data and to further our understanding of the solar system. the main goal of space physics multi-model application integration system (SPMAIS) is to provide an easily and convenient user-driven online models operating environment. up to now, the SPMAIS have contained dozens of space environment models , including international AP8/AE8 IGRF T96 models and solar proton prediction model geomagnetic transmission model etc. which are developed by Chinese scientists. another function of SPMAIS is to integrate space observation data sets which offers input data for models online high-speed computing. In this paper, service-oriented architecture (SOA) concept that divides system into independent modules according to different business needs is applied to solve the problem of the independence of the physical space between multiple models. The classic MVC(Model View Controller) software design pattern is concerned to build the architecture of space physics multi-model application integrated system. The JSP+servlet+javabean technology is used to integrate the web application programs of space physics multi-model. It solves the problem of multi-user requesting the same job of model computing and effectively balances each server computing tasks. In addition, we also complete follow tasks: establishing standard graphical user interface based on Java Applet application program; Designing the interface between model computing and model computing results visualization; Realizing three-dimensional network visualization without plug-ins; Using Java3D technology to achieve a three-dimensional network scene interaction; Improved ability to interact with web pages and dynamic execution capabilities, including rendering three-dimensional graphics, fonts and color control. Through the design and implementation of the SPMAIS based on Web, we provide an online computing and application runtime environment of space physics multi-model. The practical application improves that researchers could be benefit from our system in space physics research and engineering applications.

  17. Run Environment and Data Management for Earth System Models

    NASA Astrophysics Data System (ADS)

    Widmann, H.; Lautenschlager, M.; Fast, I.; Legutke, S.

    2009-04-01

    The Integrating Model and Data Infrastructure (IMDI) developed and maintained by the Model and Data Group (M&D) comprises the Standard Compile Environment (SCE) and the Standard Run Environment (SRE). The IMDI software has a modular design, which allows to combine and couple a suite of model components and as well to execute the tasks independently and on various platforms. Furthermore the modular structure enables the extension to new model combinations and new platforms. The SRE presented here enables the configuration and performance of earth system model experiments from model integration up to storage and visualization of data. We focus on recently implemented tasks such as synchronous data base filling, graphical monitoring and automatic generation of meta data in XML forms during run time. As well we address the capability to run experiments in heterogeneous IT environments with different computing systems for model integration, data processing and storage. These features are demonstrated for model configurations and on platforms used in current or upcoming projects, e.g. MILLENNIUM or IPCC AR5.

  18. Architecture and Children: Learning Environments and Design Education.

    ERIC Educational Resources Information Center

    Taylor, Anne, Ed.; Muhlberger, Joe, Ed.

    1998-01-01

    This issue addresses (1) growing international interest in learning environments and their effects on behavior, and (2) design education, an integrated model for visual-spatial lifelong learning. It focuses on this new and emerging integrated field which integrates elements in education, new learning environment design, and the use of more two-…

  19. Systematic analysis of signaling pathways using an integrative environment.

    PubMed

    Visvanathan, Mahesh; Breit, Marc; Pfeifer, Bernhard; Baumgartner, Christian; Modre-Osprian, Robert; Tilg, Bernhard

    2007-01-01

    Understanding the biological processes of signaling pathways as a whole system requires an integrative software environment that has comprehensive capabilities. The environment should include tools for pathway design, visualization, simulation and a knowledge base concerning signaling pathways as one. In this paper we introduce a new integrative environment for the systematic analysis of signaling pathways. This system includes environments for pathway design, visualization, simulation and a knowledge base that combines biological and modeling information concerning signaling pathways that provides the basic understanding of the biological system, its structure and functioning. The system is designed with a client-server architecture. It contains a pathway designing environment and a simulation environment as upper layers with a relational knowledge base as the underlying layer. The TNFa-mediated NF-kB signal trans-duction pathway model was designed and tested using our integrative framework. It was also useful to define the structure of the knowledge base. Sensitivity analysis of this specific pathway was performed providing simulation data. Then the model was extended showing promising initial results. The proposed system offers a holistic view of pathways containing biological and modeling data. It will help us to perform biological interpretation of the simulation results and thus contribute to a better understanding of the biological system for drug identification.

  20. Framework programmable platform for the advanced software development workstation. Integration mechanism design document

    NASA Technical Reports Server (NTRS)

    Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Reddy, Uday; Ackley, Keith; Futrell, Mike

    1991-01-01

    The Framework Programmable Software Development Platform (FPP) is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software development environment. Guided by this model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated.

  1. Execution environment for intelligent real-time control systems

    NASA Technical Reports Server (NTRS)

    Sztipanovits, Janos

    1987-01-01

    Modern telerobot control technology requires the integration of symbolic and non-symbolic programming techniques, different models of parallel computations, and various programming paradigms. The Multigraph Architecture, which has been developed for the implementation of intelligent real-time control systems is described. The layered architecture includes specific computational models, integrated execution environment and various high-level tools. A special feature of the architecture is the tight coupling between the symbolic and non-symbolic computations. It supports not only a data interface, but also the integration of the control structures in a parallel computing environment.

  2. ARTEMIS: Ares Real Time Environments for Modeling, Integration, and Simulation

    NASA Technical Reports Server (NTRS)

    Hughes, Ryan; Walker, David

    2009-01-01

    This slide presentation reviews the use of ARTEMIS in the development and testing of the ARES launch vehicles. Ares Real Time Environment for Modeling, Simulation and Integration (ARTEMIS) is the real time simulation supporting Ares I hardware-in-the-loop (HWIL) testing. ARTEMIS accurately models all Ares/Orion/Ground subsystems which interact with Ares avionics components from pre-launch through orbit insertion The ARTEMIS System integration Lab, and the STIF architecture is reviewed. The functional components of ARTEMIS are outlined. An overview of the models and a block diagram is presented.

  3. Integrating modelling and phenotyping approaches to identify and screen complex traits - Illustration for transpiration efficiency in cereals.

    PubMed

    Chenu, K; van Oosterom, E J; McLean, G; Deifel, K S; Fletcher, A; Geetika, G; Tirfessa, A; Mace, E S; Jordan, D R; Sulman, R; Hammer, G L

    2018-02-21

    Following advances in genetics, genomics, and phenotyping, trait selection in breeding is limited by our ability to understand interactions within the plants and with their environments, and to target traits of most relevance for the target population of environments. We propose an integrated approach that combines insights from crop modelling, physiology, genetics, and breeding to identify traits valuable for yield gain in the target population of environments, develop relevant high-throughput phenotyping platforms, and identify genetic controls and their values in production environments. This paper uses transpiration efficiency (biomass produced per unit of water used) as an example of a complex trait of interest to illustrate how the approach can guide modelling, phenotyping, and selection in a breeding program. We believe that this approach, by integrating insights from diverse disciplines, can increase the resource use efficiency of breeding programs for improving yield gains in target populations of environments.

  4. Integrated Design Engineering Analysis (IDEA) Environment - Aerodynamics, Aerothermodynamics, and Thermal Protection System Integration Module

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hilmi N.

    2011-01-01

    This report documents the work performed during from March 2010 October 2011. The Integrated Design and Engineering Analysis (IDEA) environment is a collaborative environment based on an object-oriented, multidisciplinary, distributed environment using the Adaptive Modeling Language (AML) as the underlying framework. This report will focus on describing the work done in the area of extending the aerodynamics, and aerothermodynamics module using S/HABP, CBAERO, PREMIN and LANMIN. It will also detail the work done integrating EXITS as the TPS sizing tool.

  5. Integration of MATLAB Simulink(Registered Trademark) Models with the Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Lewis, Emily K.; Vuong, Nghia D.

    2012-01-01

    This paper describes the integration of MATLAB Simulink(Registered TradeMark) models into the Vertical Motion Simulator (VMS) at NASA Ames Research Center. The VMS is a high-fidelity, large motion flight simulator that is capable of simulating a variety of aerospace vehicles. Integrating MATLAB Simulink models into the VMS needed to retain the development flexibility of the MATLAB environment and allow rapid deployment of model changes. The process developed at the VMS was used successfully in a number of recent simulation experiments. This accomplishment demonstrated that the model integrity was preserved, while working within the hard real-time run environment of the VMS architecture, and maintaining the unique flexibility of the VMS to meet diverse research requirements.

  6. Probalistic Models for Solar Particle Events

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Xapsos, Michael

    2009-01-01

    Probabilistic Models of Solar Particle Events (SPEs) are used in space mission design studies to describe the radiation environment that can be expected at a specified confidence level. The task of the designer is then to choose a design that will operate in the model radiation environment. Probabilistic models have already been developed for solar proton events that describe the peak flux, event-integrated fluence and missionintegrated fluence. In addition a probabilistic model has been developed that describes the mission-integrated fluence for the Z>2 elemental spectra. This talk will focus on completing this suite of models by developing models for peak flux and event-integrated fluence elemental spectra for the Z>2 element

  7. Projecting state-level air pollutant emissions using an integrated assessment model: GCAM-USA

    EPA Science Inventory

    The Global Change Assessment Model (GCAM) is an integrated assessment model that links representations of the economy, energy sector, land use, and climate within an integrated modeling environment. GCAM-USA, which is an extension of GCAM, provides U.S. state-level resolution wit...

  8. Mismatch or cumulative stress: toward an integrated hypothesis of programming effects.

    PubMed

    Nederhof, Esther; Schmidt, Mathias V

    2012-07-16

    This paper integrates the cumulative stress hypothesis with the mismatch hypothesis, taking into account individual differences in sensitivity to programming. According to the cumulative stress hypothesis, individuals are more likely to suffer from disease as adversity accumulates. According to the mismatch hypothesis, individuals are more likely to suffer from disease if a mismatch occurs between the early programming environment and the later adult environment. These seemingly contradicting hypotheses are integrated into a new model proposing that the cumulative stress hypothesis applies to individuals who were not or only to a small extent programmed by their early environment, while the mismatch hypothesis applies to individuals who experienced strong programming effects. Evidence for the main effects of adversity as well as evidence for the interaction between adversity in early and later life is presented from human observational studies and animal models. Next, convincing evidence for individual differences in sensitivity to programming is presented. We extensively discuss how our integrated model can be tested empirically in animal models and human studies, inviting researchers to test this model. Furthermore, this integrated model should tempt clinicians and other intervenors to interpret symptoms as possible adaptations from an evolutionary biology perspective. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Incorporating Air Pollutant Emission Factors and State-Level Controls and Energy Policies within the GCAM-USA Integrated Assessment Model

    EPA Science Inventory

    The Global Change Assessment Model (GCAM) is an integrated assessment model that links representations of the economy, energy sector, land use, and climate within an integrated modeling environment. GCAM-USA, which is an extension of GCAM, provides U.S. state-level resolution wit...

  10. Evolution of pairwise entanglement in a coupled n-body system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pineda, Carlos; Centro de Ciencias Fisicas, University of Mexico; Seligman, Thomas H.

    2006-01-15

    We study the exact evolution of two noninteracting qubits, initially in a Bell state, in the presence of an environment, modeled by a kicked Ising spin chain. Dynamics of this model range from integrable to chaotic and we can handle numerics for a large number of qubits. We find that the entanglement (as measured by concurrence) of the two qubits has a close relation to the purity of the pair, and closely follows an analytic relation derived for Werner states. As a collateral result we find that an integrable environment causes quadratic decay of concurrence as well as of purity,more » while a chaotic environment causes linear decay. Both quantities display recurrences in an integrable environment.« less

  11. Technical integration of hippocampus, Basal Ganglia and physical models for spatial navigation.

    PubMed

    Fox, Charles; Humphries, Mark; Mitchinson, Ben; Kiss, Tamas; Somogyvari, Zoltan; Prescott, Tony

    2009-01-01

    Computational neuroscience is increasingly moving beyond modeling individual neurons or neural systems to consider the integration of multiple models, often constructed by different research groups. We report on our preliminary technical integration of recent hippocampal formation, basal ganglia and physical environment models, together with visualisation tools, as a case study in the use of Python across the modelling tool-chain. We do not present new modeling results here. The architecture incorporates leaky-integrator and rate-coded neurons, a 3D environment with collision detection and tactile sensors, 3D graphics and 2D plots. We found Python to be a flexible platform, offering a significant reduction in development time, without a corresponding significant increase in execution time. We illustrate this by implementing a part of the model in various alternative languages and coding styles, and comparing their execution times. For very large-scale system integration, communication with other languages and parallel execution may be required, which we demonstrate using the BRAHMS framework's Python bindings.

  12. Social Integration in a Community College Environment

    ERIC Educational Resources Information Center

    Mertes, Scott J.

    2015-01-01

    Among current retention models, Tinto's Interactionalist Model has reached near paradigmatic status. When his model has been applied to two-year college settings, the social integration results have been inconsistent. This has led Maxwell (2000) and Deil-Amen (2011) to suggest that a different construct of social integration exists in community…

  13. [Watershed water environment pollution models and their applications: a review].

    PubMed

    Zhu, Yao; Liang, Zhi-Wei; Li, Wei; Yang, Yi; Yang, Mu-Yi; Mao, Wei; Xu, Han-Li; Wu, Wei-Xiang

    2013-10-01

    Watershed water environment pollution model is the important tool for studying watershed environmental problems. Through the quantitative description of the complicated pollution processes of whole watershed system and its parts, the model can identify the main sources and migration pathways of pollutants, estimate the pollutant loadings, and evaluate their impacts on water environment, providing a basis for watershed planning and management. This paper reviewed the watershed water environment models widely applied at home and abroad, with the focuses on the models of pollutants loading (GWLF and PLOAD), water quality of received water bodies (QUAL2E and WASP), and the watershed models integrated pollutant loadings and water quality (HSPF, SWAT, AGNPS, AnnAGNPS, and SWMM), and introduced the structures, principles, and main characteristics as well as the limitations in practical applications of these models. The other models of water quality (CE-QUAL-W2, EFDC, and AQUATOX) and watershed models (GLEAMS and MIKE SHE) were also briefly introduced. Through the case analysis on the applications of single model and integrated models, the development trend and application prospect of the watershed water environment pollution models were discussed.

  14. Integrated Control Modeling for Propulsion Systems Using NPSS

    NASA Technical Reports Server (NTRS)

    Parker, Khary I.; Felder, James L.; Lavelle, Thomas M.; Withrow, Colleen A.; Yu, Albert Y.; Lehmann, William V. A.

    2004-01-01

    The Numerical Propulsion System Simulation (NPSS), an advanced engineering simulation environment used to design and analyze aircraft engines, has been enhanced by integrating control development tools into it. One of these tools is a generic controller interface that allows NPSS to communicate with control development software environments such as MATLAB and EASY5. The other tool is a linear model generator (LMG) that gives NPSS the ability to generate linear, time-invariant state-space models. Integrating these tools into NPSS enables it to be used for control system development. This paper will discuss the development and integration of these tools into NPSS. In addition, it will show a comparison of transient model results of a generic, dual-spool, military-type engine model that has been implemented in NPSS and Simulink. It will also show the linear model generator s ability to approximate the dynamics of a nonlinear NPSS engine model.

  15. An integrated model of social environment and social context for pediatric rehabilitation.

    PubMed

    Batorowicz, Beata; King, Gillian; Mishra, Lipi; Missiuna, Cheryl

    2016-01-01

    This article considers the conceptualization and operationalization of "social environment" and "social context" with implications for research and practice with children and youth with impairments. We first discuss social environment and social context as constructs important for understanding interaction between external environmental qualities and the individual's experience. The article considers existing conceptualizations within psychological and sociological bodies of literature, research using these concepts, current developmental theories and issues in the understanding of environment and participation within rehabilitation science. We then describe a model that integrates a person-focused perspective with an environment-focused perspective and that outlines the mechanisms through which children/youth and social environment interact and transact. Finally, we consider the implications of the proposed model for research and clinical practice. This conceptual model directs researchers and practitioners toward interventions that will address the mechanisms of child-environment interaction and that will build capacity within both children and their social environments, including families, peers groups and communities. Health is created and lived by people within the settings of their everyday life; where they learn, work, play, and love [p.2]. Understanding how social environment and personal factors interact over time to affect the development of children/youth can influence the design of services for children and youth with impairments. The model described integrates the individual-focused and environment-focused perspectives and outlines the mechanisms of the ongoing reciprocal interaction between children/youth and their social environments: provision of opportunities, resources and supports and contextual processes of choice, active engagement and collaboration. Addressing these mechanisms could contribute to creating healthier environments in which all children, including children with impairments, have experiences that lead to positive developmental benefits.

  16. PARALLEL MEASUREMENT AND MODELING OF TRANSPORT IN THE DARHT II BEAMLINE ON ETA II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambers, F W; Raymond, B A; Falabella, S

    To successfully tune the DARHT II transport beamline requires the close coupling of a model of the beam transport and the measurement of the beam observables as the beam conditions and magnet settings are varied. For the ETA II experiment using the DARHT II beamline components this was achieved using the SUICIDE (Simple User Interface Connecting to an Integrated Data Environment) data analysis environment and the FITS (Fully Integrated Transport Simulation) model. The SUICIDE environment has direct access to the experimental beam transport data at acquisition and the FITS predictions of the transport for immediate comparison. The FITS model ismore » coupled into the control system where it can read magnet current settings for real time modeling. We find this integrated coupling is essential for model verification and the successful development of a tuning aid for the efficient convergence on a useable tune. We show the real time comparisons of simulation and experiment and explore the successes and limitations of this close coupled approach.« less

  17. Exploring the Construct of Social Integration in a Community College Environment

    ERIC Educational Resources Information Center

    Mertes, Scott J.

    2013-01-01

    Among current retention models, Tinto's Interactionalist Model has reached near paradigmatic status. When his model has been applied to two-year college settings, the social integration results have been inconsistent. This has led Maxwell (2000) and Deil-Amen (2011) to suggest that a different construct of social integration exists in…

  18. [Development method of healthcare information system integration based on business collaboration model].

    PubMed

    Li, Shasha; Nie, Hongchao; Lu, Xudong; Duan, Huilong

    2015-02-01

    Integration of heterogeneous systems is the key to hospital information construction due to complexity of the healthcare environment. Currently, during the process of healthcare information system integration, people participating in integration project usually communicate by free-format document, which impairs the efficiency and adaptability of integration. A method utilizing business process model and notation (BPMN) to model integration requirement and automatically transforming it to executable integration configuration was proposed in this paper. Based on the method, a tool was developed to model integration requirement and transform it to integration configuration. In addition, an integration case in radiology scenario was used to verify the method.

  19. a New Ontological Perspective for Integration of Social and Physical Environments: Disability and Rehabilitation Context

    NASA Astrophysics Data System (ADS)

    Gharebaghi, Amin; Abolfazl Mostafavi, Mir

    2016-06-01

    Social dimension of environment is an important aspect that should be reflected in research works related to studying the interactions between human and the environment. However, this dimension is usually neglected when representing the environment in geographic information systems for different applications. For instance, disability as a result of the interaction between human and environment is influenced by social and physical dimensions of environment. Although, this aspect is highlighted in most conceptual disability models by defining various taxonomies of the environment, from ontological perspective justifying and connecting social dimension to the physical dimension of the environment is not clearly determined. Integrating social dimension of the environment with its physical dimension for disability studies is a challenging task, which is the main objective of the present study. Here, we review some of the disability models and their perspective about classifying the environment. Then, from ontological perspective, their limitations are discussed and a new approach for the classification of concepts form the environment is presented. This approach facilitates and simplifies integration of social dimension in ontologies for more effective assessment of disability issue in Geographic Information System.

  20. An Approach to Integrate a Space-Time GIS Data Model with High Performance Computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dali; Zhao, Ziliang; Shaw, Shih-Lung

    2011-01-01

    In this paper, we describe an approach to integrate a Space-Time GIS data model on a high performance computing platform. The Space-Time GIS data model has been developed on a desktop computing environment. We use the Space-Time GIS data model to generate GIS module, which organizes a series of remote sensing data. We are in the process of porting the GIS module into an HPC environment, in which the GIS modules handle large dataset directly via parallel file system. Although it is an ongoing project, authors hope this effort can inspire further discussions on the integration of GIS on highmore » performance computing platforms.« less

  1. THE EPA MULTIMEDIA INTEGRATED MODELING SYSTEM SOFTWARE SUITE

    EPA Science Inventory

    The U.S. EPA is developing a Multimedia Integrated Modeling System (MIMS) framework that will provide a software infrastructure or environment to support constructing, composing, executing, and evaluating complex modeling studies. The framework will include (1) common software ...

  2. Integrated Noise Model (INM) Version 6.0 User's Guide.

    DOT National Transportation Integrated Search

    1999-09-01

    The FAA Office of Environment and Energy supports the assessment of aircraft noise impacts by developing and maintaining noise-evaluation models and methodologies. In particular, the FAA's Integrated Noise Model (INM) is widely used by the civilian a...

  3. Structural, Thermal, and Optical Performance (STOP) Modeling and Results for the James Webb Space Telescope Integrated Science Instrument Module

    NASA Technical Reports Server (NTRS)

    Gracey, Renee; Bartoszyk, Andrew; Cofie, Emmanuel; Comber, Brian; Hartig, George; Howard, Joseph; Sabatke, Derek; Wenzel, Greg; Ohl, Raymond

    2016-01-01

    The James Webb Space Telescope includes the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. We performed extensive structural, thermal, and optical performance(STOP) modeling in support of all phases of ISIM development. In this paper, we focus on modeling and results associated with test and verification. ISIMs test program is bound by ground environments, mostly notably the 1g and test chamber thermal environments. This paper describes STOP modeling used to predict ISIM system performance in 0g and at various on-orbit temperature environments. The predictions are used to project results obtained during testing to on-orbit performance.

  4. An integrative model linking feedback environment and organizational citizenship behavior.

    PubMed

    Peng, Jei-Chen; Chiu, Su-Fen

    2010-01-01

    Past empirical evidence has suggested that a positive supervisor feedback environment may enhance employees' organizational citizenship behavior (OCB). In this study, we aim to extend previous research by proposing and testing an integrative model that examines the mediating processes underlying the relationship between supervisor feedback environment and employee OCB. Data were collected from 259 subordinate-supervisor dyads across a variety of organizations in Taiwan. We used structural equation modeling to test our hypotheses. The results demonstrated that supervisor feedback environment influenced employees' OCB indirectly through (1) both positive affective-cognition and positive attitude (i.e., person-organization fit and organizational commitment), and (2) both negative affective-cognition and negative attitude (i.e., role stressors and job burnout). Theoretical and practical implications are discussed.

  5. Framework Programmable Platform for the advanced software development workstation: Framework processor design document

    NASA Technical Reports Server (NTRS)

    Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Ackley, Keith A.; Crump, Wes; Sanders, Les

    1991-01-01

    The design of the Framework Processor (FP) component of the Framework Programmable Software Development Platform (FFP) is described. The FFP is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software development environment. Guided by the model, this Framework Processor will take advantage of an integrated operating environment to provide automated support for the management and control of the software development process so that costly mistakes during the development phase can be eliminated.

  6. Framework Programmable Platform for the Advanced Software Development Workstation: Preliminary system design document

    NASA Technical Reports Server (NTRS)

    Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Ackley, Keith A.; Crump, John W., IV; Henderson, Richard; Futrell, Michael T.

    1991-01-01

    The Framework Programmable Software Development Platform (FPP) is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software environment. Guided by the model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated. The focus here is on the design of components that make up the FPP. These components serve as supporting systems for the Integration Mechanism and the Framework Processor and provide the 'glue' that ties the FPP together. Also discussed are the components that allow the platform to operate in a distributed, heterogeneous environment and to manage the development and evolution of software system artifacts.

  7. Path integration of head direction: updating a packet of neural activity at the correct speed using neuronal time constants.

    PubMed

    Walters, D M; Stringer, S M

    2010-07-01

    A key question in understanding the neural basis of path integration is how individual, spatially responsive, neurons may self-organize into networks that can, through learning, integrate velocity signals to update a continuous representation of location within an environment. It is of vital importance that this internal representation of position is updated at the correct speed, and in real time, to accurately reflect the motion of the animal. In this article, we present a biologically plausible model of velocity path integration of head direction that can solve this problem using neuronal time constants to effect natural time delays, over which associations can be learned through associative Hebbian learning rules. The model comprises a linked continuous attractor network and competitive network. In simulation, we show that the same model is able to learn two different speeds of rotation when implemented with two different values for the time constant, and without the need to alter any other model parameters. The proposed model could be extended to path integration of place in the environment, and path integration of spatial view.

  8. Telearch - Integrated visual simulation environment for collaborative virtual archaeology.

    NASA Astrophysics Data System (ADS)

    Kurillo, Gregorij; Forte, Maurizio

    Archaeologists collect vast amounts of digital data around the world; however, they lack tools for integration and collaborative interaction to support reconstruction and interpretation process. TeleArch software is aimed to integrate different data sources and provide real-time interaction tools for remote collaboration of geographically distributed scholars inside a shared virtual environment. The framework also includes audio, 2D and 3D video streaming technology to facilitate remote presence of users. In this paper, we present several experimental case studies to demonstrate the integration and interaction with 3D models and geographical information system (GIS) data in this collaborative environment.

  9. Entrepreneurship management in health services: an integrative model.

    PubMed

    Guo, Kristina L

    2006-01-01

    This research develops an integrated systems model of entrepreneurship management as a method for achieving health care organizational survival and growth. Specifically, it analyzes current health care environment challenges, identifies roles of managers and discusses organizational theories that are relevant to the health care environment, outlines the role of entrepreneurship in health care, and describes the entrepreneurial manager in the entrepreneurial management process to produce desirable organizational outcomes. The study concludes that as current health care environment continues to show intense competition, entrepreneurial managers are responsible for creating innovations, managing change, investing in resources, and recognizing opportunities in the environment to increase organizational viability.

  10. Community Coordinated Modeling Center Support of Science Needs for Integrated Data Environment

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Hesse, M.; Rastatter, L.; Maddox, M.

    2007-01-01

    Space science models are essential component of integrated data environment. Space science models are indispensable tools to facilitate effective use of wide variety of distributed scientific sources and to place multi-point local measurements into global context. The Community Coordinated Modeling Center (CCMC) hosts a set of state-of-the- art space science models ranging from the solar atmosphere to the Earth's upper atmosphere. The majority of models residing at CCMC are comprehensive computationally intensive physics-based models. To allow the models to be driven by data relevant to particular events, the CCMC developed an online data file generation tool that automatically downloads data from data providers and transforms them to required format. CCMC provides a tailored web-based visualization interface for the model output, as well as the capability to download simulations output in portable standard format with comprehensive metadata and user-friendly model output analysis library of routines that can be called from any C supporting language. CCMC is developing data interpolation tools that enable to present model output in the same format as observations. CCMC invite community comments and suggestions to better address science needs for the integrated data environment.

  11. The Value of the Model of a Socially Integral Teaching/Learning Environment in the Classroom from the Point of View of Learners Who Tend to Socially Withdraw

    ERIC Educational Resources Information Center

    Kyburiene, Laima; Navickiene, Gemma

    2015-01-01

    The article gives a review of the investigations publicised in the scientific papers of various countries, which reveal the increase in social closure and analyse the problematic conception of social withdrawal; introduces the theoretical (ideal) model of a socially integral teaching/learning environment in the classroom; uncovers its impact on…

  12. Multi-scale modeling of tsunami flows and tsunami-induced forces

    NASA Astrophysics Data System (ADS)

    Qin, X.; Motley, M. R.; LeVeque, R. J.; Gonzalez, F. I.

    2016-12-01

    The modeling of tsunami flows and tsunami-induced forces in coastal communities with the incorporation of the constructed environment is challenging for many numerical modelers because of the scale and complexity of the physical problem. A two-dimensional (2D) depth-averaged model can be efficient for modeling of waves offshore but may not be accurate enough to predict the complex flow with transient variance in vertical direction around constructed environments on land. On the other hand, using a more complex three-dimensional model is much more computational expensive and can become impractical due to the size of the problem and the meshing requirements near the built environment. In this study, a 2D depth-integrated model and a 3D Reynolds Averaged Navier-Stokes (RANS) model are built to model a 1:50 model-scale, idealized community, representative of Seaside, OR, USA, for which existing experimental data is available for comparison. Numerical results from the two numerical models are compared with each other as well as experimental measurement. Both models predict the flow parameters (water level, velocity, and momentum flux in the vicinity of the buildings) accurately, in general, except for time period near the initial impact, where the depth-averaged models can fail to capture the complexities in the flow. Forces predicted using direct integration of predicted pressure on structural surfaces from the 3D model and using momentum flux from the 2D model with constructed environment are compared, which indicates that force prediction from the 2D model is not always reliable in such a complicated case. Force predictions from integration of the pressure are also compared with forces predicted from bare earth momentum flux calculations to reveal the importance of incorporating the constructed environment in force prediction models.

  13. Service-oriented model-encapsulation strategy for sharing and integrating heterogeneous geo-analysis models in an open web environment

    NASA Astrophysics Data System (ADS)

    Yue, Songshan; Chen, Min; Wen, Yongning; Lu, Guonian

    2016-04-01

    Earth environment is extremely complicated and constantly changing; thus, it is widely accepted that the use of a single geo-analysis model cannot accurately represent all details when solving complex geo-problems. Over several years of research, numerous geo-analysis models have been developed. However, a collaborative barrier between model providers and model users still exists. The development of cloud computing has provided a new and promising approach for sharing and integrating geo-analysis models across an open web environment. To share and integrate these heterogeneous models, encapsulation studies should be conducted that are aimed at shielding original execution differences to create services which can be reused in the web environment. Although some model service standards (such as Web Processing Service (WPS) and Geo Processing Workflow (GPW)) have been designed and developed to help researchers construct model services, various problems regarding model encapsulation remain. (1) The descriptions of geo-analysis models are complicated and typically require rich-text descriptions and case-study illustrations, which are difficult to fully represent within a single web request (such as the GetCapabilities and DescribeProcess operations in the WPS standard). (2) Although Web Service technologies can be used to publish model services, model users who want to use a geo-analysis model and copy the model service into another computer still encounter problems (e.g., they cannot access the model deployment dependencies information). This study presents a strategy for encapsulating geo-analysis models to reduce problems encountered when sharing models between model providers and model users and supports the tasks with different web service standards (e.g., the WPS standard). A description method for heterogeneous geo-analysis models is studied. Based on the model description information, the methods for encapsulating the model-execution program to model services and for describing model-service deployment information are also included in the proposed strategy. Hence, the model-description interface, model-execution interface and model-deployment interface are studied to help model providers and model users more easily share, reuse and integrate geo-analysis models in an open web environment. Finally, a prototype system is established, and the WPS standard is employed as an example to verify the capability and practicability of the model-encapsulation strategy. The results show that it is more convenient for modellers to share and integrate heterogeneous geo-analysis models in cloud computing platforms.

  14. Options of system integrated environment modelling in the predicated dynamic cyberspace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janková, Martina; Dvořák, Jiří

    In this article there are briefly mentioned some selected options of contemporary conception of cybernetic system models in the corresponding and possible integratable environment with modern system dynamics thinking and all this in the cyberspace of possible projecting of predicted system characteristics. The key to new capabilities of system integration modelling in the considered cyberspace is mainly the ability to improve the environment and the system integration options, all this with the aim of modern control in the hierarchically arranged dynamic cyberspace, e.g. in the currently desired electronic business with information. The aim of this article is to assess generallymore » the trends in the use of modern modelling methods considering the cybernetics applications verified in practice, modern concept of project management and also the potential integration of artificial intelligence in the new projecting and project management of integratable and intelligent models, e.g. with the optimal structures and adaptable behaviour.The article results from the solution of a specific research partial task at the faculty; especially the moments proving that the new economics will be based more and more on information, knowledge system defined cyberspace of modern management, are stressed in the text.« less

  15. Scenario Analysis: An Integrative Study and Guide to Implementation in the United States Air Force

    DTIC Science & Technology

    1994-09-01

    Environmental Analysis ................................ 3-3 Classifications of Environments ......................... 3-5 Characteristics of... Environments ........................ 3-8 iii Page Components of the Environmental Analysis Process ........... 3-12 Forecasting... Environmental Analysis ...................... 3-4 3-2 Model of the Industry Environment ......................... 3-6 3-3 Model of Macroenvironment

  16. DEVELOPMENT AND EVALUATION OF AN INTEGRATED MODEL TO FACILITATE RISK-BASED CORRECTIVE ACTION AT SUPERFUND SITES

    EPA Science Inventory

    We developed a numerical model to predict chemical concentrations in indoor environments resulting from soil vapor intrusion and volatilization from groundwater. The model, which integrates new and existing algorithms for chemical fate and transport, was originally...

  17. Probabilistic Solar Energetic Particle Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Dietrich, William F.; Xapsos, Michael A.

    2011-01-01

    To plan and design safe and reliable space missions, it is necessary to take into account the effects of the space radiation environment. This is done by setting the goal of achieving safety and reliability with some desired level of confidence. To achieve this goal, a worst-case space radiation environment at the required confidence level must be obtained. Planning and designing then proceeds, taking into account the effects of this worst-case environment. The result will be a mission that is reliable against the effects of the space radiation environment at the desired confidence level. In this paper we will describe progress toward developing a model that provides worst-case space radiation environments at user-specified confidence levels. We will present a model for worst-case event-integrated solar proton environments that provide the worst-case differential proton spectrum. This model is based on data from IMP-8 and GOES spacecraft that provide a data base extending from 1974 to the present. We will discuss extending this work to create worst-case models for peak flux and mission-integrated fluence for protons. We will also describe plans for similar models for helium and heavier ions.

  18. Toward an Integration of Cognitive and Genetic Models of Risk for Depression

    PubMed Central

    Gibb, Brandon E.; Beevers, Christopher G.; McGeary, John E.

    2012-01-01

    There is growing interest in integrating cognitive and genetic models of depression risk. We review two ways in which these models can be meaningfully integrated. First, information-processing biases may represent intermediate phenotypes for specific genetic influences. These genetic influences may represent main effects on specific cognitive processes or may moderate the impact of environmental influences on information-processing biases. Second, cognitive and genetic influences may combine to increase reactivity to environmental stressors, increasing risk for depression in a gene × cognition × environment model of risk. There is now growing support for both of these ways of integrating cognitive and genetic models of depression risk. Specifically, there is support for genetic influences on information-processing biases, particularly the link between 5-HTTLPR and attentional biases, from both genetic association and gene × environment (G × E) studies. There is also initial support for gene × cognition × environment models of risk in which specific genetic influences contribute to increased reactivity to environmental influences. We review this research and discuss important areas of future research, particularly the need for larger samples that allow for a broader examination of genetic and epigenetic influences as well as the combined influence of variability across a number of genes. PMID:22920216

  19. An integrative model of evolutionary covariance: a symposium on body shape in fishes.

    PubMed

    Walker, Jeffrey A

    2010-12-01

    A major direction of current and future biological research is to understand how multiple, interacting functional systems coordinate in producing a body that works. This understanding is complicated by the fact that organisms need to work well in multiple environments, with both predictable and unpredictable environmental perturbations. Furthermore, organismal design reflects a history of past environments and not a plan for future environments. How complex, interacting functional systems evolve, then, is a truly grand challenge. In accepting the challenge, an integrative model of evolutionary covariance is developed. The model combines quantitative genetics, functional morphology/physiology, and functional ecology. The model is used to convene scientists ranging from geneticists, to physiologists, to ecologists, to engineers to facilitate the emergence of body shape in fishes as a model system for understanding how complex, interacting functional systems develop and evolve. Body shape of fish is a complex morphology that (1) results from many developmental paths and (2) functions in many different behaviors. Understanding the coordination and evolution of the many paths from genes to body shape, body shape to function, and function to a working fish body in a dynamic environment is now possible given new technologies from genetics to engineering and new theoretical models that integrate the different levels of biological organization (from genes to ecology).

  20. Integrated Noise Model (INM) version 6.0 technical manual

    DOT National Transportation Integrated Search

    2002-01-31

    The Federal Aviation Administration, Office of Environment and Energy (FAA, AEE-100) has : developed Version 6.0 of the Integrated Noise Model (INM) with support from the John A. Volpe : National Transportation Systems Center, Acoustics Facility (Vol...

  1. Integrated noise model (INM) version 7.0 technical manual

    DOT National Transportation Integrated Search

    2008-01-31

    The Federal Aviation Administration, Office of Environment and Energy (FAA, AEE-100) has developed Version 7.0 of the Integrated Noise Model (INM) with support from the John A. Volpe National Transportation Systems Center, Acoustics Facility (Volpe C...

  2. Integrated noise model (INM) version 7.0 user's guide

    DOT National Transportation Integrated Search

    2007-04-01

    The Federal Aviation Administration, Office of Environment and Energy, Noise Division (AEE-100) has developed Version 7.0 of the Integrated Noise Model (INM) with support from the ATAC Corporation and the Department of Transportation Volpe National T...

  3. Integrated Noise Model (INM), version 5.1 : technical manual

    DOT National Transportation Integrated Search

    1997-12-01

    The Federal Aviation Administration, Office of Environment and Energy (FAA, AEE-120) : has developed Version 5.1 of the Integrated Noise Model (INM) with support from the : John A. Volpe National Transportation Systems Center, Acoustics Facility (Vol...

  4. Construction of integrated case environments.

    PubMed

    Losavio, Francisca; Matteo, Alfredo; Pérez, María

    2003-01-01

    The main goal of Computer-Aided Software Engineering (CASE) technology is to improve the entire software system development process. The CASE approach is not merely a technology; it involves a fundamental change in the process of software development. The tendency of the CASE approach, technically speaking, is the integration of tools that assist in the application of specific methods. In this sense, the environment architecture, which includes the platform and the system's hardware and software, constitutes the base of the CASE environment. The problem of tools integration has been proposed for two decades. Current integration efforts emphasize the interoperability of tools, especially in distributed environments. In this work we use the Brown approach. The environment resulting from the application of this model is called a federative environment, focusing on the fact that this architecture pays special attention to the connections among the components of the environment. This approach is now being used in component-based design. This paper describes a concrete experience in civil engineering and architecture fields, for the construction of an integrated CASE environment. A generic architectural framework based on an intermediary architectural pattern is applied to achieve the integration of the different tools. This intermediary represents the control perspective of the PAC (Presentation-Abstraction-Control) style, which has been implemented as a Mediator pattern and it has been used in the interactive systems domain. In addition, a process is given to construct the integrated CASE.

  5. Integration of Environmental Issues in a Physics Course: 'Physics by Inquiry' High School Teachers' Integration Models and Challenges

    NASA Astrophysics Data System (ADS)

    Kimori, David Abiya

    As we approach the second quarter of the twenty-first century, one may predict that the environment will be among the dominant themes in the political and educational discourse. Over the past three decades, particular perspectives regarding the environment have begun to emerge: (i) realization by human beings that we not only live on earth and use its resources at an increasingly high rate but we also actually belong to the earth and the total ecology of all living systems, (ii) there are strong interactions among different components of the large and complex systems that make up our environment, and (iii) the rising human population and its impact on the environment is a great concern (Hughes & Mason, 2014). Studies have revealed that although the students do not have a deep understanding of environmental issues and lack environmental awareness and attitudes necessary for protecting the environment, they have great concern for the environment (Chapman & Sharma, 2001; Fien, Yencken, & Sykes, 2002). However, addressing environmental issues in the classroom and other disciplines has never been an easy job for teachers (Pennock & Bardwell, 1994; Edelson, 2007). Using multiple case studies, this study investigated how three purposefully selected physics teachers teaching a 'Physics by Inquiry' course integrated environmental topics and issues in their classroom. Particularly this study looked at what integration models and practices the three physics teachers employed in integrating environmental topics and issues in their classroom and what challenges the teachers faced while integrating environmental topics in their classrooms. Data collection methods including field notes taken from observations, teachers' interviews and a collection of artifacts and documents were used. The data were coded analyzed and organized into codes and categories guided by Fogarty (1991) models of curriculum integration and Ham and Sewing (1988) four categories of barriers to environmental education. Findings of this study indicate that teachers acknowledge the importance of teaching environmental issues in their classrooms but continue to struggle with conceptual, educational, logistical and attitudinal barriers to successful integration of environmental topics in physics.

  6. An integrative model of organizational safety behavior.

    PubMed

    Cui, Lin; Fan, Di; Fu, Gui; Zhu, Cherrie Jiuhua

    2013-06-01

    This study develops an integrative model of safety management based on social cognitive theory and the total safety culture triadic framework. The purpose of the model is to reveal the causal linkages between a hazardous environment, safety climate, and individual safety behaviors. Based on primary survey data from 209 front-line workers in one of the largest state-owned coal mining corporations in China, the model is tested using structural equation modeling techniques. An employee's perception of a hazardous environment is found to have a statistically significant impact on employee safety behaviors through a psychological process mediated by the perception of management commitment to safety and individual beliefs about safety. The integrative model developed here leads to a comprehensive solution that takes into consideration the environmental, organizational and employees' psychological and behavioral aspects of safety management. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  7. Toward a Learner-Centered System for Adult Learning

    ERIC Educational Resources Information Center

    Hermans, Henry; Kalz, Marco; Koper, Rob

    2013-01-01

    Purpose: The purpose of this paper is to present an e-learning system that integrates the use of concepts of virtual learning environments, personal learning environments, and social network sites. The system is based on a learning model which comprises and integrates three learning contexts for the adult learner: the formal, instructional…

  8. Integrated environmental modeling: A vision and roadmap for the future

    EPA Science Inventory

    Integrated environmental modeling (IEM) is inspired by modern environmental problems, decisions, and policies and enabled by transdisciplinary science and computer capabilities that allow the environment to be considered in a holistic way. The problems are characterized by the ex...

  9. Integrated Noise Model (INM) version 5.0 user's guide

    DOT National Transportation Integrated Search

    1995-08-01

    The Federal Aviation Administration, Office of Environment and Energy (AEE-120) has : developed Version 5.0 of the Integrated Noise Model (INM) with support from the ATAC : Corporation, the U.S. Department of Transportation John A. Volpe National : T...

  10. INM, integrated noise model, version 4.11 : user's guide, supplement

    DOT National Transportation Integrated Search

    1993-12-01

    The Volpe National Transportation Systems Center, in support of the Federal Aviation Administration, Office of Environment and Energy, has developed Version 4.11 of the Integrated Noise Model (INM). This User's Guide is a supplement to INM, Version 3...

  11. Towards Assessing the Human Trajectory Planning Horizon

    PubMed Central

    Nitsch, Verena; Meinzer, Dominik; Wollherr, Dirk

    2016-01-01

    Mobile robots are envisioned to cooperate closely with humans and to integrate seamlessly into a shared environment. For locomotion, these environments resemble traversable areas which are shared between multiple agents like humans and robots. The seamless integration of mobile robots into these environments requires accurate predictions of human locomotion. This work considers optimal control and model predictive control approaches for accurate trajectory prediction and proposes to integrate aspects of human behavior to improve their performance. Recently developed models are not able to reproduce accurately trajectories that result from sudden avoidance maneuvers. Particularly, the human locomotion behavior when handling disturbances from other agents poses a problem. The goal of this work is to investigate whether humans alter their trajectory planning horizon, in order to resolve abruptly emerging collision situations. By modeling humans as model predictive controllers, the influence of the planning horizon is investigated in simulations. Based on these results, an experiment is designed to identify, whether humans initiate a change in their locomotion planning behavior while moving in a complex environment. The results support the hypothesis, that humans employ a shorter planning horizon to avoid collisions that are triggered by unexpected disturbances. Observations presented in this work are expected to further improve the generalizability and accuracy of prediction methods based on dynamic models. PMID:27936015

  12. Towards Assessing the Human Trajectory Planning Horizon.

    PubMed

    Carton, Daniel; Nitsch, Verena; Meinzer, Dominik; Wollherr, Dirk

    2016-01-01

    Mobile robots are envisioned to cooperate closely with humans and to integrate seamlessly into a shared environment. For locomotion, these environments resemble traversable areas which are shared between multiple agents like humans and robots. The seamless integration of mobile robots into these environments requires accurate predictions of human locomotion. This work considers optimal control and model predictive control approaches for accurate trajectory prediction and proposes to integrate aspects of human behavior to improve their performance. Recently developed models are not able to reproduce accurately trajectories that result from sudden avoidance maneuvers. Particularly, the human locomotion behavior when handling disturbances from other agents poses a problem. The goal of this work is to investigate whether humans alter their trajectory planning horizon, in order to resolve abruptly emerging collision situations. By modeling humans as model predictive controllers, the influence of the planning horizon is investigated in simulations. Based on these results, an experiment is designed to identify, whether humans initiate a change in their locomotion planning behavior while moving in a complex environment. The results support the hypothesis, that humans employ a shorter planning horizon to avoid collisions that are triggered by unexpected disturbances. Observations presented in this work are expected to further improve the generalizability and accuracy of prediction methods based on dynamic models.

  13. Modular Architecture for Integrated Model-Based Decision Support.

    PubMed

    Gaebel, Jan; Schreiber, Erik; Oeser, Alexander; Oeltze-Jafra, Steffen

    2018-01-01

    Model-based decision support systems promise to be a valuable addition to oncological treatments and the implementation of personalized therapies. For the integration and sharing of decision models, the involved systems must be able to communicate with each other. In this paper, we propose a modularized architecture of dedicated systems for the integration of probabilistic decision models into existing hospital environments. These systems interconnect via web services and provide model sharing and processing capabilities for clinical information systems. Along the lines of IHE integration profiles from other disciplines and the meaningful reuse of routinely recorded patient data, our approach aims for the seamless integration of decision models into hospital infrastructure and the physicians' daily work.

  14. Integrated Design and Engineering Analysis (IDEA) Environment - Propulsion Related Module Development and Vehicle Integration

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hilmi N.

    2013-01-01

    This report documents the work performed during the period from May 2011 - October 2012 on the Integrated Design and Engineering Analysis (IDEA) environment. IDEA is a collaborative environment based on an object-oriented, multidisciplinary, distributed framework using the Adaptive Modeling Language (AML). This report will focus on describing the work done in the areas of: (1) Integrating propulsion data (turbines, rockets, and scramjets) in the system, and using the data to perform trajectory analysis; (2) Developing a parametric packaging strategy for a hypersonic air breathing vehicles allowing for tank resizing when multiple fuels and/or oxidizer are part of the configuration; and (3) Vehicle scaling and closure strategies.

  15. Framework Programmable Platform for the Advanced Software Development Workstation (FPP/ASDW). Demonstration framework document. Volume 1: Concepts and activity descriptions

    NASA Technical Reports Server (NTRS)

    Mayer, Richard J.; Blinn, Thomas M.; Dewitte, Paul S.; Crump, John W.; Ackley, Keith A.

    1992-01-01

    The Framework Programmable Software Development Platform (FPP) is a project aimed at effectively combining tool and data integration mechanisms with a model of the software development process to provide an intelligent integrated software development environment. Guided by the model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated. The Advanced Software Development Workstation (ASDW) program is conducting research into development of advanced technologies for Computer Aided Software Engineering (CASE).

  16. Specifications of a Simulation Model for a Local Area Network Design in Support of Stock Point Logistics Integrated Communications Environment (SPLICE).

    DTIC Science & Technology

    1982-10-01

    class queueing system with a preemptive -resume priority service discipline, as depicted in Figure 4.2. Concerning a SPLICLAN configuration a node can...processor can be modeled as a single resource, multi-class queueing system with a preemptive -resume priority structure as the one given in Figure 4.2. An...LOCAL AREA NETWORK DESIGN IN SUPPORT OF STOCK POINT LOGISTICS INTEGRATED COMMUNICATIONS ENVIRONMENT (SPLICE) by Ioannis Th. Mastrocostopoulos October

  17. Saint: a lightweight integration environment for model annotation.

    PubMed

    Lister, Allyson L; Pocock, Matthew; Taschuk, Morgan; Wipat, Anil

    2009-11-15

    Saint is a web application which provides a lightweight annotation integration environment for quantitative biological models. The system enables modellers to rapidly mark up models with biological information derived from a range of data sources. Saint is freely available for use on the web at http://www.cisban.ac.uk/saint. The web application is implemented in Google Web Toolkit and Tomcat, with all major browsers supported. The Java source code is freely available for download at http://saint-annotate.sourceforge.net. The Saint web server requires an installation of libSBML and has been tested on Linux (32-bit Ubuntu 8.10 and 9.04).

  18. [Identification of the cumulative eco-environment effect of coal-electricity integration based on interpretative structural model].

    PubMed

    Han, Lin Wei; Fu, Xiao; Yan, Yan; Wang, Chen Xing; Wu, Gang

    2017-05-18

    In order to determine the cumulative eco-environmental effect of coal-electricity integration, we selected 29 eco-environmental factors including different development and construction activities of coal-electricity integration, soil, water, atmospheric conditions, biology, landscape, and ecology. Literature survey, expert questionnaire and interview were conducted to analyze the interactive relationships between different factors. The structure and correlations between the eco-environmental factors influenced by coal-electricity integration activities were analyzed using interpretive structural modeling (ISM) and the cumulative eco-environment effect of development and construction activities was determined. A research and evaluation framework for the cumulative eco-environmental effect was introduced in addition to specific evaluation and management needs. The results of this study would provide a theoretical and technical basis for planning and management of coal-electricity integration development activities.

  19. Real-Time Hardware-in-the-Loop Simulation of Ares I Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick; Matras, Alex; Walker, David; Wilson, Heath; Fulton, Chris; Alday, Nathan; Betts, Kevin; Hughes, Ryan; Turbe, Michael

    2009-01-01

    The Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) has been developed for use by the Ares I launch vehicle System Integration Laboratory at the Marshall Space Flight Center. The primary purpose of the Ares System Integration Laboratory is to test the vehicle avionics hardware and software in a hardware - in-the-loop environment to certify that the integrated system is prepared for flight. ARTEMIS has been designed to be the real-time simulation backbone to stimulate all required Ares components for verification testing. ARTE_VIIS provides high -fidelity dynamics, actuator, and sensor models to simulate an accurate flight trajectory in order to ensure realistic test conditions. ARTEMIS has been designed to take advantage of the advances in underlying computational power now available to support hardware-in-the-loop testing to achieve real-time simulation with unprecedented model fidelity. A modular realtime design relying on a fully distributed computing architecture has been implemented.

  20. A Case Study in an Integrated Development and Problem Solving Environment

    ERIC Educational Resources Information Center

    Deek, Fadi P.; McHugh, James A.

    2003-01-01

    This article describes an integrated problem solving and program development environment, illustrating the application of the system with a detailed case study of a small-scale programming problem. The system, which is based on an explicit cognitive model, is intended to guide the novice programmer through the stages of problem solving and program…

  1. Extending the granularity of representation and control for the MIL-STD CAIS 1.0 node model

    NASA Technical Reports Server (NTRS)

    Rogers, Kathy L.

    1986-01-01

    The Common APSE (Ada 1 Program Support Environment) Interface Set (CAIS) (DoD85) node model provides an excellent baseline for interfaces in a single-host development environment. To encompass the entire spectrum of computing, however, the CAIS model should be extended in four areas. It should provide the interface between the engineering workstation and the host system throughout the entire lifecycle of the system. It should provide a basis for communication and integration functions needed by distributed host environments. It should provide common interfaces for communications mechanisms to and among target processors. It should provide facilities for integration, validation, and verification of test beds extending to distributed systems on geographically separate processors with heterogeneous instruction set architectures (ISAS). Additions to the PROCESS NODE model to extend the CAIS into these four areas are proposed.

  2. The TAME Project: Towards improvement-oriented software environments

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Rombach, H. Dieter

    1988-01-01

    Experience from a dozen years of analyzing software engineering processes and products is summarized as a set of software engineering and measurement principles that argue for software engineering process models that integrate sound planning and analysis into the construction process. In the TAME (Tailoring A Measurement Environment) project at the University of Maryland, such an improvement-oriented software engineering process model was developed that uses the goal/question/metric paradigm to integrate the constructive and analytic aspects of software development. The model provides a mechanism for formalizing the characterization and planning tasks, controlling and improving projects based on quantitative analysis, learning in a deeper and more systematic way about the software process and product, and feeding the appropriate experience back into the current and future projects. The TAME system is an instantiation of the TAME software engineering process model as an ISEE (integrated software engineering environment). The first in a series of TAME system prototypes has been developed. An assessment of experience with this first limited prototype is presented including a reassessment of its initial architecture.

  3. True Concurrent Thermal Engineering Integrating CAD Model Building with Finite Element and Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    Panczak, Tim; Ring, Steve; Welch, Mark

    1999-01-01

    Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.

  4. A Framework for Sharing and Integrating Remote Sensing and GIS Models Based on Web Service

    PubMed Central

    Chen, Zeqiang; Lin, Hui; Chen, Min; Liu, Deer; Bao, Ying; Ding, Yulin

    2014-01-01

    Sharing and integrating Remote Sensing (RS) and Geographic Information System/Science (GIS) models are critical for developing practical application systems. Facilitating model sharing and model integration is a problem for model publishers and model users, respectively. To address this problem, a framework based on a Web service for sharing and integrating RS and GIS models is proposed in this paper. The fundamental idea of the framework is to publish heterogeneous RS and GIS models into standard Web services for sharing and interoperation and then to integrate the RS and GIS models using Web services. For the former, a “black box” and a visual method are employed to facilitate the publishing of the models as Web services. For the latter, model integration based on the geospatial workflow and semantic supported marching method is introduced. Under this framework, model sharing and integration is applied for developing the Pearl River Delta water environment monitoring system. The results show that the framework can facilitate model sharing and model integration for model publishers and model users. PMID:24901016

  5. A framework for sharing and integrating remote sensing and GIS models based on Web service.

    PubMed

    Chen, Zeqiang; Lin, Hui; Chen, Min; Liu, Deer; Bao, Ying; Ding, Yulin

    2014-01-01

    Sharing and integrating Remote Sensing (RS) and Geographic Information System/Science (GIS) models are critical for developing practical application systems. Facilitating model sharing and model integration is a problem for model publishers and model users, respectively. To address this problem, a framework based on a Web service for sharing and integrating RS and GIS models is proposed in this paper. The fundamental idea of the framework is to publish heterogeneous RS and GIS models into standard Web services for sharing and interoperation and then to integrate the RS and GIS models using Web services. For the former, a "black box" and a visual method are employed to facilitate the publishing of the models as Web services. For the latter, model integration based on the geospatial workflow and semantic supported marching method is introduced. Under this framework, model sharing and integration is applied for developing the Pearl River Delta water environment monitoring system. The results show that the framework can facilitate model sharing and model integration for model publishers and model users.

  6. Model-Based Systems

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.

    2007-01-01

    Engineers, who design systems using text specification documents, focus their work upon the completed system to meet Performance, time and budget goals. Consistency and integrity is difficult to maintain within text documents for a single complex system and more difficult to maintain as several systems are combined into higher-level systems, are maintained over decades, and evolve technically and in performance through updates. This system design approach frequently results in major changes during the system integration and test phase, and in time and budget overruns. Engineers who build system specification documents within a model-based systems environment go a step further and aggregate all of the data. They interrelate all of the data to insure consistency and integrity. After the model is constructed, the various system specification documents are prepared, all from the same database. The consistency and integrity of the model is assured, therefore the consistency and integrity of the various specification documents is insured. This article attempts to define model-based systems relative to such an environment. The intent is to expose the complexity of the enabling problem by outlining what is needed, why it is needed and how needs are being addressed by international standards writing teams.

  7. Aging Well and the Environment: Toward an Integrative Model and Research Agenda for the Future

    ERIC Educational Resources Information Center

    Wahl, Hans-Werner; Iwarsson, Susanne; Oswald, Frank

    2012-01-01

    Purpose of the Study: The effects of the physical-spatial-technical environment on aging well have been overlooked both conceptually and empirically. In the spirit of M. Powell Lawton's seminal work on aging and environment, this article attempts to rectify this situation by suggesting a new model of how older people interact with their…

  8. An Operations Concept for Integrated Model-Centric Engineering at JPL

    NASA Technical Reports Server (NTRS)

    Bayer, Todd J.; Cooney, Lauren A.; Delp, Christopher L.; Dutenhoffer, Chelsea A.; Gostelow, Roli D.; Ingham, Michel D.; Jenkins, J. Steven; Smith, Brian S.

    2010-01-01

    As JPL's missions grow more complex, the need for improved systems engineering processes is becoming clear. Of significant promise in this regard is the move toward a more integrated and model-centric approach to mission conception, design, implementation and operations. The Integrated Model-Centric Engineering (IMCE) Initiative, now underway at JPL, seeks to lay the groundwork for these improvements. This paper will report progress on three fronts: articulating JPL's need for IMCE; characterizing the enterprise into which IMCE capabilities will be deployed; and constructing an operations concept for a flight project development in an integrated model-centric environment.

  9. Integrated approaches to the application of advanced modeling technology in process development and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allgor, R.J.; Feehery, W.F.; Tolsma, J.E.

    The batch process development problem serves as good candidate to guide the development of process modeling environments. It demonstrates that very robust numerical techniques are required within an environment that can collect, organize, and maintain the data and models required to address the batch process development problem. This paper focuses on improving the robustness and efficiency of the numerical algorithms required in such a modeling environment through the development of hybrid numerical and symbolic strategies.

  10. ITI: The Model. Integrated Thematic Instruction. Third Edition.

    ERIC Educational Resources Information Center

    Kovalik, Susan; Olsen, Karen

    This book presents Integrated Thematic Instruction (ITI), a model for implementing a "brain-compatible" learning environment for students and teachers using a year-long theme to organize curriculum content and skills. The book's introduction identifies six "mismemes" (or mistaken ideas) that have hindered educational reform,…

  11. Joint occupational and environmental pollution prevention strategies: a model for primary prevention.

    PubMed

    Armenti, Karla; Moure-Eraso, Rafael; Slatin, Craig; Geiser, Ken

    2003-01-01

    Occupational and environmental health issues are not always considered simultaneously when attempting to reduce or eliminate hazardous materials from our environment. Methods used to decrease exposure to hazardous chemicals in the workplace often lead to increased exposure in the environment and to the community outside the workplace. Conversely, efforts to control emissions of hazardous chemicals into the environment often lead to increased exposure to the workers inside the plant. There are government regulations in place that ensure a safe work environment or a safe outside environment; however, there is little integration of both approaches when considering the public's health as a whole. This article examines some of the reasons behind this dichotomy, focusing on the regulatory and policy frameworks with respect to workplace and environment that have resulted in the inability of the Occupational Safety and Health Administration (OSHA) and the Environmental Protection Agency (EPA) to coordinate their efforts to protect public health. The components of the Pollution Prevention Act and its potential to serve as a model for integrating occupational and environmental health are discussed. Limitations regarding enforcement of pollution prevention, as well as its disconnection from the work environment are equally highlighted. The article finishes by examining the barriers to integrating the occupational and environmental health paradigms and the promotion of primary prevention in public health.

  12. High-performance integrated virtual environment (HIVE): a robust infrastructure for next-generation sequence data analysis

    PubMed Central

    Simonyan, Vahan; Chumakov, Konstantin; Dingerdissen, Hayley; Faison, William; Goldweber, Scott; Golikov, Anton; Gulzar, Naila; Karagiannis, Konstantinos; Vinh Nguyen Lam, Phuc; Maudru, Thomas; Muravitskaja, Olesja; Osipova, Ekaterina; Pan, Yang; Pschenichnov, Alexey; Rostovtsev, Alexandre; Santana-Quintero, Luis; Smith, Krista; Thompson, Elaine E.; Tkachenko, Valery; Torcivia-Rodriguez, John; Wan, Quan; Wang, Jing; Wu, Tsung-Jung; Wilson, Carolyn; Mazumder, Raja

    2016-01-01

    The High-performance Integrated Virtual Environment (HIVE) is a distributed storage and compute environment designed primarily to handle next-generation sequencing (NGS) data. This multicomponent cloud infrastructure provides secure web access for authorized users to deposit, retrieve, annotate and compute on NGS data, and to analyse the outcomes using web interface visual environments appropriately built in collaboration with research and regulatory scientists and other end users. Unlike many massively parallel computing environments, HIVE uses a cloud control server which virtualizes services, not processes. It is both very robust and flexible due to the abstraction layer introduced between computational requests and operating system processes. The novel paradigm of moving computations to the data, instead of moving data to computational nodes, has proven to be significantly less taxing for both hardware and network infrastructure. The honeycomb data model developed for HIVE integrates metadata into an object-oriented model. Its distinction from other object-oriented databases is in the additional implementation of a unified application program interface to search, view and manipulate data of all types. This model simplifies the introduction of new data types, thereby minimizing the need for database restructuring and streamlining the development of new integrated information systems. The honeycomb model employs a highly secure hierarchical access control and permission system, allowing determination of data access privileges in a finely granular manner without flooding the security subsystem with a multiplicity of rules. HIVE infrastructure will allow engineers and scientists to perform NGS analysis in a manner that is both efficient and secure. HIVE is actively supported in public and private domains, and project collaborations are welcomed. Database URL: https://hive.biochemistry.gwu.edu PMID:26989153

  13. High-performance integrated virtual environment (HIVE): a robust infrastructure for next-generation sequence data analysis.

    PubMed

    Simonyan, Vahan; Chumakov, Konstantin; Dingerdissen, Hayley; Faison, William; Goldweber, Scott; Golikov, Anton; Gulzar, Naila; Karagiannis, Konstantinos; Vinh Nguyen Lam, Phuc; Maudru, Thomas; Muravitskaja, Olesja; Osipova, Ekaterina; Pan, Yang; Pschenichnov, Alexey; Rostovtsev, Alexandre; Santana-Quintero, Luis; Smith, Krista; Thompson, Elaine E; Tkachenko, Valery; Torcivia-Rodriguez, John; Voskanian, Alin; Wan, Quan; Wang, Jing; Wu, Tsung-Jung; Wilson, Carolyn; Mazumder, Raja

    2016-01-01

    The High-performance Integrated Virtual Environment (HIVE) is a distributed storage and compute environment designed primarily to handle next-generation sequencing (NGS) data. This multicomponent cloud infrastructure provides secure web access for authorized users to deposit, retrieve, annotate and compute on NGS data, and to analyse the outcomes using web interface visual environments appropriately built in collaboration with research and regulatory scientists and other end users. Unlike many massively parallel computing environments, HIVE uses a cloud control server which virtualizes services, not processes. It is both very robust and flexible due to the abstraction layer introduced between computational requests and operating system processes. The novel paradigm of moving computations to the data, instead of moving data to computational nodes, has proven to be significantly less taxing for both hardware and network infrastructure.The honeycomb data model developed for HIVE integrates metadata into an object-oriented model. Its distinction from other object-oriented databases is in the additional implementation of a unified application program interface to search, view and manipulate data of all types. This model simplifies the introduction of new data types, thereby minimizing the need for database restructuring and streamlining the development of new integrated information systems. The honeycomb model employs a highly secure hierarchical access control and permission system, allowing determination of data access privileges in a finely granular manner without flooding the security subsystem with a multiplicity of rules. HIVE infrastructure will allow engineers and scientists to perform NGS analysis in a manner that is both efficient and secure. HIVE is actively supported in public and private domains, and project collaborations are welcomed. Database URL: https://hive.biochemistry.gwu.edu. © The Author(s) 2016. Published by Oxford University Press.

  14. Integrating heterogeneous databases in clustered medic care environments using object-oriented technology

    NASA Astrophysics Data System (ADS)

    Thakore, Arun K.; Sauer, Frank

    1994-05-01

    The organization of modern medical care environments into disease-related clusters, such as a cancer center, a diabetes clinic, etc., has the side-effect of introducing multiple heterogeneous databases, often containing similar information, within the same organization. This heterogeneity fosters incompatibility and prevents the effective sharing of data amongst applications at different sites. Although integration of heterogeneous databases is now feasible, in the medical arena this is often an ad hoc process, not founded on proven database technology or formal methods. In this paper we illustrate the use of a high-level object- oriented semantic association method to model information found in different databases into an integrated conceptual global model that integrates the databases. We provide examples from the medical domain to illustrate an integration approach resulting in a consistent global view, without attacking the autonomy of the underlying databases.

  15. Diagnostics in the Extendable Integrated Support Environment (EISE)

    NASA Technical Reports Server (NTRS)

    Brink, James R.; Storey, Paul

    1988-01-01

    Extendable Integrated Support Environment (EISE) is a real-time computer network consisting of commercially available hardware and software components to support systems level integration, modifications, and enhancement to weapons systems. The EISE approach offers substantial potential savings by eliminating unique support environments in favor of sharing common modules for the support of operational weapon systems. An expert system is being developed that will help support diagnosing faults in this network. This is a multi-level, multi-expert diagnostic system that uses experiential knowledge relating symptoms to faults and also reasons from structural and functional models of the underlying physical model when experiential reasoning is inadequate. The individual expert systems are orchestrated by a supervisory reasoning controller, a meta-level reasoner which plans the sequence of reasoning steps to solve the given specific problem. The overall system, termed the Diagnostic Executive, accesses systems level performance checks and error reports, and issues remote test procedures to formulate and confirm fault hypotheses.

  16. Exploring the Benefits of Teacher-Modeling Strategies Integrated into Career and Technical Education

    ERIC Educational Resources Information Center

    Cathers, Thomas J., Sr.

    2013-01-01

    This case study examined how career and technical education classes function using multiple instructional modeling strategies integrated into vocational and technical training environments. Seven New Jersey public school technical teachers received an introductory overview of the investigation and participated by responding to 10 open-end…

  17. Hearing Protection for High-Noise Environments. Part 1

    DTIC Science & Technology

    2007-05-31

    22 3.5.1 Properties of biological tissues ..... ............. 22 3.5.2 Elastic vs. acoustic modeling of tissues ............ 23...3.5.3 Range of applicability of acoustic modeling of tissues . 25 A Integral equations in acoustics 27 B Discretization of integral equations in...elasticity modeling We conclude the review of our Phase I results with a discussion on the range of applicability of acoustic modeling of biological

  18. Integrated wetland management: an analysis with group model building based on system dynamics model.

    PubMed

    Chen, Hsin; Chang, Yang-Chi; Chen, Kung-Chen

    2014-12-15

    The wetland system possesses diverse functions such as preserving water sources, mediating flooding, providing habitats for wildlife and stabilizing coastlines. Nonetheless, rapid economic growth and the increasing population have significantly deteriorated the wetland environment. To secure the sustainability of the wetland, it is essential to introduce integrated and systematic management. This paper examines the resource management of the Jiading Wetland by applying group model building (GMB) and system dynamics (SD). We systematically identify local stakeholders' mental model regarding the impact brought by the yacht industry, and further establish a SD model to simulate the dynamic wetland environment. The GMB process improves the stakeholders' understanding about the interaction between the wetland environment and management policies. Differences between the stakeholders' perceptions and the behaviors shown by the SD model also suggest that our analysis would facilitate the stakeholders to broaden their horizons and achieve consensus on the wetland resource management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Probabilistic Models for Solar Particle Events

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Dietrich, W. F.; Xapsos, M. A.; Welton, A. M.

    2009-01-01

    Probabilistic Models of Solar Particle Events (SPEs) are used in space mission design studies to provide a description of the worst-case radiation environment that the mission must be designed to tolerate.The models determine the worst-case environment using a description of the mission and a user-specified confidence level that the provided environment will not be exceeded. This poster will focus on completing the existing suite of models by developing models for peak flux and event-integrated fluence elemental spectra for the Z>2 elements. It will also discuss methods to take into account uncertainties in the data base and the uncertainties resulting from the limited number of solar particle events in the database. These new probabilistic models are based on an extensive survey of SPE measurements of peak and event-integrated elemental differential energy spectra. Attempts are made to fit the measured spectra with eight different published models. The model giving the best fit to each spectrum is chosen and used to represent that spectrum for any energy in the energy range covered by the measurements. The set of all such spectral representations for each element is then used to determine the worst case spectrum as a function of confidence level. The spectral representation that best fits these worst case spectra is found and its dependence on confidence level is parameterized. This procedure creates probabilistic models for the peak and event-integrated spectra.

  20. Social and Collaborative Interactions for Educational Content Enrichment in ULEs

    ERIC Educational Resources Information Center

    Araújo, Rafael D.; Brant-Ribeiro, Taffarel; Mendonça, Igor E. S.; Mendes, Miller M.; Dorça, Fabiano A.; Cattelan, Renan G.

    2017-01-01

    This article presents a social and collaborative model for content enrichment in Ubiquitous Learning Environments. Designed as a loosely coupled software architecture, the proposed model was implemented and integrated into the Classroom eXperience, a multimedia capture platform for educational environments. After automatically recording a lecture…

  1. An Integrated Modeling and Simulation Methodology for Intelligent Systems Design and Testing

    DTIC Science & Technology

    2002-08-01

    simulation and actual execution. KEYWORDS: Model Continuity, Modeling, Simulation, Experimental Frame, Real Time Systems , Intelligent Systems...the methodology for a stand-alone real time system. Then it will scale up to distributed real time systems . For both systems, step-wise simulation...MODEL CONTINUITY Intelligent real time systems monitor, respond to, or control, an external environment. This environment is connected to the digital

  2. Integrating Computers into the Problem-Solving Process.

    ERIC Educational Resources Information Center

    Lowther, Deborah L.; Morrison, Gary R.

    2003-01-01

    Asserts that within the context of problem-based learning environments, professors can encourage students to use computers as problem-solving tools. The ten-step Integrating Technology for InQuiry (NteQ) model guides professors through the process of integrating computers into problem-based learning activities. (SWM)

  3. Performance Improvement of Receivers Based on Ultra-Tight Integration in GNSS-Challenged Environments

    PubMed Central

    Qin, Feng; Zhan, Xingqun; Du, Gang

    2013-01-01

    Ultra-tight integration was first proposed by Abbott in 2003 with the purpose of integrating a global navigation satellite system (GNSS) and an inertial navigation system (INS). This technology can improve the tracking performances of a receiver by reconfiguring the tracking loops in GNSS-challenged environments. In this paper, the models of all error sources known to date in the phase lock loops (PLLs) of a standard receiver and an ultra-tightly integrated GNSS/INS receiver are built, respectively. Based on these models, the tracking performances of the two receivers are compared to verify the improvement due to the ultra-tight integration. Meanwhile, the PLL error distributions of the two receivers are also depicted to analyze the error changes of the tracking loops. These results show that the tracking error is significantly reduced in the ultra-tightly integrated GNSS/INS receiver since the receiver's dynamics are estimated and compensated by an INS. Moreover, the mathematical relationship between the tracking performances of the ultra-tightly integrated GNSS/INS receiver and the quality of the selected inertial measurement unit (IMU) is derived from the error models and proved by the error comparisons of four ultra-tightly integrated GNSS/INS receivers aided by different grade IMUs.

  4. CONFIG: Integrated engineering of systems and their operation

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Ryan, Dan; Fleming, Land

    1994-01-01

    This article discusses CONFIG 3, a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operations of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. CONFIG supports integration among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. CONFIG is designed to support integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems.

  5. Integrated Modeling of Optical Systems (IMOS): An Assessment and Future Directions

    NASA Technical Reports Server (NTRS)

    Moore, Gregory; Broduer, Steve (Technical Monitor)

    2001-01-01

    Integrated Modeling of Optical Systems (IMOS) is a finite element-based code combining structural, thermal, and optical ray-tracing capabilities in a single environment for analysis of space-based optical systems. We'll present some recent examples of IMOS usage and discuss future development directions. Due to increasing model sizes and a greater emphasis on multidisciplinary analysis and design, much of the anticipated future work will be in the areas of improved architecture, numerics, and overall performance and analysis integration.

  6. Model for integrated management of quality, labor risks prevention, environment and ethical aspects, applied to R&D&I and production processes in an organization

    NASA Astrophysics Data System (ADS)

    González, M. R.; Torres, F.; Yoldi, V.; Arcega, F.; Plaza, I.

    2012-04-01

    It is proposed an integrated management model for an organization. This model is based on the continuous improvement Plan-Do-Check-Act cycle and it intends to integrate the environmental, risk prevention and ethical aspects as well as research, development and innovation projects management in the general quality management structure proposed by ISO 9001:2008. It aims to fulfill the standards ISO 9001, ISO 14001, OSHAS 18001, SGE 21 y 166002.

  7. Modelling the urban water cycle as an integrated part of the city: a review.

    PubMed

    Urich, Christian; Rauch, Wolfgang

    2014-01-01

    In contrast to common perceptions, the urban water infrastructure system is a complex and dynamic system that is constantly evolving and adapting to changes in the urban environment, to sustain existing services and provide additional ones. Instead of simplifying urban water infrastructure to a static system that is decoupled from its urban context, new management strategies use the complexity of the system to their advantage by integrating centralised with decentralised solutions and explicitly embedding water systems into their urban form. However, to understand and test possible adaptation strategies, urban water modelling tools are required to support exploration of their effectiveness as the human-technology-environment system coevolves under different future scenarios. The urban water modelling community has taken first steps to developing these new modelling tools. This paper critically reviews the historical development of urban water modelling tools and provides a summary of the current state of integrated modelling approaches. It reflects on the challenges that arise through the current practice of coupling urban water management tools with urban development models and discusses a potential pathway towards a new generation of modelling tools.

  8. Parametric Modelling of As-Built Beam Framed Structure in Bim Environment

    NASA Astrophysics Data System (ADS)

    Yang, X.; Koehl, M.; Grussenmeyer, P.

    2017-02-01

    A complete documentation and conservation of a historic timber roof requires the integration of geometry modelling, attributional and dynamic information management and results of structural analysis. Recently developed as-built Building Information Modelling (BIM) technique has the potential to provide a uniform platform, which provides possibility to integrate the traditional geometry modelling, parametric elements management and structural analysis together. The main objective of the project presented in this paper is to develop a parametric modelling tool for a timber roof structure whose elements are leaning and crossing beam frame. Since Autodesk Revit, as the typical BIM software, provides the platform for parametric modelling and information management, an API plugin, able to automatically create the parametric beam elements and link them together with strict relationship, was developed. The plugin under development is introduced in the paper, which can obtain the parametric beam model via Autodesk Revit API from total station points and terrestrial laser scanning data. The results show the potential of automatizing the parametric modelling by interactive API development in BIM environment. It also integrates the separate data processing and different platforms into the uniform Revit software.

  9. Automated Environment Generation for Software Model Checking

    NASA Technical Reports Server (NTRS)

    Tkachuk, Oksana; Dwyer, Matthew B.; Pasareanu, Corina S.

    2003-01-01

    A key problem in model checking open systems is environment modeling (i.e., representing the behavior of the execution context of the system under analysis). Software systems are fundamentally open since their behavior is dependent on patterns of invocation of system components and values defined outside the system but referenced within the system. Whether reasoning about the behavior of whole programs or about program components, an abstract model of the environment can be essential in enabling sufficiently precise yet tractable verification. In this paper, we describe an approach to generating environments of Java program fragments. This approach integrates formally specified assumptions about environment behavior with sound abstractions of environment implementations to form a model of the environment. The approach is implemented in the Bandera Environment Generator (BEG) which we describe along with our experience using BEG to reason about properties of several non-trivial concurrent Java programs.

  10. Cultivating Curiosity: Integrating Hybrid Teaching in Courses in Human Behavior in the Social Environment

    ERIC Educational Resources Information Center

    Rodriguez-Keyes, Elizabeth; Schneider, Dana A.

    2013-01-01

    This study illustrates an experience of implementing a hybrid model for teaching human behavior in the social environment in an urban university setting. Developing a hybrid model in a BSW program arose out of a desire to reach students in a different way. Designed to promote curiosity and active learning, this particular hybrid model has students…

  11. Neuromechanics of crawling in D. melanogaster larvae

    NASA Astrophysics Data System (ADS)

    Pehlevan, Cengiz; Paoletti, Paolo; Mahadevan, L.

    2015-03-01

    Nervous system, body and environment interact in non-trivial ways to generate locomotion and thence behavior in an organism. Here we present a minimal integrative mathematical model to describe the simple behavior of forward crawling in Drosophila larvae. Our model couples the excitation-inhibition circuits in the nervous system to force production in the muscles and body movement in a frictional environment, which in turn leads to a proprioceptive signal that feeds back to the nervous system. Our results explain the basic observed phenomenology of crawling with or without proprioception, and elucidate the stabilizing role of proprioception in crawling with respect to external and internal perturbations. Our integrated approach allows us to make testable predictions on the effect of changing body-environment interactions on crawling, and serves as a substrate for the development of hierarchical models linking cellular processes to behavior.

  12. Program test objectives milestone 3. [Integrated Propulsion Technology Demonstrator

    NASA Technical Reports Server (NTRS)

    Gaynor, T. L.

    1994-01-01

    The following conclusions have been developed relative to propulsion system technology adequacy for efficient development and operation of recoverable and expendable launch vehicles (RLV and ELV) and the benefits which the integrated propulsion technology demonstrator will provide for enhancing technology: (1) Technology improvements relative to propulsion system design and operation can reduce program cost. Many features or improvement needs to enhance operability, reduce cost, and improve payload are identified. (2) The Integrated Propulsion Technology Demonstrator (IPTD) Program provides a means of resolving the majority of issues associated with improvement needs. (3) The IPTD will evaluate complex integration of vehicle and facility functions in fluid management and propulsion control systems, and provides an environment for validating improved mechanical and electrical components. (4) The IPTD provides a mechanism for investigating operational issues focusing on reducing manpower and time to perform various functions at the launch site. These efforts include model development, collection of data to validate subject models, and ultimate development of complex time line models. (5) The IPTD provides an engine test bed for tri/bi-propellant engine development firings which is representative of the actual vehicle environment. (6) The IPTD provides for only a limited multiengine configuration integration environment for RLV. Multiengine efforts may be simulated for a number of subsystems and a number of subsystems are relatively independent of the multiengine influences.

  13. Public (Q)SAR Services, Integrated Modeling Environments, and Model Repositories on the Web: State of the Art and Perspectives for Future Development.

    PubMed

    Tetko, Igor V; Maran, Uko; Tropsha, Alexander

    2017-03-01

    Thousands of (Quantitative) Structure-Activity Relationships (Q)SAR models have been described in peer-reviewed publications; however, this way of sharing seldom makes models available for the use by the research community outside of the developer's laboratory. Conversely, on-line models allow broad dissemination and application representing the most effective way of sharing the scientific knowledge. Approaches for sharing and providing on-line access to models range from web services created by individual users and laboratories to integrated modeling environments and model repositories. This emerging transition from the descriptive and informative, but "static", and for the most part, non-executable print format to interactive, transparent and functional delivery of "living" models is expected to have a transformative effect on modern experimental research in areas of scientific and regulatory use of (Q)SAR models. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Advanced Modeling, Simulation and Analysis (AMSA) Capability Roadmap Progress Review

    NASA Technical Reports Server (NTRS)

    Antonsson, Erik; Gombosi, Tamas

    2005-01-01

    Contents include the following: NASA capability roadmap activity. Advanced modeling, simulation, and analysis overview. Scientific modeling and simulation. Operations modeling. Multi-special sensing (UV-gamma). System integration. M and S Environments and Infrastructure.

  15. Modeling and Detecting Feature Interactions among Integrated Services of Home Network Systems

    NASA Astrophysics Data System (ADS)

    Igaki, Hiroshi; Nakamura, Masahide

    This paper presents a framework for formalizing and detecting feature interactions (FIs) in the emerging smart home domain. We first establish a model of home network system (HNS), where every networked appliance (or the HNS environment) is characterized as an object consisting of properties and methods. Then, every HNS service is defined as a sequence of method invocations of the appliances. Within the model, we next formalize two kinds of FIs: (a) appliance interactions and (b) environment interactions. An appliance interaction occurs when two method invocations conflict on the same appliance, whereas an environment interaction arises when two method invocations conflict indirectly via the environment. Finally, we propose offline and online methods that detect FIs before service deployment and during execution, respectively. Through a case study with seven practical services, it is shown that the proposed framework is generic enough to capture feature interactions in HNS integrated services. We also discuss several FI resolution schemes within the proposed framework.

  16. Assessment of Urbanization on the Integrated Land-Ocean-Atmosphere Environment in Coastal Metropolis in Preparation for HyspIRI

    NASA Technical Reports Server (NTRS)

    Sequera, Pedro; McDonald, Kyle C.; Gonzalez, Jorge; Arend, Mark; Krakauer, Nir; Bornstein, Robert; Luvll, Jeffrey

    2012-01-01

    The need for comprehensive studies of the relationships between past and projected changes of regional climate and human activity in comple x urban environments has been well established. The HyspIRI preparato ry airborne activities in California, associated science and applicat ions research, and eventually HyspIRI itself provide an unprecedented opportunity for development and implementation of an integrated data and modeling analysis system focused on coastal urban environments. We will utilize HyspIRI preparatory data collections in developing ne w remote sensing-based tools for investigating the integrated urban e nvironment, emphasizing weather, climate, and energy demands in compl ex coastal cities.

  17. Hemispherical reflectance model for passive images in an outdoor environment.

    PubMed

    Kim, Charles C; Thai, Bea; Yamaoka, Neil; Aboutalib, Omar

    2015-05-01

    We present a hemispherical reflectance model for simulating passive images in an outdoor environment where illumination is provided by natural sources such as the sun and the clouds. While the bidirectional reflectance distribution function (BRDF) accurately produces radiance from any objects after the illumination, using the BRDF in calculating radiance requires double integration. Replacing the BRDF by hemispherical reflectance under the natural sources transforms the double integration into a multiplication. This reduces both storage space and computation time. We present the formalism for the radiance of the scene using hemispherical reflectance instead of BRDF. This enables us to generate passive images in an outdoor environment taking advantage of the computational and storage efficiencies. We show some examples for illustration.

  18. The Design of Learning Environments.

    ERIC Educational Resources Information Center

    Stueck, Lawrence E.

    This study, using the Eisner's Educational Criticism Model, examines the role school architecture plays in eliciting creative, self-directed, child-centered responses in elementary school students. An evaluation of 11 play environments; 7 learning environments; an integrated third grade curriculum known as the City Classroom is presented; and the…

  19. A sensor simulation framework for the testing and evaluation of external hazard monitors and integrated alerting and notification functions

    NASA Astrophysics Data System (ADS)

    Uijt de Haag, Maarten; Venable, Kyle; Bezawada, Rajesh; Adami, Tony; Vadlamani, Ananth K.

    2009-05-01

    This paper discusses a sensor simulator/synthesizer framework that can be used to test and evaluate various sensor integration strategies for the implementation of an External Hazard Monitor (EHM) and Integrated Alerting and Notification (IAN) function as part of NASA's Integrated Intelligent Flight Deck (IIFD) project. The IIFD project under the NASA's Aviation Safety program "pursues technologies related to the flight deck that ensure crew workload and situational awareness are both safely optimized and adapted to the future operational environment as envisioned by NextGen." Within the simulation framework, various inputs to the IIFD and its subsystems, the EHM and IAN, are simulated, synthesized from actual collected data, or played back from actual flight test sensor data. Sensors and avionics included in this framework are TCAS, ADS-B, Forward-Looking Infrared, Vision cameras, GPS, Inertial navigators, EGPWS, Laser Detection and Ranging sensors, altimeters, communication links with ATC, and weather radar. The framework is implemented in Simulink, a modeling language developed by The Mathworks. This modeling language allows for test and evaluation of various sensor and communication link configurations as well as the inclusion of feedback from the pilot on the performance of the aircraft. Specifically, this paper addresses the architecture of the simulator, the sensor model interfaces, the timing and database (environment) aspects of the sensor models, the user interface of the modeling environment, and the various avionics implementations.

  20. Learning situation models in a smart home.

    PubMed

    Brdiczka, Oliver; Crowley, James L; Reignier, Patrick

    2009-02-01

    This paper addresses the problem of learning situation models for providing context-aware services. Context for modeling human behavior in a smart environment is represented by a situation model describing environment, users, and their activities. A framework for acquiring and evolving different layers of a situation model in a smart environment is proposed. Different learning methods are presented as part of this framework: role detection per entity, unsupervised extraction of situations from multimodal data, supervised learning of situation representations, and evolution of a predefined situation model with feedback. The situation model serves as frame and support for the different methods, permitting to stay in an intuitive declarative framework. The proposed methods have been integrated into a whole system for smart home environment. The implementation is detailed, and two evaluations are conducted in the smart home environment. The obtained results validate the proposed approach.

  1. Integration of the virtual model of a Stewart platform with the avatar of a vehicle in a virtual reality

    NASA Astrophysics Data System (ADS)

    Herbuś, K.; Ociepka, P.

    2016-08-01

    The development of methods of computer aided design and engineering allows conducting virtual tests, among others concerning motion simulation of technical means. The paper presents a method of integrating an object in the form of a virtual model of a Stewart platform with an avatar of a vehicle moving in a virtual environment. The area of the problem includes issues related to the problem of fidelity of mapping the work of the analyzed technical mean. The main object of investigations is a 3D model of a Stewart platform, which is a subsystem of the simulator designated for driving learning for disabled persons. The analyzed model of the platform, prepared for motion simulation, was created in the “Motion Simulation” module of a CAD/CAE class system Siemens PLM NX. Whereas the virtual environment, in which the moves the avatar of the passenger car, was elaborated in a VR class system EON Studio. The element integrating both of the mentioned software environments is a developed application that reads information from the virtual reality (VR) concerning the current position of the car avatar. Then, basing on the accepted algorithm, it sends control signals to respective joints of the model of the Stewart platform (CAD).

  2. An integrated approach to system design, reliability, and diagnosis

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, F. A.; Iverson, David L.

    1990-01-01

    The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems engineering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms. Procedures have been developed at Ames that perform reliability evaluations during design and failure diagnoses during system operation. These procedures utilize information from a central source, structured as object-oriented fault trees. Fault trees were selected because they are a flexible model widely used in aerospace applications and because they give a concise, structured representation of system behavior. The utility of this integrated environment for aerospace applications in light of our experiences during its development and use is described. The techniques for reliability evaluation and failure diagnosis are discussed, and current extensions of the environment and areas requiring further development are summarized.

  3. An integrated approach to system design, reliability, and diagnosis

    NASA Astrophysics Data System (ADS)

    Patterson-Hine, F. A.; Iverson, David L.

    1990-12-01

    The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems engineering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms. Procedures have been developed at Ames that perform reliability evaluations during design and failure diagnoses during system operation. These procedures utilize information from a central source, structured as object-oriented fault trees. Fault trees were selected because they are a flexible model widely used in aerospace applications and because they give a concise, structured representation of system behavior. The utility of this integrated environment for aerospace applications in light of our experiences during its development and use is described. The techniques for reliability evaluation and failure diagnosis are discussed, and current extensions of the environment and areas requiring further development are summarized.

  4. Integration of Environmental Issues in a Physics Course: "Physics by Inquiry" High School Teachers' Integration Models and Challenges

    ERIC Educational Resources Information Center

    Kimori, David Abiya

    2017-01-01

    As we approach the second quarter of the twenty-first century, one may predict that the environment will be among the dominant themes in the political and educational discourse. Over the past three decades, particular perspectives regarding the environment have begun to emerge: (i) realization by human beings that we not only live on earth and use…

  5. Review of Data Integrity Models in Multi-Level Security Environments

    DTIC Science & Technology

    2011-02-01

    2: (E-1 extension) Only executions described in a (User, TP, (CDIs)) relation are allowed • E-3: Users must be authenticated before allowing TP... authentication and verification procedures for upgrading the integrity of certain objects. The mechanism used to manage access to objects is primarily...that is, the self-consistency of interdependent data and the consistency of real-world environment data. The prevention of authorised users from making

  6. Open-Source Integrated Design-Analysis Environment For Nuclear Energy Advanced Modeling & Simulation Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Leary, Patrick

    The framework created through the Open-Source Integrated Design-Analysis Environment (IDAE) for Nuclear Energy Advanced Modeling & Simulation grant has simplify and democratize advanced modeling and simulation in the nuclear energy industry that works on a range of nuclear engineering applications. It leverages millions of investment dollars from the Department of Energy's Office of Nuclear Energy for modeling and simulation of light water reactors and the Office of Nuclear Energy's research and development. The IDEA framework enhanced Kitware’s Computational Model Builder (CMB) while leveraging existing open-source toolkits and creating a graphical end-to-end umbrella guiding end-users and developers through the nuclear energymore » advanced modeling and simulation lifecycle. In addition, the work deliver strategic advancements in meshing and visualization for ensembles.« less

  7. An Integrative, Multi-Scale Computational Model of a Swimming Lamprey Fully Coupled to Its Fluid Environment and Incorporating Proprioceptive Feedback

    NASA Astrophysics Data System (ADS)

    Hamlet, C. L.; Hoffman, K.; Fauci, L.; Tytell, E.

    2016-02-01

    The lamprey is a model organism for both neurophysiology and locomotion studies. To study the role of sensory feedback as an organism moves through its environment, a 2D, integrative, multi-scale model of an anguilliform swimmer driven by neural activation from a central pattern generator (CPG) is constructed. The CPG in turn drives muscle kinematics and is fully coupled to the surrounding fluid. The system is numerically evolved in time using an immersed boundary framework producing an emergent swimming mode. Proprioceptive feedback to the CPG based on experimental observations adjust the activation signal as the organism interacts with its environment. Effects on the speed, stability and cost (metabolic work) of swimming due to nonlinear dependencies associated with muscle force development combined with proprioceptive feedback to neural activation are estimated and examined.

  8. Customer Decision Making in Web Services with an Integrated P6 Model

    NASA Astrophysics Data System (ADS)

    Sun, Zhaohao; Sun, Junqing; Meredith, Grant

    Customer decision making (CDM) is an indispensable factor for web services. This article examines CDM in web services with a novel P6 model, which consists of the 6 Ps: privacy, perception, propensity, preference, personalization and promised experience. This model integrates the existing 6 P elements of marketing mix as the system environment of CDM in web services. The new integrated P6 model deals with the inner world of the customer and incorporates what the customer think during the DM process. The proposed approach will facilitate the research and development of web services and decision support systems.

  9. IDSE Version 1 User's Manual

    NASA Technical Reports Server (NTRS)

    Mayer, Richard

    1988-01-01

    The integrated development support environment (IDSE) is a suite of integrated software tools that provide intelligent support for information modelling. These tools assist in function, information, and process modeling. Additional tools exist to assist in gathering and analyzing information to be modeled. This is a user's guide to application of the IDSE. Sections covering the requirements and design of each of the tools are presented. There are currently three integrated computer aided manufacturing definition (IDEF) modeling methodologies: IDEF0, IDEF1, and IDEF2. Also, four appendices exist to describe hardware and software requirements, installation procedures, and basic hardware usage.

  10. Integrated Modeling, Mapping, and Simulation (IMMS) framework for planning exercises.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman-Hill, Ernest J.; Plantenga, Todd D.

    2010-06-01

    The Integrated Modeling, Mapping, and Simulation (IMMS) program is designing and prototyping a simulation and collaboration environment for linking together existing and future modeling and simulation tools to enable analysts, emergency planners, and incident managers to more effectively, economically, and rapidly prepare, analyze, train, and respond to real or potential incidents. When complete, the IMMS program will demonstrate an integrated modeling and simulation capability that supports emergency managers and responders with (1) conducting 'what-if' analyses and exercises to address preparedness, analysis, training, operations, and lessons learned, and (2) effectively, economically, and rapidly verifying response tactics, plans and procedures.

  11. WISE Design for Knowledge Integration.

    ERIC Educational Resources Information Center

    Linn, Marcia C.; Clark, Douglas; Slotta, James D.

    2003-01-01

    Examines the implementation of Web-based Inquiry Science Environment (WISE), which can incorporate modeling tools and hand-held devices. Describes WISE design team practices, features of the WISE learning environment, and patterns of feature use in WISE library projects. (SOE)

  12. Preceptors' perspectives of an integrated clinical learning model in a mental health environment.

    PubMed

    Boardman, Gayelene; Lawrence, Karen; Polacsek, Meg

    2018-02-14

    Supervised clinical practice is an essential component of undergraduate nursing students' learning and development. In the mental health setting, nursing students traditionally undertake four-week block placements. An integrated clinical learning model, where preceptors mentor students on an individual basis, has been used successfully in the clinical learning environment. This flexible model provides the opportunity for students to work across morning, afternoon, night and weekend shifts. There is a need to improve the evidence base for a flexible model for students undertaking a mental health placement. The aim of this study was to understand preceptors' experience of, and satisfaction with, a mental health integrated clinical learning model. Focus groups were used to elicit the views of preceptors from a mental health service. Findings highlight the advantages and disadvantages of an integrated clinical learning model in the mental health setting. Participants suggested that students may benefit from flexible work arrangements, a variety of experiences and a more realistic experience of working in a mental health service. However, they found it challenging to mentor and evaluate students under this model. Most also agreed that the model impeded students' ability to engage with consumers and develop rapport with staff. The findings indicate the need to develop a placement model that meets the unique needs of the mental health setting. © 2018 Australian College of Mental Health Nurses Inc.

  13. Integrated approach to modeling long-term durability of concrete engineered barriers in LLRW disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.H.; Roy, D.M.; Mann, B.

    1995-12-31

    This paper describes an integrated approach to developing a predictive computer model for long-term performance of concrete engineered barriers utilized in LLRW and ILRW disposal facilities. The model development concept consists of three major modeling schemes: hydration modeling of the binder phase, pore solution speciation, and transport modeling in the concrete barrier and service environment. Although still in its inception, the model development approach demonstrated that the chemical and physical properties of complex cementitious materials and their interactions with service environments can be described quantitatively. Applying the integrated model development approach to modeling alkali (Na and K) leaching from amore » concrete pad barrier in an above-grade tumulus disposal unit, it is predicted that, in a near-surface land disposal facility where water infiltration through the facility is normally minimal, the alkalis control the pore solution pH of the concrete barriers for much longer than most previous concrete barrier degradation studies assumed. The results also imply that a highly alkaline condition created by the alkali leaching will result in alteration of the soil mineralogy in the vicinity of the disposal facility.« less

  14. An integrated, ethically driven environmental model of clinical decision making in emergency settings.

    PubMed

    Wolf, Lisa

    2013-02-01

    To explore the relationship between multiple variables within a model of critical thinking and moral reasoning. A quantitative descriptive correlational design using a purposive sample of 200 emergency nurses. Measured variables were accuracy in clinical decision-making, moral reasoning, perceived care environment, and demographics. Analysis was by bivariate correlation using Pearson's product-moment correlation coefficients, chi square and multiple linear regression analysis. The elements as identified in the integrated ethically-driven environmental model of clinical decision-making (IEDEM-CD) corrected depict moral reasoning and environment of care as factors significantly affecting accuracy in decision-making. The integrated, ethically driven environmental model of clinical decision making is a framework useful for predicting clinical decision making accuracy for emergency nurses in practice, with further implications in education, research and policy. A diagnostic and therapeutic framework for identifying and remediating individual and environmental challenges to accurate clinical decision making. © 2012, The Author. International Journal of Nursing Knowledge © 2012, NANDA International.

  15. Space Station Environment Control and Life Support System Pressure Control Pump Assembly Modeling and Analysis

    NASA Technical Reports Server (NTRS)

    Schunk, R. Gregory

    2002-01-01

    This paper presents the Modeling and Analysis of the Space Station Environment Control and Life Support System Pressure Control Pump Assembly (PCPA). The contents include: 1) Integrated PCPA/Manifold Analyses; 2) Manifold Performance Analysis; 3) PCPA Motor Heat Leak Study; and 4) Future Plans. This paper is presented in viewgraph form.

  16. Applying Simulation and Logistics Modeling to Transportation Issues

    DOT National Transportation Integrated Search

    1995-08-15

    This paper describes an application where transportation logistics and simulation tools are integrated to create a modeling environment for transportation planning. The Transportation Planning Model (TPM) is a tool developed for the Department of Ene...

  17. Quasi 1D Modeling of Mixed Compression Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Woolwine, Kyle J.

    2012-01-01

    The AeroServoElasticity task under the NASA Supersonics Project is developing dynamic models of the propulsion system and the vehicle in order to conduct research for integrated vehicle dynamic performance. As part of this effort, a nonlinear quasi 1-dimensional model of the 2-dimensional bifurcated mixed compression supersonic inlet is being developed. The model utilizes computational fluid dynamics for both the supersonic and subsonic diffusers. The oblique shocks are modeled utilizing compressible flow equations. This model also implements variable geometry required to control the normal shock position. The model is flexible and can also be utilized to simulate other mixed compression supersonic inlet designs. The model was validated both in time and in the frequency domain against the legacy LArge Perturbation INlet code, which has been previously verified using test data. This legacy code written in FORTRAN is quite extensive and complex in terms of the amount of software and number of subroutines. Further, the legacy code is not suitable for closed loop feedback controls design, and the simulation environment is not amenable to systems integration. Therefore, a solution is to develop an innovative, more simplified, mixed compression inlet model with the same steady state and dynamic performance as the legacy code that also can be used for controls design. The new nonlinear dynamic model is implemented in MATLAB Simulink. This environment allows easier development of linear models for controls design for shock positioning. The new model is also well suited for integration with a propulsion system model to study inlet/propulsion system performance, and integration with an aero-servo-elastic system model to study integrated vehicle ride quality, vehicle stability, and efficiency.

  18. Spatially explicit integrated modeling and economic valuation of climate driven land use change and its indirect effects.

    PubMed

    Bateman, Ian; Agarwala, Matthew; Binner, Amy; Coombes, Emma; Day, Brett; Ferrini, Silvia; Fezzi, Carlo; Hutchins, Michael; Lovett, Andrew; Posen, Paulette

    2016-10-01

    We present an integrated model of the direct consequences of climate change on land use, and the indirect effects of induced land use change upon the natural environment. The model predicts climate-driven shifts in the profitability of alternative uses of agricultural land. Both the direct impact of climate change and the induced shift in land use patterns will cause secondary effects on the water environment, for which agriculture is the major source of diffuse pollution. We model the impact of changes in such pollution on riverine ecosystems showing that these will be spatially heterogeneous. Moreover, we consider further knock-on effects upon the recreational benefits derived from water environments, which we assess using revealed preference methods. This analysis permits a multi-layered examination of the economic consequences of climate change, assessing the sequence of impacts from climate change through farm gross margins, land use, water quality and recreation, both at the individual and catchment scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Integrated Optical Design Analysis (IODA): New Test Data and Modeling Features

    NASA Technical Reports Server (NTRS)

    Moore, Jim; Troy, Ed; Patrick, Brian

    2003-01-01

    A general overview of the capabilities of the IODA ("Integrated Optical Design Analysis") exchange of data and modeling results between thermal, structures, optical design, and testing engineering disciplines. This presentation focuses on new features added to the software that allow measured test data to be imported into the IODA environment for post processing or comparisons with pretest model predictions. software is presented. IODA promotes efficient

  20. Integrated analysis of landscape management scenarios using state and transition models in the upper Grande Ronde River subbasin, Oregon, USA.

    Treesearch

    Miles A. Hemstrom; James Merzenich; Allison Reger; Barbara. Wales

    2007-01-01

    We modeled the integrated effects of natural disturbances and management activities for three disturbance scenarios on a 178 000-ha landscape in the upper Grande Ronde subbasin of northeast Oregon. The landscape included three forest environments (warm-dry, cool-moist, and cold) as well as a mixture of publicly and privately owned lands. Our models were state and...

  1. Integration of Earth System Models and Workflow Management under iRODS for the Northeast Regional Earth System Modeling Project

    NASA Astrophysics Data System (ADS)

    Lengyel, F.; Yang, P.; Rosenzweig, B.; Vorosmarty, C. J.

    2012-12-01

    The Northeast Regional Earth System Model (NE-RESM, NSF Award #1049181) integrates weather research and forecasting models, terrestrial and aquatic ecosystem models, a water balance/transport model, and mesoscale and energy systems input-out economic models developed by interdisciplinary research team from academia and government with expertise in physics, biogeochemistry, engineering, energy, economics, and policy. NE-RESM is intended to forecast the implications of planning decisions on the region's environment, ecosystem services, energy systems and economy through the 21st century. Integration of model components and the development of cyberinfrastructure for interacting with the system is facilitated with the integrated Rule Oriented Data System (iRODS), a distributed data grid that provides archival storage with metadata facilities and a rule-based workflow engine for automating and auditing scientific workflows.

  2. An Interactive, Web-based High Performance Modeling Environment for Computational Epidemiology.

    PubMed

    Deodhar, Suruchi; Bisset, Keith R; Chen, Jiangzhuo; Ma, Yifei; Marathe, Madhav V

    2014-07-01

    We present an integrated interactive modeling environment to support public health epidemiology. The environment combines a high resolution individual-based model with a user-friendly web-based interface that allows analysts to access the models and the analytics back-end remotely from a desktop or a mobile device. The environment is based on a loosely-coupled service-oriented-architecture that allows analysts to explore various counter factual scenarios. As the modeling tools for public health epidemiology are getting more sophisticated, it is becoming increasingly hard for non-computational scientists to effectively use the systems that incorporate such models. Thus an important design consideration for an integrated modeling environment is to improve ease of use such that experimental simulations can be driven by the users. This is achieved by designing intuitive and user-friendly interfaces that allow users to design and analyze a computational experiment and steer the experiment based on the state of the system. A key feature of a system that supports this design goal is the ability to start, stop, pause and roll-back the disease propagation and intervention application process interactively. An analyst can access the state of the system at any point in time and formulate dynamic interventions based on additional information obtained through state assessment. In addition, the environment provides automated services for experiment set-up and management, thus reducing the overall time for conducting end-to-end experimental studies. We illustrate the applicability of the system by describing computational experiments based on realistic pandemic planning scenarios. The experiments are designed to demonstrate the system's capability and enhanced user productivity.

  3. An Interactive, Web-based High Performance Modeling Environment for Computational Epidemiology

    PubMed Central

    Deodhar, Suruchi; Bisset, Keith R.; Chen, Jiangzhuo; Ma, Yifei; Marathe, Madhav V.

    2014-01-01

    We present an integrated interactive modeling environment to support public health epidemiology. The environment combines a high resolution individual-based model with a user-friendly web-based interface that allows analysts to access the models and the analytics back-end remotely from a desktop or a mobile device. The environment is based on a loosely-coupled service-oriented-architecture that allows analysts to explore various counter factual scenarios. As the modeling tools for public health epidemiology are getting more sophisticated, it is becoming increasingly hard for non-computational scientists to effectively use the systems that incorporate such models. Thus an important design consideration for an integrated modeling environment is to improve ease of use such that experimental simulations can be driven by the users. This is achieved by designing intuitive and user-friendly interfaces that allow users to design and analyze a computational experiment and steer the experiment based on the state of the system. A key feature of a system that supports this design goal is the ability to start, stop, pause and roll-back the disease propagation and intervention application process interactively. An analyst can access the state of the system at any point in time and formulate dynamic interventions based on additional information obtained through state assessment. In addition, the environment provides automated services for experiment set-up and management, thus reducing the overall time for conducting end-to-end experimental studies. We illustrate the applicability of the system by describing computational experiments based on realistic pandemic planning scenarios. The experiments are designed to demonstrate the system's capability and enhanced user productivity. PMID:25530914

  4. The GP problem: quantifying gene-to-phenotype relationships.

    PubMed

    Cooper, Mark; Chapman, Scott C; Podlich, Dean W; Hammer, Graeme L

    2002-01-01

    In this paper we refer to the gene-to-phenotype modeling challenge as the GP problem. Integrating information across levels of organization within a genotype-environment system is a major challenge in computational biology. However, resolving the GP problem is a fundamental requirement if we are to understand and predict phenotypes given knowledge of the genome and model dynamic properties of biological systems. Organisms are consequences of this integration, and it is a major property of biological systems that underlies the responses we observe. We discuss the E(NK) model as a framework for investigation of the GP problem and the prediction of system properties at different levels of organization. We apply this quantitative framework to an investigation of the processes involved in genetic improvement of plants for agriculture. In our analysis, N genes determine the genetic variation for a set of traits that are responsible for plant adaptation to E environment-types within a target population of environments. The N genes can interact in epistatic NK gene-networks through the way that they influence plant growth and development processes within a dynamic crop growth model. We use a sorghum crop growth model, available within the APSIM agricultural production systems simulation model, to integrate the gene-environment interactions that occur during growth and development and to predict genotype-to-phenotype relationships for a given E(NK) model. Directional selection is then applied to the population of genotypes, based on their predicted phenotypes, to simulate the dynamic aspects of genetic improvement by a plant-breeding program. The outcomes of the simulated breeding are evaluated across cycles of selection in terms of the changes in allele frequencies for the N genes and the genotypic and phenotypic values of the populations of genotypes.

  5. Creating Stories to Live By: Caring and Professional Identity Formation in a Longitudinal Integrated Clerkship

    ERIC Educational Resources Information Center

    Konkin, Jill; Suddards, Carol

    2012-01-01

    Building on other models of longitudinal integrated clerkships (LIC), the University of Alberta developed its Integrated Community Clerkship with guiding principles of continuity of care, preceptor and learning environment. Professionalism is an important theme in medical education. Caring is important in professional identity formation and an…

  6. Radiation environment for ATS-F. [including ambient trapped particle fluxes

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1974-01-01

    The ambient trapped particle fluxes incident on the ATS-F satellite were determined. Several synchronous circular flight paths were evaluated and the effect of parking longitude on vehicle encountered intensities was investigated. Temporal variations in the electron environment were considered and partially accounted for. Magnetic field calculations were performed with a current field model extrapolated to a later epoch with linear time terms. Orbital flux integrations were performed with the latest proton and electron environment models using new improved computational methods. The results are presented in graphical and tabular form; they are analyzed, explained, and discussed. Estimates of energetic solar proton fluxes are given for a one year mission at selected integral energies ranging from 10 to 100 Mev, calculated for a year of maximum solar activity during the next solar cycle.

  7. Knowledge-based approach for generating target system specifications from a domain model

    NASA Technical Reports Server (NTRS)

    Gomaa, Hassan; Kerschberg, Larry; Sugumaran, Vijayan

    1992-01-01

    Several institutions in industry and academia are pursuing research efforts in domain modeling to address unresolved issues in software reuse. To demonstrate the concepts of domain modeling and software reuse, a prototype software engineering environment is being developed at George Mason University to support the creation of domain models and the generation of target system specifications. This prototype environment, which is application domain independent, consists of an integrated set of commercial off-the-shelf software tools and custom-developed software tools. This paper describes the knowledge-based tool that was developed as part of the environment to generate target system specifications from a domain model.

  8. PathCase-SB architecture and database design

    PubMed Central

    2011-01-01

    Background Integration of metabolic pathways resources and regulatory metabolic network models, and deploying new tools on the integrated platform can help perform more effective and more efficient systems biology research on understanding the regulation in metabolic networks. Therefore, the tasks of (a) integrating under a single database environment regulatory metabolic networks and existing models, and (b) building tools to help with modeling and analysis are desirable and intellectually challenging computational tasks. Description PathCase Systems Biology (PathCase-SB) is built and released. The PathCase-SB database provides data and API for multiple user interfaces and software tools. The current PathCase-SB system provides a database-enabled framework and web-based computational tools towards facilitating the development of kinetic models for biological systems. PathCase-SB aims to integrate data of selected biological data sources on the web (currently, BioModels database and KEGG), and to provide more powerful and/or new capabilities via the new web-based integrative framework. This paper describes architecture and database design issues encountered in PathCase-SB's design and implementation, and presents the current design of PathCase-SB's architecture and database. Conclusions PathCase-SB architecture and database provide a highly extensible and scalable environment with easy and fast (real-time) access to the data in the database. PathCase-SB itself is already being used by researchers across the world. PMID:22070889

  9. Integrating Model-Driven and Data-Driven Techniques for Analyzing Learning Behaviors in Open-Ended Learning Environments

    ERIC Educational Resources Information Center

    Kinnebrew, John S.; Segedy, James R.; Biswas, Gautam

    2017-01-01

    Research in computer-based learning environments has long recognized the vital role of adaptivity in promoting effective, individualized learning among students. Adaptive scaffolding capabilities are particularly important in open-ended learning environments, which provide students with opportunities for solving authentic and complex problems, and…

  10. Designing "Geometry 2.0" Learning Environments: A Preliminary Study with Primary School Students

    ERIC Educational Resources Information Center

    Prieto, Nuria Joglar; Sordo Juanena, José María; Star, Jon R.

    2014-01-01

    The information and communication technologies of Web 2.0 are arriving in our schools, allowing the design and implementation of new learning environments with great educational potential. This article proposes a pedagogical model based on a new geometry technology-integrated learning environment, called "Geometry 2.0," which was tested…

  11. A Smart Modeling Framework for Integrating BMI-enabled Models as Web Services

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Elag, M.; Kumar, P.; Peckham, S. D.; Liu, R.; Marini, L.; Hsu, L.

    2015-12-01

    Serviced-oriented computing provides an opportunity to couple web service models using semantic web technology. Through this approach, models that are exposed as web services can be conserved in their own local environment, thus making it easy for modelers to maintain and update the models. In integrated modeling, the serviced-oriented loose-coupling approach requires (1) a set of models as web services, (2) the model metadata describing the external features of a model (e.g., variable name, unit, computational grid, etc.) and (3) a model integration framework. We present the architecture of coupling web service models that are self-describing by utilizing a smart modeling framework. We expose models that are encapsulated with CSDMS (Community Surface Dynamics Modeling System) Basic Model Interfaces (BMI) as web services. The BMI-enabled models are self-describing by uncovering models' metadata through BMI functions. After a BMI-enabled model is serviced, a client can initialize, execute and retrieve the meta-information of the model by calling its BMI functions over the web. Furthermore, a revised version of EMELI (Peckham, 2015), an Experimental Modeling Environment for Linking and Interoperability, is chosen as the framework for coupling BMI-enabled web service models. EMELI allows users to combine a set of component models into a complex model by standardizing model interface using BMI as well as providing a set of utilities smoothing the integration process (e.g., temporal interpolation). We modify the original EMELI so that the revised modeling framework is able to initialize, execute and find the dependencies of the BMI-enabled web service models. By using the revised EMELI, an example will be presented on integrating a set of topoflow model components that are BMI-enabled and exposed as web services. Reference: Peckham, S.D. (2014) EMELI 1.0: An experimental smart modeling framework for automatic coupling of self-describing models, Proceedings of HIC 2014, 11th International Conf. on Hydroinformatics, New York, NY.

  12. Behavior Selection of Mobile Robot Based on Integration of Multimodal Information

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Kaneko, Masahide

    Recently, biologically inspired robots have been developed to acquire the capacity for directing visual attention to salient stimulus generated from the audiovisual environment. On purpose to realize this behavior, a general method is to calculate saliency maps to represent how much the external information attracts the robot's visual attention, where the audiovisual information and robot's motion status should be involved. In this paper, we represent a visual attention model where three modalities, that is, audio information, visual information and robot's motor status are considered, while the previous researches have not considered all of them. Firstly, we introduce a 2-D density map, on which the value denotes how much the robot pays attention to each spatial location. Then we model the attention density using a Bayesian network where the robot's motion statuses are involved. Secondly, the information from both of audio and visual modalities is integrated with the attention density map in integrate-fire neurons. The robot can direct its attention to the locations where the integrate-fire neurons are fired. Finally, the visual attention model is applied to make the robot select the visual information from the environment, and react to the content selected. Experimental results show that it is possible for robots to acquire the visual information related to their behaviors by using the attention model considering motion statuses. The robot can select its behaviors to adapt to the dynamic environment as well as to switch to another task according to the recognition results of visual attention.

  13. Application of integration algorithms in a parallel processing environment for the simulation of jet engines

    NASA Technical Reports Server (NTRS)

    Krosel, S. M.; Milner, E. J.

    1982-01-01

    The application of Predictor corrector integration algorithms developed for the digital parallel processing environment are investigated. The algorithms are implemented and evaluated through the use of a software simulator which provides an approximate representation of the parallel processing hardware. Test cases which focus on the use of the algorithms are presented and a specific application using a linear model of a turbofan engine is considered. Results are presented showing the effects of integration step size and the number of processors on simulation accuracy. Real time performance, interprocessor communication, and algorithm startup are also discussed.

  14. Allostasis and the Human Brain: Integrating Models of Stress from the Social and Life Sciences

    ERIC Educational Resources Information Center

    Ganzel, Barbara L.; Morris, Pamela A.; Wethington, Elaine

    2010-01-01

    We draw on the theory of allostasis to develop an integrative model of the current stress process that highlights the brain as a dynamically adapting interface between the changing environment and the biological self. We review evidence that the core emotional regions of the brain constitute the primary mediator of the well-established association…

  15. Integrated Sensitivity Analysis Workflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman-Hill, Ernest J.; Hoffman, Edward L.; Gibson, Marcus J.

    2014-08-01

    Sensitivity analysis is a crucial element of rigorous engineering analysis, but performing such an analysis on a complex model is difficult and time consuming. The mission of the DART Workbench team at Sandia National Laboratories is to lower the barriers to adoption of advanced analysis tools through software integration. The integrated environment guides the engineer in the use of these integrated tools and greatly reduces the cycle time for engineering analysis.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, Birchard P; Michel, Kelly D; Few, Douglas A

    From stereophonic, positional sound to high-definition imagery that is crisp and clean, high fidelity computer graphics enhance our view, insight, and intuition regarding our environments and conditions. Contemporary 3-D modeling tools offer an open architecture framework that enables integration with other technologically innovative arenas. One innovation of great interest is Augmented Reality, the merging of virtual, digital environments with physical, real-world environments creating a mixed reality where relevant data and information augments the real or actual experience in real-time by spatial or semantic context. Pairing 3-D virtual immersive models with a dynamic platform such as semi-autonomous robotics or personnel odometrymore » systems to create a mixed reality offers a new and innovative design information verification inspection capability, evaluation accuracy, and information gathering capability for nuclear facilities. Our paper discusses the integration of two innovative technologies, 3-D visualizations with inertial positioning systems, and the resulting augmented reality offered to the human inspector. The discussion in the paper includes an exploration of human and non-human (surrogate) inspections of a nuclear facility, integrated safeguards knowledge within a synchronized virtual model operated, or worn, by a human inspector, and the anticipated benefits to safeguards evaluations of facility operations.« less

  17. Advanced Collaborative Environments Supporting Systems Integration and Design

    DTIC Science & Technology

    2003-03-01

    concurrently view a virtual system or product model while maintaining natural, human communication . These virtual systems operate within a computer-generated...These environments allow multiple individuals to concurrently view a virtual system or product model while simultaneously maintaining natural, human ... communication . As a result, TARDEC researchers and system developers are using this advanced high-end visualization technology to develop future

  18. Characterizing the Severe Turbulence Environments Associated With Commercial Aviation Accidents: A Real-Time Turbulence Model (RTTM) Designed for the Operational Prediction of Hazardous Aviation Turbulence Environments

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael L.; Lux, Kevin M.; Cetola, Jeffrey D.; Huffman, Allan W.; Riordan, Allen J.; Slusser, Sarah W.; Lin, Yuh-Lang; Charney, Joseph J.; Waight, Kenneth T.

    2004-01-01

    Real-time prediction of environments predisposed to producing moderate-severe aviation turbulence is studied. We describe the numerical model and its postprocessing system designed for said prediction of environments predisposed to severe aviation turbulence as well as presenting numerous examples of its utility. The numerical model is MASS version 5.13, which is integrated over three different grid matrices in real time on a university work station in support of NASA Langley Research Center s B-757 turbulence research flight missions. The postprocessing system includes several turbulence-related products, including four turbulence forecasting indices, winds, streamlines, turbulence kinetic energy, and Richardson numbers. Additionally, there are convective products including precipitation, cloud height, cloud mass fluxes, lifted index, and K-index. Furthermore, soundings, sounding parameters, and Froude number plots are also provided. The horizontal cross-section plot products are provided from 16 000 to 46 000 ft in 2000-ft intervals. Products are available every 3 hours at the 60- and 30-km grid interval and every 1.5 hours at the 15-km grid interval. The model is initialized from the NWS ETA analyses and integrated two times a day.

  19. The SIETTE Automatic Assessment Environment

    ERIC Educational Resources Information Center

    Conejo, Ricardo; Guzmán, Eduardo; Trella, Monica

    2016-01-01

    This article describes the evolution and current state of the domain-independent Siette assessment environment. Siette supports different assessment methods--including classical test theory, item response theory, and computer adaptive testing--and integrates them with multidimensional student models used by intelligent educational systems.…

  20. A Collaborative Extensible User Environment for Simulation and Knowledge Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freedman, Vicky L.; Lansing, Carina S.; Porter, Ellen A.

    2015-06-01

    In scientific simulation, scientists use measured data to create numerical models, execute simulations and analyze results from advanced simulators executing on high performance computing platforms. This process usually requires a team of scientists collaborating on data collection, model creation and analysis, and on authorship of publications and data. This paper shows that scientific teams can benefit from a user environment called Akuna that permits subsurface scientists in disparate locations to collaborate on numerical modeling and analysis projects. The Akuna user environment is built on the Velo framework that provides both a rich client environment for conducting and analyzing simulations andmore » a Web environment for data sharing and annotation. Akuna is an extensible toolset that integrates with Velo, and is designed to support any type of simulator. This is achieved through data-driven user interface generation, use of a customizable knowledge management platform, and an extensible framework for simulation execution, monitoring and analysis. This paper describes how the customized Velo content management system and the Akuna toolset are used to integrate and enhance an effective collaborative research and application environment. The extensible architecture of Akuna is also described and demonstrates its usage for creation and execution of a 3D subsurface simulation.« less

  1. Development of a High Resolution Weather Forecast Model for Mesoamerica Using the NASA Ames Code I Private Cloud Computing Environment

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Case, Jonathan; Venner, Jason; Moreno-Madrinan, Max J.; Delgado, Francisco

    2012-01-01

    Two projects at NASA Marshall Space Flight Center have collaborated to develop a high resolution weather forecast model for Mesoamerica: The NASA Short-term Prediction Research and Transition (SPoRT) Center, which integrates unique NASA satellite and weather forecast modeling capabilities into the operational weather forecasting community. NASA's SERVIR Program, which integrates satellite observations, ground-based data, and forecast models to improve disaster response in Central America, the Caribbean, Africa, and the Himalayas.

  2. Perceptions of Pre-Service Teachers on the Design of a Learning Environment Based on the Seven Principles of Good Practice

    ERIC Educational Resources Information Center

    Al-Furaih, Suad Abdul Aziz

    2017-01-01

    This study explored the perceptions of 88 pre-service teachers on the design of a learning environment using the Seven Principles of Good Practice and its effect on participants' abilities to create their Cloud Learning Environment (CLE). In designing the learning environment, a conceptual model under the name 7 Principles and Integrated Learning…

  3. Inquiry of Pre-Service Teachers' Concern about Integrating Web 2.0 into Instruction

    ERIC Educational Resources Information Center

    Hao, Yungwei; Lee, Kathryn S.

    2017-01-01

    To promote technology integration, it is essential to address pre-service teacher (PST) concerns about facilitating technology-enhanced learning environments. This study adopted the Concerns-Based Adoption Model to investigate PST concern on Web 2.0 integration. Four hundred and eighty-nine PSTs in a teacher education university in north Taiwan…

  4. Computer-aided operations engineering with integrated models of systems and operations

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Ryan, Dan; Fleming, Land

    1994-01-01

    CONFIG 3 is a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operation of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. Integration is supported among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. Support is provided for integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems. CONFIG supports abstracted qualitative and symbolic modeling, for early conceptual design. System models are component structure models with operating modes, with embedded time-related behavior models. CONFIG supports failure modeling and modeling of state or configuration changes that result in dynamic changes in dependencies among components. Operations and procedure models are activity structure models that interact with system models. CONFIG is designed to support evaluation of system operability, diagnosability and fault tolerance, and analysis of the development of system effects of problems over time, including faults, failures, and procedural or environmental difficulties.

  5. Devices and Desires: Integrative Strategy Instruction from a Motivational Perspective.

    ERIC Educational Resources Information Center

    Vauras, Marja; And Others

    1993-01-01

    This critique of Edwin Ellis's Integrative Strategy Instruction model comments that analyses are needed concerning the mutual social adaptations of differently disposed (cognitively, motivationally, and emotionally) students with learning disabilities and teachers within the social frames of learning environments. (JDD)

  6. The challenge of causal inference in gene-environment interaction research: leveraging research designs from the social sciences.

    PubMed

    Fletcher, Jason M; Conley, Dalton

    2013-10-01

    The integration of genetics and the social sciences will lead to a more complex understanding of the articulation between social and biological processes, although the empirical difficulties inherent in this integration are large. One key challenge is the implications of moving "outside the lab" and away from the experimental tools available for research with model organisms. Social science research methods used to examine human behavior in nonexperimental, real-world settings to date have not been fully taken advantage of during this disciplinary integration, especially in the form of gene-environment interaction research. This article outlines and provides examples of several prominent research designs that should be used in gene-environment research and highlights a key benefit to geneticists of working with social scientists.

  7. Interactive Schematic Integration Within the Propellant System Modeling Environment

    NASA Technical Reports Server (NTRS)

    Coote, David; Ryan, Harry; Burton, Kenneth; McKinney, Lee; Woodman, Don

    2012-01-01

    Task requirements for rocket propulsion test preparations of the test stand facilities drive the need to model the test facility propellant systems prior to constructing physical modifications. The Propellant System Modeling Environment (PSME) is an initiative designed to enable increased efficiency and expanded capabilities to a broader base of NASA engineers in the use of modeling and simulation (M&S) technologies for rocket propulsion test and launch mission requirements. PSME will enable a wider scope of users to utilize M&S of propulsion test and launch facilities for predictive and post-analysis functionality by offering a clean, easy-to-use, high-performance application environment.

  8. AE 6: A model environment of trapped electrons for solar maximum

    NASA Technical Reports Server (NTRS)

    Teague, M. J.; Chan, K. W.; Vette, J. I.

    1976-01-01

    A projected inner zone electron model environment, AE 6, for the epoch 1980 is presented. It is intended to provide estimates of mission fluxes that spacecraft will encounter in the coming solar maximum years. AE 6 is presented by graphs of omnidirectional integral flux as a function of L shell, the ambient magnetic field B, and the energy E. Results of orbital integrations for altitudes from 150 n.m. to 18,000 n.m. are given for circular orbits with four different inclinations, using the AE 6 and the AE 4 solar maximum models for the inner and outer zones, respectively. The derivation of AE 6 is described, and a brief comparison is given of the radial profiles of equatorial fluxes from several related models. A short summary of the associated computer programs is included.

  9. MSFC/EV44 Natural Environment Capabilities

    NASA Technical Reports Server (NTRS)

    NeergaardParker, Linda; Willis, Emily M.; Minnow, Joseph I.; Coffey, Vic N.

    2014-01-01

    The Natural Environments Branch at Marshall Space Flight Center is an integral part of many NASA satellite and launch vehicle programs, providing analyses of the space and terrestrial environments that are used for program development efforts, operational support, and anomaly investigations. These capabilities include model development, instrument build and testing, analysis of space and terrestrial related data, spacecraft charging anomaly investigations, surface and internal charging modeling, space environment definition, and radiation assessments for electronic parts. All aspects of space and terrestrial design are implemented with the goal of devising missions that are successful from launch to operations in the space environment of LEO, polar, GEO, and interplanetary orbits.

  10. The Challenge of Grounding Planning in Simulation with an Interactive Model Development Environment

    NASA Technical Reports Server (NTRS)

    Clement, Bradley J.; Frank, Jeremy D.; Chachere, John M.; Smith, Tristan B.; Swanson, Keith J.

    2011-01-01

    A principal obstacle to fielding automated planning systems is the difficulty of modeling. Physical systems are modeled conventionally based on specification documents and the modeler's understanding of the system. Thus, the model is developed in a way that is disconnected from the system's actual behavior and is vulnerable to manual error. Another obstacle to fielding planners is testing and validation. For a space mission, generated plans must be validated often by translating them into command sequences that are run in a simulation testbed. Testing in this way is complex and onerous because of the large number of possible plans and states of the spacecraft. Though, if used as a source of domain knowledge, the simulator can ease validation. This paper poses a challenge: to ground planning models in the system physics represented by simulation. A proposed, interactive model development environment illustrates the integration of planning and simulation to meet the challenge. This integration reveals research paths for automated model construction and validation.

  11. Sustainable NREL: From Integration to Innovation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-09-01

    NREL's sustainability practices are integrated throughout the laboratory and are essential to our mission to develop clean energy and energy efficiency technologies and practices, advance related science and engineering, and provide knowledge and innovations to integrate energy systems at all scales. Sustainability initiatives are integrated through our campus, our staff, and our environment allowing NREL to provide leadership in modeling a sustainability energy future for companies, organizations, governments, and communities.

  12. Augmented reality and photogrammetry: A synergy to visualize physical and virtual city environments

    NASA Astrophysics Data System (ADS)

    Portalés, Cristina; Lerma, José Luis; Navarro, Santiago

    2010-01-01

    Close-range photogrammetry is based on the acquisition of imagery to make accurate measurements and, eventually, three-dimensional (3D) photo-realistic models. These models are a photogrammetric product per se. They are usually integrated into virtual reality scenarios where additional data such as sound, text or video can be introduced, leading to multimedia virtual environments. These environments allow users both to navigate and interact on different platforms such as desktop PCs, laptops and small hand-held devices (mobile phones or PDAs). In very recent years, a new technology derived from virtual reality has emerged: Augmented Reality (AR), which is based on mixing real and virtual environments to boost human interactions and real-life navigations. The synergy of AR and photogrammetry opens up new possibilities in the field of 3D data visualization, navigation and interaction far beyond the traditional static navigation and interaction in front of a computer screen. In this paper we introduce a low-cost outdoor mobile AR application to integrate buildings of different urban spaces. High-accuracy 3D photo-models derived from close-range photogrammetry are integrated in real (physical) urban worlds. The augmented environment that is presented herein requires for visualization a see-through video head mounted display (HMD), whereas user's movement navigation is achieved in the real world with the help of an inertial navigation sensor. After introducing the basics of AR technology, the paper will deal with real-time orientation and tracking in combined physical and virtual city environments, merging close-range photogrammetry and AR. There are, however, some software and complex issues, which are discussed in the paper.

  13. A Dynamic Bayesian Observer Model Reveals Origins of Bias in Visual Path Integration.

    PubMed

    Lakshminarasimhan, Kaushik J; Petsalis, Marina; Park, Hyeshin; DeAngelis, Gregory C; Pitkow, Xaq; Angelaki, Dora E

    2018-06-20

    Path integration is a strategy by which animals track their position by integrating their self-motion velocity. To identify the computational origins of bias in visual path integration, we asked human subjects to navigate in a virtual environment using optic flow and found that they generally traveled beyond the goal location. Such a behavior could stem from leaky integration of unbiased self-motion velocity estimates or from a prior expectation favoring slower speeds that causes velocity underestimation. Testing both alternatives using a probabilistic framework that maximizes expected reward, we found that subjects' biases were better explained by a slow-speed prior than imperfect integration. When subjects integrate paths over long periods, this framework intriguingly predicts a distance-dependent bias reversal due to buildup of uncertainty, which we also confirmed experimentally. These results suggest that visual path integration in noisy environments is limited largely by biases in processing optic flow rather than by leaky integration. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Professional Development Recognizing Technology Integration Modeled after the TPACK Framework

    ERIC Educational Resources Information Center

    McCusker, Laura

    2017-01-01

    Public school teachers within a Pennsylvania intermediate unit are receiving inadequate job-embedded professional development that recognizes knowledge of content, pedagogy, and technology integration, as outlined by Mishra and Koehler's Technological Pedagogical Content Knowledge (TPACK) framework (2006). A school environment where teachers are…

  15. A Constraints-Led Perspective to Understanding Skill Acquisition and Game Play: A Basis for Integration of Motor Learning Theory and Physical Education Praxis?

    ERIC Educational Resources Information Center

    Renshaw, Ian; Chow, Jia Yi; Davids, Keith; Hammond, John

    2010-01-01

    Background: In order to design appropriate environments for performance and learning of movement skills, physical educators need a sound theoretical model of the learner and of processes of learning. In physical education, this type of modelling informs the organisation of learning environments and effective and efficient use of practice time. An…

  16. A performance evaluation model for the Stock Point Logistics Integrated Communication Environment (SPLICE)

    NASA Astrophysics Data System (ADS)

    Schmidt, J. B.

    1985-09-01

    This thesis investigates ways of improving the real-time performance of the Stockpoint Logistics Integrated Communication Environment (SPLICE). Performance evaluation through continuous monitoring activities and performance studies are the principle vehicles discussed. The method for implementing this performance evaluation process is the measurement of predefined performance indexes. Performance indexes for SPLICE are offered that would measure these areas. Existing SPLICE capability to carry out performance evaluation is explored, and recommendations are made to enhance that capability.

  17. An integrated environment for tactical guidance research and evaluation

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; Mcmanus, John W.

    1990-01-01

    NASA-Langley's Tactical Guidance Research and Evaluation System (TGRES) constitutes an integrated environment for the development of tactical guidance algorithms and evaluating the effects of novel technologies; the modularity of the system allows easy modification or replacement of system elements in order to conduct evaluations of alternative technologies. TGRES differs from existing systems in its capitalization on AI programming techniques for guidance-logic implementation. Its ability to encompass high-fidelity, six-DOF simulation models will facilitate the analysis of complete aircraft dynamics.

  18. Towards the Integration of APECS with VE-Suite to Create a Comprehensive Virtual Engineering Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCorkle, D.; Yang, C.; Jordan, T.

    2007-06-01

    Modeling and simulation tools are becoming pervasive in the process engineering practice of designing advanced power generation facilities. These tools enable engineers to explore many what-if scenarios before cutting metal or constructing a pilot scale facility. While such tools enable investigation of crucial plant design aspects, typical commercial process simulation tools such as Aspen Plus®, gPROMS®, and HYSYS® still do not explore some plant design information, including computational fluid dynamics (CFD) models for complex thermal and fluid flow phenomena, economics models for policy decisions, operational data after the plant is constructed, and as-built information for use in as-designed models. Softwaremore » tools must be created that allow disparate sources of information to be integrated if environments are to be constructed where process simulation information can be accessed. At the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL), the Advanced Process Engineering Co-Simulator (APECS) has been developed as an integrated software suite that combines process simulation (e.g., Aspen Plus) and high-fidelity equipment simulation (e.g., Fluent® CFD), together with advanced analysis capabilities including case studies, sensitivity analysis, stochastic simulation for risk/uncertainty analysis, and multi-objective optimization. In this paper, we discuss the initial phases of integrating APECS with the immersive and interactive virtual engineering software, VE-Suite, developed at Iowa State University and Ames Laboratory. VE-Suite utilizes the ActiveX (OLE Automation) controls in Aspen Plus wrapped by the CASI library developed by Reaction Engineering International to run the process simulation and query for unit operation results. This integration permits any application that uses the VE-Open interface to integrate with APECS co-simulations, enabling construction of the comprehensive virtual engineering environment needed for the rapid engineering of advanced power generation facilities.« less

  19. [Study on a new prevention and control model on soil-borne parasitic diseases in rural areas of China].

    PubMed

    Li, Xue-Ming; Chen, Ying-Dan; Xu, Long-Qi; Zhou, Chang-Hai; Ou-Yang, Yi; Lin, Rui; Yang, Fang-Fang; Zhang, Xiao-Juan; Wang, Ge; Liu, Teng; Wang, Jing

    2011-12-01

    To explore a new prevention and control model on soil-borne parasitic diseases in rural areas of China. Eight provinces and autonomous regions were selected in China as demonstration areas implementing integrated control on soil-borne parasitic diseases. The integrated control measures included authority organization and harmonization, health education, deworming, and environment modification. After three years, the infection rates of soil-borne parasitic diseases were significantly decreased in these areas. There were three safe guard and organization modes, three health education modes, four mass worming medication modes, and two modes of water, toilet and environment changes. The work in the various demonstration areas was summarized which pointed out a new model with efficiency and local characteristics on soil-borne parasitic disease prevention and control.

  20. IMAGE: A Design Integration Framework Applied to the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Hale, Mark A.; Craig, James I.

    1993-01-01

    Effective design of the High Speed Civil Transport requires the systematic application of design resources throughout a product's life-cycle. Information obtained from the use of these resources is used for the decision-making processes of Concurrent Engineering. Integrated computing environments facilitate the acquisition, organization, and use of required information. State-of-the-art computing technologies provide the basis for the Intelligent Multi-disciplinary Aircraft Generation Environment (IMAGE) described in this paper. IMAGE builds upon existing agent technologies by adding a new component called a model. With the addition of a model, the agent can provide accountable resource utilization in the presence of increasing design fidelity. The development of a zeroth-order agent is used to illustrate agent fundamentals. Using a CATIA(TM)-based agent from previous work, a High Speed Civil Transport visualization system linking CATIA, FLOPS, and ASTROS will be shown. These examples illustrate the important role of the agent technologies used to implement IMAGE, and together they demonstrate that IMAGE can provide an integrated computing environment for the design of the High Speed Civil Transport.

  1. Fluid Mechanics of Urban Environments

    NASA Astrophysics Data System (ADS)

    Fernando, Harindra J.

    2008-11-01

    The rapid urbanization of the Earth has led to highly populated cities that act as concentrated centers of anthropogenic stressors on the natural environment. The degradation of environmental quality due to such stressors, in turn, greatly impacts human behavior. Anthropogenic stressors largely originate as a result of coupling between man-made urban elements (i.e., networks of engineering and socio-economic infrastructures) and the environment, for which surrounding fluid motions play a key role. In recent years, research efforts have been directed at the understanding and modeling of fluid motions in urban areas, infrastructure dynamics and interactions thereof, with the hope of identifying environmental impacts of urbanization and complex outcomes (or ``emergent properties'') of nominally simple interactions between infrastructures and environment. Such consequences play an important role in determining the ``resilience'' of cities under anthropogenic stressors, defined as maintaining the structure and essential functions of an urbanity without regime shifts. Holistic integrated models that meld the dynamics of infrastructures and environment as well as ``quality of life'' attributes are becoming powerful decision-making tools with regard to sustainability of urban areas (continuance or even enhancement of socio-economic activities in harmony with the environment). The rudimentary forms of integrated models are beginning to take shape, augmented by comprehensive field studies and advanced measurement platforms to validate them. This presentation deals with the challenges of modeling urban atmosphere, subject to anthropogenic forcing. An important emergent property, the Urban Heat Island, and its role in determining resilience and sustainability of cities will be discussed based on the prediction of a coupled model.

  2. Integration of Modelling and Graphics to Create an Infrared Signal Processing Test Bed

    NASA Astrophysics Data System (ADS)

    Sethi, H. R.; Ralph, John E.

    1989-03-01

    The work reported in this paper was carried out as part of a contract with MoD (PE) UK. It considers the problems associated with realistic modelling of a passive infrared system in an operational environment. Ideally all aspects of the system and environment should be integrated into a complete end-to-end simulation but in the past limited computing power has prevented this. Recent developments in workstation technology and the increasing availability of parallel processing techniques makes the end-to-end simulation possible. However the complexity and speed of such simulations means difficulties for the operator in controlling the software and understanding the results. These difficulties can be greatly reduced by providing an extremely user friendly interface and a very flexible, high power, high resolution colour graphics capability. Most system modelling is based on separate software simulation of the individual components of the system itself and its environment. These component models may have their own characteristic inbuilt assumptions and approximations, may be written in the language favoured by the originator and may have a wide variety of input and output conventions and requirements. The models and their limitations need to be matched to the range of conditions appropriate to the operational scenerio. A comprehensive set of data bases needs to be generated by the component models and these data bases must be made readily available to the investigator. Performance measures need to be defined and displayed in some convenient graphics form. Some options are presented for combining available hardware and software to create an environment within which the models can be integrated, and which provide the required man-machine interface, graphics and computing power. The impact of massively parallel processing and artificial intelligence will be discussed. Parallel processing will make real time end-to-end simulation possible and will greatly improve the graphical visualisation of the model output data. Artificial intelligence should help to enhance the man-machine interface.

  3. The Visual Geophysical Exploration Environment: A Multi-dimensional Scientific Visualization

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.; Domenico, B.; Murray, D.; Marlino, M. R.

    2003-12-01

    The Visual Geophysical Exploration Environment (VGEE) is an online learning environment designed to help undergraduate students understand fundamental Earth system science concepts. The guiding principle of the VGEE is the importance of hands-on interaction with scientific visualization and data. The VGEE consists of four elements: 1) an online, inquiry-based curriculum for guiding student exploration; 2) a suite of El Nino-related data sets adapted for student use; 3) a learner-centered interface to a scientific visualization tool; and 4) a set of concept models (interactive tools that help students understand fundamental scientific concepts). There are two key innovations featured in this interactive poster session. One is the integration of concept models and the visualization tool. Concept models are simple, interactive, Java-based illustrations of fundamental physical principles. We developed eight concept models and integrated them into the visualization tool to enable students to probe data. The ability to probe data using a concept model addresses the common problem of transfer: the difficulty students have in applying theoretical knowledge to everyday phenomenon. The other innovation is a visualization environment and data that are discoverable in digital libraries, and installed, configured, and used for investigations over the web. By collaborating with the Integrated Data Viewer developers, we were able to embed a web-launchable visualization tool and access to distributed data sets into the online curricula. The Thematic Real-time Environmental Data Distributed Services (THREDDS) project is working to provide catalogs of datasets that can be used in new VGEE curricula under development. By cataloging this curricula in the Digital Library for Earth System Education (DLESE), learners and educators can discover the data and visualization tool within a framework that guides their use.

  4. Technology developments integrating a space network communications testbed

    NASA Technical Reports Server (NTRS)

    Kwong, Winston; Jennings, Esther; Clare, Loren; Leang, Dee

    2006-01-01

    As future manned and robotic space explorations missions involve more complex systems, it is essential to verify, validate, and optimize such systems through simulation and emulation in a low cost testbed environment. The goal of such a testbed is to perform detailed testing of advanced space and ground communications networks, technologies, and client applications that are essential for future space exploration missions. We describe the development of new technologies enhancing our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) that enables its integration in a distributed space communications testbed. MACHETE combines orbital modeling, link analysis, and protocol and service modeling to quantify system performance based on comprehensive considerations of different aspects of space missions.

  5. Modeling Environment for Total Risk-2E

    EPA Science Inventory

    MENTOR-2E uses an integrated, mechanistically consistent source-to-dose-to-response modeling framework to quantify inhalation exposure and doses resulting from emergency events. It is an implementation of the MENTOR system that is focused towards modeling of the impacts of rele...

  6. Design and analysis of radiometric instruments using high-level numerical models and genetic algorithms

    NASA Astrophysics Data System (ADS)

    Sorensen, Ira Joseph

    A primary objective of the effort reported here is to develop a radiometric instrument modeling environment to provide complete end-to-end numerical models of radiometric instruments, integrating the optical, electro-thermal, and electronic systems. The modeling environment consists of a Monte Carlo ray-trace (MCRT) model of the optical system coupled to a transient, three-dimensional finite-difference electrothermal model of the detector assembly with an analytic model of the signal-conditioning circuitry. The environment provides a complete simulation of the dynamic optical and electrothermal behavior of the instrument. The modeling environment is used to create an end-to-end model of the CERES scanning radiometer, and its performance is compared to the performance of an operational CERES total channel as a benchmark. A further objective of this effort is to formulate an efficient design environment for radiometric instruments. To this end, the modeling environment is then combined with evolutionary search algorithms known as genetic algorithms (GA's) to develop a methodology for optimal instrument design using high-level radiometric instrument models. GA's are applied to the design of the optical system and detector system separately and to both as an aggregate function with positive results.

  7. Innovation for integrated command environments

    NASA Astrophysics Data System (ADS)

    Perry, Amie A.; McKneely, Jennifer A.

    2000-11-01

    Command environments have rarely been able to easily accommodate rapid changes in technology and mission. Yet, command personnel, by their selection criteria, experience, and very nature, tend to be extremely adaptive and flexible, and able to learn new missions and address new challenges fairly easily. Instead, the hardware and software components of the systems do no provide the needed flexibility and scalability for command personnel. How do we solve this problem? In order to even dream of keeping pace with a rapidly changing world, we must begin to think differently about the command environment and its systems. What is the correct definition of the integrated command environment system? What types of tasks must be performed in this environment, and how might they change in the next five to twenty-five years? How should the command environment be developed, maintained, and evolved to provide needed flexibility and scalability? The issues and concepts to be considered as new Integrated Command/Control Environments (ICEs) are designed following a human-centered process. A futuristic model, the Dream Integrated Command Environment (DICE) will be described which demonstrates specific ICE innovations. The major paradigm shift required to be able to think differently about this problem is to center the DICE around the command personnel from its inception. Conference participants may not agree with every concept or idea presented, but will hopefully come away with a clear understanding that to radically improve future systems, designers must focus on the end users.

  8. Integrated modelling of ecosystem services and energy systems research

    NASA Astrophysics Data System (ADS)

    Agarwala, Matthew; Lovett, Andrew; Bateman, Ian; Day, Brett; Agnolucci, Paolo; Ziv, Guy

    2016-04-01

    The UK Government is formally committed to reducing carbon emissions and protecting and improving natural capital and the environment. However, actually delivering on these objectives requires an integrated approach to addressing two parallel challenges: de-carbonising future energy system pathways; and safeguarding natural capital to ensure the continued flow of ecosystem services. Although both emphasise benefiting from natural resources, efforts to connect natural capital and energy systems research have been limited, meaning opportunities to improve management of natural resources and meet society's energy needs could be missed. The ecosystem services paradigm provides a consistent conceptual framework that applies in multiple disciplines across the natural and economic sciences, and facilitates collaboration between them. At the forefront of the field, integrated ecosystem service - economy models have guided public- and private-sector decision making at all levels. Models vary in sophistication from simple spreadsheet tools to complex software packages integrating biophysical, GIS and economic models and draw upon many fields, including ecology, hydrology, geography, systems theory, economics and the social sciences. They also differ in their ability to value changes in natural capital and ecosystem services at various spatial and temporal scales. Despite these differences, current models share a common feature: their treatment of energy systems is superficial at best. In contrast, energy systems research has no widely adopted, unifying conceptual framework that organises thinking about key system components and interactions. Instead, the literature is organised around modelling approaches, including life cycle analyses, econometric investigations, linear programming and computable general equilibrium models. However, some consistencies do emerge. First, often contain a linear set of steps, from exploration to resource supply, fuel processing, conversion/generation, transmission, distribution, and finally, end energy use. Although each step clearly impacts upon natural capital, links to the natural environment are rarely identified or quantified within energy research. In short, the respective conceptual frameworks guiding ecosystem service and energy research are not well integrated. Major knowledge and research gaps appear at the system boundaries: while energy models may mention flows of residuals, exploring where exactly these flows enter the environment, and how they impact ecosystems and natural capital is often considered to be 'outside the system boundary'. While integrated modelling represents the frontier of ecosystem service research, current efforts largely ignore the future energy pathways set out by energy systems models and government carbon targets. This disconnect means that policy-oriented research on how best to (i) maintain natural capital and (ii) meet specific climate targets may be poorly aligned, or worse, offer conflicting advice. We present a re-imagined version of the ecosystem services conceptual framework, in which emphasis is placed on interactions between energy systems and the natural environment. Using the UK as a case study, we employ a recent integrated environmental-economic ecosystem service model, TIM, developed by Bateman et al (2014) and energy pathways developed by the UK Energy Research Centre and the UK Government Committee on Climate Change to illustrate how the new conceptual framework might apply in real world applications.

  9. Integrated modeling of pesticide risks to breeding birds in North American agroecosystems

    EPA Science Inventory

    Pesticide usage in the United States is ubiquitous in urban, suburban, and rural environments. Scientists at the United States Environmental Protection Agency (USEPA) assess the fate of pesticides and the risk those pesticides pose to the environment and non-target wildlife. We p...

  10. Report on Integration of Existing Grid Models for N-R HES Interaction Focused on Balancing Authorities for Sub-hour Penalties and Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McJunkin, Timothy; Epiney, Aaron; Rabiti, Cristian

    2017-06-01

    This report provides a summary of the effort in the Nuclear-Renewable Hybrid Energy System (N-R HES) project on the level 4 milestone to consider integration of existing grid models into the factors for optimization on shorter time intervals than the existing electric grid models with the Risk Analysis Virtual Environment (RAVEN) and Modelica [1] optimizations and economic analysis that are the focus of the project to date.

  11. Coordinating teams of autonomous vehicles: an architectural perspective

    NASA Astrophysics Data System (ADS)

    Czichon, Cary; Peterson, Robert W.; Mettala, Erik G.; Vondrak, Ivo

    2005-05-01

    In defense-related robotics research, a mission level integration gap exists between mission tasks (tactical) performed by ground, sea, or air applications and elementary behaviors enacted by processing, communications, sensors, and weaponry resources (platform specific). The gap spans ensemble (heterogeneous team) behaviors, automatic MOE/MOP tracking, and tactical task modeling/simulation for virtual and mixed teams comprised of robotic and human combatants. This study surveys robotic system architectures, compares approaches for navigating problem/state spaces by autonomous systems, describes an architecture for an integrated, repository-based modeling, simulation, and execution environment, and outlines a multi-tiered scheme for robotic behavior components that is agent-based, platform-independent, and extendable via plug-ins. Tools for this integrated environment, along with a distributed agent framework for collaborative task performance are being developed by a U.S. Army funded SBIR project (RDECOM Contract N61339-04-C-0005).

  12. Competitive assessment of aerospace systems using system dynamics

    NASA Astrophysics Data System (ADS)

    Pfaender, Jens Holger

    Aircraft design has recently experienced a trend away from performance centric design towards a more balanced approach with increased emphasis on engineering an economically successful system. This approach focuses on bringing forward a comprehensive economic and life-cycle cost analysis. Since the success of any system also depends on many external factors outside of the control of the designer, this traditionally has been modeled as noise affecting the uncertainty of the design. However, this approach is currently lacking a strategic treatment of necessary early decisions affecting the probability of success of a given concept in a dynamic environment. This suggests that the introduction of a dynamic method into a life-cycle cost analysis should allow the analysis of the future attractiveness of such a concept in the presence of uncertainty. One way of addressing this is through the use of a competitive market model. However, existing market models do not focus on the dynamics of the market. Instead, they focus on modeling and predicting market share through logit regression models. The resulting models exhibit relatively poor predictive capabilities. The method proposed here focuses on a top-down approach that integrates a competitive model based on work in the field of system dynamics into the aircraft design process. Demonstrating such integration is one of the primary contributions of this work, which previously has not been demonstrated. This integration is achieved through the use of surrogate models, in this case neural networks. This enabled not only the practical integration of analysis techniques, but also reduced the computational requirements so that interactive exploration as envisioned was actually possible. The example demonstration of this integration is built on the competition in the 250 seat large commercial aircraft market exemplified by the Boeing 767-400ER and the Airbus A330-200. Both aircraft models were calibrated to existing performance and certification data and then integrated into the system dynamics market model. The market model was then calibrated with historical market data. This calibration showed a much improved predictive capability as compared to the conventional logit regression models. An additional advantage of this dynamic model is that to realize this improved capability, no additional explanatory variables were required. Furthermore, the resulting market model was then integrated into a prediction profiler environment with a time variant Monte-Carlo analysis resulting in a unique trade-off environment. This environment was shown to allow interactive trade-off between aircraft design decisions and economic considerations while allowing the exploration potential market success in the light of varying external market conditions and scenarios. The resulting method is capable of reduced decision support uncertainty and identification of robust design decisions in future scenarios with a high likelihood of occurrence with special focus on the path dependent nature of future implications of decisions. Furthermore, it was possible to demonstrate the increased importance of design and technology choices on the competitiveness in scenarios with drastic increases in commodity prices during the time period modeled. Another use of the existing outputs of the Monte-Carlo analysis was then realized by showing them on a multivariate scatter plot. This plot was then shown to enable by appropriate grouping of variables to enable the top down definition of an aircraft design, also known as inverse design. In other words this enables the designer to define strategic market and return on investment goals for a number of scenarios, for example the development of fuel prices, and then directly see which specific aircraft designs meet these goals.

  13. Control theory for scanning probe microscopy revisited.

    PubMed

    Stirling, Julian

    2014-01-01

    We derive a theoretical model for studying SPM feedback in the context of control theory. Previous models presented in the literature that apply standard models for proportional-integral-derivative controllers predict a highly unstable feedback environment. This model uses features specific to the SPM implementation of the proportional-integral controller to give realistic feedback behaviour. As such the stability of SPM feedback for a wide range of feedback gains can be understood. Further consideration of mechanical responses of the SPM system gives insight into the causes of exciting mechanical resonances of the scanner during feedback operation.

  14. Integrated urban systems modeling : designing a seamless, comprehensive approach to transportation planning.

    DOT National Transportation Integrated Search

    2009-01-01

    Metropolitan planning agencies face increasingly complex issues in modeling interactions between the built environment and multimodal transportation systems. Although great strides have been made in simulating land use, travel demand, and traffic flo...

  15. Development of an integrated generic model for multi-scale assessment of the impacts of agro-ecosystems on major ecosystem services in West Africa.

    PubMed

    Belem, Mahamadou; Saqalli, Mehdi

    2017-11-01

    This paper presents an integrated model assessing the impacts of climate change, agro-ecosystem and demographic transition patterns on major ecosystem services in West-Africa along a partial overview of economic aspects (poverty reduction, food self-sufficiency and income generation). The model is based on an agent-based model associated with a soil model and multi-scale spatial model. The resulting Model for West-Africa Agro-Ecosystem Integrated Assessment (MOWASIA) is ecologically generic, meaning it is designed for all sudano-sahelian environments but may then be used as an experimentation facility for testing different scenarios combining ecological and socioeconomic dimensions. A case study in Burkina Faso is examined to assess the environmental and economic performances of semi-continuous and continuous farming systems. Results show that the semi-continuous system using organic fertilizer and fallowing practices contribute better to environment preservation and food security than the more economically performant continuous system. In addition, this study showed that farmers heterogeneity could play an important role in agricultural policies planning and assessment. In addition, the results showed that MOWASIA is an effective tool for designing, analysing the impacts of agro-ecosystems. Copyright © 2017. Published by Elsevier Ltd.

  16. Integrated model for pricing, delivery time setting, and scheduling in make-to-order environments

    NASA Astrophysics Data System (ADS)

    Garmdare, Hamid Sattari; Lotfi, M. M.; Honarvar, Mahboobeh

    2018-03-01

    Usually, in make-to-order environments which work only in response to the customer's orders, manufacturers for maximizing the profits should offer the best price and delivery time for an order considering the existing capacity and the customer's sensitivity to both the factors. In this paper, an integrated approach for pricing, delivery time setting and scheduling of new arrival orders are proposed based on the existing capacity and accepted orders in system. In the problem, the acquired market demands dependent on the price and delivery time of both the manufacturer and its competitors. A mixed-integer non-linear programming model is presented for the problem. After converting to a pure non-linear model, it is validated through a case study. The efficiency of proposed model is confirmed by comparing it to both the literature and the current practice. Finally, sensitivity analysis for the key parameters is carried out.

  17. Model-based engineering for laser weapons systems

    NASA Astrophysics Data System (ADS)

    Panthaki, Malcolm; Coy, Steve

    2011-10-01

    The Comet Performance Engineering Workspace is an environment that enables integrated, multidisciplinary modeling and design/simulation process automation. One of the many multi-disciplinary applications of the Comet Workspace is for the integrated Structural, Thermal, Optical Performance (STOP) analysis of complex, multi-disciplinary space systems containing Electro-Optical (EO) sensors such as those which are designed and developed by and for NASA and the Department of Defense. The CometTM software is currently able to integrate performance simulation data and processes from a wide range of 3-D CAD and analysis software programs including CODE VTM from Optical Research Associates and SigFitTM from Sigmadyne Inc. which are used to simulate the optics performance of EO sensor systems in space-borne applications. Over the past year, Comet Solutions has been working with MZA Associates of Albuquerque, NM, under a contract with the Air Force Research Laboratories. This funded effort is a "risk reduction effort", to help determine whether the combination of Comet and WaveTrainTM, a wave optics systems engineering analysis environment developed and maintained by MZA Associates and used by the Air Force Research Laboratory, will result in an effective Model-Based Engineering (MBE) environment for the analysis and design of laser weapons systems. This paper will review the results of this effort and future steps.

  18. Applications integration in a hybrid cloud computing environment: modelling and platform

    NASA Astrophysics Data System (ADS)

    Li, Qing; Wang, Ze-yuan; Li, Wei-hua; Li, Jun; Wang, Cheng; Du, Rui-yang

    2013-08-01

    With the development of application services providers and cloud computing, more and more small- and medium-sized business enterprises use software services and even infrastructure services provided by professional information service companies to replace all or part of their information systems (ISs). These information service companies provide applications, such as data storage, computing processes, document sharing and even management information system services as public resources to support the business process management of their customers. However, no cloud computing service vendor can satisfy the full functional IS requirements of an enterprise. As a result, enterprises often have to simultaneously use systems distributed in different clouds and their intra enterprise ISs. Thus, this article presents a framework to integrate applications deployed in public clouds and intra ISs. A run-time platform is developed and a cross-computing environment process modelling technique is also developed to improve the feasibility of ISs under hybrid cloud computing environments.

  19. A Community Framework for Integrative, Coupled Modeling of Human-Earth Systems

    NASA Astrophysics Data System (ADS)

    Barton, C. M.; Nelson, G. C.; Tucker, G. E.; Lee, A.; Porter, C.; Ullah, I.; Hutton, E.; Hoogenboom, G.; Rogers, K. G.; Pritchard, C.

    2017-12-01

    We live today in a humanized world, where critical zone dynamics are driven by coupled human and biophysical processes. First generation modeling platforms have been invaluable in providing insight into dynamics of biophysical systems and social systems. But to understand today's humanized planet scientifically and to manage it sustainably, we need integrative modeling of this coupled human-Earth system. To address both scientific and policy questions, we also need modeling that can represent variable combinations of human-Earth system processes at multiple scales. Simply adding more code needed to do this to large, legacy first generation models is impractical, expensive, and will make them even more difficult to evaluate or understand. We need an approach to modeling that mirrors and benefits from the architecture of the complexly coupled systems we hope to model. Building on a series of international workshops over the past two years, we present a community framework to enable and support an ecosystem of diverse models as components that can be interconnected as needed to facilitate understanding of a range of complex human-earth systems interactions. Models are containerized in Docker to make them platform independent. A Basic Modeling Interface and Standard Names ontology (developed by the Community Surface Dynamics Modeling System) is applied to make them interoperable. They are then transformed into RESTful micro-services to allow them to be connected and run in a browser environment. This enables a flexible, multi-scale modeling environment to help address diverse issues with combinations of smaller, focused, component models that are easier to understand and evaluate. We plan to develop, deploy, and maintain this framework for integrated, coupled modeling in an open-source collaborative development environment that can democratize access to advanced technology and benefit from diverse global participation in model development. We also present an initial proof-of-concept of this framework, coupling a widely used agricultural crop model (DSSAT) with a widely used hydrology model (TopoFlow).

  20. Putting mechanisms into crop production models.

    PubMed

    Boote, Kenneth J; Jones, James W; White, Jeffrey W; Asseng, Senthold; Lizaso, Jon I

    2013-09-01

    Crop growth models dynamically simulate processes of C, N and water balance on daily or hourly time-steps to predict crop growth and development and at season-end, final yield. Their ability to integrate effects of genetics, environment and crop management have led to applications ranging from understanding gene function to predicting potential impacts of climate change. The history of crop models is reviewed briefly, and their level of mechanistic detail for assimilation and respiration, ranging from hourly leaf-to-canopy assimilation to daily radiation-use efficiency is discussed. Crop models have improved steadily over the past 30-40 years, but much work remains. Improvements are needed for the prediction of transpiration response to elevated CO₂ and high temperature effects on phenology and reproductive fertility, and simulation of root growth and nutrient uptake under stressful edaphic conditions. Mechanistic improvements are needed to better connect crop growth to genetics and to soil fertility, soil waterlogging and pest damage. Because crop models integrate multiple processes and consider impacts of environment and management, they have excellent potential for linking research from genomics and allied disciplines to crop responses at the field scale, thus providing a valuable tool for deciphering genotype by environment by management effects. © 2013 John Wiley & Sons Ltd.

  1. Tracking Skill Acquisition with Cognitive Diagnosis Models: A Higher-Order, Hidden Markov Model with Covariates

    ERIC Educational Resources Information Center

    Wang, Shiyu; Yang, Yan; Culpepper, Steven Andrew; Douglas, Jeffrey A.

    2018-01-01

    A family of learning models that integrates a cognitive diagnostic model and a higher-order, hidden Markov model in one framework is proposed. This new framework includes covariates to model skill transition in the learning environment. A Bayesian formulation is adopted to estimate parameters from a learning model. The developed methods are…

  2. An Observation Analysis Tool for time-series analysis and sensor management in the FREEWAT GIS environment for water resources management

    NASA Astrophysics Data System (ADS)

    Cannata, Massimiliano; Neumann, Jakob; Cardoso, Mirko; Rossetto, Rudy; Foglia, Laura; Borsi, Iacopo

    2017-04-01

    In situ time-series are an important aspect of environmental modelling, especially with the advancement of numerical simulation techniques and increased model complexity. In order to make use of the increasing data available through the requirements of the EU Water Framework Directive, the FREEWAT GIS environment incorporates the newly developed Observation Analysis Tool for time-series analysis. The tool is used to import time-series data into QGIS from local CSV files, online sensors using the istSOS service, or MODFLOW model result files and enables visualisation, pre-processing of data for model development, and post-processing of model results. OAT can be used as a pre-processor for calibration observations, integrating the creation of observations for calibration directly from sensor time-series. The tool consists in an expandable Python library of processing methods and an interface integrated in the QGIS FREEWAT plug-in which includes a large number of modelling capabilities, data management tools and calibration capacity.

  3. An Extended Petri-Net Based Approach for Supply Chain Process Enactment in Resource-Centric Web Service Environment

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Zhang, Xiaoyu; Cai, Hongming; Xu, Boyi

    Enacting a supply-chain process involves variant partners and different IT systems. REST receives increasing attention for distributed systems with loosely coupled resources. Nevertheless, resource model incompatibilities and conflicts prevent effective process modeling and deployment in resource-centric Web service environment. In this paper, a Petri-net based framework for supply-chain process integration is proposed. A resource meta-model is constructed to represent the basic information of resources. Then based on resource meta-model, XML schemas and documents are derived, which represent resources and their states in Petri-net. Thereafter, XML-net, a high level Petri-net, is employed for modeling control and data flow of process. From process model in XML-net, RESTful services and choreography descriptions are deduced. Therefore, unified resource representation and RESTful services description are proposed for cross-system integration in a more effective way. A case study is given to illustrate the approach and the desirable features of the approach are discussed.

  4. Post-disaster supply chain interdependent critical infrastructure system restoration: A review of data necessary and available for modeling

    USGS Publications Warehouse

    Ramachandran, Varun; Long, Suzanna K.; Shoberg, Thomas G.; Corns, Steven; Carlo, Hector J.

    2016-01-01

    The majority of restoration strategies in the wake of large-scale disasters have focused on short-term emergency response solutions. Few consider medium- to long-term restoration strategies to reconnect urban areas to national supply chain interdependent critical infrastructure systems (SCICI). These SCICI promote the effective flow of goods, services, and information vital to the economic vitality of an urban environment. To re-establish the connectivity that has been broken during a disaster between the different SCICI, relationships between these systems must be identified, formulated, and added to a common framework to form a system-level restoration plan. To accomplish this goal, a considerable collection of SCICI data is necessary. The aim of this paper is to review what data are required for model construction, the accessibility of these data, and their integration with each other. While a review of publically available data reveals a dearth of real-time data to assist modeling long-term recovery following an extreme event, a significant amount of static data does exist and these data can be used to model the complex interdependencies needed. For the sake of illustration, a particular SCICI (transportation) is used to highlight the challenges of determining the interdependencies and creating models capable of describing the complexity of an urban environment with the data publically available. Integration of such data as is derived from public domain sources is readily achieved in a geospatial environment, after all geospatial infrastructure data are the most abundant data source and while significant quantities of data can be acquired through public sources, a significant effort is still required to gather, develop, and integrate these data from multiple sources to build a complete model. Therefore, while continued availability of high quality, public information is essential for modeling efforts in academic as well as government communities, a more streamlined approach to a real-time acquisition and integration of these data is essential.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornreich, Drew E; Vaidya, Rajendra U; Ammerman, Curtt N

    Integrated Computational Materials Engineering (ICME) is a novel overarching approach to bridge length and time scales in computational materials science and engineering. This approach integrates all elements of multi-scale modeling (including various empirical and science-based models) with materials informatics to provide users the opportunity to tailor material selections based on stringent application needs. Typically, materials engineering has focused on structural requirements (stress, strain, modulus, fracture toughness etc.) while multi-scale modeling has been science focused (mechanical threshold strength model, grain-size models, solid-solution strengthening models etc.). Materials informatics (mechanical property inventories) on the other hand, is extensively data focused. All of thesemore » elements are combined within the framework of ICME to create architecture for the development, selection and design new composite materials for challenging environments. We propose development of the foundations for applying ICME to composite materials development for nuclear and high-radiation environments (including nuclear-fusion energy reactors, nuclear-fission reactors, and accelerators). We expect to combine all elements of current material models (including thermo-mechanical and finite-element models) into the ICME framework. This will be accomplished through the use of a various mathematical modeling constructs. These constructs will allow the integration of constituent models, which in tum would allow us to use the adaptive strengths of using a combinatorial scheme (fabrication and computational) for creating new composite materials. A sample problem where these concepts are used is provided in this summary.« less

  6. Nationwide Buildings Energy Research enabled through an integrated Data Intensive Scientific Workflow and Advanced Analysis Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleese van Dam, Kerstin; Lansing, Carina S.; Elsethagen, Todd O.

    2014-01-28

    Modern workflow systems enable scientists to run ensemble simulations at unprecedented scales and levels of complexity, allowing them to study system sizes previously impossible to achieve, due to the inherent resource requirements needed for the modeling work. However as a result of these new capabilities the science teams suddenly also face unprecedented data volumes that they are unable to analyze with their existing tools and methodologies in a timely fashion. In this paper we will describe the ongoing development work to create an integrated data intensive scientific workflow and analysis environment that offers researchers the ability to easily create andmore » execute complex simulation studies and provides them with different scalable methods to analyze the resulting data volumes. The integration of simulation and analysis environments is hereby not only a question of ease of use, but supports fundamental functions in the correlated analysis of simulation input, execution details and derived results for multi-variant, complex studies. To this end the team extended and integrated the existing capabilities of the Velo data management and analysis infrastructure, the MeDICi data intensive workflow system and RHIPE the R for Hadoop version of the well-known statistics package, as well as developing a new visual analytics interface for the result exploitation by multi-domain users. The capabilities of the new environment are demonstrated on a use case that focusses on the Pacific Northwest National Laboratory (PNNL) building energy team, showing how they were able to take their previously local scale simulations to a nationwide level by utilizing data intensive computing techniques not only for their modeling work, but also for the subsequent analysis of their modeling results. As part of the PNNL research initiative PRIMA (Platform for Regional Integrated Modeling and Analysis) the team performed an initial 3 year study of building energy demands for the US Eastern Interconnect domain, which they are now planning to extend to predict the demand for the complete century. The initial study raised their data demands from a few GBs to 400GB for the 3year study and expected tens of TBs for the full century.« less

  7. Integrative multicellular biological modeling: a case study of 3D epidermal development using GPU algorithms

    PubMed Central

    2010-01-01

    Background Simulation of sophisticated biological models requires considerable computational power. These models typically integrate together numerous biological phenomena such as spatially-explicit heterogeneous cells, cell-cell interactions, cell-environment interactions and intracellular gene networks. The recent advent of programming for graphical processing units (GPU) opens up the possibility of developing more integrative, detailed and predictive biological models while at the same time decreasing the computational cost to simulate those models. Results We construct a 3D model of epidermal development and provide a set of GPU algorithms that executes significantly faster than sequential central processing unit (CPU) code. We provide a parallel implementation of the subcellular element method for individual cells residing in a lattice-free spatial environment. Each cell in our epidermal model includes an internal gene network, which integrates cellular interaction of Notch signaling together with environmental interaction of basement membrane adhesion, to specify cellular state and behaviors such as growth and division. We take a pedagogical approach to describing how modeling methods are efficiently implemented on the GPU including memory layout of data structures and functional decomposition. We discuss various programmatic issues and provide a set of design guidelines for GPU programming that are instructive to avoid common pitfalls as well as to extract performance from the GPU architecture. Conclusions We demonstrate that GPU algorithms represent a significant technological advance for the simulation of complex biological models. We further demonstrate with our epidermal model that the integration of multiple complex modeling methods for heterogeneous multicellular biological processes is both feasible and computationally tractable using this new technology. We hope that the provided algorithms and source code will be a starting point for modelers to develop their own GPU implementations, and encourage others to implement their modeling methods on the GPU and to make that code available to the wider community. PMID:20696053

  8. Streamlining the Discovery, Evaluation, and Integration of Data, Models, and Decision Support Systems: a Big Picture View

    EPA Science Inventory

    21st century environmental problems are wicked and require holistic systems thinking and solutions that integrate social and economic knowledge with knowledge of the environment. Computer-based technologies are fundamental to our ability to research and understand the relevant sy...

  9. Constraint-Driven Software Design: An Escape from the Waterfall Model.

    ERIC Educational Resources Information Center

    de Hoog, Robert; And Others

    1994-01-01

    Presents the principles of a development methodology for software design based on a nonlinear, product-driven approach that integrates quality aspects. Two examples are given to show that the flexibility needed for building high quality systems leads to integrated development environments in which methodology, product, and tools are closely…

  10. Integrated HIV care and service engagement among people living with HIV who use drugs in a setting with a community-wide treatment as prevention initiative: a qualitative study in Vancouver, Canada

    PubMed Central

    Collins, Alexandra B; Parashar, Surita; Hogg, Robert S; Fernando, Saranee; Worthington, Catherine; McDougall, Patrick; Turje, Rosalind Baltzer; McNeil, Ryan

    2017-01-01

    Abstract Introduction: Social-structural inequities impede access to, and retention in, HIV care among structurally vulnerable people living with HIV (PLHIV) who use drugs. The resulting disparities in HIV-related outcomes among PLHIV who use drugs pose barriers to the optimization of HIV treatment as prevention (TasP) initiatives. We undertook this study to examine engagement with, and impacts of, an integrated HIV care services model tailored to the needs of PLHIV who use drugs in Vancouver, Canada – a setting with a community-wide TasP initiative. Methods: We conducted qualitative interviews with 30 PLHIV who use drugs recruited from the Dr. Peter Centre, an HIV care facility operating under an integrated services model and harm reduction approach. We employed novel analytical techniques to analyse participants’ service trajectories within this facility to understand how this HIV service environment influences access to, and retention in, HIV care among structurally vulnerable PLHIV who use drugs. Results: Our findings demonstrate that participants’ structural vulnerability shaped their engagement with the HIV care facility that provided access to resources that facilitated retention in HIV care and antiretroviral treatment adherence. Additionally, the integrated service environment helped reduce burdens associated with living in extreme poverty by meeting participants’ subsistence (e.g. food, shelter) needs. Moreover, access to multiple supports created a structured environment in which participants could develop routine service use patterns and have prolonged engagement with supportive care services. Our findings demonstrate that low-barrier service models can mitigate social and structural barriers to HIV care and complement TasP initiatives for PLHIV who use drugs. Conclusions: These findings highlight the critical role of integrated service models in promoting access to health and support services for structurally vulnerable PLHIV. Complementing structural interventions with integrated service models that are tailored to the needs of structurally vulnerable PLHIV who use drugs will be pursuant to the goals of TasP. PMID:28426185

  11. Research on reverse logistics location under uncertainty environment based on grey prediction

    NASA Astrophysics Data System (ADS)

    Zhenqiang, Bao; Congwei, Zhu; Yuqin, Zhao; Quanke, Pan

    This article constructs reverse logistic network based on uncertain environment, integrates the reverse logistics network and distribution network, and forms a closed network. An optimization model based on cost is established to help intermediate center, manufacturing center and remanufacturing center make location decision. A gray model GM (1, 1) is used to predict the product holdings of the collection points, and then prediction results are carried into the cost optimization model and a solution is got. Finally, an example is given to verify the effectiveness and feasibility of the model.

  12. New Educational Modules Using a Cyber-Distribution System Testbed

    DOE PAGES

    Xie, Jing; Bedoya, Juan Carlos; Liu, Chen-Ching; ...

    2018-03-30

    At Washington State University (WSU), a modern cyber-physical system testbed has been implemented based on an industry grade distribution management system (DMS) that is integrated with remote terminal units (RTUs), smart meters, and a solar photovoltaic (PV). In addition, the real model from the Avista Utilities distribution system in Pullman, WA, is modeled in DMS. The proposed testbed environment allows students and instructors to utilize these facilities for innovations in learning and teaching. For power engineering education, this testbed helps students understand the interaction between a cyber system and a physical distribution system through industrial level visualization. The testbed providesmore » a distribution system monitoring and control environment for students. Compared with a simulation based approach, the testbed brings the students' learning environment a step closer to the real world. The educational modules allow students to learn the concepts of a cyber-physical system and an electricity market through an integrated testbed. Furthermore, the testbed provides a platform in the study mode for students to practice working on a real distribution system model. Here, this paper describes the new educational modules based on the testbed environment. Three modules are described together with the underlying educational principles and associated projects.« less

  13. New Educational Modules Using a Cyber-Distribution System Testbed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Jing; Bedoya, Juan Carlos; Liu, Chen-Ching

    At Washington State University (WSU), a modern cyber-physical system testbed has been implemented based on an industry grade distribution management system (DMS) that is integrated with remote terminal units (RTUs), smart meters, and a solar photovoltaic (PV). In addition, the real model from the Avista Utilities distribution system in Pullman, WA, is modeled in DMS. The proposed testbed environment allows students and instructors to utilize these facilities for innovations in learning and teaching. For power engineering education, this testbed helps students understand the interaction between a cyber system and a physical distribution system through industrial level visualization. The testbed providesmore » a distribution system monitoring and control environment for students. Compared with a simulation based approach, the testbed brings the students' learning environment a step closer to the real world. The educational modules allow students to learn the concepts of a cyber-physical system and an electricity market through an integrated testbed. Furthermore, the testbed provides a platform in the study mode for students to practice working on a real distribution system model. Here, this paper describes the new educational modules based on the testbed environment. Three modules are described together with the underlying educational principles and associated projects.« less

  14. UniDA: Uniform Device Access Framework for Human Interaction Environments

    PubMed Central

    Varela, Gervasio; Paz-Lopez, Alejandro; Becerra, Jose Antonio; Vazquez-Rodriguez, Santiago; Duro, Richard José

    2011-01-01

    Human interaction environments (HIE) must be understood as any place where people carry out their daily life, including their work, family life, leisure and social life, interacting with technology to enhance or facilitate the experience. The integration of technology in these environments has been achieved in a disorderly and incompatible way, with devices operating in isolated islands with artificial edges delimited by the manufacturers. In this paper we are presenting the UniDA framework, an integral solution for the development of systems that require the integration and interoperation of devices and technologies in HIEs. It provides developers and installers with a uniform conceptual framework capable of modelling an HIE, together with a set of libraries, tools and devices to build distributed instrumentation networks with support for transparent integration of other technologies. A series of use case examples and a comparison to many of the existing technologies in the field has been included in order to show the benefits of using UniDA. PMID:22163700

  15. UniDA: uniform device access framework for human interaction environments.

    PubMed

    Varela, Gervasio; Paz-Lopez, Alejandro; Becerra, Jose Antonio; Vazquez-Rodriguez, Santiago; Duro, Richard José

    2011-01-01

    Human interaction environments (HIE) must be understood as any place where people carry out their daily life, including their work, family life, leisure and social life, interacting with technology to enhance or facilitate the experience. The integration of technology in these environments has been achieved in a disorderly and incompatible way, with devices operating in isolated islands with artificial edges delimited by the manufacturers. In this paper we are presenting the UniDA framework, an integral solution for the development of systems that require the integration and interoperation of devices and technologies in HIEs. It provides developers and installers with a uniform conceptual framework capable of modelling an HIE, together with a set of libraries, tools and devices to build distributed instrumentation networks with support for transparent integration of other technologies. A series of use case examples and a comparison to many of the existing technologies in the field has been included in order to show the benefits of using UniDA.

  16. Overview of NASA's Integrated Design and Engineering Analysis (IDEA)Environment

    NASA Technical Reports Server (NTRS)

    Robinson, Jeffrey S.; Martin John G.

    2008-01-01

    Historically, the design of subsonic and supersonic aircraft has been divided into separate technical disciplines (such as propulsion, aerodynamics and structures) each of which performs their design and analysis in relative isolation from others. This is possible in most cases either because the amount of interdisciplinary coupling is minimal or because the interactions can be treated as linear. The design of hypersonic airbreathing vehicles, like NASA s X-43, is quite the opposite. Such systems are dominated by strong non-linear interactions between disciplines. The design of these systems demands that a multi-disciplinary approach be taken. Furthermore, increased analytical fidelity at the conceptual design phase is highly desirable as many of the non-linearities are not captured by lower fidelity tools. Only when these systems are designed from a true multi-disciplinary perspective can the real performance benefits be achieved and complete vehicle systems be fielded. Toward this end, the Vehicle Analysis Branch at NASA Langley Research Center has been developing the Integrated Design & Engineering Analysis (IDEA) Environment. IDEA is a collaborative environment for parametrically modeling conceptual and preliminary launch vehicle configurations using the Adaptive Modeling Language (AML) as the underlying framework. The environment integrates geometry, configuration, propulsion, aerodynamics, aerothermodynamics, trajectory, closure and structural analysis into a generative, parametric, unified computational model where data is shared seamlessly between the different disciplines. Plans are also in place to incorporate life cycle analysis tools into the environment which will estimate vehicle operability, reliability and cost. IDEA is currently being funded by NASA s Hypersonics Project, a part of the Fundamental Aeronautics Program within the Aeronautics Research Mission Directorate. The environment is currently focused around a two-stage-to-orbit configuration with a turbine based combined cycle (TBCC) first stage and reusable rocket second stage. This paper provides an overview of the development of the IDEA environment, a description of the current status and detail of future plans.

  17. Developing an Action Model for Integration of Health System Response to HIV/AIDS and Noncommunicable Diseases (NCDs) in Developing Countries

    PubMed Central

    Haregu, Tilahun Nigatu; Setswe, Geoffrey; Elliott, Julian; Oldenburg, Brian

    2014-01-01

    Introduction: Although there are several models of integrated architecture, we still lack models and theories about the integration process of health system responses to HIV/AIDS and NCDs. Objective: The overall purpose of this study is to design an action model, a systematic approach, for the integration of health system responses to HIV/AIDS and NCDs in developing countries. Methods: An iterative and progressive approach of model development using inductive qualitative evidence synthesis techniques was applied. As evidence about integration is spread across different fields, synthesis of evidence from a broad range of disciplines was conducted. Results: An action model of integration having 5 underlying principles, 4 action fields, and a 9-step action cycle is developed. The INTEGRATE model is an acronym of the 9 steps of the integration process: 1) Interrelate the magnitude and distribution of the problems, 2) Navigate the linkage between the problems, 3) Testify individual level co-occurrence of the problems, 4) Examine the similarities and understand the differences between the response functions, 5) Glance over the health system’s environment for integration, 6) Repackage and share evidence in a useable form, 7) Ascertain the plan for integration, 8) Translate the plan in to action, 9) Evaluate and Monitor the integration. Conclusion: Our model provides a basis for integration of health system responses to HIV/AIDS and NCDs in the context of developing countries. We propose that future empirical work is needed to refine the validity and applicability of the model. PMID:24373260

  18. Manipulating the fidelity of lower extremity visual feedback to identify obstacle negotiation strategies in immersive virtual reality.

    PubMed

    Kim, Aram; Zhou, Zixuan; Kretch, Kari S; Finley, James M

    2017-07-01

    The ability to successfully navigate obstacles in our environment requires integration of visual information about the environment with estimates of our body's state. Previous studies have used partial occlusion of the visual field to explore how information about the body and impending obstacles are integrated to mediate a successful clearance strategy. However, because these manipulations often remove information about both the body and obstacle, it remains to be seen how information about the lower extremities alone is utilized during obstacle crossing. Here, we used an immersive virtual reality (VR) interface to explore how visual feedback of the lower extremities influences obstacle crossing performance. Participants wore a head-mounted display while walking on treadmill and were instructed to step over obstacles in a virtual corridor in four different feedback trials. The trials involved: (1) No visual feedback of the lower extremities, (2) an endpoint-only model, (3) a link-segment model, and (4) a volumetric multi-segment model. We found that the volumetric model improved success rate, placed their trailing foot before crossing and leading foot after crossing more consistently, and placed their leading foot closer to the obstacle after crossing compared to no model. This knowledge is critical for the design of obstacle negotiation tasks in immersive virtual environments as it may provide information about the fidelity necessary to reproduce ecologically valid practice environments.

  19. Learning Environment, Learning Process, Academic Outcomes and Career Success of University Graduates

    ERIC Educational Resources Information Center

    Vermeulen, Lyanda; Schmidt, Henk G.

    2008-01-01

    This study expands on literature covering models on educational productivity, student integration and effectiveness of instruction. An expansion of the literature concerning the impact of higher education on workplace performance is also covered. Relationships were examined between the quality of the academic learning environment, the process of…

  20. Technology Implementation and Curriculum Engagement for Children and Youth Who Are Deafblind

    ERIC Educational Resources Information Center

    Hartmann, Elizabeth; Weismer, Patricia

    2016-01-01

    The authors discuss the research of education professionals concerned with children and youth with deafblindness, presenting three theoretical frameworks and models useful for integrating technology into learning environments: (a) UDL (universal design for learning; Meyer, Rose, & Gordon, 2014), (b) SETT (student, environment, task, tools;…

  1. International Management: Creating a More Realistic Global Planning Environment.

    ERIC Educational Resources Information Center

    Waldron, Darryl G.

    2000-01-01

    Discusses the need for realistic global planning environments in international business education, introducing a strategic planning model that has teams interacting with teams to strategically analyze a selected multinational company. This dynamic process must result in a single integrated written analysis that specifies an optimal strategy for…

  2. Business intelligence modeling in launch operations

    NASA Astrophysics Data System (ADS)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.

    2005-05-01

    The future of business intelligence in space exploration will focus on the intelligent system-of-systems real-time enterprise. In present business intelligence, a number of technologies that are most relevant to space exploration are experiencing the greatest change. Emerging patterns of set of processes rather than organizational units leading to end-to-end automation is becoming a major objective of enterprise information technology. The cost element is a leading factor of future exploration systems. This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations, process models, systems and environment models, and cost models as a comprehensive disciplined enterprise analysis environment. Significant emphasis is being placed on adapting root cause from existing Shuttle operations to exploration. Technical challenges include cost model validation, integration of parametric models with discrete event process and systems simulations, and large-scale simulation integration. The enterprise architecture is required for coherent integration of systems models. It will also require a plan for evolution over the life of the program. The proposed technology will produce long-term benefits in support of the NASA objectives for simulation based acquisition, will improve the ability to assess architectural options verses safety/risk for future exploration systems, and will facilitate incorporation of operability as a systems design consideration, reducing overall life cycle cost for future systems.

  3. Business Intelligence Modeling in Launch Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.

    2005-01-01

    This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation .based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations. process models, systems and environment models, and cost models as a comprehensive disciplined enterprise analysis environment. Significant emphasis is being placed on adapting root cause from existing Shuttle operations to exploration. Technical challenges include cost model validation, integration of parametric models with discrete event process and systems simulations. and large-scale simulation integration. The enterprise architecture is required for coherent integration of systems models. It will also require a plan for evolution over the life of the program. The proposed technology will produce long-term benefits in support of the NASA objectives for simulation based acquisition, will improve the ability to assess architectural options verses safety/risk for future exploration systems, and will facilitate incorporation of operability as a systems design consideration, reducing overall life cycle cost for future systems. The future of business intelligence of space exploration will focus on the intelligent system-of-systems real-time enterprise. In present business intelligence, a number of technologies that are most relevant to space exploration are experiencing the greatest change. Emerging patterns of set of processes rather than organizational units leading to end-to-end automation is becoming a major objective of enterprise information technology. The cost element is a leading factor of future exploration systems.

  4. Integrated Model Reduction and Control of Aircraft with Flexible Wings

    NASA Technical Reports Server (NTRS)

    Swei, Sean Shan-Min; Zhu, Guoming G.; Nguyen, Nhan T.

    2013-01-01

    This paper presents an integrated approach to the modeling and control of aircraft with exible wings. The coupled aircraft rigid body dynamics with a high-order elastic wing model can be represented in a nite dimensional state-space form. Given a set of desired output covariance, a model reduction process is performed by using the weighted Modal Cost Analysis (MCA). A dynamic output feedback controller, which is designed based on the reduced-order model, is developed by utilizing output covariance constraint (OCC) algorithm, and the resulting OCC design weighting matrix is used for the next iteration of the weighted cost analysis. This controller is then validated for full-order evaluation model to ensure that the aircraft's handling qualities are met and the uttering motion of the wings suppressed. An iterative algorithm is developed in CONDUIT environment to realize the integration of model reduction and controller design. The proposed integrated approach is applied to NASA Generic Transport Model (GTM) for demonstration.

  5. Analyzing Dynamics of Cooperating Spacecraft

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen P.; Folta, David C.; Conway, Darrel J.

    2004-01-01

    A software library has been developed to enable high-fidelity computational simulation of the dynamics of multiple spacecraft distributed over a region of outer space and acting with a common purpose. All of the modeling capabilities afforded by this software are available independently in other, separate software systems, but have not previously been brought together in a single system. A user can choose among several dynamical models, many high-fidelity environment models, and several numerical-integration schemes. The user can select whether to use models that assume weak coupling between spacecraft, or strong coupling in the case of feedback control or tethering of spacecraft to each other. For weak coupling, spacecraft orbits are propagated independently, and are synchronized in time by controlling the step size of the integration. For strong coupling, the orbits are integrated simultaneously. Among the integration schemes that the user can choose are Runge-Kutta Verner, Prince-Dormand, Adams-Bashforth-Moulton, and Bulirsh- Stoer. Comparisons of performance are included for both the weak- and strongcoupling dynamical models for all of the numerical integrators.

  6. Modeling Environment for Total Risk-4M

    EPA Science Inventory

    MENTOR-4M uses an integrated, mechanistically consistent, source-to-dose modeling framework to quantify simultaneous exposures and doses of individuals and populations to multiple contaminants. It is an implementation of the MENTOR system for exposures to Multiple contaminants fr...

  7. Methods for design and evaluation of integrated hardware-software systems for concurrent computation

    NASA Technical Reports Server (NTRS)

    Pratt, T. W.

    1985-01-01

    Research activities and publications are briefly summarized. The major tasks reviewed are: (1) VAX implementation of the PISCES parallel programming environment; (2) Apollo workstation network implementation of the PISCES environment; (3) FLEX implementation of the PISCES environment; (4) sparse matrix iterative solver in PSICES Fortran; (5) image processing application of PISCES; and (6) a formal model of concurrent computation being developed.

  8. Computational toxicology using the OpenTox application programming interface and Bioclipse

    PubMed Central

    2011-01-01

    Background Toxicity is a complex phenomenon involving the potential adverse effect on a range of biological functions. Predicting toxicity involves using a combination of experimental data (endpoints) and computational methods to generate a set of predictive models. Such models rely strongly on being able to integrate information from many sources. The required integration of biological and chemical information sources requires, however, a common language to express our knowledge ontologically, and interoperating services to build reliable predictive toxicology applications. Findings This article describes progress in extending the integrative bio- and cheminformatics platform Bioclipse to interoperate with OpenTox, a semantic web framework which supports open data exchange and toxicology model building. The Bioclipse workbench environment enables functionality from OpenTox web services and easy access to OpenTox resources for evaluating toxicity properties of query molecules. Relevant cases and interfaces based on ten neurotoxins are described to demonstrate the capabilities provided to the user. The integration takes advantage of semantic web technologies, thereby providing an open and simplifying communication standard. Additionally, the use of ontologies ensures proper interoperation and reliable integration of toxicity information from both experimental and computational sources. Conclusions A novel computational toxicity assessment platform was generated from integration of two open science platforms related to toxicology: Bioclipse, that combines a rich scriptable and graphical workbench environment for integration of diverse sets of information sources, and OpenTox, a platform for interoperable toxicology data and computational services. The combination provides improved reliability and operability for handling large data sets by the use of the Open Standards from the OpenTox Application Programming Interface. This enables simultaneous access to a variety of distributed predictive toxicology databases, and algorithm and model resources, taking advantage of the Bioclipse workbench handling the technical layers. PMID:22075173

  9. QuakeSim 2.0

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Parker, Jay W.; Lyzenga, Gregory A.; Granat, Robert A.; Norton, Charles D.; Rundle, John B.; Pierce, Marlon E.; Fox, Geoffrey C.; McLeod, Dennis; Ludwig, Lisa Grant

    2012-01-01

    QuakeSim 2.0 improves understanding of earthquake processes by providing modeling tools and integrating model applications and various heterogeneous data sources within a Web services environment. QuakeSim is a multisource, synergistic, data-intensive environment for modeling the behavior of earthquake faults individually, and as part of complex interacting systems. Remotely sensed geodetic data products may be explored, compared with faults and landscape features, mined by pattern analysis applications, and integrated with models and pattern analysis applications in a rich Web-based and visualization environment. Integration of heterogeneous data products with pattern informatics tools enables efficient development of models. Federated database components and visualization tools allow rapid exploration of large datasets, while pattern informatics enables identification of subtle, but important, features in large data sets. QuakeSim is valuable for earthquake investigations and modeling in its current state, and also serves as a prototype and nucleus for broader systems under development. The framework provides access to physics-based simulation tools that model the earthquake cycle and related crustal deformation. Spaceborne GPS and Inter ferometric Synthetic Aperture (InSAR) data provide information on near-term crustal deformation, while paleoseismic geologic data provide longerterm information on earthquake fault processes. These data sources are integrated into QuakeSim's QuakeTables database system, and are accessible by users or various model applications. UAVSAR repeat pass interferometry data products are added to the QuakeTables database, and are available through a browseable map interface or Representational State Transfer (REST) interfaces. Model applications can retrieve data from Quake Tables, or from third-party GPS velocity data services; alternatively, users can manually input parameters into the models. Pattern analysis of GPS and seismicity data has proved useful for mid-term forecasting of earthquakes, and for detecting subtle changes in crustal deformation. The GPS time series analysis has also proved useful as a data-quality tool, enabling the discovery of station anomalies and data processing and distribution errors. Improved visualization tools enable more efficient data exploration and understanding. Tools provide flexibility to science users for exploring data in new ways through download links, but also facilitate standard, intuitive, and routine uses for science users and end users such as emergency responders.

  10. Multi-objective and Perishable Fuzzy Inventory Models Having Weibull Life-time With Time Dependent Demand, Demand Dependent Production and Time Varying Holding Cost: A Possibility/Necessity Approach

    NASA Astrophysics Data System (ADS)

    Pathak, Savita; Mondal, Seema Sarkar

    2010-10-01

    A multi-objective inventory model of deteriorating item has been developed with Weibull rate of decay, time dependent demand, demand dependent production, time varying holding cost allowing shortages in fuzzy environments for non- integrated and integrated businesses. Here objective is to maximize the profit from different deteriorating items with space constraint. The impreciseness of inventory parameters and goals for non-integrated business has been expressed by linear membership functions. The compromised solutions are obtained by different fuzzy optimization methods. To incorporate the relative importance of the objectives, the different cardinal weights crisp/fuzzy have been assigned. The models are illustrated with numerical examples and results of models with crisp/fuzzy weights are compared. The result for the model assuming them to be integrated business is obtained by using Generalized Reduced Gradient Method (GRG). The fuzzy integrated model with imprecise inventory cost is formulated to optimize the possibility necessity measure of fuzzy goal of the objective function by using credibility measure of fuzzy event by taking fuzzy expectation. The results of crisp/fuzzy integrated model are illustrated with numerical examples and results are compared.

  11. Integrated Design Engineering Analysis (IDEA) Environment Automated Generation of Structured CFD Grids using Topology Methods

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hilmi N.

    2012-01-01

    This report documents the work performed from March 2010 to March 2012. The Integrated Design and Engineering Analysis (IDEA) environment is a collaborative environment based on an object-oriented, multidisciplinary, distributed framework using the Adaptive Modeling Language (AML) as a framework and supporting the configuration design and parametric CFD grid generation. This report will focus on describing the work in the area of parametric CFD grid generation using novel concepts for defining the interaction between the mesh topology and the geometry in such a way as to separate the mesh topology from the geometric topology while maintaining the link between the mesh topology and the actual geometry.

  12. The radiation environment of OSO missions from 1974 to 1978

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1973-01-01

    Trapped particle radiation levels on several OSO missions were calculated for nominal trajectories using improved computational methods and new electron environment models. Temporal variations of the electron fluxes were considered and partially accounted for. Magnetic field calculations were performed with a current field model and extrapolated to a later epoch with linear time terms. Orbital flux integration results, which are presented in graphical and tabular form, are analyzed, explained, and discussed.

  13. Modeling Achievement in Mathematics: The Role of Learner and Learning Environment Characteristics

    ERIC Educational Resources Information Center

    Nasser-Abu Alhija, Fadia; Amasha, Marcel

    2012-01-01

    This study examined a structural model of mathematics achievement among Druze 8th graders in Israel. The model integrates 2 psychosocial theories: goal theory and social learning theory. Variables in the model included gender, father's and mother's education, classroom mastery and performance goal orientation, mathematics self-efficacy and…

  14. Managed Development Environment Successes for MSFC's VIPA Team

    NASA Technical Reports Server (NTRS)

    Finckenor, Jeff; Corder, Gary; Owens, James; Meehan, Jim; Tidwell, Paul H.

    2005-01-01

    This paper outlines the best practices of the Vehicle Design Team for VIPA. The functions of the VIPA Vehicle Design (VVD) discipline team are to maintain the controlled reference geometry and provide linked, simplified geometry for each of the other discipline analyses. The core of the VVD work, and the approach for VVD s first task of controlling the reference geometry, involves systems engineering, top-down, layout-based CAD modeling within a Product Data Manager (PDM) development environment. The top- down approach allows for simple control of very large, integrated assemblies and greatly enhances the ability to generate trade configurations and reuse data. The second VVD task, model simplification for analysis, is handled within the managed environment through application of the master model concept. In this approach, there is a single controlling, or master, product definition dataset. Connected to this master model are reference datasets with live geometric and expression links. The referenced models can be for drawings, manufacturing, visualization, embedded analysis, or analysis simplification. A discussion of web based interaction, including visualization, between the design and other disciplines is included. Demonstrated examples are cited, including the Space Launch Initiative development cycle, the Saturn V systems integration and verification cycle, an Orbital Space Plane study, and NASA Exploration Office studies of Shuttle derived and clean sheet launch vehicles. The VIPA Team has brought an immense amount of detailed data to bear on program issues. A central piece of that success has been the Managed Development Environment and the VVD Team approach to modeling.

  15. Extending BPM Environments of Your Choice with Performance Related Decision Support

    NASA Astrophysics Data System (ADS)

    Fritzsche, Mathias; Picht, Michael; Gilani, Wasif; Spence, Ivor; Brown, John; Kilpatrick, Peter

    What-if Simulations have been identified as one solution for business performance related decision support. Such support is especially useful in cases where it can be automatically generated out of Business Process Management (BPM) Environments from the existing business process models and performance parameters monitored from the executed business process instances. Currently, some of the available BPM Environments offer basic-level performance prediction capabilities. However, these functionalities are normally too limited to be generally useful for performance related decision support at business process level. In this paper, an approach is presented which allows the non-intrusive integration of sophisticated tooling for what-if simulations, analytic performance prediction tools, process optimizations or a combination of such solutions into already existing BPM environments. The approach abstracts from process modelling techniques which enable automatic decision support spanning processes across numerous BPM Environments. For instance, this enables end-to-end decision support for composite processes modelled with the Business Process Modelling Notation (BPMN) on top of existing Enterprise Resource Planning (ERP) processes modelled with proprietary languages.

  16. Train integrity detection risk analysis based on PRISM

    NASA Astrophysics Data System (ADS)

    Wen, Yuan

    2018-04-01

    GNSS based Train Integrity Monitoring System (TIMS) is an effective and low-cost detection scheme for train integrity detection. However, as an external auxiliary system of CTCS, GNSS may be influenced by external environments, such as uncertainty of wireless communication channels, which may lead to the failure of communication and positioning. In order to guarantee the reliability and safety of train operation, a risk analysis method of train integrity detection based on PRISM is proposed in this article. First, we analyze the risk factors (in GNSS communication process and the on-board communication process) and model them. Then, we evaluate the performance of the model in PRISM based on the field data. Finally, we discuss how these risk factors influence the train integrity detection process.

  17. One-dimensional biomass fast pyrolysis model with reaction kinetics integrated in an Aspen Plus Biorefinery Process Model

    DOE PAGES

    Humbird, David; Trendewicz, Anna; Braun, Robert; ...

    2017-01-12

    A biomass fast pyrolysis reactor model with detailed reaction kinetics and one-dimensional fluid dynamics was implemented in an equation-oriented modeling environment (Aspen Custom Modeler). Portions of this work were detailed in previous publications; further modifications have been made here to improve stability and reduce execution time of the model to make it compatible for use in large process flowsheets. The detailed reactor model was integrated into a larger process simulation in Aspen Plus and was stable for different feedstocks over a range of reactor temperatures. Sample results are presented that indicate general agreement with experimental results, but with higher gasmore » losses caused by stripping of the bio-oil by the fluidizing gas in the simulated absorber/condenser. Lastly, this integrated modeling approach can be extended to other well-defined, predictive reactor models for fast pyrolysis, catalytic fast pyrolysis, as well as other processes.« less

  18. One-dimensional biomass fast pyrolysis model with reaction kinetics integrated in an Aspen Plus Biorefinery Process Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humbird, David; Trendewicz, Anna; Braun, Robert

    A biomass fast pyrolysis reactor model with detailed reaction kinetics and one-dimensional fluid dynamics was implemented in an equation-oriented modeling environment (Aspen Custom Modeler). Portions of this work were detailed in previous publications; further modifications have been made here to improve stability and reduce execution time of the model to make it compatible for use in large process flowsheets. The detailed reactor model was integrated into a larger process simulation in Aspen Plus and was stable for different feedstocks over a range of reactor temperatures. Sample results are presented that indicate general agreement with experimental results, but with higher gasmore » losses caused by stripping of the bio-oil by the fluidizing gas in the simulated absorber/condenser. Lastly, this integrated modeling approach can be extended to other well-defined, predictive reactor models for fast pyrolysis, catalytic fast pyrolysis, as well as other processes.« less

  19. Modelling Technology for Building Fire Scene with Virtual Geographic Environment

    NASA Astrophysics Data System (ADS)

    Song, Y.; Zhao, L.; Wei, M.; Zhang, H.; Liu, W.

    2017-09-01

    Building fire is a risky activity that can lead to disaster and massive destruction. The management and disposal of building fire has always attracted much interest from researchers. Integrated Virtual Geographic Environment (VGE) is a good choice for building fire safety management and emergency decisions, in which a more real and rich fire process can be computed and obtained dynamically, and the results of fire simulations and analyses can be much more accurate as well. To modelling building fire scene with VGE, the application requirements and modelling objective of building fire scene were analysed in this paper. Then, the four core elements of modelling building fire scene (the building space environment, the fire event, the indoor Fire Extinguishing System (FES) and the indoor crowd) were implemented, and the relationship between the elements was discussed also. Finally, with the theory and framework of VGE, the technology of building fire scene system with VGE was designed within the data environment, the model environment, the expression environment, and the collaborative environment as well. The functions and key techniques in each environment are also analysed, which may provide a reference for further development and other research on VGE.

  20. Advanced solar irradiances applied to satellite and ionospheric operational systems

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Schunk, Robert; Eccles, Vince; Bouwer, Dave

    Satellite and ionospheric operational systems require solar irradiances in a variety of time scales and spectral formats. We describe the development of a system using operational grade solar irradiances that are applied to empirical thermospheric density models and physics-based ionospheric models used by operational systems that require a space weather characterization. The SOLAR2000 (S2K) and SOLARFLARE (SFLR) models developed by Space Environment Technologies (SET) provide solar irradiances from the soft X-rays (XUV) through the Far Ultraviolet (FUV) spectrum. The irradiances are provided as integrated indices for the JB2006 empirical atmosphere density models and as line/band spectral irradiances for the physics-based Ionosphere Forecast Model (IFM) developed by the Space Environment Corporation (SEC). We describe the integration of these irradiances in historical, current epoch, and forecast modes through the Communication Alert and Prediction System (CAPS). CAPS provides real-time and forecast HF radio availability for global and regional users and global total electron content (TEC) conditions.

  1. Database integration in a multimedia-modeling environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorow, Kevin E.

    2002-09-02

    Integration of data from disparate remote sources has direct applicability to modeling, which can support Brownfield assessments. To accomplish this task, a data integration framework needs to be established. A key element in this framework is the metadata that creates the relationship between the pieces of information that are important in the multimedia modeling environment and the information that is stored in the remote data source. The design philosophy is to allow modelers and database owners to collaborate by defining this metadata in such a way that allows interaction between their components. The main parts of this framework include toolsmore » to facilitate metadata definition, database extraction plan creation, automated extraction plan execution / data retrieval, and a central clearing house for metadata and modeling / database resources. Cross-platform compatibility (using Java) and standard communications protocols (http / https) allow these parts to run in a wide variety of computing environments (Local Area Networks, Internet, etc.), and, therefore, this framework provides many benefits. Because of the specific data relationships described in the metadata, the amount of data that have to be transferred is kept to a minimum (only the data that fulfill a specific request are provided as opposed to transferring the complete contents of a data source). This allows for real-time data extraction from the actual source. Also, the framework sets up collaborative responsibilities such that the different types of participants have control over the areas in which they have domain knowledge-the modelers are responsible for defining the data relevant to their models, while the database owners are responsible for mapping the contents of the database using the metadata definitions. Finally, the data extraction mechanism allows for the ability to control access to the data and what data are made available.« less

  2. On-line Meteorology-Chemistry/Aerosols Modelling and Integration for Risk Assessment: Case Studies

    NASA Astrophysics Data System (ADS)

    Bostanbekov, Kairat; Mahura, Alexander; Nuterman, Roman; Nurseitov, Daniyar; Zakarin, Edige; Baklanov, Alexander

    2016-04-01

    On regional level, and especially in areas with potential diverse sources of industrial pollutants, the risk assessment of impact on environment and population is critically important. During normal operations, the risk is minimal. However, during accidental situations, the risk is increased due to releases of harmful pollutants into different environments such as water, soil, and atmosphere where it is following processes of continuous transformation and transport. In this study, the Enviro-HIRLAM (Environment High Resolution Limited Area Model) was adapted and employed for assessment of scenarios with accidental and continuous emissions of sulphur dioxide (SO2) for selected case studies during January of 2010. The following scenarios were considered: (i) control reference run; (ii) accidental release (due to short-term 1 day fire at oil storage facility) occurred at city of Atyrau (Kazakhstan) near the northern part of the Caspian Sea; and (iii) doubling of original continuous emissions from three locations of metallurgical enterprises on the Kola Peninsula (Russia). The implemented aerosol microphysics module M7 uses 5 types - sulphates, sea salt, dust, black and organic carbon; as well as distributed in 7 size modes. Removal processes of aerosols include gravitational settling and wet deposition. As the Enviro-HIRLAM model is the on-line integrated model, both meteorological and chemical processes are simultaneously modelled at each time step. The modelled spatio-temporal variations for meteorological and chemical patterns are analyzed for both European and Kazakhstan regions domains. The results of evaluation of sulphur dioxide concentration and deposition on main populated cities, selected regions, countries are presented employing GIS tools. As outcome, the results of Enviro-HIRLAM modelling for accidental release near the Caspian Sea are integrated into the RANDOM (Risk Assessment of Nature Detriment due to Oil spill Migration) system.

  3. Integrative platform based on the mechatronics model for educational technologies focused on competence

    NASA Astrophysics Data System (ADS)

    Vlaşin, I.; Greta, S.; Dache, L.; Mătieş, V.

    2016-08-01

    Mechatronics is a model of transdisciplinary integration, entirely functional, with remarkable results for mankind. The incredible progress that the global economy has taken in the last decades is based on this new approach, the integrative type, which is present at the foundation of mechatronics. This kind of integrative approach is necessary for building a quality education focused on competence. The requirements from the social and economic environment, the needs of the young people who prepare themselves for an active life and the offers of the education providers are still not too interconnected to offer a satisfying education. This is the reason why the efforts to balance the demand, the needs and the offer are essential to ensure a better integration of students into society. Using a transcultural perspective, we can achieve a constructive approach. The education providers, together with the socio-economic environment, establish a clear structure of competence in multiple domains and of the instruments which can assure it. The scientific demarche, in the spirit of this paper approach the, answers the natural questions from the educational process: „Why, How and What do I learn?”.

  4. EWB: The Environment WorkBench Version 4.0

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Environment WorkBench EWB is a desktop integrated analysis tool for studying a spacecraft's interactions with its environment. Over 100 environment and analysis models are integrated into the menu-based tool. EWB, which was developed for and under the guidance of the NASA Lewis Research Center, is built atop the Module Integrator and Rule-based Intelligent Analytic Database (MIRIAD) architecture. This allows every module in EWB to communicate information to other modules in a transparent manner from the user's point of view. It removes the tedious and error-prone steps of entering data by hand from one model to another. EWB runs under UNIX operating systems (SGI and SUN workstations) and under MS Windows (3.x, 95, and NT) operating systems. MIRIAD, the unique software that makes up the core of EWB, provides the flexibility to easily modify old models and incorporate new ones as user needs change. The MIRIAD approach separates the computer assisted engineering (CAE) tool into three distinct units: 1) A modern graphical user interface to present information; 2) A data dictionary interpreter to coordinate analysis; and 3) A database for storing system designs and analysis results. The user interface is externally programmable through ASCII data files, which contain the location and type of information to be displayed on the screen. This approach provides great flexibility in tailoring the look and feel of the code to individual user needs. MIRIADbased applications, such as EWB, have utilities for viewing tabulated parametric study data, XY line plots, contour plots, and three-dimensional plots of contour data and system geometries. In addition, a Monte Carlo facility is provided to allow statistical assessments (including uncertainties) in models or data.

  5. Development of Mechanistic Reasoning and Multilevel Explanations of Ecology in Third Grade Using Agent-Based Models

    ERIC Educational Resources Information Center

    Dickes, Amanda Catherine; Sengupta, Pratim; Farris, Amy Voss; Satabdi, Basu

    2016-01-01

    In this paper, we present a third-grade ecology learning environment that integrates two forms of modeling--embodied modeling and agent-based modeling (ABMs)--through the generation of mathematical representations that are common to both forms of modeling. The term "agent" in the context of ABMs indicates individual computational objects…

  6. Virtual Tissues and Developmental Systems Biology (book chapter)

    EPA Science Inventory

    Virtual tissue (VT) models provide an in silico environment to simulate cross-scale properties in specific tissues or organs based on knowledge of the underlying biological networks. These integrative models capture the fundamental interactions in a biological system and enable ...

  7. An Integrated Modeling Suite for Simulating the Core Induction and Kinetic Effects in Mercury's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Jia, X.; Slavin, J.; Chen, Y.; Poh, G.; Toth, G.; Gombosi, T.

    2018-05-01

    We present results from state-of-the-art global models of Mercury's space environment capable of self-consistently simulating the induction effect at the core and resolving kinetic physics important for magnetic reconnection.

  8. Modeling Environment for Total Risk-1A

    EPA Science Inventory

    MENTOR-1A uses an integrated, mechanistically consistent source-to-dose modeling framework to quantify inhalation exposure and dose for individuals and/or populations due to co-occurring air pollutants. It uses the "One Atmosphere" concept to characterize simultaneous exposures t...

  9. MULTIMEDIA ENVIRONMENTAL DISTRIBUTION OF TOXICS (MEND-TOX): PART I, HYBRID COMPARTMENTAL-SPATIAL MODELING FRAMEWORK

    EPA Science Inventory

    An integrated hybrid spatial-compartmental modeling approach is presented for analyzing the dynamic distribution of chemicals in the multimedia environment. Information obtained from such analysis, which includes temporal chemical concentration profiles in various media, mass ...

  10. CCROP-Simulation model for container-grown nursery plant production.

    USDA-ARS?s Scientific Manuscript database

    Container Crop Resource Optimization Program (CCROP) is an integrative model which simulates the growth and water and nutrient requirements of a woody ornamental shrub grown in small (2.8–11.4 L) containers in a field environment with overhead sprinkler irrigation. The model was developed for produc...

  11. Willingness to Communicate in English: A Model in the Chinese EFL Classroom Context

    ERIC Educational Resources Information Center

    Peng, Jian-E; Woodrow, Lindy

    2010-01-01

    This study involves a large-scale investigation of willingness to communicate (WTC) in Chinese English-as-a-foreign-language (EFL) classrooms. A hypothesized model integrating WTC in English, communication confidence, motivation, learner beliefs, and classroom environment was tested using structural equation modeling. Validation of the…

  12. Whole systems shared governance: a model for the integrated health system.

    PubMed

    Evan, K; Aubry, K; Hawkins, M; Curley, T A; Porter-O'Grady, T

    1995-05-01

    The healthcare system is under renovation and renewal. In the process, roles and structures are shifting to support a subscriber-based continuum of care. Alliances and partnerships are emerging as the models of integration for the future. But how do we structure to support these emerging integrated partnerships? As the nurse executive expands the role and assumes increasing responsibility for creating new frameworks for care, a structure that sustains the point-of-care innovations and interdisciplinary relationships must be built. Whole systems models of organization, such as shared governance, are expanding as demand grows for a sustainable structure for horizontal and partnered systems of healthcare delivery. The executive will have to apply these newer frameworks to the delivery of care to provide adequate support for the clinically integrated environment.

  13. Enhancing Classroom Performance: A Technology Design to Support the Integration of Collaborative Learning and Participative Teams

    ERIC Educational Resources Information Center

    Marsh, Michael T.; Taylor, Ronald; Holoviak, Stephen J.

    2008-01-01

    Integral components of today's successful business models frequently include information technology, effective collaboration, and participative teamwork among employees. It is in the best interest of students for educators to provide classrooms that reflect a profitable practitioner's environment. Students studying for careers in business should…

  14. Integrated Approach to User Account Management

    NASA Technical Reports Server (NTRS)

    Kesselman, Glenn; Smith, William

    2007-01-01

    IT environments consist of both Windows and other platforms. Providing user account management for this model has become increasingly diffi cult. If Microsoft#s Active Directory could be enhanced to extend a W indows identity for authentication services for Unix, Linux, Java and Macintosh systems, then an integrated approach to user account manag ement could be realized.

  15. Boxes with Fires: Wisely Integrating Learning Technologies into the Art Classroom

    ERIC Educational Resources Information Center

    Gregory, Diane C.

    2009-01-01

    By integrating and infusing computer learning technologies wisely into student-centered or social constructivist art learning environments, art educators can improve student learning and at the same time provide a creative, substantive model for how schools can and should be reformed. By doing this, art educators have an opportunity to demonstrate…

  16. An integrated conceptual framework for long-term social-ecological research

    Treesearch

    S.L. Collins; S.R. Carpenter; S.M. Swinton; D.E. Orenstein; D.L. Childers; T.L. Gragson; N.B. Grimm; J.M. Grove; S.L. Harlan; J.P. Kaye; A.K. Knapp; G.P. Kofinas; J.J. Magnuson; W.H. McDowell; J.M. Melack; L.A. Ogden; G.P. Robertson; M.D. Smith; A.C. Whitmer

    2010-01-01

    The global reach of human activities affects all natural ecosystems, so that the environment is best viewed as a social-ecological system. Consequently, a more integrative approach to environmental science, one that bridges the biophysical and social domains, is sorely needed. Although models and frameworks for social-ecological systems exist, few are explicitly...

  17. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    -the-loop" (HIL) to connect physical devices to software models, EdgePower is drawing on NREL's are putting their controller into a synthetic environment that is called 'controller in-the-loop controller-in-the-loop platform allows us to observe the dynamics of these buildings as they implement the

  18. Creating a Network Model for the Integration of a Dynamic and Static Supervisory Control and Data Acquisition (SCADA) Test Environment

    DTIC Science & Technology

    2011-03-01

    they can continue to leverage these capabilities (building Smart Grid infrastructure and providing Internet connectivity to every home ) while ensuring...21  Figure 9. Smart Grid Interoperability .............................................................................. 22  Figure 10. Smart ...Grid Integration .................................................................................... 24  Figure 11. National Smart Grid Initiatives

  19. Integrating Neuroscience Knowledge into Social Work Education: A Case-Based Approach

    ERIC Educational Resources Information Center

    Egan, Marcia; Neely-Barnes, Susan L.; Combs-Orme, Terri

    2011-01-01

    New knowledge from the rapidly growing field of neuroscience has important implications for our understanding of human behavior in the social environment, yet little of this knowledge has made its way into social work education. This article presents a model for integrating neuroscience into instruction on human development, the bio psychosocial…

  20. Owned vertical integration and health care: promise and performance.

    PubMed

    Walston, S L; Kimberly, J R; Burns, L R

    1996-01-01

    This article examines the alleged benefits and actual outcomes of vertical integration in the health sector and compares them to those observed in other sectors of the economy. This article concludes that the organizational models on which these arrangements are based may be poorly adapted to the current environment in health care.

  1. Modelling Student Satisfaction and Motivation in the Integrated Educational Environment: An Empirical study

    ERIC Educational Resources Information Center

    Stukalina, Yulia

    2016-01-01

    Purpose: The purpose of this paper is to explore some issues related to enhancing the quality of educational services provided by a university in the agenda of integrating quality assurance activities and strategic management procedures. Design/methodology/approach: Employing multiple regression analysis the author has examined some factors that…

  2. Urban-Water Harmony model to evaluate the urban water management.

    PubMed

    Ding, Yifan; Tang, Deshan; Wei, Yuhang; Yin, Sun

    2014-01-01

    Water resources in many urban areas are under enormous stress due to large-scale urban expansion and population explosion. The decision-makers are often faced with the dilemma of either maintaining high economic growth or protecting water resources and the environment. Simple criteria of water supply and drainage do not reflect the requirement of integrated urban water management. The Urban-Water Harmony (UWH) model is based on the concept of harmony and offers a more integrated approach to urban water management. This model calculates four dimensions, namely urban development, urban water services, water-society coordination, and water environment coordination. And the Analytic Hierarchy Process has been used to determine the indices weights. We applied the UWH model to Beijing, China for an 11-year assessment. Our findings show that, despite the severe stress inherent in rapid development and water shortage, the urban water relationship of Beijing is generally evolving in a positive way. The social-economic factors such as the water recycling technologies contribute a lot to this change. The UWH evaluation can provide a reasonable analysis approach to combine various urban and water indices to produce an integrated and comparable evaluation index. This, in turn, enables more effective water management in decision-making processes.

  3. Do early sensory cortices integrate cross-modal information?

    PubMed

    Kayser, Christoph; Logothetis, Nikos K

    2007-09-01

    Our different senses provide complementary evidence about the environment and their interaction often aids behavioral performance or alters the quality of the sensory percept. A traditional view defers the merging of sensory information to higher association cortices, and posits that a large part of the brain can be reduced into a collection of unisensory systems that can be studied in isolation. Recent studies, however, challenge this view and suggest that cross-modal interactions can already occur in areas hitherto regarded as unisensory. We review results from functional imaging and electrophysiology exemplifying cross-modal interactions that occur early during the evoked response, and at the earliest stages of sensory cortical processing. Although anatomical studies revealed several potential origins of these cross-modal influences, there is yet no clear relation between particular functional observations and specific anatomical connections. In addition, our view on sensory integration at the neuronal level is coined by many studies on subcortical model systems of sensory integration; yet, the patterns of cross-modal interaction in cortex deviate from these model systems in several ways. Consequently, future studies on cortical sensory integration need to leave the descriptive level and need to incorporate cross-modal influences into models of the organization of sensory processing. Only then will we be able to determine whether early cross-modal interactions truly merit the label sensory integration, and how they increase a sensory system's ability to scrutinize its environment and finally aid behavior.

  4. Real-Time Simulation of Ares I Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick; Matras, Alex; Wilson, Heath; Alday, Nathan; Walker, David; Betts, Kevin; Hughes, Ryan; Turbe, Michael

    2009-01-01

    The Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) has been developed for use by the Ares I launch vehicle System Integration Laboratory (SIL) at the Marshall Space Flight Center (MSFC). The primary purpose of the Ares SIL is to test the vehicle avionics hardware and software in a hardware-in-the-loop (HWIL) environment to certify that the integrated system is prepared for flight. ARTEMIS has been designed to be the real-time software backbone to stimulate all required Ares components through high-fidelity simulation. ARTEMIS has been designed to take full advantage of the advances in underlying computational power now available to support HWIL testing. A modular real-time design relying on a fully distributed computing architecture has been achieved. Two fundamental requirements drove ARTEMIS to pursue the use of high-fidelity simulation models in a real-time environment. First, ARTEMIS must be used to test a man-rated integrated avionics hardware and software system, thus requiring a wide variety of nominal and off-nominal simulation capabilities to certify system robustness. The second driving requirement - derived from a nationwide review of current state-of-the-art HWIL facilities - was that preserving digital model fidelity significantly reduced overall vehicle lifecycle cost by reducing testing time for certification runs and increasing flight tempo through an expanded operational envelope. These two driving requirements necessitated the use of high-fidelity models throughout the ARTEMIS simulation. The nature of the Ares mission profile imposed a variety of additional requirements on the ARTEMIS simulation. The Ares I vehicle is composed of multiple elements, including the First Stage Solid Rocket Booster (SRB), the Upper Stage powered by the J- 2X engine, the Orion Crew Exploration Vehicle (CEV) which houses the crew, the Launch Abort System (LAS), and various secondary elements that separate from the vehicle. At launch, the integrated vehicle stack is composed of these stages, and throughout the mission, various elements separate from the integrated stack and tumble back towards the earth. ARTEMIS must be capable of simulating the integrated stack through the flight as well as propagating each individual element after separation. In addition, abort sequences can lead to other unique configurations of the integrated stack as the timing and sequence of the stage separations are altered.

  5. PHYLOGEOrec: A QGIS plugin for spatial phylogeographic reconstruction from phylogenetic tree and geographical information data

    NASA Astrophysics Data System (ADS)

    Nashrulloh, Maulana Malik; Kurniawan, Nia; Rahardi, Brian

    2017-11-01

    The increasing availability of genetic sequence data associated with explicit geographic and environment (including biotic and abiotic components) information offers new opportunities to study the processes that shape biodiversity and its patterns. Developing phylogeography reconstruction, by integrating phylogenetic and biogeographic knowledge, provides richer and deeper visualization and information on diversification events than ever before. Geographical information systems such as QGIS provide an environment for spatial modeling, analysis, and dissemination by which phylogenetic models can be explicitly linked with their associated spatial data, and subsequently, they will be integrated with other related georeferenced datasets describing the biotic and abiotic environment. We are introducing PHYLOGEOrec, a QGIS plugin for building spatial phylogeographic reconstructions constructed from phylogenetic tree and geographical information data based on QGIS2threejs. By using PHYLOGEOrec, researchers can integrate existing phylogeny and geographical information data, resulting in three-dimensional geographic visualizations of phylogenetic trees in the Keyhole Markup Language (KML) format. Such formats can be overlaid on a map using QGIS and finally, spatially viewed in QGIS by means of a QGIS2threejs engine for further analysis. KML can also be viewed in reputable geobrowsers with KML-support (i.e., Google Earth).

  6. Beyond these walls: Can psychosocial clubhouses promote the social integration of adults with serious mental illness in the community?

    PubMed

    Gumber, Shinakee; Stein, Catherine H

    2018-03-01

    The study examined factors associated with community integration experiences of adults with serious mental illness who were members of psychosocial rehabilitation clubhouses in New York City. Ninety-two clubhouse members completed an online survey. The study examined relative contribution of adults' reports of individual factors (self-reported psychiatric symptoms, self-esteem), community supports (self-reported employment status and perceived family support), and the clubhouse environment (self-reported time spent in the clubhouse, clubhouse supportiveness, and practical orientation) in accounting for variation in members' reports of social integration within the clubhouse and within the larger community. Hierarchical linear regression results suggest a differential pattern of variables associated with participants' experience of social integration within the clubhouse versus outside the clubhouse with the larger non-mental-health consumers. Adults' reports of more time spent in the clubhouse and perceptions of clubhouse environment as having a more practical orientation were associated with adults' reports of greater social integration within the clubhouse. In contrast, greater self-esteem and being independently employed were associated with greater social integration outside the clubhouse. Perceived family support was associated with higher levels of social integration both within and outside the clubhouse setting. Conclusion and Implication for Practice: Greater social integration of clubhouse members both in and outside the clubhouse environment is essential in understanding community integration. Recommendations for the clubhouse model to improve community integration experiences of its members are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. An Integrated Approach for Urban Earthquake Vulnerability Analyses

    NASA Astrophysics Data System (ADS)

    Düzgün, H. S.; Yücemen, M. S.; Kalaycioglu, H. S.

    2009-04-01

    The earthquake risk for an urban area has increased over the years due to the increasing complexities in urban environments. The main reasons are the location of major cities in hazard prone areas, growth in urbanization and population and rising wealth measures. In recent years physical examples of these factors are observed through the growing costs of major disasters in urban areas which have stimulated a demand for in-depth evaluation of possible strategies to manage the large scale damaging effects of earthquakes. Understanding and formulation of urban earthquake risk requires consideration of a wide range of risk aspects, which can be handled by developing an integrated approach. In such an integrated approach, an interdisciplinary view should be incorporated into the risk assessment. Risk assessment for an urban area requires prediction of vulnerabilities related to elements at risk in the urban area and integration of individual vulnerability assessments. However, due to complex nature of an urban environment, estimating vulnerabilities and integrating them necessities development of integrated approaches in which vulnerabilities of social, economical, structural (building stock and infrastructure), cultural and historical heritage are estimated for a given urban area over a given time period. In this study an integrated urban earthquake vulnerability assessment framework, which considers vulnerability of urban environment in a holistic manner and performs the vulnerability assessment for the smallest administrative unit, namely at neighborhood scale, is proposed. The main motivation behind this approach is the inability to implement existing vulnerability assessment methodologies for countries like Turkey, where the required data are usually missing or inadequate and decision makers seek for prioritization of their limited resources in risk reduction in the administrative districts from which they are responsible. The methodology integrates socio-economical, structural, coastal, ground condition, organizational vulnerabilities, as well as accessibility to critical services within the framework. The proposed framework has the following eight components: Seismic hazard analysis, soil response analysis, tsunami inundation analysis, structural vulnerability analysis, socio-economic vulnerability analysis, accessibility to critical services, GIS-based integrated vulnerability assessment, and visualization of vulnerabilities in 3D virtual city model The integrated model for various vulnerabilities obtained for the urban area is developed in GIS environment by using individual vulnerability assessments for considered elements at risk and serve for establishing the backbone of the spatial decision support system. The stages followed in the model are: Determination of a common mapping unit for each aspect of urban earthquake vulnerability, formation of a geo-database for the vulnerabilities, evaluation of urban vulnerability based on multi attribute utility theory with various weighting algorithms, mapping of the evaluated integrated earthquake risk in geographic information systems (GIS) in the neighborhood scale. The framework is also applicable to larger geographical mapping scales, for example, the building scale. When illustrating the results in building scale, 3-D visualizations with remote sensing data is used so that decision-makers can easily interpret the outputs. The proposed vulnerability assessment framework is flexible and can easily be applied to urban environments at various geographical scales with different mapping units. The obtained total vulnerability maps for the urban area provide a baseline for the development of risk reduction strategies for the decision makers. Moreover, as several aspects of elements at risk for an urban area is considered through vulnerability analyses, effect on changes in vulnerability conditions on the total can easily be determined. The developed approach also enables decision makers to monitor temporal and spatial changes in the urban environment due to implementation of risk reduction strategies.

  8. Improving World Agricultural Supply and Demand Estimates by Integrating NASA Remote Sensing Soil Moisture Data into USDA World Agricultural Outlook Board Decision Making Environment

    NASA Astrophysics Data System (ADS)

    Teng, W. L.; de Jeu, R. A.; Doraiswamy, P. C.; Kempler, S. J.; Shannon, H. D.

    2009-12-01

    A primary goal of the U.S. Department of Agriculture (USDA) is to expand markets for U.S. agricultural products and support global economic development. The USDA World Agricultural Outlook Board (WAOB) supports this goal by developing monthly World Agricultural Supply and Demand Estimates (WASDE) for the U.S. and major foreign producing countries. Because weather has a significant impact on crop progress, conditions, and production, WAOB prepares frequent agricultural weather assessments, in a GIS-based, Global Agricultural Decision Support Environment (GLADSE). The main objective of this project, thus, is to improve WAOB's estimates by integrating NASA remote sensing soil moisture observations and research results into GLADSE. Soil moisture is a primary data gap at WAOB. Soil moisture data, generated by the Land Parameter Retrieval Model (LPRM, developed by NASA GSFC and Vrije Universiteit Amsterdam) and customized to WAOB's requirements, will be directly integrated into GLADSE, as well as indirectly by first being integrated into USDA Agricultural Research Service (ARS)'s Environmental Policy Integrated Climate (EPIC) crop model. The LPRM-enhanced EPIC will be validated using three major agricultural regions important to WAOB and then integrated into GLADSE. Project benchmarking will be based on retrospective analyses of WAOB's analog year comparisons. The latter are between a given year and historical years with similar weather patterns. WAOB is the focal point for economic intelligence within the USDA. Thus, improving WAOB's agricultural estimates by integrating NASA satellite observations and model outputs will visibly demonstrate the value of NASA resources and maximize the societal benefits of NASA investments.

  9. Space Shuttle Propulsion Systems Plume Modeling and Simulation for the Lift-Off Computational Fluid Dynamics Model

    NASA Technical Reports Server (NTRS)

    Strutzenberg, L. L.; Dougherty, N. S.; Liever, P. A.; West, J. S.; Smith, S. D.

    2007-01-01

    This paper details advances being made in the development of Reynolds-Averaged Navier-Stokes numerical simulation tools, models, and methods for the integrated Space Shuttle Vehicle at launch. The conceptual model and modeling approach described includes the development of multiple computational models to appropriately analyze the potential debris transport for critical debris sources at Lift-Off. The conceptual model described herein involves the integration of propulsion analysis for the nozzle/plume flow with the overall 3D vehicle flowfield at Lift-Off. Debris Transport Analyses are being performed using the Shuttle Lift-Off models to assess the risk to the vehicle from Lift-Off debris and appropriately prioritized mitigation of potential debris sources to continue to reduce vehicle risk. These integrated simulations are being used to evaluate plume-induced debris environments where the multi-plume interactions with the launch facility can potentially accelerate debris particles toward the vehicle.

  10. Integrated Modelling in CRUCIAL Science Education

    NASA Astrophysics Data System (ADS)

    Mahura, Alexander; Nuterman, Roman; Mukhamedzhanova, Elena; Nerobelov, Georgiy; Sedeeva, Margarita; Suhodskiy, Alexander; Mostamandy, Suleiman; Smyshlyaev, Sergey

    2017-04-01

    The NordForsk CRUCIAL project (2016-2017) "Critical steps in understanding land surface - atmosphere interactions: from improved knowledge to socioeconomic solutions" as a part of the Pan-Eurasian EXperiment (PEEX; https://www.atm.helsinki.fi/peex) programme activities, is looking for a deeper collaboration between Nordic-Russian science communities. In particular, following collaboration between Danish and Russian partners, several topics were selected for joint research and are focused on evaluation of: (1) urbanization processes impact on changes in urban weather and climate on urban-subregional-regional scales and at contribution to assessment studies for population and environment; (2) effects of various feedback mechanisms on aerosol and cloud formation and radiative forcing on urban-regional scales for better predicting extreme weather events and at contribution to early warning systems, (3) environmental contamination from continues emissions and industrial accidents for better assessment and decision making for sustainable social and economic development, and (4) climatology of atmospheric boundary layer in northern latitudes to improve understanding of processes, revising parameterizations, and better weather forecasting. These research topics are realized employing the online integrated Enviro-HIRLAM (Environment - High Resolution Limited Area Model) model within students' research projects: (1) "Online integrated high-resolution modelling of Saint-Petersburg metropolitan area influence on weather and air pollution forecasting"; (2) "Modeling of aerosol impact on regional-urban scales: case study of Saint-Petersburg metropolitan area"; (3) "Regional modeling and GIS evaluation of environmental pollution from Kola Peninsula sources"; and (4) "Climatology of the High-Latitude Planetary Boundary Layer". The students' projects achieved results and planned young scientists research training on online integrated modelling (Jun 2017) will be presented and discussed.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Sandia National Laboratories has developed a state-of-the-art augmented reality training system for close-quarters combat (CQB). This system uses a wearable augmented reality system to place the user in a real environment while engaging enemy combatants in virtual space (Boston Dynamics DI-Guy). Umbra modeling and simulation environment is used to integrate and control the AR system.

  12. Teaching Global Change in Local Places: The HERO Research Experiences for Undergraduates Program

    ERIC Educational Resources Information Center

    Yarnal, Brent; Neff, Rob

    2007-01-01

    The Human-Environment Research Observatory (HERO) Research Experience for Undergraduates (REU) program aimed to develop the next generation of researchers working on place-based human-environment problems. The program followed a cooperative learning model to foster an integrated approach to geographic research and to build collaborative research…

  13. Integrating Dynamic Mathematics Software into Cooperative Learning Environments in Mathematics

    ERIC Educational Resources Information Center

    Zengin, Yilmaz; Tatar, Enver

    2017-01-01

    The aim of this study was to evaluate the implementation of the cooperative learning model supported with dynamic mathematics software (DMS), that is a reflection of constructivist learning theory in the classroom environment, in the teaching of mathematics. For this purpose, a workshop was conducted with the volunteer teachers on the…

  14. A Design Model: The Autism Spectrum Disorder Classroom Design Kit

    ERIC Educational Resources Information Center

    McAllister, Keith; Maguire, Barry

    2012-01-01

    Architects and designers have a responsibility to provide an inclusive built environment. However, for those with a diagnosis of autism spectrum disorder (ASD), the built environment can be a frightening and confusing place, difficult to negotiate and tolerate. The challenge of integrating more fully into society is denied by an alienating built…

  15. A shared-world conceptual model for integrating space station life sciences telescience operations

    NASA Technical Reports Server (NTRS)

    Johnson, Vicki; Bosley, John

    1988-01-01

    Mental models of the Space Station and its ancillary facilities will be employed by users of the Space Station as they draw upon past experiences, perform tasks, and collectively plan for future activities. The operational environment of the Space Station will incorporate telescience, a new set of operational modes. To investigate properties of the operational environment, distributed users, and the mental models they employ to manipulate resources while conducting telescience, an integrating shared-world conceptual model of Space Station telescience is proposed. The model comprises distributed users and resources (active elements); agents who mediate interactions among these elements on the basis of intelligent processing of shared information; and telescience protocols which structure the interactions of agents as they engage in cooperative, responsive interactions on behalf of users and resources distributed in space and time. Examples from the life sciences are used to instantiate and refine the model's principles. Implications for transaction management and autonomy are discussed. Experiments employing the model are described which the authors intend to conduct using the Space Station Life Sciences Telescience Testbed currently under development at Ames Research Center.

  16. JIMM: the next step for mission-level models

    NASA Astrophysics Data System (ADS)

    Gump, Jamieson; Kurker, Robert G.; Nalepka, Joseph P.

    2001-09-01

    The (Simulation Based Acquisition) SBA process is one in which the planning, design, and test of a weapon system or other product is done through the more effective use of modeling and simulation, information technology, and process improvement. This process results in a product that is produced faster, cheaper, and more reliably than its predecessors. Because the SBA process requires realistic and detailed simulation conditions, it was necessary to develop a simulation tool that would provide a simulation environment acceptable for doing SBA analysis. The Joint Integrated Mission Model (JIMM) was created to help define and meet the analysis, test and evaluation, and training requirements of a Department of Defense program utilizing SBA. Through its generic nature of representing simulation entities, its data analysis capability, and its robust configuration management process, JIMM can be used to support a wide range of simulation applications as both a constructive and a virtual simulation tool. JIMM is a Mission Level Model (MLM). A MLM is capable of evaluating the effectiveness and survivability of a composite force of air and space systems executing operational objectives in a specific scenario against an integrated air and space defense system. Because MLMs are useful for assessing a system's performance in a realistic, integrated, threat environment, they are key to implementing the SBA process. JIMM is a merger of the capabilities of one legacy model, the Suppressor MLM, into another, the Simulated Warfare Environment Generator (SWEG) MLM. By creating a more capable MLM, JIMM will not only be a tool to support the SBA initiative, but could also provide the framework for the next generation of MLMs.

  17. Special Operations Forces and Conventional Forces: Integration, Interoperability, and Interdependence

    DTIC Science & Technology

    2016-12-07

    Phasing Model8 WESBROCK, HARNED, AND PLOUS 88 | FEATURES PRISM 6, no. 3 views on how to design, plan, and execute operat ions and campaigns. The...population-centric” operational environment. SOF views campaign design dif- ferently from the six-phase model in joint doc- trine depicted above.9...U.S. interests. This difference between SOF and CF views of cam- paigning can hamper integration from the start of an operation if components of the

  18. Jupiter Environment Tool

    NASA Technical Reports Server (NTRS)

    Sturm, Erick J.; Monahue, Kenneth M.; Biehl, James P.; Kokorowski, Michael; Ngalande, Cedrick,; Boedeker, Jordan

    2012-01-01

    The Jupiter Environment Tool (JET) is a custom UI plug-in for STK that provides an interface to Jupiter environment models for visualization and analysis. Users can visualize the different magnetic field models of Jupiter through various rendering methods, which are fully integrated within STK s 3D Window. This allows users to take snapshots and make animations of their scenarios with magnetic field visualizations. Analytical data can be accessed in the form of custom vectors. Given these custom vectors, users have access to magnetic field data in custom reports, graphs, access constraints, coverage analysis, and anywhere else vectors are used within STK.

  19. Integrated Multimedia Modeling System Response to Regional Land Management Change

    EPA Science Inventory

    A multi-media system of nitrogen and co-pollutant models describing critical physical and chemical processes that cascade synergistically and competitively through the environment, the economy and society has been developed at the USEPA Office of research and development. It is ...

  20. Experimenting with C2 Applications and Federated Infrastructures for Integrated Full-Spectrum Operational Environments in Support of Collaborative Planning and Interoperable Execution

    DTIC Science & Technology

    2004-06-01

    Situation Understanding) Common Operational Pictures Planning & Decision Support Capabilities Message & Order Processing Common Operational...Pictures Planning & Decision Support Capabilities Message & Order Processing Common Languages & Data Models Modeling & Simulation Domain

  1. The ST environment: Expected charged particle radiation levels

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1978-01-01

    The external (surface incident) charged particle radiation, predicted for the ST satellite at the three different mission altitudes, was determined in two ways: (1) by orbital flux-integration and (2) by geographical instantaneous flux-mapping. The latest standard models of the environment were used in this effort. Magnetic field definitions for three nominal circular trajectories and for the geographic mapping positions were obtained from a current field model. Spatial and temporal variations or conditions affecting the static environment models were considered and accounted for, wherever possible. Limited shielding and dose evaluations were performed for a simple geometry. Results, given in tabular and graphical form, are analyzed, explained, and discussed. Conclusions are included.

  2. Integrated enterprise management: a look at the functions, the enterprise, and the environment--can you see the difference?

    PubMed

    Lehmann, D M

    1998-05-01

    The performance of an organization is paced by its use of resources, including its ability to acquire, access, and use knowledge. A high-performance organization, more than likely, has structured its resources around process linkages and is characterized by a horizontal organization chart, teams and teamwork, empowerment, and operational excellence. Organizational researchers hypothesize that performance improves with fuzzy internal boundaries, cross-functional participation, and goals anchored in the interests of customers and other external stakeholders. This article looks at the competitive need for more integration of resources and greater sharing of knowledge, the integrated nature of work within emerging types of organizations, how expanded views can improve the marketplace centering of processes and individuals, and how combining a model of integration and individual work challenges thinking and actions in the new environment.

  3. Computational Environments and Analysis methods available on the NCI High Performance Computing (HPC) and High Performance Data (HPD) Platform

    NASA Astrophysics Data System (ADS)

    Evans, B. J. K.; Foster, C.; Minchin, S. A.; Pugh, T.; Lewis, A.; Wyborn, L. A.; Evans, B. J.; Uhlherr, A.

    2014-12-01

    The National Computational Infrastructure (NCI) has established a powerful in-situ computational environment to enable both high performance computing and data-intensive science across a wide spectrum of national environmental data collections - in particular climate, observational data and geoscientific assets. This paper examines 1) the computational environments that supports the modelling and data processing pipelines, 2) the analysis environments and methods to support data analysis, and 3) the progress in addressing harmonisation of the underlying data collections for future transdisciplinary research that enable accurate climate projections. NCI makes available 10+ PB major data collections from both the government and research sectors based on six themes: 1) weather, climate, and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology, and 6) astronomy, social and biosciences. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. The data is largely sourced from NCI's partners (which include the custodians of many of the national scientific records), major research communities, and collaborating overseas organisations. The data is accessible within an integrated HPC-HPD environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large scale and high-bandwidth Lustre filesystems. This computational environment supports a catalogue of integrated reusable software and workflows from earth system and ecosystem modelling, weather research, satellite and other observed data processing and analysis. To enable transdisciplinary research on this scale, data needs to be harmonised so that researchers can readily apply techniques and software across the corpus of data available and not be constrained to work within artificial disciplinary boundaries. Future challenges will involve the further integration and analysis of this data across the social sciences to facilitate the impacts across the societal domain, including timely analysis to more accurately predict and forecast future climate and environmental state.

  4. Design and implementation of the GLIF3 guideline execution engine.

    PubMed

    Wang, Dongwen; Peleg, Mor; Tu, Samson W; Boxwala, Aziz A; Ogunyemi, Omolola; Zeng, Qing; Greenes, Robert A; Patel, Vimla L; Shortliffe, Edward H

    2004-10-01

    We have developed the GLIF3 Guideline Execution Engine (GLEE) as a tool for executing guidelines encoded in the GLIF3 format. In addition to serving as an interface to the GLIF3 guideline representation model to support the specified functions, GLEE provides defined interfaces to electronic medical records (EMRs) and other clinical applications to facilitate its integration with the clinical information system at a local institution. The execution model of GLEE takes the "system suggests, user controls" approach. A tracing system is used to record an individual patient's state when a guideline is applied to that patient. GLEE can also support an event-driven execution model once it is linked to the clinical event monitor in a local environment. Evaluation has shown that GLEE can be used effectively for proper execution of guidelines encoded in the GLIF3 format. When using it to execute each guideline in the evaluation, GLEE's performance duplicated that of the reference systems implementing the same guideline but taking different approaches. The execution flexibility and generality provided by GLEE, and its integration with a local environment, need to be further evaluated in clinical settings. Integration of GLEE with a specific event-monitoring and order-entry environment is the next step of our work to demonstrate its use for clinical decision support. Potential uses of GLEE also include quality assurance, guideline development, and medical education.

  5. Environmental fate and exposure models: advances and challenges in 21st century chemical risk assessment.

    PubMed

    Di Guardo, Antonio; Gouin, Todd; MacLeod, Matthew; Scheringer, Martin

    2018-01-24

    Environmental fate and exposure models are a powerful means to integrate information on chemicals, their partitioning and degradation behaviour, the environmental scenario and the emissions in order to compile a picture of chemical distribution and fluxes in the multimedia environment. A 1995 pioneering book, resulting from a series of workshops among model developers and users, reported the main advantages and identified needs for research in the field of multimedia fate models. Considerable efforts were devoted to their improvement in the past 25 years and many aspects were refined; notably the inclusion of nanomaterials among the modelled substances, the development of models at different spatial and temporal scales, the estimation of chemical properties and emission data, the incorporation of additional environmental media and processes, the integration of sensitivity and uncertainty analysis in the simulations. However, some challenging issues remain and require research efforts and attention: the need of methods to estimate partition coefficients for polar and ionizable chemical in the environment, a better description of bioavailability in different environments as well as the requirement of injecting more ecological realism in exposure predictions to account for the diversity of ecosystem structures and functions in risk assessment. Finally, to transfer new scientific developments into the realm of regulatory risk assessment, we propose the formation of expert groups that compare, discuss and recommend model modifications and updates and help develop practical tools for risk assessment.

  6. Digital Earth system based river basin data integration

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Li, Wanqing; Lin, Chao

    2014-12-01

    Digital Earth is an integrated approach to build scientific infrastructure. The Digital Earth systems provide a three-dimensional visualization and integration platform for river basin data which include the management data, in situ observation data, remote sensing observation data and model output data. This paper studies the Digital Earth system based river basin data integration technology. Firstly, the construction of the Digital Earth based three-dimensional river basin data integration environment is discussed. Then the river basin management data integration technology is presented which is realized by general database access interface, web service and ActiveX control. Thirdly, the in situ data stored in database tables as records integration is realized with three-dimensional model of the corresponding observation apparatus display in the Digital Earth system by a same ID code. In the next two parts, the remote sensing data and the model output data integration technologies are discussed in detail. The application in the Digital Zhang River basin System of China shows that the method can effectively improve the using efficiency and visualization effect of the data.

  7. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Jarek

    2005-08-29

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input,more » which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs documents. The updates have no impact on the model developed in this report.« less

  8. Modeling and control for closed environment plant production systems

    NASA Technical Reports Server (NTRS)

    Fleisher, David H.; Ting, K. C.; Janes, H. W. (Principal Investigator)

    2002-01-01

    A computer program was developed to study multiple crop production and control in controlled environment plant production systems. The program simulates crop growth and development under nominal and off-nominal environments. Time-series crop models for wheat (Triticum aestivum), soybean (Glycine max), and white potato (Solanum tuberosum) are integrated with a model-based predictive controller. The controller evaluates and compensates for effects of environmental disturbances on crop production scheduling. The crop models consist of a set of nonlinear polynomial equations, six for each crop, developed using multivariate polynomial regression (MPR). Simulated data from DSSAT crop models, previously modified for crop production in controlled environments with hydroponics under elevated atmospheric carbon dioxide concentration, were used for the MPR fitting. The model-based predictive controller adjusts light intensity, air temperature, and carbon dioxide concentration set points in response to environmental perturbations. Control signals are determined from minimization of a cost function, which is based on the weighted control effort and squared-error between the system response and desired reference signal.

  9. And So It Grows: Using a Computer-Based Simulation of a Population Growth Model to Integrate Biology & Mathematics

    ERIC Educational Resources Information Center

    Street, Garrett M.; Laubach, Timothy A.

    2013-01-01

    We provide a 5E structured-inquiry lesson so that students can learn more of the mathematics behind the logistic model of population biology. By using models and mathematics, students understand how population dynamics can be influenced by relatively simple changes in the environment.

  10. Integrated modeling: a look back

    NASA Astrophysics Data System (ADS)

    Briggs, Clark

    2015-09-01

    This paper discusses applications and implementation approaches used for integrated modeling of structural systems with optics over the past 30 years. While much of the development work focused on control system design, significant contributions were made in system modeling and computer-aided design (CAD) environments. Early work appended handmade line-of-sight models to traditional finite element models, such as the optical spacecraft concept from the ACOSS program. The IDEAS2 computational environment built in support of Space Station collected a wider variety of existing tools around a parametric database. Later, IMOS supported interferometer and large telescope mission studies at JPL with MATLAB modeling of structural dynamics, thermal analysis, and geometric optics. IMOS's predecessor was a simple FORTRAN command line interpreter for LQG controller design with additional functions that built state-space finite element models. Specialized language systems such as CAESY were formulated and prototyped to provide more complex object-oriented functions suited to control-structure interaction. A more recent example of optical modeling directly in mechanical CAD is used to illustrate possible future directions. While the value of directly posing the optical metric in system dynamics terms is well understood today, the potential payoff is illustrated briefly via project-based examples. It is quite likely that integrated structure thermal optical performance (STOP) modeling could be accomplished in a commercial off-the-shelf (COTS) tool set. The work flow could be adopted, for example, by a team developing a small high-performance optical or radio frequency (RF) instrument.

  11. PCSIM: A Parallel Simulation Environment for Neural Circuits Fully Integrated with Python

    PubMed Central

    Pecevski, Dejan; Natschläger, Thomas; Schuch, Klaus

    2008-01-01

    The Parallel Circuit SIMulator (PCSIM) is a software package for simulation of neural circuits. It is primarily designed for distributed simulation of large scale networks of spiking point neurons. Although its computational core is written in C++, PCSIM's primary interface is implemented in the Python programming language, which is a powerful programming environment and allows the user to easily integrate the neural circuit simulator with data analysis and visualization tools to manage the full neural modeling life cycle. The main focus of this paper is to describe PCSIM's full integration into Python and the benefits thereof. In particular we will investigate how the automatically generated bidirectional interface and PCSIM's object-oriented modular framework enable the user to adopt a hybrid modeling approach: using and extending PCSIM's functionality either employing pure Python or C++ and thus combining the advantages of both worlds. Furthermore, we describe several supplementary PCSIM packages written in pure Python and tailored towards setting up and analyzing neural simulations. PMID:19543450

  12. A Spatial Analysis and Modeling System (SAMS) for environment management

    NASA Technical Reports Server (NTRS)

    Stetina, Fran; Hill, John; Chan, Paul; Jaske, Robert; Rochon, Gilbert

    1993-01-01

    This is a proposal to develop a uniform global environmental data gathering and distribution system to support the calibration and validation of remotely sensed data. SAMS is based on an enhanced version of FEMA's Integrated Emergency Management Information Systems and the Department of Defense's Air land Battlefield Environment Software Systems. This system consists of state-of-the-art graphics and visualization techniques, simulation models, database management and expert systems for conducting environmental and disaster preparedness studies. This software package will be integrated into various Landsat and UNEP-GRID stations which are planned to become direct readout stations during the EOS (Earth Observing System) timeframe. This system would be implemented as a pilot program to support the Tropical Rainfall Measuring Mission (TRMM). This will be a joint NASA-FEMA-University-Industry project.

  13. A Spatial Analysis and Modeling System (SAMS) for environment management

    NASA Technical Reports Server (NTRS)

    Vermillion, Charles H.; Stetina, Fran; Hill, John; Chan, Paul; Jaske, Robert; Rochon, Gilbert

    1992-01-01

    This is a proposal to develop a uniform global environmental data gathering and distribution system to support the calibration and validation of remotely sensed data. SAMS is based on an enhanced version of FE MA's Integrated Emergency Management Information Systems and the Department of Defense's Air Land Battlefield Environment Software Systems. This system consists of state-of-the-art graphics and visualization techniques, simulation models, database management and expert systems for conducting environmental and disaster preparedness studies. This software package will be integrated into various Landsat and UNEP-GRID stations which are planned to become direct readout stations during the EOS timeframe. This system would be implemented as a pilot program to support the Tropical Rainfall Measuring Mission (TRMM). This will be a joint NASA-FEMA-University-Industry project.

  14. Skinner Meets Piaget on the Reggio Playground: Practical Synthesis of Applied Behavior Analysis and Developmentally Appropriate Practice Orientations

    ERIC Educational Resources Information Center

    Warash, Bobbie; Curtis, Reagan; Hursh, Dan; Tucci, Vicci

    2008-01-01

    We focus on integrating developmentally appropriate practices, the project approach of Reggio Emilia, and a behavior analytic model to support a quality preschool environment. While the above practices often are considered incompatible, we have found substantial overlap and room for integration of these perspectives in practical application. With…

  15. Injury Profile SIMulator, a Qualitative Aggregative Modelling Framework to Predict Crop Injury Profile as a Function of Cropping Practices, and the Abiotic and Biotic Environment. I. Conceptual Bases

    PubMed Central

    Aubertot, Jean-Noël; Robin, Marie-Hélène

    2013-01-01

    The limitation of damage caused by pests (plant pathogens, weeds, and animal pests) in any agricultural crop requires integrated management strategies. Although significant efforts have been made to i) develop, and to a lesser extent ii) combine genetic, biological, cultural, physical and chemical control methods in Integrated Pest Management (IPM) strategies (vertical integration), there is a need for tools to help manage Injury Profiles (horizontal integration). Farmers design cropping systems according to their goals, knowledge, cognition and perception of socio-economic and technological drivers as well as their physical, biological, and chemical environment. In return, a given cropping system, in a given production situation will exhibit a unique injury profile, defined as a dynamic vector of the main injuries affecting the crop. This simple description of agroecosystems has been used to develop IPSIM (Injury Profile SIMulator), a modelling framework to predict injury profiles as a function of cropping practices, abiotic and biotic environment. Due to the tremendous complexity of agroecosystems, a simple holistic aggregative approach was chosen instead of attempting to couple detailed models. This paper describes the conceptual bases of IPSIM, an aggregative hierarchical framework and a method to help specify IPSIM for a given crop. A companion paper presents a proof of concept of the proposed approach for a single disease of a major crop (eyespot on wheat). In the future, IPSIM could be used as a tool to help design ex-ante IPM strategies at the field scale if coupled with a damage sub-model, and a multicriteria sub-model that assesses the social, environmental, and economic performances of simulated agroecosystems. In addition, IPSIM could also be used to help make diagnoses on commercial fields. It is important to point out that the presented concepts are not crop- or pest-specific and that IPSIM can be used on any crop. PMID:24019908

  16. Injury Profile SIMulator, a qualitative aggregative modelling framework to predict crop injury profile as a function of cropping practices, and the abiotic and biotic environment. I. Conceptual bases.

    PubMed

    Aubertot, Jean-Noël; Robin, Marie-Hélène

    2013-01-01

    The limitation of damage caused by pests (plant pathogens, weeds, and animal pests) in any agricultural crop requires integrated management strategies. Although significant efforts have been made to i) develop, and to a lesser extent ii) combine genetic, biological, cultural, physical and chemical control methods in Integrated Pest Management (IPM) strategies (vertical integration), there is a need for tools to help manage Injury Profiles (horizontal integration). Farmers design cropping systems according to their goals, knowledge, cognition and perception of socio-economic and technological drivers as well as their physical, biological, and chemical environment. In return, a given cropping system, in a given production situation will exhibit a unique injury profile, defined as a dynamic vector of the main injuries affecting the crop. This simple description of agroecosystems has been used to develop IPSIM (Injury Profile SIMulator), a modelling framework to predict injury profiles as a function of cropping practices, abiotic and biotic environment. Due to the tremendous complexity of agroecosystems, a simple holistic aggregative approach was chosen instead of attempting to couple detailed models. This paper describes the conceptual bases of IPSIM, an aggregative hierarchical framework and a method to help specify IPSIM for a given crop. A companion paper presents a proof of concept of the proposed approach for a single disease of a major crop (eyespot on wheat). In the future, IPSIM could be used as a tool to help design ex-ante IPM strategies at the field scale if coupled with a damage sub-model, and a multicriteria sub-model that assesses the social, environmental, and economic performances of simulated agroecosystems. In addition, IPSIM could also be used to help make diagnoses on commercial fields. It is important to point out that the presented concepts are not crop- or pest-specific and that IPSIM can be used on any crop.

  17. HiRel: Hybrid Automated Reliability Predictor (HARP) integrated reliability tool system, (version 7.0). Volume 2: HARP tutorial

    NASA Technical Reports Server (NTRS)

    Rothmann, Elizabeth; Dugan, Joanne Bechta; Trivedi, Kishor S.; Mittal, Nitin; Bavuso, Salvatore J.

    1994-01-01

    The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. The Hybrid Automated Reliability Predictor (HARP) tutorial provides insight into HARP modeling techniques and the interactive textual prompting input language via a step-by-step explanation and demonstration of HARP's fault occurrence/repair model and the fault/error handling models. Example applications are worked in their entirety and the HARP tabular output data are presented for each. Simple models are presented at first with each succeeding example demonstrating greater modeling power and complexity. This document is not intended to present the theoretical and mathematical basis for HARP.

  18. Human-Robot Interaction in High Vulnerability Domains

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.

    2016-01-01

    Future NASA missions will require successful integration of the human with highly complex systems. Highly complex systems are likely to involve humans, automation, and some level of robotic assistance. The complex environments will require successful integration of the human with automation, with robots, and with human-automation-robot teams to accomplish mission critical goals. Many challenges exist for the human performing in these types of operational environments with these kinds of systems. Systems must be designed to optimally integrate various levels of inputs and outputs based on the roles and responsibilities of the human, the automation, and the robots; from direct manual control, shared human-robotic control, or no active human control (i.e. human supervisory control). It is assumed that the human will remain involved at some level. Technologies that vary based on contextual demands and on operator characteristics (workload, situation awareness) will be needed when the human integrates into these systems. Predictive models that estimate the impact of the technologies on the system performance and the on the human operator are also needed to meet the challenges associated with such future complex human-automation-robot systems in extreme environments.

  19. An integrated toolbox for processing and analysis of remote sensing data of inland and coastal waters - atmospheric correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haan, J.F. de; Kokke, J.M.M.; Hoogenboom, H.J.

    1997-06-01

    Deriving thematic maps of water quality parameters from a remote sensing image requires a number of processing steps, such as calibration, atmospheric correction, air-water interface correction, and application of water quality algorithms. A prototype version of an integrated software environment has recently been developed that enables the user to perform and control these processing steps. Major parts of this environment are: (i) access to the MODTRAN 3 radiative transfer code, (ii) a database of water quality algorithms, and (iii) a spectral library of Dutch coastal and inland waters, containing subsurface irradiance reflectance spectra and associated water quality parameters. The atmosphericmore » correction part of this environment is discussed here. It is shown that this part can be used to accurately retrieve spectral signatures of inland water for wavelengths between 450 and 750 nm, provided in situ measurements are used to determine atmospheric model parameters. Assessment of the usefulness of the completely integrated software system in an operational environment requires a revised version that is presently being developed.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Laurence; Yurkovich, James T.; Lloyd, Colton J.

    Integrating omics data to refine or make context-specific models is an active field of constraint-based modeling. Proteomics now cover over 95% of the Escherichia coli proteome by mass. Genome-scale models of Metabolism and macromolecular Expression (ME) compute proteome allocation linked to metabolism and fitness. Using proteomics data, we formulated allocation constraints for key proteome sectors in the ME model. The resulting calibrated model effectively computed the “generalist” (wild-type) E. coli proteome and phenotype across diverse growth environments. Across 15 growth conditions, prediction errors for growth rate and metabolic fluxes were 69% and 14% lower, respectively. The sector-constrained ME model thusmore » represents a generalist ME model reflecting both growth rate maximization and “hedging” against uncertain environments and stresses, as indicated by significant enrichment of these sectors for the general stress response sigma factor σS. Finally, the sector constraints represent a general formalism for integrating omics data from any experimental condition into constraint-based ME models. The constraints can be fine-grained (individual proteins) or coarse-grained (functionally-related protein groups) as demonstrated here. Furthermore, this flexible formalism provides an accessible approach for narrowing the gap between the complexity captured by omics data and governing principles of proteome allocation described by systems-level models.« less

  1. Tightly coupled low cost 3D RISS/GPS integration using a mixture particle filter for vehicular navigation.

    PubMed

    Georgy, Jacques; Noureldin, Aboelmagd

    2011-01-01

    Satellite navigation systems such as the global positioning system (GPS) are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS)-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF). Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF) was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D) reduced inertial sensors system (RISS) with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle's odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s) even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift, which are loosely-coupled updates, a hybrid loosely/tightly coupled solution is proposed. This solution is suitable for downtown environments because of the long natural outages or degradation of GPS. The performance of the proposed 3D Navigation solution using Mixture PF for 3D RISS/GPS integration is examined by road test trajectories in a land vehicle and compared to the KF counterpart.

  2. Tightly Coupled Low Cost 3D RISS/GPS Integration Using a Mixture Particle Filter for Vehicular Navigation

    PubMed Central

    Georgy, Jacques; Noureldin, Aboelmagd

    2011-01-01

    Satellite navigation systems such as the global positioning system (GPS) are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS)-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF). Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF) was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D) reduced inertial sensors system (RISS) with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle’s odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s) even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift, which are loosely-coupled updates, a hybrid loosely/tightly coupled solution is proposed. This solution is suitable for downtown environments because of the long natural outages or degradation of GPS. The performance of the proposed 3D Navigation solution using Mixture PF for 3D RISS/GPS integration is examined by road test trajectories in a land vehicle and compared to the KF counterpart. PMID:22163846

  3. Analysis of French Secondary School Teachers' Intention to Integrate Digital Work Environments into Their Teaching Practices

    ERIC Educational Resources Information Center

    Pacurar, Ecaterina; Abbas, Nargis

    2015-01-01

    This research investigates the effective use of Digital Work Environment (DWE) in France. A theoretical framework based on the pedagogical engineering approach is used to propose an hypothetical model, which results in an explained variable of intention for the pedagogical use of an educational technology. The sex, the teaching disciplines, the…

  4. Augmented Reality for Close Quarters Combat

    ScienceCinema

    None

    2018-01-16

    Sandia National Laboratories has developed a state-of-the-art augmented reality training system for close-quarters combat (CQB). This system uses a wearable augmented reality system to place the user in a real environment while engaging enemy combatants in virtual space (Boston Dynamics DI-Guy). Umbra modeling and simulation environment is used to integrate and control the AR system.

  5. Distributed Architecture for the Object-Oriented Method for Interoperability

    DTIC Science & Technology

    2003-03-01

    Collaborative Environment. ......................121 Figure V-2. Distributed OOMI And The Collaboration Centric Paradigm. .....................123 Figure V...of systems are formed into a system federation to resolve differences in modeling. An OOMI Integrated Development Environment (OOMI IDE) lends ...space for the creation of possible distributed systems is partitioned into User Centric systems, Processing/Storage Centric systems, Implementation

  6. Integrated Perspective of Evolving Intrapsychic and Person-Environment Functions: Implications for Deaf and Hard of Hearing Individuals.

    ERIC Educational Resources Information Center

    Jung, Vivienne; Short, Robert H.

    2002-01-01

    This article reviews various theories for difficulties in socioemotional functioning experienced by many deaf persons. It then proposes a 3-level model which focuses on: (1) intrapsychic processes such as self-concept; (2) reciprocal interactions between the person and the social environment; and (3) resulting memories and expectancies that affect…

  7. Factors Contributing Pre-School Trainees Teachers Adoption of Virtual Learning Environment: Malaysian Evidence

    ERIC Educational Resources Information Center

    Mamat, Ibrahim; Yusoff, Ahmad Shidki Mat; Abdullah, Wan Salihin Wong; Razak, Fahmi Zaidi Abdul

    2015-01-01

    Virtual Learning Environment (VLE) has become the main mechanism in supporting on-line education either in primary or secondary school. Although VLE efforts are considered to be a significant corporate investment, many surveys indicate high drop-out rates or failures. This research uses an integrated model in order to assessing the influence of…

  8. An HL7-FHIR-based Object Model for a Home-Centered Data Warehouse for Ambient Assisted Living Environments.

    PubMed

    Schwartze, Jonas; Jansen, Lars; Schrom, Harald; Wolf, Klaus-Hendrik; Haux, Reinhold; Marschollek, Michael

    2015-01-01

    Current AAL environments focus on assisting a single person with seperated technologies. There is no interoperability between sub-domains in home environments, like building energy management or housing industry services. BASIS (Building Automation by a Scalable and Intelligent System) aims to integrate all sensors and actuators into a single, efficient home bus. First step is to create a semtically enriched data warehouse object model. We choose FHIR and built an object model mainly based on the Observation, Device and Location resources with minor extensions needed by AAL-foreign sub domains. FHIR turned out to be very flexible and complete for other home related sub-domains. The object model is implemented in a separated software-partition storing all structural and procedural data of BASIS.

  9. DigitalHuman (DH): An Integrative Mathematical Model ofHuman Physiology

    NASA Technical Reports Server (NTRS)

    Hester, Robert L.; Summers, Richard L.; lIescu, Radu; Esters, Joyee; Coleman, Thomas G.

    2010-01-01

    Mathematical models and simulation are important tools in discovering the key causal relationships governing physiological processes and improving medical intervention when physiological complexity is a central issue. We have developed a model of integrative human physiology called DigitalHuman (DH) consisting of -5000 variables modeling human physiology describing cardiovascular, renal, respiratory, endocrine, neural and metabolic physiology. Users can view time-dependent solutions and interactively introduce perturbations by altering numerical parameters to investigate new hypotheses. The variables, parameters and quantitative relationships as well as all other model details are described in XML text files. All aspects of the model, including the mathematical equations describing the physiological processes are written in XML open source, text-readable files. Model structure is based upon empirical data of physiological responses documented within the peer-reviewed literature. The model can be used to understand proposed physiological mechanisms and physiological interactions that may not be otherwise intUitively evident. Some of the current uses of this model include the analyses of renal control of blood pressure, the central role of the liver in creating and maintaining insulin resistance, and the mechanisms causing orthostatic hypotension in astronauts. Additionally the open source aspect of the modeling environment allows any investigator to add detailed descriptions of human physiology to test new concepts. The model accurately predicts both qualitative and more importantly quantitative changes in clinically and experimentally observed responses. DigitalHuman provides scientists a modeling environment to understand the complex interactions of integrative physiology. This research was supported by.NIH HL 51971, NSF EPSCoR, and NASA

  10. A model for flexible tools used in minimally invasive medical virtual environments.

    PubMed

    Soler, Francisco; Luzon, M Victoria; Pop, Serban R; Hughes, Chris J; John, Nigel W; Torres, Juan Carlos

    2011-01-01

    Within the limits of current technology, many applications of a virtual environment will trade-off accuracy for speed. This is not an acceptable compromise in a medical training application where both are essential. Efficient algorithms must therefore be developed. The purpose of this project is the development and validation of a novel physics-based real time tool manipulation model, which is easy to integrate into any medical virtual environment that requires support for the insertion of long flexible tools into complex geometries. This encompasses medical specialities such as vascular interventional radiology, endoscopy, and laparoscopy, where training, prototyping of new instruments/tools and mission rehearsal can all be facilitated by using an immersive medical virtual environment. Our model recognises and uses accurately patient specific data and adapts to the geometrical complexity of the vessel in real time.

  11. Using stable isotopes and models to explore estuarine linkages at multiple scales

    EPA Science Inventory

    Estuarine managers need tools to respond to dynamic stressors that occur in three linked environments – coastal ocean, estuaries and watersheds. Models have been the tool of choice for examining these dynamic systems because they simplify processes and integrate over multiple sc...

  12. Integrating Data across Digital Activities

    ERIC Educational Resources Information Center

    DiCerbo, Kristen

    2016-01-01

    The volume of data that can be captured and stored from students' everyday interactions with digital environments allows for the creation of models of student knowledge, skills, and attributes unobtrusively. However, models and techniques for transforming these data into information that is useful for educators have not been established. This…

  13. Integrating health and environmental impact analysis.

    PubMed

    Reis, S; Morris, G; Fleming, L E; Beck, S; Taylor, T; White, M; Depledge, M H; Steinle, S; Sabel, C E; Cowie, H; Hurley, F; Dick, J McP; Smith, R I; Austen, M

    2015-10-01

    Scientific investigations have progressively refined our understanding of the influence of the environment on human health, and the many adverse impacts that human activities exert on the environment, from the local to the planetary level. Nonetheless, throughout the modern public health era, health has been pursued as though our lives and lifestyles are disconnected from ecosystems and their component organisms. The inadequacy of the societal and public health response to obesity, health inequities, and especially global environmental and climate change now calls for an ecological approach which addresses human activity in all its social, economic and cultural complexity. The new approach must be integral to, and interactive, with the natural environment. We see the continuing failure to truly integrate human health and environmental impact analysis as deeply damaging, and we propose a new conceptual model, the ecosystems-enriched Drivers, Pressures, State, Exposure, Effects, Actions or 'eDPSEEA' model, to address this shortcoming. The model recognizes convergence between the concept of ecosystems services which provides a human health and well-being slant to the value of ecosystems while equally emphasizing the health of the environment, and the growing calls for 'ecological public health' as a response to global environmental concerns now suffusing the discourse in public health. More revolution than evolution, ecological public health will demand new perspectives regarding the interconnections among society, the economy, the environment and our health and well-being. Success must be built on collaborations between the disparate scientific communities of the environmental sciences and public health as well as interactions with social scientists, economists and the legal profession. It will require outreach to political and other stakeholders including a currently largely disengaged general public. The need for an effective and robust science-policy interface has never been more pressing. Conceptual models can facilitate this by providing theoretical frameworks and supporting stakeholder engagement process simplifications for inherently complex situations involving environment and human health and well-being. They can be tools to think with, to engage, to communicate and to help navigate in a sea of complexity. We believe models such as eDPSEEA can help frame many of the issues which have become the challenges of the new public health era and can provide the essential platforms necessary for progress. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  14. Integration of the SSPM and STAGE with the MPACT Virtual Facility Distributed Test Bed.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cipiti, Benjamin B.; Shoman, Nathan

    The Material Protection Accounting and Control Technologies (MPACT) program within DOE NE is working toward a 2020 milestone to demonstrate a Virtual Facility Distributed Test Bed. The goal of the Virtual Test Bed is to link all MPACT modeling tools, technology development, and experimental work to create a Safeguards and Security by Design capability for fuel cycle facilities. The Separation and Safeguards Performance Model (SSPM) forms the core safeguards analysis tool, and the Scenario Toolkit and Generation Environment (STAGE) code forms the core physical security tool. These models are used to design and analyze safeguards and security systems and generatemore » performance metrics. Work over the past year has focused on how these models will integrate with the other capabilities in the MPACT program and specific model changes to enable more streamlined integration in the future. This report describes the model changes and plans for how the models will be used more collaboratively. The Virtual Facility is not designed to integrate all capabilities into one master code, but rather to maintain stand-alone capabilities that communicate results between codes more effectively.« less

  15. Exploring the social dimension of sandy beaches through predictive modelling.

    PubMed

    Domínguez-Tejo, Elianny; Metternicht, Graciela; Johnston, Emma L; Hedge, Luke

    2018-05-15

    Sandy beaches are unique ecosystems increasingly exposed to human-induced pressures. Consistent with emerging frameworks promoting this holistic approach towards beach management, is the need to improve the integration of social data into management practices. This paper aims to increase understanding of links between demographics and community values and preferred beach activities, as key components of the social dimension of the beach environment. A mixed method approach was adopted to elucidate users' opinions on beach preferences and community values through a survey carried out in Manly Local Government Area in Sydney Harbour, Australia. A proposed conceptual model was used to frame demographic models (using age, education, employment, household income and residence status) as predictors of these two community responses. All possible regression-model combinations were compared using Akaike's information criterion. Best models were then used to calculate quantitative likelihoods of the responses, presented as heat maps. Findings concur with international research indicating the relevance of social and restful activities as important social links between the community and the beach environment. Participant's age was a significant variable in the four predictive models. The use of predictive models informed by demographics could potentially increase our understanding of interactions between the social and ecological systems of the beach environment, as a prelude to integrated beach management approaches. The research represents a practical demonstration of how demographic predictive models could support proactive approaches to beach management. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. SOURCES OF ORGANIC AEROSOL: SEMIVOLATILE EMISSIONS AND PHOTOCHEMICAL AGING

    EPA Science Inventory

    The proposed research integrates emissions testing, smog chamber experiments, and regional chemical transport models (CTMs) to investigate the sources of organic aerosol in urban and regional environments.

  17. Simulation of Range Safety for the NASA Space Shuttle

    NASA Technical Reports Server (NTRS)

    Rabelo, Luis; Sepulveda, Jose; Compton, Jeppie; Turner, Robert

    2005-01-01

    This paper describes a simulation environment that seamlessly combines a number of safety and environmental models for the launch phase of a NASA Space Shuttle mission. The components of this simulation environment represent the different systems that must interact in order to determine the Expectation of casualties (E(sub c)) resulting from the toxic effects of the gas dispersion that occurs after a disaster affecting a Space Shuttle within 120 seconds of lift-off. The utilization of the Space Shuttle reliability models, trajectory models, weather dissemination systems, population models, amount and type of toxicants, gas dispersion models, human response functions to toxicants, and a geographical information system are all integrated to create this environment. This simulation environment can help safety managers estimate the population at risk in order to plan evacuation, make sheltering decisions, determine the resources required to provide aid and comfort, and mitigate damages in case of a disaster. This simulation environment may also be modified and used for the landing phase of a space vehicle but will not be discussed in this paper.

  18. Heterogeneous Deformable Modeling of Bio-Tissues and Haptic Force Rendering for Bio-Object Modeling

    NASA Astrophysics Data System (ADS)

    Lin, Shiyong; Lee, Yuan-Shin; Narayan, Roger J.

    This paper presents a novel technique for modeling soft biological tissues as well as the development of an innovative interface for bio-manufacturing and medical applications. Heterogeneous deformable models may be used to represent the actual internal structures of deformable biological objects, which possess multiple components and nonuniform material properties. Both heterogeneous deformable object modeling and accurate haptic rendering can greatly enhance the realism and fidelity of virtual reality environments. In this paper, a tri-ray node snapping algorithm is proposed to generate a volumetric heterogeneous deformable model from a set of object interface surfaces between different materials. A constrained local static integration method is presented for simulating deformation and accurate force feedback based on the material properties of a heterogeneous structure. Biological soft tissue modeling is used as an example to demonstrate the proposed techniques. By integrating the heterogeneous deformable model into a virtual environment, users can both observe different materials inside a deformable object as well as interact with it by touching the deformable object using a haptic device. The presented techniques can be used for surgical simulation, bio-product design, bio-manufacturing, and medical applications.

  19. A Novel Attitude Estimation Algorithm Based on the Non-Orthogonal Magnetic Sensors

    PubMed Central

    Zhu, Jianliang; Wu, Panlong; Bo, Yuming

    2016-01-01

    Because the existing extremum ratio method for projectile attitude measurement is vulnerable to random disturbance, a novel integral ratio method is proposed to calculate the projectile attitude. First, the non-orthogonal measurement theory of the magnetic sensors is analyzed. It is found that the projectile rotating velocity is constant in one spinning circle and the attitude error is actually the pitch error. Next, by investigating the model of the extremum ratio method, an integral ratio mathematical model is established to improve the anti-disturbance performance. Finally, by combining the preprocessed magnetic sensor data based on the least-square method and the rotating extremum features in one cycle, the analytical expression of the proposed integral ratio algorithm is derived with respect to the pitch angle. The simulation results show that the proposed integral ratio method gives more accurate attitude calculations than does the extremum ratio method, and that the attitude error variance can decrease by more than 90%. Compared to the extremum ratio method (which collects only a single data point in one rotation cycle), the proposed integral ratio method can utilize all of the data collected in the high spin environment, which is a clearly superior calculation approach, and can be applied to the actual projectile environment disturbance. PMID:27213389

  20. An Overview of NASA's Integrated Design and Engineering Analysis (IDEA) Environment

    NASA Technical Reports Server (NTRS)

    Robinson, Jeffrey S.

    2011-01-01

    Historically, the design of subsonic and supersonic aircraft has been divided into separate technical disciplines (such as propulsion, aerodynamics and structures), each of which performs design and analysis in relative isolation from others. This is possible, in most cases, either because the amount of interdisciplinary coupling is minimal, or because the interactions can be treated as linear. The design of hypersonic airbreathing vehicles, like NASA's X-43, is quite the opposite. Such systems are dominated by strong non-linear interactions between disciplines. The design of these systems demands that a multi-disciplinary approach be taken. Furthermore, increased analytical fidelity at the conceptual design phase is highly desirable, as many of the non-linearities are not captured by lower fidelity tools. Only when these systems are designed from a true multi-disciplinary perspective, can the real performance benefits be achieved and complete vehicle systems be fielded. Toward this end, the Vehicle Analysis Branch at NASA Langley Research Center has been developing the Integrated Design and Engineering Analysis (IDEA) Environment. IDEA is a collaborative environment for parametrically modeling conceptual and preliminary designs for launch vehicle and high speed atmospheric flight configurations using the Adaptive Modeling Language (AML) as the underlying framework. The environment integrates geometry, packaging, propulsion, trajectory, aerodynamics, aerothermodynamics, engine and airframe subsystem design, thermal and structural analysis, and vehicle closure into a generative, parametric, unified computational model where data is shared seamlessly between the different disciplines. Plans are also in place to incorporate life cycle analysis tools into the environment which will estimate vehicle operability, reliability and cost. IDEA is currently being funded by NASA?s Hypersonics Project, a part of the Fundamental Aeronautics Program within the Aeronautics Research Mission Directorate. The environment is currently focused around a two-stage-to-orbit configuration with a turbine-based combined cycle (TBCC) first stage and a reusable rocket second stage. IDEA will be rolled out in generations, with each successive generation providing a significant increase in capability, either through increased analytic fidelity, expansion of vehicle classes considered, or by the inclusion of advanced modeling techniques. This paper provides the motivation behind the current effort, an overview of the development of the IDEA environment (including the contents and capabilities to be included in Generation 1 and Generation 2), and a description of the current status and detail of future plans.

  1. Competition-Based Learning: A Model for the Integration of Competitions with Project-Based Learning Using Open Source LMS

    ERIC Educational Resources Information Center

    Issa, Ghassan; Hussain, Shakir M.; Al-Bahadili, Hussein

    2014-01-01

    In an effort to enhance the learning process in higher education, a new model for Competition-Based Learning (CBL) is presented. The new model utilizes two well-known learning models, namely, the Project-Based Learning (PBL) and competitions. The new model is also applied in a networked environment with emphasis on collective learning as well as…

  2. Walking through doorways causes forgetting: environmental integration.

    PubMed

    Radvansky, Gabriel A; Tamplin, Andrea K; Krawietz, Sabine A

    2010-12-01

    Memory for objects declines when people move from one location to another (the location updating effect). However, it is unclear whether this is attributable to event model updating or to task demands. The focus here was on the degree of integration for probed-for information with the experienced environment. In prior research, the probes were verbal labels of visual objects. Experiment 1 assessed whether this was a consequence of an item-probe mismatch, as with transfer-appropriate processing. Visual probes were used to better coordinate what was seen with the nature of the memory probe. In Experiment 2, people received additional word pairs to remember, which were less well integrated with the environment, to assess whether the probed-for information needed to be well integrated. The results showed location updating effects in both cases. These data are consistent with an event cognition view that mental updating of a dynamic event disrupts memory.

  3. Aiding planning in air traffic control: an experimental investigation of the effects of perceptual information integration.

    PubMed

    Moertl, Peter M; Canning, John M; Gronlund, Scott D; Dougherty, Michael R P; Johansson, Joakim; Mills, Scott H

    2002-01-01

    Prior research examined how controllers plan in their traditional environment and identified various information uncertainties as detriments to planning. A planning aid was designed to reduce this uncertainty by perceptually representing important constraints. This included integrating spatial information on the radar screen with discrete information (planned sequences of air traffic). Previous research reported improved planning performance and decreased workload in the planning aid condition. The purpose of this paper was to determine the source of these performance improvements. Analysis of computer interactions using log-linear modeling showed that the planning interface led to less repetitive--but more integrated--information retrieval compared with the traditional planning environment. Ecological interface design principles helped explain how the integrated information retrieval gave rise to the performance improvements. Actual or potential applications of this research include the design and evaluation of interface automation that keeps users in active control by modification of perceptual task characteristics.

  4. A road map for integrating eco-evolutionary processes into biodiversity models.

    PubMed

    Thuiller, Wilfried; Münkemüller, Tamara; Lavergne, Sébastien; Mouillot, David; Mouquet, Nicolas; Schiffers, Katja; Gravel, Dominique

    2013-05-01

    The demand for projections of the future distribution of biodiversity has triggered an upsurge in modelling at the crossroads between ecology and evolution. Despite the enthusiasm around these so-called biodiversity models, most approaches are still criticised for not integrating key processes known to shape species ranges and community structure. Developing an integrative modelling framework for biodiversity distribution promises to improve the reliability of predictions and to give a better understanding of the eco-evolutionary dynamics of species and communities under changing environments. In this article, we briefly review some eco-evolutionary processes and interplays among them, which are essential to provide reliable projections of species distributions and community structure. We identify gaps in theory, quantitative knowledge and data availability hampering the development of an integrated modelling framework. We argue that model development relying on a strong theoretical foundation is essential to inspire new models, manage complexity and maintain tractability. We support our argument with an example of a novel integrated model for species distribution modelling, derived from metapopulation theory, which accounts for abiotic constraints, dispersal, biotic interactions and evolution under changing environmental conditions. We hope such a perspective will motivate exciting and novel research, and challenge others to improve on our proposed approach. © 2013 John Wiley & Sons Ltd/CNRS.

  5. Life sciences research in space: The requirement for animal models

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.; Philips, R. W.; Ballard, R. W.

    1987-01-01

    Use of animals in NASA space programs is reviewed. Animals are needed because life science experimentation frequently requires long-term controlled exposure to environments, statistical validation, invasive instrumentation or biological tissue sampling, tissue destruction, exposure to dangerous or unknown agents, or sacrifice of the subject. The availability and use of human subjects inflight is complicated by the multiple needs and demands upon crew time. Because only living organisms can sense, integrate and respond to the environment around them, the sole use of tissue culture and computer models is insufficient for understanding the influence of the space environment on intact organisms. Equipment for spaceborne experiments with animals is described.

  6. Perception of and satisfaction with the clinical learning environment among nursing students.

    PubMed

    D'Souza, Melba Sheila; Karkada, Subrahmanya Nairy; Parahoo, Kader; Venkatesaperumal, Ramesh

    2015-06-01

    Clinical nursing education provides baccalaureate nursing students an opportunity to combine cognitive, psychomotor, and affective skills in the Middle East. The aim of the paper is to assess the satisfaction with and effectiveness of the clinical learning environment among nursing students in Oman. A cross-sectional descriptive design was used. A convenience sample consisting of 310 undergraduate nursing students was selected in a public school of nursing in Oman. Ethical approval was obtained from the Research and Ethics Committee, College of Nursing in 2011. A standardized, structured, validated and reliable Clinical Learning Environment Supervision Teacher Evaluation instrument was used. Informed consent was obtained from all the students. Data was analyzed with ANOVA and structural equation modeling. Satisfaction with the clinical learning environment (CLE) sub-dimensions was highly significant and had a positive relationship with the total clinical learning environment. In the path model 35% of its total variance of satisfaction with CLE is accounted by leadership style, clinical nurse commitment (variance=28%), and patient relationships (R(2)=27%). Higher age, GPA and completion of a number of clinical courses were significant in the satisfaction with the CLE among these students. Nurse educators can improvise clinical learning placements focusing on leadership style, premises of learning and nursing care, nurse teacher, and supervision while integrating student, teacher and environmental factors. Hence the clinical learning environment is integral to students' learning and valuable in providing educational experiences. The CLE model provides information to nurse educators regarding best clinical practices for improving the CLE for BSN students. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A neural network ActiveX based integrated image processing environment.

    PubMed

    Ciuca, I; Jitaru, E; Alaicescu, M; Moisil, I

    2000-01-01

    The paper outlines an integrated image processing environment that uses neural networks ActiveX technology for object recognition and classification. The image processing environment which is Windows based, encapsulates a Multiple-Document Interface (MDI) and is menu driven. Object (shape) parameter extraction is focused on features that are invariant in terms of translation, rotation and scale transformations. The neural network models that can be incorporated as ActiveX components into the environment allow both clustering and classification of objects from the analysed image. Mapping neural networks perform an input sensitivity analysis on the extracted feature measurements and thus facilitate the removal of irrelevant features and improvements in the degree of generalisation. The program has been used to evaluate the dimensions of the hydrocephalus in a study for calculating the Evans index and the angle of the frontal horns of the ventricular system modifications.

  8. Integrating Learning Styles and Personality Traits into an Affective Model to Support Learner's Learning

    NASA Astrophysics Data System (ADS)

    Leontidis, Makis; Halatsis, Constantin

    The aim of this paper is to present a model in order to integrate the learning style and the personality traits of a learner into an enhanced Affective Style which is stored in the learner’s model. This model which can deal with the cognitive abilities as well as the affective preferences of the learner is called Learner Affective Model (LAM). The LAM is used to retain learner’s knowledge and activities during his interaction with a Web-based learning environment and also to provide him with the appropriate pedagogical guidance. The proposed model makes use of an ontological approach in combination with the Bayesian Network model and contributes to the efficient management of the LAM in an Affective Module.

  9. Total Risk Integrated Methodology (TRIM) - TRIM.Expo

    EPA Pesticide Factsheets

    The Exposure Event module of TRIM (TRIM.Expo), similar to most human exposure models, provides an analysis of the relationships between various chemical concentrations in the environment and exposure levels of humans.

  10. PALM-USM v1.0: A new urban surface model integrated into the PALM large-eddy simulation model

    NASA Astrophysics Data System (ADS)

    Resler, Jaroslav; Krč, Pavel; Belda, Michal; Juruš, Pavel; Benešová, Nina; Lopata, Jan; Vlček, Ondřej; Damašková, Daša; Eben, Kryštof; Derbek, Přemysl; Maronga, Björn; Kanani-Sühring, Farah

    2017-10-01

    Urban areas are an important part of the climate system and many aspects of urban climate have direct effects on human health and living conditions. This implies that reliable tools for local urban climate studies supporting sustainable urban planning are needed. However, a realistic implementation of urban canopy processes still poses a serious challenge for weather and climate modelling for the current generation of numerical models. To address this demand, a new urban surface model (USM), describing the surface energy processes for urban environments, was developed and integrated as a module into the PALM large-eddy simulation model. The development of the presented first version of the USM originated from modelling the urban heat island during summer heat wave episodes and thus implements primarily processes important in such conditions. The USM contains a multi-reflection radiation model for shortwave and longwave radiation with an integrated model of absorption of radiation by resolved plant canopy (i.e. trees, shrubs). Furthermore, it consists of an energy balance solver for horizontal and vertical impervious surfaces, and thermal diffusion in ground, wall, and roof materials, and it includes a simple model for the consideration of anthropogenic heat sources. The USM was parallelized using the standard Message Passing Interface and performance testing demonstrates that the computational costs of the USM are reasonable on typical clusters for the tested configurations. The module was fully integrated into PALM and is available via its online repository under the GNU General Public License (GPL). The USM was tested on a summer heat-wave episode for a selected Prague crossroads. The general representation of the urban boundary layer and patterns of surface temperatures of various surface types (walls, pavement) are in good agreement with in situ observations made in Prague. Additional simulations were performed in order to assess the sensitivity of the results to uncertainties in the material parameters, the domain size, and the general effect of the USM itself. The first version of the USM is limited to the processes most relevant to the study of summer heat waves and serves as a basis for ongoing development which will address additional processes of the urban environment and lead to improvements to extend the utilization of the USM to other environments and conditions.

  11. Testing Students with Special Needs: A Model for Understanding the Interaction between Assessment and Student Characteristics in a Universally Designed Environment

    ERIC Educational Resources Information Center

    Ketterlin-Geller, Leanne R.

    2008-01-01

    This article presents a model of assessment development integrating student characteristics with the conceptualization, design, and implementation of standardized achievement tests. The model extends the assessment triangle proposed by the National Research Council (Pellegrino, Chudowsky, & Glaser, 2001) to consider the needs of students with…

  12. Reducing Manpower for a Technologically Advanced Ship

    DTIC Science & Technology

    2010-01-27

    Watchstations by 84% (119 to 34) “ Autonomic ” Fire Suppression System AFSS is designed to automatically: (1) Isolate damage to firemain piping... System (IPS) Advanced VLS Autonomic Fire Suppression Hull Form Scale Models Total Ship Computing Environment (TSCE) Integrated Undersea...Warfare (IUSW) System ( AFSS ) 8 Total Ship Organization Ship C3I Engage Support Technical Director TSCEI Sense Integrated Product Teams TSSE Director

  13. Enhancing Competence in Health Social Work Education through Simulation-Based Learning: Strategies from a Case Study of a Family Session

    ERIC Educational Resources Information Center

    Craig, Shelley L.; McInroy, Lauren B.; Bogo, Marion; Thompson, Michelle

    2017-01-01

    Simulation-based learning (SBL) is a powerful tool for social work education, preparing students to practice in integrated health care settings. In an educational environment addressing patient health using an integrated care model, there is growing emphasis on students developing clinical competencies prior to entering clinical placements or…

  14. Integration and Deployment of Educational Games in e-Learning Environments: The Learning Object Model Meets Educational Gaming

    ERIC Educational Resources Information Center

    Torrente, Javier; Moreno-Ger, Pablo; Martinez-Ortiz, Ivan; Fernandez-Manjon, Baltasar

    2009-01-01

    Game-based learning is becoming popular in the academic discussion of Learning Technologies. However, even though the educational potential of games has been thoroughly discussed in the literature, the integration of the games into educational processes and how to efficiently deliver the games to the students are still open questions. This paper…

  15. Integrating natural disturbances and management activities to examine risks and opportunities in the central Oregon landscape analysis

    Treesearch

    Miles A. Hemstrom; James Merzenich; Theresa Burcsu; Janet Ohmann; Ryan Singleton

    2010-01-01

    We used state and transition models to integrate natural disturbances and management activities for a 275 000-ha landscape in the central Oregon Cascades. The landscape consists of a diverse mix of land ownerships, land use allocations, and environments. Three different management scenarios were developed from public input: (1) no management except wildfire suppression...

  16. QSAR modeling of cumulative environmental end-points for the prioritization of hazardous chemicals.

    PubMed

    Gramatica, Paola; Papa, Ester; Sangion, Alessandro

    2018-01-24

    The hazard of chemicals in the environment is inherently related to the molecular structure and derives simultaneously from various chemical properties/activities/reactivities. Models based on Quantitative Structure Activity Relationships (QSARs) are useful to screen, rank and prioritize chemicals that may have an adverse impact on humans and the environment. This paper reviews a selection of QSAR models (based on theoretical molecular descriptors) developed for cumulative multivariate endpoints, which were derived by mathematical combination of multiple effects and properties. The cumulative end-points provide an integrated holistic point of view to address environmentally relevant properties of chemicals.

  17. Man-Machine Integration Design and Analysis System (MIDAS) v5: Augmentations, Motivations, and Directions for Aeronautics Applications

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.

    2011-01-01

    As automation and advanced technologies are introduced into transport systems ranging from the Next Generation Air Transportation System termed NextGen, to the advanced surface transportation systems as exemplified by the Intelligent Transportations Systems, to future systems designed for space exploration, there is an increased need to validly predict how the future systems will be vulnerable to error given the demands imposed by the assistive technologies. One formalized approach to study the impact of assistive technologies on the human operator in a safe and non-obtrusive manner is through the use of human performance models (HPMs). HPMs play an integral role when complex human-system designs are proposed, developed, and tested. One HPM tool termed the Man-machine Integration Design and Analysis System (MIDAS) is a NASA Ames Research Center HPM software tool that has been applied to predict human-system performance in various domains since 1986. MIDAS is a dynamic, integrated HPM and simulation environment that facilitates the design, visualization, and computational evaluation of complex man-machine system concepts in simulated operational environments. The paper will discuss a range of aviation specific applications including an approach used to model human error for NASA s Aviation Safety Program, and what-if analyses to evaluate flight deck technologies for NextGen operations. This chapter will culminate by raising two challenges for the field of predictive HPMs for complex human-system designs that evaluate assistive technologies: that of (1) model transparency and (2) model validation.

  18. An Integrated Chemical Environment to Support 21st-Century Toxicology.

    PubMed

    Bell, Shannon M; Phillips, Jason; Sedykh, Alexander; Tandon, Arpit; Sprankle, Catherine; Morefield, Stephen Q; Shapiro, Andy; Allen, David; Shah, Ruchir; Maull, Elizabeth A; Casey, Warren M; Kleinstreuer, Nicole C

    2017-05-25

    SUMMARY : Access to high-quality reference data is essential for the development, validation, and implementation of in vitro and in silico approaches that reduce and replace the use of animals in toxicity testing. Currently, these data must often be pooled from a variety of disparate sources to efficiently link a set of assay responses and model predictions to an outcome or hazard classification. To provide a central access point for these purposes, the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods developed the Integrated Chemical Environment (ICE) web resource. The ICE data integrator allows users to retrieve and combine data sets and to develop hypotheses through data exploration. Open-source computational workflows and models will be available for download and application to local data. ICE currently includes curated in vivo test data, reference chemical information, in vitro assay data (including Tox21 TM /ToxCast™ high-throughput screening data), and in silico model predictions. Users can query these data collections focusing on end points of interest such as acute systemic toxicity, endocrine disruption, skin sensitization, and many others. ICE is publicly accessible at https://ice.ntp.niehs.nih.gov. https://doi.org/10.1289/EHP1759.

  19. An Integrated Chemical Environment to Support 21st-Century Toxicology

    PubMed Central

    Bell, Shannon M.; Phillips, Jason; Sedykh, Alexander; Tandon, Arpit; Sprankle, Catherine; Morefield, Stephen Q.; Shapiro, Andy; Allen, David; Shah, Ruchir; Maull, Elizabeth A.; Casey, Warren M.

    2017-01-01

    Summary: Access to high-quality reference data is essential for the development, validation, and implementation of in vitro and in silico approaches that reduce and replace the use of animals in toxicity testing. Currently, these data must often be pooled from a variety of disparate sources to efficiently link a set of assay responses and model predictions to an outcome or hazard classification. To provide a central access point for these purposes, the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods developed the Integrated Chemical Environment (ICE) web resource. The ICE data integrator allows users to retrieve and combine data sets and to develop hypotheses through data exploration. Open-source computational workflows and models will be available for download and application to local data. ICE currently includes curated in vivo test data, reference chemical information, in vitro assay data (including Tox21TM/ToxCast™ high-throughput screening data), and in silico model predictions. Users can query these data collections focusing on end points of interest such as acute systemic toxicity, endocrine disruption, skin sensitization, and many others. ICE is publicly accessible at https://ice.ntp.niehs.nih.gov. https://doi.org/10.1289/EHP1759 PMID:28557712

  20. Collaborative environments for capability-based planning

    NASA Astrophysics Data System (ADS)

    McQuay, William K.

    2005-05-01

    Distributed collaboration is an emerging technology for the 21st century that will significantly change how business is conducted in the defense and commercial sectors. Collaboration involves two or more geographically dispersed entities working together to create a "product" by sharing and exchanging data, information, and knowledge. A product is defined broadly to include, for example, writing a report, creating software, designing hardware, or implementing robust systems engineering and capability planning processes in an organization. Collaborative environments provide the framework and integrate models, simulations, domain specific tools, and virtual test beds to facilitate collaboration between the multiple disciplines needed in the enterprise. The Air Force Research Laboratory (AFRL) is conducting a leading edge program in developing distributed collaborative technologies targeted to the Air Force's implementation of systems engineering for a simulation-aided acquisition and capability-based planning. The research is focusing on the open systems agent-based framework, product and process modeling, structural architecture, and the integration technologies - the glue to integrate the software components. In past four years, two live assessment events have been conducted to demonstrate the technology in support of research for the Air Force Agile Acquisition initiatives. The AFRL Collaborative Environment concept will foster a major cultural change in how the acquisition, training, and operational communities conduct business.

  1. Humanoids Learning to Walk: A Natural CPG-Actor-Critic Architecture.

    PubMed

    Li, Cai; Lowe, Robert; Ziemke, Tom

    2013-01-01

    The identification of learning mechanisms for locomotion has been the subject of much research for some time but many challenges remain. Dynamic systems theory (DST) offers a novel approach to humanoid learning through environmental interaction. Reinforcement learning (RL) has offered a promising method to adaptively link the dynamic system to the environment it interacts with via a reward-based value system. In this paper, we propose a model that integrates the above perspectives and applies it to the case of a humanoid (NAO) robot learning to walk the ability of which emerges from its value-based interaction with the environment. In the model, a simplified central pattern generator (CPG) architecture inspired by neuroscientific research and DST is integrated with an actor-critic approach to RL (cpg-actor-critic). In the cpg-actor-critic architecture, least-square-temporal-difference based learning converges to the optimal solution quickly by using natural gradient learning and balancing exploration and exploitation. Futhermore, rather than using a traditional (designer-specified) reward it uses a dynamic value function as a stability indicator that adapts to the environment. The results obtained are analyzed using a novel DST-based embodied cognition approach. Learning to walk, from this perspective, is a process of integrating levels of sensorimotor activity and value.

  2. Humanoids Learning to Walk: A Natural CPG-Actor-Critic Architecture

    PubMed Central

    Li, Cai; Lowe, Robert; Ziemke, Tom

    2013-01-01

    The identification of learning mechanisms for locomotion has been the subject of much research for some time but many challenges remain. Dynamic systems theory (DST) offers a novel approach to humanoid learning through environmental interaction. Reinforcement learning (RL) has offered a promising method to adaptively link the dynamic system to the environment it interacts with via a reward-based value system. In this paper, we propose a model that integrates the above perspectives and applies it to the case of a humanoid (NAO) robot learning to walk the ability of which emerges from its value-based interaction with the environment. In the model, a simplified central pattern generator (CPG) architecture inspired by neuroscientific research and DST is integrated with an actor-critic approach to RL (cpg-actor-critic). In the cpg-actor-critic architecture, least-square-temporal-difference based learning converges to the optimal solution quickly by using natural gradient learning and balancing exploration and exploitation. Futhermore, rather than using a traditional (designer-specified) reward it uses a dynamic value function as a stability indicator that adapts to the environment. The results obtained are analyzed using a novel DST-based embodied cognition approach. Learning to walk, from this perspective, is a process of integrating levels of sensorimotor activity and value. PMID:23675345

  3. The Use of Behavior Models for Predicting Complex Operations

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.

    2010-01-01

    Modeling and simulation (M&S) plays an important role when complex human-system notions are being proposed, developed and tested within the system design process. National Aeronautics and Space Administration (NASA) as an agency uses many different types of M&S approaches for predicting human-system interactions, especially when it is early in the development phase of a conceptual design. NASA Ames Research Center possesses a number of M&S capabilities ranging from airflow, flight path models, aircraft models, scheduling models, human performance models (HPMs), and bioinformatics models among a host of other kinds of M&S capabilities that are used for predicting whether the proposed designs will benefit the specific mission criteria. The Man-Machine Integration Design and Analysis System (MIDAS) is a NASA ARC HPM software tool that integrates many models of human behavior with environment models, equipment models, and procedural / task models. The challenge to model comprehensibility is heightened as the number of models that are integrated and the requisite fidelity of the procedural sets are increased. Model transparency is needed for some of the more complex HPMs to maintain comprehensibility of the integrated model performance. This will be exemplified in a recent MIDAS v5 application model and plans for future model refinements will be presented.

  4. Integration of bio-inspired, control-based visual and olfactory data for the detection of an elusive target

    NASA Astrophysics Data System (ADS)

    Duong, Tuan A.; Duong, Nghi; Le, Duong

    2017-01-01

    In this paper, we present an integration technique using a bio-inspired, control-based visual and olfactory receptor system to search for elusive targets in practical environments where the targets cannot be seen obviously by either sensory data. Bio-inspired Visual System is based on a modeling of extended visual pathway which consists of saccadic eye movements and visual pathway (vertebrate retina, lateral geniculate nucleus and visual cortex) to enable powerful target detections of noisy, partial, incomplete visual data. Olfactory receptor algorithm, namely spatial invariant independent component analysis, that was developed based on data of old factory receptor-electronic nose (enose) of Caltech, is adopted to enable the odorant target detection in an unknown environment. The integration of two systems is a vital approach and sets up a cornerstone for effective and low-cost of miniaturized UAVs or fly robots for future DOD and NASA missions, as well as for security systems in Internet of Things environments.

  5. Numerical modeling of chemical spills and assessment of their environmental impacts

    USDA-ARS?s Scientific Manuscript database

    Chemical spills in surface water bodies often occur in modern societies, which cause significant impacts on water quality, eco-environment and drinking water safety. In this paper, chemical spill contamination in water resources was studied using a depth-integrated computational model, CCHE2D, for p...

  6. FEST-C 1.3 & 2.0 for CMAQ Bi-directional NH3, Crop Production, and SWAT Modeling

    EPA Science Inventory

    The Fertilizer Emission Scenario Tool for CMAQ (FEST-C) is developed in a Linux environment, a festc JAVA interface that integrates 14 tools and scenario management options facilitating land use/crop data processing for the Community Multiscale Air Quality (CMAQ) modeling system ...

  7. Improving software maintenance through measurement

    NASA Technical Reports Server (NTRS)

    Rombach, H. Dieter; Ulery, Bradford T.

    1989-01-01

    A practical approach to improving software maintenance through measurements is presented. This approach is based on general models for measurement and improvement. Both models, their integration, and practical guidelines for transferring them into industrial maintenance settings are presented. Several examples of applications of the approach to real-world maintenance environments are discussed.

  8. SADA: A FREEWARE DECISION SUPPORT TOOL INTEGRATING GIS, SAMPLE DESIGN, SPATIAL MODELING AND RISK ASSESSMENT (SLIDE PRESENTATION)

    EPA Science Inventory

    Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporates tools from environmental assessment into an effective problem-solving environment. SADA was developed by the Institute for Environmental Modeling at the University of Tennessee and inc...

  9. MEETING IN CHICAGO: SADA: A FREEWARE DECISION SUPPORT TOOL INTEGRATING GIS, SAMPLE DESIGN, SPATIAL MODELING, AND ENVIRONMENTAL RISK ASSESSMENT

    EPA Science Inventory

    Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporates tools from environmental assessment into an effective problem-solving environment. SADA was developed by the Institute for Environmental Modeling at the University of Tennessee and inc...

  10. MEETING IN CZECH REPUBLIC: SADA: A FREEWARE DECISION SUPPORT TOOL INTEGRATING GIS, SAMPLE DESIGN, SPATIAL MODELING, AND RISK ASSESSMENT

    EPA Science Inventory

    Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporates tools from environmental assessment into an effective problem-solving environment. SADA was developed by the Institute for Environmental Modeling at the University of Tennessee and inc...

  11. Factors Associated with Technology Integration to Improve Instructional Abilities: A Path Model

    ERIC Educational Resources Information Center

    Uslu, Öner

    2018-01-01

    Today, students are expected to access, analyse and synthesise information, and work cooperatively. Their learning environment, therefore, should be equipped with appropriate tools and materials, and teachers should have instructional abilities to use them effectively. This study aims to propose a model to improve teachers' instructional abilities…

  12. Linking Agricultural Crop Management and Air Quality Models for Regional to National-Scale Nitrogen Assessments

    EPA Science Inventory

    While nitrogen (N) is an essential element for life, human population growth and demands for energy, transportation and food can lead to excess nitrogen in the environment. A modeling framework is described and implemented to promote a more integrated, process-based and system le...

  13. The NASA Lewis integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1991-01-01

    A new flight simulation facility was developed at NASA-Lewis. The purpose of this flight simulator is to allow integrated propulsion control and flight control algorithm development and evaluation in real time. As a preliminary check of the simulator facility capabilities and correct integration of its components, the control design and physics models for a short take-off and vertical landing fighter aircraft model were shown, with their associated system integration and architecture, pilot vehicle interfaces, and display symbology. The initial testing and evaluation results show that this fixed based flight simulator can provide real time feedback and display of both airframe and propulsion variables for validation of integrated flight and propulsion control systems. Additionally, through the use of this flight simulator, various control design methodologies and cockpit mechanizations can be tested and evaluated in a real time environment.

  14. Mission Critical Computer Resources Management Guide

    DTIC Science & Technology

    1988-09-01

    Support Analyzers, Management, Generators Environments Word Workbench Processors Showroom System Structure HO Compilers IMath 1OperatingI Functions I...Simulated Automated, On-Line Generators Support Exercises Catalog, Function Environments Formal Spec Libraries Showroom System Structure I ADA Trackers I...shown in Figure 13-2. In this model, showrooms of larger more capable piecesare developed off-line for later integration and use in multiple systems

  15. Acidity in DMSO from the embedded cluster integral equation quantum solvation model.

    PubMed

    Heil, Jochen; Tomazic, Daniel; Egbers, Simon; Kast, Stefan M

    2014-04-01

    The embedded cluster reference interaction site model (EC-RISM) is applied to the prediction of acidity constants of organic molecules in dimethyl sulfoxide (DMSO) solution. EC-RISM is based on a self-consistent treatment of the solute's electronic structure and the solvent's structure by coupling quantum-chemical calculations with three-dimensional (3D) RISM integral equation theory. We compare available DMSO force fields with reference calculations obtained using the polarizable continuum model (PCM). The results are evaluated statistically using two different approaches to eliminating the proton contribution: a linear regression model and an analysis of pK(a) shifts for compound pairs. Suitable levels of theory for the integral equation methodology are benchmarked. The results are further analyzed and illustrated by visualizing solvent site distribution functions and comparing them with an aqueous environment.

  16. Soundscape elaboration from anthrophonic adaptation of community noise

    NASA Astrophysics Data System (ADS)

    Teddy Badai Samodra, FX

    2018-03-01

    Under the situation of an urban environment, noise has been a critical issue in affecting the indoor environment. A reliable approach is required for evaluation of the community noise as one factor of anthrophonic in the urban environment. This research investigates the level of noise exposure from different community noise sources and elaborates the advantage of the noise disadvantages for soundscape innovation. Integrated building element design as a protector for noise control and speech intelligibility compliance using field experiment and MATLAB programming and modeling are also carried out. Meanwhile, for simulation analysis and building acoustic optimization, Sound Reduction-Speech Intelligibility and Reverberation Time are the main parameters for identifying tropical building model as case study object. The results show that the noise control should consider its integration with the other critical issue, thermal control, in an urban environment. The 1.1 second of reverberation time for speech activities and noise reduction more than 28.66 dBA for critical frequency (20 Hz), the speech intelligibility index could be reached more than fair assessment, 0.45. Furthermore, the environmental psychology adaptation result “Close The Opening” as the best method in high noise condition and personal adjustment as the easiest and the most adaptable way.

  17. Modeling Nitrogen Dynamics in a Waste Stabilization Pond System Using Flexible Modeling Environment with MCMC.

    PubMed

    Mukhtar, Hussnain; Lin, Yu-Pin; Shipin, Oleg V; Petway, Joy R

    2017-07-12

    This study presents an approach for obtaining realization sets of parameters for nitrogen removal in a pilot-scale waste stabilization pond (WSP) system. The proposed approach was designed for optimal parameterization, local sensitivity analysis, and global uncertainty analysis of a dynamic simulation model for the WSP by using the R software package Flexible Modeling Environment (R-FME) with the Markov chain Monte Carlo (MCMC) method. Additionally, generalized likelihood uncertainty estimation (GLUE) was integrated into the FME to evaluate the major parameters that affect the simulation outputs in the study WSP. Comprehensive modeling analysis was used to simulate and assess nine parameters and concentrations of ON-N, NH₃-N and NO₃-N. Results indicate that the integrated FME-GLUE-based model, with good Nash-Sutcliffe coefficients (0.53-0.69) and correlation coefficients (0.76-0.83), successfully simulates the concentrations of ON-N, NH₃-N and NO₃-N. Moreover, the Arrhenius constant was the only parameter sensitive to model performances of ON-N and NH₃-N simulations. However, Nitrosomonas growth rate, the denitrification constant, and the maximum growth rate at 20 °C were sensitive to ON-N and NO₃-N simulation, which was measured using global sensitivity.

  18. Analysis of Intelligent Transportation Systems Using Model-Driven Simulations.

    PubMed

    Fernández-Isabel, Alberto; Fuentes-Fernández, Rubén

    2015-06-15

    Intelligent Transportation Systems (ITSs) integrate information, sensor, control, and communication technologies to provide transport related services. Their users range from everyday commuters to policy makers and urban planners. Given the complexity of these systems and their environment, their study in real settings is frequently unfeasible. Simulations help to address this problem, but present their own issues: there can be unintended mistakes in the transition from models to code; their platforms frequently bias modeling; and it is difficult to compare works that use different models and tools. In order to overcome these problems, this paper proposes a framework for a model-driven development of these simulations. It is based on a specific modeling language that supports the integrated specification of the multiple facets of an ITS: people, their vehicles, and the external environment; and a network of sensors and actuators conveniently arranged and distributed that operates over them. The framework works with a model editor to generate specifications compliant with that language, and a code generator to produce code from them using platform specifications. There are also guidelines to help researchers in the application of this infrastructure. A case study on advanced management of traffic lights with cameras illustrates its use.

  19. Analysis of Intelligent Transportation Systems Using Model-Driven Simulations

    PubMed Central

    Fernández-Isabel, Alberto; Fuentes-Fernández, Rubén

    2015-01-01

    Intelligent Transportation Systems (ITSs) integrate information, sensor, control, and communication technologies to provide transport related services. Their users range from everyday commuters to policy makers and urban planners. Given the complexity of these systems and their environment, their study in real settings is frequently unfeasible. Simulations help to address this problem, but present their own issues: there can be unintended mistakes in the transition from models to code; their platforms frequently bias modeling; and it is difficult to compare works that use different models and tools. In order to overcome these problems, this paper proposes a framework for a model-driven development of these simulations. It is based on a specific modeling language that supports the integrated specification of the multiple facets of an ITS: people, their vehicles, and the external environment; and a network of sensors and actuators conveniently arranged and distributed that operates over them. The framework works with a model editor to generate specifications compliant with that language, and a code generator to produce code from them using platform specifications. There are also guidelines to help researchers in the application of this infrastructure. A case study on advanced management of traffic lights with cameras illustrates its use. PMID:26083232

  20. HIV promoter integration site primarily modulates transcriptional burst size rather than frequency.

    PubMed

    Skupsky, Ron; Burnett, John C; Foley, Jonathan E; Schaffer, David V; Arkin, Adam P

    2010-09-30

    Mammalian gene expression patterns, and their variability across populations of cells, are regulated by factors specific to each gene in concert with its surrounding cellular and genomic environment. Lentiviruses such as HIV integrate their genomes into semi-random genomic locations in the cells they infect, and the resulting viral gene expression provides a natural system to dissect the contributions of genomic environment to transcriptional regulation. Previously, we showed that expression heterogeneity and its modulation by specific host factors at HIV integration sites are key determinants of infected-cell fate and a possible source of latent infections. Here, we assess the integration context dependence of expression heterogeneity from diverse single integrations of a HIV-promoter/GFP-reporter cassette in Jurkat T-cells. Systematically fitting a stochastic model of gene expression to our data reveals an underlying transcriptional dynamic, by which multiple transcripts are produced during short, infrequent bursts, that quantitatively accounts for the wide, highly skewed protein expression distributions observed in each of our clonal cell populations. Interestingly, we find that the size of transcriptional bursts is the primary systematic covariate over integration sites, varying from a few to tens of transcripts across integration sites, and correlating well with mean expression. In contrast, burst frequencies are scattered about a typical value of several per cell-division time and demonstrate little correlation with the clonal means. This pattern of modulation generates consistently noisy distributions over the sampled integration positions, with large expression variability relative to the mean maintained even for the most productive integrations, and could contribute to specifying heterogeneous, integration-site-dependent viral production patterns in HIV-infected cells. Genomic environment thus emerges as a significant control parameter for gene expression variation that may contribute to structuring mammalian genomes, as well as be exploited for survival by integrating viruses.

  1. Piloted Evaluation of an Integrated Methodology for Propulsion and Airframe Control Design

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.; Garg, Sanjay; Mattern, Duane L.; Ranaudo, Richard J.; Odonoghue, Dennis P.

    1994-01-01

    An integrated methodology for propulsion and airframe control has been developed and evaluated for a Short Take-Off Vertical Landing (STOVL) aircraft using a fixed base flight simulator at NASA Lewis Research Center. For this evaluation the flight simulator is configured for transition flight using a STOVL aircraft model, a full nonlinear turbofan engine model, simulated cockpit and displays, and pilot effectors. The paper provides a brief description of the simulation models, the flight simulation environment, the displays and symbology, the integrated control design, and the piloted tasks used for control design evaluation. In the simulation, the pilots successfully completed typical transition phase tasks such as combined constant deceleration with flight path tracking, and constant acceleration wave-off maneuvers. The pilot comments of the integrated system performance and the display symbology are discussed and analyzed to identify potential areas of improvement.

  2. Project SOLWIND: Space radiation exposure. [evaluation of particle fluxes

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1975-01-01

    A special orbital radiation study was conducted for the SOLWIND project to evaluate mission-encountered energetic particle fluxes. Magnetic field calculations were performed with a current field model, extrapolated to the tentative spacecraft launch epoch with linear time terms. Orbital flux integrations for circular flight paths were performed with the latest proton and electron environment models, using new improved computational methods. Temporal variations in the ambient electron environment are considered and partially accounted for. Estimates of average energetic solar proton fluences are given for a one year mission duration at selected integral energies ranging from E greater than 10 to E greater than 100 MeV; the predicted annual fluence is found to relate to the period of maximum solar activity during the next solar cycle. The results are presented in graphical and tabular form; they are analyzed, explained, and discussed.

  3. Radiation hazards to synchronous satellites: The IUE (SAS-D) mission

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1973-01-01

    The ambient trapped particle fluxes incident on the IUE (SAS-D) satellite were studied. Several synchronous elliptical and circular flight paths were evaluated and the effect of inclination, eccentricity, and parking longitude on vehicle encountered intensities was investigated. Temporal variations in the electron environment were considered and partially accounted for. Magnetic field calculations were performed with a current field model extrapolated to a later epoch with linear time terms. Orbital flux integrations were performed with the latest proton and electron environment models using new improved computational methods. The results are presented in graphical and tabular form; they are analyzed, explained, and discussed. Estimates of energetic solar proton fluxes are given for a one year mission at selected integral energies ranging from 10 to 100 MeV, calculated for a year of maximum solar activity during the next solar cycle.

  4. Modeling and Simulation Verification, Validation and Accreditation (VV&A): A New Undertaking for the Exploration Systems Mission Directorate

    NASA Technical Reports Server (NTRS)

    Prill, Mark E.

    2005-01-01

    and Accreditation (VV&A) session audience, a snapshot review of the Exploration Space Mission Directorate s (ESMD) investigation into implementation of a modeling and simulation (M&S) VV&A program. The presentation provides some legacy ESMD reference material, including information on the then-current organizational structure, and M&S (Simulation Based Acquisition (SBA)) focus contained therein, to provide a context for the proposed M&S VV&A approach. This reference material briefly highlights the SBA goals and objectives, and outlines FY05 M&S development and implementation consistent with the Subjective Assessment, Constructive Assessment, Operator-in-the-Loop Assessment, Hardware-in-the-Loop Assessment, and In Service Operations Assessment M&S construct, the NASA Exploration Information Ontology Model (NExIOM) data model, and integration with the Windchill-based Integrated Collaborative Environment (ICE). The presentation then addresses the ESMD team s initial conclusions regarding an M&S VV&A program, summarizes the general VV&A implementation approach anticipated, and outlines some of the recognized VV&A program challenges, all within a broader context of the overarching Integrated Modeling and Simulation (IM&S) environment at both the ESMD and Agency (NASA) levels. The presentation concludes with a status on the current M&S organization s progress to date relative to the recommended IM&S implementation activity. The overall presentation was focused to provide, for the Verification, Validation,

  5. FREEWAT: an HORIZON 2020 project to build open source tools for water management.

    NASA Astrophysics Data System (ADS)

    Foglia, L.; Rossetto, R.; Borsi, I.; Mehl, S.; Velasco Mansilla, V.

    2015-12-01

    FREEWAT is an HORIZON 2020 EU project. FREEWAT main result will be an open source and public domain GIS integrated modelling environment for the simulation of water quantity and quality in surface water and groundwater with an integrated water management and planning module. FREEWAT aims at promoting water resource management by simplifying the application of the Water Framework Directive and related Directives. Specific objectives of the project are: to coordinate previous EU and national funded research to integrate existing software modules for water management in a single environment into the GIS based FREEWAT and to support the FREEWAT application in an innovative participatory approach gathering technical staff and relevant stakeholders (policy and decision makers) in designing scenarios for application of water policies. The open source characteristics of the platform allow to consider this an initiative "ad includendum", as further institutions or developers may contribute to the development. Core of the platform is the SID&GRID framework (GIS integrated physically-based distributed numerical hydrological model based on a modified version of MODFLOW 2005; Rossetto et al. 2013) in its version ported to QGIS desktop. Activities are carried out on two lines: (i) integration of modules to fulfill the end-users requirements, including tools for producing feasibility and management plans; (ii) a set of activities to fix bugs and to provide a well-integrated interface for the different tools implemented. Further capabilities to be integrated are: - module for water management and planning; - calibration, uncertainty and sensitivity analysis; - module for solute transport in unsaturated zone; - module for crop growth and water requirements in agriculture; - tools for groundwater quality issues and for the analysis, interpretation and visualization of hydrogeological data. Through creating a common environment among water research/professionals, policy makers and implementers, FREEWAT main impact will be on enhancing science- and participatory approach and evidence-based decision making in water resource management, hence producing relevant and appropriate outcomes for policy implementation. Large stakeholders involvement is thought to guarantee results dissemination and exploitation.

  6. Integrating DXplain into a clinical information system using the World Wide Web.

    PubMed

    Elhanan, G; Socratous, S A; Cimino, J J

    1996-01-01

    The World Wide Web(WWW) offers a cross-platform environment and standard protocols that enable integration of various applications available on the Internet. The authors use the Web to facilitate interaction between their Web-based Clinical Information System and a decision-support system-DXplain, at the Massachusetts General Hospital-using local architecture and Common Gateway Interface programs. The current application translates patients laboratory test results into DXplain's terms to generate diagnostic hypotheses. Two different access methods are utilized for this model; Hypertext Transfer Protocol (HTTP) and TCP/IP function calls. While clinical aspects cannot be evaluated as yet, the model demonstrates the potential of Web-based applications for interaction and integration and how local architecture, with a controlled vocabulary server, can further facilitate such integration. This model serves to demonstrate some of the limitations of the current WWW technology and identifies issues such as control over Web resources and their utilization and liability issues as possible obstacles for further integration.

  7. Deep space environments for human exploration

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Clowdsley, M. S.; Cucinotta, F. A.; Tripathi, R. K.; Nealy, J. E.; De Angelis, G.

    2004-01-01

    Mission scenarios outside the Earth's protective magnetic shield are being studied. Included are high usage assets in the near-Earth environment for casual trips, for research, and for commercial/operational platforms, in which career exposures will be multi-mission determined over the astronaut's lifetime. The operational platforms will serve as launching points for deep space exploration missions, characterized by a single long-duration mission during the astronaut's career. The exploration beyond these operational platforms will include missions to planets, asteroids, and planetary satellites. The interplanetary environment is evaluated using convective diffusion theory. Local environments for each celestial body are modeled by using results from the most recent targeted spacecraft, and integrated into the design environments. Design scenarios are then evaluated for these missions. The underlying assumptions in arriving at the model environments and their impact on mission exposures within various shield materials will be discussed. Published by Elsevier Ltd on behalf of COSPAR.

  8. Integration of Irma tactical scene generator into directed-energy weapon system simulation

    NASA Astrophysics Data System (ADS)

    Owens, Monte A.; Cole, Madison B., III; Laine, Mark R.

    2003-08-01

    Integrated high-fidelity physics-based simulations that include engagement models, image generation, electro-optical hardware models and control system algorithms have previously been developed by Boeing-SVS for various tracking and pointing systems. These simulations, however, had always used images with featureless or random backgrounds and simple target geometries. With the requirement to engage tactical ground targets in the presence of cluttered backgrounds, a new type of scene generation tool was required to fully evaluate system performance in this challenging environment. To answer this need, Irma was integrated into the existing suite of Boeing-SVS simulation tools, allowing scene generation capabilities with unprecedented realism. Irma is a US Air Force research tool used for high-resolution rendering and prediction of target and background signatures. The MATLAB/Simulink-based simulation achieves closed-loop tracking by running track algorithms on the Irma-generated images, processing the track errors through optical control algorithms, and moving simulated electro-optical elements. The geometry of these elements determines the sensor orientation with respect to the Irma database containing the three-dimensional background and target models. This orientation is dynamically passed to Irma through a Simulink S-function to generate the next image. This integrated simulation provides a test-bed for development and evaluation of tracking and control algorithms against representative images including complex background environments and realistic targets calibrated using field measurements.

  9. Technology Developments Integrating a Space Network Communications Testbed

    NASA Technical Reports Server (NTRS)

    Kwong, Winston; Jennings, Esther; Clare, Loren; Leang, Dee

    2006-01-01

    As future manned and robotic space explorations missions involve more complex systems, it is essential to verify, validate, and optimize such systems through simulation and emulation in a low cost testbed environment. The goal of such a testbed is to perform detailed testing of advanced space and ground communications networks, technologies, and client applications that are essential for future space exploration missions. We describe the development of new technologies enhancing our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) that enable its integration in a distributed space communications testbed. MACHETE combines orbital modeling, link analysis, and protocol and service modeling to quantify system performance based on comprehensive considerations of different aspects of space missions. It can simulate entire networks and can interface with external (testbed) systems. The key technology developments enabling the integration of MACHETE into a distributed testbed are the Monitor and Control module and the QualNet IP Network Emulator module. Specifically, the Monitor and Control module establishes a standard interface mechanism to centralize the management of each testbed component. The QualNet IP Network Emulator module allows externally generated network traffic to be passed through MACHETE to experience simulated network behaviors such as propagation delay, data loss, orbital effects and other communications characteristics, including entire network behaviors. We report a successful integration of MACHETE with a space communication testbed modeling a lunar exploration scenario. This document is the viewgraph slides of the presentation.

  10. Multi-Disciplinary Analysis for Future Launch Systems Using NASA's Advanced Engineering Environment (AEE)

    NASA Technical Reports Server (NTRS)

    Monell, D.; Mathias, D.; Reuther, J.; Garn, M.

    2003-01-01

    A new engineering environment constructed for the purposes of analyzing and designing Reusable Launch Vehicles (RLVs) is presented. The new environment has been developed to allow NASA to perform independent analysis and design of emerging RLV architectures and technologies. The new Advanced Engineering Environment (AEE) is both collaborative and distributed. It facilitates integration of the analyses by both vehicle performance disciplines and life-cycle disciplines. Current performance disciplines supported include: weights and sizing, aerodynamics, trajectories, propulsion, structural loads, and CAD-based geometries. Current life-cycle disciplines supported include: DDT&E cost, production costs, operations costs, flight rates, safety and reliability, and system economics. Involving six NASA centers (ARC, LaRC, MSFC, KSC, GRC and JSC), AEE has been tailored to serve as a web-accessed agency-wide source for all of NASA's future launch vehicle systems engineering functions. Thus, it is configured to facilitate (a) data management, (b) automated tool/process integration and execution, and (c) data visualization and presentation. The core components of the integrated framework are a customized PTC Windchill product data management server, a set of RLV analysis and design tools integrated using Phoenix Integration's Model Center, and an XML-based data capture and transfer protocol. The AEE system has seen production use during the Initial Architecture and Technology Review for the NASA 2nd Generation RLV program, and it continues to undergo development and enhancements in support of its current main customer, the NASA Next Generation Launch Technology (NGLT) program.

  11. Modeling and dynamic environment analysis technology for spacecraft

    NASA Astrophysics Data System (ADS)

    Fang, Ren; Zhaohong, Qin; Zhong, Zhang; Zhenhao, Liu; Kai, Yuan; Long, Wei

    Spacecraft sustains complex and severe vibrations and acoustic environments during flight. Predicting the resulting structures, including numerical predictions of fluctuating pressure, updating models and random vibration and acoustic analysis, plays an important role during the design, manufacture and ground testing of spacecraft. In this paper, Monotony Integrative Large Eddy Simulation (MILES) is introduced to predict the fluctuating pressure of the fairing. The exact flow structures of the fairing wall surface under different Mach numbers are obtained, then a spacecraft model is constructed using the finite element method (FEM). According to the modal test data, the model is updated by the penalty method. On this basis, the random vibration and acoustic responses of the fairing and satellite are analyzed by different methods. The simulated results agree well with the experimental ones, which shows the validity of the modeling and dynamic environment analysis technology. This information can better support test planning, defining test conditions and designing optimal structures.

  12. Simulation environment and graphical visualization environment: a COPD use-case

    PubMed Central

    2014-01-01

    Background Today, many different tools are developed to execute and visualize physiological models that represent the human physiology. Most of these tools run models written in very specific programming languages which in turn simplify the communication among models. Nevertheless, not all of these tools are able to run models written in different programming languages. In addition, interoperability between such models remains an unresolved issue. Results In this paper we present a simulation environment that allows, first, the execution of models developed in different programming languages and second the communication of parameters to interconnect these models. This simulation environment, developed within the Synergy-COPD project, aims at helping and supporting bio-researchers and medical students understand the internal mechanisms of the human body through the use of physiological models. This tool is composed of a graphical visualization environment, which is a web interface through which the user can interact with the models, and a simulation workflow management system composed of a control module and a data warehouse manager. The control module monitors the correct functioning of the whole system. The data warehouse manager is responsible for managing the stored information and supporting its flow among the different modules. This simulation environment has been validated with the integration of three models: two deterministic, i.e. based on linear and differential equations, and one probabilistic, i.e., based on probability theory. These models have been selected based on the disease under study in this project, i.e., chronic obstructive pulmonary disease. Conclusion It has been proved that the simulation environment presented here allows the user to research and study the internal mechanisms of the human physiology by the use of models via a graphical visualization environment. A new tool for bio-researchers is ready for deployment in various use cases scenarios. PMID:25471327

  13. Variational Iterative Refinement Source Term Estimation Algorithm Assessment for Rural and Urban Environments

    NASA Astrophysics Data System (ADS)

    Delle Monache, L.; Rodriguez, L. M.; Meech, S.; Hahn, D.; Betancourt, T.; Steinhoff, D.

    2016-12-01

    It is necessary to accurately estimate the initial source characteristics in the event of an accidental or intentional release of a Chemical, Biological, Radiological, or Nuclear (CBRN) agent into the atmosphere. The accurate estimation of the source characteristics are important because many times they are unknown and the Atmospheric Transport and Dispersion (AT&D) models rely heavily on these estimates to create hazard assessments. To correctly assess the source characteristics in an operational environment where time is critical, the National Center for Atmospheric Research (NCAR) has developed a Source Term Estimation (STE) method, known as the Variational Iterative Refinement STE algorithm (VIRSA). VIRSA consists of a combination of modeling systems. These systems include an AT&D model, its corresponding STE model, a Hybrid Lagrangian-Eulerian Plume Model (H-LEPM), and its mathematical adjoint model. In an operational scenario where we have information regarding the infrastructure of a city, the AT&D model used is the Urban Dispersion Model (UDM) and when using this model in VIRSA we refer to the system as uVIRSA. In all other scenarios where we do not have the city infrastructure information readily available, the AT&D model used is the Second-order Closure Integrated PUFF model (SCIPUFF) and the system is referred to as sVIRSA. VIRSA was originally developed using SCIPUFF 2.4 for the Defense Threat Reduction Agency and integrated into the Hazard Prediction and Assessment Capability and Joint Program for Information Systems Joint Effects Model. The results discussed here are the verification and validation of the upgraded system with SCIPUFF 3.0 and the newly implemented UDM capability. To verify uVIRSA and sVIRSA, synthetic concentration observation scenarios were created in urban and rural environments and the results of this verification are shown. Finally, we validate the STE performance of uVIRSA using scenarios from the Joint Urban 2003 (JU03) experiment, which was held in Oklahoma City and also validate the performance of sVIRSA using scenarios from the FUsing Sensor Integrated Observing Network (FUSION) Field Trial 2007 (FFT07), held at Dugway Proving Grounds in rural Utah.

  14. Mechanisms for integration of information models across related domains

    NASA Astrophysics Data System (ADS)

    Atkinson, Rob

    2010-05-01

    It is well recognised that there are opportunities and challenges in cross-disciplinary data integration. A significant barrier, however, is creating a conceptual model of the combined domains and the area of integration. For example, a groundwater domain application may require information from several related domains: geology, hydrology, water policy, etc. Each domain may have its own data holdings and conceptual models, but these will share various common concepts (eg. The concept of an aquifer). These areas of semantic overlap present significant challenges, firstly to choose a single representation (model) of a concept that appears in multiple disparate models,, then to harmonise these other models with the single representation. In addition, models may exist at different levels of abstraction depending on how closely aligned they are with a particular implementation. This makes it hard for modellers in one domain to introduce elements from another domain without either introducing a specific style of implementation, or conversely dealing with a set of abstract patterns that are hard to integrate with existing implementations. Models are easier to integrate if they are broken down into small units, with common concepts implemented using common models from well-known, and predictably managed shared libraries. This vision however requires development of a set of mechanisms (tools and procedures) for implementing and exploiting libraries of model components. These mechanisms need to handle publication, discovery, subscription, versioning and implementation of models in different forms. In this presentation a coherent suite of such mechanisms is proposed, using a scenario based on re-use of geosciences models. This approach forms the basis of a comprehensive strategy to empower domain modellers to create more interoperable systems. The strategy address a range of concerns and practice, and includes methodologies, an accessible toolkit, improvements to available modelling software, a community of practice and design of model registries. These mechanisms have been used to decouple the generation of simplified data products from a data and metadata maintenance environment, where the simplified products conform to implementation styles, and the data maintenance environment is a modular, extensible implementation of a more complete set of related domain models. Another case study is the provisioning of authoritative place names (a gazetteer) from more complex multi-lingual and historical archives of related place name usage.

  15. Construction of dynamic stochastic simulation models using knowledge-based techniques

    NASA Technical Reports Server (NTRS)

    Williams, M. Douglas; Shiva, Sajjan G.

    1990-01-01

    Over the past three decades, computer-based simulation models have proven themselves to be cost-effective alternatives to the more structured deterministic methods of systems analysis. During this time, many techniques, tools and languages for constructing computer-based simulation models have been developed. More recently, advances in knowledge-based system technology have led many researchers to note the similarities between knowledge-based programming and simulation technologies and to investigate the potential application of knowledge-based programming techniques to simulation modeling. The integration of conventional simulation techniques with knowledge-based programming techniques is discussed to provide a development environment for constructing knowledge-based simulation models. A comparison of the techniques used in the construction of dynamic stochastic simulation models and those used in the construction of knowledge-based systems provides the requirements for the environment. This leads to the design and implementation of a knowledge-based simulation development environment. These techniques were used in the construction of several knowledge-based simulation models including the Advanced Launch System Model (ALSYM).

  16. Principles of proteome allocation are revealed using proteomic data and genome-scale models

    PubMed Central

    Yang, Laurence; Yurkovich, James T.; Lloyd, Colton J.; Ebrahim, Ali; Saunders, Michael A.; Palsson, Bernhard O.

    2016-01-01

    Integrating omics data to refine or make context-specific models is an active field of constraint-based modeling. Proteomics now cover over 95% of the Escherichia coli proteome by mass. Genome-scale models of Metabolism and macromolecular Expression (ME) compute proteome allocation linked to metabolism and fitness. Using proteomics data, we formulated allocation constraints for key proteome sectors in the ME model. The resulting calibrated model effectively computed the “generalist” (wild-type) E. coli proteome and phenotype across diverse growth environments. Across 15 growth conditions, prediction errors for growth rate and metabolic fluxes were 69% and 14% lower, respectively. The sector-constrained ME model thus represents a generalist ME model reflecting both growth rate maximization and “hedging” against uncertain environments and stresses, as indicated by significant enrichment of these sectors for the general stress response sigma factor σS. Finally, the sector constraints represent a general formalism for integrating omics data from any experimental condition into constraint-based ME models. The constraints can be fine-grained (individual proteins) or coarse-grained (functionally-related protein groups) as demonstrated here. This flexible formalism provides an accessible approach for narrowing the gap between the complexity captured by omics data and governing principles of proteome allocation described by systems-level models. PMID:27857205

  17. Principles of proteome allocation are revealed using proteomic data and genome-scale models

    DOE PAGES

    Yang, Laurence; Yurkovich, James T.; Lloyd, Colton J.; ...

    2016-11-18

    Integrating omics data to refine or make context-specific models is an active field of constraint-based modeling. Proteomics now cover over 95% of the Escherichia coli proteome by mass. Genome-scale models of Metabolism and macromolecular Expression (ME) compute proteome allocation linked to metabolism and fitness. Using proteomics data, we formulated allocation constraints for key proteome sectors in the ME model. The resulting calibrated model effectively computed the “generalist” (wild-type) E. coli proteome and phenotype across diverse growth environments. Across 15 growth conditions, prediction errors for growth rate and metabolic fluxes were 69% and 14% lower, respectively. The sector-constrained ME model thusmore » represents a generalist ME model reflecting both growth rate maximization and “hedging” against uncertain environments and stresses, as indicated by significant enrichment of these sectors for the general stress response sigma factor σS. Finally, the sector constraints represent a general formalism for integrating omics data from any experimental condition into constraint-based ME models. The constraints can be fine-grained (individual proteins) or coarse-grained (functionally-related protein groups) as demonstrated here. Furthermore, this flexible formalism provides an accessible approach for narrowing the gap between the complexity captured by omics data and governing principles of proteome allocation described by systems-level models.« less

  18. Visual-vestibular integration as a function of adaptation to space flight and return to Earth

    NASA Technical Reports Server (NTRS)

    Reschke, Millard R.; Bloomberg, Jacob J.; Harm, Deborah L.; Huebner, William P.; Krnavek, Jody M.; Paloski, William H.; Berthoz, Alan

    1999-01-01

    Research on perception and control of self-orientation and self-motion addresses interactions between action and perception . Self-orientation and self-motion, and the perception of that orientation and motion are required for and modified by goal-directed action. Detailed Supplementary Objective (DSO) 604 Operational Investigation-3 (OI-3) was designed to investigate the integrated coordination of head and eye movements within a structured environment where perception could modify responses and where response could be compensatory for perception. A full understanding of this coordination required definition of spatial orientation models for the microgravity environment encountered during spaceflight.

  19. 3D models as a platform for urban analysis and studies on human perception of space

    NASA Astrophysics Data System (ADS)

    Fisher-Gewirtzman, D.

    2012-10-01

    The objective of this work is to develop an integrated visual analysis and modelling for environmental and urban systems in respect to interior space layout and functionality. This work involves interdisciplinary research efforts that focus primarily on architecture design discipline, yet incorporates experts from other and different disciplines, such as Geoinformatics, computer sciences and environment-behavior studies. This work integrates an advanced Spatial Openness Index (SOI) model within realistic geovisualized Geographical Information System (GIS) environment and assessment using subjective residents' evaluation. The advanced SOI model measures the volume of visible space at any required view point practically, for every room or function. This model enables accurate 3D simulation of the built environment regarding built structure and surrounding vegetation. This paper demonstrates the work on a case study. A 3D model of Neve-Shaanan neighbourhood in Haifa was developed. Students that live in this neighbourhood had participated in this research. Their apartments were modelled in details and inserted into a general model, representing topography and the volumes of buildings. The visual space for each room in every apartment was documented and measured and at the same time the students were asked to answer questions regarding their perception of space and view from their residence. The results of this research work had shown potential contribution to professional users, such as researchers, designers and city planners. This model can be easily used by professionals and by non-professionals such as city dwellers, contractors and developers. This work continues with additional case studies having different building typologies and functions variety, using virtual reality tools.

  20. Re-visiting scholarly community engagement in the contemporary research assessment environments of Australasian universities.

    PubMed

    Duke, Jan; Moss, Cheryle

    2009-01-01

    Restructuring of university environments to meet funding requirements based on research performance presents challenges internationally to nursing and other allied health groups. These funding models generate more emphasis on the scholarship of discovery than on the scholarship of integration, the scholarship of application, and the scholarship of sharing knowledge. Yet achievement of health advances by these disciplines is unlikely to emerge through laboratory-based research. They are more likely to emerge through scholarly research activities which involve partnerships between universities and communities. Current emphases on research assessment and quantum measurements are particularly associated with the scholarship of discovery, and thus raise concerns that such pressures may lead universities and other organisations away from community engagement. In response to these issues, the importance of linking scholarship and communities, furthering mechanisms to legitimise scholarly community engagement, and reducing barriers to this in the context of the contemporary university research environments are argued. Boyer's model of scholarship (that the work of universities centres around four areas of scholarship: discovery, integration, application and sharing knowledge) highlights these tensions. It is suggested that by revisiting Boyer's model and considering the ways in which it may generate possibilities for scholarly community engagement, university schools of nursing in the contemporary research assessment environment could find ways to balance the forms of scholarship by which social good can be advanced.

  1. A Hybrid 3D Indoor Space Model

    NASA Astrophysics Data System (ADS)

    Jamali, Ali; Rahman, Alias Abdul; Boguslawski, Pawel

    2016-10-01

    GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM), Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  2. Modeling for Integrated Science Management and Resilient Systems Development

    NASA Technical Reports Server (NTRS)

    Shelhamer, M.; Mindock, J.; Lumpkins, S.

    2014-01-01

    Many physiological, environmental, and operational risks exist for crewmembers during spaceflight. An understanding of these risks from an integrated perspective is required to provide effective and efficient mitigations during future exploration missions that typically have stringent limitations on resources available, such as mass, power, and crew time. The Human Research Program (HRP) is in the early stages of developing collaborative modeling approaches for the purposes of managing its science portfolio in an integrated manner to support cross-disciplinary risk mitigation strategies and to enable resilient human and engineered systems in the spaceflight environment. In this talk, we will share ideas being explored from fields such as network science, complexity theory, and system-of-systems modeling. Initial work on tools to support these explorations will be discussed briefly, along with ideas for future efforts.

  3. Systems Analysis Initiated for All-Electric Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.

    2003-01-01

    A multidisciplinary effort is underway at the NASA Glenn Research Center to develop concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. There is a growing interest in the use of fuel cells as a power source for electric propulsion as well as an auxiliary power unit to substantially reduce or eliminate environmentally harmful emissions. A systems analysis effort was initiated to assess potential concepts in an effort to identify those configurations with the highest payoff potential. Among the technologies under consideration are advanced proton exchange membrane (PEM) and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. Prior to this effort, the majority of fuel cell analysis done at Glenn was done for space applications. Because of this, a new suite of models was developed. These models include the hydrogen-air PEM fuel cell; internal reforming solid oxide fuel cell; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. Initial mass, volume, and performance estimates of a variety of PEM systems operating on hydrogen and reformate have been completed for a baseline general aviation aircraft. Solid oxide/turbine hybrid systems are being analyzed. In conjunction with the analysis efforts, a joint effort has been initiated with Glenn s Computer Services Division to integrate fuel cell stack and component models with the visualization environment that supports the GRUVE lab, Glenn s virtual reality facility. The objective of this work is to provide an environment to assist engineers in the integration of fuel cell propulsion systems into aircraft and provide a better understanding of the interaction between system components and the resulting effect on the overall design and performance of the aircraft. Initially, three-dimensional computer-aided design (CAD) models of representative PEM fuel cell stack and components were developed and integrated into the virtual reality environment along with an Excel-based model used to calculate fuel cell electrical performance on the basis of cell dimensions (see the figure). CAD models of a representative general aviation aircraft were also developed and added to the environment. With the use of special headgear, users will be able to virtually manipulate the fuel cell s physical characteristics and its placement within the aircraft while receiving information on the resultant fuel cell output power and performance. As the systems analysis effort progresses, we will add more component models to the GRUVE environment to help us more fully understand the effect of various system configurations on the aircraft.

  4. SEPEM: A tool for statistical modeling the solar energetic particle environment

    NASA Astrophysics Data System (ADS)

    Crosby, Norma; Heynderickx, Daniel; Jiggens, Piers; Aran, Angels; Sanahuja, Blai; Truscott, Pete; Lei, Fan; Jacobs, Carla; Poedts, Stefaan; Gabriel, Stephen; Sandberg, Ingmar; Glover, Alexi; Hilgers, Alain

    2015-07-01

    Solar energetic particle (SEP) events are a serious radiation hazard for spacecraft as well as a severe health risk to humans traveling in space. Indeed, accurate modeling of the SEP environment constitutes a priority requirement for astrophysics and solar system missions and for human exploration in space. The European Space Agency's Solar Energetic Particle Environment Modelling (SEPEM) application server is a World Wide Web interface to a complete set of cross-calibrated data ranging from 1973 to 2013 as well as new SEP engineering models and tools. Both statistical and physical modeling techniques have been included, in order to cover the environment not only at 1 AU but also in the inner heliosphere ranging from 0.2 AU to 1.6 AU using a newly developed physics-based shock-and-particle model to simulate particle flux profiles of gradual SEP events. With SEPEM, SEP peak flux and integrated fluence statistics can be studied, as well as durations of high SEP flux periods. Furthermore, effects tools are also included to allow calculation of single event upset rate and radiation doses for a variety of engineering scenarios.

  5. Watershed System Model: The Essentials to Model Complex Human-Nature System at the River Basin Scale

    NASA Astrophysics Data System (ADS)

    Li, Xin; Cheng, Guodong; Lin, Hui; Cai, Ximing; Fang, Miao; Ge, Yingchun; Hu, Xiaoli; Chen, Min; Li, Weiyue

    2018-03-01

    Watershed system models are urgently needed to understand complex watershed systems and to support integrated river basin management. Early watershed modeling efforts focused on the representation of hydrologic processes, while the next-generation watershed models should represent the coevolution of the water-land-air-plant-human nexus in a watershed and provide capability of decision-making support. We propose a new modeling framework and discuss the know-how approach to incorporate emerging knowledge into integrated models through data exchange interfaces. We argue that the modeling environment is a useful tool to enable effective model integration, as well as create domain-specific models of river basin systems. The grand challenges in developing next-generation watershed system models include but are not limited to providing an overarching framework for linking natural and social sciences, building a scientifically based decision support system, quantifying and controlling uncertainties, and taking advantage of new technologies and new findings in the various disciplines of watershed science. The eventual goal is to build transdisciplinary, scientifically sound, and scale-explicit watershed system models that are to be codesigned by multidisciplinary communities.

  6. Integrating Occupational Characteristics into Human Performance Models: IPME Versus ISMAT Approach

    DTIC Science & Technology

    2009-08-01

    modélisation générique de la performance humaine appelé Integrated Performance Modelling Environment (IPME). Ce projet a permis d’explorer l’utilisation de la...groupes professionnels dans des modèles de performance humaine : l’approche IPME et l’approche ISMAT Par Christy Lorenzen; RDDC RC 2009-059; R & D...application de simulation d’événements discrets disponible sur le marché et servant à développer des modèles qui simulent la performance humaine et de

  7. Computer aided design environment for the analysis and design of multi-body flexible structures

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, Jayant V.; Singh, Ramen P.

    1989-01-01

    A computer aided design environment consisting of the programs NASTRAN, TREETOPS and MATLAB is presented in this paper. With links for data transfer between these programs, the integrated design of multi-body flexible structures is significantly enhanced. The CAD environment is used to model the Space Shuttle/Pinhole Occulater Facility. Then a controller is designed and evaluated in the nonlinear time history sense. Recent enhancements and ongoing research to add more capabilities are also described.

  8. Systems and methods for knowledge discovery in spatial data

    DOEpatents

    Obradovic, Zoran; Fiez, Timothy E.; Vucetic, Slobodan; Lazarevic, Aleksandar; Pokrajac, Dragoljub; Hoskinson, Reed L.

    2005-03-08

    Systems and methods are provided for knowledge discovery in spatial data as well as to systems and methods for optimizing recipes used in spatial environments such as may be found in precision agriculture. A spatial data analysis and modeling module is provided which allows users to interactively and flexibly analyze and mine spatial data. The spatial data analysis and modeling module applies spatial data mining algorithms through a number of steps. The data loading and generation module obtains or generates spatial data and allows for basic partitioning. The inspection module provides basic statistical analysis. The preprocessing module smoothes and cleans the data and allows for basic manipulation of the data. The partitioning module provides for more advanced data partitioning. The prediction module applies regression and classification algorithms on the spatial data. The integration module enhances prediction methods by combining and integrating models. The recommendation module provides the user with site-specific recommendations as to how to optimize a recipe for a spatial environment such as a fertilizer recipe for an agricultural field.

  9. Research on the key technologies of 3D spatial data organization and management for virtual building environments

    NASA Astrophysics Data System (ADS)

    Gong, Jun; Zhu, Qing

    2006-10-01

    As the special case of VGE in the fields of AEC (architecture, engineering and construction), Virtual Building Environment (VBE) has been broadly concerned. Highly complex, large-scale 3d spatial data is main bottleneck of VBE applications, so 3d spatial data organization and management certainly becomes the core technology for VBE. This paper puts forward 3d spatial data model for VBE, and the performance to implement it is very high. Inherent storage method of CAD data makes data redundant, and doesn't concern efficient visualization, which is a practical bottleneck to integrate CAD model, so An Efficient Method to Integrate CAD Model Data is put forward. Moreover, Since the 3d spatial indices based on R-tree are usually limited by their weakness of low efficiency due to the severe overlap of sibling nodes and the uneven size of nodes, a new node-choosing algorithm of R-tree are proposed.

  10. An integrated approach to system design, reliability, and diagnosis

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, F. A.; Iverson, David L.

    1990-01-01

    The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems ingeneering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms.

  11. The IDEALL Approach to Learning Development: A Model for Fostering Improved Literacy and Learning Outcomes for Students.

    ERIC Educational Resources Information Center

    Skillen, Jan; Merten, Margaret; Trivett, Neil; Percy, Alisa

    A model of assisting students in the transition to university education is presented that takes a developmental approach. This Integrated Development of English Language and Academic Literacy and Learning (IDEALL) model recognizes that all students need to develop new or more sophisticated academic skills for the new environment and that the most…

  12. Rocks in the River: The Challenge of Piloting the Inquiry Process in Today's Learning Environment

    ERIC Educational Resources Information Center

    Lambusta, Patrice; Graham, Sandy; Letteri-Walker, Barbara

    2014-01-01

    School librarians in Newport News, Virginia, are meeting the challenges of integrating an Inquiry Process Model into instruction. In the original model the process began by asking students to develop questions to start their inquiry journey. As this model was taught it was discovered that students often did not have enough background knowledge to…

  13. Collaboration and Synergy among Government, Industry and Academia in M&S Domain: Turkey’s Approach

    DTIC Science & Technology

    2009-10-01

    Analysis, Decision Support System Design and Implementation, Simulation Output Analysis, Statistical Data Analysis, Virtual Reality , Artificial... virtual and constructive visual simulation systems as well as integrated advanced analytical models. Collaboration and Synergy among Government...simulation systems that are ready to use, credible, integrated with C4ISR systems.  Creating synthetic environments and/or virtual prototypes of concepts

  14. Strategic Implications of Cloud Computing for Modeling and Simulation (Briefing)

    DTIC Science & Technology

    2016-04-01

    of Promises with Cloud • Cost efficiency • Unlimited storage • Backup and recovery • Automatic software integration • Easy access to information...activities that wrap the actual exercise itself (e.g., travel for exercise support, data collection, integration , etc.). Cloud -based simulation would...requiring quick delivery rather than fewer large messages requiring high bandwidth. Cloud environments tend to be better at providing high-bandwidth

  15. Towards integrated solutions for water, energy, and land using an integrated nexus modeling framework

    NASA Astrophysics Data System (ADS)

    Wada, Y.

    2017-12-01

    Humanity has already reached or even exceeded the Earth's carrying capacity. Growing needs for food, energy and water will only exacerbate existing challenges over the next decades. Consequently, the acceptance of "business as usual" is eroding and we are being challenged to adopt new, more integrated, and more inclusive development pathways that avoid dangerous interference with the local environment and global planetary boundaries. This challenge is embodied in the United Nation's Sustainable Development Goals (SDGs), which endeavor to set a global agenda for moving towards more sustainable development strategies. To improve and sustain human welfare, it is critical that access to modern, reliable, and affordable water, energy, and food is expanded and maintained. The Integrated Solutions for Water, Energy, and Land (IS-WEL) project has been launched by IIASA, together with the Global Environment Facility (GEF) and the United Nations Industrial Development Organization (UNIDO). This project focuses on the water-energy-land nexus in the context of other major global challenges such as urbanization, environmental degradation, and equitable and sustainable futures. It develops a consistent framework for looking at the water-energy-land nexus and identify strategies for achieving the needed transformational outcomes through an advanced assessment framework. A multi-scalar approach are being developed that aims to combine global and regional integrated assessment tools with local stakeholder knowledge in order to identify robust solutions to energy, water, food, and ecosystem security in selected regions of the world. These are regions facing multiple energy, water and land use challenges and rapid demographic and economic changes, and are hardest hit by increasing climate variability and change. This project combines the global integrated assessment model (MESSAGE) with the global land (GLOBIOM) and water (Community Water Model) model respectively, and the integrated modeling framework are then combined with detailed regional decision support tools for water-energy-land nexus analysis in case study regions. A number of stakeholder meetings are used to engage local communities in the definition of important nexus drivers, scenario development and definition of performance metrics.

  16. Towards a mature measurement environment: Creating a software engineering research environment

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.

    1990-01-01

    Software engineering researchers are building tools, defining methods, and models; however, there are problems with the nature and style of the research. The research is typically bottom-up, done in isolation so the pieces cannot be easily logically or physically integrated. A great deal of the research is essentially the packaging of a particular piece of technology with little indication of how the work would be integrated with other prices of research. The research is not aimed at solving the real problems of software engineering, i.e., the development and maintenance of quality systems in a productive manner. The research results are not evaluated or analyzed via experimentation or refined and tailored to the application environment. Thus, it cannot be easily transferred into practice. Because of these limitations we have not been able to understand the components of the discipline as a coherent whole and the relationships between various models of the process and product. What is needed is a top down experimental, evolutionary framework in which research can be focused, logically and physically integrated to produce quality software productively, and evaluated and tailored to the application environment. This implies the need for experimentation, which in turn implies the need for a laboratory that is associated with the artifact we are studying. This laboratory can only exist in an environment where software is being built, i.e., as part of a real software development and maintenance organization. Thus, we propose that Software Engineering Laboratory (SEL) type activities exist in all organizations to support software engineering research. We describe the SEL from a researcher's point of view, and discuss the corporate and government benefits of the SEL. The discussion focuses on the benefits to the research community.

  17. Implementation of an Integrated On-Board Aircraft Engine Diagnostic Architecture

    NASA Technical Reports Server (NTRS)

    Armstrong, Jeffrey B.; Simon, Donald L.

    2012-01-01

    An on-board diagnostic architecture for aircraft turbofan engine performance trending, parameter estimation, and gas-path fault detection and isolation has been developed and evaluated in a simulation environment. The architecture incorporates two independent models: a realtime self-tuning performance model providing parameter estimates and a performance baseline model for diagnostic purposes reflecting long-term engine degradation trends. This architecture was evaluated using flight profiles generated from a nonlinear model with realistic fleet engine health degradation distributions and sensor noise. The architecture was found to produce acceptable estimates of engine health and unmeasured parameters, and the integrated diagnostic algorithms were able to perform correct fault isolation in approximately 70 percent of the tested cases

  18. Cyberinfrastructure to support Real-time, End-to-End, High Resolution, Localized Forecasting

    NASA Astrophysics Data System (ADS)

    Ramamurthy, M. K.; Lindholm, D.; Baltzer, T.; Domenico, B.

    2004-12-01

    From natural disasters such as flooding and forest fires to man-made disasters such as toxic gas releases, the impact of weather-influenced severe events on society can be profound. Understanding, predicting, and mitigating such local, mesoscale events calls for a cyberinfrastructure to integrate multidisciplinary data, tools, and services as well as the capability to generate and use high resolution data (such as wind and precipitation) from localized models. The need for such end to end systems -- including data collection, distribution, integration, assimilation, regionalized mesoscale modeling, analysis, and visualization -- has been realized to some extent in many academic and quasi-operational environments, especially for atmospheric sciences data. However, many challenges still remain in the integration and synthesis of data from multiple sources and the development of interoperable data systems and services across those disciplines. Over the years, the Unidata Program Center has developed several tools that have either directly or indirectly facilitated these local modeling activities. For example, the community is using Unidata technologies such as the Internet Data Distribution (IDD) system, Local Data Manger (LDM), decoders, netCDF libraries, Thematic Realtime Environmental Distributed Data Services (THREDDS), and the Integrated Data Viewer (IDV) in their real-time prediction efforts. In essence, these technologies for data reception and processing, local and remote access, cataloging, and analysis and visualization coupled with technologies from others in the community are becoming the foundation of a cyberinfrastructure to support an end-to-end regional forecasting system. To build on these capabilities, the Unidata Program Center is pleased to be a significant contributor to the Linked Environments for Atmospheric Discovery (LEAD) project, a NSF-funded multi-institutional large Information Technology Research effort. The goal of LEAD is to create an integrated and scalable framework for identifying, accessing, preparing, assimilating, predicting, managing, analyzing, mining, and visualizing a broad array of meteorological data and model output, independent of format and physical location. To that end, LEAD will create a series of interconnected, heterogeneous Grid environments to provide a complete framework for mesoscale research, including a set of integrated Grid and Web Services. This talk will focus on the transition from today's end-to-end systems into the types of systems that the LEAD project envisions and the multidisciplinary research problems they will enable.

  19. Development of water environment information management and water pollution accident response system

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Ruan, H.

    2009-12-01

    In recent years, many water pollution accidents occurred with the rapid economical development. In this study, water environment information management and water pollution accident response system are developed based on geographic information system (GIS) techniques. The system integrated spatial database, attribute database, hydraulic model, and water quality model under a user-friendly interface in a GIS environment. System ran in both Client/Server (C/S) and Browser/Server (B/S) platform which focused on model and inquiry respectively. System provided spatial and attribute data inquiry, water quality evaluation, statics, water pollution accident response case management (opening reservoir etc) and 2D and 3D visualization function, and gave assistant information to make decision on water pollution accident response. Polluted plume in Huaihe River were selected to simulate the transport of pollutes.

  20. SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo.

    PubMed

    Jimenez-Romero, Cristian; Johnson, Jeffrey

    2017-01-01

    The scientific interest attracted by Spiking Neural Networks (SNN) has lead to the development of tools for the simulation and study of neuronal dynamics ranging from phenomenological models to the more sophisticated and biologically accurate Hodgkin-and-Huxley-based and multi-compartmental models. However, despite the multiple features offered by neural modelling tools, their integration with environments for the simulation of robots and agents can be challenging and time consuming. The implementation of artificial neural circuits to control robots generally involves the following tasks: (1) understanding the simulation tools, (2) creating the neural circuit in the neural simulator, (3) linking the simulated neural circuit with the environment of the agent and (4) programming the appropriate interface in the robot or agent to use the neural controller. The accomplishment of the above-mentioned tasks can be challenging, especially for undergraduate students or novice researchers. This paper presents an alternative tool which facilitates the simulation of simple SNN circuits using the multi-agent simulation and the programming environment Netlogo (educational software that simplifies the study and experimentation of complex systems). The engine proposed and implemented in Netlogo for the simulation of a functional model of SNN is a simplification of integrate and fire (I&F) models. The characteristics of the engine (including neuronal dynamics, STDP learning and synaptic delay) are demonstrated through the implementation of an agent representing an artificial insect controlled by a simple neural circuit. The setup of the experiment and its outcomes are described in this work.

  1. Design and implementation of a VoIP broadcasting service over embedded systems in a heterogeneous network environment.

    PubMed

    Leu, Jenq-Shiou; Lin, Wei-Hsiang; Hsieh, Wen-Bin; Lo, Chien-Chih

    2014-01-01

    As the digitization is integrated into daily life, media including video and audio are heavily transferred over the Internet nowadays. Voice-over-Internet Protocol (VoIP), the most popular and mature technology, becomes the focus attracting many researches and investments. However, most of the existing studies focused on a one-to-one communication model in a homogeneous network, instead of one-to-many broadcasting model among diverse embedded devices in a heterogeneous network. In this paper, we present the implementation of a VoIP broadcasting service on the open source-Linphone-in a heterogeneous network environment, including WiFi, 3G, and LAN networks. The proposed system featuring VoIP broadcasting over heterogeneous networks can be integrated with heterogeneous agile devices, such as embedded devices or mobile phones. VoIP broadcasting over heterogeneous networks can be integrated into modern smartphones or other embedded devices; thus when users run in a traditional AM/FM signal unreachable area, they still can receive the broadcast voice through the IP network. Also, comprehensive evaluations are conducted to verify the effectiveness of the proposed implementation.

  2. Design and Implementation of a VoIP Broadcasting Service over Embedded Systems in a Heterogeneous Network Environment

    PubMed Central

    Lin, Wei-Hsiang; Hsieh, Wen-Bin; Lo, Chien-Chih

    2014-01-01

    As the digitization is integrated into daily life, media including video and audio are heavily transferred over the Internet nowadays. Voice-over-Internet Protocol (VoIP), the most popular and mature technology, becomes the focus attracting many researches and investments. However, most of the existing studies focused on a one-to-one communication model in a homogeneous network, instead of one-to-many broadcasting model among diverse embedded devices in a heterogeneous network. In this paper, we present the implementation of a VoIP broadcasting service on the open source—Linphone—in a heterogeneous network environment, including WiFi, 3G, and LAN networks. The proposed system featuring VoIP broadcasting over heterogeneous networks can be integrated with heterogeneous agile devices, such as embedded devices or mobile phones. VoIP broadcasting over heterogeneous networks can be integrated into modern smartphones or other embedded devices; thus when users run in a traditional AM/FM signal unreachable area, they still can receive the broadcast voice through the IP network. Also, comprehensive evaluations are conducted to verify the effectiveness of the proposed implementation. PMID:25300280

  3. Modeling Charge Collection in Detector Arrays

    NASA Technical Reports Server (NTRS)

    Hardage, Donna (Technical Monitor); Pickel, J. C.

    2003-01-01

    A detector array charge collection model has been developed for use as an engineering tool to aid in the design of optical sensor missions for operation in the space radiation environment. This model is an enhancement of the prototype array charge collection model that was developed for the Next Generation Space Telescope (NGST) program. The primary enhancements were accounting for drift-assisted diffusion by Monte Carlo modeling techniques and implementing the modeling approaches in a windows-based code. The modeling is concerned with integrated charge collection within discrete pixels in the focal plane array (FPA), with high fidelity spatial resolution. It is applicable to all detector geometries including monolithc charge coupled devices (CCDs), Active Pixel Sensors (APS) and hybrid FPA geometries based on a detector array bump-bonded to a readout integrated circuit (ROIC).

  4. An Integrated Decision Support System for Planning and Measuring Institutional Efficiency. AIR 1992 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Minnaar, Phil C.

    This paper presents a model for obtaining and organizing managment information for decision making in university planning, developed by the Bureau for Management Information of the University of South Africa. The model identifies the fundamental entities of the university as environment, finance, physical facilities, assets, personnel, and…

  5. Naturalness, privacy, and restorative experiences in wilderness: An integrative model

    Treesearch

    William E. Hammitt

    2012-01-01

    It is suggested that the wilderness experience is a restorative experience that results from the interconnectivity between naturalness/ remoteness and privacy/unconfinement and the four components essential for an environment to be restorative. A model-framework is offered to illustrate the linkages among the environmental, social, and restoration components of...

  6. Modeling and Mapping Personal Learning Environment of Thai International Higher Education Students

    ERIC Educational Resources Information Center

    Sharafuddin, Mohamed Ali; Sawad, Buncha Panacharoen; Wongwai, Sarun

    2018-01-01

    This research article is part of a periodic study conducted to understand, model, map and to develop an integrated approach for effective and interactive self-learning phases of Thai International Hospitality and Tourism higher education students. Questionnaire containing both qualitative and quantitative questions was distributed at the beginning…

  7. Modeling Sustainability in Product Development and Commercialization

    ERIC Educational Resources Information Center

    Carlson, Robert C.; Rafinejad, Dariush

    2008-01-01

    In this article, the authors present the framework of a model that integrates strategic product development decisions with the product's impact on future conditions of resources and the environment. The impact of a product on stocks of nonrenewable sources and sinks is linked in a feedback loop to the cost of manufacturing and using the product…

  8. EcoWellness: The Missing Factor in Holistic Wellness Models

    ERIC Educational Resources Information Center

    Reese, Ryan F.; Myers, Jane E.

    2012-01-01

    A growing body of multidisciplinary literature has delineated the benefits that natural environments have on physical and mental health. Current wellness models in counseling do not specifically address the impact of nature on wellness or how the natural world can be integrated into counseling. The concept of EcoWellness is presented as the…

  9. An Update on Improvements to NiCE Support for PROTEUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Andrew; McCaskey, Alexander J.; Billings, Jay Jay

    2015-09-01

    The Department of Energy Office of Nuclear Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) program has supported the development of the NEAMS Integrated Computational Environment (NiCE), a modeling and simulation workflow environment that provides services and plugins to facilitate tasks such as code execution, model input construction, visualization, and data analysis. This report details the development of workflows for the reactor core neutronics application, PROTEUS. This advanced neutronics application (primarily developed at Argonne National Laboratory) aims to improve nuclear reactor design and analysis by providing an extensible and massively parallel, finite-element solver for current and advanced reactor fuel neutronicsmore » modeling. The integration of PROTEUS-specific tools into NiCE is intended to make the advanced capabilities that PROTEUS provides more accessible to the nuclear energy research and development community. This report will detail the work done to improve existing PROTEUS workflow support in NiCE. We will demonstrate and discuss these improvements, including the development of flexible IO services, an improved interface for input generation, and the addition of advanced Fortran development tools natively in the platform.« less

  10. AN-CASE NET-CENTRIC modeling and simulation

    NASA Astrophysics Data System (ADS)

    Baskinger, Patricia J.; Chruscicki, Mary Carol; Turck, Kurt

    2009-05-01

    The objective of mission training exercises is to immerse the trainees into an environment that enables them to train like they would fight. The integration of modeling and simulation environments that can seamlessly leverage Live systems, and Virtual or Constructive models (LVC) as they are available offers a flexible and cost effective solution to extending the "war-gaming" environment to a realistic mission experience while evolving the development of the net-centric enterprise. From concept to full production, the impact of new capabilities on the infrastructure and concept of operations, can be assessed in the context of the enterprise, while also exposing them to the warfighter. Training is extended to tomorrow's tools, processes, and Tactics, Techniques and Procedures (TTPs). This paper addresses the challenges of a net-centric modeling and simulation environment that is capable of representing a net-centric enterprise. An overview of the Air Force Research Laboratory's (AFRL) Airborne Networking Component Architecture Simulation Environment (AN-CASE) is provide as well as a discussion on how it is being used to assess technologies for the purpose of experimenting with new infrastructure mechanisms that enhance the scalability and reliability of the distributed mission operations environment.

  11. Introduction: Special issue on advances in topobathymetric mapping, models, and applications

    USGS Publications Warehouse

    Gesch, Dean B.; Brock, John C.; Parrish, Christopher E.; Rogers, Jeffrey N.; Wright, C. Wayne

    2016-01-01

    Detailed knowledge of near-shore topography and bathymetry is required for many geospatial data applications in the coastal environment. New data sources and processing methods are facilitating development of seamless, regional-scale topobathymetric digital elevation models. These elevation models integrate disparate multi-sensor, multi-temporal topographic and bathymetric datasets to provide a coherent base layer for coastal science applications such as wetlands mapping and monitoring, sea-level rise assessment, benthic habitat mapping, erosion monitoring, and storm impact assessment. The focus of this special issue is on recent advances in the source data, data processing and integration methods, and applications of topobathymetric datasets.

  12. Getting expert systems off the ground: Lessons learned from integrating model-based diagnostics with prototype flight hardware

    NASA Technical Reports Server (NTRS)

    Stephan, Amy; Erikson, Carol A.

    1991-01-01

    As an initial attempt to introduce expert system technology into an onboard environment, a model based diagnostic system using the TRW MARPLE software tool was integrated with prototype flight hardware and its corresponding control software. Because this experiment was designed primarily to test the effectiveness of the model based reasoning technique used, the expert system ran on a separate hardware platform, and interactions between the control software and the model based diagnostics were limited. While this project met its objective of showing that model based reasoning can effectively isolate failures in flight hardware, it also identified the need for an integrated development path for expert system and control software for onboard applications. In developing expert systems that are ready for flight, artificial intelligence techniques must be evaluated to determine whether they offer a real advantage onboard, identify which diagnostic functions should be performed by the expert systems and which are better left to the procedural software, and work closely with both the hardware and the software developers from the beginning of a project to produce a well designed and thoroughly integrated application.

  13. Integrated Payment And Delivery Models Offer Opportunities And Challenges For Residential Care Facilities.

    PubMed

    Grabowski, David C; Caudry, Daryl J; Dean, Katie M; Stevenson, David G

    2015-10-01

    Under health care reform, new financing and delivery models are being piloted to integrate health and long-term care services for older adults. Programs using these models generally have not included residential care facilities. Instead, most of them have focused on long-term care recipients in the community or the nursing home. Our analyses indicate that individuals living in residential care facilities have similarly high rates of chronic illness and Medicare utilization when compared with matched individuals in the community and nursing home, and rates of functional dependency that fall between those of their counterparts in the other two settings. These results suggest that the residential care facility population could benefit greatly from models that coordinated health and long-term care services. However, few providers have invested in the infrastructure needed to support integrated delivery models. Challenges to greater care integration include the private-pay basis for residential care facility services, which precludes shared savings from reduced Medicare costs, and residents' preference for living in a home-like, noninstitutional environment. Project HOPE—The People-to-People Health Foundation, Inc.

  14. Evaluating the impact of virtualization characteristics on SaaS adoption

    NASA Astrophysics Data System (ADS)

    Tomás, Sara; Thomas, Manoj; Oliveira, Tiago

    2018-03-01

    Software as a service (SaaS) is a service model in which the applications are accessible from various client devices through internet. Several studies report possible factors driving the adoption of SaaS but none have considered the perception of the SaaS features and the organization's context. We propose an integrated research model that combines the process virtualization theory (PVT), the technology-organization-environment (TOE) framework and the institutional theory (INT). PVT seeks to explain whether processes are suitable for migration into virtual environments via an information technology-based mechanism as SaaS. The TOE framework seeks to explain the effects of the intra-organizational factors, while INT seeks to explain the effects of the inter-organizational factors on the technology adoption. This research addresses a gap in the SaaS adoption literature by studying the internal perception of the technical features of SaaS and technology, organization, and environment perspectives. Additionally, the integration of PVT, the TOE framework, and INT contributes to the information system (IS) discipline, deepening the applicability and strengths of these theories.

  15. Heterogeneous environments shape invader impacts: integrating environmental, structural and functional effects by isoscapes and remote sensing.

    PubMed

    Hellmann, Christine; Große-Stoltenberg, André; Thiele, Jan; Oldeland, Jens; Werner, Christiane

    2017-06-23

    Spatial heterogeneity of ecosystems crucially influences plant performance, while in return plant feedbacks on their environment may increase heterogeneous patterns. This is of particular relevance for exotic plant invaders that transform native ecosystems, yet, approaches integrating geospatial information of environmental heterogeneity and plant-plant interaction are lacking. Here, we combined remotely sensed information of site topography and vegetation cover with a functional tracer of the N cycle, δ 15 N. Based on the case study of the invasion of an N 2 -fixing acacia in a nutrient-poor dune ecosystem, we present the first model that can successfully predict (R 2  = 0.6) small-scale spatial variation of foliar δ 15 N in a non-fixing native species from observed geospatial data. Thereby, the generalized additive mixed model revealed modulating effects of heterogeneous environments on invader impacts. Hence, linking remote sensing techniques with tracers of biological processes will advance our understanding of the dynamics and functioning of spatially structured heterogeneous systems from small to large spatial scales.

  16. geophylobuilder 1.0: an arcgis extension for creating 'geophylogenies'.

    PubMed

    Kidd, David M; Liu, Xianhua

    2008-01-01

    Evolution is inherently a spatiotemporal process; however, despite this, phylogenetic and geographical data and models remain largely isolated from one another. Geographical information systems provide a ready-made spatial modelling, analysis and dissemination environment within which phylogenetic models can be explicitly linked with their associated spatial data and subsequently integrated with other georeferenced data sets describing the biotic and abiotic environment. geophylobuilder 1.0 is an extension for the arcgis geographical information system that builds a 'geophylogenetic' data model from a phylogenetic tree and associated geographical data. Geophylogenetic database objects can subsequently be queried, spatially analysed and visualized in both 2D and 3D within a geographical information systems. © 2007 The Authors.

  17. A web GIS based integrated flood assessment modeling tool for coastal urban watersheds

    NASA Astrophysics Data System (ADS)

    Kulkarni, A. T.; Mohanty, J.; Eldho, T. I.; Rao, E. P.; Mohan, B. K.

    2014-03-01

    Urban flooding has become an increasingly important issue in many parts of the world. In this study, an integrated flood assessment model (IFAM) is presented for the coastal urban flood simulation. A web based GIS framework has been adopted to organize the spatial datasets for the study area considered and to run the model within this framework. The integrated flood model consists of a mass balance based 1-D overland flow model, 1-D finite element based channel flow model based on diffusion wave approximation and a quasi 2-D raster flood inundation model based on the continuity equation. The model code is written in MATLAB and the application is integrated within a web GIS server product viz: Web Gram Server™ (WGS), developed at IIT Bombay, using Java, JSP and JQuery technologies. Its user interface is developed using open layers and the attribute data are stored in MySQL open source DBMS. The model is integrated within WGS and is called via Java script. The application has been demonstrated for two coastal urban watersheds of Navi Mumbai, India. Simulated flood extents for extreme rainfall event of 26 July, 2005 in the two urban watersheds of Navi Mumbai city are presented and discussed. The study demonstrates the effectiveness of the flood simulation tool in a web GIS environment to facilitate data access and visualization of GIS datasets and simulation results.

  18. Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions.

    PubMed

    Heslot, Nicolas; Akdemir, Deniz; Sorrells, Mark E; Jannink, Jean-Luc

    2014-02-01

    Development of models to predict genotype by environment interactions, in unobserved environments, using environmental covariates, a crop model and genomic selection. Application to a large winter wheat dataset. Genotype by environment interaction (G*E) is one of the key issues when analyzing phenotypes. The use of environment data to model G*E has long been a subject of interest but is limited by the same problems as those addressed by genomic selection methods: a large number of correlated predictors each explaining a small amount of the total variance. In addition, non-linear responses of genotypes to stresses are expected to further complicate the analysis. Using a crop model to derive stress covariates from daily weather data for predicted crop development stages, we propose an extension of the factorial regression model to genomic selection. This model is further extended to the marker level, enabling the modeling of quantitative trait loci (QTL) by environment interaction (Q*E), on a genome-wide scale. A newly developed ensemble method, soft rule fit, was used to improve this model and capture non-linear responses of QTL to stresses. The method is tested using a large winter wheat dataset, representative of the type of data available in a large-scale commercial breeding program. Accuracy in predicting genotype performance in unobserved environments for which weather data were available increased by 11.1% on average and the variability in prediction accuracy decreased by 10.8%. By leveraging agronomic knowledge and the large historical datasets generated by breeding programs, this new model provides insight into the genetic architecture of genotype by environment interactions and could predict genotype performance based on past and future weather scenarios.

  19. Towards Integration of Ecosystem and Human Health: A Novel Conceptual Framework to Operationalise Ecological Public Health and to Incorporate Distal and Proximal Effects of Climate Change

    NASA Astrophysics Data System (ADS)

    Reis, S.; Fleming, L. E.; Beck, S.; Austen, M.; Morris, G.; White, M.; Taylor, T. J.; Orr, N.; Osborne, N. J.; Depledge, M.

    2014-12-01

    Conceptual models for problem framing in environmental (EIA) and health impact assessment (HIA) share similar concepts, but differ in their scientific or policy focus, methodologies and underlying causal chains, and the degree of complexity and scope. The Driver-Pressure-State-Impact-Response (DPSIR) framework used by the European Environment Agency, the OECD and others and the Integrated Science for Society and the Environment (ISSE) frameworks are widely applied in policy appraisal and impact assessments. While DPSIR is applied across different policy domains, the ISSE framework is used in Ecosystem Services assessments. The modified Driver-Pressure-State-Exposure-Effect-Action (DPSEEA) model extends DPSIR by separating exposure from effect, adding context as a modifier of effect, and susceptibility to exposures due to socio-economic, demographic or other determinants. While continuously evolving, the application of conceptual frameworks in policy appraisals mainly occurs within established discipline boundaries. However, drivers and environmental states, as well as policy measures and actions, affect both human and ecosystem receptors. Furthermore, unintended consequences of policy actions are seldom constrained within discipline or policy silos. Thus, an integrated conceptual model is needed, accounting for the full causal chain affecting human and ecosystem health in any assessment. We propose a novel model integrating HIA methods and ecosystem services in an attempt to operationalise the emerging concept of "Ecological Public Health." The conceptual approach of the ecosystem-enriched DPSEEA model ("eDPSEEA") has stimulated wide-spread debates and feedback. We will present eDPSEEA as a stakeholder engagement process and a conceptual model, using illustrative case studies of climate change as a starting point, not a complete solution, for the integration of human and ecosystem health impact assessment as a key challenge in a rapidly changing world. Rayner G and Lang T Ecological Public Health: Reshaping the Conditions for Good Health. Routledge Publishers; 2012.Reis S, Morris G, Fleming LE, Beck S, Taylor T, White M, Depledge MH, Steinle S, Sabel CE, Cowie H, Hurley F, Dick JMcP, Smith RI, Austen M (2013) Integrating Health & Environmental Impact Analysis. Public Health.

  20. Allostasis and the human brain: Integrating models of stress from the social and life sciences

    PubMed Central

    Ganzel, Barbara L.; Morris, Pamela A.; Wethington, Elaine

    2009-01-01

    We draw on the theory of allostasis to develop an integrative model of the current stress process that highlights the brain as a dynamically adapting interface between the changing environment and the biological self. We review evidence that the core emotional regions of the brain constitute the primary mediator of the well-established association between stress and health, as well as the neural focus of “wear and tear” due to ongoing adaptation. This mediation, in turn, allows us to model the interplay over time between context, current stressor exposure, internal regulation of bodily processes, and health outcomes. We illustrate how this approach facilitates the integration of current findings in human neuroscience and genetics with key constructs from stress models from the social and life sciences, with implications for future research and the design of interventions targeting individuals at risk. PMID:20063966

  1. Box truss analysis and technology development. Task 1: Mesh analysis and control

    NASA Technical Reports Server (NTRS)

    Bachtell, E. E.; Bettadapur, S. S.; Coyner, J. V.

    1985-01-01

    An analytical tool was developed to model, analyze and predict RF performance of box truss antennas with reflective mesh surfaces. The analysis system is unique in that it integrates custom written programs for cord tied mesh surfaces, thereby drastically reducing the cost of analysis. The analysis system is capable of determining the RF performance of antennas under any type of manufacturing or operating environment by integrating together the various disciplines of design, finite element analysis, surface best fit analysis and RF analysis. The Integrated Mesh Analysis System consists of six separate programs: The Mesh Tie System Model Generator, The Loadcase Generator, The Model Optimizer, The Model Solver, The Surface Topography Solver and The RF Performance Solver. Additionally, a study using the mesh analysis system was performed to determine the effect of on orbit calibration, i.e., surface adjustment, on a typical box truss antenna.

  2. Integrated Model to Assess Cloud Deployment Effectiveness When Developing an IT-strategy

    NASA Astrophysics Data System (ADS)

    Razumnikov, S.; Prankevich, D.

    2016-04-01

    Developing an IT-strategy of cloud deployment is a complex issue since even the stage of its formation necessitates revealing what applications will be the best possible to meet the requirements of a company business-strategy, evaluate reliability and safety of cloud providers and analyze staff satisfaction. A system of criteria, as well an integrated model to assess cloud deployment effectiveness is offered. The model makes it possible to identify what applications being at the disposal of a company, as well as new tools to be deployed are reliable and safe enough for implementation in the cloud environment. The data on practical use of the procedure to assess cloud deployment effectiveness by a provider of telecommunication services is presented. The model was used to calculate values of integral indexes of services to be assessed, then, ones, meeting the criteria and answering the business-strategy of a company, were selected.

  3. Interventions developed with the Intervention Mapping protocol in the field of cancer: A systematic review.

    PubMed

    Lamort-Bouché, Marion; Sarnin, Philippe; Kok, Gerjo; Rouat, Sabrina; Péron, Julien; Letrilliart, Laurent; Fassier, Jean-Baptiste

    2018-04-01

    The Intervention Mapping (IM) protocol provides a structured framework to develop, implement, and evaluate complex interventions. The main objective of this review was to identify and describe the content of the interventions developed in the field of cancer with the IM protocol. Secondary objectives were to assess their fidelity to the IM protocol and to review their theoretical frameworks. Medline, Web of Science, PsycINFO, PASCAL, FRANCIS, and BDSP databases were searched. All titles and abstracts were reviewed. A standardized extraction form was developed. All included studies were reviewed by 2 reviewers blinded to each other. Sixteen studies were identified, and these reported 15 interventions. The objectives were to increase cancer screening participation (n = 7), early consultation (n = 1), and aftercare/quality of life among cancer survivors (n = 7). Six reported a complete participatory planning group, and 7 described a complete logic model of the problem. Ten studies described a complete logic model of change. The main theoretical frameworks used were the theory of planned behaviour (n = 8), the transtheoretical model (n = 6), the health belief model (n = 6), and the social cognitive theory (n = 6). The environment was rarely integrated in the interventions (n = 4). Five interventions were reported as effective. Culturally relevant interventions were developed with the IM protocol that were effective to increase cancer screening and reduce social disparities, particularly when they were developed through a participative approach and integrated the environment. Stakeholders' involvement and the role of the environment were heterogeneously integrated in the interventions. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Use of Cusp Catastrophe for Risk Analysis of Navigational Environment: A Case Study of Three Gorges Reservoir Area

    PubMed Central

    Hao, Guozhu

    2016-01-01

    A water traffic system is a huge, nonlinear, complex system, and its stability is affected by various factors. Water traffic accidents can be considered to be a kind of mutation of a water traffic system caused by the coupling of multiple navigational environment factors. In this study, the catastrophe theory, principal component analysis (PCA), and multivariate statistics are integrated to establish a situation recognition model for a navigational environment with the aim of performing a quantitative analysis of the situation of this environment via the extraction and classification of its key influencing factors; in this model, the natural environment and traffic environment are considered to be two control variables. The Three Gorges Reservoir area of the Yangtze River is considered as an example, and six critical factors, i.e., the visibility, wind, current velocity, route intersection, channel dimension, and traffic flow, are classified into two principal components: the natural environment and traffic environment. These two components are assumed to have the greatest influence on the navigation risk. Then, the cusp catastrophe model is employed to identify the safety situation of the regional navigational environment in the Three Gorges Reservoir area. The simulation results indicate that the situation of the navigational environment of this area is gradually worsening from downstream to upstream. PMID:27391057

  5. Use of Cusp Catastrophe for Risk Analysis of Navigational Environment: A Case Study of Three Gorges Reservoir Area.

    PubMed

    Jiang, Dan; Hao, Guozhu; Huang, Liwen; Zhang, Dan

    2016-01-01

    A water traffic system is a huge, nonlinear, complex system, and its stability is affected by various factors. Water traffic accidents can be considered to be a kind of mutation of a water traffic system caused by the coupling of multiple navigational environment factors. In this study, the catastrophe theory, principal component analysis (PCA), and multivariate statistics are integrated to establish a situation recognition model for a navigational environment with the aim of performing a quantitative analysis of the situation of this environment via the extraction and classification of its key influencing factors; in this model, the natural environment and traffic environment are considered to be two control variables. The Three Gorges Reservoir area of the Yangtze River is considered as an example, and six critical factors, i.e., the visibility, wind, current velocity, route intersection, channel dimension, and traffic flow, are classified into two principal components: the natural environment and traffic environment. These two components are assumed to have the greatest influence on the navigation risk. Then, the cusp catastrophe model is employed to identify the safety situation of the regional navigational environment in the Three Gorges Reservoir area. The simulation results indicate that the situation of the navigational environment of this area is gradually worsening from downstream to upstream.

  6. An integrated occupational hygiene consultation model for the catering industry.

    PubMed

    Lin, Yi-Kuei; Lee, Lien-Hsiung

    2010-07-01

    Vegetable oil used in food processing, during high-temperature exposure, will generate particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs), which are carcinogenic chemical compounds, with the potential to cause lung disease for restaurant kitchen staff. This study's design includes a three-stage consultation process with eight major consultation items, in order to build an integrated consultation model for occupational hygiene. This model combines inspection and consultation, targeting Chinese restaurants in the catering industry. Characteristics of the integrated consultation model include cooperation between different government departments and collaboration with nongovernmental, professional consulting organizations. An additional benefit of the model is the building of a good partnership relationship with the Catering Trade Association. The consultation model helps Chinese restaurants attain improvements in their work environments with minimal investment. Postconsultation, results show a 63.35% and 61.98% (P < 0.001) decrease in the mean time-weighted concentration of exposure to PM and PAHs, respectively. The overall regulation compliance rate of Chinese restaurants significantly increased from 34.3% to 89.6%. These results show that the integrated consultation model for occupational hygiene not only helps small and medium enterprises reduce exposure concentrations in the workplace but also has specific potential for successful implementation in Taiwan.

  7. MollDE: a homology modeling framework you can click with.

    PubMed

    Canutescu, Adrian A; Dunbrack, Roland L

    2005-06-15

    Molecular Integrated Development Environment (MolIDE) is an integrated application designed to provide homology modeling tools and protocols under a uniform, user-friendly graphical interface. Its main purpose is to combine the most frequent modeling steps in a semi-automatic, interactive way, guiding the user from the target protein sequence to the final three-dimensional protein structure. The typical basic homology modeling process is composed of building sequence profiles of the target sequence family, secondary structure prediction, sequence alignment with PDB structures, assisted alignment editing, side-chain prediction and loop building. All of these steps are available through a graphical user interface. MolIDE's user-friendly and streamlined interactive modeling protocol allows the user to focus on the important modeling questions, hiding from the user the raw data generation and conversion steps. MolIDE was designed from the ground up as an open-source, cross-platform, extensible framework. This allows developers to integrate additional third-party programs to MolIDE. http://dunbrack.fccc.edu/molide/molide.php rl_dunbrack@fccc.edu.

  8. Sensor/Response Coordination In A Tactical Self-Protection System

    NASA Astrophysics Data System (ADS)

    Steinberg, Alan N.

    1988-08-01

    This paper describes a model for integrating information acquisition functions into a response planner within a tactical self-defense system. This model may be used in defining requirements in such applications for sensor systems and for associated processing and control functions. The goal of information acquisition in a self-defense system is generally not that of achieving the best possible estimate of the threat environment; but rather to provide resolution of that environment sufficient to support response decisions. We model the information acquisition problem as that of achieving a partition among possible world states such that the final partition maps into the system's repertoire of possible responses.

  9. Experiences in integrating auto-translated state-chart designs for model checking

    NASA Technical Reports Server (NTRS)

    Pingree, P. J.; Benowitz, E. G.

    2003-01-01

    In the complex environment of JPL's flight missions with increasing dependency on advanced software designs, traditional software validation methods of simulation and testing are being stretched to adequately cover the needs of software development.

  10. Virtual reality: towards a novel treatment environment for ankylosing spondylitis.

    PubMed

    Li, Shijuan; Kay, Stephen; Hardicker, Nicholas R

    2007-01-01

    The objective of this paper is to outline the project that eventually seeks to visualize clinical knowledge found within the record; the immediate task being to create a model that can be deployed for therapeutic purposes. How therapies for a certain type of chronically ill patient can benefit from Virtual Reality (VR) tools is investigated. Ankylosing Spondylitis (AS) is selected as a test condition. VR is expected to provide a novel treatment environment for AS sufferers, in which they can relax, manage their pain and take part in the routine exercise more effectively and efficiently by using the VR tools. An integral part of this model's construction will be to elicit evaluative detail from the literature and the patients' perspective. The purpose is to understand the inevitable challenges facing this proposed intervention if the design prototype is to successfully move from the research domain and become an integral part of established therapeutic practice.

  11. Space radiation incident on SATS missions

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1973-01-01

    A special orbital radiation study was conducted in order to evaluate mission encountered energetic particle fluxes. This information is to be supplied to the project subsystem engineers for their guidance in designing flight hardware to withstand the expected radiation levels. Flux calculations were performed for a set of 20 nominal trajectories placed at several altitudes and inclinations. Temporal variations in the ambient electron environment were considered and partially accounted for. Magnetic field calculations were performed with a current field model, extrapolated to the tentative SATS launch epoch with linear time terms. Orbital flux integrations ware performed with the latest proton and electron environment models, using new computational methods. The results are presented in graphical and tabular form. Estimates of energetic solar proton fluxes are given for a one year mission at selected integral energies ranging from 10 to 100 Mev, calculated for a year of maximum solar activity during the next solar cycle.

  12. Computer modeling and design of diagnostic workstations and radiology reading rooms

    NASA Astrophysics Data System (ADS)

    Ratib, Osman M.; Amato, Carlos L.; Balbona, Joseph A.; Boots, Kevin; Valentino, Daniel J.

    2000-05-01

    We used 3D modeling techniques to design and evaluate the ergonomics of diagnostic workstation and radiology reading room in the planning phase of building a new hospital at UCLA. Given serious space limitations, the challenge was to provide more optimal working environment for radiologists in a crowded and busy environment. A particular attention was given to flexibility, lighting condition and noise reduction in rooms shared by multiple users performing diagnostic tasks as well as regular clinical conferences. Re-engineering workspace ergonomics rely on the integration of new technologies, custom designed cabinets, indirect lighting, sound-absorbent partitioning and geometric arrangement of workstations to allow better privacy while optimizing space occupation. Innovations included adjustable flat monitors, integration of videoconferencing and voice recognition, control monitor and retractable keyboard for optimal space utilization. An overhead compartment protecting the monitors from ambient light is also used as accessory lightbox and rear-view projection screen for conferences.

  13. Shock and vibration effects on performance reliability and mechanical integrity of proton exchange membrane fuel cells: A critical review and discussion

    NASA Astrophysics Data System (ADS)

    Haji Hosseinloo, Ashkan; Ehteshami, Mohsen Mousavi

    2017-10-01

    Performance reliability and mechanical integrity are the main bottlenecks in mass commercialization of PEMFCs for applications with inherent harsh environment such as automotive and aerospace applications. Imparted shock and vibration to the fuel cell in such applications could bring about numerous issues including clamping torque loosening, gas leakage, increased electrical resistance, and structural damage and breakage. Here, we provide a comprehensive review and critique of the literature focusing on the effects of mechanically harsh environment on PEMFCs, and at the end, we suggest two main future directions in FC technology research that need immediate attention: (i) developing a generic and adequately accurate dynamic model of PEMFCs to assess the dynamic response of FC devices, and (ii) designing effective and robust shock and vibration protection systems based on the developed models in (i).

  14. Recoding low-level simulator data into a record of meaningful task performance: the integrated task modeling environment (ITME).

    PubMed

    King, Robert; Parker, Simon; Mouzakis, Kon; Fletcher, Winston; Fitzgerald, Patrick

    2007-11-01

    The Integrated Task Modeling Environment (ITME) is a user-friendly software tool that has been developed to automatically recode low-level data into an empirical record of meaningful task performance. The present research investigated and validated the performance of the ITME software package by conducting complex simulation missions and comparing the task analyses produced by ITME with taskanalyses produced by experienced video analysts. A very high interrater reliability (> or = .94) existed between experienced video analysts and the ITME for the task analyses produced for each mission. The mean session time:analysis time ratio was 1:24 using video analysis techniques and 1:5 using the ITME. It was concluded that the ITME produced task analyses that were as reliable as those produced by experienced video analysts, and significantly reduced the time cost associated with these analyses.

  15. The NASA Evolutionary Xenon Thruster (NEXT): NASA's Next Step for U.S. Deep Space Propulsion

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.; Patterson, Michael J.; Benson, Scott W.

    2008-01-01

    NASA s Evolutionary Xenon Thruster (NEXT) project is developing next generation ion propulsion technologies to enhance the performance and lower the costs of future NASA space science missions. This is being accomplished by producing Engineering Model (EM) and Prototype Model (PM) components, validating these via qualification-level and integrated system testing, and preparing the transition of NEXT technologies to flight system development. The project is currently completing one of the final milestones of the effort, that is operation of an integrated NEXT Ion Propulsion System (IPS) in a simulated space environment. This test will advance the NEXT system to a NASA Technology Readiness Level (TRL) of 6 (i.e., operation of a prototypical system in a representative environment), and will confirm its readiness for flight. Besides its promise for upcoming NASA science missions, NEXT may have excellent potential for future commercial and international spacecraft applications.

  16. 48 CFR 970.5223-1 - Integration of environment, safety, and health into work planning and execution.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Integration of environment... Integration of environment, safety, and health into work planning and execution. As prescribed in 970.2303-3(b), insert the following clause: Integration of Environment, Safety, and Health Into Work Planning and...

  17. Numerical modeling of zero-offset laboratory data in a strong topographic environment: results for a spectral-element method and a discretized Kirchhoff integral method

    NASA Astrophysics Data System (ADS)

    Favretto-Cristini, Nathalie; Tantsereva, Anastasiya; Cristini, Paul; Ursin, Bjørn; Komatitsch, Dimitri; Aizenberg, Arkady M.

    2014-08-01

    Accurate simulation of seismic wave propagation in complex geological structures is of particular interest nowadays. However conventional methods may fail to simulate realistic wavefields in environments with great and rapid structural changes, due for instance to the presence of shadow zones, diffractions and/or edge effects. Different methods, developed to improve seismic modeling, are typically tested on synthetic configurations against analytical solutions for simple canonical problems or reference methods, or via direct comparison with real data acquired in situ. Such approaches have limitations, especially if the propagation occurs in a complex environment with strong-contrast reflectors and surface irregularities, as it can be difficult to determine the method which gives the best approximation of the "real" solution, or to interpret the results obtained without an a priori knowledge of the geologic environment. An alternative approach for seismics consists in comparing the synthetic data with high-quality data collected in laboratory experiments under controlled conditions for a known configuration. In contrast with numerical experiments, laboratory data possess many of the characteristics of field data, as real waves propagate through models with no numerical approximations. We thus present a comparison of laboratory-scaled measurements of 3D zero-offset wave reflection of broadband pulses from a strong topographic environment immersed in a water tank with numerical data simulated by means of a spectral-element method and a discretized Kirchhoff integral method. The results indicate a good quantitative fit in terms of time arrivals and acceptable fit in amplitudes for all datasets.

  18. Relationships among supervisor feedback environment, work-related stressors, and employee deviance.

    PubMed

    Peng, Jei-Chen; Tseng, Mei-Man; Lee, Yin-Ling

    2011-03-01

    Previous research has demonstrated that the employee deviance imposes enormous costs on organizational performance and productivity. Similar research supports the positive effect of favorable supervisor feedback on employee job performance. In light of such, it is important to understand the interaction between supervisor feedback environment and employee deviant behavior to streamline organization operations. The purposes of this study were to explore how the supervisor feedback environment influences employee deviance and to examine the mediating role played by work-related stressors. Data were collected from 276 subordinate-supervisor dyads at a regional hospital in Yilan. Structural equation modeling analyses were conducted to test hypotheses. Structural equation modeling analysis results show that supervisor feedback environment negatively related to interpersonal and organizational deviance. Moreover, work-related stressors were found to partially mediate the relationship between supervisor feedback environment and employee deviance. Study findings suggest that when employees (nurses in this case) perceive an appropriate supervisor-provided feedback environment, their deviance is suppressed because of the related reduction in work-related stressors. Thus, to decrease deviant behavior, organizations may foster supervisor integration of disseminated knowledge such as (a) how to improve employees' actual performance, (b) how to effectively clarify expected performance, and (c) how to improve continuous performance feedback. If supervisors absorb this integrated feedback knowledge, they should be in a better position to enhance their own daily interactions with nurses and reduce nurses' work-related stress and, consequently, decrease deviant behavior.

  19. Emergent Capabilities Converging into M and S 2.0

    NASA Technical Reports Server (NTRS)

    Reitz, Emilie; Reist, Jay

    2012-01-01

    The continued operational environment complexity faced by the Department of Defense, despite a restricted resource environment, is a mandate for greater adaptability and availability in joint training. To address these constraints, this paper proposes a model for the potential integration of adaptability training, virtual world capabilities and immersive training into the wider Joint Live Virtual and Constructive (JLVC) Federation, supported by human, social, cultural and behavior modeling, and measurement and assessment. By fusing those capabilities and modeling and simulation enhancements into the JLVC federation, it will create a force who is more apt to arrive at and implement correct decisions, and more able to appropriately seize initiative in the field. The model would allow for the testing and training of capabilities and TTPs that cannot be reasonably explored to their logical conclusions in a 'live' environment, as well as enhance training fidelity for all echelons and tasks.

  20. Knowledge environments representing molecular entities for the virtual physiological human.

    PubMed

    Hofmann-Apitius, Martin; Fluck, Juliane; Furlong, Laura; Fornes, Oriol; Kolárik, Corinna; Hanser, Susanne; Boeker, Martin; Schulz, Stefan; Sanz, Ferran; Klinger, Roman; Mevissen, Theo; Gattermayer, Tobias; Oliva, Baldo; Friedrich, Christoph M

    2008-09-13

    In essence, the virtual physiological human (VPH) is a multiscale representation of human physiology spanning from the molecular level via cellular processes and multicellular organization of tissues to complex organ function. The different scales of the VPH deal with different entities, relationships and processes, and in consequence the models used to describe and simulate biological functions vary significantly. Here, we describe methods and strategies to generate knowledge environments representing molecular entities that can be used for modelling the molecular scale of the VPH. Our strategy to generate knowledge environments representing molecular entities is based on the combination of information extraction from scientific text and the integration of information from biomolecular databases. We introduce @neuLink, a first prototype of an automatically generated, disease-specific knowledge environment combining biomolecular, chemical, genetic and medical information. Finally, we provide a perspective for the future implementation and use of knowledge environments representing molecular entities for the VPH.

  1. Space Environment Effects: Low-Altitude Trapped Radiation Model

    NASA Technical Reports Server (NTRS)

    Huston, S. L.; Pfitzer, K. A.

    1998-01-01

    Accurate models of the Earth's trapped energetic proton environment are required for both piloted and robotic space missions. For piloted missions, the concern is mainly total dose to the astronauts, particularly in long-duration missions and during extravehicular activity (EVA). As astronomical and remote-sensing detectors become more sensitive, the proton flux can induce unwanted backgrounds in these instruments. Due to this unwanted background, the following description details the development of a new model for the low-trapped proton environment. The model is based on nearly 20 years of data from the TIRO/NOAA weather satellites. The model, which has been designated NOAAPRO (for NOAA protons), predicts the integral omnidirectional proton flux in three energy ranges: >16, >36, and >80 MeV. It contains a true solar cycle variation and accounts for the secular variation in the Earth's magnetic field. It also extends to lower values of the magnetic L parameter than does AP8. Thus, the model addresses the major shortcomings of AP8.

  2. Working toward integrated models of alpine plant distribution.

    PubMed

    Carlson, Bradley Z; Randin, Christophe F; Boulangeat, Isabelle; Lavergne, Sébastien; Thuiller, Wilfried; Choler, Philippe

    2013-10-01

    Species distribution models (SDMs) have been frequently employed to forecast the response of alpine plants to global changes. Efforts to model alpine plant distribution have thus far been primarily based on a correlative approach, in which ecological processes are implicitly addressed through a statistical relationship between observed species occurrences and environmental predictors. Recent evidence, however, highlights the shortcomings of correlative SDMs, especially in alpine landscapes where plant species tend to be decoupled from atmospheric conditions in micro-topographic habitats and are particularly exposed to geomorphic disturbances. While alpine plants respond to the same limiting factors as plants found at lower elevations, alpine environments impose a particular set of scale-dependent and hierarchical drivers that shape the realized niche of species and that require explicit consideration in a modelling context. Several recent studies in the European Alps have successfully integrated both correlative and process-based elements into distribution models of alpine plants, but for the time being a single integrative modelling framework that includes all key drivers remains elusive. As a first step in working toward a comprehensive integrated model applicable to alpine plant communities, we propose a conceptual framework that structures the primary mechanisms affecting alpine plant distributions. We group processes into four categories, including multi-scalar abiotic drivers, gradient dependent species interactions, dispersal and spatial-temporal plant responses to disturbance. Finally, we propose a methodological framework aimed at developing an integrated model to better predict alpine plant distribution.

  3. From SARS to strategic actions reframing systems.

    PubMed

    Macdonald, Marilyn T

    2004-09-01

    The developed world responds to new and re-emerging diseases through the discovery of medications. Disease can be transmitted around the world in a day, but the development of medications does not occur at this rate. The world has one environment and the focus in health care must be on identifying factors in this environment that coalesce to produce disease. The aim of this paper is to introduce the integrative model of environmental health and explore its potential to illuminate the Toronto SARS experience. SARS affected people on three continents in a matter of days. Response to this new disease varied from one area to another and was dependent upon the level of integration of health services and communication across services. The present focus of the health care system is on treating the results of disease rather than the causative factors. Reacting to a new disease had grave social and economic consequences. The time for a new global environmental approach to health is now. The Toronto SARS experience was examined using the integrative model of environmental health and the upstream perspective as exemplars to interrupt the traditional approach to disease. All health care providers share the responsibility to learn about and to understand how our environment creates disease. This knowledge comes through research on topics such as; chemicals, pesticides, soil erosion, killing of forests, contamination of water, destabilization of climate, and social disruption from wars. Health care systems in the developed world continue to focus on the treatment of disease. A global ecological initiative for an integrated disease prevention system must be negotiated among nations.

  4. Numerosity estimation benefits from transsaccadic information integration

    PubMed Central

    Hübner, Carolin; Schütz, Alexander C.

    2017-01-01

    Humans achieve a stable and homogeneous representation of their visual environment, although visual processing varies across the visual field. Here we investigated the circumstances under which peripheral and foveal information is integrated for numerosity estimation across saccades. We asked our participants to judge the number of black and white dots on a screen. Information was presented either in the periphery before a saccade, in the fovea after a saccade, or in both areas consecutively to measure transsaccadic integration. In contrast to previous findings, we found an underestimation of numerosity for foveal presentation and an overestimation for peripheral presentation. We used a maximum-likelihood model to predict accuracy and reliability in the transsaccadic condition based on peripheral and foveal values. We found near-optimal integration of peripheral and foveal information, consistently with previous findings about orientation integration. In three consecutive experiments, we disrupted object continuity between the peripheral and foveal presentations to probe the limits of transsaccadic integration. Even for global changes on our numerosity stimuli, no influence of object discontinuity was observed. Overall, our results suggest that transsaccadic integration is a robust mechanism that also works for complex visual features such as numerosity and is operative despite internal or external mismatches between foveal and peripheral information. Transsaccadic integration facilitates an accurate and reliable perception of our environment. PMID:29149766

  5. Integrating human and natural systems in community psychology: an ecological model of stewardship behavior.

    PubMed

    Moskell, Christine; Allred, Shorna Broussard

    2013-03-01

    Community psychology (CP) research on the natural environment lacks a theoretical framework for analyzing the complex relationship between human systems and the natural world. We introduce other academic fields concerned with the interactions between humans and the natural environment, including environmental sociology and coupled human and natural systems. To demonstrate how the natural environment can be included within CP's ecological framework, we propose an ecological model of urban forest stewardship action. Although ecological models of behavior in CP have previously modeled health behaviors, we argue that these frameworks are also applicable to actions that positively influence the natural environment. We chose the environmental action of urban forest stewardship because cities across the United States are planting millions of trees and increased citizen participation in urban tree planting and stewardship will be needed to sustain the benefits provided by urban trees. We used the framework of an ecological model of behavior to illustrate multiple levels of factors that may promote or hinder involvement in urban forest stewardship actions. The implications of our model for the development of multi-level ecological interventions to foster stewardship actions are discussed, as well as directions for future research to further test and refine the model.

  6. Hbim to VR. Semantic Awareness and Data Enrichment Interoperability for Parametric Libraries of Historical Architecture

    NASA Astrophysics Data System (ADS)

    Quattrini, R.; Battini, C.; Mammoli, R.

    2018-05-01

    Recently we assist to an increasing availability of HBIM models rich in geometric and informative terms. Instead, there is still a lack of researches implementing dedicated libraries, based on parametric intelligence and semantically aware, related to the architectural heritage. Additional challenges became from their portability in non-desktop environment (such as VR). The research article demonstrates the validity of a workflow applied to the architectural heritage, which starting from the semantic modeling reaches the visualization in a virtual reality environment, passing through the necessary phases of export, data migration and management. The three-dimensional modeling of the classical Doric order takes place in the BIM work environment and is configured as a necessary starting point for the implementation of data, parametric intelligences and definition of ontologies that exclusively qualify the model. The study also enables an effective method for data migration from the BIM model to databases integrated into VR technologies for AH. Furthermore, the process intends to propose a methodology, applicable in a return path, suited to the achievement of an appropriate data enrichment of each model and to the possibility of interaction in VR environment with the model.

  7. Integrated System Health Management: Foundational Concepts, Approach, and Implementation

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando

    2009-01-01

    A sound basis to guide the community in the conception and implementation of ISHM (Integrated System Health Management) capability in operational systems was provided. The concept of "ISHM Model of a System" and a related architecture defined as a unique Data, Information, and Knowledge (DIaK) architecture were described. The ISHM architecture is independent of the typical system architecture, which is based on grouping physical elements that are assembled to make up a subsystem, and subsystems combine to form systems, etc. It was emphasized that ISHM capability needs to be implemented first at a low functional capability level (FCL), or limited ability to detect anomalies, diagnose, determine consequences, etc. As algorithms and tools to augment or improve the FCL are identified, they should be incorporated into the system. This means that the architecture, DIaK management, and software, must be modular and standards-based, in order to enable systematic augmentation of FCL (no ad-hoc modifications). A set of technologies (and tools) needed to implement ISHM were described. One essential tool is a software environment to create the ISHM Model. The software environment encapsulates DIaK, and an infrastructure to focus DIaK on determining health (detect anomalies, determine causes, determine effects, and provide integrated awareness of the system to the operator). The environment includes gateways to communicate in accordance to standards, specially the IEEE 1451.1 Standard for Smart Sensors and Actuators.

  8. DEPEND: A simulation-based environment for system level dependability analysis

    NASA Technical Reports Server (NTRS)

    Goswami, Kumar; Iyer, Ravishankar K.

    1992-01-01

    The design and evaluation of highly reliable computer systems is a complex issue. Designers mostly develop such systems based on prior knowledge and experience and occasionally from analytical evaluations of simplified designs. A simulation-based environment called DEPEND which is especially geared for the design and evaluation of fault-tolerant architectures is presented. DEPEND is unique in that it exploits the properties of object-oriented programming to provide a flexible framework with which a user can rapidly model and evaluate various fault-tolerant systems. The key features of the DEPEND environment are described, and its capabilities are illustrated with a detailed analysis of a real design. In particular, DEPEND is used to simulate the Unix based Tandem Integrity fault-tolerance and evaluate how well it handles near-coincident errors caused by correlated and latent faults. Issues such as memory scrubbing, re-integration policies, and workload dependent repair times which affect how the system handles near-coincident errors are also evaluated. Issues such as the method used by DEPEND to simulate error latency and the time acceleration technique that provides enormous simulation speed up are also discussed. Unlike any other simulation-based dependability studies, the use of these approaches and the accuracy of the simulation model are validated by comparing the results of the simulations, with measurements obtained from fault injection experiments conducted on a production Tandem Integrity machine.

  9. Human Support Technology Research to Enable Exploration

    NASA Technical Reports Server (NTRS)

    Joshi, Jitendra

    2003-01-01

    Contents include the following: Advanced life support. System integration, modeling, and analysis. Progressive capabilities. Water processing. Air revitalization systems. Why advanced CO2 removal technology? Solid waste resource recovery systems: lyophilization. ISRU technologies for Mars life support. Atmospheric resources of Mars. N2 consumable/make-up for Mars life. Integrated test beds. Monitoring and controlling the environment. Ground-based commercial technology. Optimizing size vs capability. Water recovery systems. Flight verification topics.

  10. Multimedia-modeling integration development environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelton, Mitchell A.; Hoopes, Bonnie L.

    2002-09-02

    There are many framework systems available; however, the purpose of the framework presented here is to capitalize on the successes of the Framework for Risk Analysis in Multimedia Environmental Systems (FRAMES) and Multi-media Multi-pathway Multi-receptor Risk Assessment (3MRA) methodology as applied to the Hazardous Waste Identification Rule (HWIR) while focusing on the development of software tools to simplify the module developer?s effort of integrating a module into the framework.

  11. Development and Evaluation of a Compartmental Picture Archiving and Communications System Model for Integration and Visualization of Multidisciplinary Biomedical Data to Facilitate Student Learning in an Integrative Health Clinic

    ERIC Educational Resources Information Center

    Chow, Meyrick; Chan, Lawrence

    2010-01-01

    Information technology (IT) has the potential to improve the clinical learning environment. The extent to which IT enhances or detracts from healthcare professionals' role performance can be expected to affect both student learning and patient outcomes. This study evaluated nursing students' satisfaction with a novel compartmental Picture…

  12. Visual influence on path integration in darkness indicates a multimodal representation of large-scale space

    PubMed Central

    Tcheang, Lili; Bülthoff, Heinrich H.; Burgess, Neil

    2011-01-01

    Our ability to return to the start of a route recently performed in darkness is thought to reflect path integration of motion-related information. Here we provide evidence that motion-related interoceptive representations (proprioceptive, vestibular, and motor efference copy) combine with visual representations to form a single multimodal representation guiding navigation. We used immersive virtual reality to decouple visual input from motion-related interoception by manipulating the rotation or translation gain of the visual projection. First, participants walked an outbound path with both visual and interoceptive input, and returned to the start in darkness, demonstrating the influences of both visual and interoceptive information in a virtual reality environment. Next, participants adapted to visual rotation gains in the virtual environment, and then performed the path integration task entirely in darkness. Our findings were accurately predicted by a quantitative model in which visual and interoceptive inputs combine into a single multimodal representation guiding navigation, and are incompatible with a model of separate visual and interoceptive influences on action (in which path integration in darkness must rely solely on interoceptive representations). Overall, our findings suggest that a combined multimodal representation guides large-scale navigation, consistent with a role for visual imagery or a cognitive map. PMID:21199934

  13. [Measuring water ecological carrying capacity with the ecosystem-service-based ecological footprint (ESEF) method: Theory, models and application].

    PubMed

    Jiao, Wen-jun; Min, Qing-wen; Li, Wen-hua; Fuller, Anthony M

    2015-04-01

    Integrated watershed management based on aquatic ecosystems has been increasingly acknowledged. Such a change in the philosophy of water environment management requires recognizing the carrying capacity of aquatic ecosystems for human society from a more general perspective. The concept of the water ecological carrying capacity is therefore put forward, which considers both water resources and water environment, connects socio-economic development to aquatic ecosystems and provides strong support for integrated watershed management. In this paper, the authors proposed an ESEF-based measure of water ecological carrying capacity and constructed ESEF-based models of water ecological footprint and capacity, aiming to evaluate water ecological carrying capacity with footprint methods. A regional model of Taihu Lake Basin was constructed and applied to evaluate the water ecological carrying capacity in Changzhou City which located in the upper reaches of the basin. Results showed that human demand for water ecosystem services in this city had exceeded the supply capacity of local aquatic ecosystems and the significant gap between demand and supply had jeopardized the sustainability of local aquatic ecosystems. Considering aqua-product provision, water supply and pollutant absorption in an integrated way, the scale of population and economy aquatic ecosystems in Changzhou could bear only 54% of the current status.

  14. An Update on Improvements to NiCE Support for RELAP-7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaskey, Alex; Wojtowicz, Anna; Deyton, Jordan H.

    The Multiphysics Object-Oriented Simulation Environment (MOOSE) is a framework that facilitates the development of applications that rely on finite-element analysis to solve a coupled, nonlinear system of partial differential equations. RELAP-7 represents an update to the venerable RELAP-5 simulator that is built upon this framework and attempts to model the balance-of-plant concerns in a full nuclear plant. This report details the continued support and integration of RELAP-7 and the NEAMS Integrated Computational Environment (NiCE). RELAP-7 is fully supported by the NiCE due to on-going work to tightly integrate NiCE with the MOOSE framework, and subsequently the applications built upon it.more » NiCE development throughout the first quarter of FY15 has focused on improvements, bug fixes, and feature additions to existing MOOSE-based application support. Specifically, this report will focus on improvements to the NiCE MOOSE Model Builder, the MOOSE application job launcher, and the 3D Nuclear Plant Viewer. This report also includes a comprehensive tutorial that guides RELAP-7 users through the basic NiCE workflow: from input generation and 3D Plant modeling, to massively parallel job launch and post-simulation data visualization.« less

  15. 76 FR 17145 - Agency Information Collection Activities: Business Transformation-Automated Integrated Operating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... Collection Activities: Business Transformation--Automated Integrated Operating Environment (IOE), New... Transformation--Integrated Operating Environment (IOE); OMB Control No. 1615-NEW. SUMMARY: USCIS is developing an automated Integrated Operating Environment (IOE) to process benefit applications. The IOE will collect...

  16. Integration agent-based models and GIS as a virtual urban dynamic laboratory

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Liu, Miaolong

    2007-06-01

    Based on the Agent-based Model and spatial data model, a tight-coupling integrating method of GIS and Agent-based Model (ABM) is to be discussed in this paper. The use of object-orientation for both spatial data and spatial process models facilitates their integration, which can allow exploration and explanation of spatial-temporal phenomena such as urban dynamic. In order to better understand how tight coupling might proceed and to evaluate the possible functional and efficiency gains from such a tight coupling, the agent-based model and spatial data model are discussed, and then the relationships affecting spatial data model and agent-based process models interaction. After that, a realistic crowd flow simulation experiment is presented. Using some tools provided by general GIS systems and a few specific programming languages, a new software system integrating GIS and MAS as a virtual laboratory applicable for simulating pedestrian flows in a crowd activity centre has been developed successfully. Under the environment supported by the software system, as an applicable case, a dynamic evolution process of the pedestrian's flows (dispersed process for the spectators) in a crowds' activity center - The Shanghai Stadium has been simulated successfully. At the end of the paper, some new research problems have been pointed out for the future.

  17. Data management in an object-oriented distributed aircraft conceptual design environment

    NASA Astrophysics Data System (ADS)

    Lu, Zhijie

    In the competitive global market place, aerospace companies are forced to deliver the right products to the right market, with the right cost, and at the right time. However, the rapid development of technologies and new business opportunities, such as mergers, acquisitions, supply chain management, etc., have dramatically increased the complexity of designing an aircraft. Therefore, the pressure to reduce design cycle time and cost is enormous. One way to solve such a dilemma is to develop and apply advanced engineering environments (AEEs), which are distributed collaborative virtual design environments linking researchers, technologists, designers, etc., together by incorporating application tools and advanced computational, communications, and networking facilities. Aircraft conceptual design, as the first design stage, provides major opportunity to compress design cycle time and is the cheapest place for making design changes. However, traditional aircraft conceptual design programs, which are monolithic programs, cannot provide satisfactory functionality to meet new design requirements due to the lack of domain flexibility and analysis scalability. Therefore, we are in need of the next generation aircraft conceptual design environment (NextADE). To build the NextADE, the framework and the data management problem are two major problems that need to be addressed at the forefront. Solving these two problems, particularly the data management problem, is the focus of this research. In this dissertation, in light of AEEs, a distributed object-oriented framework is firstly formulated and tested for the NextADE. In order to improve interoperability and simplify the integration of heterogeneous application tools, data management is one of the major problems that need to be tackled. To solve this problem, taking into account the characteristics of aircraft conceptual design data, a robust, extensible object-oriented data model is then proposed according to the distributed object-oriented framework. By overcoming the shortcomings of the traditional approach of modeling aircraft conceptual design data, this data model makes it possible to capture specific detailed information of aircraft conceptual design without sacrificing generality, which is one of the most desired features of a data model for aircraft conceptual design. Based upon this data model, a prototype of the data management system, which is one of the fundamental building blocks of the NextADE, is implemented utilizing the state of the art information technologies. Using a general-purpose integration software package to demonstrate the efficacy of the proposed framework and the data management system, the NextADE is initially implemented by integrating the prototype of the data management system with other building blocks of the design environment, such as disciplinary analyses programs and mission analyses programs. As experiments, two case studies are conducted in the integrated design environments. One is based upon a simplified conceptual design of a notional conventional aircraft; the other is a simplified conceptual design of an unconventional aircraft. As a result of the experiments, the proposed framework and the data management approach are shown to be feasible solutions to the research problems.

  18. Modeling Nitrogen Dynamics in a Waste Stabilization Pond System Using Flexible Modeling Environment with MCMC

    PubMed Central

    Mukhtar, Hussnain; Lin, Yu-Pin; Shipin, Oleg V.; Petway, Joy R.

    2017-01-01

    This study presents an approach for obtaining realization sets of parameters for nitrogen removal in a pilot-scale waste stabilization pond (WSP) system. The proposed approach was designed for optimal parameterization, local sensitivity analysis, and global uncertainty analysis of a dynamic simulation model for the WSP by using the R software package Flexible Modeling Environment (R-FME) with the Markov chain Monte Carlo (MCMC) method. Additionally, generalized likelihood uncertainty estimation (GLUE) was integrated into the FME to evaluate the major parameters that affect the simulation outputs in the study WSP. Comprehensive modeling analysis was used to simulate and assess nine parameters and concentrations of ON-N, NH3-N and NO3-N. Results indicate that the integrated FME-GLUE-based model, with good Nash–Sutcliffe coefficients (0.53–0.69) and correlation coefficients (0.76–0.83), successfully simulates the concentrations of ON-N, NH3-N and NO3-N. Moreover, the Arrhenius constant was the only parameter sensitive to model performances of ON-N and NH3-N simulations. However, Nitrosomonas growth rate, the denitrification constant, and the maximum growth rate at 20 °C were sensitive to ON-N and NO3-N simulation, which was measured using global sensitivity. PMID:28704958

  19. Towards the Next Generation of Space Environment Prediction Capabilities.

    NASA Astrophysics Data System (ADS)

    Kuznetsova, M. M.

    2015-12-01

    Since its establishment more than 15 years ago, the Community Coordinated Modeling Center (CCMC, http://ccmc.gsfc.nasa.gov) is serving as an assess point to expanding collection of state-of-the-art space environment models and frameworks as well as a hub for collaborative development of next generation space weather forecasting systems. In partnership with model developers and international research and operational communities the CCMC integrates new data streams and models from diverse sources into end-to-end space weather impacts predictive systems, identifies week links in data-model & model-model coupling and leads community efforts to fill those gaps. The presentation will highlight latest developments, progress in CCMC-led community-wide projects on testing, prototyping, and validation of models, forecasting techniques and procedures and outline ideas on accelerating implementation of new capabilities in space weather operations.

  20. An AD100 implementation of a real-time STOVL aircraft propulsion system

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Drummond, Colin K.

    1990-01-01

    A real-time dynamic model of the propulsion system for a Short Take-Off and Vertical Landing (STOVL) aircraft was developed for the AD100 simulation environment. The dynamic model was adapted from a FORTRAN based simulation using the dynamic programming capabilities of the AD100 ADSIM simulation language. The dynamic model includes an aerothermal representation of a turbofan jet engine, actuator and sensor models, and a multivariable control system. The AD100 model was tested for agreement with the FORTRAN model and real-time execution performance. The propulsion system model was also linked to an airframe dynamic model to provide an overall STOVL aircraft simulation for the purposes of integrated flight and propulsion control studies. An evaluation of the AD100 system for use as an aircraft simulation environment is included.

  1. Neuro-Holistic Learning©: An Integrated Kinesthetic Approach to Cognitive Learning© Using Collaborative Interactive Thought Exchange© in a Blended Environment to Enhance the Learning of Young African American Males

    ERIC Educational Resources Information Center

    Osler, James Edward, II; Wright, Mark Anthony

    2016-01-01

    This paper is part two of the article entitled, "Dynamic Neuroscientific Systemology: Using Tri-Squared Meta-Analysis and Innovative Instructional Design to Develop a Novel Distance Education Model for the Systemic Creation of Engaging Online Learning Environments" published in the July-September 2015 issue of i-manager's "Journal…

  2. BIM based virtual environment for fire emergency evacuation.

    PubMed

    Wang, Bin; Li, Haijiang; Rezgui, Yacine; Bradley, Alex; Ong, Hoang N

    2014-01-01

    Recent building emergency management research has highlighted the need for the effective utilization of dynamically changing building information. BIM (building information modelling) can play a significant role in this process due to its comprehensive and standardized data format and integrated process. This paper introduces a BIM based virtual environment supported by virtual reality (VR) and a serious game engine to address several key issues for building emergency management, for example, timely two-way information updating and better emergency awareness training. The focus of this paper lies on how to utilize BIM as a comprehensive building information provider to work with virtual reality technologies to build an adaptable immersive serious game environment to provide real-time fire evacuation guidance. The innovation lies on the seamless integration between BIM and a serious game based virtual reality (VR) environment aiming at practical problem solving by leveraging state-of-the-art computing technologies. The system has been tested for its robustness and functionality against the development requirements, and the results showed promising potential to support more effective emergency management.

  3. Integrating evo-devo with ecology for a better understanding of phenotypic evolution

    PubMed Central

    Emília Santos, M.; Berger, Chloé S.; Refki, Peter N.

    2015-01-01

    Evolutionary developmental biology (evo-devo) has provided invaluable contributions to our understanding of the mechanistic relationship between genotypic and phenotypic change. Similarly, evolutionary ecology has greatly advanced our understanding of the relationship between the phenotype and the environment. To fully understand the evolution of organismal diversity, a thorough integration of these two fields is required. This integration remains highly challenging because model systems offering a rich ecological and evolutionary background, together with the availability of developmental genetic tools and genomic resources, are scarce. In this review, we introduce the semi-aquatic bugs (Gerromorpha, Heteroptera) as original models well suited to study why and how organisms diversify. The Gerromorpha invaded water surfaces over 200 mya and diversified into a range of remarkable new forms within this new ecological habitat. We summarize the biology and evolutionary history of this group of insects and highlight a set of characters associated with the habitat change and the diversification that followed. We further discuss the morphological, behavioral, molecular and genomic tools available that together make semi-aquatic bugs a prime model for integration across disciplines. We present case studies showing how the implementation and combination of these approaches can advance our understanding of how the interaction between genotypes, phenotypes and the environment drives the evolution of distinct morphologies. Finally, we explain how the same set of experimental designs can be applied in other systems to address similar biological questions. PMID:25750411

  4. Integrating CAD modules in a PACS environment using a wide computing infrastructure.

    PubMed

    Suárez-Cuenca, Jorge J; Tilve, Amara; López, Ricardo; Ferro, Gonzalo; Quiles, Javier; Souto, Miguel

    2017-04-01

    The aim of this paper is to describe a project designed to achieve a total integration of different CAD algorithms into the PACS environment by using a wide computing infrastructure. The aim is to build a system for the entire region of Galicia, Spain, to make CAD accessible to multiple hospitals by employing different PACSs and clinical workstations. The new CAD model seeks to connect different devices (CAD systems, acquisition modalities, workstations and PACS) by means of networking based on a platform that will offer different CAD services. This paper describes some aspects related to the health services of the region where the project was developed, CAD algorithms that were either employed or selected for inclusion in the project, and several technical aspects and results. We have built a standard-based platform with which users can request a CAD service and receive the results in their local PACS. The process runs through a web interface that allows sending data to the different CAD services. A DICOM SR object is received with the results of the algorithms stored inside the original study in the proper folder with the original images. As a result, a homogeneous service to the different hospitals of the region will be offered. End users will benefit from a homogeneous workflow and a standardised integration model to request and obtain results from CAD systems in any modality, not dependant on commercial integration models. This new solution will foster the deployment of these technologies in the entire region of Galicia.

  5. Integrating evo-devo with ecology for a better understanding of phenotypic evolution.

    PubMed

    Santos, M Emília; Berger, Chloé S; Refki, Peter N; Khila, Abderrahman

    2015-11-01

    Evolutionary developmental biology (evo-devo) has provided invaluable contributions to our understanding of the mechanistic relationship between genotypic and phenotypic change. Similarly, evolutionary ecology has greatly advanced our understanding of the relationship between the phenotype and the environment. To fully understand the evolution of organismal diversity, a thorough integration of these two fields is required. This integration remains highly challenging because model systems offering a rich ecological and evolutionary background, together with the availability of developmental genetic tools and genomic resources, are scarce. In this review, we introduce the semi-aquatic bugs (Gerromorpha, Heteroptera) as original models well suited to study why and how organisms diversify. The Gerromorpha invaded water surfaces over 200 mya and diversified into a range of remarkable new forms within this new ecological habitat. We summarize the biology and evolutionary history of this group of insects and highlight a set of characters associated with the habitat change and the diversification that followed. We further discuss the morphological, behavioral, molecular and genomic tools available that together make semi-aquatic bugs a prime model for integration across disciplines. We present case studies showing how the implementation and combination of these approaches can advance our understanding of how the interaction between genotypes, phenotypes and the environment drives the evolution of distinct morphologies. Finally, we explain how the same set of experimental designs can be applied in other systems to address similar biological questions. © The Author 2015. Published by Oxford University Press.

  6. Design of supply chain in fuzzy environment

    NASA Astrophysics Data System (ADS)

    Rao, Kandukuri Narayana; Subbaiah, Kambagowni Venkata; Singh, Ganja Veera Pratap

    2013-05-01

    Nowadays, customer expectations are increasing and organizations are prone to operate in an uncertain environment. Under this uncertain environment, the ultimate success of the firm depends on its ability to integrate business processes among supply chain partners. Supply chain management emphasizes cross-functional links to improve the competitive strategy of organizations. Now, companies are moving from decoupled decision processes towards more integrated design and control of their components to achieve the strategic fit. In this paper, a new approach is developed to design a multi-echelon, multi-facility, and multi-product supply chain in fuzzy environment. In fuzzy environment, mixed integer programming problem is formulated through fuzzy goal programming in strategic level with supply chain cost and volume flexibility as fuzzy goals. These fuzzy goals are aggregated using minimum operator. In tactical level, continuous review policy for controlling raw material inventories in supplier echelon and controlling finished product inventories in plant as well as distribution center echelon is considered as fuzzy goals. A non-linear programming model is formulated through fuzzy goal programming using minimum operator in the tactical level. The proposed approach is illustrated with a numerical example.

  7. The Work Compatibility Improvement Framework: an integrated perspective of the human-at-work system.

    PubMed

    Genaidy, Ash; Salem, Sam; Karwowski, Waldemar; Paez, Omar; Tuncel, Setenay

    2007-01-15

    The industrial revolution demonstrated the limitations of a pure mechanistic approach towards work design. Human work is now seen as a complex entity that involves different scientific branches and blurs the line between mental and physical activities. Job design has been a traditional concern of applied psychology, which has provided insight into the interaction between the individual and the work environment. The goal of this paper is to introduce the human-at-work system as a holistic approach to organizational design. It postulates that the well-being of workers and work outcomes are issues that need to be addressed jointly, moving beyond traditional concepts of job satisfaction and work stress. The work compatibility model (WCM) is introduced as an engineering approach that seeks to integrate previous constructs of job and organizational design. The WCM seeks a balance between energy expenditure and replenishment. The implementation of the WCM in industrial settings is described within the context of the Work Compatibility Improvement Framework. A sample review of six models (motivation-hygiene theory; job characteristics theory; person-environment fit; demand-control model; and balance theory) provides the foundation for the interaction between the individual and the work environment. A review of three workload assessment methods (position analysis questionnaire, job task analysis and NASA task load index) gives an example of the foundation for the taxonomy of work environment domains. Previous models have sought to identify a balance state for the human-at-work system. They differentiated between the objective and subjective effects of the environment and the worker. An imbalance between the person and the environment has been proven to increase health risks. The WCM works with a taxonomy of 12 work domains classified in terms of the direct (acting) or indirect (experienced) effect on the worker. In terms of measurement, two quantitative methods are proposed to measure the state of the system. The first method introduced by Abdallah et al. (2004) identifies operating zones. The second method introduced by Salem et al. (2006) identifies the distribution of the work elements on the x/y coordinate plane. While previous efforts have identified some relevant elements of the systems, they failed to provide a holistic, quantitative approach combining organizational and human factors into a common framework. It is postulated that improving the well-being of workers will simultaneously improve organizational outcomes. The WCM moves beyond previous models by providing a hierarchical structure of work domains and a combination of methods to diagnose any organizational setting. The WCM is an attempt to achieve organizational excellence in human resource management, moving beyond job design to an integrated improvement strategy. A joint approach to organizational and job design will not only result in decreased prevalence of health risks, but in enhanced organizational effectiveness as well. The implementation of the WCM, that is, the Work Compatibility Improvement Framework, provides the basis for integrating different elements of the work environment into a single reliable construct. An improvement framework is essential to ensure that the measures of the WCM result in a system that is adaptive and self-regulated.

  8. SAVA 3: A testbed for integration and control of visual processes

    NASA Technical Reports Server (NTRS)

    Crowley, James L.; Christensen, Henrik

    1994-01-01

    The development of an experimental test-bed to investigate the integration and control of perception in a continuously operating vision system is described. The test-bed integrates a 12 axis robotic stereo camera head mounted on a mobile robot, dedicated computer boards for real-time image acquisition and processing, and a distributed system for image description. The architecture was designed to: (1) be continuously operating, (2) integrate software contributions from geographically dispersed laboratories, (3) integrate description of the environment with 2D measurements, 3D models, and recognition of objects, (4) capable of supporting diverse experiments in gaze control, visual servoing, navigation, and object surveillance, and (5) dynamically reconfiguarable.

  9. Integration of virtual and real scenes within an integral 3D imaging environment

    NASA Astrophysics Data System (ADS)

    Ren, Jinsong; Aggoun, Amar; McCormick, Malcolm

    2002-11-01

    The Imaging Technologies group at De Montfort University has developed an integral 3D imaging system, which is seen as the most likely vehicle for 3D television avoiding psychological effects. To create real fascinating three-dimensional television programs, a virtual studio that performs the task of generating, editing and integrating the 3D contents involving virtual and real scenes is required. The paper presents, for the first time, the procedures, factors and methods of integrating computer-generated virtual scenes with real objects captured using the 3D integral imaging camera system. The method of computer generation of 3D integral images, where the lens array is modelled instead of the physical camera is described. In the model each micro-lens that captures different elemental images of the virtual scene is treated as an extended pinhole camera. An integration process named integrated rendering is illustrated. Detailed discussion and deep investigation are focused on depth extraction from captured integral 3D images. The depth calculation method from the disparity and the multiple baseline method that is used to improve the precision of depth estimation are also presented. The concept of colour SSD and its further improvement in the precision is proposed and verified.

  10. Discussion on integrated digital chart data model and display platform for pocket navigator system (PNS)

    NASA Astrophysics Data System (ADS)

    Sui, Haigang; Xiao, Jinghuan; Wang, Qi; Li, Qian

    2007-06-01

    PDA (Personal Digital Assistant) is a useful tool for navigation which has many advantages such as its smallness and portability. In the meantime, digital charts have been found a wide application in past ten years, and many users are hoping for giving up the paper chart entirely and using ENC by the law. However, traditional paper chart is a nonreplaced tool for people in hydrographical survey and other application fields, and would coexist with ENC for a long time. How to manage and display integrated chart for traditional paper chart and ENC together in PDA for navigating is still an unsolved problem. Aiming at this, a new integrated spatial data model and display techniques for ENC and paper chart are presented. The core idea of the new algorithm is to build an integrated spatial data model, structure and display environment for both paper chart and ENC. Based on the above algorithms and strategies, an Integrated Electronic Chart Pocket Navigator System named PNS based on PDA was developed. It has been applied in Tianjin Marine Safety Administration Bureau and obtained a good evaluation.

  11. A Prototyping Effort for the Integrated Spacecraft Analysis System

    NASA Technical Reports Server (NTRS)

    Wong, Raymond; Tung, Yu-Wen; Maldague, Pierre

    2011-01-01

    Computer modeling and simulation has recently become an essential technique for predicting and validating spacecraft performance. However, most computer models only examine spacecraft subsystems, and the independent nature of the models creates integration problems, which lowers the possibilities of simulating a spacecraft as an integrated unit despite a desire for this type of analysis. A new project called Integrated Spacecraft Analysis was proposed to serve as a framework for an integrated simulation environment. The project is still in its infancy, but a software prototype would help future developers assess design issues. The prototype explores a service oriented design paradigm that theoretically allows programs written in different languages to communicate with one another. It includes creating a uniform interface to the SPICE libraries such that different in-house tools like APGEN or SEQGEN can exchange information with it without much change. Service orientation may result in a slower system as compared to a single application, and more research needs to be done on the different available technologies, but a service oriented approach could increase long term maintainability and extensibility.

  12. Integration of Web-based and PC-based clinical research databases.

    PubMed

    Brandt, C A; Sun, K; Charpentier, P; Nadkarni, P M

    2004-01-01

    We have created a Web-based repository or data library of information about measurement instruments used in studies of multi-factorial geriatric health conditions (the Geriatrics Research Instrument Library - GRIL) based upon existing features of two separate clinical study data management systems. GRIL allows browsing, searching, and selecting measurement instruments based upon criteria such as keywords and areas of applicability. Measurement instruments selected can be printed and/or included in an automatically generated standalone microcomputer database application, which can be downloaded by investigators for use in data collection and data management. Integration of database applications requires the creation of a common semantic model, and mapping from each system to this model. Various database schema conflicts at the table and attribute level must be identified and resolved prior to integration. Using a conflict taxonomy and a mapping schema facilitates this process. Critical conflicts at the table level that required resolution included name and relationship differences. A major benefit of integration efforts is the sharing of features and cross-fertilization of applications created for similar purposes in different operating environments. Integration of applications mandates some degree of metadata model unification.

  13. Establishment of the Northeast Coastal Watershed Geospatial Data Network (NECWGDN)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannigan, Robyn

    The goals of NECWGDN were to establish integrated geospatial databases that interfaced with existing open-source (water.html) environmental data server technologies (e.g., HydroDesktop) and included ecological and human data to enable evaluation, prediction, and adaptation in coastal environments to climate- and human-induced threats to the coastal marine resources within the Gulf of Maine. We have completed the development and testing of a "test bed" architecture that is compatible with HydroDesktop and have identified key metadata structures that will enable seamless integration and delivery of environmental, ecological, and human data as well as models to predict threats to end-users. Uniquely this databasemore » integrates point as well as model data and so offers capacities to end-users that are unique among databases. Future efforts will focus on the development of integrated environmental-human dimension models that can serve, in near real time, visualizations of threats to coastal resources and habitats.« less

  14. A Hybrid Numerical Analysis Method for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Staroselsky, Alexander

    2001-01-01

    A new hybrid surface-integral-finite-element numerical scheme has been developed to model a three-dimensional crack propagating through a thin, multi-layered coating. The finite element method was used to model the physical state of the coating (far field), and the surface integral method was used to model the fatigue crack growth. The two formulations are coupled through the need to satisfy boundary conditions on the crack surface and the external boundary. The coupling is sufficiently weak that the surface integral mesh of the crack surface and the finite element mesh of the uncracked volume can be set up independently. Thus when modeling crack growth, the finite element mesh can remain fixed for the duration of the simulation as the crack mesh is advanced. This method was implemented to evaluate the feasibility of fabricating a structural health monitoring system for real-time detection of surface cracks propagating in engine components. In this work, the authors formulate the hybrid surface-integral-finite-element method and discuss the mechanical issues of implementing a structural health monitoring system in an aircraft engine environment.

  15. Integrated modeling of advanced optical systems

    NASA Astrophysics Data System (ADS)

    Briggs, Hugh C.; Needels, Laura; Levine, B. Martin

    1993-02-01

    This poster session paper describes an integrated modeling and analysis capability being developed at JPL under funding provided by the JPL Director's Discretionary Fund and the JPL Control/Structure Interaction Program (CSI). The posters briefly summarize the program capabilities and illustrate them with an example problem. The computer programs developed under this effort will provide an unprecedented capability for integrated modeling and design of high performance optical spacecraft. The engineering disciplines supported include structural dynamics, controls, optics and thermodynamics. Such tools are needed in order to evaluate the end-to-end system performance of spacecraft such as OSI, POINTS, and SMMM. This paper illustrates the proof-of-concept tools that have been developed to establish the technology requirements and demonstrate the new features of integrated modeling and design. The current program also includes implementation of a prototype tool based upon the CAESY environment being developed under the NASA Guidance and Control Research and Technology Computational Controls Program. This prototype will be available late in FY-92. The development plan proposes a major software production effort to fabricate, deliver, support and maintain a national-class tool from FY-93 through FY-95.

  16. Army-NASA aircrew/aircraft integration program (A3I) software detailed design document, phase 3

    NASA Technical Reports Server (NTRS)

    Banda, Carolyn; Chiu, Alex; Helms, Gretchen; Hsieh, Tehming; Lui, Andrew; Murray, Jerry; Shankar, Renuka

    1990-01-01

    The capabilities and design approach of the MIDAS (Man-machine Integration Design and Analysis System) computer-aided engineering (CAE) workstation under development by the Army-NASA Aircrew/Aircraft Integration Program is detailed. This workstation uses graphic, symbolic, and numeric prototyping tools and human performance models as part of an integrated design/analysis environment for crewstation human engineering. Developed incrementally, the requirements and design for Phase 3 (Dec. 1987 to Jun. 1989) are described. Software tools/models developed or significantly modified during this phase included: an interactive 3-D graphic cockpit design editor; multiple-perspective graphic views to observe simulation scenarios; symbolic methods to model the mission decomposition, equipment functions, pilot tasking and loading, as well as control the simulation; a 3-D dynamic anthropometric model; an intermachine communications package; and a training assessment component. These components were successfully used during Phase 3 to demonstrate the complex interactions and human engineering findings involved with a proposed cockpit communications design change in a simulated AH-64A Apache helicopter/mission that maps to empirical data from a similar study and AH-1 Cobra flight test.

  17. Innovation in Evaluating the Impact of Integrated Service-Delivery: The Integra Indexes of HIV and Reproductive Health Integration.

    PubMed

    Mayhew, Susannah H; Ploubidis, George B; Sloggett, Andy; Church, Kathryn; Obure, Carol D; Birdthistle, Isolde; Sweeney, Sedona; Warren, Charlotte E; Watts, Charlotte; Vassall, Anna

    2016-01-01

    The body of knowledge on evaluating complex interventions for integrated healthcare lacks both common definitions of 'integrated service delivery' and standard measures of impact. Using multiple data sources in combination with statistical modelling the aim of this study is to develop a measure of HIV-reproductive health (HIV-RH) service integration that can be used to assess the degree of service integration, and the degree to which integration may have health benefits to clients, or reduce service costs. Data were drawn from the Integra Initiative's client flow (8,263 clients in Swaziland and 25,539 in Kenya) and costing tools implemented between 2008-2012 in 40 clinics providing RH services in Kenya and Swaziland. We used latent variable measurement models to derive dimensions of HIV-RH integration using these data, which quantified the extent and type of integration between HIV and RH services in Kenya and Swaziland. The modelling produced two clear and uncorrelated dimensions of integration at facility level leading to the development of two sub-indexes: a Structural Integration Index (integrated physical and human resource infrastructure) and a Functional Integration Index (integrated delivery of services to clients). The findings highlight the importance of multi-dimensional assessments of integration, suggesting that structural integration is not sufficient to achieve the integrated delivery of care to clients--i.e. "functional integration". These Indexes are an important methodological contribution for evaluating complex multi-service interventions. They help address the need to broaden traditional evaluations of integrated HIV-RH care through the incorporation of a functional integration measure, to avoid misleading conclusions on its 'impact' on health outcomes. This is particularly important for decision-makers seeking to promote integration in resource constrained environments.

  18. Simulation analysis of an integrated model for dynamic cellular manufacturing system

    NASA Astrophysics Data System (ADS)

    Hao, Chunfeng; Luan, Shichao; Kong, Jili

    2017-05-01

    Application of dynamic cellular manufacturing system (DCMS) is a well-known strategy to improve manufacturing efficiency in the production environment with high variety and low volume of production. Often, neither the trade-off of inter and intra-cell material movements nor the trade-off of hiring and firing of operators are examined in details. This paper presents simulation results of an integrated mixed-integer model including sensitivity analysis for several numerical examples. The comprehensive model includes cell formation, inter and intracellular materials handling, inventory and backorder holding, operator assignment (including resource adjustment) and flexible production routing. The model considers multi-production planning with flexible resources (machines and operators) where each period has different demands. The results verify the validity and sensitivity of the proposed model using a genetic algorithm.

  19. A component-based software environment for visualizing large macromolecular assemblies.

    PubMed

    Sanner, Michel F

    2005-03-01

    The interactive visualization of large biological assemblies poses a number of challenging problems, including the development of multiresolution representations and new interaction methods for navigating and analyzing these complex systems. An additional challenge is the development of flexible software environments that will facilitate the integration and interoperation of computational models and techniques from a wide variety of scientific disciplines. In this paper, we present a component-based software development strategy centered on the high-level, object-oriented, interpretive programming language: Python. We present several software components, discuss their integration, and describe some of their features that are relevant to the visualization of large molecular assemblies. Several examples are given to illustrate the interoperation of these software components and the integration of structural data from a variety of experimental sources. These examples illustrate how combining visual programming with component-based software development facilitates the rapid prototyping of novel visualization tools.

  20. Parallel State Space Construction for a Model Checking Based on Maximality Semantics

    NASA Astrophysics Data System (ADS)

    El Abidine Bouneb, Zine; Saīdouni, Djamel Eddine

    2009-03-01

    The main limiting factor of the model checker integrated in the concurrency verification environment FOCOVE [1, 2], which use the maximality based labeled transition system (noted MLTS) as a true concurrency model[3, 4], is currently the amount of available physical memory. Many techniques have been developed to reduce the size of a state space. An interesting technique among them is the alpha equivalence reduction. Distributed memory execution environment offers yet another choice. The main contribution of the paper is to show that the parallel state space construction algorithm proposed in [5], which is based on interleaving semantics using LTS as semantic model, may be adapted easily to the distributed implementation of the alpha equivalence reduction for the maximality based labeled transition systems.

  1. From Oss CAD to Bim for Cultural Heritage Digital Representation

    NASA Astrophysics Data System (ADS)

    Logothetis, S.; Karachaliou, E.; Stylianidis, E.

    2017-02-01

    The paper illustrates the use of open source Computer-aided design (CAD) environments in order to develop Building Information Modelling (BIM) tools able to manage 3D models in the field of cultural heritage. Nowadays, the development of Free and Open Source Software (FOSS) has been rapidly growing and their use tends to be consolidated. Although BIM technology is widely known and used, there is a lack of integrated open source platforms able to support all stages of Historic Building Information Modelling (HBIM) processes. The present research aims to use a FOSS CAD environment in order to develop BIM plug-ins which will be able to import and edit digital representations of cultural heritage models derived by photogrammetric methods.

  2. Virtual environment display for a 3D audio room simulation

    NASA Technical Reports Server (NTRS)

    Chapin, William L.; Foster, Scott H.

    1992-01-01

    The development of a virtual environment simulation system integrating a 3D acoustic audio model with an immersive 3D visual scene is discussed. The system complements the acoustic model and is specified to: allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; reinforce the listener's feeling of telepresence in the acoustical environment with visual and proprioceptive sensations; enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations.

  3. Thermal-environment testing of a 30-cm engineering model thruster

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.

    1976-01-01

    An experimental test program was carried out to document all 30-cm electron bombardment Hg ion bombardment thruster functions and characteristics over the thermal environment of several proposed missions. An engineering model thruster was placed in a thermal test facility equipped with -196 C walls and solar simulation. The thruster was cold soaked and exposed to simulated eclipses lasting in duration from 17 to 72 minutes. The thruster was operated at quarter, to full beam power in various thermal configurations which simulated multiple thruster operation, and was also exposed to 1 and 2 suns solar simulation. Thruster control characteristics and constraints; performance, including thrust magnitude and direction; and structural integrity were evaluated over the range of thermal environments tested.

  4. The Modeling of Virtual Environment Distance Education

    NASA Astrophysics Data System (ADS)

    Xueqin, Chang

    This research presented a virtual environment that integrates in a virtual mockup services available in a university campus for students and teachers communication in different actual locations. Advantages of this system include: the remote access to a variety of services and educational tools, the representation of real structures and landscapes in an interactive 3D model that favors localization of services and preserves the administrative organization of the university. For that, the system was implemented a control access for users and an interface to allow the use of previous educational equipments and resources not designed for distance education mode.

  5. VERAIn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simunovic, Srdjan

    2015-02-16

    CASL's modeling and simulation technology, the Virtual Environment for Reactor Applications (VERA), incorporates coupled physics and science-based models, state-of-the-art numerical methods, modern computational science, integrated uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs), single-effect experiments, and integral tests. The computational simulation component of VERA is the VERA Core Simulator (VERA-CS). The core simulator is the specific collection of multi-physics computer codes used to model and deplete a LWR core over multiple cycles. The core simulator has a single common input file that drives all of the different physics codes. The parser code, VERAIn, converts VERAmore » Input into an XML file that is used as input to different VERA codes.« less

  6. Extending MAM5 Meta-Model and JaCalIV E Framework to Integrate Smart Devices from Real Environments.

    PubMed

    Rincon, J A; Poza-Lujan, Jose-Luis; Julian, V; Posadas-Yagüe, Juan-Luis; Carrascosa, C

    2016-01-01

    This paper presents the extension of a meta-model (MAM5) and a framework based on the model (JaCalIVE) for developing intelligent virtual environments. The goal of this extension is to develop augmented mirror worlds that represent a real and virtual world coupled, so that the virtual world not only reflects the real one, but also complements it. A new component called a smart resource artifact, that enables modelling and developing devices to access the real physical world, and a human in the loop agent to place a human in the system have been included in the meta-model and framework. The proposed extension of MAM5 has been tested by simulating a light control system where agents can access both virtual and real sensor/actuators through the smart resources developed. The results show that the use of real environment interactive elements (smart resource artifacts) in agent-based simulations allows to minimize the error between simulated and real system.

  7. Modeling mechanical cardiopulmonary interactions for virtual environments.

    PubMed

    Kaye, J M

    1997-01-01

    We have developed a computer system for modeling mechanical cardiopulmonary behavior in an interactive, 3D virtual environment. The system consists of a compact, scalar description of cardiopulmonary mechanics, with an emphasis on respiratory mechanics, that drives deformable 3D anatomy to simulate mechanical behaviors of and interactions between physiological systems. Such an environment can be used to facilitate exploration of cardiopulmonary physiology, particularly in situations that are difficult to reproduce clinically. We integrate 3D deformable body dynamics with new, formal models of (scalar) cardiorespiratory physiology, associating the scalar physiological variables and parameters with corresponding 3D anatomy. Our approach is amenable to modeling patient-specific circumstances in two ways. First, using CT scan data, we apply semi-automatic methods for extracting and reconstructing the anatomy to use in our simulations. Second, our scalar models are defined in terms of clinically-measurable, patient-specific parameters. This paper describes our approach and presents a sample of results showing normal breathing and acute effects of pneumothoraces.

  8. Extending MAM5 Meta-Model and JaCalIV E Framework to Integrate Smart Devices from Real Environments

    PubMed Central

    2016-01-01

    This paper presents the extension of a meta-model (MAM5) and a framework based on the model (JaCalIVE) for developing intelligent virtual environments. The goal of this extension is to develop augmented mirror worlds that represent a real and virtual world coupled, so that the virtual world not only reflects the real one, but also complements it. A new component called a smart resource artifact, that enables modelling and developing devices to access the real physical world, and a human in the loop agent to place a human in the system have been included in the meta-model and framework. The proposed extension of MAM5 has been tested by simulating a light control system where agents can access both virtual and real sensor/actuators through the smart resources developed. The results show that the use of real environment interactive elements (smart resource artifacts) in agent-based simulations allows to minimize the error between simulated and real system. PMID:26926691

  9. Integrating The Environment and The Economy: Proceedings of June 1994 Association of Environmental and Resource Economists Workshop (1995)

    EPA Pesticide Factsheets

    The workshop was held June 5 and 6 in Boulder, CO and session topics included Sustainability: Extensions and Issues, Issues in Environmental Accounting, and Economic/Ecological Modeling and Ecosystem Valuation.

  10. Agroecosystems & Environment | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag useful formats (maps, tables, graphs), Agricultural Products html Useful to Usable: Developing usable integrated expertise in applied climatology, crop modeling, agronomy, cyber-technology, agricultural

  11. INTEGRATED CHEMICAL INFORMATION TECHNOLOGIES APPLIED TO TOXICOLOGY

    EPA Science Inventory

    A central regulatory mandate of the Environmental Protection Agency, spanning many Program Offices and issues, is to assess the potential health and environmental risks of large numbers of chemicals released into the environment, often in the absence of relevant test data. Model...

  12. Innovation in Evaluating the Impact of Integrated Service-Delivery: The Integra Indexes of HIV and Reproductive Health Integration

    PubMed Central

    Mayhew, Susannah H.; Ploubidis, George B.; Sloggett, Andy; Church, Kathryn; Obure, Carol D.; Birdthistle, Isolde; Sweeney, Sedona; Warren, Charlotte E.; Watts, Charlotte; Vassall, Anna

    2016-01-01

    Background The body of knowledge on evaluating complex interventions for integrated healthcare lacks both common definitions of ‘integrated service delivery’ and standard measures of impact. Using multiple data sources in combination with statistical modelling the aim of this study is to develop a measure of HIV-reproductive health (HIV-RH) service integration that can be used to assess the degree of service integration, and the degree to which integration may have health benefits to clients, or reduce service costs. Methods and Findings Data were drawn from the Integra Initiative’s client flow (8,263 clients in Swaziland and 25,539 in Kenya) and costing tools implemented between 2008–2012 in 40 clinics providing RH services in Kenya and Swaziland. We used latent variable measurement models to derive dimensions of HIV-RH integration using these data, which quantified the extent and type of integration between HIV and RH services in Kenya and Swaziland. The modelling produced two clear and uncorrelated dimensions of integration at facility level leading to the development of two sub-indexes: a Structural Integration Index (integrated physical and human resource infrastructure) and a Functional Integration Index (integrated delivery of services to clients). The findings highlight the importance of multi-dimensional assessments of integration, suggesting that structural integration is not sufficient to achieve the integrated delivery of care to clients—i.e. “functional integration”. Conclusions These Indexes are an important methodological contribution for evaluating complex multi-service interventions. They help address the need to broaden traditional evaluations of integrated HIV-RH care through the incorporation of a functional integration measure, to avoid misleading conclusions on its ‘impact’ on health outcomes. This is particularly important for decision-makers seeking to promote integration in resource constrained environments. PMID:26800517

  13. Bridging the Gap between Human Judgment and Automated Reasoning in Predictive Analytics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanfilippo, Antonio P.; Riensche, Roderick M.; Unwin, Stephen D.

    2010-06-07

    Events occur daily that impact the health, security and sustainable growth of our society. If we are to address the challenges that emerge from these events, anticipatory reasoning has to become an everyday activity. Strong advances have been made in using integrated modeling for analysis and decision making. However, a wider impact of predictive analytics is currently hindered by the lack of systematic methods for integrating predictive inferences from computer models with human judgment. In this paper, we present a predictive analytics approach that supports anticipatory analysis and decision-making through a concerted reasoning effort that interleaves human judgment and automatedmore » inferences. We describe a systematic methodology for integrating modeling algorithms within a serious gaming environment in which role-playing by human agents provides updates to model nodes and the ensuing model outcomes in turn influence the behavior of the human players. The approach ensures a strong functional partnership between human players and computer models while maintaining a high degree of independence and greatly facilitating the connection between model and game structures.« less

  14. Modelling the exposure to chemicals for risk assessment: a comprehensive library of multimedia and PBPK models for integration, prediction, uncertainty and sensitivity analysis - the MERLIN-Expo tool.

    PubMed

    Ciffroy, P; Alfonso, B; Altenpohl, A; Banjac, Z; Bierkens, J; Brochot, C; Critto, A; De Wilde, T; Fait, G; Fierens, T; Garratt, J; Giubilato, E; Grange, E; Johansson, E; Radomyski, A; Reschwann, K; Suciu, N; Tanaka, T; Tediosi, A; Van Holderbeke, M; Verdonck, F

    2016-10-15

    MERLIN-Expo is a library of models that was developed in the frame of the FP7 EU project 4FUN in order to provide an integrated assessment tool for state-of-the-art exposure assessment for environment, biota and humans, allowing the detection of scientific uncertainties at each step of the exposure process. This paper describes the main features of the MERLIN-Expo tool. The main challenges in exposure modelling that MERLIN-Expo has tackled are: (i) the integration of multimedia (MM) models simulating the fate of chemicals in environmental media, and of physiologically based pharmacokinetic (PBPK) models simulating the fate of chemicals in human body. MERLIN-Expo thus allows the determination of internal effective chemical concentrations; (ii) the incorporation of a set of functionalities for uncertainty/sensitivity analysis, from screening to variance-based approaches. The availability of such tools for uncertainty and sensitivity analysis aimed to facilitate the incorporation of such issues in future decision making; (iii) the integration of human and wildlife biota targets with common fate modelling in the environment. MERLIN-Expo is composed of a library of fate models dedicated to non biological receptor media (surface waters, soils, outdoor air), biological media of concern for humans (several cultivated crops, mammals, milk, fish), as well as wildlife biota (primary producers in rivers, invertebrates, fish) and humans. These models can be linked together to create flexible scenarios relevant for both human and wildlife biota exposure. Standardized documentation for each model and training material were prepared to support an accurate use of the tool by end-users. One of the objectives of the 4FUN project was also to increase the confidence in the applicability of the MERLIN-Expo tool through targeted realistic case studies. In particular, we aimed at demonstrating the feasibility of building complex realistic exposure scenarios and the accuracy of the modelling predictions through a comparison with actual measurements. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. OpenWorm: an open-science approach to modeling Caenorhabditis elegans.

    PubMed

    Szigeti, Balázs; Gleeson, Padraig; Vella, Michael; Khayrulin, Sergey; Palyanov, Andrey; Hokanson, Jim; Currie, Michael; Cantarelli, Matteo; Idili, Giovanni; Larson, Stephen

    2014-01-01

    OpenWorm is an international collaboration with the aim of understanding how the behavior of Caenorhabditis elegans (C. elegans) emerges from its underlying physiological processes. The project has developed a modular simulation engine to create computational models of the worm. The modularity of the engine makes it possible to easily modify the model, incorporate new experimental data and test hypotheses. The modeling framework incorporates both biophysical neuronal simulations and a novel fluid-dynamics-based soft-tissue simulation for physical environment-body interactions. The project's open-science approach is aimed at overcoming the difficulties of integrative modeling within a traditional academic environment. In this article the rationale is presented for creating the OpenWorm collaboration, the tools and resources developed thus far are outlined and the unique challenges associated with the project are discussed.

  16. Interactive Acoustic Simulation in Urban and Complex Environments

    DTIC Science & Technology

    2015-03-21

    and validity of the solution given by the two methods. Transfer functions are used to model two-way couplings to allow multiple orders of acoustic...Function ( BRDF )[79, 137]. The ray models have also been applied to inhomogeneous outdoor media by numerical integration of the differential ray...surface, the interaction can be modeled by specular reflection, Snell’s law refraction, or BRDF -based reflection, depending on the surface properties

  17. Automated support for experience-based software management

    NASA Technical Reports Server (NTRS)

    Valett, Jon D.

    1992-01-01

    To effectively manage a software development project, the software manager must have access to key information concerning a project's status. This information includes not only data relating to the project of interest, but also, the experience of past development efforts within the environment. This paper describes the concepts and functionality of a software management tool designed to provide this information. This tool, called the Software Management Environment (SME), enables the software manager to compare an ongoing development effort with previous efforts and with models of the 'typical' project within the environment, to predict future project status, to analyze a project's strengths and weaknesses, and to assess the project's quality. In order to provide these functions the tool utilizes a vast corporate memory that includes a data base of software metrics, a set of models and relationships that describe the software development environment, and a set of rules that capture other knowledge and experience of software managers within the environment. Integrating these major concepts into one software management tool, the SME is a model of the type of management tool needed for all software development organizations.

  18. Creating Simulated Microgravity Patient Models

    NASA Technical Reports Server (NTRS)

    Hurst, Victor; Doerr, Harold K.; Bacal, Kira

    2004-01-01

    The Medical Operational Support Team (MOST) has been tasked by the Space and Life Sciences Directorate (SLSD) at the NASA Johnson Space Center (JSC) to integrate medical simulation into 1) medical training for ground and flight crews and into 2) evaluations of medical procedures and equipment for the International Space Station (ISS). To do this, the MOST requires patient models that represent the physiological changes observed during spaceflight. Despite the presence of physiological data collected during spaceflight, there is no defined set of parameters that illustrate or mimic a 'space normal' patient. Methods: The MOST culled space-relevant medical literature and data from clinical studies performed in microgravity environments. The areas of focus for data collection were in the fields of cardiovascular, respiratory and renal physiology. Results: The MOST developed evidence-based patient models that mimic the physiology believed to be induced by human exposure to a microgravity environment. These models have been integrated into space-relevant scenarios using a human patient simulator and ISS medical resources. Discussion: Despite the lack of a set of physiological parameters representing 'space normal,' the MOST developed space-relevant patient models that mimic microgravity-induced changes in terrestrial physiology. These models are used in clinical scenarios that will medically train flight surgeons, biomedical flight controllers (biomedical engineers; BME) and, eventually, astronaut-crew medical officers (CMO).

  19. An ontology-based semantic configuration approach to constructing Data as a Service for enterprises

    NASA Astrophysics Data System (ADS)

    Cai, Hongming; Xie, Cheng; Jiang, Lihong; Fang, Lu; Huang, Chenxi

    2016-03-01

    To align business strategies with IT systems, enterprises should rapidly implement new applications based on existing information with complex associations to adapt to the continually changing external business environment. Thus, Data as a Service (DaaS) has become an enabling technology for enterprise through information integration and the configuration of existing distributed enterprise systems and heterogonous data sources. However, business modelling, system configuration and model alignment face challenges at the design and execution stages. To provide a comprehensive solution to facilitate data-centric application design in a highly complex and large-scale situation, a configurable ontology-based service integrated platform (COSIP) is proposed to support business modelling, system configuration and execution management. First, a meta-resource model is constructed and used to describe and encapsulate information resources by way of multi-view business modelling. Then, based on ontologies, three semantic configuration patterns, namely composite resource configuration, business scene configuration and runtime environment configuration, are designed to systematically connect business goals with executable applications. Finally, a software architecture based on model-view-controller (MVC) is provided and used to assemble components for software implementation. The result of the case study demonstrates that the proposed approach provides a flexible method of implementing data-centric applications.

  20. Integration of Error Compensation of Coordinate Measuring Machines into Feature Measurement: Part I—Model Development

    PubMed Central

    Calvo, Roque; D’Amato, Roberto; Gómez, Emilio; Domingo, Rosario

    2016-01-01

    The development of an error compensation model for coordinate measuring machines (CMMs) and its integration into feature measurement is presented. CMMs are widespread and dependable instruments in industry and laboratories for dimensional measurement. From the tip probe sensor to the machine display, there is a complex transformation of probed point coordinates through the geometrical feature model that makes the assessment of accuracy and uncertainty measurement results difficult. Therefore, error compensation is not standardized, conversely to other simpler instruments. Detailed coordinate error compensation models are generally based on CMM as a rigid-body and it requires a detailed mapping of the CMM’s behavior. In this paper a new model type of error compensation is proposed. It evaluates the error from the vectorial composition of length error by axis and its integration into the geometrical measurement model. The non-explained variability by the model is incorporated into the uncertainty budget. Model parameters are analyzed and linked to the geometrical errors and uncertainty of CMM response. Next, the outstanding measurement models of flatness, angle, and roundness are developed. The proposed models are useful for measurement improvement with easy integration into CMM signal processing, in particular in industrial environments where built-in solutions are sought. A battery of implementation tests are presented in Part II, where the experimental endorsement of the model is included. PMID:27690052

Top