Science.gov

Sample records for integrated modeling system

  1. Integrated Modeling Systems

    DTIC Science & Technology

    1989-01-01

    Management , UCLA. Federgruen, A. and Zipkin , P. (1984), ’A Combined Vehicle Routing and Inventory Allocation Problem’, Operations Research 32(5), 1019-1037...Completion Based Inventory Systems: Optimal Policies for Repair Kits and Spare Machines," Management Science, 31:6 (June 1985). WMSI Working Paper 318. 210...Reprint No. 238 Computer Science in Economics and Management 2 (1989), pp. 3-15 AD-A215 219 INTEGRATED MODELING SYSTEMS by Arthur M. Geoffrion DTIC0

  2. Integrated Workforce Modeling System

    NASA Technical Reports Server (NTRS)

    Moynihan, Gary P.

    2000-01-01

    There are several computer-based systems, currently in various phases of development at KSC, which encompass some component, aspect, or function of workforce modeling. These systems may offer redundant capabilities and/or incompatible interfaces. A systems approach to workforce modeling is necessary in order to identify and better address user requirements. This research has consisted of two primary tasks. Task 1 provided an assessment of existing and proposed KSC workforce modeling systems for their functionality and applicability to the workforce planning function. Task 2 resulted in the development of a proof-of-concept design for a systems approach to workforce modeling. The model incorporates critical aspects of workforce planning, including hires, attrition, and employee development.

  3. Integrated Modeling Systems,

    DTIC Science & Technology

    1986-11-01

    Structured Modeling, Ph.D. Thesis, Graduate School of Management , UCLA. Federgruen, A. and P. Zipkin 򒾀>. "A Combined Vehicle Routing and Inventory ...C-O 570 i1 ’. 33 %xESTEN MANAGEMENT SCIENCE INSTITUTE Lnvcrsitv of California. Los Angles WESTERN MANAGEMENT SCIENCE INSTITUTE University of...Chuan Tsai. This work was supported by the National Science Foundation , the Office of Naval Research, and the Naval Personnel R&D Center. The views

  4. Cotangent Models for Integrable Systems

    NASA Astrophysics Data System (ADS)

    Kiesenhofer, Anna; Miranda, Eva

    2017-03-01

    We associate cotangent models to a neighbourhood of a Liouville torus in symplectic and Poisson manifolds focusing on b-Poisson/ b-symplectic manifolds. The semilocal equivalence with such models uses the corresponding action-angle theorems in these settings: the theorem of Liouville-Mineur-Arnold for symplectic manifolds and an action-angle theorem for regular Liouville tori in Poisson manifolds (Laurent- Gengoux et al., IntMath Res Notices IMRN 8: 1839-1869, 2011). Our models comprise regular Liouville tori of Poisson manifolds but also consider the Liouville tori on the singular locus of a b-Poisson manifold. For this latter class of Poisson structures we define a twisted cotangent model. The equivalence with this twisted cotangent model is given by an action-angle theorem recently proved by the authors and Scott (Math. Pures Appl. (9) 105(1):66-85, 2016). This viewpoint of cotangent models provides a new machinery to construct examples of integrable systems, which are especially valuable in the b-symplectic case where not many sources of examples are known. At the end of the paper we introduce non-degenerate singularities as lifted cotangent models on b-symplectic manifolds and discuss some generalizations of these models to general Poisson manifolds.

  5. INTEGRATED HYDROGEN STORAGE SYSTEM MODEL

    SciTech Connect

    Hardy, B

    2007-11-16

    Hydrogen storage is recognized as a key technical hurdle that must be overcome for the realization of hydrogen powered vehicles. Metal hydrides and their doped variants have shown great promise as a storage material and significant advances have been made with this technology. In any practical storage system the rate of H2 uptake will be governed by all processes that affect the rate of mass transport through the bed and into the particles. These coupled processes include heat and mass transfer as well as chemical kinetics and equilibrium. However, with few exceptions, studies of metal hydrides have focused primarily on fundamental properties associated with hydrogen storage capacity and kinetics. A full understanding of the complex interplay of physical processes that occur during the charging and discharging of a practical storage system requires models that integrate the salient phenomena. For example, in the case of sodium alanate, the size of NaAlH4 crystals is on the order of 300nm and the size of polycrystalline particles may be approximately 10 times larger ({approx}3,000nm). For the bed volume to be as small as possible, it is necessary to densely pack the hydride particles. Even so, in packed beds composed of NaAlH{sub 4} particles alone, it has been observed that the void fraction is still approximately 50-60%. Because of the large void fraction and particle to particle thermal contact resistance, the thermal conductivity of the hydride is very low, on the order of 0.2 W/m-{sup o}C, Gross, Majzoub, Thomas and Sandrock [2002]. The chemical reaction for hydrogen loading is exothermic. Based on the data in Gross [2003], on the order of 10{sup 8}J of heat of is released for the uptake of 5 kg of H{sub 2}2 and complete conversion of NaH to NaAlH{sub 4}. Since the hydride reaction transitions from hydrogen loading to discharge at elevated temperatures, it is essential to control the temperature of the bed. However, the low thermal conductivity of the hydride

  6. Integrating systems biology models and biomedical ontologies

    PubMed Central

    2011-01-01

    Background Systems biology is an approach to biology that emphasizes the structure and dynamic behavior of biological systems and the interactions that occur within them. To succeed, systems biology crucially depends on the accessibility and integration of data across domains and levels of granularity. Biomedical ontologies were developed to facilitate such an integration of data and are often used to annotate biosimulation models in systems biology. Results We provide a framework to integrate representations of in silico systems biology with those of in vivo biology as described by biomedical ontologies and demonstrate this framework using the Systems Biology Markup Language. We developed the SBML Harvester software that automatically converts annotated SBML models into OWL and we apply our software to those biosimulation models that are contained in the BioModels Database. We utilize the resulting knowledge base for complex biological queries that can bridge levels of granularity, verify models based on the biological phenomenon they represent and provide a means to establish a basic qualitative layer on which to express the semantics of biosimulation models. Conclusions We establish an information flow between biomedical ontologies and biosimulation models and we demonstrate that the integration of annotated biosimulation models and biomedical ontologies enables the verification of models as well as expressive queries. Establishing a bi-directional information flow between systems biology and biomedical ontologies has the potential to enable large-scale analyses of biological systems that span levels of granularity from molecules to organisms. PMID:21835028

  7. Integrated dynamics modeling for supercavitating vehicle systems

    NASA Astrophysics Data System (ADS)

    Kim, Seonhong; Kim, Nakwan

    2015-06-01

    We have performed integrated dynamics modeling for a supercavitating vehicle. A 6-DOF equation of motion was constructed by defining the forces and moments acting on the supercavitating body surface that contacted water. The wetted area was obtained by calculating the cavity size and axis. Cavity dynamics were determined to obtain the cavity profile for calculating the wetted area. Subsequently, the forces and moments acting on each wetted part-the cavitator, fins, and vehicle body-were obtained by physical modeling. The planing force-the interaction force between the vehicle transom and cavity wall-was calculated using the apparent mass of the immersed vehicle transom. We integrated each model and constructed an equation of motion for the supercavitating system. We performed numerical simulations using the integrated dynamics model to analyze the characteristics of the supercavitating system and validate the modeling completeness. Our research enables the design of high-quality controllers and optimal supercavitating systems.

  8. CTBT integrated verification system evaluation model supplement

    SciTech Connect

    EDENBURN,MICHAEL W.; BUNTING,MARCUS; PAYNE JR.,ARTHUR C.; TROST,LAWRENCE C.

    2000-03-02

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia's Monitoring Systems and Technology Center and has been funded by the U.S. Department of Energy's Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, ''top-level,'' modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM's unique features is that it integrates results from the various CTBT sensor technologies (seismic, in sound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection), location accuracy, and identification capability of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system's performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. The original IVSEM report, CTBT Integrated Verification System Evaluation Model, SAND97-25 18, described version 1.2 of IVSEM. This report describes the changes made to IVSEM version 1.2 and the addition of identification capability estimates that have been incorporated into IVSEM version 2.0.

  9. Systems biology and integrative physiological modelling.

    PubMed

    Hester, Robert L; Iliescu, Radu; Summers, Richard; Coleman, Thomas G

    2011-03-01

    Over the last 10 years, 'Systems Biology' has focused on the integration of biology and medicine with information technology and computation. The current challenge is to use the discoveries of the last 20 years, such as genomics and proteomics, to develop targeted therapeutical strategies. These strategies are the result of understanding the aetiologies of complex diseases. Scientists predict the data will make personalized medicine rapidly available. However, the data need to be considered as a highly complex system comprising multiple inputs and feedback mechanisms. Translational medicine requires the functional and conceptual linkage of genetics to proteins, proteins to cells, cells to organs, organs to systems and systems to the organism. To help understand the complex integration of these systems, a mathematical model of the entire human body, which accurately links the functioning of all organs and systems together, could provide a framework for the development and testing of new hypotheses that will be important in clinical outcomes. There are several efforts to develop a 'Human Physiome', with the strengths and weaknesses of each being presented here. The development of a 'Human Model', with verification, documentation and validation of the underlying and integrative responses, is essential to provide a usable environment. Future development of a 'Human Model' requires integrative physiologists working in collaboration with other scientists, who have expertise in all areas of human biology, to develop the most accurate and usable human model.

  10. CTBT Integrated Verification System Evaluation Model

    SciTech Connect

    Edenburn, M.W.; Bunting, M.L.; Payne, A.C. Jr.

    1997-10-01

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia`s Monitoring Systems and Technology Center and has been funded by the US Department of Energy`s Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, top-level, modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM`s unique features is that it integrates results from the various CTBT sensor technologies (seismic, infrasound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection) and location accuracy of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system`s performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. This report describes version 1.2 of IVSEM.

  11. An Integrated Ecological Modeling System for Assessing ...

    EPA Pesticide Factsheets

    We demonstrate a novel, spatially explicit assessment of the current condition of aquatic ecosystem services, with limited sensitivity analysis for the atmospheric contaminant mercury. The Integrated Ecological Modeling System (IEMS) forecasts water quality and quantity, habitat suitability for aquatic biota, fish biomasses, population densities, productivities, and contamination by methylmercury across headwater watersheds. We applied this IEMS to the Coal River Basin (CRB), West Virginia (USA), an 8-digit hydrologic unit watershed, by simulating a network of 97 stream segments using the SWAT watershed model, a watershed mercury loading model, the WASP water quality model, the PiSCES fish community estimation model, a fish habitat suitability model, the BASS fish community and bioaccumulation model, and an ecoservices post-processer. Model application was facilitated by automated data retrieval and model setup and updated model wrappers and interfaces for data transfers between these models from a prior study. This companion study evaluates baseline predictions of ecoservices provided for 1990 – 2010 for the population of streams in the CRB and serves as a foundation for future model development. Published in the journal, Ecological Modeling. Highlights: • Demonstrate a spatially-explicit IEMS for multiple scales. • Design a flexible IEMS for

  12. Integrated modeling of advanced optical systems

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.; Needels, Laura; Levine, B. Martin

    1993-01-01

    This poster session paper describes an integrated modeling and analysis capability being developed at JPL under funding provided by the JPL Director's Discretionary Fund and the JPL Control/Structure Interaction Program (CSI). The posters briefly summarize the program capabilities and illustrate them with an example problem. The computer programs developed under this effort will provide an unprecedented capability for integrated modeling and design of high performance optical spacecraft. The engineering disciplines supported include structural dynamics, controls, optics and thermodynamics. Such tools are needed in order to evaluate the end-to-end system performance of spacecraft such as OSI, POINTS, and SMMM. This paper illustrates the proof-of-concept tools that have been developed to establish the technology requirements and demonstrate the new features of integrated modeling and design. The current program also includes implementation of a prototype tool based upon the CAESY environment being developed under the NASA Guidance and Control Research and Technology Computational Controls Program. This prototype will be available late in FY-92. The development plan proposes a major software production effort to fabricate, deliver, support and maintain a national-class tool from FY-93 through FY-95.

  13. Integrated Modeling of Complex Optomechanical Systems

    NASA Astrophysics Data System (ADS)

    Andersen, Torben; Enmark, Anita

    2011-09-01

    Mathematical modeling and performance simulation are playing an increasing role in large, high-technology projects. There are two reasons; first, projects are now larger than they were before, and the high cost calls for detailed performance prediction before construction. Second, in particular for space-related designs, it is often difficult to test systems under realistic conditions beforehand, and mathematical modeling is then needed to verify in advance that a system will work as planned. Computers have become much more powerful, permitting calculations that were not possible before. At the same time mathematical tools have been further developed and found acceptance in the community. Particular progress has been made in the fields of structural mechanics, optics and control engineering, where new methods have gained importance over the last few decades. Also, methods for combining optical, structural and control system models into global models have found widespread use. Such combined models are usually called integrated models and were the subject of this symposium. The objective was to bring together people working in the fields of groundbased optical telescopes, ground-based radio telescopes, and space telescopes. We succeeded in doing so and had 39 interesting presentations and many fruitful discussions during coffee and lunch breaks and social arrangements. We are grateful that so many top ranked specialists found their way to Kiruna and we believe that these proceedings will prove valuable during much future work.

  14. Treatment of pathological gambling - integrative systemic model.

    PubMed

    Mladenović, Ivica; Lažetić, Goran; Lečić-Toševski, Dušica; Dimitrijević, Ivan

    2015-03-01

    Pathological gambling was classified under impulse control disorders within the International Classification of Diseases (ICD-10) (WHO 1992), but the most recent Diagnostic and Statistical Manual, 5th edition (DSM-V), (APA 2013), has recognized pathological gambling as a first disorder within a new diagnostic category of behavioral addictions - Gambling disorder. Pathological gambling is a disorder in progression, and we hope that our experience in the treatment of pathological gambling in the Daily Hospital for Addictions at The Institute of Mental Health, through the original "Integrative - systemic model" would be of use to colleagues, dealing with this pathology. This model of treatment of pathological gambling is based on multi-systemic approach and it primarily represents an integration of family and cognitive-behavioral therapy, with traces of psychodynamic, existential and pharmacotherapy. The model is based on the book "Pathological gambling - with self-help manual" by Dr Mladenovic and Dr Lazetic, and has been designed in the form of a program that lasts 10 weeks in the intensive phase, and then continues for two years in the form of "extended treatment" ("After care"). The intensive phase is divided into three segments: educational, insight with initial changes and analysis of the achieved changes with the definition of plans and areas that need to be addressed in the extended treatment. "Extended treatment" lasts for two years in the form of group therapy, during which there is a second order change of the identified patient, but also of other family members. Pathological gambling has been treated in the form of systemic-family therapy for more than 10 years at the Institute of Mental Health (IMH), in Belgrade. For second year in a row the treatment is carried out by the modern "Integrative-systemic model". If abstinence from gambling witihin the period of one year after completion of the intensive phase of treatment is taken as the main criterion of

  15. Developing Metrics in Systems Integration (ISS Program COTS Integration Model)

    NASA Technical Reports Server (NTRS)

    Lueders, Kathryn

    2007-01-01

    This viewgraph presentation reviews some of the complications in developing metrics for systems integration. Specifically it reviews a case study of how two programs within NASA try to develop and measure performance while meeting the encompassing organizational goals.

  16. Modeling for System Integration Studies (Presentation)

    SciTech Connect

    Orwig, K. D.

    2012-05-01

    This presentation describes some the data requirements needed for grid integration modeling and provides real-world examples of such data and its format. Renewable energy integration studies evaluate the operational impacts of variable generation. Transmission planning studies investigate where new transmission is needed to transfer energy from generation sources to load centers. Both use time-synchronized wind and solar energy production and load as inputs. Both examine high renewable energy penetration scenarios in the future.

  17. Development and Integration of Control System Models

    NASA Technical Reports Server (NTRS)

    Kim, Young K.

    1998-01-01

    The computer simulation tool, TREETOPS, has been upgraded and used at NASA/MSFC to model various complicated mechanical systems and to perform their dynamics and control analysis with pointing control systems. A TREETOPS model of Advanced X-ray Astrophysics Facility - Imaging (AXAF-1) dynamics and control system was developed to evaluate the AXAF-I pointing performance for Normal Pointing Mode. An optical model of Shooting Star Experiment (SSE) was also developed and its optical performance analysis was done using the MACOS software.

  18. Integrated Spatio-Temporal Ecological Modeling System

    DTIC Science & Technology

    1998-07-01

    11 Hierarchy Theory The predictability of ecological systems is inherently limited and is dependent on the scales (May 1986; Levin 1989; Vasconcelos ...and associates (1987) advocate a hierarchical paradigm to better understand the patterns in landscape ecology. Vasconcelos , Zeigler, and associates...modeling system is hierarchical and includes individuals, patch, and the whole landscape (Perestrello de Vasconcelos , Zeigler, et al. 1993). These are but

  19. THE EPA MULTIMEDIA INTEGRATED MODELING SYSTEM SOFTWARE SUITE

    EPA Science Inventory

    The U.S. EPA is developing a Multimedia Integrated Modeling System (MIMS) framework that will provide a software infrastructure or environment to support constructing, composing, executing, and evaluating complex modeling studies. The framework will include (1) common software ...

  20. THE EPA MULTIMEDIA INTEGRATED MODELING SYSTEM SOFTWARE SUITE

    EPA Science Inventory

    The U.S. EPA is developing a Multimedia Integrated Modeling System (MIMS) framework that will provide a software infrastructure or environment to support constructing, composing, executing, and evaluating complex modeling studies. The framework will include (1) common software ...

  1. Integrated Main Propulsion System Performance Reconstruction Process/Models

    NASA Technical Reports Server (NTRS)

    Lopez, Eduardo; Elliott, Katie; Snell, Steven; Evans, Michael

    2013-01-01

    The Integrated Main Propulsion System (MPS) Performance Reconstruction process provides the MPS post-flight data files needed for postflight reporting to the project integration management and key customers to verify flight performance. This process/model was used as the baseline for the currently ongoing Space Launch System (SLS) work. The process utilizes several methodologies, including multiple software programs, to model integrated propulsion system performance through space shuttle ascent. It is used to evaluate integrated propulsion systems, including propellant tanks, feed systems, rocket engine, and pressurization systems performance throughout ascent based on flight pressure and temperature data. The latest revision incorporates new methods based on main engine power balance model updates to model higher mixture ratio operation at lower engine power levels.

  2. Computer Integrated Manufacturing: Physical Modelling Systems Design. A Personal View.

    ERIC Educational Resources Information Center

    Baker, Richard

    A computer-integrated manufacturing (CIM) Physical Modeling Systems Design project was undertaken in a time of rapid change in the industrial, business, technological, training, and educational areas in Australia. A specification of a manufacturing physical modeling system was drawn up. Physical modeling provides a flexibility and configurability…

  3. Integrative systems modeling and multi-objective optimization

    EPA Science Inventory

    This presentation presents a number of algorithms, tools, and methods for utilizing multi-objective optimization within integrated systems modeling frameworks. We first present innovative methods using a genetic algorithm to optimally calibrate the VELMA and SWAT ecohydrological ...

  4. Integrative systems modeling and multi-objective optimization

    EPA Science Inventory

    This presentation presents a number of algorithms, tools, and methods for utilizing multi-objective optimization within integrated systems modeling frameworks. We first present innovative methods using a genetic algorithm to optimally calibrate the VELMA and SWAT ecohydrological ...

  5. The HSG procedure for modelling integrated urban wastewater systems.

    PubMed

    Muschalla, D; Schütze, M; Schroeder, K; Bach, M; Blumensaat, F; Gruber, G; Klepiszewski, K; Pabst, M; Pressl, A; Schindler, N; Solvi, A-M; Wiese, J

    2009-01-01

    Whilst the importance of integrated modelling of urban wastewater systems is ever increasing, there is still no concise procedure regarding how to carry out such modelling studies. After briefly discussing some earlier approaches, the guideline for integrated modelling developed by the Central European Simulation Research Group (HSG - Hochschulgruppe) is presented. This contribution suggests a six-step standardised procedure to integrated modelling. This commences with an analysis of the system and definition of objectives and criteria, covers selection of modelling approaches, analysis of data availability, calibration and validation and also includes the steps of scenario analysis and reporting. Recent research findings as well as experience gained from several application projects from Central Europe have been integrated in this guideline.

  6. Human Systems Integration (HSI) Tradeoff Model

    DTIC Science & Technology

    2014-03-01

    while the SURVIAC model development team observed. The users evaluated the functionality and usability of the model in understanding the goal of HSI...Initiated: From scenario initiation 9. Time Completed: Results screen 10. Section 3: Usability /Tasks Walkthrough Please read the instructions...From scenario initiation 19. Time Completed: Results screen 20. Section 3: Usability /Tasks Walkthrough Please read the instructions below

  7. Process modeling for the Integrated Nonthermal Treatment System (INTS) study

    SciTech Connect

    Brown, B.W.

    1997-04-01

    This report describes the process modeling done in support of the Integrated Nonthermal Treatment System (INTS) study. This study was performed to supplement the Integrated Thermal Treatment System (ITTS) study and comprises five conceptual treatment systems that treat DOE contract-handled mixed low-level wastes (MLLW) at temperatures of less than 350{degrees}F. ASPEN PLUS, a chemical process simulator, was used to model the systems. Nonthermal treatment systems were developed as part of the INTS study and include sufficient processing steps to treat the entire inventory of MLLW. The final result of the modeling is a process flowsheet with a detailed mass and energy balance. In contrast to the ITTS study, which modeled only the main treatment system, the INTS study modeled each of the various processing steps with ASPEN PLUS, release 9.1-1. Trace constituents, such as radionuclides and minor pollutant species, were not included in the calculations.

  8. Multiscale modeling of integrated CCS systems

    NASA Astrophysics Data System (ADS)

    Alhajaj, Ahmed; Shah, Nilay

    2015-01-01

    The world will continue consuming fossil fuel within the coming decades to meet its growing energy demand; however, this source must be cleaner through implementation of carbon capture, transport and storage (CCTS). This process is complex and involves multiple phases, owned by different operational companies and stakeholders with different business models and regulatory framework. The objective of this work is to develop a multiscale modeling approach to link process models, post-combustion capture plant model and network design models under an optimization framework in order to design and analyse the cost optimal CO2 infrastructure that match CO2 sources and sinks in capacity and time. The network comprises a number of CO2 sources at fixed locations and a number of potential CO2 storage sites. The decisions to be determined include from which sources it is appropriate to capture CO2 and the cost-optimal degree-of-capture (DOC) for a given source and the infrastructural layout of the CO2 transmission network.

  9. Integrated Control Modeling for Propulsion Systems Using NPSS

    NASA Technical Reports Server (NTRS)

    Parker, Khary I.; Felder, James L.; Lavelle, Thomas M.; Withrow, Colleen A.; Yu, Albert Y.; Lehmann, William V. A.

    2004-01-01

    The Numerical Propulsion System Simulation (NPSS), an advanced engineering simulation environment used to design and analyze aircraft engines, has been enhanced by integrating control development tools into it. One of these tools is a generic controller interface that allows NPSS to communicate with control development software environments such as MATLAB and EASY5. The other tool is a linear model generator (LMG) that gives NPSS the ability to generate linear, time-invariant state-space models. Integrating these tools into NPSS enables it to be used for control system development. This paper will discuss the development and integration of these tools into NPSS. In addition, it will show a comparison of transient model results of a generic, dual-spool, military-type engine model that has been implemented in NPSS and Simulink. It will also show the linear model generator s ability to approximate the dynamics of a nonlinear NPSS engine model.

  10. Integrated Earth System Model (iESM)

    SciTech Connect

    Thornton, Peter Edmond; Mao, Jiafu; Shi, Xiaoying

    2016-12-02

    The iESM is a simulation code that represents the physical and biological aspects of Earth's climate system, and also includes the macro-economic and demographic properties of human societies. The human aspect of the simulation code is focused in particular on the effects of human activities on land use and land cover change, but also includes aspects such as energy economies. The time frame for predictions with iESM is approximately 1970 through 2100.

  11. An Integrated Simulation Tool for Modeling the Human Circulatory System

    NASA Astrophysics Data System (ADS)

    Asami, Ken'ichi; Kitamura, Tadashi

    This paper presents an integrated simulation of the circulatory system in physiological movement. The large circulatory system model includes principal organs and functional units in modules in which comprehensive physiological changes such as nerve reflexes, temperature regulation, acid/base balance, O2/CO2 balance, and exercise are simulated. A beat-by-beat heart model, in which the corresponding electrical circuit problems are solved by a numerical analytic method, enables calculation of pulsatile blood flow to the major organs. The integration of different perspectives on physiological changes makes this simulation model applicable for the microscopic evaluation of blood flow under various conditions in the human body.

  12. The transformational model for professional practice: a system integration focus.

    PubMed

    Wolf, Gail A; Hayden, Margaret; Bradle, Judith A

    2004-04-01

    Healthcare organizations face the increasingly difficult challenge of providing services that are of high quality, reasonable cost, and easy accessibility for their constituents. Mergers and acquisitions are one strategy for accomplishing this, but in doing so it is critical to have a "road map" to create an integrated system, rather than merely a consortium of hospitals. The University of Pittsburgh Medical Center has successfully created an integrated healthcare system of 19 hospitals. The authors describe the professional practice model used as a framework for success in integrating patient care.

  13. Systems Modeling to Implement Integrated System Health Management Capability

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge F.; Walker, Mark; Morris, Jonathan; Smith, Harvey; Schmalzel, John

    2007-01-01

    ISHM capability includes: detection of anomalies, diagnosis of causes of anomalies, prediction of future anomalies, and user interfaces that enable integrated awareness (past, present, and future) by users. This is achieved by focused management of data, information and knowledge (DIaK) that will likely be distributed across networks. Management of DIaK implies storage, sharing (timely availability), maintaining, evolving, and processing. Processing of DIaK encapsulates strategies, methodologies, algorithms, etc. focused on achieving high ISHM Functional Capability Level (FCL). High FCL means a high degree of success in detecting anomalies, diagnosing causes, predicting future anomalies, and enabling health integrated awareness by the user. A model that enables ISHM capability, and hence, DIaK management, is denominated the ISHM Model of the System (IMS). We describe aspects of the IMS that focus on processing of DIaK. Strategies, methodologies, and algorithms require proper context. We describe an approach to define and use contexts, implementation in an object-oriented software environment (G2), and validation using actual test data from a methane thruster test program at NASA SSC. Context is linked to existence of relationships among elements of a system. For example, the context to use a strategy to detect leak is to identify closed subsystems (e.g. bounded by closed valves and by tanks) that include pressure sensors, and check if the pressure is changing. We call these subsystems Pressurizable Subsystems. If pressure changes are detected, then all members of the closed subsystem become suspect of leakage. In this case, the context is defined by identifying a subsystem that is suitable for applying a strategy. Contexts are defined in many ways. Often, a context is defined by relationships of function (e.g. liquid flow, maintaining pressure, etc.), form (e.g. part of the same component, connected to other components, etc.), or space (e.g. physically close

  14. Systematic integration of experimental data and models in systems biology

    PubMed Central

    2010-01-01

    Background The behaviour of biological systems can be deduced from their mathematical models. However, multiple sources of data in diverse forms are required in the construction of a model in order to define its components and their biochemical reactions, and corresponding parameters. Automating the assembly and use of systems biology models is dependent upon data integration processes involving the interoperation of data and analytical resources. Results Taverna workflows have been developed for the automated assembly of quantitative parameterised metabolic networks in the Systems Biology Markup Language (SBML). A SBML model is built in a systematic fashion by the workflows which starts with the construction of a qualitative network using data from a MIRIAM-compliant genome-scale model of yeast metabolism. This is followed by parameterisation of the SBML model with experimental data from two repositories, the SABIO-RK enzyme kinetics database and a database of quantitative experimental results. The models are then calibrated and simulated in workflows that call out to COPASIWS, the web service interface to the COPASI software application for analysing biochemical networks. These systems biology workflows were evaluated for their ability to construct a parameterised model of yeast glycolysis. Conclusions Distributed information about metabolic reactions that have been described to MIRIAM standards enables the automated assembly of quantitative systems biology models of metabolic networks based on user-defined criteria. Such data integration processes can be implemented as Taverna workflows to provide a rapid overview of the components and their relationships within a biochemical system. PMID:21114840

  15. Integrated Baseline System (IBS) Version 2.0: Models guide

    SciTech Connect

    Not Available

    1994-03-01

    The Integrated Baseline System (IBS) is an emergency management planning and analysis tool being developed under the direction of the US Army Nuclear and Chemical Agency. This Models Guide summarizes the IBS use of several computer models for predicting the results of emergency situations. These include models for predicting dispersion/doses of airborne contaminants, traffic evacuation, explosion effects, heat radiation from a fire, and siren sound transmission. The guide references additional technical documentation on the models when such documentation is available from other sources. The audience for this manual is chiefly emergency management planners and analysts, but also data managers and system managers.

  16. The Integrated Decision Modeling System (IDMS) User’s Manual

    DTIC Science & Technology

    1991-05-01

    AL-TP-1 991-0009 AD-A23 6 033 THE INTEGRATED DECISION MODELING SYSTEM (IDMS) USER’S MANUAL IJonathan C. Fast John N. Taylor Metrica , Incorporated...Looper 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) . PERFORMING ORGANIZATION REPORT NUMBER Metrica , Incorporated 8301 Broadway, Suite 215 San

  17. Soldier System Modeling and Integrated Unit Simulation System (IUSS)

    DTIC Science & Technology

    2009-11-01

    SI_n~le’P_k:’Fact_or) Explicit Target Acquisition, Hit. Kill (P"x pllX pk) • Target Acquisition Model - Exchange Shot Models Circadian Rhythms I...to the effectiveness of the total Soldier System. A flow chart of an example three dimensional relationship for the Engagement sub- capability is

  18. The integrated Earth System Model Version 1: formulation and functionality

    SciTech Connect

    Collins, William D.; Craig, Anthony P.; Truesdale, John E.; Di Vittorio, Alan; Jones, Andrew D.; Bond-Lamberty, Benjamin; Calvin, Katherine V.; Edmonds, James A.; Kim, Son H.; Thomson, Allison M.; Patel, Pralit L.; Zhou, Yuyu; Mao, Jiafu; Shi, Xiaoying; Thornton, Peter E.; Chini, Louise M.; Hurtt, George C.

    2015-07-23

    The integrated Earth System Model (iESM) has been developed as a new tool for pro- jecting the joint human/climate system. The iESM is based upon coupling an Integrated Assessment Model (IAM) and an Earth System Model (ESM) into a common modeling in- frastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species, land use and land cover change, and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. The iESM project integrates the economic and human dimension modeling of an IAM and a fully coupled ESM within a sin- gle simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore- omitted feedbacks between natural and societal drivers, we can improve scientific under- standing of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper de- scribes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.

  19. The integrated Earth system model version 1: formulation and functionality

    NASA Astrophysics Data System (ADS)

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.; Di Vittorio, A. V.; Jones, A. D.; Bond-Lamberty, B.; Calvin, K. V.; Edmonds, J. A.; Kim, S. H.; Thomson, A. M.; Patel, P.; Zhou, Y.; Mao, J.; Shi, X.; Thornton, P. E.; Chini, L. P.; Hurtt, G. C.

    2015-07-01

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human-Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. The iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human-Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.

  20. The integrated Earth system model version 1: formulation and functionality

    DOE PAGES

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.; ...

    2015-07-23

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  1. Modeling for Integrated Science Management and Resilient Systems Development

    NASA Technical Reports Server (NTRS)

    Shelhamer, M.; Mindock, J.; Lumpkins, S.

    2014-01-01

    Many physiological, environmental, and operational risks exist for crewmembers during spaceflight. An understanding of these risks from an integrated perspective is required to provide effective and efficient mitigations during future exploration missions that typically have stringent limitations on resources available, such as mass, power, and crew time. The Human Research Program (HRP) is in the early stages of developing collaborative modeling approaches for the purposes of managing its science portfolio in an integrated manner to support cross-disciplinary risk mitigation strategies and to enable resilient human and engineered systems in the spaceflight environment. In this talk, we will share ideas being explored from fields such as network science, complexity theory, and system-of-systems modeling. Initial work on tools to support these explorations will be discussed briefly, along with ideas for future efforts.

  2. An integrated system for rainfall induced shallow landslides modeling

    NASA Astrophysics Data System (ADS)

    Formetta, Giuseppe; Capparelli, Giovanna; Rigon, Riccardo; Versace, Pasquale

    2014-05-01

    Rainfall induced shallow landslides (RISL) cause significant damages involving loss of life and properties. Predict susceptible locations for RISL is a complex task that involves many disciplines: hydrology, geotechnical science, geomorphology, statistic. Usually to accomplish this task two main approaches are used: statistical or physically based model. In this work an open source (OS), 3-D, fully distributed hydrological model was integrated in an OS modeling framework (Object Modeling System). The chain is closed by linking the system to a component for safety factor computation with infinite slope approximation able to take into account layered soils and suction contribution to hillslope stability. The model composition was tested for a case study in Calabria (Italy) in order to simulate the triggering of a landslide happened in the Cosenza Province. The integration in OMS allows the use of other components such as a GIS to manage inputs-output processes, and automatic calibration algorithms to estimate model parameters. Finally, model performances were quantified by comparing modelled and simulated trigger time. This research is supported by Ambito/Settore AMBIENTE E SICUREZZA (PON01_01503) project.

  3. Integrating Models and Datasets with Earth System Curator

    NASA Astrophysics Data System (ADS)

    Deluca, C.; Middleton, D.; Balaji, V.

    2008-05-01

    The central goal of the NSF-funded Earth System Curator project is to develop an integrated portal in which datasets and complex, multi-component Earth System models can be described, archived, browsed, distributed, and compared. To this end, the Curator team has partnered with the established Community Data Portal (CDP) and Earth System Grid (ESG) efforts. This presentation outlines ontology extensions, user interface considerations, metadata acquisition strategies, and other activities and issues in the development of the extended capability. It also describes a first deployment of the extended portal for a summer workshop focused on the comparison of a collection of atmospheric dynamical cores.

  4. An integrated mathematical model of the cardiovascular and respiratory systems.

    PubMed

    Trenhago, Paulo Roberto; Fernandes, Luciano Gonçalves; Müller, Lucas Omar; Blanco, Pablo Javier; Feijóo, Raúl Antonino

    2016-01-01

    This study presents a lumped model for the human cardiorespiratory system. Specifically, we incorporate a sophisticated gas dissociation and transport system to a fully integrated cardiovascular and pulmonary model. The model provides physiologically consistent predictions in terms of hemodynamic variables such as pressure, flow rate, gas partial pressures, and pH. We perform numerical simulations to evaluate the behavior of the partial pressures of oxygen and carbon dioxide in different vascular and pulmonary compartments. For this, we design the rest condition with low oxygen requirements and carbon dioxide production and exercise conditions with high oxygen demand and carbon dioxide production. Furthermore, model sensitivity to more relevant model parameters is studied. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Integrated modelling of ecosystem services and energy systems research

    NASA Astrophysics Data System (ADS)

    Agarwala, Matthew; Lovett, Andrew; Bateman, Ian; Day, Brett; Agnolucci, Paolo; Ziv, Guy

    2016-04-01

    The UK Government is formally committed to reducing carbon emissions and protecting and improving natural capital and the environment. However, actually delivering on these objectives requires an integrated approach to addressing two parallel challenges: de-carbonising future energy system pathways; and safeguarding natural capital to ensure the continued flow of ecosystem services. Although both emphasise benefiting from natural resources, efforts to connect natural capital and energy systems research have been limited, meaning opportunities to improve management of natural resources and meet society's energy needs could be missed. The ecosystem services paradigm provides a consistent conceptual framework that applies in multiple disciplines across the natural and economic sciences, and facilitates collaboration between them. At the forefront of the field, integrated ecosystem service - economy models have guided public- and private-sector decision making at all levels. Models vary in sophistication from simple spreadsheet tools to complex software packages integrating biophysical, GIS and economic models and draw upon many fields, including ecology, hydrology, geography, systems theory, economics and the social sciences. They also differ in their ability to value changes in natural capital and ecosystem services at various spatial and temporal scales. Despite these differences, current models share a common feature: their treatment of energy systems is superficial at best. In contrast, energy systems research has no widely adopted, unifying conceptual framework that organises thinking about key system components and interactions. Instead, the literature is organised around modelling approaches, including life cycle analyses, econometric investigations, linear programming and computable general equilibrium models. However, some consistencies do emerge. First, often contain a linear set of steps, from exploration to resource supply, fuel processing, conversion

  6. Defining Requirements for an Integrated Water Resource Modeling System

    SciTech Connect

    Thurman, David A.; Peterson, Todd S.; Frodge, Jonathan

    2002-07-29

    This paper describes the process used to define the requirements for an integrated water resource modeling system that will be employed by a range of users with varying backgrounds and needs. A five-step process was initiated to ensure consideration of the needs and interests of users representing many different parts of the organization. The steps of the process, the results of each step and a summary of the results are presented.

  7. Integration of a three-dimensional process-based hydrological model into the Object Modeling System

    USDA-ARS?s Scientific Manuscript database

    The integration of a spatial process model into an environmental modelling framework can enhance the model’s capabilities. We present the integration of the GEOtop model into the Object Modeling System (OMS) version 3.0 and illustrate its application in a small watershed. GEOtop is a physically base...

  8. Integrative Systems Models of Cardiac Excitation Contraction Coupling

    PubMed Central

    Greenstein, Joseph L.; Winslow, Raimond L.

    2010-01-01

    Excitation-contraction coupling in the cardiac myocyte is mediated by a number of highly integrated mechanisms of intracellular Ca2+ transport. The complexity and integrative nature of heart cell electrophysiology and Ca2+-cycling has led to an evolution of computational models that have played a crucial role in shaping our understanding of heart function. An important emerging theme in systems biology is that the detailed nature of local signaling events, such as those that occur in the cardiac dyad, have important consequences at higher biological scales. Multi-scale modeling techniques have revealed many mechanistic links between micro-scale events, such as Ca2+ binding to a channel protein, and macro-scale phenomena, such as excitation-contraction coupling gain. Here we review experimentally based multi-scale computational models of excitation-contraction coupling and the insights that have been gained through their application. PMID:21212390

  9. Multivariate data assimilation in an integrated hydrological modelling system

    NASA Astrophysics Data System (ADS)

    Madsen, Henrik; Zhang, Donghua; Ridler, Marc; Refsgaard, Jens Christian; Høgh Jensen, Karsten

    2016-04-01

    The immensely increasing availability of in-situ and remotely sensed hydrological data has offered new opportunities for monitoring and forecasting water resources by combining observation data with hydrological modelling. Efficient multivariate data assimilation in integrated groundwater - surface water hydrological modelling systems are required to fully utilize and optimally combine the different types of observation data. A particular challenge is the assimilation of observation data of different hydrological variables from different monitoring instruments, representing a wide range of spatial and temporal scales and different levels of uncertainty. A multivariate data assimilation framework has been implemented in the MIKE SHE integrated hydrological modelling system by linking the MIKE SHE code with a generic data assimilation library. The data assimilation library supports different state-of-the-art ensemble-based Kalman filter methods, and includes procedures for localisation, joint state, parameter and model error estimation, and bias-aware filtering. Furthermore, it supports use of different stochastic error models to describe model and measurement errors. Results are presented that demonstrate the use of the data assimilation framework for assimilation of different data types in a catchment-scale MIKE SHE model.

  10. A System Dynamics Model for Integrated Decision Making ...

    EPA Pesticide Factsheets

    EPA’s Sustainable and Healthy Communities Research Program (SHC) is conducting transdisciplinary research to inform and empower decision-makers. EPA tools and approaches are being developed to enable communities to effectively weigh and integrate human health, socioeconomic, environmental, and ecological factors into their decisions to promote community sustainability. To help achieve this goal, EPA researchers have developed systems approaches to account for the linkages among resources, assets, and outcomes managed by a community. System dynamics (SD) is a member of the family of systems approaches and provides a framework for dynamic modeling that can assist with assessing and understanding complex issues across multiple dimensions. To test the utility of such tools when applied to a real-world situation, the EPA has developed a prototype SD model for community sustainability using the proposed Durham-Orange Light Rail Project (D-O LRP) as a case study.The EPA D-O LRP SD modeling team chose the proposed D-O LRP to demonstrate that an integrated modeling approach could represent the multitude of related cross-sectoral decisions that would be made and the cascading impacts that could result from a light rail transit system connecting Durham and Chapel Hill, NC. In keeping with the SHC vision described above, the proposal for the light rail is a starting point solution for the more intractable problems of population growth, unsustainable land use, environmenta

  11. A System Dynamics Model for Integrated Decision Making ...

    EPA Pesticide Factsheets

    EPA’s Sustainable and Healthy Communities Research Program (SHC) is conducting transdisciplinary research to inform and empower decision-makers. EPA tools and approaches are being developed to enable communities to effectively weigh and integrate human health, socioeconomic, environmental, and ecological factors into their decisions to promote community sustainability. To help achieve this goal, EPA researchers have developed systems approaches to account for the linkages among resources, assets, and outcomes managed by a community. System dynamics (SD) is a member of the family of systems approaches and provides a framework for dynamic modeling that can assist with assessing and understanding complex issues across multiple dimensions. To test the utility of such tools when applied to a real-world situation, the EPA has developed a prototype SD model for community sustainability using the proposed Durham-Orange Light Rail Project (D-O LRP) as a case study.The EPA D-O LRP SD modeling team chose the proposed D-O LRP to demonstrate that an integrated modeling approach could represent the multitude of related cross-sectoral decisions that would be made and the cascading impacts that could result from a light rail transit system connecting Durham and Chapel Hill, NC. In keeping with the SHC vision described above, the proposal for the light rail is a starting point solution for the more intractable problems of population growth, unsustainable land use, environmenta

  12. Integrated modeling of the GMT laser tomography adaptive optics system

    NASA Astrophysics Data System (ADS)

    Piatrou, Piotr

    2014-08-01

    Laser Tomography Adaptive Optics (LTAO) is one of adaptive optics systems planned for the Giant Magellan Telescope (GMT). End-to-end simulation tools that are able to cope with the complexity and computational burden of the AO systems to be installed on the extremely large telescopes such as GMT prove to be an integral part of the GMT LTAO system development endeavors. SL95, the Fortran 95 Simulation Library, is one of the software tools successfully used for the LTAO system end-to-end simulations. The goal of SL95 project is to provide a complete set of generic, richly parameterized mathematical models for key elements of the segmented telescope wavefront control systems including both active and adaptive optics as well as the models for atmospheric turbulence, extended light sources like Laser Guide Stars (LGS), light propagation engines and closed-loop controllers. The library is implemented as a hierarchical collection of classes capable of mutual interaction, which allows one to assemble complex wavefront control system configurations with multiple interacting control channels. In this paper we demonstrate the SL95 capabilities by building an integrated end-to-end model of the GMT LTAO system with 7 control channels: LGS tomography with Adaptive Secondary and on-instrument deformable mirrors, tip-tilt and vibration control, LGS stabilization, LGS focus control, truth sensor-based dynamic noncommon path aberration rejection, pupil position control, SLODAR-like embedded turbulence profiler. The rich parameterization of the SL95 classes allows to build detailed error budgets propagating through the system multiple errors and perturbations such as turbulence-, telescope-, telescope misalignment-, segment phasing error-, non-common path-induced aberrations, sensor noises, deformable mirror-to-sensor mis-registration, vibration, temporal errors, etc. We will present a short description of the SL95 architecture, as well as the sample GMT LTAO system simulation

  13. Integrated Modeling of Advanced Opto-Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.; Phillips, Charles J.; Orzewalla, Mathew A.

    2006-01-01

    The design of optical hardware for space applications is particularly challenging when developing high performance, novel systems that have no precedent. Integrated modeling and analysis of such opto-mechanical systems seeks to describe the end-to-end performance of the hardware using mission-relevant metrics. This multidisciplinary analysis might start with thermal disturbances from observation maneuvers, compute the system temperatures, compute the distorted positions and shapes of the hardware and compute the resulting optical performance. Dynamic disturbances such as reaction wheel imbalance or inertia imbalance of optical delay lines might be applied to a structural dynamic model and used in a guidance and control analysis. Mission-relevant science metrics might include wavefront quality, pointing error or imaging stability. Assembling a tool chain that can be both nimble and effective when scaled to the high fidelity models of detail design has been challenging. An integrated thermal, mechanical and optical analysis capability suitable for detail design has been developed and verified through experimental measurement. This capability was used in the design of flight-like breadboard hardware and development of a test apparatus that established both the level of performance of the hardware and the validity of the analysis. The analysis includes prediction of the thermal environment of the test chamber, detailed temperature distributions on the breadboard hardware, fine scale deformations of the optical elements, and computation of the wavefront quality using geometric optics. A battery of tests were conducted to assess the experiment data acquisition, measurement and control system and to establish the performance of the hardware design and accuracy of the integrated modeling. Thermal loads that represent operational observing maneuvers were imposed and the hardware optical performance was measured and compared to analytical predictions.

  14. An integrated urban drainage system model for assessing renovation scheme.

    PubMed

    Dong, X; Zeng, S; Chen, J; Zhao, D

    2012-01-01

    Due to sustained economic growth in China over the last three decades, urbanization has been on a rapidly expanding track. In recent years, regional industrial relocations were also accelerated across the country from the east coast to the west inland. These changes have led to a large-scale redesign of urban infrastructures, including the drainage system. To help the reconstructed infrastructures towards a better sustainability, a tool is required for assessing the efficiency and environmental performance of different renovation schemes. This paper developed an integrated dynamic modeling tool, which consisted of three models for describing the sewer, the wastewater treatment plant (WWTP) and the receiving water body respectively. Three auxiliary modules were also incorporated to conceptualize the model, calibrate the simulations, and analyze the results. The developed integrated modeling tool was applied to a case study in Shenzhen City, which is one of the most dynamic cities and facing considerable challenges for environmental degradation. The renovation scheme proposed to improve the environmental performance of Shenzhen City's urban drainage system was modeled and evaluated. The simulation results supplied some suggestions for the further improvement of the renovation scheme.

  15. Pathological gambling and couple: towards an integrative systemic model.

    PubMed

    Cunha, Diana; Relvas, Ana Paula

    2014-06-01

    This article is a critical literature review of pathological gambling focused in the family factors, particularly in the couple dynamics. Its main goal is to develop an explicative integrative systemic model of pathological gambling, based in these couple dynamics. To achieve that aim, a bibliography search was made, using on-line data bases (e.g., EBSCO Host) and recognized books in pathological gambling subject, as well as in the systemic approach in general. This process privileged the recent works (about 70 % of the reviewed literature was published in the last decade), however, also considered some classic works (the oldest one dates back to 1970). The guiding focus of this literature search evolves according to the following steps: (1) search of general comprehension of pathological gambling (19 references), (2) search specification to the subject "pathological gambling and family" (24 references), (3) search specification to the subject "pathological gambling and couple"(11 references), (4) search of systemic information which integrates the evidence resulted in the previous steps (4 references). The developed model is constituted by different levels of systemic complexity (social context, family of origin, couple and individual) and explains the problem as a signal of perturbation in the marital subsystem vital functions (e.g., power and control) though the regularities of marital dynamics of pathological gamblers. Furthermore, it gives theoretical evidence of the systemic familiar intervention in the pathological gambling.

  16. Integrated modeling tool for performance engineering of complex computer systems

    NASA Technical Reports Server (NTRS)

    Wright, Gary; Ball, Duane; Hoyt, Susan; Steele, Oscar

    1989-01-01

    This report summarizes Advanced System Technologies' accomplishments on the Phase 2 SBIR contract NAS7-995. The technical objectives of the report are: (1) to develop an evaluation version of a graphical, integrated modeling language according to the specification resulting from the Phase 2 research; and (2) to determine the degree to which the language meets its objectives by evaluating ease of use, utility of two sets of performance predictions, and the power of the language constructs. The technical approach followed to meet these objectives was to design, develop, and test an evaluation prototype of a graphical, performance prediction tool. The utility of the prototype was then evaluated by applying it to a variety of test cases found in the literature and in AST case histories. Numerous models were constructed and successfully tested. The major conclusion of this Phase 2 SBIR research and development effort is that complex, real-time computer systems can be specified in a non-procedural manner using combinations of icons, windows, menus, and dialogs. Such a specification technique provides an interface that system designers and architects find natural and easy to use. In addition, PEDESTAL's multiview approach provides system engineers with the capability to perform the trade-offs necessary to produce a design that meets timing performance requirements. Sample system designs analyzed during the development effort showed that models could be constructed in a fraction of the time required by non-visual system design capture tools.

  17. An integrated model-based neurosurgical guidance system

    NASA Astrophysics Data System (ADS)

    Ji, Songbai; Fan, Xiaoyao; Fontaine, Kathryn; Hartov, Alex; Roberts, David; Paulsen, Keith

    2010-02-01

    Maximal tumor resection without damaging healthy tissue in open cranial surgeries is critical to the prognosis for patients with brain cancers. Preoperative images (e.g., preoperative magnetic resonance images (pMR)) are typically used for surgical planning as well as for intraoperative image-guidance. However, brain shift even at the start of surgery significantly compromises the accuracy of neuronavigation, if the deformation is not compensated for. Compensating for brain shift during surgical operation is, therefore, critical for improving the accuracy of image-guidance and ultimately, the accuracy of surgery. To this end, we have developed an integrated neurosurgical guidance system that incorporates intraoperative three-dimensional (3D) tracking, acquisition of volumetric true 3D ultrasound (iUS), stereovision (iSV) and computational modeling to efficiently generate model-updated MR image volumes for neurosurgical guidance. The system is implemented with real-time Labview to provide high efficiency in data acquisition as well as with Matlab to offer computational convenience in data processing and development of graphical user interfaces related to computational modeling. In a typical patient case, the patient in the operating room (OR) is first registered to pMR image volume. Sparse displacement data extracted from coregistered intraoperative US and/or stereovision images are employed to guide a computational model that is based on consolidation theory. Computed whole-brain deformation is then used to generate a model-updated MR image volume for subsequent surgical guidance. In this paper, we present the key modular components of our integrated, model-based neurosurgical guidance system.

  18. Tank System Integrated Model: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Sutherlin, S. G.; Schnell, A. R.; Moder, J. P.

    2017-01-01

    Accurate predictions of the thermodynamic state of the cryogenic propellants, pressurization rate, and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning for future space exploration missions. This Technical Memorandum (TM) presents the analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, mixing, and condensation on the tank wall. This TM also includes comparisons of TankSIM program predictions with the test data andexamples of multiphase mission calculations.

  19. Short-Termed Integrated Forecasting System: 1993 Model documentation report

    SciTech Connect

    Not Available

    1993-05-01

    The purpose of this report is to define the Short-Term Integrated Forecasting System (STIFS) and describe its basic properties. The Energy Information Administration (EIA) of the US Energy Department (DOE) developed the STIFS model to generate short-term (up to 8 quarters), monthly forecasts of US supplies, demands, imports exports, stocks, and prices of various forms of energy. The models that constitute STIFS generate forecasts for a wide range of possible scenarios, including the following ones done routinely on a quarterly basis: A base (mid) world oil price and medium economic growth. A low world oil price and high economic growth. A high world oil price and low economic growth. This report is written for persons who want to know how short-term energy markets forecasts are produced by EIA. The report is intended as a reference document for model analysts, users, and the public.

  20. Integrating information systems in medicine: a reference model for middleware.

    PubMed

    Toussaint, P J; Bakker, A R; Groenewegen, L P

    1997-01-01

    This paper addresses the problem of integrating healthcare information systems, from a technological viewpoint. We propose to take the concept of an ¿integration service' as an elementary concept in discussing the problem of integration. We then propose a taxonomy for grouping integration services according to their functionality and their domain specificity. The use of this taxonomy for decomposing an integration problem into (less complex) sub-problems is demonstrated. Finally, a sequence of steps to be taken in solving an integration problem is discussed.

  1. Integrating sensorimotor systems in a robot model of cricket behavior

    NASA Astrophysics Data System (ADS)

    Webb, Barbara H.; Harrison, Reid R.

    2000-10-01

    The mechanisms by which animals manage sensorimotor integration and coordination of different behaviors can be investigated in robot models. In previous work the first author has build a robot that localizes sound based on close modeling of the auditory and neural system in the cricket. It is known that the cricket combines its response to sound with other sensorimotor activities such as an optomotor reflex and reactions to mechanical stimulation for the antennae and cerci. Behavioral evidence suggests some ways these behaviors may be integrated. We have tested the addition of an optomotor response, using an analog VLSI circuit developed by the second author, to the sound localizing behavior and have shown that it can, as in the cricket, improve the directness of the robot's path to sound. In particular it substantially improves behavior when the robot is subject to a motor disturbance. Our aim is to better understand how the insect brain functions in controlling complex combinations of behavior, with the hope that this will also suggest novel mechanisms for sensory integration on robots.

  2. Experiences Integrating Transmission and Distribution Simulations for DERs with the Integrated Grid Modeling System (IGMS)

    SciTech Connect

    Palmintier, Bryan; Hale, Elaine; Hodge, Bri-Mathias; Baker, Kyri; Hansen, Timothy M.

    2016-08-11

    This paper discusses the development of, approaches for, experiences with, and some results from a large-scale, high-performance-computer-based (HPC-based) co-simulation of electric power transmission and distribution systems using the Integrated Grid Modeling System (IGMS). IGMS was developed at the National Renewable Energy Laboratory (NREL) as a novel Independent System Operator (ISO)-to-appliance scale electric power system modeling platform that combines off-the-shelf tools to simultaneously model 100s to 1000s of distribution systems in co-simulation with detailed ISO markets, transmission power flows, and AGC-level reserve deployment. Lessons learned from the co-simulation architecture development are shared, along with a case study that explores the reactive power impacts of PV inverter voltage support on the bulk power system.

  3. Integration of satellite fire products into MPI Earth System Model

    NASA Astrophysics Data System (ADS)

    Khlystova, Iryna G.; Kloster, Silvia

    2013-04-01

    Fires are the ubiquitous phenomenon affecting all natural biomes. Since the beginning of the satellite Era, fires are being continuously observed from satellites. The most interesting satellite parameter retrieved from satellite measurements is the burned area. Combined with information on biomass available for burning the burned area can be translated into climate relevant carbon emissions from fires into the atmosphere. In this study we integrate observed burned area into a global vegetation model to derive global fire emissions. Global continuous burned area dataset is provided by the Global Fire Emissions Dataset (GFED). GFED products were obtained from MODIS (and pre-MODIS) satellites and are available for the time period of 14 years (1997-2011). This dataset is widely used, well documented and supported by periodical updates containing new features. We integrate the global burned area product into the land model JSBACH, a part of the Earth-System model developed at the Max Plank Institute for Meteorology. The land model JSBACH simulates land biomass in terms of carbon content. Fire is an important disturbance process in the Earth's carbon cycle and affects mainly the carbon stored in vegetation. In the standard JSBACH version fire is represented by process based algorithms. Using the satellite data as an alternative we are targeting better comparability of modeled carbon emissions with independent satellite measurements of atmospheric composition. The structure of burned vegetation inside of a biome can be described as the balance between woody and herbaceous vegetation. GFED provides in addition to the burned area satellite derived information of the tree cover distribution within the burned area. Using this dataset, we can attribute the burned area to the respective simulated herbaceous or woody biomass within the vegetation model. By testing several extreme cases we evaluate the quantitative impact of vegetation balance between woody and herbaceous

  4. Research on models of biological systems that can be integrated into mechatronic systems

    NASA Astrophysics Data System (ADS)

    Pop, P. P.; Pop-Vadean, A.; Barz, C.; Latinovic, T.; Chiver, O.

    2016-02-01

    The models of biological systems that we find on Earth can be the subject of research to develop a few mechatronic systems. Such models are offered by bees, ants, crows, cranes, etc. Article aims to investigate these models and their manifestations. Imitating this behavior and studied him offer ideas for develop models that can be integrated into mechatronic systems. They can be integrated into mechatronic system as algorithms for finding local optimum, to search, to detect an optimal way travel on a network, to find best decision, etc.

  5. Multiscale mechanobiology: computational models for integrating molecules to multicellular systems

    PubMed Central

    Mak, Michael; Kim, Taeyoon

    2015-01-01

    Mechanical signals exist throughout the biological landscape. Across all scales, these signals, in the form of force, stiffness, and deformations, are generated and processed, resulting in an active mechanobiological circuit that controls many fundamental aspects of life, from protein unfolding and cytoskeletal remodeling to collective cell motions. The multiple scales and complex feedback involved present a challenge for fully understanding the nature of this circuit, particularly in development and disease in which it has been implicated. Computational models that accurately predict and are based on experimental data enable a means to integrate basic principles and explore fine details of mechanosensing and mechanotransduction in and across all levels of biological systems. Here we review recent advances in these models along with supporting and emerging experimental findings. PMID:26019013

  6. Integrated modeling for ion cyclotron resonant heating in toroidal systems

    NASA Astrophysics Data System (ADS)

    Jucker, M.; Graves, J. P.; Cooper, W. A.; Mellet, N.; Johnson, T.; Brunner, S.

    2011-04-01

    An integrated model capable of self-consistent Ion Cyclotron Resonant Heating (ICRH) simulations has been developed. This model includes both full shaping and pressure effects, warm contributions to the dielectric tensor, pressure anisotropy and finite orbit width. It evolves the equilibrium, wave field and full hot particle distribution function until a self-consistent solution is found. This article describes the workings of the three codes VMEC, LEMan and VENUS and how they are linked for iterated computations in a code package we have named SCENIC. The package is thoroughly tested and it is demonstrated that a number of iterations have to be performed in order to find a consistent solution. Since the formulation of the problem can treat general 3D systems, we show a quasi-axisymmetric stellarator low power test case, and then concentrate on experimentally relevant Joint European Torus (JET) 2D configurations.

  7. Applying an integrated neuro-expert system model in a real-time alarm processing system

    NASA Astrophysics Data System (ADS)

    Khosla, Rajiv; Dillon, Tharam S.

    1993-03-01

    In this paper we propose an integrated model which is derived from the combination of a generic neuro-expert system model, an object model, and unix operating system process (UOSP) model. This integrated model reflects the strengths of both artificial neural nets (ANNs) and expert systems (ESs). A formalism of ES object, ANN object, UOSP object, and problem domain object is used for developing a set of generic data structures and methods. These generic data structures and methods help us to build heterogeneous ES-ANN objects with uniform communication interface. The integrated model is applied in a real-time alarm processing system for a non-trivial terminal power station. It is shown how features like hierarchical/distributed ES/ANN objects, inter process communication, and fast concurrent execution help to cope with real-time system constraints like, continuity, data variability, and fast response time.

  8. [Development method of healthcare information system integration based on business collaboration model].

    PubMed

    Li, Shasha; Nie, Hongchao; Lu, Xudong; Duan, Huilong

    2015-02-01

    Integration of heterogeneous systems is the key to hospital information construction due to complexity of the healthcare environment. Currently, during the process of healthcare information system integration, people participating in integration project usually communicate by free-format document, which impairs the efficiency and adaptability of integration. A method utilizing business process model and notation (BPMN) to model integration requirement and automatically transforming it to executable integration configuration was proposed in this paper. Based on the method, a tool was developed to model integration requirement and transform it to integration configuration. In addition, an integration case in radiology scenario was used to verify the method.

  9. Tunable Neuromimetic Integrated System for Emulating Cortical Neuron Models

    PubMed Central

    Grassia, Filippo; Buhry, Laure; Lévi, Timothée; Tomas, Jean; Destexhe, Alain; Saïghi, Sylvain

    2011-01-01

    Nowadays, many software solutions are currently available for simulating neuron models. Less conventional than software-based systems, hardware-based solutions generally combine digital and analog forms of computation. In previous work, we designed several neuromimetic chips, including the Galway chip that we used for this paper. These silicon neurons are based on the Hodgkin–Huxley formalism and they are optimized for reproducing a large variety of neuron behaviors thanks to tunable parameters. Due to process variation and device mismatch in analog chips, we use a full-custom fitting method in voltage-clamp mode to tune our neuromimetic integrated circuits. By comparing them with experimental electrophysiological data of these cells, we show that the circuits can reproduce the main firing features of cortical cell types. In this paper, we present the experimental measurements of our system which mimic the four most prominent biological cells: fast spiking, regular spiking, intrinsically bursting, and low-threshold spiking neurons into analog neuromimetic integrated circuit dedicated to cortical neuron simulations. This hardware and software platform will allow to improve the hybrid technique, also called “dynamic-clamp,” that consists of connecting artificial and biological neurons to study the function of neuronal circuits. PMID:22163213

  10. Modeling the Integrated Water Cycle in an Earth System Model (Invited)

    NASA Astrophysics Data System (ADS)

    Leung, L.; Li, H.; Voisin, N.; Hejazi, M. I.; Huang, M.; Liu, L.; Tesfa, T. K.

    2013-12-01

    Human systems have significantly perturbed the water cycle through water management and water use. As climate and the environment change in the future, human systems may adapt to cope with and mitigate the changes so dynamically representing them in Earth system models will advance long-term prediction of water cycle changes. As part of the Community Earth System Model (CESM), the Community Land Model (CLM) includes sophisticated representations of biophysics, soil hydrology, and biogeochemistry, but human systems of water are largely ignored. As a step towards modeling the fully integrated water cycle, a water management model has been developed for coupling with CLM and a river routing model. The water management model uses generic operating rules for multi-purpose reservoirs. The river routing model adopts a simple physically based framework to represent river routing from hillslopes to the main channels and through the channel network. The models have been tested over large river basins in the Pacific Northwest and Midwest, with ongoing progress towards global implementation. This presentation will introduce the overall modeling framework, highlight selected modeling results, and discuss ongoing research to couple the models with integrated assessment models to dynamically simulate human decisions and human systems in Integrated Earth System Models.

  11. NREL Wind Integrated System Design and Engineering Model

    SciTech Connect

    Ning, S. Andrew; Scott, George; Graf, Peter

    2013-09-30

    NREL_WISDEM is an integrated model for wind turbines and plants developed In python based on the open source software OpenMDAO. NREL_WISDEM is a set of wrappers for various wind turbine and models that integrate pre-existing models together into OpenMDAO. It is organized into groups each with their own repositories including Plant_CostSE. Plant_EnergySE, Turbine_CostSE and TurbineSE. The wrappers are designed for licensed and non-licensed models though in both cases, one has to have access to and install the individual models themselves before using them in the overall software platform.

  12. A Model for Predicting Integrated Man-Machine System Reliability: Model Logic and Description

    DTIC Science & Technology

    1974-11-01

    A MODEL FOR PREDICTING INTEGRATED MAN-MACHINE SYSTEMS RELIABILITY prepared for Naval Si nand Deparrmem aw nr. Con :’III’lit UNCLASSIFIED...was substantially modified so as to allow its use for system reliability and system availability predictive purposes. The resultant new model is...from 4 to 20 members was substantially modified so as to allow its use for system reliability and system availability predictive purposes. The

  13. Integrating visual learning within a model-based ATR system

    NASA Astrophysics Data System (ADS)

    Carlotto, Mark; Nebrich, Mark

    2017-05-01

    Automatic target recognition (ATR) systems, like human photo-interpreters, rely on a variety of visual information for detecting, classifying, and identifying manmade objects in aerial imagery. We describe the integration of a visual learning component into the Image Data Conditioner (IDC) for target/clutter and other visual classification tasks. The component is based on an implementation of a model of the visual cortex developed by Serre, Wolf, and Poggio. Visual learning in an ATR context requires the ability to recognize objects independent of location, scale, and rotation. Our method uses IDC to extract, rotate, and scale image chips at candidate target locations. A bootstrap learning method effectively extends the operation of the classifier beyond the training set and provides a measure of confidence. We show how the classifier can be used to learn other features that are difficult to compute from imagery such as target direction, and to assess the performance of the visual learning process itself.

  14. Nuclear Thermal Rocket - Arc Jet Integrated System Model

    NASA Technical Reports Server (NTRS)

    Taylor, Brian D.; Emrich, William

    2016-01-01

    In the post-shuttle era, space exploration is moving into a new regime. Commercial space flight is in development and is planned to take on much of the low earth orbit space flight missions. With the development of a heavy lift launch vehicle, the Space Launch, System, NASA has become focused on deep space exploration. Exploration into deep space has traditionally been done with robotic probes. More ambitious missions such as manned missions to asteroids and Mars will require significant technology development. Propulsion system performance is tied to the achievability of these missions and the requirements of other developing technologies that will be required. Nuclear thermal propulsion offers a significant improvement over chemical propulsion while still achieving high levels of thrust. Opportunities exist; however, to build upon what would be considered a standard nuclear thermal engine to attain improved performance, thus further enabling deep space missions. This paper discuss the modeling of a nuclear thermal system integrated with an arc jet to further augment performance. The performance predictions and systems impacts are discussed.

  15. Systems integrity in health and aging - an animal model approach

    PubMed Central

    2013-01-01

    Human lifespan is positively correlated with childhood intelligence, as measured by psychometric (IQ) tests. The strength of this correlation is similar to the negative effect that smoking has on the life course. This result suggests that people who perform well on psychometric tests in childhood may remain healthier and live longer. The correlation, however, is debated: is it caused exclusively by social-environmental factors or could it also have a biological component? Biological traits of systems integrity that might result in correlations between brain function and lifespan have been suggested but are not well-established, and it is questioned what useful knowledge can come from understanding such mechanisms. In a recent study, we found a positive correlation between brain function and longevity in honey bees. Honey bees are highly social, but relevant social-environmental factors that contribute to cognition-survival correlations in humans are largely absent from insect colonies. Our results, therefore, suggest a biological explanation for the correlation in the bee. Here, we argue that individual differences in stress handling (coping) mechanisms, which both affect the bees’ performance in tests of brain function and their survival could be a trait of systems integrity. Individual differences in coping are much studied in vertebrates, and several species provide attractive models. Here, we discuss how pigs are an interesting model for studying behavioural, physiological and molecular mechanisms that are recruited during stress and that can drive correlations between health, cognition and longevity traits. By revealing biological factors that make individuals susceptible to stress, it might be possible to alleviate health and longevity disparities in people. PMID:24472488

  16. Integrated modeling of natural and human systems - problems and initiatives

    NASA Astrophysics Data System (ADS)

    Kessler, H.; Giles, J.; Gunnink, J.; Hughes, A.; Moore, R. V.; Peach, D.

    2009-12-01

    's system, e.g. the flow of groundwater to an abstraction borehole or the availability of water for irrigation. Particular problems arise when model data from two or more disciplines are incompatible in terms of data formats, scientific concepts or language. Other barriers include the cultural segregation within and between science disciplines as well as impediments to data exchange due to ownership and copyright restrictions. OpenMI and GeoSciML are initiatives that are trying to overcome these barriers by building international communities that share vocabularies and data formats. This paper will give examples of the successful merging of geological and hydrological models from the UK and the Netherlands and will introduce the vision of an open Environmental Modelling Platform which aims to link data, knowledge and concepts seamlessly to numerical process models. Last but not least there is an urgent need to create a Subsurface Management System akin to a Geographic Information System in which all results of subsurface modelling can be visualised and analysed in an integrated manner.

  17. Advancing Coupled Human-Earth System Models: The Integrated Ecosystem Demography Model (iED) Project

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.; Chini, L. P.; Clarke, L.; Calvin, K. V.; Chambers, J. Q.; Dubayah, R.; Dolan, K.; Edmonds, J. A.; Fisk, J. P.; Flanagan, S.; Frolking, S.; Janetos, A. C.; LePage, Y.; Morton, D. C.; Patel, P.; Rourke, O.; Sahajpal, R.; Thomson, A. M.; Wise, M.; Ying, Q.

    2012-12-01

    Recent studies with integrated assessment models, models linking human and natural systems at a global scale, highlight the importance of terrestrial systems in climate stabilization efforts. Here we introduce a new modeling framework iED, designed to link advanced remote sensing data (active and passive.), height-structured terrestrial ecosystem dynamics (ED), gridded land-use change projections (GLM), and integrated assessment modeling (GCAM) into a single coupled modeling framework with unprecedented spatial resolution and process-level detail. Our research aims to reduce uncertainties associated with forest modeling within integrated assessments, and to quantify the impacts of climate change on forest growth, mortality, and productivity for integrated assessments of terrestrial carbon management. iED is being used to address key science questions including: (1) What are the opportunities for land-use strategies such as afforestation or woody bioenergy crop production to contribute to stabilization of atmospheric CO2 concentrations? (2) How could potentially altered disturbance rates from tropical cyclones and Amazonian fires affect vegetation, carbon stocks and fluxes, and the development of climate change mitigation strategies? (3) What are the linked remote sensing/ecosystem modeling requirements for improving integrated assessments of climate mitigation strategies? With its strong connections to data and conceptual linkages to other models in development, iED is also designed to inform the next generation of remote sensing and integrated Earth system modeling efforts.

  18. Integrated dynamic landscape analysis and modeling system (IDLAMS) : installation manual.

    SciTech Connect

    Li, Z.; Majerus, K. A.; Sundell, R. C.; Sydelko, P. J.; Vogt, M. C.

    1999-02-24

    The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) is a prototype, integrated land management technology developed through a joint effort between Argonne National Laboratory (ANL) and the US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL). Dr. Ronald C. Sundell, Ms. Pamela J. Sydelko, and Ms. Kimberly A. Majerus were the principal investigators (PIs) for this project. Dr. Zhian Li was the primary software developer. Dr. Jeffrey M. Keisler, Mr. Christopher M. Klaus, and Mr. Michael C. Vogt developed the decision analysis component of this project. It was developed with funding support from the Strategic Environmental Research and Development Program (SERDP), a land/environmental stewardship research program with participation from the US Department of Defense (DoD), the US Department of Energy (DOE), and the US Environmental Protection Agency (EPA). IDLAMS predicts land conditions (e.g., vegetation, wildlife habitats, and erosion status) by simulating changes in military land ecosystems for given training intensities and land management practices. It can be used by military land managers to help predict the future ecological condition for a given land use based on land management scenarios of various levels of training intensity. It also can be used as a tool to help land managers compare different land management practices and further determine a set of land management activities and prescriptions that best suit the needs of a specific military installation.

  19. Integrated dynamic landscape analysis and modeling system (IDLAMS) : programmer's manual.

    SciTech Connect

    Klaus, C. M.; Li, Z.; Majerus, K. A.; Sundell, R. C.; Sydelko, P. J.; Vogt, M. C.

    1999-02-24

    The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) is a prototype, integrated land management technology developed through a joint effort between Argonne National Laboratory (ANL) and the US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL). Dr. Ronald C. Sundell, Ms. Pamela J. Sydelko, and Ms. Kimberly A. Majerus were the principal investigators (PIs) for this project. Dr. Zhian Li was the primary software developer. Dr. Jeffrey M. Keisler, Mr. Christopher M. Klaus, and Mr. Michael C. Vogt developed the decision analysis component of this project. It was developed with funding support from the Strategic Environmental Research and Development Program (SERDP), a land/environmental stewardship research program with participation from the US Department of Defense (DoD), the US Department of Energy (DOE), and the US Environmental Protection Agency (EPA). IDLAMS predicts land conditions (e.g., vegetation, wildlife habitats, and erosion status) by simulating changes in military land ecosystems for given training intensities and land management practices. It can be used by military land managers to help predict the future ecological condition for a given land use based on land management scenarios of various levels of training intensity. It also can be used as a tool to help land managers compare different land management practices and further determine a set of land management activities and prescriptions that best suit the needs of a specific military installation.

  20. Integrated System Modeling for Nuclear Thermal Propulsion (NTP)

    NASA Technical Reports Server (NTRS)

    Ryan, Stephen W.; Borowski, Stanley K.

    2014-01-01

    Nuclear thermal propulsion (NTP) has long been identified as a key enabling technology for space exploration beyond LEO. From Wernher Von Braun's early concepts for crewed missions to the Moon and Mars to the current Mars Design Reference Architecture (DRA) 5.0 and recent lunar and asteroid mission studies, the high thrust and specific impulse of NTP opens up possibilities such as reusability that are just not feasible with competing approaches. Although NTP technology was proven in the Rover / NERVA projects in the early days of the space program, an integrated spacecraft using NTP has never been developed. Such a spacecraft presents a challenging multidisciplinary systems integration problem. The disciplines that must come together include not only nuclear propulsion and power, but also thermal management, power, structures, orbital dynamics, etc. Some of this integration logic was incorporated into a vehicle sizing code developed at NASA's Glenn Research Center (GRC) in the early 1990s called MOMMA, and later into an Excel-based tool called SIZER. Recently, a team at GRC has developed an open source framework for solving Multidisciplinary Design, Analysis and Optimization (MDAO) problems called OpenMDAO. A modeling approach is presented that builds on previous work in NTP vehicle sizing and mission analysis by making use of the OpenMDAO framework to enable modular and reconfigurable representations of various NTP vehicle configurations and mission scenarios. This approach is currently applied to vehicle sizing, but is extensible to optimization of vehicle and mission designs. The key features of the code will be discussed and examples of NTP transfer vehicles and candidate missions will be presented.

  1. Integrating Character Education Model With Spiral System In Chemistry Subject

    NASA Astrophysics Data System (ADS)

    Hartutik; Rusdarti; Sumaryanto; Supartono

    2017-04-01

    Integrating character education is the responsibility of all subject teachers including chemistry teacher. The integration of character education is just administrative requirements so that the character changes are not measurable. The research objective 1) describing the actual conditions giving character education, 2) mapping the character integration of chemistry syllabus with a spiral system, and 3) producing syllabus and guide system integrating character education in chemistry lessons. Of the eighteen value character, each character is mapped to the material chemistry value concepts of class X and repeated the system in class XI and class XII. Spiral system integration means integrating the character values of chemistry subjects in steps from class X to XII repeatedly at different depth levels. Besides developing the syllabus, also made the integration of characters in a learning guide. This research was designed with research and development [3] with the scope of 20 chemistry teachers in Semarang. The focus of the activities is the existence of the current character study, mapping the character values in the syllabus, and assessment of the integration guides of character education. The validity test of Syllabus and Lesson Plans by experts in FGD. The data were taken with questionnaire and interviews, then processed by descriptive analysis. The result shows 1) The factual condition, in general, the teachers designed learning one-time face-to-face with the integration of more than four characters so that behaviour changes and depth of character is poorly controlled, 2) Mapping each character values focused in the syllabus. Meaning, on one or two basic competence in four or five times, face to face, enough integrated with the value of one character. In this way, there are more noticeable changes in students behaviour. Guidance is needed to facilitate the integration of character education for teachers integrating systems. Product syllabus and guidelines

  2. Human Systems Integration Synthesis Model for Ship Design

    DTIC Science & Technology

    2012-09-01

    comprehend the true status of a system. Holland provides a superb explanation of how expertise gained through training and education reduces cycle time...12b. DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) Current fiscal constraints are driving the reduction of system life cycle cost (LCC). A...v ABSTRACT Current fiscal constraints are driving the reduction of system life cycle cost (LCC). A key objective of Human Systems Integration (HSI

  3. Integrating a geographic information system, a scientific visualization system and an orographic precipitation model

    USGS Publications Warehouse

    Hay, L.; Knapp, L.

    1996-01-01

    Investigating natural, potential, and man-induced impacts on hydrological systems commonly requires complex modelling with overlapping data requirements, and massive amounts of one- to four-dimensional data at multiple scales and formats. Given the complexity of most hydrological studies, the requisite software infrastructure must incorporate many components including simulation modelling, spatial analysis and flexible, intuitive displays. There is a general requirement for a set of capabilities to support scientific analysis which, at this time, can only come from an integration of several software components. Integration of geographic information systems (GISs) and scientific visualization systems (SVSs) is a powerful technique for developing and analysing complex models. This paper describes the integration of an orographic precipitation model, a GIS and a SVS. The combination of these individual components provides a robust infrastructure which allows the scientist to work with the full dimensionality of the data and to examine the data in a more intuitive manner.

  4. A Philosophical Framework for Integrating Systems Pharmacology Models Into Pharmacometrics

    PubMed Central

    2016-01-01

    The framework for systems pharmacology style models does not naturally sit with the usual scientific dogma of parsimony and falsifiability based on deductive reasoning. This does not invalidate the importance or need for overarching models based on pharmacology to describe and understand complicated biological systems. However, it does require some consideration on how systems pharmacology fits into the overall scientific approach. PMID:27863137

  5. Integration of Earth System Models and Workflow Management under iRODS for the Northeast Regional Earth System Modeling Project

    NASA Astrophysics Data System (ADS)

    Lengyel, F.; Yang, P.; Rosenzweig, B.; Vorosmarty, C. J.

    2012-12-01

    The Northeast Regional Earth System Model (NE-RESM, NSF Award #1049181) integrates weather research and forecasting models, terrestrial and aquatic ecosystem models, a water balance/transport model, and mesoscale and energy systems input-out economic models developed by interdisciplinary research team from academia and government with expertise in physics, biogeochemistry, engineering, energy, economics, and policy. NE-RESM is intended to forecast the implications of planning decisions on the region's environment, ecosystem services, energy systems and economy through the 21st century. Integration of model components and the development of cyberinfrastructure for interacting with the system is facilitated with the integrated Rule Oriented Data System (iRODS), a distributed data grid that provides archival storage with metadata facilities and a rule-based workflow engine for automating and auditing scientific workflows.

  6. Integration of Feedstock Assembly System and Cellulosic Ethanol Conversion Models to Analyze Bioenergy System Performance

    SciTech Connect

    Jared M. Abodeely; Douglas S. McCorkle; Kenneth M. Bryden; David J. Muth; Daniel Wendt; Kevin Kenney

    2010-09-01

    Research barriers continue to exist in all phases of the emerging cellulosic ethanol biorefining industry. These barriers include the identification and development of a sustainable and abundant biomass feedstock, the assembly of viable assembly systems formatting the feedstock and moving it from the field (e.g., the forest) to the biorefinery, and improving conversion technologies. Each of these phases of cellulosic ethanol production are fundamentally connected, but computational tools used to support and inform analysis within each phase remain largely disparate. This paper discusses the integration of a feedstock assembly system modeling toolkit and an Aspen Plus® conversion process model. Many important biomass feedstock characteristics, such as composition, moisture, particle size and distribution, ash content, etc. are impacted and most effectively managed within the assembly system, but generally come at an economic cost. This integration of the assembly system and the conversion process modeling tools will facilitate a seamless investigation of the assembly system conversion process interface. Through the integrated framework, the user can design the assembly system for a particular biorefinery by specifying location, feedstock, equipment, and unit operation specifications. The assembly system modeling toolkit then provides economic valuation, and detailed biomass feedstock composition and formatting information. This data is seamlessly and dynamically used to run the Aspen Plus® conversion process model. The model can then be used to investigate the design of systems for cellulosic ethanol production from field to final product.

  7. SUSTAIN:Urban Modeling Systems Integrating Optimization and Economics

    EPA Science Inventory

    The System for Urban Stormwater Treatment and Analysis INtegration (SUSTAIN) was developed by the U.S. Environmental Protection Agency to support practitioners in developing cost-effective management plans for municipal storm water programs and evaluating and selecting Best Manag...

  8. SUSTAIN:Urban Modeling Systems Integrating Optimization and Economics

    EPA Science Inventory

    The System for Urban Stormwater Treatment and Analysis INtegration (SUSTAIN) was developed by the U.S. Environmental Protection Agency to support practitioners in developing cost-effective management plans for municipal storm water programs and evaluating and selecting Best Manag...

  9. Integrated model development for liquid fueled rocket propulsion systems

    NASA Technical Reports Server (NTRS)

    Santi, L. Michael

    1993-01-01

    As detailed in the original statement of work, the objective of phase two of this research effort was to develop a general framework for rocket engine performance prediction that integrates physical principles, a rigorous mathematical formalism, component level test data, system level test data, and theory-observation reconciliation. Specific phase two development tasks are defined.

  10. The Dynamic Anaerobic Reactor & Integrated Energy System (DARIES) model: model development, validation, and sensitivity analysis.

    PubMed

    Brouwer, A F; Grimberg, S J; Powers, S E

    2012-12-01

    The Dynamic Anaerobic Reactor & Integrated Energy System (DARIES) model has been developed as a biogas and electricity production model of a dairy farm anaerobic digester system. DARIES, which incorporates the Anaerobic Digester Model No. 1 (ADM1) and simulations of both combined heat and power (CHP) and digester heating systems, may be run in either completely mixed or plug flow reactor configurations. DARIES biogas predictions were shown to be statistically coincident with measured data from eighteen full-scale dairy operations in the northeastern United States. DARIES biogas predictions were more accurate than predictions made by the U.S. AgSTAR model FarmWare 3.4. DARIES electricity production predictions were verified against data collected by the NYSERDA DG/CHP Integrated Data System. Preliminary sensitivity analysis demonstrated that DARIES output was most sensitive to influent flow rate, chemical oxygen demand (COD), and biodegradability, and somewhat sensitive to hydraulic retention time and digester temperature.

  11. System-of-Systems Approach for Integrated Energy Systems Modeling and Simulation: Preprint

    SciTech Connect

    Mittal, Saurabh; Ruth, Mark; Pratt, Annabelle; Lunacek, Monte; Krishnamurthy, Dheepak; Jones, Wesley

    2015-08-21

    Today’s electricity grid is the most complex system ever built—and the future grid is likely to be even more complex because it will incorporate distributed energy resources (DERs) such as wind, solar, and various other sources of generation and energy storage. The complexity is further augmented by the possible evolution to new retail market structures that provide incentives to owners of DERs to support the grid. To understand and test new retail market structures and technologies such as DERs, demand-response equipment, and energy management systems while providing reliable electricity to all customers, an Integrated Energy System Model (IESM) is being developed at NREL. The IESM is composed of a power flow simulator (GridLAB-D), home energy management systems implemented using GAMS/Pyomo, a market layer, and hardware-in-the-loop simulation (testing appliances such as HVAC, dishwasher, etc.). The IESM is a system-of-systems (SoS) simulator wherein the constituent systems are brought together in a virtual testbed. We will describe an SoS approach for developing a distributed simulation environment. We will elaborate on the methodology and the control mechanisms used in the co-simulation illustrated by a case study.

  12. Experimental Investigation and Modeling of Integrated Tri-generation Systems

    NASA Astrophysics Data System (ADS)

    Cetinkaya, Eda

    Energy demand in the world is increasing with population growth and higher living standards. Today, the need for energy requires a focus on renewable sources without abandoning fossil fuels. Efficient use of energy is one of the most important tasks in modern energy systems to achieve. In addition to the energy need, growing environmental concerns are linked with energy is emerged. Multi-purpose energy generation allows a higher efficiency by generating more outputs with the same input in the same system. Tri-generation systems are expected to provide at least three commodities, such as heating, cooling, desalination, storable fuel production and some other useful outputs, in addition to power generation. In this study, an experimental investigation of gasification is presented and two integrated tri-generation systems are proposed. The first integrated tri-generation system (System 1) utilizes solar energy as input and the outputs are power, fresh water and hot water. It consists of four sub-systems, namely solar power tower system, desalination system, Rankine cycle and organic Rankine cycle (ORC). The second integrated tri-generation system (System 2) utilizes coal and biomass as input and the outputs are power, fuel and hot water. It consists of five sub-systems: gasification plant, Brayton cycle, Rankine cycle, Fischer-Tropsch synthesis plant and an organic Rankine cycle (ORC). Experimental investigation includes coal and biomass gasification, where the experimental results of synthesis gas compositions are utilized in the analysis of the second systems. To maximize efficiency, heat losses from the system should be minimized through a recovery system to make the heat a useful commodity for other systems, such as ORCs which can utilize the low-grade heat. In this respect, ORCs are first analyzed for three different configurations in terms of energy and exergy efficiencies altering working fluids to increase the power output. Among two types of coal and one type

  13. The Integrated WRF/Urban Modeling System: Development, Evaluation, and Applications to Urban Environmental Problems

    EPA Science Inventory

    To bridge the gaps between traditional mesoscale modelling and microscale modelling, the National Center for Atmospheric Research, in collaboration with other agencies and research groups, has developed an integrated urban modelling system coupled to the weather research and fore...

  14. The Integrated WRF/Urban Modeling System: Development, Evaluation, and Applications to Urban Environmental Problems

    EPA Science Inventory

    To bridge the gaps between traditional mesoscale modelling and microscale modelling, the National Center for Atmospheric Research, in collaboration with other agencies and research groups, has developed an integrated urban modelling system coupled to the weather research and fore...

  15. Combining multimedia models with integrated urban water system models for micropollutants.

    PubMed

    De Keyser, W; Gevaert, V; Verdonck, F; Nopens, I; De Baets, B; Vanrolleghem, P A; Mikkelsen, P S; Benedetti, L

    2010-01-01

    Integrated urban water system (IUWS) modeling aims at assessing the quality of the surface water receiving the urban emissions through sewage treatment plants, combined sewer overflows (CSOs) and stormwater drainage systems. However, some micropollutants tend to appear in more than one environmental medium (air, water, sediment, soil, groundwater, etc.). In this work, a multimedia fate and transport model (MFTM) is "wrapped around" a dynamic IUWS model for organic micropollutants to enable integrated environmental assessment. The combined model was tested on a hypothetical catchment using two scenarios: on the one hand a reference scenario with a combined sewerage system and on the other hand a stormwater infiltration pond scenario, as an example of a sustainable urban drainage system (SUDS). A case for Bis(2-ethylhexyl) phthalate (DEHP) was simulated and resulted in reduced surface water concentrations for the latter scenario. However, the model also showed that this was at the expense of increased fluxes to air, groundwater and infiltration pond soil. The latter effects are generally not included in IUWS models, whereas MTFMs usually do not consider dynamic surface water concentrations,; hence the combined model approach provides a better basis for integrated environmental assessment of micropollutants' fate in urban environments.

  16. The Rational Unified Process and the Capability Maturity Model - Integrated Systems/Software Engineering

    DTIC Science & Technology

    2001-01-01

    2001 by Carnegie Mellon University RU{/CMMI Tutorial - ESEPG1 The Rational Unified Process® and the Capability Maturity Model ® – Integrated Systems...Software Engineering SM CMMI and CMM Integration are service marks of Carnegie Mellon University. ® Capability Maturity Model , Capability Maturity...TITLE AND SUBTITLE The Rational Unified Process and the Capability Maturity Model - Integrated Systems/Software Engineering 5a. CONTRACT NUMBER 5b

  17. Interactive Schematic Integration Within the Propellant System Modeling Environment

    NASA Technical Reports Server (NTRS)

    Coote, David; Ryan, Harry; Burton, Kenneth; McKinney, Lee; Woodman, Don

    2012-01-01

    Task requirements for rocket propulsion test preparations of the test stand facilities drive the need to model the test facility propellant systems prior to constructing physical modifications. The Propellant System Modeling Environment (PSME) is an initiative designed to enable increased efficiency and expanded capabilities to a broader base of NASA engineers in the use of modeling and simulation (M&S) technologies for rocket propulsion test and launch mission requirements. PSME will enable a wider scope of users to utilize M&S of propulsion test and launch facilities for predictive and post-analysis functionality by offering a clean, easy-to-use, high-performance application environment.

  18. An integrated mathematical model of the human cardiopulmonary system: model development.

    PubMed

    Albanese, Antonio; Cheng, Limei; Ursino, Mauro; Chbat, Nicolas W

    2016-04-01

    Several cardiovascular and pulmonary models have been proposed in the last few decades. However, very few have addressed the interactions between these two systems. Our group has developed an integrated cardiopulmonary model (CP Model) that mathematically describes the interactions between the cardiovascular and respiratory systems, along with their main short-term control mechanisms. The model has been compared with human and animal data taken from published literature. Due to the volume of the work, the paper is divided in two parts. The present paper is on model development and normophysiology, whereas the second is on the model's validation on hypoxic and hypercapnic conditions. The CP Model incorporates cardiovascular circulation, respiratory mechanics, tissue and alveolar gas exchange, as well as short-term neural control mechanisms acting on both the cardiovascular and the respiratory functions. The model is able to simulate physiological variables typically observed in adult humans under normal and pathological conditions and to explain the underlying mechanisms and dynamics.

  19. An integrated chronic disease management model: a diagonal approach to health system strengthening in South Africa.

    PubMed

    Mahomed, Ozayr Haroon; Asmall, Shaidah; Freeman, Melvyn

    2014-11-01

    The integrated chronic disease management model provides a systematic framework for creating a fundamental change in the orientation of the health system. This model adopts a diagonal approach to health system strengthening by establishing a service-linked base to training, supervision, and the opportunity to try out, assess, and implement integrated interventions.

  20. Mussels as a model system for integrative ecomechanics.

    PubMed

    Carrington, Emily; Waite, J Herbert; Sarà, Gianluca; Sebens, Kenneth P

    2015-01-01

    Mussels form dense aggregations that dominate temperate rocky shores, and they are key aquaculture species worldwide. Coastal environments are dynamic across a broad range of spatial and temporal scales, and their changing abiotic conditions affect mussel populations in a variety of ways, including altering their investments in structures, physiological processes, growth, and reproduction. Here, we describe four categories of ecomechanical models (biochemical, mechanical, energetic, and population) that we have developed to describe specific aspects of mussel biology, ranging from byssal attachment to energetics, population growth, and fitness. This review highlights how recent advances in these mechanistic models now allow us to link them together across molecular, material, organismal, and population scales of organization. This integrated ecomechanical approach provides explicit and sometimes novel predictions about how natural and farmed mussel populations will fare in changing climatic conditions.

  1. Human growth and body weight dynamics: an integrative systems model.

    PubMed

    Rahmandad, Hazhir

    2014-01-01

    Quantifying human weight and height dynamics due to growth, aging, and energy balance can inform clinical practice and policy analysis. This paper presents the first mechanism-based model spanning full individual life and capturing changes in body weight, composition and height. Integrating previous empirical and modeling findings and validated against several additional empirical studies, the model replicates key trends in human growth including A) Changes in energy requirements from birth to old ages. B) Short and long-term dynamics of body weight and composition. C) Stunted growth with chronic malnutrition and potential for catch up growth. From obesity policy analysis to treating malnutrition and tracking growth trajectories, the model can address diverse policy questions. For example I find that even without further rise in obesity, the gap between healthy and actual Body Mass Indexes (BMIs) has embedded, for different population groups, a surplus of 14%-24% in energy intake which will be a source of significant inertia in obesity trends. In another analysis, energy deficit percentage needed to reduce BMI by one unit is found to be relatively constant across ages. Accompanying documented and freely available simulation model facilitates diverse applications customized to different sub-populations.

  2. Human Growth and Body Weight Dynamics: An Integrative Systems Model

    PubMed Central

    Rahmandad, Hazhir

    2014-01-01

    Quantifying human weight and height dynamics due to growth, aging, and energy balance can inform clinical practice and policy analysis. This paper presents the first mechanism-based model spanning full individual life and capturing changes in body weight, composition and height. Integrating previous empirical and modeling findings and validated against several additional empirical studies, the model replicates key trends in human growth including A) Changes in energy requirements from birth to old ages. B) Short and long-term dynamics of body weight and composition. C) Stunted growth with chronic malnutrition and potential for catch up growth. From obesity policy analysis to treating malnutrition and tracking growth trajectories, the model can address diverse policy questions. For example I find that even without further rise in obesity, the gap between healthy and actual Body Mass Indexes (BMIs) has embedded, for different population groups, a surplus of 14%–24% in energy intake which will be a source of significant inertia in obesity trends. In another analysis, energy deficit percentage needed to reduce BMI by one unit is found to be relatively constant across ages. Accompanying documented and freely available simulation model facilitates diverse applications customized to different sub-populations. PMID:25479101

  3. Integrating remote sensing, geographic information systems and global positioning system techniques with hydrological modeling

    NASA Astrophysics Data System (ADS)

    Thakur, Jay Krishna; Singh, Sudhir Kumar; Ekanthalu, Vicky Shettigondahalli

    2017-07-01

    Integration of remote sensing (RS), geographic information systems (GIS) and global positioning system (GPS) are emerging research areas in the field of groundwater hydrology, resource management, environmental monitoring and during emergency response. Recent advancements in the fields of RS, GIS, GPS and higher level of computation will help in providing and handling a range of data simultaneously in a time- and cost-efficient manner. This review paper deals with hydrological modeling, uses of remote sensing and GIS in hydrological modeling, models of integrations and their need and in last the conclusion. After dealing with these issues conceptually and technically, we can develop better methods and novel approaches to handle large data sets and in a better way to communicate information related with rapidly decreasing societal resources, i.e. groundwater.

  4. Integrated Multimedia Modeling System Response to Regional Land Management Change

    EPA Science Inventory

    A multi-media system of nitrogen and co-pollutant models describing critical physical and chemical processes that cascade synergistically and competitively through the environment, the economy and society has been developed at the USEPA Office of research and development. It is ...

  5. Integrated Multimedia Modeling System Response to Regional Land Management Change

    EPA Science Inventory

    A multi-media system of nitrogen and co-pollutant models describing critical physical and chemical processes that cascade synergistically and competitively through the environment, the economy and society has been developed at the USEPA Office of research and development. It is ...

  6. Laboratory-Model Integrated-System FARAD Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, K.A.; Best, S.; Miller, R.; Rose, M.F.; Owens, T.

    2008-01-01

    Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a plasma current sheet in propellant located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current with an induced magnetic field. The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster [1,2] is a type of pulsed inductive plasma accelerator in which the plasma is preionized by a mechanism separate from that used to form the current sheet and accelerate the gas. Employing a separate preionization mechanism in this manner allows for the formation of an inductive current sheet at much lower discharge energies and voltages than those found in previous pulsed inductive accelerators like the Pulsed Inductive Thruster (PIT). In a previous paper [3], the authors presented a basic design for a 100 J/pulse FARAD laboratory-version thruster. The design was based upon guidelines and performance scaling parameters presented in Refs. [4, 5]. In this paper, we expand upon the design presented in Ref. [3] by presenting a fully-assembled and operational FARAD laboratory-model thruster and addressing system and subsystem-integration issues (concerning mass injection, preionization, and acceleration) that arose during assembly. Experimental data quantifying the operation of this thruster, including detailed internal plasma measurements, are presented by the authors in a companion paper [6]. The thruster operates by first injecting neutral gas over the face of a flat, inductive acceleration coil and at some later time preionizing the gas. Once the gas is preionized current is passed through the acceleration coil, inducing a plasma current sheet in the propellant that is accelerated away from the coil through electromagnetic interaction with the time-varying magnetic field

  7. Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)

    SciTech Connect

    Dykes, K.; Graf, P.; Scott, G.; Ning, A.; King, R.; Guo, Y.; Parsons, T.; Damiani, R.; Felker, F.; Veers, P.

    2015-01-01

    The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.

  8. Computer-aided operations engineering with integrated models of systems and operations

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Ryan, Dan; Fleming, Land

    1994-01-01

    CONFIG 3 is a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operation of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. Integration is supported among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. Support is provided for integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems. CONFIG supports abstracted qualitative and symbolic modeling, for early conceptual design. System models are component structure models with operating modes, with embedded time-related behavior models. CONFIG supports failure modeling and modeling of state or configuration changes that result in dynamic changes in dependencies among components. Operations and procedure models are activity structure models that interact with system models. CONFIG is designed to support evaluation of system operability, diagnosability and fault tolerance, and analysis of the development of system effects of problems over time, including faults, failures, and procedural or environmental difficulties.

  9. Upon Generating Discrete Expanding Integrable Models of the Toda Lattice Systems and Infinite Conservation Laws

    NASA Astrophysics Data System (ADS)

    Zhang, Yufeng; Zhang, Xiangzhi; Wang, Yan; Liu, Jiangen

    2017-01-01

    With the help of R-matrix approach, we present the Toda lattice systems that have extensive applications in statistical physics and quantum physics. By constructing a new discrete integrable formula by R-matrix, the discrete expanding integrable models of the Toda lattice systems and their Lax pairs are generated, respectively. By following the constructing formula again, we obtain the corresponding (2+1)-dimensional Toda lattice systems and their Lax pairs, as well as their (2+1)-dimensional discrete expanding integrable models. Finally, some conservation laws of a (1+1)-dimensional generalised Toda lattice system and a new (2+1)-dimensional lattice system are generated, respectively.

  10. ENEL overall PWR plant models and neutronic integrated computing systems

    SciTech Connect

    Pedroni, G.; Pollachini, L.; Vimercati, G.; Cori, R.; Pretolani, F.; Spelta, S.

    1987-01-01

    To support the design activity of the Italian nuclear energy program for the construction of pressurized water reactors, the Italian Electricity Board (ENEL) needs to verify the design as a whole (that is, the nuclear steam supply system and balance of plant) both in steady-state operation and in transient. The ENEL has therefore developed two computer models to analyze both operational and incidental transients. The models, named STRIP and SFINCS, perform the analysis of the nuclear as well as the conventional part of the plant (the control system being properly taken into account). The STRIP model has been developed by means of the French (Electricite de France) modular code SICLE, while SFINCS is based on the Italian (ENEL) modular code LEGO. STRIP validation was performed with respect to Fessenheim French power plant experimental data. Two significant transients were chosen: load step and total load rejection. SFINCS validation was performed with respect to Saint-Laurent French power plant experimental data and also by comparing the SFINCS-STRIP responses.

  11. Integrated wetland management: an analysis with group model building based on system dynamics model.

    PubMed

    Chen, Hsin; Chang, Yang-Chi; Chen, Kung-Chen

    2014-12-15

    The wetland system possesses diverse functions such as preserving water sources, mediating flooding, providing habitats for wildlife and stabilizing coastlines. Nonetheless, rapid economic growth and the increasing population have significantly deteriorated the wetland environment. To secure the sustainability of the wetland, it is essential to introduce integrated and systematic management. This paper examines the resource management of the Jiading Wetland by applying group model building (GMB) and system dynamics (SD). We systematically identify local stakeholders' mental model regarding the impact brought by the yacht industry, and further establish a SD model to simulate the dynamic wetland environment. The GMB process improves the stakeholders' understanding about the interaction between the wetland environment and management policies. Differences between the stakeholders' perceptions and the behaviors shown by the SD model also suggest that our analysis would facilitate the stakeholders to broaden their horizons and achieve consensus on the wetland resource management.

  12. Modeling integrated water user decisions in intermittent supply systems

    NASA Astrophysics Data System (ADS)

    Rosenberg, David E.; Tarawneh, Tarek; Abdel-Khaleq, Rania; Lund, Jay R.

    2007-07-01

    We apply systems analysis to estimate household water use in an intermittent supply system considering numerous interdependent water user behaviors. Some 39 household actions include conservation; improving local storage or water quality; and accessing sources having variable costs, availabilities, reliabilities, and qualities. A stochastic optimization program with recourse decisions identifies the infrastructure investments and short-term coping actions a customer can adopt to cost-effectively respond to a probability distribution of piped water availability. Monte Carlo simulations show effects for a population of customers. Model calibration reproduces the distribution of billed residential water use in Amman, Jordan. Parametric analyses suggest economic and demand responses to increased availability and alternative pricing. It also suggests potential market penetration for conservation actions, associated water savings, and subsidies to entice further adoption. We discuss new insights to size, target, and finance conservation.

  13. Integration models in health information systems: experiences from the PlugIT project.

    PubMed

    Mykkänen, Juha; Porrasmaa, Jari; Korpela, Mikko; Häkkinen, Heidi; Toivanen, Marika; Tuomainen, Mika; Häyrinen, Kristiina; Rannanheimo, Juha

    2004-01-01

    Different approaches are available for the integration of existing health information systems (HIS) in integration projects. Within the PlugIT project in Finland, we have found it necessary to design and implement integration in a collaborative, multidisciplinary and open way. In this paper, we use some generic integration models and relate them to the methods, solutions and experiences of the project. We summarize the results from nine integration teams, methods development and supporting surveys and studies, and discuss these experiences to provide some guidelines for the HIS integration projects in general.

  14. High-resolution modelling of health impacts from air pollution using the integrated model system EVA

    NASA Astrophysics Data System (ADS)

    Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Geels, Camilla; Hansen, Kaj M.; Jensen, Steen S.; Ketzel, Matthias; Plejdrup, Marlene S.; Sigsgaard, Torben; Silver, Jeremy D.

    2014-05-01

    A high-resolution assessment of health impacts from air pollution and related external cost has been conducted for Denmark using the integrated EVA model system. The EVA system has been further developed by implementing an air quality model with a 1 km x 1 km resolution covering the whole of Denmark. New developments of the integrated model system will be presented as well as results for health impacts and related external costs over several decades. Furthermore, the sensitivity of health impacts to model resolution will be studied. We have developed an integrated model system EVA (Economic Valuation of Air pollution), based on the impact-pathway chain, to assess the health impacts and health-related economic externalities of air pollution resulting from specific emission sources or sectors. The system is used to support policymaking with respect to emission control. In Brandt et al. (2013a; 2013b), the EVA system was used to assess the impacts in Europe and Denmark from the past, present and future total air pollution levels as well as the contribution from the major anthropogenic emission sectors. The EVA system was applied using the hemispheric chemistry-transport model, the Danish Eulerian Hemispheric Model (DEHM), with nesting capability for higher resolution over Europe (50 km x 50 km) and Northern Europe (16.7 km x 16.7 km). In this study an Urban Background Model (UBM) has been further developed to cover the whole of Denmark with a 1 km x 1 km resolution and the model has been implemented as a part of the integrated model system, EVA. The EVA system is based on the impact-pathway methodology. The site-specific emissions will result (via atmospheric transport and chemistry) in a concentration distribution, which together with detailed population data, are used to estimate the population-level exposure. Using exposure-response functions and economic valuations, the exposure is transformed into impacts on human health and related external costs. In this study

  15. Global water resources modeling with an integrated model of the social-economic-environmental system

    NASA Astrophysics Data System (ADS)

    Davies, Evan G. R.; Simonovic, Slobodan P.

    2011-06-01

    Awareness of increasing water scarcity has driven efforts to model global water resources for improved insight into water resources infrastructure and management strategies. Most water resources models focus explicitly on water systems and represent socio-economic and environmental change as external drivers. In contrast, the system dynamics-based integrated assessment model employed here, ANEMI, incorporates dynamic representations of these systems, so that their broader changes affect and are affected by water resources systems through feedbacks. Sectors in ANEMI therefore include the global climate system, carbon cycle, economy, population, land use and agriculture, and novel versions of the hydrological cycle, global water use and water quality. Since the model focus is on their interconnections through explicit nonlinear feedbacks, simulations with ANEMI provide insight into the nature and structure of connections between water resources and socio-economic and environmental change. Of particular interest to water resources researchers and modelers will be the simulated effects of a new water stress definition that incorporates both water quality and water quantity effects into the measurement of water scarcity. Five simulation runs demonstrate the value of wastewater treatment and reuse programs and the feedback-effects of irrigated agriculture and greater consumption of animal products.

  16. Integrating Geohydrological Models In ATES-Systems Control

    NASA Astrophysics Data System (ADS)

    Bloemendal, Martin

    2015-04-01

    1) Purpose. Accomplish optimal and sustainable use of subsurface for Aquifer Thermal Energy Storage (ATES). 2) Scope. A heat pump in combination with an ATES system can efficiently and sustainably provide heating and cooling for user comfort within buildings. ATES systems are popular in moderate climate in which ATES systems are exploited as they are able to save primary energy. While storing warm and cold groundwater, ATES systems occupy a significant amount of the subsurface space, making that the space in the aquifers below cities is becoming scarce [1]. With the rapid growth of the number of ATES systems, the use of the subsurface intensifies, which raises additional questions regarding its sustainability and the long term profitability of the individual systems. In practice considerable difficulties regarding A) the performance of these installations and B) optimal and sustainable use of the subsurface are met. 3) Approach. Recently it was confirmed [2] that ATES systems can be placed closer to each other with limited effect on their energy efficiency. By placing them closer together we introduce the risk of a tragedy of the commons [3]. Therefore it is of importance to know where the warm and cold zones are over time and enable ATES-controllers to use the subsurface optimal and sustainably. From the field of multi agent systems and complex adaptive systems we use approaches and techniques to make an operation and control system that enables to adapt their control not only based on current demand, but also on current aquifer status and expected future demand. We are developing a numerical groundwater model structure which is fed with operational data of different ATES-systems. While doing this we run into challenges and opportunities like; spatial and temporal scale issues, sustaining the storage with balancing thermal storage and extraction at area level, dynamics and relation between hydrological and thermal influence and consequences for spreading of

  17. Integrating Safety and Mission Assurance into Systems Engineering Modeling Practices

    NASA Technical Reports Server (NTRS)

    Beckman, Sean; Darpel, Scott

    2015-01-01

    During the early development of products, flight, or experimental hardware, emphasis is often given to the identification of technical requirements, utilizing such tools as use case and activity diagrams. Designers and project teams focus on understanding physical and performance demands and challenges. It is typically only later, during the evaluation of preliminary designs that a first pass, if performed, is made to determine the process, safety, and mission quality assurance requirements. Evaluation early in the life cycle, though, can yield requirements that force a fundamental change in design. This paper discusses an alternate paradigm for using the concepts of use case or activity diagrams to identify safety hazard and mission quality assurance risks and concerns using the same systems engineering modeling tools being used to identify technical requirements. It contains two examples of how this process might be used in the development of a space flight experiment, and the design of a Human Powered Pizza Delivery Vehicle, along with the potential benefits to decrease development time, and provide stronger budget estimates.

  18. Modeling the Integration of Open Systems and Evolutionary Acquisition in DoD Programs

    DTIC Science & Technology

    2009-08-19

    Integration Production Readiness, LRIP & IOT &E Full Rate Production & Deployment 80% Solution FRP 80% Solution LRIP System Development...Demonstration System Demonstration System Integration Full Rate Production & Deployment Production & Deployment Production Readiness, LRIP & IOT ...3 A3 B3 DRR3 C3 FRP3 Time Periods Figure 4. Information Flows in a Three-block Acquisition Project - 15 - A Formal Simulation Model of an

  19. Integrated modeling for assessment of energy-water system resilience under changing climate

    NASA Astrophysics Data System (ADS)

    Yan, E.; Veselka, T.; Zhou, Z.; Koritarov, V.; Mahalik, M.; Qiu, F.; Mahat, V.; Betrie, G.; Clark, C.

    2016-12-01

    Energy and water systems are intrinsically interconnected. Due to an increase in climate variability and extreme weather events, interdependency between these two systems has been recently intensified resulting significant impacts on both systems and energy output. To address this challenge, an Integrated Water-Energy Systems Assessment Framework (IWESAF) is being developed to integrate multiple existing or developed models from various sectors. The IWESAF currently includes an extreme climate event generator to predict future extreme weather events, hydrologic and reservoir models, riverine temperature model, power plant water use simulator, and power grid operation and cost optimization model. The IWESAF can facilitate the interaction among the modeling systems and provide insights of the sustainability and resilience of the energy-water system under extreme climate events and economic consequence. The regional case demonstration in the Midwest region will be presented. The detailed information on some of individual modeling components will also be presented in several other abstracts submitted to AGU this year.

  20. Numerical Modeling of Pressurization of Cryogenic Propellant Tank for Integrated Vehicle Fluid System

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok K.; LeClair, Andre C.; Hedayat, Ali

    2016-01-01

    This paper presents a numerical model of pressurization of a cryogenic propellant tank for the Integrated Vehicle Fluid (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) has been running tests to verify the functioning of the IVF system using a flight tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to develop an integrated model of the tank and the pressurization system. This paper presents an iterative algorithm for converging the interface boundary conditions between different component models of a large system model. The model results have been compared with test data.

  1. Integrating the Illness Beliefs Model in clinical practice: a Family Systems Nursing knowledge utilization model.

    PubMed

    Duhamel, Fabie; Dupuis, France; Turcotte, Annie; Martinez, Anne-Marie; Goudreau, Johanne

    2015-05-01

    To promote the integration of Family Systems Nursing (FSN) in clinical practice, we need to better understand how nurses overcome the challenges of FSN knowledge utilization. A qualitative exploratory study was conducted with 32 practicing female nurses from hospital and community settings who had received FSN intervention training and skill development based on the Illness Beliefs Model and the Calgary Family Assessment and Intervention Models. The participants were interviewed about how they utilized FSN knowledge in their nursing practice. From the data analysis, a FSN Knowledge Utilization Model emerged that involves three major components: (a) nurses' beliefs in FSN and in their FSN skills, (b) nurses' knowledge utilization strategies to address the challenges of FSN practice, and (c) FSN positive outcomes. The FSN Knowledge Utilization Model describes a circular, incremental, and iterative process used by nurses to integrate FSN in daily nursing practice. Findings point to a need for re-evaluation of educational and management strategies in clinical settings for advancing the practice of FSN.

  2. Health Promotion Dissemination and Systems Thinking: Towards an Integrative Model

    ERIC Educational Resources Information Center

    Best, Allan; Moor, Gregg; Holmes, Bev; Clark, Pamela I.; Bruce, Ted; Leischow, Scott; Buchholz, Kaye; Krajnak, Judith

    2003-01-01

    Objective:: To help close the gap between health promotion research and practice by using systems thinking. Methods: We review 3 national US tobacco control initiatives and a project (ISIS) that has introduced systems thinking to tobacco control, speculating on ways in which systems thinking may add value to health promotion dissemination and…

  3. An integrated modelling framework for regulated river systems in Land Surface Hydrological Models

    NASA Astrophysics Data System (ADS)

    Rehan Anis, Muhammad; razavi, Saman; Wheater, Howard

    2017-04-01

    Many of the large river systems around the world are highly regulated with numerous physical flow control and storage structures as well as a range of water abstraction rules and regulations. Most existing Land Surface Models (LSM) do not represent the modifications to the hydrological regimes introduced by water management (reservoirs, irrigation diversions, etc.). The interactions between natural hydrological processes and changes in water and energy fluxes and storage due to human interventions are important to the understanding of how these systems may respond to climate change amongst other drivers for change as well as to the assessment of their feedbacks to the climate system at regional and global scales. This study presents an integrated modelling approach to include human interventions within natural hydrological systems using a fully coupled modelling platform. The Bow River Basin in Alberta (26,200 km2), one of the most managed Canadian rivers, is used to demonstrate the approach. We have dynamically linked the MESH modelling system, which embeds the Canadian Land Surface Scheme (CLASS), with the MODSIM-DSS water management modelling tool. MESH models the natural hydrology while MODSIM optimizes the reservoir operation of 4 simulated reservoirs to satisfy demands within the study basin. MESH was calibrated for the catchments upstream the reservoirs and gave good performance (NSE = 0.81) while BIAS was only 2.3% at the catchment outlet. Without coupling with MODSIM (i.e. no regulation), simulated hydrographs at the catchment outlet were in complete disagreement with observations (NSE = 0.28). The coupled model simulated the optimization introduced by the operation of the multi-reservoir system in the Bow river basin and shows excellent agreement between observed and simulated hourly flows (NSE = 0.98). Irrigation demands are fully satisfied during summer, however, there are some shortages in winter demand from industries, which can be rectified by

  4. Stochastic modeling of coal gasification combined cycle systems: Cost models for selected integrated gasification combined cycle (IGCC) systems

    SciTech Connect

    Frey, H.C.; Rubin, E.S.

    1990-06-01

    This report documents cost models developed for selected integrated gasification combined cycle (IGCC) systems. The objective is to obtain a series of capital and operating cost models that can be integrated with an existing set of IGCC process performance models developed at the US Department of Energy Morgantown Energy Technology Center. These models are implemented in ASPEN, a Fortran-based process simulator. Under a separate task, a probabilistic modeling capability has been added to the ASPEN simulator, facilitating analysis of uncertainties in new process performance and cost (Diwekar and Rubin, 1989). One application of the cost models presented here is to explicitly characterize uncertainties in capital and annual costs, supplanting the traditional approach of incorporating uncertainty via a contingency factor. The IGCC systems selected by DOE/METC for cost model development include the following: KRW gasifier with cold gas cleanup; KRW gasifier with hot gas cleanup; and Lurgi gasifier with hot gas cleanup. For each technology, the cost model includes both capital and annual costs. The capital cost models estimate the costs of each major plant section as a function of key performance and design parameters. A standard cost method based on the Electric Power Research Institute (EPRI) Technical Assessment Guide (1986) was adopted. The annual cost models are based on operating and maintenance labor requirements, maintenance material requirements, the costs of utilities and reagent consumption, and credits from byproduct sales. Uncertainties in cost parameters are identified for both capital and operating cost models. Appendices contain cost models for the above three IGCC systems, a number of operating trains subroutines, range checking subroutines, and financial subroutines. 88 refs., 69 figs., 21 tabs.

  5. Modeling Integration and Reuse of Heterogeneous Terminologies in Faceted Browsing Systems

    PubMed Central

    Harris, Daniel R.

    2017-01-01

    We integrate heterogeneous terminologies into our category-theoretic model of faceted browsing and show that existing terminologies and vocabularies can be reused as facets in a cohesive, interactive system. Commonly found in online search engines and digital libraries, faceted browsing systems depend upon one or more taxonomies which outline the structure and content of the facets available for user interaction. Controlled vocabularies or terminologies are often externally curated and are available as a reusable resource across systems. We demonstrated previously that category theory can abstractly model faceted browsing in a way that supports the development of interfaces capable of reusing and integrating multiple models of faceted browsing. We extend this model by illustrating that terminologies can be reused and integrated as facets across systems with examples from the biomedical domain.

  6. Integration of agricultural and energy system models for biofuel assessment

    EPA Science Inventory

    This paper presents a coupled modeling framework to capture the dynamic linkages between agricultural and energy markets that have been enhanced through the expansion of biofuel production, as well as the environmental impacts resulting from this expansion. The framework incorpor...

  7. Integration of agricultural and energy system models for biofuel assessment

    EPA Science Inventory

    This paper presents a coupled modeling framework to capture the dynamic linkages between agricultural and energy markets that have been enhanced through the expansion of biofuel production, as well as the environmental impacts resulting from this expansion. The framework incorpor...

  8. Integrated Thermal Response Modeling System For Hypersonic Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Chen, Y.-K.; Milos, F. S.; Partridge, Harry (Technical Monitor)

    2000-01-01

    We describe all extension of the Markov decision process model in which a continuous time dimension is included ill the state space. This allows for the representation and exact solution of a wide range of problems in which transitions or rewards vary over time. We examine problems based on route planning with public transportation and telescope observation scheduling.

  9. Limitations of Western Medicine and Models of Integration Between Medical Systems.

    PubMed

    Attena, Francesco

    2016-05-01

    This article analyzes two major limitations of Western medicine: maturity and incompleteness. From this viewpoint, Western medicine is considered an incomplete system for the explanation of living matter. Therefore, through appropriate integration with other medical systems, in particular nonconventional approaches, its knowledge base and interpretations may be widened. This article presents possible models of integration of Western medicine with homeopathy, the latter being viewed as representative of all complementary and alternative medicine. To compare the two, a medical system was classified into three levels through which it is possible to distinguish between different medical systems: epistemological (first level), theoretical (second level), and operational (third level). These levels are based on the characterization of any medical system according to, respectively, a reference paradigm, a theory on the functioning of living matter, and clinical practice. The three levels are consistent and closely consequential in the sense that from epistemology derives theory, and from theory derives clinical practice. Within operational integration, four models were identified: contemporary, alternative, sequential, and opportunistic. Theoretical integration involves an explanation of living systems covering simultaneously the molecular and physical mechanisms of functioning living matter. Epistemological integration provides a more thorough and comprehensive explanation of the epistemic concepts of indeterminism, holism, and vitalism to complement the reductionist approach of Western medicine; concepts much discussed by Western medicine while lacking the epistemologic basis for their emplacement. Epistemologic integration could be reached with or without a true paradigm shift and, in the latter, through a model of fusion or subsumption.

  10. Power System Control Study. Phase I. Integrated Control Techniques. Phase II. Detail Design and System Modeling.

    DTIC Science & Technology

    1981-03-01

    reliable and fault tolerant system. The advanced control technologies integrated include:electric engine start, automatic load manage- ment...Generation System Study .............................. 104 5.2 Reliability Assessment of Power System .................... 119 5.3 EMUX Processor...132 30 Best Main Power System Configuration Based on Reliability Assessment ..................................... 133 31 Main and Emergency Power

  11. Integrated cumulus ensemble and turbulence (ICET): An integrated parameterization system for general circulation models (GCMs)

    SciTech Connect

    Evans, J.L.; Frank, W.M.; Young, G.S.

    1996-04-01

    Successful simulations of the global circulation and climate require accurate representation of the properties of shallow and deep convective clouds, stable-layer clouds, and the interactions between various cloud types, the boundary layer, and the radiative fluxes. Each of these phenomena play an important role in the global energy balance, and each must be parameterized in a global climate model. These processes are highly interactive. One major problem limiting the accuracy of parameterizations of clouds and other processes in general circulation models (GCMs) is that most of the parameterization packages are not linked with a common physical basis. Further, these schemes have not, in general, been rigorously verified against observations adequate to the task of resolving subgrid-scale effects. To address these problems, we are designing a new Integrated Cumulus Ensemble and Turbulence (ICET) parameterization scheme, installing it in a climate model (CCM2), and evaluating the performance of the new scheme using data from Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Testbed (CART) sites.

  12. Rationale for a model of human systems integration: the need of a theoretical framework.

    PubMed

    Fass, Didier

    2006-09-01

    Human systems integration (HSI) involves augmented human design with the objectives of augmenting human capabilities and improving human performance using behavioral technologies. The fundamental matter of human systems integration and augmented human design is the organization and the nature of interactions that couple physiological systems, humans- and engineered systems, artifacts. By this definition, augmented human consists of interactive artefacts linked to physiological systems. This paper focuses on the rationale of a HSI model based on specific experiments (comparison of dynamical sensorimotor integration and motor performances in real and virtual environments) that confirm the hypothesis of functional interaction in the framework of Chauvet's mathematical theory of integrative physiology (MTIP). Epistemological constraints for HSI and the role of MTIP are briefly discussed in this context.

  13. An Integrated Model of the Human Cardiopulmonary System

    DTIC Science & Technology

    2007-11-02

    Number Program Element Number Author( s ) Project Number Task Number Work Unit Number Performing Organization Name( s ) and Address(es) Dynamical Systems...Group Rice University Houston, TX 77005-1892 Performing Organization Report Number Sponsoring/Monitoring Agency Name( s ) and Address(es) US Army...Research, Development & Standardization Group (UK) PSC 802 Box 15 FPO AE 09499-1500 Sponsor/Monitor’s Acronym( s ) Sponsor/Monitor’s Report Number( s

  14. An integrated acid rain assessment model for Canada using the RAISON for windows system

    SciTech Connect

    Lam, D.C.L.; Jeffries, D.S.; Wong, I.

    1996-12-31

    Over the past decade, a variety of mathematical models have been developed in Canada and elsewhere to simulate the long-range atmospheric transport, geochemical pathways and ecological impacts of acidifying chemicals such as sulfur and nitrogen oxides. While these models have been applied successfully within disciplinary domains, the solution to environmental issues such as acidification requires the integration of these models across disciplines. In addition, socio-economic constraints, in terms of both the control and damage costs, have to be considered in the same integrated framework, because they are an integral part of the solution. The approach adopted uses the PC/Windows-based environmental information system, RAISON, developed by Environment Canada. The system allows data and model results to be displayed in a Geographical Information System (GIS) format and presented in a tightly linked and interactive system. It offers a generic set of software tools to connect databases, spreadsheets, maps, models, expert systems and optimization procedures. Its strength lies in its ability to meet the needs of team members who want to bring simple to complex disciplinary models into the Integrated Assessment Model (IAM). There are three general ways of incorporating component models: (a) connect the model {open_quotes}as is{close_quotes} to the IAM, (b) replace the model with a simpler version such as an input-output model and (c) rewrite the entire code in the RAISON system. We have been successful with all three approaches, as circumstances dictated. For example, wildlife and fishery ecological models were used {open_quotes}as is{close_quotes} by directly linking their input and output files to RAISON; a complex air pollutant trajectory model was modified to a much shorter source-receptor version; and steady-state geochemical models were completely rewritten.

  15. An Integrated Approach to Systems Engineering through Modeling and Simulation

    DTIC Science & Technology

    2011-07-22

    Vehicle Minotaur I 0 0 0 1 1 3 3 5 1 3 Minotaur IV 0 0 0 1 3 5 6 4 7 6 Falcon 1e 0 0 0 1 3 5 4 4 4 4 Cost 3020...4,133 1,133 50,380 2.2 Minotaur I Fairing 427 373 -54 427 -12.7 Minotaur I Fourth Stage 278 278 0 1,977 0 Minotaur I Third Stage 918 962 44 9,551 0.5... Minotaur I Second Stage 1524 1753 229 15,506 1.5 Minotaur I First Stage 4,955 5,055 100 50,885 0.2 Previous Studies (cont’d) Four Launch Vehicles Modeled

  16. Integrated Modeling Environment

    NASA Technical Reports Server (NTRS)

    Mosier, Gary; Stone, Paul; Holtery, Christopher

    2006-01-01

    The Integrated Modeling Environment (IME) is a software system that establishes a centralized Web-based interface for integrating people (who may be geographically dispersed), processes, and data involved in a common engineering project. The IME includes software tools for life-cycle management, configuration management, visualization, and collaboration.

  17. Marital conflict and marital intimacy: an integrative psychodynamic-behavioral-systemic model.

    PubMed

    Feldman, L B

    1979-03-01

    A conceptual model of some of the intrapsychic and interpersonal forces that stimulate and maintain repetitive, nonproductive marital conflict behavior is presented. In this model, concepts derived from psychoanalytic and social-learning theory and integrated within a family systems framework. Implications for conjoint therapy with conflictual couples are discussed.

  18. Predicting carbon dynamics in integrated production systems in Brazil using the CQESTR model

    USDA-ARS?s Scientific Manuscript database

    Process-based carbon models are research tools to predict management impact on soil organic carbon (SOC) and options to increase SOC stocks and reduce CO2. The CQESTR model was used to examine the effect of soil management practices, including integrated crop-livestock system (iCLS), and various sc...

  19. An Evaluation Model To Select an Integrated Learning System in a Large, Suburban School District.

    ERIC Educational Resources Information Center

    Curlette, William L.; And Others

    The systematic evaluation process used in Georgia's DeKalb County School System to purchase comprehensive instructional software--an integrated learning system (ILS)--is described, and the decision-making model for selection is presented. Selection and implementation of an ILS were part of an instructional technology plan for the DeKalb schools…

  20. An Evaluation Model To Select an Integrated Learning System in a Large, Suburban School District.

    ERIC Educational Resources Information Center

    Curlette, William L.; And Others

    The systematic evaluation process used in Georgia's DeKalb County School System to purchase comprehensive instructional software--an integrated learning system (ILS)--is described, and the decision-making model for selection is presented. Selection and implementation of an ILS were part of an instructional technology plan for the DeKalb schools…

  1. The treatment of climate science in Integrated Assessment Modelling: integration of climate step function response in an energy system integrated assessment model.

    NASA Astrophysics Data System (ADS)

    Dessens, Olivier

    2016-04-01

    Integrated Assessment Models (IAMs) are used as crucial inputs to policy-making on climate change. These models simulate aspect of the economy and climate system to deliver future projections and to explore the impact of mitigation and adaptation policies. The IAMs' climate representation is extremely important as it can have great influence on future political action. The step-function-response is a simple climate model recently developed by the UK Met Office and is an alternate method of estimating the climate response to an emission trajectory directly from global climate model step simulations. Good et al., (2013) have formulated a method of reconstructing general circulation models (GCMs) climate response to emission trajectories through an idealized experiment. This method is called the "step-response approach" after and is based on an idealized abrupt CO2 step experiment results. TIAM-UCL is a technology-rich model that belongs to the family of, partial-equilibrium, bottom-up models, developed at University College London to represent a wide spectrum of energy systems in 16 regions of the globe (Anandarajah et al. 2011). The model uses optimisation functions to obtain cost-efficient solutions, in meeting an exogenously defined set of energy-service demands, given certain technological and environmental constraints. Furthermore, it employs linear programming techniques making the step function representation of the climate change response adapted to the model mathematical formulation. For the first time, we have introduced the "step-response approach" method developed at the UK Met Office in an IAM, the TIAM-UCL energy system, and we investigate the main consequences of this modification on the results of the model in term of climate and energy system responses. The main advantage of this approach (apart from the low computational cost it entails) is that its results are directly traceable to the GCM involved and closely connected to well-known methods of

  2. Bioinformatics for transporter pharmacogenomics and systems biology: data integration and modeling with UML.

    PubMed

    Yan, Qing

    2010-01-01

    Bioinformatics is the rational study at an abstract level that can influence the way we understand biomedical facts and the way we apply the biomedical knowledge. Bioinformatics is facing challenges in helping with finding the relationships between genetic structures and functions, analyzing genotype-phenotype associations, and understanding gene-environment interactions at the systems level. One of the most important issues in bioinformatics is data integration. The data integration methods introduced here can be used to organize and integrate both public and in-house data. With the volume of data and the high complexity, computational decision support is essential for integrative transporter studies in pharmacogenomics, nutrigenomics, epigenetics, and systems biology. For the development of such a decision support system, object-oriented (OO) models can be constructed using the Unified Modeling Language (UML). A methodology is developed to build biomedical models at different system levels and construct corresponding UML diagrams, including use case diagrams, class diagrams, and sequence diagrams. By OO modeling using UML, the problems of transporter pharmacogenomics and systems biology can be approached from different angles with a more complete view, which may greatly enhance the efforts in effective drug discovery and development. Bioinformatics resources of membrane transporters and general bioinformatics databases and tools that are frequently used in transporter studies are also collected here. An informatics decision support system based on the models presented here is available at http://www.pharmtao.com/transporter . The methodology developed here can also be used for other biomedical fields.

  3. An integrable system and associated integrable models as well as Hamiltonian structures

    NASA Astrophysics Data System (ADS)

    Tam, Hon-Wah; Zhang, Yufeng

    2012-10-01

    Starting from an existed Lie algebra introduces a new Lie algebra A1 = {e1, e2, e3} so that two isospectral Lax matrices are established. By employing the Tu scheme an integrable equation hierarchy denoted by IEH is obtained from which a few reduced evolution equations are presented. One of them is the mKdV equation. The elliptic variable solutions and three kinds of Darboux transformations for one coupled equation which is from the IEH are worked out, respectively. Finally, we take use of the Lie algebra A1 to generate eight higher-dimensional Lie algebras from which the linear integrable couplings, the nonlinear integrable couplings, and the bi-integrable couplings of the IEH are engendered, whose Hamiltonian structures are also obtained by the variational identity. Then further reduce one coupled integrable equation to get a nonlinear generalized mKdV equation.

  4. On data requirements for calibration of integrated models for urban water systems.

    PubMed

    Langeveld, Jeroen; Nopens, Ingmar; Schilperoort, Remy; Benedetti, Lorenzo; de Klein, Jeroen; Amerlinck, Youri; Weijers, Stefan

    2013-01-01

    Modeling of integrated urban water systems (IUWS) has seen a rapid development in recent years. Models and software are available that describe the process dynamics in sewers, wastewater treatment plants (WWTPs), receiving water systems as well as at the interfaces between the submodels. Successful applications of integrated modeling are, however, relatively scarce. One of the reasons for this is the lack of high-quality monitoring data with the required spatial and temporal resolution and accuracy to calibrate and validate the integrated models, even though the state of the art of monitoring itself is no longer the limiting factor. This paper discusses the efforts to be able to meet the data requirements associated with integrated modeling and describes the methods applied to validate the monitoring data and to use submodels as software sensor to provide the necessary input for other submodels. The main conclusion of the paper is that state of the art monitoring is in principle sufficient to provide the data necessary to calibrate integrated models, but practical limitations resulting in incomplete data-sets hamper widespread application. In order to overcome these difficulties, redundancy of future monitoring networks should be increased and, at the same time, data handling (including data validation, mining and assimilation) should receive much more attention.

  5. Thermal performance testing and mathematically modeling of integral collector storage solar hot water systems

    NASA Astrophysics Data System (ADS)

    Thomas, W. C.

    1985-02-01

    The concept behind the alternative testing method is to characterize the thermal performance of the solar collection elements in the integral system using standard test methods for conventional solar collectors. After measuring the efficiency and incident angle response, the integral collector storage hot water system would be tested using an electrical heat source to simulate the absorbed solar energy. The research included both experimental and analytical investigations on the collector elements and on the complete system. All day tests were performed on two commercial integral collector storage solar domestic hot water systems. Tests were performed under a variety of ambient conditions and irradiance levels. An analytical model was developed to predict the thermal performance of one of the systems. Predicted performance was compared with experimental results.

  6. Coupling integrated assessment and earth system models: concepts and an application to land use change

    NASA Astrophysics Data System (ADS)

    O'Neill, B. C.; Lawrence, P.; Ren, X.

    2016-12-01

    Collaboration between the integrated assessment modeling (IAM) and earth system modeling (ESM) communities is increasing, driven by a growing interest in research questions that require analysis integrating both social and natural science components. This collaboration often takes the form of integrating their respective models. There are a number of approaches available to implement this integration, ranging from one-way linkages to full two-way coupling, as well as approaches that retain a single modeling framework but improve the representation of processes from the other framework. We discuss the pros and cons of these different approaches and the conditions under which a two-way coupling of IAMs and ESMs would be favored over a one-way linkage. We propose a criterion that is necessary and sufficient to motivate two-way coupling: A human process must have an effect on an earth system process that is large enough to cause a change in the original human process that is substantial compared to other uncertainties in the problem being investigated. We then illustrate a test of this criterion for land use-climate interactions based on work using the Community Earth System Model (CESM) and land use scenarios from the Representative Concentration Pathways (RCPs), in which we find that the land use effect on regional climate is unlikely to meet the criterion. We then show an example of implementing a one-way linkage of land use and agriculture between an IAM, the integrated Population-Economy-Technology-Science (iPETS) model, and CESM that produces fully consistent outcomes between iPETS and the CESM land surface model. We use the linked system to model the influence of climate change on crop yields, agricultural land use, crop prices and food consumption under two alternative future climate scenarios. This application demonstrates the ability to link an IAM to a global land surface and climate model in a computationally efficient manner.

  7. An integrated pathway system modeling of Saccharomyces cerevisiae HOG pathway: a Petri net based approach.

    PubMed

    Tomar, Namrata; Choudhury, Olivia; Chakrabarty, Ankush; De, Rajat K

    2013-02-01

    Biochemical networks comprise many diverse components and interactions between them. It has intracellular signaling, metabolic and gene regulatory pathways which are highly integrated and whose responses are elicited by extracellular actions. Previous modeling techniques mostly consider each pathway independently without focusing on the interrelation of these which actually functions as a single system. In this paper, we propose an approach of modeling an integrated pathway using an event-driven modeling tool, i.e., Petri nets (PNs). PNs have the ability to simulate the dynamics of the system with high levels of accuracy. The integrated set of signaling, regulatory and metabolic reactions involved in Saccharomyces cerevisiae's HOG pathway has been collected from the literature. The kinetic parameter values have been used for transition firings. The dynamics of the system has been simulated and the concentrations of major biological species over time have been observed. The phenotypic characteristics of the integrated system have been investigated under two conditions, viz., under the absence and presence of osmotic pressure. The results have been validated favorably with the existing experimental results. We have also compared our study with the study of idFBA (Lee et al., PLoS Comput Biol 4:e1000-e1086, 2008) and pointed out the differences between both studies. We have simulated and monitored concentrations of multiple biological entities over time and also incorporated feedback inhibition by Ptp2 which has not been included in the idFBA study. We have concluded that our study is the first to the best of our knowledge to model signaling, metabolic and regulatory events in an integrated form through PN model framework. This study is useful in computational simulation of system dynamics for integrated pathways as there are growing evidences that the malfunctioning of the interplay among these pathways is associated with disease.

  8. Real object-based integral imaging system using a depth camera and a polygon model

    NASA Astrophysics Data System (ADS)

    Jeong, Ji-Seong; Erdenebat, Munkh-Uchral; Kwon, Ki-Chul; Lim, Byung-Muk; Jang, Ho-Wook; Kim, Nam; Yoo, Kwan-Hee

    2017-01-01

    An integral imaging system using a polygon model for a real object is proposed. After depth and color data of the real object are acquired by a depth camera, the grid of the polygon model is converted from the initially reconstructed point cloud model. The elemental image array is generated from the polygon model and directly reconstructed. The polygon model eliminates the failed picking area between the points of a point cloud model, so at least the quality of the reconstructed 3-D image is significantly improved. The theory is verified experimentally, and higher-quality images are obtained.

  9. State-Based Behavior Modeling of the Integrated SLS-MPCV System

    NASA Technical Reports Server (NTRS)

    Bonanne, Kevin H.

    2012-01-01

    In NASA's effort to foster a human spaceflight capability beyond Earth's orbit, two space systems are being developed - the Space Launch System (SLS) and the Multi-Purpose Crew Vehicle (MPCV). As of this time, the interactions between the two systems during launch are not fully detailed. To remedy this situation, a Systems Engineering approach utilizing models was developed to investigate the behavior of the integrated SLS-MPCV stack during ascent and abort situations. Specifically, this innovative approach combines aspects of Model-Based Systems Engineering (MBSE) and state analysis to simultaneously model the physical, functional, and behavioral aspects of systems. This approach focuses solely on the interactions between the systems, leaving much of the internal workings of either system at a logical level (i.e., black box). By utilizing this newly defined approach, a behavior model for the integrated SLS-MPCV stack was developed, emphasizing only the subset of interactions between the systems that impact behavior. Finally, analysis is performed within the model to investigate requirements gaps and examine the execution times of key behaviors related to various ascent phases and abort scenarios. The work described in this paper is merely a portion of the outlined effort being undertaken for this project; only a segment of the SLS-MPCV system behavior will be described.

  10. State-Based Behavior Modeling of the Integrated SLS-MPCV System

    NASA Technical Reports Server (NTRS)

    Bonanne, Kevin H.

    2012-01-01

    In NASA's effort to foster a human spaceflight capability beyond Earth's orbit, two space systems are being developed - the Space Launch System (SLS) and the Multi-Purpose Crew Vehicle (MPCV). As of this time, the interactions between the two systems during launch are not fully detailed. To remedy this situation, a Systems Engineering approach utilizing models was developed to investigate the behavior of the integrated SLS-MPCV stack during ascent and abort situations. Specifically, this innovative approach combines aspects of Model-Based Systems Engineering (MBSE) and state analysis to simultaneously model the physical, functional, and behavioral aspects of systems. This approach focuses solely on the interactions between the systems, leaving much of the internal workings of either system at a logical level (i.e., black box). By utilizing this newly defined approach, a behavior model for the integrated SLS-MPCV stack was developed, emphasizing only the subset of interactions between the systems that impact behavior. Finally, analysis is performed within the model to investigate requirements gaps and examine the execution times of key behaviors related to various ascent phases and abort scenarios. The work described in this paper is merely a portion of the outlined effort being undertaken for this project; only a segment of the SLS-MPCV system behavior will be described.

  11. Comparison of the accuracy of the calibration model on the double and single integrating sphere systems

    NASA Astrophysics Data System (ADS)

    Singh, A.; Karsten, A.

    2011-06-01

    The accuracy of the calibration model for the single and double integrating sphere systems are compared for a white light system. A calibration model is created from a matrix of samples with known absorption and reduced scattering coefficients. In this instance the samples are made using different concentrations of intralipid and black ink. The total and diffuse transmittance and reflectance is measured on both setups and the accuracy of each model compared by evaluating the prediction errors of the calibration model for the different systems. Current results indicate that the single integrating sphere setup is more accurate than the double system method. This is based on the low prediction errors of the model for the single sphere system for a He-Ne laser as well as a white light source. The model still needs to be refined for more absorption factors. Tests on the prediction accuracies were then determined by extracting the optical properties of solid resin based phantoms for each system. When these properties of the phantoms were used as input to the modeling software excellent agreement between measured and simulated data was found for the single sphere systems.

  12. Chemical Transformation System: Cloud Based Cheminformatic Services to Support Integrated Environmental Modeling (proceedings)

    EPA Science Inventory

    Integrated Environmental Modeling (IEM) systems that account for the fate/transport of organics frequently require physicochemical properties as well as transformation products. A myriad of chemical property databases exist but these can be difficult to access and often do not co...

  13. Integrated care: an Information Model for Patient Safety and Vigilance Reporting Systems.

    PubMed

    Rodrigues, Jean-Marie; Schulz, Stefan; Souvignet, Julien

    2015-01-01

    Quality management information systems for safety as a whole or for specific vigilances share the same information types but are not interoperable. An international initiative tries to develop an integrated information model for patient safety and vigilance reporting to support a global approach of heath care quality.

  14. PATHWAYS: A Human Support System Model for Integrated Handicapped Children and Their Families. Final Report.

    ERIC Educational Resources Information Center

    Carlson, Nancy A., Ed.

    The final report discusses achievements of a 3 year project to demonstrate the feasibility and effectiveness of integrating young handicapped children into existing early childhood programs. The project is conceptualized from a socioecological model, operationalized as a technical assistance support system, and located within an interdisciplinary…

  15. Chemical Transformation System: Cloud Based Cheminformatic Services to Support Integrated Environmental Modeling (proceedings)

    EPA Science Inventory

    Integrated Environmental Modeling (IEM) systems that account for the fate/transport of organics frequently require physicochemical properties as well as transformation products. A myriad of chemical property databases exist but these can be difficult to access and often do not co...

  16. Chemical Transformation System: Cloud Based Cheminformatic Services to Support Integrated Environmental Modeling

    EPA Science Inventory

    Integrated Environmental Modeling (IEM) systems that account for the fate/transport of organics frequently require physicochemical properties as well as transformation products. A myriad of chemical property databases exist but these can be difficult to access and often do not co...

  17. Chemical Transformation System: Cloud Based Cheminformatic Services to Support Integrated Environmental Modeling

    EPA Science Inventory

    Integrated Environmental Modeling (IEM) systems that account for the fate/transport of organics frequently require physicochemical properties as well as transformation products. A myriad of chemical property databases exist but these can be difficult to access and often do not co...

  18. LIANA Model Integration System - architecture, user interface design and application in MOIRA DSS

    NASA Astrophysics Data System (ADS)

    Hofman, D.

    2005-08-01

    The LIANA Model Integration System is the shell application supporting model integration and user interface functionality required for the rapid construction and run-time support of the environmental decision support systems (EDSS). Internally it is constructed as the framework of C++ classes and functions covering most common tasks performed by the EDSS (such as managing of and alternative strategies, running of the chain of the models, supporting visualisation of the data with tables and graphs, keeping ranges and default values for input parameters etc.). EDSS is constructed by integration of LIANA system with the models or other applications such as GIS or MAA software. The basic requirements to the model or other application to be integrated is minimal - it should be a Windows or DOS .exe file and receive input and provide output as text files. For the user the EDSS is represented as the number of data sets describing scenario or giving results of evaluation of scenario via modelling. Internally data sets correspond to the I/O files of the models. During the integration the parameters included in each the data sets as well as specifications necessary to present the data set in GUI and export or import it to/from text file are provided with MIL_LIANA language. Visual C++ version of LIANA has been developed in the frame of MOIRA project and is used as the basis for the MOIRA Software Framework - the shell and user interface component of the MOIRA Decision Support System. At present, the usage of LIANA for the creation of a new EDSS requires changes to be made in its C++ code. The possibility to use LIANA for the new EDSS construction without extending the source code is achieved by substituting MIL_LIANA with the object-oriented LIANA language.

  19. Structural model integrity

    NASA Technical Reports Server (NTRS)

    Wallerstein, D. V.; Lahey, R. S.; Haggenmacher, G. W.

    1977-01-01

    Many of the practical aspects and problems of ensuring the integrity of a structural model are discussed, as well as the steps which have been taken in the NASTRAN system to assure that these checks can be routinely performed. Model integrity as used applies not only to the structural model but also to the loads applied to the model. Emphasis is also placed on the fact that when dealing with substructure analysis, all of the checking procedures discussed should be applied at the lowest level of substructure prior to any coupling.

  20. Structural model integrity

    NASA Technical Reports Server (NTRS)

    Wallerstein, D. V.; Lahey, R. S.; Haggenmacher, G. W.

    1977-01-01

    Many of the practical aspects and problems of ensuring the integrity of a structural model are discussed, as well as the steps which have been taken in the NASTRAN system to assure that these checks can be routinely performed. Model integrity as used applies not only to the structural model but also to the loads applied to the model. Emphasis is also placed on the fact that when dealing with substructure analysis, all of the checking procedures discussed should be applied at the lowest level of substructure prior to any coupling.

  1. Options of system integrated environment modelling in the predicated dynamic cyberspace

    SciTech Connect

    Janková, Martina; Dvořák, Jiří

    2015-03-10

    In this article there are briefly mentioned some selected options of contemporary conception of cybernetic system models in the corresponding and possible integratable environment with modern system dynamics thinking and all this in the cyberspace of possible projecting of predicted system characteristics. The key to new capabilities of system integration modelling in the considered cyberspace is mainly the ability to improve the environment and the system integration options, all this with the aim of modern control in the hierarchically arranged dynamic cyberspace, e.g. in the currently desired electronic business with information. The aim of this article is to assess generally the trends in the use of modern modelling methods considering the cybernetics applications verified in practice, modern concept of project management and also the potential integration of artificial intelligence in the new projecting and project management of integratable and intelligent models, e.g. with the optimal structures and adaptable behaviour.The article results from the solution of a specific research partial task at the faculty; especially the moments proving that the new economics will be based more and more on information, knowledge system defined cyberspace of modern management, are stressed in the text.

  2. Integrated Information Support System (IISS). Volume 5. Common Data Model Subsystem. Part 1. CDM Administrator’s Manual

    DTIC Science & Technology

    1990-09-30

    and IDEFIX integration methodology. ONTEK Responsible for defining and testing a representative integrated system base in Artificial Intelligence...Reference Manual UM620341100 Neutral Data Definition Language (NDDL) User’s Guide UM620341002 Information Modeling Manual - IDEFI- Extended ( IDEFIX

  3. Research on the error model of airborne celestial/inertial integrated navigation system

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaoqiang; Deng, Xiaoguo; Yang, Xiaoxu; Dong, Qiang

    2015-02-01

    Celestial navigation subsystem of airborne celestial/inertial integrated navigation system periodically correct the positioning error and heading drift of the inertial navigation system, by which the inertial navigation system can greatly improve the accuracy of long-endurance navigation. Thus the navigation accuracy of airborne celestial navigation subsystem directly decides the accuracy of the integrated navigation system if it works for long time. By building the mathematical model of the airborne celestial navigation system based on the inertial navigation system, using the method of linear coordinate transformation, we establish the error transfer equation for the positioning algorithm of airborne celestial system. Based on these we built the positioning error model of the celestial navigation. And then, based on the positioning error model we analyze and simulate the positioning error which are caused by the error of the star tracking platform with the MATLAB software. Finally, the positioning error model is verified by the information of the star obtained from the optical measurement device in range and the device whose location are known. The analysis and simulation results show that the level accuracy and north accuracy of tracking platform are important factors that limit airborne celestial navigation systems to improve the positioning accuracy, and the positioning error have an approximate linear relationship with the level error and north error of tracking platform. The error of the verification results are in 1000m, which shows that the model is correct.

  4. Integrating observational and modelling systems for the management of the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Baird, M. E.; Jones, E. M.; Margvelashvili, N.; Mongin, M.; Rizwi, F.; Robson, B.; Schroeder, T.; Skerratt, J.; Steven, A. D.; Wild-Allen, K.

    2016-02-01

    Observational and modelling systems provide two sources of knowledge that must be combined to provide a more complete view than either observations or models alone can provide. Here we describe the eReefs coupled hydrodynamic, sediment and biogeochemical model that has been developed for the Great Barrier Reef; and the multiple observations that are used to constrain the model. Two contrasting examples of model - observational integration are highlighted. First we explore the carbon chemistry of the waters above the reef, for which observations are accurate, but expensive and therefore sparse, while model behaviour is highly skilful. For carbon chemistry, observations are used to constrain model parameterisation and quantify model error, with the model output itself providing the most useable knowledge for management purposes. In contrast, ocean colour provides inaccurate, but cheap and spatially and temporally extensive observations. Thus observations are best combined with the model in a data assimilating framework, where a custom-designed optical model has been developed for the purposes of incorporating ocean colour observations. The future management of Great Barrier Reef water quality will be based on an integration of observing and modelling systems, providing the most robust information available.

  5. Dynamic integrated cost and engineering (DICE) model and its applicability to ATP systems

    NASA Astrophysics Data System (ADS)

    LaMont, Douglas V.; Benjamin, Brian J.

    1995-05-01

    As the system engineering process flows down constellation coverage specifications to the Spacecraft level in terms of agility requirements it's critical that the relationships between manueverability and cost are clearly understood. The probability of optimizing the cost of typical ATP system would be greatly enhanced if a realistic integrated cost/engineering model were available during the initial phase of a program (e.g. Conceptual Design Phase). Most Cost Engineering work performed to date has been done by Cost and/or Systems Engineers which has typically lead to models with a cost emphasis. This work tends to be parametric in nature and hence the models have has little 'buy-in' from the design engineering side of the house. A better approach is to take existing credible engineering models for the key Spacecraft subsystems (Attitude Control, Thermal, Power, etc.) and to append these models to include the appropriate hardware databases. This would allow the models to output cost, power and weight, besides analytical engineering parameters like torque, momentum, etc.. For sound engineering reasons some, but not all, subsystem models should be time-domain based (dynamic) simulations--a clear diverges from the typical Systems Engineering approach. A modular spacecraft model like the one created at Lockheed for the FEWS/ALARM programs provides an ideal basis for developing a Dynamic Integrated Cost & Engineering (DICE) Model. This paper provides a 'snapshot' of the initial development of Attitude Determination and Control portion of the DICE Model. These subsystems were modeled first since maneuverability has such a large cost impact on them. A multiple body dynamics package, High TEC1, provides the core of this DICE module. This package has been integrated into several simulation packages as described in previous works. Having access to this detailed 3-axis simulation model allows one to properly size spacecraft attitude systems (especially sensors and actuators

  6. Cantera Integration with the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS)

    NASA Technical Reports Server (NTRS)

    Lavelle, Thomas M.; Chapman, Jeffryes W.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    NASA Glenn Research Center (GRC) has recently developed a software package for modeling generic thermodynamic systems called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a library of building blocks that can be assembled to represent any thermodynamic system in the Simulink(Registered TradeMark) (The MathWorks, Inc.) environment. These elements, along with a Newton Raphson solver (also provided as part of the T-MATS package), enable users to create models of a wide variety of systems. The current version of T-MATS (v1.0.1) uses tabular data for providing information about a specific mixture of air, water (humidity), and hydrocarbon fuel in calculations of thermodynamic properties. The capabilities of T-MATS can be expanded by integrating it with the Cantera thermodynamic package. Cantera is an object-oriented analysis package that calculates thermodynamic solutions for any mixture defined by the user. Integration of Cantera with T-MATS extends the range of systems that may be modeled using the toolbox. In addition, the library of elements released with Cantera were developed using MATLAB native M-files, allowing for quicker prototyping of elements. This paper discusses how the new Cantera-based elements are created and provides examples for using T-MATS integrated with Cantera.

  7. Cantera Integration with the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS)

    NASA Technical Reports Server (NTRS)

    Lavelle, Thomas M.; Chapman, Jeffryes W.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    NASA Glenn Research Center (GRC) has recently developed a software package for modeling generic thermodynamic systems called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a library of building blocks that can be assembled to represent any thermodynamic system in the Simulink (The MathWorks, Inc.) environment. These elements, along with a Newton Raphson solver (also provided as part of the T-MATS package), enable users to create models of a wide variety of systems. The current version of T-MATS (v1.0.1) uses tabular data for providing information about a specific mixture of air, water (humidity), and hydrocarbon fuel in calculations of thermodynamic properties. The capabilities of T-MATS can be expanded by integrating it with the Cantera thermodynamic package. Cantera is an object-oriented analysis package that calculates thermodynamic solutions for any mixture defined by the user. Integration of Cantera with T-MATS extends the range of systems that may be modeled using the toolbox. In addition, the library of elements released with Cantera were developed using MATLAB native M-files, allowing for quicker prototyping of elements. This paper discusses how the new Cantera-based elements are created and provides examples for using T-MATS integrated with Cantera.

  8. Modeling Framework and Validation of a Smart Grid and Demand Response System for Wind Power Integration

    SciTech Connect

    Broeer, Torsten; Fuller, Jason C.; Tuffner, Francis K.; Chassin, David P.; Djilali, Ned

    2014-01-31

    Electricity generation from wind power and other renewable energy sources is increasing, and their variability introduces new challenges to the power system. The emergence of smart grid technologies in recent years has seen a paradigm shift in redefining the electrical system of the future, in which controlled response of the demand side is used to balance fluctuations and intermittencies from the generation side. This paper presents a modeling framework for an integrated electricity system where loads become an additional resource. The agent-based model represents a smart grid power system integrating generators, transmission, distribution, loads and market. The model incorporates generator and load controllers, allowing suppliers and demanders to bid into a Real-Time Pricing (RTP) electricity market. The modeling framework is applied to represent a physical demonstration project conducted on the Olympic Peninsula, Washington, USA, and validation simulations are performed using actual dynamic data. Wind power is then introduced into the power generation mix illustrating the potential of demand response to mitigate the impact of wind power variability, primarily through thermostatically controlled loads. The results also indicate that effective implementation of Demand Response (DR) to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.

  9. Grid Integrated Type 3 Wind Systems - Modeling, and Line Protection Performance Analysis using the RTDS

    NASA Astrophysics Data System (ADS)

    Jain, Rishabh

    In this thesis, the line protection elements and their supervisory elements are analyzed in context of Type 3 (Doubly Fed Induction Generator based) grid integrated wind turbine systems. The underlying converter and controller design algorithms and topologies are discussed. A detailed controller for the Type 3 wind turbine system is designed and integrated to the grid using the RTDS. An alternative to the conventional PLL for tracking of rotor frequency is designed and implemented. A comparative analysis of the performance of an averaged model and the corresponding switching model is presented. After completing the WT model design, the averaged model is used to model an aggregate 10-generator equivalent model tied to a 230kV grid via a 22kV collector. This model is a great asset to understand dynamics, and the unfaulted and faulted behavior of aggregated and single-turbine Type 3 WT systems. The model is then utilized to analyze the response of conventional protection schemes (Line current Differential and Mho Distance elements) and their respective supervisory elements of modern commercial protection relays in real time by hardware-in-the-loop simulation using the RTDS. Differences in the behavior of these elements compared to conventional power systems is noted. Fault are analyzed from the relay's perspective and the reasons for the observed behavior are presented. Challenges associated with sequence components and relay sensitivity are discussed and alternate practices to circumvent these issues are recommended.

  10. Carbon-climate-human interactions in an integrated human-Earth system model

    NASA Astrophysics Data System (ADS)

    Calvin, K. V.; Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.

    2016-12-01

    The C4MIP and CMIP5 results highlighted large uncertainties in climate projections, driven to a large extent by limited understanding of the interactions between terrestrial carbon-cycle and climate feedbacks, and their associated uncertainties. These feedbacks are dominated by uncertainties in soil processes, disturbance dynamics, ecosystem response to climate change, and agricultural productivity, and land-use change. This research addresses three questions: (1) how do terrestrial feedbacks vary across different levels of climate change, (2) what is the relative contribution of CO2 fertilization and climate change, and (3) how robust are the results across different models and methods? We used a coupled modeling framework that integrates an Integrated Assessment Model (modeling economic and energy activity) with an Earth System Model (modeling the natural earth system) to examine how business-as-usual (RCP 8.5) climate change will affect ecosystem productivity, cropland extent, and other aspects of the human-Earth system. We find that higher levels of radiative forcing result in higher productivity growth, that increases in CO2 concentrations are the dominant contributors to that growth, and that our productivity increases fall in the middle of the range when compared to other CMIP5 models and the AgMIP models. These results emphasize the importance of examining both the anthropogenic and natural components of the earth system, and their long-term interactive feedbacks.

  11. Integration of Biogeochemistry and Marine Ecosystem Model in Mercator-Ocean Systems

    NASA Astrophysics Data System (ADS)

    El Moussaoui, Abdelali; Dombrowsky, Eric; Moulin, Cyril; Bopp, Laurent; Aumont, Olivier

    2010-05-01

    Accounting for ocean biogeochemistry and marine ecosystem dynamic is of strong interest in the context of Earth System modelling to better represent the marine component to the global atmospheric cycle of greenhouse gazes that influence climate as CO2. Furthermore, treating the ocean as a whole is also the way to address large anthropogenic impacts on marine systems as climate change, nutrients loading, acidification, and eventually overfishing and habitat destructuring. To forecast how interactions between marine biogeochemical cycles and ecosystems respond to and force global change, several efforts have been promoted on biogeochemical integration into operational Mercator Ocean systems. The aim of this work is to implement a marine biogeochemical and ecosystem component at global scale into the MERCATOR operational system, using first PSY3 analysis at 1/4° then PSY4 at 1/12°. Previous works have conducted successfully the integration of a multi-nutrient and multi-plankton biogeochemical model (PISCES, N5P2Z2D2 type) into MERCATOR system. This allowed the use of MERCATOR operational analyses to drive near real time forecast of marine primary production. Results will be shown and advances on biogeochemical model integration within Mercator Systems will be discussed.

  12. The blackboard model - A framework for integrating multiple cooperating expert systems

    NASA Technical Reports Server (NTRS)

    Erickson, W. K.

    1985-01-01

    The use of an artificial intelligence (AI) architecture known as the blackboard model is examined as a framework for designing and building distributed systems requiring the integration of multiple cooperating expert systems (MCXS). Aerospace vehicles provide many examples of potential systems, ranging from commercial and military aircraft to spacecraft such as satellites, the Space Shuttle, and the Space Station. One such system, free-flying, spaceborne telerobots to be used in construction, servicing, inspection, and repair tasks around NASA's Space Station, is examined. The major difficulties found in designing and integrating the individual expert system components necessary to implement such a robot are outlined. The blackboard model, a general expert system architecture which seems to address many of the problems found in designing and building such a system, is discussed. A progress report on a prototype system under development called DBB (Distributed BlackBoard model) is given. The prototype will act as a testbed for investigating the feasibility, utility, and efficiency of MCXS-based designs developed under the blackboard model.

  13. The blackboard model - A framework for integrating multiple cooperating expert systems

    NASA Technical Reports Server (NTRS)

    Erickson, W. K.

    1985-01-01

    The use of an artificial intelligence (AI) architecture known as the blackboard model is examined as a framework for designing and building distributed systems requiring the integration of multiple cooperating expert systems (MCXS). Aerospace vehicles provide many examples of potential systems, ranging from commercial and military aircraft to spacecraft such as satellites, the Space Shuttle, and the Space Station. One such system, free-flying, spaceborne telerobots to be used in construction, servicing, inspection, and repair tasks around NASA's Space Station, is examined. The major difficulties found in designing and integrating the individual expert system components necessary to implement such a robot are outlined. The blackboard model, a general expert system architecture which seems to address many of the problems found in designing and building such a system, is discussed. A progress report on a prototype system under development called DBB (Distributed BlackBoard model) is given. The prototype will act as a testbed for investigating the feasibility, utility, and efficiency of MCXS-based designs developed under the blackboard model.

  14. Modeling integrated urban water systems in developing countries: case study of Port Vila, Vanuatu.

    PubMed

    Poustie, Michael S; Deletic, Ana

    2014-12-01

    Developing countries struggle to provide adequate urban water services, failing to match infrastructure with urban expansion. Despite requiring an improved understanding of alternative infrastructure performance when considering future investments, integrated modeling of urban water systems is infrequent in developing contexts. This paper presents an integrated modeling methodology that can assist strategic planning processes, using Port Vila, Vanuatu, as a case study. 49 future model scenarios designed for the year 2050, developed through extensive stakeholder participation, were modeled with UVQ (Urban Volume and Quality). The results were contrasted with a 2015 model based on current infrastructure, climate, and water demand patterns. Analysis demonstrated that alternative water servicing approaches can reduce Port Vila's water demand by 35 %, stormwater generation by 38 %, and nutrient release by 80 % in comparison to providing no infrastructural development. This paper demonstrates that traditional centralized infrastructure will not solve the wastewater and stormwater challenges facing rapidly growing urban cities in developing countries.

  15. Developing a Fundamental Model for an Integrated GPS/INS State Estimation System with Kalman Filtering

    NASA Technical Reports Server (NTRS)

    Canfield, Stephen

    1999-01-01

    This work will demonstrate the integration of sensor and system dynamic data and their appropriate models using an optimal filter to create a robust, adaptable, easily reconfigurable state (motion) estimation system. This state estimation system will clearly show the application of fundamental modeling and filtering techniques. These techniques are presented at a general, first principles level, that can easily be adapted to specific applications. An example of such an application is demonstrated through the development of an integrated GPS/INS navigation system. This system acquires both global position data and inertial body data, to provide optimal estimates of current position and attitude states. The optimal states are estimated using a Kalman filter. The state estimation system will include appropriate error models for the measurement hardware. The results of this work will lead to the development of a "black-box" state estimation system that supplies current motion information (position and attitude states) that can be used to carry out guidance and control strategies. This black-box state estimation system is developed independent of the vehicle dynamics and therefore is directly applicable to a variety of vehicles. Issues in system modeling and application of Kalman filtering techniques are investigated and presented. These issues include linearized models of equations of state, models of the measurement sensors, and appropriate application and parameter setting (tuning) of the Kalman filter. The general model and subsequent algorithm is developed in Matlab for numerical testing. The results of this system are demonstrated through application to data from the X-33 Michael's 9A8 mission and are presented in plots and simple animations.

  16. Developing a Fundamental Model for an Integrated GPS/INS State Estimation System with Kalman Filtering

    NASA Technical Reports Server (NTRS)

    Canfield, Stephen

    1999-01-01

    This work will demonstrate the integration of sensor and system dynamic data and their appropriate models using an optimal filter to create a robust, adaptable, easily reconfigurable state (motion) estimation system. This state estimation system will clearly show the application of fundamental modeling and filtering techniques. These techniques are presented at a general, first principles level, that can easily be adapted to specific applications. An example of such an application is demonstrated through the development of an integrated GPS/INS navigation system. This system acquires both global position data and inertial body data, to provide optimal estimates of current position and attitude states. The optimal states are estimated using a Kalman filter. The state estimation system will include appropriate error models for the measurement hardware. The results of this work will lead to the development of a "black-box" state estimation system that supplies current motion information (position and attitude states) that can be used to carry out guidance and control strategies. This black-box state estimation system is developed independent of the vehicle dynamics and therefore is directly applicable to a variety of vehicles. Issues in system modeling and application of Kalman filtering techniques are investigated and presented. These issues include linearized models of equations of state, models of the measurement sensors, and appropriate application and parameter setting (tuning) of the Kalman filter. The general model and subsequent algorithm is developed in Matlab for numerical testing. The results of this system are demonstrated through application to data from the X-33 Michael's 9A8 mission and are presented in plots and simple animations.

  17. Modeling of BN Lifetime Prediction of a System Based on Integrated Multi-Level Information.

    PubMed

    Wang, Jingbin; Wang, Xiaohong; Wang, Lizhi

    2017-09-15

    Predicting system lifetime is important to ensure safe and reliable operation of products, which requires integrated modeling based on multi-level, multi-sensor information. However, lifetime characteristics of equipment in a system are different and failure mechanisms are inter-coupled, which leads to complex logical correlations and the lack of a uniform lifetime measure. Based on a Bayesian network (BN), a lifetime prediction method for systems that combine multi-level sensor information is proposed. The method considers the correlation between accidental failures and degradation failure mechanisms, and achieves system modeling and lifetime prediction under complex logic correlations. This method is applied in the lifetime prediction of a multi-level solar-powered unmanned system, and the predicted results can provide guidance for the improvement of system reliability and for the maintenance and protection of the system.

  18. Modeling, control and integration of a portable solid oxide fuel cell system

    NASA Astrophysics Data System (ADS)

    Adhikari, Puran

    This thesis presents an innovative method for the modeling, control and integration of a portable hybrid solid oxide fuel cell system. The control and integration of the fuel cell system is important not only for its efficient operation, but also for issues related to safety and reliability. System modeling is needed in order to facilitate the controller design. Mathematical models of the various components of the system are built in the matlab/simulink environment. Dynamic modeling of the fuel cell stack, catalytic partial oxidation (CPOX) reformer, heat exchanger, tail gas combustor and tail gas splitter of the balance of plant system is performed first. Followed by, modeling of the three input DC/DC converter and energy storage devices (battery and supercapacitor). A two-level control approach, higher level and lower level, is adopted in this research. Each of the two major subsystems, balance of plant subsystem and power electronics subsystem, has its own local level controller (called lower level controller) that are designed such that they follow exactly the command reference from a higher level controller. The higher level controller is an intelligent controller that makes decisions about how the lower level or local controllers should perform based on the status of fuel cell, energy storage device and external load demand. Linear analysis has been done for the design and development of the local controllers as appropriate. For the higher level controller, a finite state machine model is developed and implemented using stateflow and fuzzy logic toolboxes of matlab. Simulations are carried out for the integrated system. The simulation results verify that the controllers are robust in performance during the transient condition when the energy storage devices supplement fuel cells. The temperature and flow rates of the fuel and air are controlled as desired. The output from the designed fuel cell system is a regulated DC voltage, which verifies the overall

  19. Integrated risk/cost planning models for the US Air Traffic system

    NASA Technical Reports Server (NTRS)

    Mulvey, J. M.; Zenios, S. A.

    1985-01-01

    A prototype network planning model for the U.S. Air Traffic control system is described. The model encompasses the dual objectives of managing collision risks and transportation costs where traffic flows can be related to these objectives. The underlying structure is a network graph with nonseparable convex costs; the model is solved efficiently by capitalizing on its intrinsic characteristics. Two specialized algorithms for solving the resulting problems are described: (1) truncated Newton, and (2) simplicial decomposition. The feasibility of the approach is demonstrated using data collected from a control center in the Midwest. Computational results with different computer systems are presented, including a vector supercomputer (CRAY-XMP). The risk/cost model has two primary uses: (1) as a strategic planning tool using aggregate flight information, and (2) as an integrated operational system for forecasting congestion and monitoring (controlling) flow throughout the U.S. In the latter case, access to a supercomputer is required due to the model's enormous size.

  20. Flexible Approximation Model Approach for Bi-Level Integrated System Synthesis

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Kim, Hongman; Ragon, Scott; Soremekun, Grant; Malone, Brett

    2004-01-01

    Bi-Level Integrated System Synthesis (BLISS) is an approach that allows design problems to be naturally decomposed into a set of subsystem optimizations and a single system optimization. In the BLISS approach, approximate mathematical models are used to transfer information from the subsystem optimizations to the system optimization. Accurate approximation models are therefore critical to the success of the BLISS procedure. In this paper, new capabilities that are being developed to generate accurate approximation models for BLISS procedure will be described. The benefits of using flexible approximation models such as Kriging will be demonstrated in terms of convergence characteristics and computational cost. An approach of dealing with cases where subsystem optimization cannot find a feasible design will be investigated by using the new flexible approximation models for the violated local constraints.

  1. Facilitating CCS Business Planning by Extending the Functionality of the SimCCS Integrated System Model

    DOE PAGES

    Ellett, Kevin M.; Middleton, Richard S.; Stauffer, Philip H.; ...

    2017-08-18

    The application of integrated system models for evaluating carbon capture and storage technology has expanded steadily over the past few years. To date, such models have focused largely on hypothetical scenarios of complex source-sink matching involving numerous large-scale CO2 emitters, and high-volume, continuous reservoirs such as deep saline formations to function as geologic sinks for carbon storage. Though these models have provided unique insight on the potential costs and feasibility of deploying complex networks of integrated infrastructure, there remains a pressing need to translate such insight to the business community if this technology is to ever achieve a truly meaningfulmore » impact in greenhouse gas mitigation. Here, we present a new integrated system modelling tool termed SimCCUS aimed at providing crucial decision support for businesses by extending the functionality of a previously developed model called SimCCS. The primary innovation of the SimCCUS tool development is the incorporation of stacked geological reservoir systems with explicit consideration of processes and costs associated with the operation of multiple CO2 utilization and storage targets from a single geographic location. In such locations provide significant efficiencies through economies of scale, effectively minimizing CO2 storage costs while simultaneously maximizing revenue streams via the utilization of CO2 as a commodity for enhanced hydrocarbon recovery.« less

  2. Collaborative modelling and integrated decision support system analysis of a developed terminal lake basin

    USGS Publications Warehouse

    Niswonger, Richard; Allander, Kip K.; Jeton, Anne E.

    2014-01-01

    A terminal lake basin in west-central Nevada, Walker Lake, has undergone drastic change over the past 90 yrs due to upstream water use for agriculture. Decreased inflows to the lake have resulted in 100 km2 decrease in lake surface area and a total loss of fisheries due to salinization. The ecologic health of Walker Lake is of great concern as the lake is a stopover point on the Pacific route for migratory birds from within and outside the United States. Stakeholders, water institutions, and scientists have engaged in collaborative modeling and the development of a decision support system that is being used to develop and analyze management change options to restore the lake. Here we use an integrated management and hydrologic model that relies on state-of-the-art simulation capabilities to evaluate the benefits of using integrated hydrologic models as components of a decision support system. Nonlinear feedbacks among climate, surface-water and groundwater exchanges, and water use present challenges for simulating realistic outcomes associated with management change. Integrated management and hydrologic modeling provides a means of simulating benefits associated with management change in the Walker River basin where drastic changes in the hydrologic landscape have taken place over the last century. Through the collaborative modeling process, stakeholder support is increasing and possibly leading to management change options that result in reductions in Walker Lake salt concentrations, as simulated by the decision support system.

  3. Integrating the system dynamic and cellular automata models to predict land use and land cover change

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoming; Du, Ziqiang; Zhang, Hong

    2016-10-01

    Land use and land cover change (LULCC) is a widely researched topic in related studies. A number of models have been established to simulate LULCC patterns. However, the integration of the system dynamic (SD) and the cellular automata (CA) model have been rarely employed in LULCC simulations, although it allows for combining the advantages of each approach and therefore improving the simulation accuracy. In this study, we integrated an SD model and a CA model to predict LULCC under three future development scenarios in Northern Shanxi province of China, a typical agro-pastoral transitional zone. The results indicated that our integrated approach represented the impacts of natural and socioeconomic factors on LULCC well, and could accurately simulate the magnitude and spatial pattern of LULCC. The modeling scenarios illustrated that different development pathways would lead to various LULCC patterns. This study demonstrated the advantages of the integration approach for simulating LULCC and suggests that LULCC is affected to a large degree by natural and socioeconomic factors.

  4. Model-supported diagnosis for integrated vehicle health management of space systems

    NASA Astrophysics Data System (ADS)

    Dannenmann, Peter; Busch, Wolfgang

    2003-08-01

    In this paper we present a new architecture for integrating system health monitoring tasks into the development- and life cycle of space systems. On the basis of model-supported diagnosis technology the presented method uses information for diagnosis purposes that is already gathered during the development of a technical system. This information is extracted from simulation models used for design-studies and what-if-analyses during the design- and development phase. For building up these simulation models easily, we developed a library of generic models of spacecraft components. These models cover the components' nominal and off-nominal behavior as it is specified in the component FMECAs. By combining and parametrizing the components a system model is built up. Since due to the limited resources on board of a spacecraft we can not use the model directly for model-based diagnosis, we use a model-supported approach: By systematically simulating possible component faults within the system's operational modes, we retrieve a set of measurement data that serve as symptoms to the failure modes. By classifying these data we get a knowledge-base for a symptom-based on-board diagnosis system. In order to cope with the uncertainty in the measurement data, this diagnosis system has been realized as a fuzzy system that on the basis of the given knowledge-base computes the most probable diagnoses from the given symptoms. The described system has been implemented within Astrium's Columbus Simulation System (CSS) and has been evaluated on several aerospace systems ranging from an unmanned aerial robot on the basis of an airship to the Propulsion and Reboost Subsystem of the Automated Transfer Vehicle (ATV), a supply spacecraft for the International Space Station.

  5. The Integrated Medical Model

    NASA Technical Reports Server (NTRS)

    Butler, Douglas J.; Kerstman, Eric

    2010-01-01

    This slide presentation reviews the goals and approach for the Integrated Medical Model (IMM). The IMM is a software decision support tool that forecasts medical events during spaceflight and optimizes medical systems during simulations. It includes information on the software capabilities, program stakeholders, use history, and the software logic.

  6. Integrating the Advanced Human Eye Model (AHEM) and optical instrument models to model complete visual optical systems inclusive of the typical or atypical eye

    NASA Astrophysics Data System (ADS)

    Donnelly, William J., III

    2012-06-01

    PURPOSE: To present a commercially available optical modeling software tool to assist the development of optical instrumentation and systems that utilize and/or integrate with the human eye. METHODS: A commercially available flexible eye modeling system is presented, the Advanced Human Eye Model (AHEM). AHEM is a module that the engineer can use to perform rapid development and test scenarios on systems that integrate with the eye. Methods include merging modeled systems initially developed outside of AHEM and performing a series of wizard-type operations that relieve the user from requiring an optometric or ophthalmic background to produce a complete eye inclusive system. Scenarios consist of retinal imaging of targets and sources through integrated systems. Uses include, but are not limited to, optimization, telescopes, microscopes, spectacles, contact and intraocular lenses, ocular aberrations, cataract simulation and scattering, and twin eye model (binocular) systems. RESULTS: Metrics, graphical data, and exportable CAD geometry are generated from the various modeling scenarios.

  7. A new simulation model building process for use in dynamic systems integration research

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas; Buttrill, Carey S.; Zeiler, Thomas A.

    1987-01-01

    A framework to build simulation models for aircraft dynamic systems integration is described. The objective of the framework is increased simulation model fidelity and reduced time required to develop and modify these models. The equations of motion for an elastic aircraft and their impact on the framework are discussed in broad terms. A software tool which automatically generates FORTRAN routines for tabular data lookups, the language used to develop a simulation model, and the structures for passing information into a simulation are discussed. A simulation variable nomenclature is presented. The framework has been applied to build an open-loop F/A-18 simulation model. This example model is used to illustrate model reduction issues. Current deficiencies in the framework are identified as areas for future research.

  8. Integrated Process Model Development and Systems Analyses for the LIFE Power Plant

    SciTech Connect

    Meier, W R; Anklam, T; Abbott, R; Erlandson, A; Halsey, W; Miles, R; Simon, A J

    2009-07-15

    We have developed an integrated process model (IPM) for a Laser Inertial Fusion-Fission Energy (LIFE) power plant. The model includes cost and performance algorithms for the major subsystems of the plant, including the laser, fusion target fabrication and injection, fusion-fission chamber (including the tritium and fission fuel blankets), heat transfer and power conversion systems, and other balance of plant systems. The model has been developed in Visual Basic with an Excel spreadsheet user interface in order to allow experts in various aspects of the design to easily integrate their individual modules and provide a convenient, widely accessible platform for conducting the system studies. Subsystem modules vary in level of complexity; some are based on top-down scaling from fission power plant costs (for example, electric plant equipment), while others are bottom-up models based on conceptual designs being developed by LLNL (for example, the fusion-fission chamber and laser systems). The IPM is being used to evaluate design trade-offs, do design optimization, and conduct sensitivity analyses to identify high-leverage areas for R&D. We describe key aspects of the IPM and report on the results of our systems analyses. Designs are compared and evaluated as a function of key design variables such as fusion target yield and pulse repetition rate.

  9. Dynamic models for control system design of integrated robot and drive systems

    NASA Astrophysics Data System (ADS)

    Good, M. C.; Sweet, L. M.; Strobel, K. L.

    1985-03-01

    The design of high performance motion controls for industrial robots is based on accurate models for the robot arm and drive systems. This paper presents analytical models and experimental data to show that interactions between electromechanical drives coupled with compliant linkages to arm link drive points are of fundamental importance to robot control system design. Flexibility in harmonic drives produces resonances in the 5 Hz to 8 Hz range. Flexibility in the robot linkages and joints connecting essentially rigid arm members produces higher frequency modes at 14 Hz and 40 Hz. The nonlinear characteristics of the drive system are modeled, and compared to experimental data. The models presented have been validated over the frequency range 0 to 50 Hz. The paper concludes with a brief discussion of the influence of model characteristics on motion control design.

  10. Space station ECLSS integration analysis: Simplified General Cluster Systems Model, ECLS System Assessment Program enhancements

    NASA Technical Reports Server (NTRS)

    Ferguson, R. E.

    1985-01-01

    The data base verification of the ECLS Systems Assessment Program (ESAP) was documented and changes made to enhance the flexibility of the water recovery subsystem simulations are given. All changes which were made to the data base values are described and the software enhancements performed. The refined model documented herein constitutes the submittal of the General Cluster Systems Model. A source listing of the current version of ESAP is provided in Appendix A.

  11. Integrating 3D geological information with a national physically-based hydrological modelling system

    NASA Astrophysics Data System (ADS)

    Lewis, Elizabeth; Parkin, Geoff; Kessler, Holger; Whiteman, Mark

    2016-04-01

    Robust numerical models are an essential tool for informing flood and water management and policy around the world. Physically-based hydrological models have traditionally not been used for such applications due to prohibitively large data, time and computational resource requirements. Given recent advances in computing power and data availability, a robust, physically-based hydrological modelling system for Great Britain using the SHETRAN model and national datasets has been created. Such a model has several advantages over less complex systems. Firstly, compared with conceptual models, a national physically-based model is more readily applicable to ungauged catchments, in which hydrological predictions are also required. Secondly, the results of a physically-based system may be more robust under changing conditions such as climate and land cover, as physical processes and relationships are explicitly accounted for. Finally, a fully integrated surface and subsurface model such as SHETRAN offers a wider range of applications compared with simpler schemes, such as assessments of groundwater resources, sediment and nutrient transport and flooding from multiple sources. As such, SHETRAN provides a robust means of simulating numerous terrestrial system processes which will add physical realism when coupled to the JULES land surface model. 306 catchments spanning Great Britain have been modelled using this system. The standard configuration of this system performs satisfactorily (NSE > 0.5) for 72% of catchments and well (NSE > 0.7) for 48%. Many of the remaining 28% of catchments that performed relatively poorly (NSE < 0.5) are located in the chalk in the south east of England. As such, the British Geological Survey 3D geology model for Great Britain (GB3D) has been incorporated, for the first time in any hydrological model, to pave the way for improvements to be made to simulations of catchments with important groundwater regimes. This coupling has involved

  12. Numerical Modeling of an Integrated Vehicle Fluids System Loop for Pressurizing a Cryogenic Tank

    NASA Technical Reports Server (NTRS)

    LeClair, A. C.; Hedayat, A.; Majumdar, A. K.

    2017-01-01

    This paper presents a numerical model of the pressurization loop of the Integrated Vehicle Fluids (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance to reduce system weight and enhance reliability, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) conducted tests to verify the functioning of the IVF system using a flight-like tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to support the test program. This paper presents the simulation of three different test series, comparison of numerical prediction and test data and a novel method of presenting data in a dimensionless form. The paper also presents a methodology of implementing a compressor map in a system level code.

  13. GOLD: Integration of model-based control systems with artificial intelligence and workstations

    SciTech Connect

    Lee, M.; Clearwater, S.

    1987-08-01

    Our experience with model based accelerator control started at SPEAR. Since that time nearly all accelerator beam lines have been controlled using model-based application programs, for example, PEP and SLC at SLAC. In order to take advantage of state-of-the-art hardware and software technology, the design and implementation of the accelerator control programs have undergone radical change with time. Consequently, SPEAR, PEP, and SLC all use different control programs. Since many of these application programs are imbedded deep into the control system, they had to be rewritten each time. Each time this rewriting has occurred a great deal of time and effort has been spent on training physicists and programmers to do the job. Now, we have developed these application programs for a fourth time. This time, however, the programs we are developing are generic so that we will not have to do it again. We have developed an integrated system called GOLD (Generic Orbit and Lattice Debugger) for debugging and correcting trajectory errors in accelerator lattices. The system consists of a lattice modeling program (COMFORT), a beam simulator (PLUS), a graphical workstation environment (micro-VAX) and an expert system (ABLE). This paper will describe some of the features and applications of our integrated system with emphasis on the automation offered by expert systems. 5 refs.

  14. GOLD: Integration of model-based control systems with artificial intelligence and workstations

    SciTech Connect

    Lee, M.; Clearwater, S.

    1987-08-01

    Our experience with model-based accelerator control started at SPEAR. Since that time nearly all accelerator beamlines have been controlled using model-based application programs, for example, PEP and SLC at SLAC. In order to take advantage of state-of-the-art hardware and software technology, the design and implementation of the accelerator control programs have undergone radical changes with time. Consequently, SPEAR, PEP and SLC all use different control programs. Since many of these application programs are embedded deep into the control system, they had to be rewritten each time. Each time this rewriting has occurred a great deal of time and effort has been spent on training physicists and programmers to do the job. Now, we have developed an integrated system called GOLD (Genetic Orbit and Lattice Debugger) for debugging and correcting trajectory errors in accelerator lattices. The system consists of a lattice modeling program (COMFORT), a beam simulator (PLUS), a graphical workstation environment (micro-VAX) and an expert system (ABLE). This paper will describe some of the features and applications of our integrated system with emphasis on the automation offered by expert systems. 5 refs.

  15. The Financial Analysis System: An Integrated Software System for Financial Analysis and Modeling.

    ERIC Educational Resources Information Center

    Groomer, S. Michael

    This paper discusses the Financial Analysis System (FAS), a software system for financial analysis, display, and modeling of the data found in the COMPUSTAT Annual Industrial, Over-the-Counter and Canadian Company files. The educational utility of FAS is also discussed briefly. (Author)

  16. A model for achieving total quality-management information technology infrastructure within an integrated delivery system.

    PubMed

    Tan, J K

    1998-11-01

    The strategic development and deployment of a health management information technology infrastructure is discussed from two perspectives for radiologists and for other medical technologists: the integrated delivery system (IDS) perspective and a total quality-management (TQM) perspective. On the one hand, an IDS perspective is important because of the need to prepare radiologists and other medical practitioners to thrive within rapidly changing health organizational models and evolving health service delivery partnership systems. On the other, a TQM perspective is important due to the need to realize an appropriate, efficient, and cost-effective health information infrastructure for developing seamless, integrated radiological and other medical imaging services. Apart from intelligently pursuing an aligned organizational business strategy with the organizational information system strategy, senior radiological managers and medical technologists of health organizations need to pay particular attention to key quality principles for effecting changes in organizational structures and processes to fit changes in information technological requirements, implementations, and innovations.

  17. Integrated System-Level Optimization for Concurrent Engineering With Parametric Subsystem Modeling

    NASA Technical Reports Server (NTRS)

    Schuman, Todd; DeWeck, Oliver L.; Sobieski, Jaroslaw

    2005-01-01

    The introduction of concurrent design practices to the aerospace industry has greatly increased the productivity of engineers and teams during design sessions as demonstrated by JPL's Team X. Simultaneously, advances in computing power have given rise to a host of potent numerical optimization methods capable of solving complex multidisciplinary optimization problems containing hundreds of variables, constraints, and governing equations. Unfortunately, such methods are tedious to set up and require significant amounts of time and processor power to execute, thus making them unsuitable for rapid concurrent engineering use. This paper proposes a framework for Integration of System-Level Optimization with Concurrent Engineering (ISLOCE). It uses parametric neural-network approximations of the subsystem models. These approximations are then linked to a system-level optimizer that is capable of reaching a solution quickly due to the reduced complexity of the approximations. The integration structure is described in detail and applied to the multiobjective design of a simplified Space Shuttle external fuel tank model. Further, a comparison is made between the new framework and traditional concurrent engineering (without system optimization) through an experimental trial with two groups of engineers. Each method is evaluated in terms of optimizer accuracy, time to solution, and ease of use. The results suggest that system-level optimization, running as a background process during integrated concurrent engineering sessions, is potentially advantageous as long as it is judiciously implemented.

  18. Modeling systems-level dynamics: Understanding without mechanistic explanation in integrative systems biology.

    PubMed

    MacLeod, Miles; Nersessian, Nancy J

    2015-02-01

    In this paper we draw upon rich ethnographic data of two systems biology labs to explore the roles of explanation and understanding in large-scale systems modeling. We illustrate practices that depart from the goal of dynamic mechanistic explanation for the sake of more limited modeling goals. These processes use abstract mathematical formulations of bio-molecular interactions and data fitting techniques which we call top-down abstraction to trade away accurate mechanistic accounts of large-scale systems for specific information about aspects of those systems. We characterize these practices as pragmatic responses to the constraints many modelers of large-scale systems face, which in turn generate more limited pragmatic non-mechanistic forms of understanding of systems. These forms aim at knowledge of how to predict system responses in order to manipulate and control some aspects of them. We propose that this analysis of understanding provides a way to interpret what many systems biologists are aiming for in practice when they talk about the objective of a "systems-level understanding."

  19. An integrated soil-crop system model for water and nitrogen management in North China

    PubMed Central

    Liang, Hao; Hu, Kelin; Batchelor, William D.; Qi, Zhiming; Li, Baoguo

    2016-01-01

    An integrated model WHCNS (soil Water Heat Carbon Nitrogen Simulator) was developed to assess water and nitrogen (N) management in North China. It included five main modules: soil water, soil temperature, soil carbon (C), soil N, and crop growth. The model integrated some features of several widely used crop and soil models, and some modifications were made in order to apply the WHCNS model under the complex conditions of intensive cropping systems in North China. The WHCNS model was evaluated using an open access dataset from the European International Conference on Modeling Soil Water and N Dynamics. WHCNS gave better estimations of soil water and N dynamics, dry matter accumulation and N uptake than 14 other models. The model was tested against data from four experimental sites in North China under various soil, crop, climate, and management practices. Simulated soil water content, soil nitrate concentrations, crop dry matter, leaf area index and grain yields all agreed well with measured values. This study indicates that the WHCNS model can be used to analyze and evaluate the effects of various field management practices on crop yield, fate of N, and water and N use efficiencies in North China. PMID:27181364

  20. An integrated soil-crop system model for water and nitrogen management in North China

    NASA Astrophysics Data System (ADS)

    Liang, Hao; Hu, Kelin; Batchelor, William D.; Qi, Zhiming; Li, Baoguo

    2016-05-01

    An integrated model WHCNS (soil Water Heat Carbon Nitrogen Simulator) was developed to assess water and nitrogen (N) management in North China. It included five main modules: soil water, soil temperature, soil carbon (C), soil N, and crop growth. The model integrated some features of several widely used crop and soil models, and some modifications were made in order to apply the WHCNS model under the complex conditions of intensive cropping systems in North China. The WHCNS model was evaluated using an open access dataset from the European International Conference on Modeling Soil Water and N Dynamics. WHCNS gave better estimations of soil water and N dynamics, dry matter accumulation and N uptake than 14 other models. The model was tested against data from four experimental sites in North China under various soil, crop, climate, and management practices. Simulated soil water content, soil nitrate concentrations, crop dry matter, leaf area index and grain yields all agreed well with measured values. This study indicates that the WHCNS model can be used to analyze and evaluate the effects of various field management practices on crop yield, fate of N, and water and N use efficiencies in North China.

  1. Integration of the virtual 3D model of a control system with the virtual controller

    NASA Astrophysics Data System (ADS)

    Herbuś, K.; Ociepka, P.

    2015-11-01

    Nowadays the design process includes simulation analysis of different components of a constructed object. It involves the need for integration of different virtual object to simulate the whole investigated technical system. The paper presents the issues related to the integration of a virtual 3D model of a chosen control system of with a virtual controller. The goal of integration is to verify the operation of an adopted object of in accordance with the established control program. The object of the simulation work is the drive system of a tunneling machine for trenchless work. In the first stage of work was created an interactive visualization of functioning of the 3D virtual model of a tunneling machine. For this purpose, the software of the VR (Virtual Reality) class was applied. In the elaborated interactive application were created adequate procedures allowing controlling the drive system of a translatory motion, a rotary motion and the drive system of a manipulator. Additionally was created the procedure of turning on and off the output crushing head, mounted on the last element of the manipulator. In the elaborated interactive application have been established procedures for receiving input data from external software, on the basis of the dynamic data exchange (DDE), which allow controlling actuators of particular control systems of the considered machine. In the next stage of work, the program on a virtual driver, in the ladder diagram (LD) language, was created. The control program was developed on the basis of the adopted work cycle of the tunneling machine. The element integrating the virtual model of the tunneling machine for trenchless work with the virtual controller is the application written in a high level language (Visual Basic). In the developed application was created procedures responsible for collecting data from the running, in a simulation mode, virtual controller and transferring them to the interactive application, in which is verified the

  2. Model Based Predictive Control of Thermal Comfort for Integrated Building System

    NASA Astrophysics Data System (ADS)

    Georgiev, Tz.; Jonkov, T.; Yonchev, E.; Tsankov, D.

    2011-12-01

    This article deals with the indoor thermal control problem in HVAC (heating, ventilation and air conditioning) systems. Important outdoor and indoor variables in these systems are: air temperature, global and diffuse radiations, wind speed and direction, temperature, relative humidity, mean radiant temperature, and so on. The aim of this article is to obtain the thermal comfort optimisation by model based predictive control algorithms (MBPC) of an integrated building system. The control law is given by a quadratic programming problem and the obtained control action is applied to the process. The derived models and model based predictive control algorithms are investigated based on real—live data. All researches are derived in MATLAB environment. The further research will focus on synthesis of robust energy saving control algorithms.

  3. Root Systems Biology: Integrative Modeling across Scales, from Gene Regulatory Networks to the Rhizosphere1

    PubMed Central

    Hill, Kristine; Porco, Silvana; Lobet, Guillaume; Zappala, Susan; Mooney, Sacha; Draye, Xavier; Bennett, Malcolm J.

    2013-01-01

    Genetic and genomic approaches in model organisms have advanced our understanding of root biology over the last decade. Recently, however, systems biology and modeling have emerged as important approaches, as our understanding of root regulatory pathways has become more complex and interpreting pathway outputs has become less intuitive. To relate root genotype to phenotype, we must move beyond the examination of interactions at the genetic network scale and employ multiscale modeling approaches to predict emergent properties at the tissue, organ, organism, and rhizosphere scales. Understanding the underlying biological mechanisms and the complex interplay between systems at these different scales requires an integrative approach. Here, we describe examples of such approaches and discuss the merits of developing models to span multiple scales, from network to population levels, and to address dynamic interactions between plants and their environment. PMID:24143806

  4. Complete Atomistic Model of a Bacterial Cytoplasm for Integrating Physics, Biochemistry, and Systems Biology

    PubMed Central

    Feig, Michael; Harada, Ryuhei; Mori, Takaharu; Yu, Isseki; Takahashi, Koichi; Sugita, Yuji

    2015-01-01

    A model for the cytoplasm of Mycoplasma genitalium is presented that integrates data from a variety of sources into a physically and biochemically consistent model. Based on gene annotations, core genes expected to be present in the cytoplasm were determined and a metabolic reaction network was reconstructed. The set of cytoplasmic genes and metabolites from the predicted reactions were assembled into a comprehensive atomistic model consisting of proteins with predicted structures, RNA, protein/RNA complexes, metabolites, ions, and solvent. The resulting model bridges between atomistic and cellular scales, between physical and biochemical aspects, and between structural and systems views of cellular systems and is meant as a starting point for a variety of simulation studies. PMID:25765281

  5. Complete atomistic model of a bacterial cytoplasm for integrating physics, biochemistry, and systems biology.

    PubMed

    Feig, Michael; Harada, Ryuhei; Mori, Takaharu; Yu, Isseki; Takahashi, Koichi; Sugita, Yuji

    2015-05-01

    A model for the cytoplasm of Mycoplasma genitalium is presented that integrates data from a variety of sources into a physically and biochemically consistent model. Based on gene annotations, core genes expected to be present in the cytoplasm were determined and a metabolic reaction network was reconstructed. The set of cytoplasmic genes and metabolites from the predicted reactions were assembled into a comprehensive atomistic model consisting of proteins with predicted structures, RNA, protein/RNA complexes, metabolites, ions, and solvent. The resulting model bridges between atomistic and cellular scales, between physical and biochemical aspects, and between structural and systems views of cellular systems and is meant as a starting point for a variety of simulation studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Model-based knowledge acquisition in environmental decision support system for wastewater integrated management.

    PubMed

    Prat, Pau; Benedetti, Lorenzo; Corominas, Lluís; Comas, Joaquim; Poch, Manel

    2012-01-01

    The main goal of the Water Framework Directive is to achieve good chemical and ecological status of water bodies by 2015. The implementation of integrated river basin management, including sewer systems, wastewater treatment plants and receiving water bodies, is essential to accomplishing this objective. Integrated management is complex and therefore the implementation of control systems and the development of decision support systems are needed to facilitate the work of urban wastewater system (UWS) managers. Within this context, the objective of this paper is to apply integrated modelling of an UWS to simulate and analyse the behaviour of the 'Congost' UWS in Spain, and to optimize its performance against different types of perturbations. This analysis results in optimal operating set-points for each perturbation, improves river water quality, minimizes combined sewer overflows and optimizes flow lamination from storm water tanks. This is achieved by running Monte Carlo simulations and applying global sensitivity analysis. The set-points will become part of the knowledge base composed of a set of IF-THEN rules of the environmental decision support system being developed for this case study.

  7. An integrated logit model for contamination event detection in water distribution systems.

    PubMed

    Housh, Mashor; Ostfeld, Avi

    2015-05-15

    The problem of contamination event detection in water distribution systems has become one of the most challenging research topics in water distribution systems analysis. Current attempts for event detection utilize a variety of approaches including statistical, heuristics, machine learning, and optimization methods. Several existing event detection systems share a common feature in which alarms are obtained separately for each of the water quality indicators. Unifying those single alarms from different indicators is usually performed by means of simple heuristics. A salient feature of the current developed approach is using a statistically oriented model for discrete choice prediction which is estimated using the maximum likelihood method for integrating the single alarms. The discrete choice model is jointly calibrated with other components of the event detection system framework in a training data set using genetic algorithms. The fusing process of each indicator probabilities, which is left out of focus in many existing event detection system models, is confirmed to be a crucial part of the system which could be modelled by exploiting a discrete choice model for improving its performance. The developed methodology is tested on real water quality data, showing improved performances in decreasing the number of false positive alarms and in its ability to detect events with higher probabilities, compared to previous studies.

  8. Modeling integrated fixed-film activated sludge and moving-bed biofilm reactor systems II: evaluation.

    PubMed

    Boltz, Joshua P; Johnson, Bruce R; Daigger, Glen T; Sandino, Julian; Elenter, Deborah

    2009-06-01

    A steady-state model presented by Boltz, Johnson, Daigger, and Sandino (2009) describing integrated fixed-film activated sludge (IFAS) and moving-bed biofilm reactor (MBBR) systems has been demonstrated to simulate, with reasonable accuracy, four wastewater treatment configurations with published operational data. Conditions simulated include combined carbon oxidation and nitrification (both IFAS and MBBR), tertiary nitrification MBBR, and post denitrification IFAS with methanol addition as the external carbon source. Simulation results illustrate that the IFAS/MBBR model is sufficiently accurate for describing ammonia-nitrogen reduction, nitrate/nitrite-nitrogen reduction and production, biofilm and suspended biomass distribution, and sludge production.

  9. Integrate System Modeling for Design and Production Planning of High Quality Products Considering Failure Data

    NASA Astrophysics Data System (ADS)

    Aoyama, Kazuhiro; Koga, Tsuyoshi

    2009-07-01

    Since the product recall problem is recently observed, realizing design and production activities that can prevent occurrences of a product failure has been becoming a serious issue. This paper proposes "the Synthetic design approach of a product and a production process which enables to reduce occurrences of a product failure from the initial stage of a product development." In order to realize this proposed concept as a specific system, the integrated model of the failure information in the design and production is introduced. This paper shows some examples of design and production for a circuit breaker and an automobile with considering a design error and a production failure using developed prototype system.

  10. Application of macro material flow modeling to the decision making process for integrated waste management systems

    SciTech Connect

    Vigil, S.A.; Holter, G.M.

    1995-04-01

    Computer models have been used for almost a decade to model and analyze various aspects of solid waste management Commercially available models exist for estimating the capital and operating costs of landfills, waste-to-energy facilities and compost systems and for optimizing system performance along a single dimension (e.g. cost or transportation distance). An alternative to the use of currently available models is the more flexible macro material flow modeling approach in which a macro scale or regional level approach is taken. Waste materials are tracked through the complete integrated waste management cycle from generation through recycling and reuse, and finally to ultimate disposal. Such an approach has been applied by the authors to two different applications. The STELLA simulation language (for Macintosh computers) was used to model the solid waste management system of Puerto Rico. The model incorporated population projections for all 78 municipalities in Puerto Rico from 1990 to 2010, solid waste generation factors, remaining life for the existing landfills, and projected startup time for new facilities. The Pacific Northwest Laboratory has used the SimScript simulation language (for Windows computers) to model the management of solid and hazardous wastes produced during cleanup and remediation activities at the Hanford Nuclear Site.

  11. Dynamics of global vegetation biomass simulated by the integrated Earth System Model

    NASA Astrophysics Data System (ADS)

    Mao, J.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.; Piao, S.; Yang, X.; Truesdale, J. E.; Bond-Lamberty, B. P.; Chini, L. P.; Thomson, A. M.; Hurtt, G. C.; Collins, W.; Edmonds, J.

    2014-12-01

    The global vegetation biomass stores huge amounts of carbon and is thus important to the global carbon budget (Pan et al., 2010). For the past few decades, different observation-based estimates and modeling of biomass in the above- and below-ground vegetation compartments have been comprehensively conducted (Saatchi et al., 2011; Baccini et al., 2012). However, uncertainties still exist, in particular for the simulation of biomass magnitude, tendency, and the response of biomass to climatic conditions and natural and human disturbances. The recently successful coupling of the integrated Earth System Model (iESM) (Di Vittorio et al., 2014; Bond-Lamberty et al., 2014), which links the Global Change Assessment Model (GCAM), Global Land-use Model (GLM), and Community Earth System Model (CESM), offers a great opportunity to understand the biomass-related dynamics in a fully-coupled natural and human modeling system. In this study, we focus on the systematic analysis and evaluation of the iESM simulated historical (1850-2005) and future (2006-2100) biomass changes and the response of the biomass dynamics to various impact factors, in particular the human-induced Land Use/Land Cover Change (LULCC). By analyzing the iESM simulations with and without the interactive LULCC feedbacks, we further study how and where the climate feedbacks affect socioeconomic decisions and LULCC, such as to alter vegetation carbon storage. References Pan Y et. al: A large and persistent carbon sink in the World's forests. Science 2011, 333:988-993. Saatchi SS et al: Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 2011, 108:9899-9904. Baccini A et al: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Clim Change 2012, 2:182-185. Di Vittorio AV et al: From land use to land cover: restoring the afforestation signal in a coupled integrated assessment-earth system model and the implications for

  12. An integrated dynamic model of ocean mining system and fast simulation of its longitudinal reciprocating motion

    NASA Astrophysics Data System (ADS)

    Dai, Yu; Liu, Shao-jun

    2013-04-01

    An integrated dynamic model of China's deep ocean mining system is developed and the fast simulation analysis of its longitudinal reciprocating motion operation processes is achieved. The seafloor tracked miner is built as a three-dimensional single-body model with six-degree-of-freedom. The track-terrain interaction is modeled by partitioning the track-terrain interface into a certain number of mesh elements with three mutually perpendicular forces, including the normal force, the longitudinal shear force and the lateral shear force, acting on the center point of each mesh element. The hydrodynamic force of the miner is considered and applied. By considering the operational safety and collection efficiency, two new mining paths for the miner on the seafloor are proposed, which can be simulated with the established single-body dynamic model of the miner. The pipeline subsystem is built as a three-dimensional multi-body discrete element model, which is divided into rigid elements linked by flexible connectors. The flexible connector without mass is represented by six spring-damper elements. The external hydrodynamic forces of the ocean current from the longitudinal and lateral directions are both considered and modeled based on the Morison formula and applied to the mass center of each corresponding discrete rigid element. The mining ship is simplified and represented by a general kinematic point, whose heave motion induced by the ocean waves and the longitudinal and lateral towing motions are considered and applied. By integrating the single-body dynamic model of the miner and the multi-body discrete element dynamic model of the pipeline, and defining the kinematic equations of the mining ship, the integrated dynamic model of the total deep ocean mining system is formed. The longitudinal reciprocating motion operation modes of the total mining system, which combine the active straight-line and turning motions of the miner and the ship, and the passive towed motions

  13. Integrated process modeling for the laser inertial fusion Energy (LIFE) generation system

    SciTech Connect

    Meier, W R; Anklam, T M; Erlandson, A C; Miles, R R; Simon, A J; Sawicki, R; Storm, E

    2009-10-22

    A concept for a new fusion-fission hybrid technology is being developed at Lawrence Livermore National Laboratory. The primary application of this technology is base-load electrical power generation. However, variants of the baseline technology can be used to 'burn' spent nuclear fuel from light water reactors or to perform selective transmutation of problematic fission products. The use of a fusion driver allows very high burn-up of the fission fuel, limited only by the radiation resistance of the fuel form and system structures. As a part of this process, integrated process models have been developed to aid in concept definition. Several models have been developed. A cost scaling model allows quick assessment of design changes or technology improvements on cost of electricity. System design models are being used to better understand system interactions and to do design trade-off and optimization studies. Here we describe the different systems models and present systems analysis results. Different market entry strategies are discussed along with potential benefits to US energy security and nuclear waste disposal. Advanced technology options are evaluated and potential benefits from additional R&D targeted at the different options is quantified.

  14. Integrated process modeling for the laser inertial fusion energy (LIFE) generation system

    NASA Astrophysics Data System (ADS)

    Meier, W. R.; Anklam, T. M.; Erlandson, A. C.; Miles, R. R.; Simon, A. J.; Sawicki, R.; Storm, E.

    2010-08-01

    A concept for a new fusion-fission hybrid technology is being developed at Lawrence Livermore National Laboratory. The primary application of this technology is base-load electrical power generation. However, variants of the baseline technology can be used to "burn" spent nuclear fuel from light water reactors or to perform selective transmutation of problematic fission products. The use of a fusion driver allows very high burn-up of the fission fuel, limited only by the radiation resistance of the fuel form and system structures. As a part of this process, integrated process models have been developed to aid in concept definition. Several models have been developed. A cost scaling model allows quick assessment of design changes or technology improvements on cost of electricity. System design models are being used to better understand system interactions and to do design trade-off and optimization studies. Here we describe the different systems models and present systems analysis results. Different market entry strategies are discussed along with potential benefits to US energy security and nuclear waste disposal. Advanced technology options are evaluated and potential benefits from additional R&D targeted at the different options is quantified.

  15. Browsing Space Weather Data and Models with the Integrated Space Weather Analysis (iSWA) System

    NASA Technical Reports Server (NTRS)

    Maddox, Marlo M.; Mullinix, Richard E.; Berrios, David H.; Hesse, Michael; Rastaetter, Lutz; Pulkkinen, Antti; Hourcle, Joseph A.; Thompson, Barbara J.

    2011-01-01

    The Integrated Space Weather Analysis (iSWA) System is a comprehensive web-based platform for space weather information that combines data from solar, heliospheric and geospace observatories with forecasts based on the most advanced space weather models. The iSWA system collects, generates, and presents a wide array of space weather resources in an intuitive, user-configurable, and adaptable format - thus enabling users to respond to current and future space weather impacts as well as enabling post-impact analysis. iSWA currently provides over 200 data and modeling products, and features a variety of tools that allow the user to browse, combine, and examine data and models from various sources. This presentation will consist of a summary of the iSWA products and an overview of the customizable user interfaces, and will feature several tutorial demonstrations highlighting the interactive tools and advanced capabilities.

  16. OysterFutures: Integrating Stakeholder Objectives with Natural System Models to Promote Sustainable Natural Resource Policy

    NASA Astrophysics Data System (ADS)

    North, E. W.; Blair, J.; Cornwell, J. C.; Freitag, A. E.; Gawde, R. K.; Hartley, T. W.; Hood, R. R.; Jones, R. M.; Miller, T. J.; Thomas, J. E.; Wainger, L. A.; Wilberg, M. J.

    2016-02-01

    Achieving effective natural resource management is challenged by multiple and often competing objectives, a restricted set of policy options, and uncertainty in the performance of those options. Yet, managers need policies that allow continued use of natural resources while ensuring access for future generations and maintenance of ecosystem services. Formal approaches are needed that will assist managers and stakeholders in choosing policy options that have a high likelihood of achieving social, ecological, and economic goals. The goal of this project, OysterFutures, is to address this need by improving the use of predictive models to support sustainable natural resource policy and management. A stakeholder-centered process will be used to build an integrated model that combines estuarine physics, oyster life history, and the ecosystem services that oysters provide (e.g., harvest, water quality) to forecast outcomes under alternative management strategies. Through a series of facilitated meetings, stakeholders will participate in a science-based collaborative process which will allow them to project how well policies are expected to meet their objectives using the integrated model. This iterative process will ensure that the model will incorporate the complex human uses of the ecosystem as well as focus on the outcomes most important to the stakeholders. In addition, a study of the socioeconomic drivers of stakeholder involvement, information flow, use and influence, and policy formation will be undertaken to improve the process, enhance implementation success of recommended policies, and provide new ideas for integrating natural and social sciences, and scientists, in sustainable resource management. In this presentation, the strategy for integrating natural system models, stakeholder views, and sociological studies as well as methods for selecting stakeholders and facilitating stakeholder meetings will be described and discussed.

  17. [Economic Evaluation of Integrated Care Systems - Scientific Standard Specifications, Challenges, Best Practice Model].

    PubMed

    Pimperl, A; Schreyögg, J; Rothgang, H; Busse, R; Glaeske, G; Hildebrandt, H

    2015-12-01

     Transparency of economic performance of integrated care systems (IV) is a basic requirement for the acceptance and further development of integrated care. Diverse evaluation methods are used but are seldom openly discussed because of the proprietary nature of the different business models. The aim of this article is to develop a generic model for measuring economic performance of IV interventions.  A catalogue of five quality criteria is used to discuss different evaluation methods -(uncontrolled before-after-studies, control group-based approaches, regression models). On this -basis a best practice model is proposed.  A regression model based on the German morbidity-based risk structure equalisation scheme (MorbiRSA) has some benefits in comparison to the other methods mentioned. In particular it requires less resources to be implemented and offers advantages concerning the relia-bility and the transparency of the method (=important for acceptance). Also validity is sound. Although RCTs and - also to a lesser -extent - complex difference-in-difference matching approaches can lead to a higher validity of the results, their feasibility in real life settings is limited due to economic and practical reasons. That is why central criticisms of a MorbiRSA-based model were addressed, adaptions proposed and incorporated in a best practice model: Population-oriented morbidity adjusted margin improvement model (P-DBV(MRSA)).  The P-DBV(MRSA) approach may be used as a standardised best practice model for the economic evaluation of IV. Parallel to the proposed approach for measuring economic performance a balanced, quality-oriented performance measurement system should be introduced. This should prevent incentivising IV-players to undertake short-term cost cutting at the expense of quality. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Development of a data assimilation system for the integrated terrestrial system modelling platform TerrSysMP

    NASA Astrophysics Data System (ADS)

    Kurtz, Wolfgang; He, Guowei; Kollet, Stefan; Vereecken, Harry; Hendricks Franssen, Harrie-Jan

    2015-04-01

    Integrated hydrological models are increasingly applied in hydrological studies because they allow a better physical representation of processes and feedbacks across compartments and a more integrated view of the hydrological cycle. An example of such an integrated modeling approach is the recently established integrated modeling platform TerrSysMP consisting of individual component models for variably saturated subsurface flow (ParFlow), land surface processes (CLM3.5) and weather forecast (COSMO). The component models are dynamically linked by the exchange of state variables and fluxes with the coupling software OASIS-MCT in a scale-consistent, modular manner. While integrated models may provide better estimates of state and flux variables, model predictions remain to be impacted by a considerable degree of uncertainty due to uncertain initial conditions and forcings, and the poorly known subsurface and vegetation properties. Data assimilation methods allow to better constrain the model predictions and parameters and the associated uncertainties. In a first step, we constructed a data assimilation framework for the land surface-subsurface part of TerrSysMP (CLM and ParFlow) by linking TerrSysMP with the PDAF (Parallel Data Assimilation Framework) software which is specifically designed for parallel simulation models and provides several global and local filter algorithms (e.g., EnKF, LETKF). The data assimilation framework uses a memory based communication between model and data assimilation routines and avoids frequent re-initializations of the model and is thus highly scalable and applicable to large scale hydrological systems. Currently, data assimilation is restricted to the subsurface part of TerrSysMP (i.e. ParFlow) in which pressure (or soil moisture) data can be assimilated. The feasibility of this approach is demonstrated with a synthetic model setup where groundwater levels and soil moisture data are assimilated with the ensemble Kalman filter into a

  19. Integrated Data-Archive and Distributed Hydrological Modelling System for Optimized Dam Operation

    NASA Astrophysics Data System (ADS)

    Shibuo, Yoshihiro; Jaranilla-Sanchez, Patricia Ann; Koike, Toshio

    2013-04-01

    In 2012, typhoon Bopha, which passed through the southern part of the Philippines, devastated the nation leaving hundreds of death tolls and significant destruction of the country. Indeed the deadly events related to cyclones occur almost every year in the region. Such extremes are expected to increase both in frequency and magnitude around Southeast Asia, during the course of global climate change. Our ability to confront such hazardous events is limited by the best available engineering infrastructure and performance of weather prediction. An example of the countermeasure strategy is, for instance, early release of reservoir water (lowering the dam water level) during the flood season to protect the downstream region of impending flood. However, over release of reservoir water affect the regional economy adversely by losing water resources, which still have value for power generation, agricultural and industrial water use. Furthermore, accurate precipitation forecast itself is conundrum task, due to the chaotic nature of the atmosphere yielding uncertainty in model prediction over time. Under these circumstances we present a novel approach to optimize contradicting objectives of: preventing flood damage via priori dam release; while sustaining sufficient water supply, during the predicted storm events. By evaluating forecast performance of Meso-Scale Model Grid Point Value against observed rainfall, uncertainty in model prediction is probabilistically taken into account, and it is then applied to the next GPV issuance for generating ensemble rainfalls. The ensemble rainfalls drive the coupled land-surface- and distributed-hydrological model to derive the ensemble flood forecast. Together with dam status information taken into account, our integrated system estimates the most desirable priori dam release through the shuffled complex evolution algorithm. The strength of the optimization system is further magnified by the online link to the Data Integration and

  20. Fast and accurate computation of system matrix for area integral model-based algebraic reconstruction technique

    NASA Astrophysics Data System (ADS)

    Zhang, Shunli; Zhang, Dinghua; Gong, Hao; Ghasemalizadeh, Omid; Wang, Ge; Cao, Guohua

    2014-11-01

    Iterative algorithms, such as the algebraic reconstruction technique (ART), are popular for image reconstruction. For iterative reconstruction, the area integral model (AIM) is more accurate for better reconstruction quality than the line integral model (LIM). However, the computation of the system matrix for AIM is more complex and time-consuming than that for LIM. Here, we propose a fast and accurate method to compute the system matrix for AIM. First, we calculate the intersection of each boundary line of a narrow fan-beam with pixels in a recursive and efficient manner. Then, by grouping the beam-pixel intersection area into six types according to the slopes of the two boundary lines, we analytically compute the intersection area of the narrow fan-beam with the pixels in a simple algebraic fashion. Overall, experimental results show that our method is about three times faster than the Siddon algorithm and about two times faster than the distance-driven model (DDM) in computation of the system matrix. The reconstruction speed of our AIM-based ART is also faster than the LIM-based ART that uses the Siddon algorithm and DDM-based ART, for one iteration. The fast reconstruction speed of our method was accomplished without compromising the image quality.

  1. WAAS error, integrity and availability modeling for GPS based aircraft landing system

    NASA Astrophysics Data System (ADS)

    Mu, Guangwei

    From its initial conception to deployment, the Wide Area Augmentation System (WAAS) was hailed as revolutionary for the navigation industry. However, the WAAS deployment effort has suffered significant delays and budget overruns. The reason for these misfortunes lies in the demanding mandates on the performance of the WAAS system. In the long process of getting WAAS commissioned, availability has always been the metric that holds the system back from achieving the promised capability. The inherent tradeoff between integrity and availability is the major reason that the VPL and HPL algorithms need to be improved. The integrity algorithms are well defined in the WAAS Minimum Operational Performance Standards (MOPS). However, our experimental data clearly indicate that the MOPS VPL and HPL algorithms are over-conservative. This lack of compactness from the MOPS introduces unnecessary epochs of the system being unavailable. To improve the system performance, the intuitive approach is through the range/correction domain since these factors can be observed, controlled and manipulated to improve the system performance in individual cases. However, we need a better error model and better understanding of the threat model, i.e. we need to know more about the nature of all error sources and the threats the WAAS faces, which is very difficult to accomplish due to the stochastic natures of these sources. Therefore, it is unlikely that a range/correction domain solution can be applied to a wide range of applications while having significant improvement for the system performance. Besides, it is still subject to the hindrance that the WAAS message structure might need to be changed or adjusted to take advantage of the new development. In this dissertation, a new position domain algorithm is presented to improve the MOPS integrity methodology in hopes of improving the overall system performance. The information needed to do this is already in the WAAS messages. Therefore, this

  2. Integrated defense system overlaps as a disease model: with examples for multiple chemical sensitivity.

    PubMed Central

    Rowat, S C

    1998-01-01

    The central nervous, immune, and endocrine systems communicate through multiple common messengers. Over evolutionary time, what may be termed integrated defense system(s) (IDS) have developed to coordinate these communications for specific contexts; these include the stress response, acute-phase response, nonspecific immune response, immune response to antigen, kindling, tolerance, time-dependent sensitization, neurogenic switching, and traumatic dissociation (TD). These IDSs are described and their overlap is examined. Three models of disease production are generated: damage, in which IDSs function incorrectly; inadequate/inappropriate, in which IDS response is outstripped by a changing context; and evolving/learning, in which the IDS learned response to a context is deemed pathologic. Mechanisms of multiple chemical sensitivity (MCS) are developed from several IDS disease models. Model 1A is pesticide damage to the central nervous system, overlapping with body chemical burdens, TD, and chronic zinc deficiency; model 1B is benzene disruption of interleukin-1, overlapping with childhood developmental windows and hapten-antigenic spreading; and model 1C is autoimmunity to immunoglobulin-G (IgG), overlapping with spreading to other IgG-inducers, sudden spreading of inciters, and food-contaminating chemicals. Model 2A is chemical and stress overload, including comparison with the susceptibility/sensitization/triggering/spreading model; model 2B is genetic mercury allergy, overlapping with: heavy metals/zinc displacement and childhood/gestational mercury exposures; and model 3 is MCS as evolution and learning. Remarks are offered on current MCS research. Problems with clinical measurement are suggested on the basis of IDS models. Large-sample patient self-report epidemiology is described as an alternative or addition to clinical biomarker and animal testing. Images Figure 1 Figure 2 Figure 3 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9539008

  3. Simulation analysis of an integrated model for dynamic cellular manufacturing system

    NASA Astrophysics Data System (ADS)

    Hao, Chunfeng; Luan, Shichao; Kong, Jili

    2017-05-01

    Application of dynamic cellular manufacturing system (DCMS) is a well-known strategy to improve manufacturing efficiency in the production environment with high variety and low volume of production. Often, neither the trade-off of inter and intra-cell material movements nor the trade-off of hiring and firing of operators are examined in details. This paper presents simulation results of an integrated mixed-integer model including sensitivity analysis for several numerical examples. The comprehensive model includes cell formation, inter and intracellular materials handling, inventory and backorder holding, operator assignment (including resource adjustment) and flexible production routing. The model considers multi-production planning with flexible resources (machines and operators) where each period has different demands. The results verify the validity and sensitivity of the proposed model using a genetic algorithm.

  4. A Disposable Tear Glucose Biosensor—Part 2: System Integration and Model Validation

    PubMed Central

    La Belle, Jeffrey T.; Bishop, Daniel K.; Vossler, Stephen R.; Patel, Dharmendra R.; Cook, Curtiss B.

    2010-01-01

    Background We presented a concept for a tear glucose sensor system in an article by Bishop and colleagues in this issue of Journal of Diabetes Science and Technology. A unique solution to collect tear fluid and measure glucose was developed. Individual components were selected, tested, and optimized, and system error modeling was performed. Further data on prototype testing are now provided. Methods An integrated fluidics portion of the prototype was designed, cast, and tested. A sensor was created using screen-printed sensors integrated with a silicone rubber fluidics system and absorbent polyurethane foam. A simulated eye surface was prepared using fluid-saturated poly(2-hydroxyethyl methacrylate) sheets, and the disposable prototype was tested for both reproducibility at 0, 200, and 400 μM glucose (n = 7) and dynamic range of glucose detection from 0 to 1000 μM glucose. Results From the replicated runs, an established relative standard deviation of 15.8% was calculated at 200 μM and a lower limit of detection was calculated at 43.4 μM. A linear dynamic range was demonstrated from 0 to 1000 μM with an R2 of 99.56%. The previously developed model predicted a 14.9% variation. This compares to the observed variance of 15.8% measured at 200 μM glucose. Conclusion With the newly designed fluidics component, an integrated tear glucose prototype was assembled and tested. Testing of this integrated prototype demonstrated a satisfactory lower limit of detection for measuring glucose concentration in tears and was reproducible across a physiological sampling range. The next step in the device design process will be initial animal studies to evaluate the current prototype for factors such as eye irritation, ease of use, and correlation with blood glucose. PMID:20307390

  5. A comprehensive view on climate change: coupling of earth system and integrated assessment models

    NASA Astrophysics Data System (ADS)

    van Vuuren, Detlef P.; Batlle Bayer, Laura; Chuwah, Clifford; Ganzeveld, Laurens; Hazeleger, Wilco; van den Hurk, Bart; van Noije, Twan; O'Neill, Brian; Strengers, Bart J.

    2012-06-01

    There are several reasons to strengthen the cooperation between the integrated assessment (IA) and earth system (ES) modeling teams in order to better understand the joint development of environmental and human systems. This cooperation can take many different forms, ranging from information exchange between research communities to fully coupled modeling approaches. Here, we discuss the strengths and weaknesses of different approaches and try to establish some guidelines for their applicability, based mainly on the type of interaction between the model components (including the role of feedback), possibilities for simplification and the importance of uncertainty. We also discuss several important areas of joint IA-ES research, such as land use/land cover dynamics and the interaction between climate change and air pollution, and indicate the type of collaboration that seems to be most appropriate in each case. We find that full coupling of IA-ES models might not always be the most desirable form of cooperation, since in some cases the direct feedbacks between IA and ES may be too weak or subject to considerable process or scenario uncertainty. However, when local processes are important, it could be important to consider full integration. By encouraging cooperation between the IA and ES communities in the future more consistent insights can be developed.

  6. Integrability of the Rabi Model

    SciTech Connect

    Braak, D.

    2011-09-02

    The Rabi model is a paradigm for interacting quantum systems. It couples a bosonic mode to the smallest possible quantum model, a two-level system. I present the analytical solution which allows us to consider the question of integrability for quantum systems that do not possess a classical limit. A criterion for quantum integrability is proposed which shows that the Rabi model is integrable due to the presence of a discrete symmetry. Moreover, I introduce a generalization with no symmetries; the generalized Rabi model is the first example of a nonintegrable but exactly solvable system.

  7. Exploring the Integration of COSYSMO with a Model-Based Systems Engineering Methodology in Early Trade Space Analytics and Decisions

    DTIC Science & Technology

    2016-06-01

    demonstrate an ability for automated and semi-automated integration with COSYSMO from the system model in a web -based tool, conclude with challenges...COSYSMO from the system model in a web -based tool, conclude with challenges associated with external cost model integration, and suggest future areas...Finally, a method to improve the parameter extraction is proposed and demonstrated as an initial proof of concept with a web -based application

  8. An integrative modeling framework to evaluate the productivity and sustainability of biofuel crop production systems

    SciTech Connect

    Zhang, X; Izaurralde, R. C.; Manowitz, D.; West, T. O.; Thomson, A. M.; Post, Wilfred M; Bandaru, Vara Prasad; Nichols, Jeff; Williams, J.

    2010-10-01

    The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: (1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, (2) the biophysical and biogeochemical model Environmental Policy Integrated Climate (EPIC) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and (3) an evolutionary multiobjective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a nine-county Regional Intensive Modeling Area (RIMA) in SW Michigan to (1) simulate biofuel crop production, (2) compare impacts of management practices and local ecosystem settings, and (3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

  9. An Integrative Modeling Framework to Evaluate the Productivity and Sustainability of Biofuel Crop Production Systems

    SciTech Connect

    Zhang, Xuesong; Izaurralde, Roberto C.; Manowitz, David H.; West, T. O.; Post, W. M.; Thomson, Allison M.; Bandaru, V. P.; Nichols, J.; Williams, J.R.

    2010-09-08

    The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially-explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: 1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, 2) the biophysical and biogeochemical model EPIC (Environmental Policy Integrated Climate) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and 3) an evolutionary multi-objective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a 9-county Regional Intensive Modeling Area (RIMA) in SW Michigan to 1) simulate biofuel crop production, 2) compare impacts of management practices and local ecosystem settings, and 3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

  10. A Comparison between Different Error Modeling of MEMS Applied to GPS/INS Integrated Systems

    PubMed Central

    Quinchia, Alex G.; Falco, Gianluca; Falletti, Emanuela; Dovis, Fabio; Ferrer, Carles

    2013-01-01

    Advances in the development of micro-electromechanical systems (MEMS) have made possible the fabrication of cheap and small dimension accelerometers and gyroscopes, which are being used in many applications where the global positioning system (GPS) and the inertial navigation system (INS) integration is carried out, i.e., identifying track defects, terrestrial and pedestrian navigation, unmanned aerial vehicles (UAVs), stabilization of many platforms, etc. Although these MEMS sensors are low-cost, they present different errors, which degrade the accuracy of the navigation systems in a short period of time. Therefore, a suitable modeling of these errors is necessary in order to minimize them and, consequently, improve the system performance. In this work, the most used techniques currently to analyze the stochastic errors that affect these sensors are shown and compared: we examine in detail the autocorrelation, the Allan variance (AV) and the power spectral density (PSD) techniques. Subsequently, an analysis and modeling of the inertial sensors, which combines autoregressive (AR) filters and wavelet de-noising, is also achieved. Since a low-cost INS (MEMS grade) presents error sources with short-term (high-frequency) and long-term (low-frequency) components, we introduce a method that compensates for these error terms by doing a complete analysis of Allan variance, wavelet de-nosing and the selection of the level of decomposition for a suitable combination between these techniques. Eventually, in order to assess the stochastic models obtained with these techniques, the Extended Kalman Filter (EKF) of a loosely-coupled GPS/INS integration strategy is augmented with different states. Results show a comparison between the proposed method and the traditional sensor error models under GPS signal blockages using real data collected in urban roadways. PMID:23887084

  11. A comparison between different error modeling of MEMS applied to GPS/INS integrated systems.

    PubMed

    Quinchia, Alex G; Falco, Gianluca; Falletti, Emanuela; Dovis, Fabio; Ferrer, Carles

    2013-07-24

    Advances in the development of micro-electromechanical systems (MEMS) have made possible the fabrication of cheap and small dimension accelerometers and gyroscopes, which are being used in many applications where the global positioning system (GPS) and the inertial navigation system (INS) integration is carried out, i.e., identifying track defects, terrestrial and pedestrian navigation, unmanned aerial vehicles (UAVs), stabilization of many platforms, etc. Although these MEMS sensors are low-cost, they present different errors, which degrade the accuracy of the navigation systems in a short period of time. Therefore, a suitable modeling of these errors is necessary in order to minimize them and, consequently, improve the system performance. In this work, the most used techniques currently to analyze the stochastic errors that affect these sensors are shown and compared: we examine in detail the autocorrelation, the Allan variance (AV) and the power spectral density (PSD) techniques. Subsequently, an analysis and modeling of the inertial sensors, which combines autoregressive (AR) filters and wavelet de-noising, is also achieved. Since a low-cost INS (MEMS grade) presents error sources with short-term (high-frequency) and long-term (low-frequency) components, we introduce a method that compensates for these error terms by doing a complete analysis of Allan variance, wavelet de-nosing and the selection of the level of decomposition for a suitable combination between these techniques. Eventually, in order to assess the stochastic models obtained with these techniques, the Extended Kalman Filter (EKF) of a loosely-coupled GPS/INS integration strategy is augmented with different states. Results show a comparison between the proposed method and the traditional sensor error models under GPS signal blockages using real data collected in urban roadways.

  12. Component-Based Modelling for Scalable Smart City Systems Interoperability: A Case Study on Integrating Energy Demand Response Systems.

    PubMed

    Palomar, Esther; Chen, Xiaohong; Liu, Zhiming; Maharjan, Sabita; Bowen, Jonathan

    2016-10-28

    Smart city systems embrace major challenges associated with climate change, energy efficiency, mobility and future services by embedding the virtual space into a complex cyber-physical system. Those systems are constantly evolving and scaling up, involving a wide range of integration among users, devices, utilities, public services and also policies. Modelling such complex dynamic systems' architectures has always been essential for the development and application of techniques/tools to support design and deployment of integration of new components, as well as for the analysis, verification, simulation and testing to ensure trustworthiness. This article reports on the definition and implementation of a scalable component-based architecture that supports a cooperative energy demand response (DR) system coordinating energy usage between neighbouring households. The proposed architecture, called refinement of Cyber-Physical Component Systems (rCPCS), which extends the refinement calculus for component and object system (rCOS) modelling method, is implemented using Eclipse Extensible Coordination Tools (ECT), i.e., Reo coordination language. With rCPCS implementation in Reo, we specify the communication, synchronisation and co-operation amongst the heterogeneous components of the system assuring, by design scalability and the interoperability, correctness of component cooperation.

  13. Automated model integration at source code level: An approach for implementing models into the NASA Land Information System

    NASA Astrophysics Data System (ADS)

    Wang, S.; Peters-Lidard, C. D.; Mocko, D. M.; Kumar, S.; Nearing, G. S.; Arsenault, K. R.; Geiger, J. V.

    2014-12-01

    Model integration bridges the data flow between modeling frameworks and models. However, models usually do not fit directly into a particular modeling environment, if not designed for it. An example includes implementing different types of models into the NASA Land Information System (LIS), a software framework for land-surface modeling and data assimilation. Model implementation requires scientific knowledge and software expertise and may take a developer months to learn LIS and model software structure. Debugging and testing of the model implementation is also time-consuming due to not fully understanding LIS or the model. This time spent is costly for research and operational projects. To address this issue, an approach has been developed to automate model integration into LIS. With this in mind, a general model interface was designed to retrieve forcing inputs, parameters, and state variables needed by the model and to provide as state variables and outputs to LIS. Every model can be wrapped to comply with the interface, usually with a FORTRAN 90 subroutine. Development efforts need only knowledge of the model and basic programming skills. With such wrappers, the logic is the same for implementing all models. Code templates defined for this general model interface could be re-used with any specific model. Therefore, the model implementation can be done automatically. An automated model implementation toolkit was developed with Microsoft Excel and its built-in VBA language. It allows model specifications in three worksheets and contains FORTRAN 90 code templates in VBA programs. According to the model specification, the toolkit generates data structures and procedures within FORTRAN modules and subroutines, which transfer data between LIS and the model wrapper. Model implementation is standardized, and about 80 - 90% of the development load is reduced. In this presentation, the automated model implementation approach is described along with LIS programming

  14. Integrating Social Capital Theory, Social Cognitive Theory, and the Technology Acceptance Model to Explore a Behavioral Model of Telehealth Systems

    PubMed Central

    Tsai, Chung-Hung

    2014-01-01

    Telehealth has become an increasingly applied solution to delivering health care to rural and underserved areas by remote health care professionals. This study integrated social capital theory, social cognitive theory, and the technology acceptance model (TAM) to develop a comprehensive behavioral model for analyzing the relationships among social capital factors (social capital theory), technological factors (TAM), and system self-efficacy (social cognitive theory) in telehealth. The proposed framework was validated with 365 respondents from Nantou County, located in Central Taiwan. Structural equation modeling (SEM) was used to assess the causal relationships that were hypothesized in the proposed model. The finding indicates that elderly residents generally reported positive perceptions toward the telehealth system. Generally, the findings show that social capital factors (social trust, institutional trust, and social participation) significantly positively affect the technological factors (perceived ease of use and perceived usefulness respectively), which influenced usage intention. This study also confirmed that system self-efficacy was the salient antecedent of perceived ease of use. In addition, regarding the samples, the proposed model fitted considerably well. The proposed integrative psychosocial-technological model may serve as a theoretical basis for future research and can also offer empirical foresight to practitioners and researchers in the health departments of governments, hospitals, and rural communities. PMID:24810577

  15. Integrating social capital theory, social cognitive theory, and the technology acceptance model to explore a behavioral model of telehealth systems.

    PubMed

    Tsai, Chung-Hung

    2014-05-07

    Telehealth has become an increasingly applied solution to delivering health care to rural and underserved areas by remote health care professionals. This study integrated social capital theory, social cognitive theory, and the technology acceptance model (TAM) to develop a comprehensive behavioral model for analyzing the relationships among social capital factors (social capital theory), technological factors (TAM), and system self-efficacy (social cognitive theory) in telehealth. The proposed framework was validated with 365 respondents from Nantou County, located in Central Taiwan. Structural equation modeling (SEM) was used to assess the causal relationships that were hypothesized in the proposed model. The finding indicates that elderly residents generally reported positive perceptions toward the telehealth system. Generally, the findings show that social capital factors (social trust, institutional trust, and social participation) significantly positively affect the technological factors (perceived ease of use and perceived usefulness respectively), which influenced usage intention. This study also confirmed that system self-efficacy was the salient antecedent of perceived ease of use. In addition, regarding the samples, the proposed model fitted considerably well. The proposed integrative psychosocial-technological model may serve as a theoretical basis for future research and can also offer empirical foresight to practitioners and researchers in the health departments of governments, hospitals, and rural communities.

  16. Modeling Weather in the Ionosphere using the Navy's Highly Integrated Thermosphere and Ionosphere Demonstration System (HITIDES)

    NASA Astrophysics Data System (ADS)

    McDonald, S. E.; Sassi, F.; Zawdie, K.; McCormack, J. P.; Coker, C.; Huba, J.; Krall, J.

    2016-12-01

    The Naval Research Laboratory (NRL) has recently developed a ground-to-space atmosphere-ionosphere prediction capability, the Highly Integrated Thermosphere and Ionosphere Demonstration System (HITIDES). HITIDES is the U.S. Navy's first coupled, physics-based, atmosphere-ionosphere model, one in which the atmosphere extends from the ground to the exobase ( 500 km altitude) and the ionosphere reaches several 10,000 km in altitude. HITIDES has been developed by coupling the extended version of the Whole Atmosphere Community Climate Model (WACCM-X) with NRL's ionospheric model, Sami3 is Another Model of the Ionosphere (SAMI3). Integrated into this model are the effects of drivers from atmospheric weather (day-to-day meteorology), the Sun, and the changing high altitude composition. To simulate specific events, HITIDES can be constrained by data analysis products or observations. We have performed simulations of the ionosphere during January-February 2010 in which lower atmospheric weather patterns have been introduced using the Navy Operational Global Atmospheric Prediction System-Advanced Level Physics High Altitude (NOGAPS-ALPHA) data assimilation products. The same time period has also been simulated using the new atmospheric forecast model, the NAVy Global Environmental Model (NAVGEM), which has replaced NOGAPS-ALPHA. The two simulations are compared with each other and with observations of the low latitude ionosphere. We will discuss the importance of including lower atmospheric meteorology in ionospheric simulations to capture day-to-day variability as well as large-scale longitudinal structure in the low-latitude ionosphere. In addition, we examine the effect of the variability on HF radio wave propagation by comparing simulated ionograms calculated from the HITIDES ionospheric specifications to ionosonde measurements.

  17. Global search tool for the Advanced Photon Source Integrated Relational Model of Installed Systems (IRMIS) database.

    SciTech Connect

    Quock, D. E. R.; Cianciarulo, M. B.; APS Engineering Support Division; Purdue Univ.

    2007-01-01

    The Integrated Relational Model of Installed Systems (IRMIS) is a relational database tool that has been implemented at the Advanced Photon Source to maintain an updated account of approximately 600 control system software applications, 400,000 process variables, and 30,000 control system hardware components. To effectively display this large amount of control system information to operators and engineers, IRMIS was initially built with nine Web-based viewers: Applications Organizing Index, IOC, PLC, Component Type, Installed Components, Network, Controls Spares, Process Variables, and Cables. However, since each viewer is designed to provide details from only one major category of the control system, the necessity for a one-stop global search tool for the entire database became apparent. The user requirements for extremely fast database search time and ease of navigation through search results led to the choice of Asynchronous JavaScript and XML (AJAX) technology in the implementation of the IRMIS global search tool. Unique features of the global search tool include a two-tier level of displayed search results, and a database data integrity validation and reporting mechanism.

  18. Skill assessment of an integrated modeling system for shallow coastal and estuarine ecosystems

    NASA Astrophysics Data System (ADS)

    Sheng, Y. Peter; Kim, Taeyun

    2009-02-01

    The predictive skills of an integrated physical-biogeochemical modeling system (CH3D-IMS) for shallow estuarine and coastal ecosystems are assessed using available field data in the Indian River Lagoon estuarine system, Florida during 1998-2000. The cornerstone of the modeling system is the circulation model CH3D (Curvilinear-grid Hydrodynamics in 3D), which is coupled to models of wave (SMB), sediment transport, water quality (nutrients: N, P, and Si, three phytoplankton species, zooplankton, and dissolved oxygen), light attenuation, and seagrass. To resolve the complex geometry and bathymetry of the estuarine system, the modeling system uses a boundary-fitted non-orthogonal curvilinear grid in the horizontal direction and a terrain-following sigma grid in the vertical direction. While water level and salinity data were collected continuously (at 15-min intervals) at 10 fixed stations, most water quality data were collected at much longer time scales (bi-weekly to quarterly) during ship surveys at more than 30 stations. Sediment-water quality data were collected at 24 stations once in 1998. Model skills for hydrodynamic and water quality simulations are assessed in terms of the absolute relative errors and the relative operating characteristic (ROC) scores. Both methods indicate that the modeling system has skills in simulating water level, salinity, dissolved oxygen, chlorophyll, and dissolved nutrients, with the ROC score between 0.6 and 0.862, indicating skills for most of the variables. Skills for simulating total suspended solids (TSS) and particulate nutrients are lacking, with ROC score and: between 0.5-0.6. Simulated diffuse attenuation coefficient, which depends on TSS, chlorophyll a, and dissolved organic matter, has an ROC of 0.55. Using high frequency time-varying field data collected during two episodic events in the study period, the skills of CH3D-IMS improved significantly for both TSS and particulate nutrients. Model skills for particulate

  19. Integrated Modeling of the Human-Natural System to Improve Local Water Management and Planning

    NASA Astrophysics Data System (ADS)

    Gutowski, W. J., Jr.; Dziubanski, D.; Franz, K.; Goodwin, J.; Rehmann, C. R.; Simpkins, W. W.; Tesfastion, L.; Wanamaker, A. D.; Jie, Y.

    2015-12-01

    Communities across the world are experiencing the effects of unsustainable water management practices. Whether the problem is a lack of water, too much water, or water of degraded quality, finding acceptable solutions requires community-level efforts that integrate sound science with local needs and values. Our project develops both a software technology (agent-based hydrological modeling) and a social technology (a participatory approach to model development) that will allow communities to comprehensively address local water challenges. Using agent-based modeling (ABM), we are building a modeling system that includes a semi-distributed hydrologic process model coupled with agent (stakeholder) models. Information from the hydrologic model is conveyed to the agent models, which, along with economic information, determine appropriate agent actions that subsequently affect hydrology within the model. The iterative participatory modeling (IPM) process will assist with the continual development of the agent models. Further, IPM creates a learning environment in which all participants, including researchers, are co-exploring relevant data, possible scenarios and solutions, and viewpoints through continuous interactions. Our initial work focuses on the impact of flood mitigation and conservation efforts on reducing flooding in an urban area. We are applying all research elements above to the Squaw Creek watershed that flows through parts of four counties in central Iowa. The watershed offers many of the typical tensions encountered in Iowa, such as different perspectives on water management between upstream farmers and downstream urban areas, competition for various types of recreational services, and increasing absentee land ownership that may conflict with community values. Ultimately, climate change scenarios will be incorporated into the model to determine long term patterns that may develop within the social or natural system.

  20. Toward an Integrated Competence-Based System Supporting Lifelong Learning and Employability: Concepts, Model, and Challenges

    NASA Astrophysics Data System (ADS)

    Miao, Yongwu; van der Klink, Marcel; Boon, Jo; Sloep, Peter; Koper, Rob

    Efficient and effective lifelong learning requires that people can make informed decisions about their continuous personal development in the different stages of their life. In this paper we state that lifelong learners need to be characterized as decision-makers. In order to improve the quality of their decisions, we propose the development of an integrated lifelong learning and employment support system, which traces learners’ competence development and provides a decision support environment. An abstract conceptual model has been developed and the main design ideas have been documented using Z notation. Moreover, we analyzed the main technical challenges for the realization of the target system: competence information fusion, decision analysis models, spatial indexing structures and browsing structures and visualization of competence-related information objects.

  1. Integrated modeling environment for systems-level performance analysis of the Next-Generation Space Telescope

    NASA Astrophysics Data System (ADS)

    Mosier, Gary E.; Femiano, Michael; Ha, Kong; Bely, Pierre Y.; Burg, Richard; Redding, David C.; Kissil, Andrew; Rakoczy, John; Craig, Larry

    1998-08-01

    All current concepts for the NGST are innovative designs which present unique systems-level challenges. The goals are to outperform existing observatories at a fraction of the current price/performance ratio. Standard practices for developing systems error budgets, such as the 'root-sum-of- squares' error tree, are insufficient for designs of this complexity. Simulation and optimization are the tools needed for this project; in particular tools that integrate controls, optics, thermal and structural analysis, and design optimization. This paper describes such an environment which allows sub-system performance specifications to be analyzed parametrically, and includes optimizing metrics that capture the science requirements. The resulting systems-level design trades are greatly facilitated, and significant cost savings can be realized. This modeling environment, built around a tightly integrated combination of commercial off-the-shelf and in-house- developed codes, provides the foundation for linear and non- linear analysis on both the time and frequency-domains, statistical analysis, and design optimization. It features an interactive user interface and integrated graphics that allow highly-effective, real-time work to be done by multidisciplinary design teams. For the NGST, it has been applied to issues such as pointing control, dynamic isolation of spacecraft disturbances, wavefront sensing and control, on-orbit thermal stability of the optics, and development of systems-level error budgets. In this paper, results are presented from parametric trade studies that assess requirements for pointing control, structural dynamics, reaction wheel dynamic disturbances, and vibration isolation. These studies attempt to define requirements bounds such that the resulting design is optimized at the systems level, without attempting to optimize each subsystem individually. The performance metrics are defined in terms of image quality, specifically centroiding error and RMS

  2. Development and Calibration of a System-Integrated Rotorcraft Finite Element Model for Impact Scenarios

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Horta, Lucas G.; Jackson, Karen E.; Polanco, Michael A.; Littell, Justin D.

    2012-01-01

    Two full-scale crash tests of an MD-500 helicopter were conducted in 2009 and 2010 at NASA Langley's Landing and Impact Research Facility in support of NASA s Subsonic Rotary Wing Crashworthiness Project. The first crash test was conducted to evaluate the performance of an externally mounted composite deployable energy absorber (DEA) under combined impact conditions. In the second crash test, the energy absorber was removed to establish baseline loads that are regarded as severe but survivable. The presence of this energy absorbing device reduced the peak impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to a system-integrated finite element model of the test article developed in parallel with the test program. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests were conducted to evaluate the impact performances of various components and subsystems, including new crush tubes and the DEA blocks. Parameters defined for the system-integrated finite element model were determined from these tests. Results from 19 accelerometers placed throughout the airframe were compared to finite element model responses. The model developed for the purposes of predicting acceleration responses from the first crash test was inadequate when evaluating more severe conditions seen in the second crash test. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used to calibrate model results for the full-scale crash test without the DEA. This combination of heuristic and quantitative methods identified modeling deficiencies, evaluated parameter importance, and proposed required model changes. The multidimensional calibration techniques presented here are particularly effective in identifying model adequacy. Acceleration results for the calibrated model were

  3. Intelligent test integration system

    NASA Technical Reports Server (NTRS)

    Sztipanovits, J.; Padalkar, S.; Rodriguez-Moscoso, J.; Kawamura, K.; Purves, B.; Williams, R.; Biglari, H.

    1988-01-01

    A new test technology is described which was developed for space system integration. The ultimate purpose of the system is to support the automatic generation of test systems in real time, distributed computing environments. The Intelligent Test Integration System (ITIS) is a knowledge based layer above the traditional test system components which can generate complex test configurations from the specification of test scenarios.

  4. Design and Implementation of Integrated Surveillance and Modeling Systems for Climate-Sensitive Diseases

    NASA Astrophysics Data System (ADS)

    Wimberly, M. C.; Merkord, C. L.; Davis, J. K.; Liu, Y.; Henebry, G. M.; Hildreth, M. B.

    2016-12-01

    Climatic variations have a multitude of effects on human health, ranging from the direct impacts of extreme heat events to indirect effects on the vectors and hosts that transmit infectious diseases. Disease surveillance has traditionally focused on monitoring human cases, and in some instances tracking populations sizes and infection rates of arthropod vectors and zoonotic hosts. For climate-sensitive diseases, there is a potential to strengthen surveillance and obtain early indicators of future outbreaks by monitoring environmental risk factors using broad-scale sensor networks that include earth-observing satellites as well as ground stations. We highlight the opportunities and challenges of this integration by presenting modeling results and discussing lessons learned from two projects focused on surveillance and forecasting of mosquito-borne diseases. The Epidemic Prognosis Incorporating Disease and Environmental Monitoring for Integrated Assessement (EPIDEMIA) project integrates malaria case surveillance with remotely-sensed environmental data for early detection of malaria epidemics in the Amhara region of Ethiopia and has been producing weekly forecast reports since 2015. The South Dakota Mosquito Information System (SDMIS) project similarly combines entomological surveillance with environmental monitoring to generate weekly maps for West Nile virus (WNV) in the north-central United States. We are currently implementing a new disease forecasting and risk reporting framework for the state of South Dakota during the 2016 WNV transmission season. Despite important differences in disease ecology and geographic setting, our experiences with these projects highlight several important lessons learned that can inform future efforts at disease early warning based on climatic predictors. These include the need to engage end users in system design from the outset, the critical role of automated workflows to facilitate the timely integration of multiple data streams

  5. New solid modeling system for CAD/CAM integration through engineering drawing understanding

    SciTech Connect

    Yu, Yuanchen.

    1987-01-01

    A solid model is crucial for CAD/CAM integration. However, for supporting downstream CAD/CAM applications, a solid model should be able to represent not only the basic shape of a mechanical part but also all the design intentions designers may have. In this research, a framework of a new solid-modeling system that can represent some design intentions and can be constructed through the scheme of engineering drawing is proposed. This framework includes three parts: a variational solid model, V-SOLID, an engineering drawing-based design model, ED-DESIGN, and a knowledge-based computer understanding system. The V-SOLID is an augmented version of the existing boundary representation which is able to represent dimension, tolerance, datum structure, surface attributes and geometric relationships among surfaces. The ED-DESIGN is an input scheme which allows the designer to input the V-SOLID through the scheme of engineering drawing. Also, in this ED-DESIGN, an engineering drawing is represented in a drawing space instead of a drawing plane, so that engineering drawing can be interpreted as a pseudo-3D design scheme. The computer understanding system is developed to construct the V-SOLID from the ED-DESIGN using a knowledge-based approach.

  6. The Anthropology of Science Education Reform: An Alabama Model for Building an Integrated Stakeholder Systems Approach

    NASA Astrophysics Data System (ADS)

    Denson, R. L.; Cox, G. N.

    2004-12-01

    Anthropologists are concerned with every aspect of the culture they are investigating. One of the five main branches of anthropology, socio-cultural anthropology, concerns itself with studying the relationship between behavior and culture. This paper explores the concept that changing the behavior of our culture - its beliefs and values - towards science is at the heart of science education reform. There are five institutions that socio-cultural anthropologists use to study the social organization of cultures: the educational system is only one of them. Its function - across all cultures - is to serve as a mechanism for implementing change in cultural beliefs and values. As leaders of science education reform, the Alabama model contends that we must stop the struggle with our purpose and get on with the business of leading culture change through an integrated stakeholder systems approach. This model stresses the need for the interaction of agencies other than education - including government, industry, the media and our health communities to operate in an integrated and systemic fashion to address the issues of living among a technically literate society. Twenty-five years of science education reform needs being voiced and programs being developed has not produced the desired results from within the educational system. This is too limited a focus to affect any real cultural change. It is when we acknowledge that students spend only an average of 12 percent of their life time in schools, that we can begin to ask ourselves what are our students learning the other 88 percent of their time - from their peers, their parents and the media - and what should we be doing to address this cultural crisis in these other arenas in addition to the educational system? The Alabama Math, Science and Technology Education Coalition (AMSTEC) is a non-profit 501c(3) organization operating in the state of Alabama to provide leadership in improving mathematics, science, and technology

  7. Designing a mathematical model for integrating dynamic cellular manufacturing into supply chain system

    NASA Astrophysics Data System (ADS)

    Aalaei, Amin; Davoudpour, Hamid

    2012-11-01

    This article presents designing a new mathematical model for integrating dynamic cellular manufacturing into supply chain system with an extensive coverage of important manufacturing features consideration of multiple plants location, multi-markets allocation, multi-period planning horizons with demand and part mix variation, machine capacity, and the main constraints are demand of markets satisfaction in each period, machine availability, machine time-capacity, worker assignment, available time of worker, production volume for each plant and the amounts allocated to each market. The aim of the proposed model is to minimize holding and outsourcing costs, inter-cell material handling cost, external transportation cost, procurement & maintenance and overhead cost of machines, setup cost, reconfiguration cost of machines installation and removal, hiring, firing and salary worker costs. Aimed to prove the potential benefits of such a design, presented an example is shown using a proposed model.

  8. Modeling of integrated environmental control systems for coal-fired power plants

    SciTech Connect

    Rubin, E.S.

    1988-06-01

    This is the third quarterly report of DOE Contract No. DE-AC22- 87PC79864, entitled Modeling of Integrated Environmental Control Systems for Coal-Fired Power Plants.'' This report summarizes accomplishments during the period April 1, 1988 to June 30, 1988. Our efforts during the last quarter focused on, (1) completion of a sulfuric acid plant model (used in conjunction with by-product recovery processes for SO{sub 2}/NO{sub x} removal) and, (2) an update the NOXSO process model. Other accomplishments involved revision and expansion of the enthalpy data algorithms used for process energy balances. The sections below present the details of these developments. References are included at the end of each section.

  9. Integrated systems optimization model for biofuel development: The influence of environmental constraints

    NASA Astrophysics Data System (ADS)

    Housh, M.; Ng, T.; Cai, X.

    2012-12-01

    The environmental impact is one of the major concerns of biofuel development. While many other studies have examined the impact of biofuel expansion on stream flow and water quality, this study examines the problem from the other side - will and how a biofuel production target be affected by given environmental constraints. For this purpose, an integrated model comprises of different sub-systems of biofuel refineries, transportation, agriculture, water resources and crops/ethanol market has been developed. The sub-systems are integrated into one large-scale model to guide the optimal development plan considering the interdependency between the subsystems. The optimal development plan includes biofuel refineries location and capacity, refinery operation, land allocation between biofuel and food crops, and the corresponding stream flow and nitrate load in the watershed. The watershed is modeled as a network flow, in which the nodes represent sub-watersheds and the arcs are defined as the linkage between the sub-watersheds. The runoff contribution of each sub-watershed is determined based on the land cover and the water uses in that sub-watershed. Thus, decisions of other sub-systems such as the land allocation in the land use sub-system and the water use in the refinery sub-system define the sources and the sinks of the network. Environmental policies will be addressed in the integrated model by imposing stream flow and nitrate load constraints. These constraints can be specified by location and time in the watershed to reflect the spatial and temporal variation of the regulations. Preliminary results show that imposing monthly water flow constraints and yearly nitrate load constraints will change the biofuel development plan dramatically. Sensitivity analysis is performed to examine how the environmental constraints and their spatial and the temporal distribution influence the overall biofuel development plan and the performance of each of the sub-systems

  10. Component-Based Modelling for Scalable Smart City Systems Interoperability: A Case Study on Integrating Energy Demand Response Systems

    PubMed Central

    Palomar, Esther; Chen, Xiaohong; Liu, Zhiming; Maharjan, Sabita; Bowen, Jonathan

    2016-01-01

    Smart city systems embrace major challenges associated with climate change, energy efficiency, mobility and future services by embedding the virtual space into a complex cyber-physical system. Those systems are constantly evolving and scaling up, involving a wide range of integration among users, devices, utilities, public services and also policies. Modelling such complex dynamic systems’ architectures has always been essential for the development and application of techniques/tools to support design and deployment of integration of new components, as well as for the analysis, verification, simulation and testing to ensure trustworthiness. This article reports on the definition and implementation of a scalable component-based architecture that supports a cooperative energy demand response (DR) system coordinating energy usage between neighbouring households. The proposed architecture, called refinement of Cyber-Physical Component Systems (rCPCS), which extends the refinement calculus for component and object system (rCOS) modelling method, is implemented using Eclipse Extensible Coordination Tools (ECT), i.e., Reo coordination language. With rCPCS implementation in Reo, we specify the communication, synchronisation and co-operation amongst the heterogeneous components of the system assuring, by design scalability and the interoperability, correctness of component cooperation. PMID:27801829

  11. Integrated system modeling analysis of a cryogenic multi-cell deflecting-mode cavity resonator

    NASA Astrophysics Data System (ADS)

    Shin, Young-Min; Church, Michael

    2013-09-01

    A deflecting mode cavity is the integral element for six-dimensional phase-space beam control in bunch compressors and emittance transformers at high energy beam test facilities. RF performance of a high-Q device is, however, highly sensitive to operational conditions, in particular in a cryo-cooling environment. Using analytic calculations and RF simulations, we examined cavity parameters and deflecting characteristics of TM110,π mode of a 5 cell resonator in a liquid nitrogen cryostat, which has long been used at the Fermilab A0 Photoinjector (A0PI). The sensitivity analysis indicated that the cavity could lose 30%-40% of deflecting force due to defective input power coupling accompanying non-uniform field distribution across the cells with 40 ˜ 50 MeV electron beam and 70-80 kW klystron power. Vacuum-cryomodules of the 5 cell cavity are planned to be installed at the Fermilab Advanced Superconducting Test Accelerator facility. Comprehensive modeling analysis integrated with multi-physics simulation tools showed that RF loading of 1 ms can cause a ˜5 K maximum temperature increase, corresponding to a ˜4.3 μm/ms deformation and a 1.32 MHz/K maximum frequency shift. The integrated system modeling analysis will improve design process of a high-Q cavity with more accurate prediction of cryogenic RF performance under a high power pulse operation.

  12. An Integrated Model for Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    SciTech Connect

    D. Muth; K. M. Bryden

    2003-12-01

    Agricultural residues have been identified as a significant potential resource for bioenergy production, but serious questions remain about the sustainability of harvesting residues. Agricultural residues play an important role in limiting soil erosion from wind and water and in maintaining soil organic carbon. Because of this, multiple factors must be considered when assessing sustainable residue harvest limits. Validated and accepted modeling tools for assessing these impacts include the Revised Universal Soil Loss Equation Version 2 (RUSLE2), the Wind Erosion Prediction System (WEPS), and the Soil Conditioning Index. Currently, these models do not work together as a single integrated model. Rather, use of these models requires manual interaction and data transfer. As a result, it is currently not feasible to use these computational tools to perform detailed sustainable agricultural residue availability assessments across large spatial domains or to consider a broad range of land management practices. This paper presents an integrated modeling strategy that couples existing datasets with the RUSLE2 water erosion, WEPS wind erosion, and Soil Conditioning Index soil carbon modeling tools to create a single integrated residue removal modeling system. This enables the exploration of the detailed sustainable residue harvest scenarios needed to establish sustainable residue availability. Using this computational tool, an assessment study of residue availability for the state of Iowa was performed. This study included all soil types in the state of Iowa, four representative crop rotation schemes, variable crop yields, three tillage management methods, and five residue removal methods. The key conclusions of this study are that under current management practices and crop yields nearly 26.5 million Mg of agricultural residue are sustainably accessible in the state of Iowa, and that through the adoption of no till practices residue removal could sustainably approach 40

  13. High-Resolution Modelling of Health Impacts from Air Pollution for Denmark using the Integrated Model System EVA

    NASA Astrophysics Data System (ADS)

    Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Hansen, Kaj M.; Hertel, Ole; Im, Ulas; Jensen, Steen S.; Ketzel, Matthias; Nielsen, Ole-Kenneth; Plejdrup, Marlene S.; Sigsgaard, Torben; Geels, Camilla

    2015-04-01

    We have developed an integrated health impact assessment system EVA (Economic Valuation of Air pollution; Brandt et al., 2013a; 2013b), based on the impact-pathway chain, to assess the health impacts and health-related economic externalities of air pollution resulting from specific emission sources or sectors. The system is used to support policymaking with respect to emission control. The EVA system has previously been used to assess the health impacts based on results from a regional model DEHM (the Danish Eulerian Hemispheric Model; Brandt et al., 2012). In this study we have used a coupling of two chemistry transport models to calculate the air pollution concentration at different scales; the DEHM model to calculate the air pollution levels with a resolution down to 5.6 km x 5.6 km and the UBM model (Urban Background Model ; Berkowicz, 2000; Brandt et al., 2001) to further calculate the air pollution at 1 km x 1 km resolution for Denmark using results from DEHM as boundary conditions. Both the emission data based on the SPREAD model (Plejdrup and Gyldenkærne, 2011) as well as the population density has been represented in the model system with the same high resolution. The new developments of the integrated model system will be presented as well as results for health impacts and related external costs over the years 2006-2014 for Denmark. Furthermore, a sensitivity study of the health impact using coarse and fine resolutions in the model system has been carried out to evaluate the effect of improved description of the geographical population distribution with respect to location of local emissions. References Berkowicz, R., 2000. A Simple Model for Urban Background Pollution. Environmental Monitoring and Assessment, 65, 1/2, 259-267. Brandt, J., J. H. Christensen, L. M. Frohn, F. Palmgren, R. Berkowicz and Z. Zlatev, 2001: "Operational air pollution forecasts from European to local scale". Atmospheric Environment, Vol. 35, Sup. No. 1, pp. S91-S98, 2001 Brandt

  14. Integrated hydrologic modeling of a transboundary aquifer system —Lower Rio Grande

    USGS Publications Warehouse

    Hanson, Randall T.; Schmid, Wolfgang; Knight, Jacob E.; Maddock, Thomas

    2013-01-01

    For more than 30 years the agreements developed for the aquifer systems of the lower Rio Grande and related river compacts of the Rio Grande River have evolved into a complex setting of transboundary conjunctive use. The conjunctive use now includes many facets of water rights, water use, and emerging demands between the states of New Mexico and Texas, the United States and Mexico, and various water-supply agencies. The analysis of the complex relations between irrigation and streamflow supplyand-demand components and the effects of surface-water and groundwater use requires an integrated hydrologic model to track all of the use and movement of water. MODFLOW with the Farm Process (MFFMP) provides the integrated approach needed to assess the stream-aquifer interactions that are dynamically affected by irrigation demands on streamflow allotments that are supplemented with groundwater pumpage. As a first step to the ongoing full implementation of MF-FMP by the USGS, the existing model (LRG_2007) was modified to include some FMP features, demonstrating the ability to simulate the existing streamflow-diversion relations known as the D2 and D3 curves, departure of downstream deliveries from these curves during low allocation years and with increasing efficiency upstream, and the dynamic relation between surface-water conveyance and estimates of pumpage and recharge. This new MF-FMP modeling framework can now internally analyze complex relations within the Lower Rio Grande Hydrologic Model (LRGHM_2011) that previous techniques had limited ability to assess.

  15. Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services.

    PubMed

    Arbault, Damien; Rivière, Mylène; Rugani, Benedetto; Benetto, Enrico; Tiruta-Barna, Ligia

    2014-02-15

    Despite the increasing awareness of our dependence on Ecosystem Services (ES), Life Cycle Impact Assessment (LCIA) does not explicitly and fully assess the damages caused by human activities on ES generation. Recent improvements in LCIA focus on specific cause-effect chains, mainly related to land use changes, leading to Characterization Factors (CFs) at the midpoint assessment level. However, despite the complexity and temporal dynamics of ES, current LCIA approaches consider the environmental mechanisms underneath ES to be independent from each other and devoid of dynamic character, leading to constant CFs whose representativeness is debatable. This paper takes a step forward and is aimed at demonstrating the feasibility of using an integrated earth system dynamic modeling perspective to retrieve time- and scenario-dependent CFs that consider the complex interlinkages between natural processes delivering ES. The GUMBO (Global Unified Metamodel of the Biosphere) model is used to quantify changes in ES production in physical terms - leading to midpoint CFs - and changes in human welfare indicators, which are considered here as endpoint CFs. The interpretation of the obtained results highlights the key methodological challenges to be solved to consider this approach as a robust alternative to the mainstream rationale currently adopted in LCIA. Further research should focus on increasing the granularity of environmental interventions in the modeling tools to match current standards in LCA and on adapting the conceptual approach to a spatially-explicit integrated model.

  16. The Digital Astronaut: An integrated modeling and database system for space biomedical research and operations

    NASA Astrophysics Data System (ADS)

    White, Ronald J.; McPhee, Jancy C.

    2007-02-01

    The Digital Astronaut is an integrated, modular modeling and database system that will support space biomedical research and operations in a variety of fundamental ways. This system will enable the identification and meaningful interpretation of the medical and physiological research required for human space exploration, a determination of the effectiveness of specific individual human countermeasures in reducing risk and meeting health and performance goals on challenging exploration missions and an evaluation of the appropriateness of various medical interventions during mission emergencies, accidents and illnesses. Such a computer-based, decision support system will enable the construction, validation and utilization of important predictive simulations of the responses of the whole human body to the types of stresses experienced during space flight and low-gravity environments. These simulations will be essential for direct, real-time analysis and maintenance of astronaut health and performance capabilities. The Digital Astronaut will collect and integrate past and current human data across many physiological disciplines and simulations into an operationally useful form that will not only summarize knowledge in a convenient and novel way but also reveal gaps that must be filled via new research in order to effectively ameliorate biomedical risks. Initial phases of system development will focus on simulating ground-based analog systems that are just beginning to collect multidisciplinary data in a standardized way (e.g., the International Multidisciplinary Artificial Gravity Project). During later phases, the focus will shift to development and planning for missions and to exploration mission operations. Then, the Digital Astronaut system will enable evaluation of the effectiveness of multiple, simultaneously applied countermeasures (a task made difficult by the many-system physiological effects of individual countermeasures) and allow for the prescription of

  17. An Integrated Ecological Modeling System for Assessing Impacts of Multiple Stressors on Stream and Riverine Ecosystem Services Within River Basins

    EPA Science Inventory

    We demonstrate a novel, spatially explicit assessment of the current condition of aquatic ecosystem services, with limited sensitivity analysis for the atmospheric contaminant mercury. The Integrated Ecological Modeling System (IEMS) forecasts water quality and quantity, habitat ...

  18. Drivers' communicative interactions: on-road observations and modelling for integration in future automation systems.

    PubMed

    Portouli, Evangelia; Nathanael, Dimitris; Marmaras, Nicolas

    2014-01-01

    Social interactions with other road users are an essential component of the driving activity and may prove critical in view of future automation systems; still up to now they have received only limited attention in the scientific literature. In this paper, it is argued that drivers base their anticipations about the traffic scene to a large extent on observations of social behaviour of other 'animate human-vehicles'. It is further argued that in cases of uncertainty, drivers seek to establish a mutual situational awareness through deliberate communicative interactions. A linguistic model is proposed for modelling these communicative interactions. Empirical evidence from on-road observations and analysis of concurrent running commentary by 25 experienced drivers support the proposed model. It is suggested that the integration of a social interactions layer based on illocutionary acts in future driving support and automation systems will improve their performance towards matching human driver's expectations. Practitioner Summary: Interactions between drivers on the road may play a significant role in traffic coordination. On-road observations and running commentaries are presented as empirical evidence to support a model of such interactions; incorporation of drivers' interactions in future driving support and automation systems may improve their performance towards matching driver's expectations.

  19. U.S. Coast Guard Human Systems Integration (HSI) Process Model.

    DTIC Science & Technology

    1994-04-01

    acquisitions. This report provides a recommended " Process Model " for integrating the various elements of HSI (i.e., Manpower, Personnel, Training, Human Factors...whether elements of existing programs could be used in the Coast Guard environment. Based on this review, a process model was developed to integrate HSI into the Coast Guard acquisition process.

  20. Development of an Integrated Hydrologic Modeling System for Rainfall-Runoff Simulation

    NASA Astrophysics Data System (ADS)

    Lu, B.; Piasecki, M.

    2008-12-01

    This paper aims to present the development of an integrated hydrological model which involves functionalities of digital watershed processing, online data retrieval, hydrologic simulation and post-event analysis. The proposed system is intended to work as a back end to the CUAHSI HIS cyberinfrastructure developments. As a first step into developing this system, a physics-based distributed hydrologic model PIHM (Penn State Integrated Hydrologic Model) is wrapped into OpenMI(Open Modeling Interface and Environment ) environment so as to seamlessly interact with OpenMI compliant meteorological models. The graphical user interface is being developed from the openGIS application called MapWindows which permits functionality expansion through the addition of plug-ins. . Modules required to set up through the GUI workboard include those for retrieving meteorological data from existing database or meteorological prediction models, obtaining geospatial data from the output of digital watershed processing, and importing initial condition and boundary condition. They are connected to the OpenMI compliant PIHM to simulate rainfall-runoff processes and includes a module for automatically displaying output after the simulation. Online databases are accessed through the WaterOneFlow web services, and the retrieved data are either stored in an observation database(OD) following the schema of Observation Data Model(ODM) in case for time series support, or a grid based storage facility which may be a format like netCDF or a grid-based-data database schema . Specific development steps include the creation of a bridge to overcome interoperability issue between PIHM and the ODM, as well as the embedding of TauDEM (Terrain Analysis Using Digital Elevation Models) into the model. This module is responsible for developing watershed and stream network using digital elevation models. Visualizing and editing geospatial data is achieved by the usage of MapWinGIS, an ActiveX control developed

  1. Digital terrain model (DTM) integration and three-dimensional query spaces in geographic information systems

    NASA Astrophysics Data System (ADS)

    Fritsch, Dieter; Schmidt, Dieter

    1994-08-01

    The integration of digital terrain models (DTM) in geographic information systems (GIS) implies automatically an extension of the GIS reference surface and its query space. It is trivial that a DTM is the natural boundary representation of the earth's surface. Man-made objects, for instance homes, streets, bridges, dams should be considered in a second step because these objects cannot be represented well by boundary surfaces. The link of these objects to DTM can be realized by keys and pointers. Therefore, an efficient DTM integration in GIS is the first task to be solved. The paper introduces DTM data structures represented by NIAM diagrams. Using the entity-relationship model these diagrams are very capable to describe the power of relations. Next a 3-D query space is defined keeping in mind 3-D coordinates and 2- D topological elements. Based on this query space spatial operators are derived which fit in standard SQL vocabulary. The implementation part of the paper uses the exodus storage manger to map the DTM of the Federal State Baden-Wurrtemberg in a spatial database system.

  2. The impact of new developments on river water quality from an integrated system modelling perspective.

    PubMed

    Fu, Guangtao; Butler, David; Khu, Soon-Thiam

    2009-02-01

    New housing areas are a ubiquitous feature of modern life in the developing and developed world alike built in response to rising social, demographic and economic pressures. Inevitably, these new developments will have an impact on the environment around them. Empirical evidence confirms the close relationship between urbanisation and ambient water quality. However, what is lacking so far is a detailed and more generalised analysis of environmental impact at a relatively small scale. The aim of this paper is to quantify the impact of new developments on river water quality within an integrated system modelling perspective. To conduct the impact analyses, an existing integrated urban wastewater model was used to predict water flow and quality in the sewer system, treatment plant and receiving water body. The impact on combined sewer overflow (CSO) discharges, treatment plant effluent, and within the river at various reaches is analysed by 'locating' a new development on a semi-hypothetical urban catchment. River water quality is used as feedback to constrain the scale of the new development within different thresholds in compliance with water quality standards. Further, the regional sensitivity analysis (RSA) method is applied to reveal the parameters with the greatest impact on water quality. These analyses will help to inform town planners and water specialists who advise them, how to minimise the impact of such developments given the specific context.

  3. CAI: A Model for the Comparison and Selection of Integrated Learning Systems in Large School Districts.

    ERIC Educational Resources Information Center

    Resta, Paul E.; Rost, Paul

    The Albuquerque (New Mexico) Public Schools conducted a three-year study of integrated computer-based learning systems, including WICAT, Dolphin, PLATO, CCC, and DEGEM. Through cooperation with the Education Consolidation Improvement Act Chapter 1 program, four large integrated learning systems (ILS) were purchased and studied. They were installed…

  4. Integrated Assessment Model Evaluation

    NASA Astrophysics Data System (ADS)

    Smith, S. J.; Clarke, L.; Edmonds, J. A.; Weyant, J. P.

    2012-12-01

    Integrated assessment models of climate change (IAMs) are widely used to provide insights into the dynamics of the coupled human and socio-economic system, including emission mitigation analysis and the generation of future emission scenarios. Similar to the climate modeling community, the integrated assessment community has a two decade history of model inter-comparison, which has served as one of the primary venues for model evaluation and confirmation. While analysis of historical trends in the socio-economic system has long played a key role in diagnostics of future scenarios from IAMs, formal hindcast experiments are just now being contemplated as evaluation exercises. Some initial thoughts on setting up such IAM evaluation experiments are discussed. Socio-economic systems do not follow strict physical laws, which means that evaluation needs to take place in a context, unlike that of physical system models, in which there are few fixed, unchanging relationships. Of course strict validation of even earth system models is not possible (Oreskes etal 2004), a fact borne out by the inability of models to constrain the climate sensitivity. Energy-system models have also been grappling with some of the same questions over the last quarter century. For example, one of "the many questions in the energy field that are waiting for answers in the next 20 years" identified by Hans Landsberg in 1985 was "Will the price of oil resume its upward movement?" Of course we are still asking this question today. While, arguably, even fewer constraints apply to socio-economic systems, numerous historical trends and patterns have been identified, although often only in broad terms, that are used to guide the development of model components, parameter ranges, and scenario assumptions. IAM evaluation exercises are expected to provide useful information for interpreting model results and improving model behavior. A key step is the recognition of model boundaries, that is, what is inside

  5. Dynamic modeling and simulation of an integral bipropellant propulsion double-valve combined test system

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Wang, Huasheng; Xia, Jixia; Cai, Guobiao; Zhang, Zhenpeng

    2017-04-01

    For the pressure reducing regulator and check valve double-valve combined test system in an integral bipropellant propulsion system, a system model is established with modular models of various typical components. The simulation research is conducted on the whole working process of an experiment of 9 MPa working condition from startup to rated working condition and finally to shutdown. Comparison of simulation results with test data shows: five working conditions including standby, startup, rated pressurization, shutdown and halt and nine stages of the combined test system are comprehensively disclosed; valve-spool opening and closing details of the regulator and two check valves are accurately revealed; the simulation also clarifies two phenomena which test data are unable to clarify, one is the critical opening state in which the check valve spools slightly open and close alternately in their own fully closed positions, the other is the obvious effects of flow-field temperature drop and temperature rise in pipeline network with helium gas flowing. Moreover, simulation results with consideration of component wall heat transfer are closer to the test data than those under the adiabatic-wall condition, and more able to reveal the dynamic characteristics of the system in various working stages.

  6. Integrated model of G189A and Aspen-plus for the transient modeling of extravehicular activity atmospheric control systems

    NASA Technical Reports Server (NTRS)

    Kolodney, Matthew; Conger, Bruce C.

    1990-01-01

    A computerized modeling tool, under development for the transient modeling of an extravehicular activity atmospheric control subsystem is described. This subsystem includes the astronaut, temperature control, moisture control, CO2 removal, and oxygen make-up components. Trade studies evaluating competing components and subsystems to guide the selection and development of hardware for lunar and Martian missions will use this modeling tool. The integrated modeling tool uses the Advanced System for Process Engineering (ASPEN) to accomplish pseudosteady-state simulations, and the general environmental thermal control and life support program (G189A) to manage overall control of the run and transient input output, as well as transient modeling computations and database functions. Flow charts and flow diagrams are included.

  7. An Integrated Model for a Water Leasing System on the Middle Rio Grand, New Mexico

    NASA Astrophysics Data System (ADS)

    Brookshire, D. S.; Coursey, D. L.; Tidwell, V. C.; Broadbent, C. D.

    2006-12-01

    Since 1950 demand for water has more than doubled in the United States. Virtually all water supplies are allocated, leading to the question, where will water come from? The concept of water leasing has gained considerable attention as a volunteer, market-mediated system for transferring water between competing uses. For a water leasing system to be truly effective, detailed knowledge of the available water supply and the factors that affect water demand is critical. Improving understating of the factors that determine residential, industrial, and agricultural demand for water using experimental economics and then integrating with a hydrological model will allow for better understanding of market-based mechanisms potential to allocate water resources effectively. Currently we have three case studies underway, a generalized water leasing system on the Middle Rio Grande, a sophisticated farmer decision process and a study in the Mimbres basin in southern New Mexico. The developed market model utilizes an open market trading system known as a double auction, where buyers and sellers declare their bids and offers to the market. The developed hydrological model utilizes the Upper Rio Grande Water Operations Model (URGWOM) system structure and data for the generalized water leasing system and the farmer decision process, with a different hydrological model being developed for the Mimbres basin. A key coupling between the hydrologic and market models involves tracking the difference in river losses for trades that move water up or down the river. In the experiments the hydrological model runs before the market-trading period to establish water rights, the trading period occurs and the hydrological model then runs a second time to report flows to each reach of the river. Participants in the experiment represent the interests of specific users, including farmers, Native American interests, urban interests and environmental interests. Participants in the experiments are

  8. Modeling of integrated environmental control systems for coal-fired power plants

    SciTech Connect

    Rubin, E.S.

    1989-04-01

    This is the sixth quarterly report of DOE Contract No. DE-AC22- 87PC79863, entitled Modeling of Integrated Environmental Control Systems for Coal-Fired Power Plants.'' This report summarizes accomplishments during the period January 1, 1989 to March 31, 1989. Efforts this past quarter focused primarily on the preparation of a computer User's Guide for the Integrated Environmental Control Model (IECM). Drafts of the first two chapters are now complete. These chapters constitute the bulk of this quarterly report. Drafts of the remaining chapters are in preparation, and will appear in a future report this year. We also have been working closely with DOE/PETC to define the computer configuration to be transferred to PETC as a contract deliverable. That process is now complete and the equipment is on order. Delivery of the IECM to PETC is expected during the next calendar quarter. Finally, we are continuing our efforts to develop and refine a number of clean coal technology process models. These efforts will be summarized and reported at a future date.

  9. Dimer models, integrable systems and quantum Teichmüller space

    NASA Astrophysics Data System (ADS)

    Franco, Sebastián

    2011-09-01

    We introduce a correspondence between dimer models (and hence superconformal quivers) and the quantum Teichmüller space of the Riemann surfaces associated to them by mirror symmetry. Via the untwisting map, every brane tiling gives rise to a tiling of the Riemann surface with faces surrounding punctures. We explain how to obtain an ideal triangulation by dualizing this tiling. In order to do so, tiling nodes of valence greater than 3 (equivalently superpotential terms of order greater than 3 in the corresponding quiver gauge theories) must be decomposed by the introduction of 2-valent nodes. From a quiver gauge theory perspective, this operation corresponds to integrating-in massive fields. Fock coordinates in Teichmüller space are in one-to-one correspondence with chiral fields in the quiver. We present multiple explicit examples, including infinite families of theories, illustrating how the right number of Fock coordinates is generated by this procedure. Finally, we explain how Chekhov and Fock commutation relations between coordinates give rise to the commutators associated to dimer models by Goncharov and Kenyon in the context of quantum integrable systems. For generic dimer models (i.e. those containing nodes that are not 3-valent), this matching requires the introduction of a natural generalization of Chekhov and Fock rules. We also explain how urban renewal in the original brane tiling (Seiberg duality for the quivers) is mapped to flips of the ideal triangulation.

  10. Integration of environmental simulation models with satellite remote sensing and geographic information systems technologies: case studies

    USGS Publications Warehouse

    Steyaert, Louis T.; Loveland, Thomas R.; Brown, Jesslyn F.; Reed, Bradley C.

    1993-01-01

    Environmental modelers are testing and evaluating a prototype land cover characteristics database for the conterminous United States developed by the EROS Data Center of the U.S. Geological Survey and the University of Nebraska Center for Advanced Land Management Information Technologies. This database was developed from multi temporal, 1-kilometer advanced very high resolution radiometer (AVHRR) data for 1990 and various ancillary data sets such as elevation, ecological regions, and selected climatic normals. Several case studies using this database were analyzed to illustrate the integration of satellite remote sensing and geographic information systems technologies with land-atmosphere interactions models at a variety of spatial and temporal scales. The case studies are representative of contemporary environmental simulation modeling at local to regional levels in global change research, land and water resource management, and environmental simulation modeling at local to regional levels in global change research, land and water resource management and environmental risk assessment. The case studies feature land surface parameterizations for atmospheric mesoscale and global climate models; biogenic-hydrocarbons emissions models; distributed parameter watershed and other hydrological models; and various ecological models such as ecosystem, dynamics, biogeochemical cycles, ecotone variability, and equilibrium vegetation models. The case studies demonstrate the important of multi temporal AVHRR data to develop to develop and maintain a flexible, near-realtime land cover characteristics database. Moreover, such a flexible database is needed to derive various vegetation classification schemes, to aggregate data for nested models, to develop remote sensing algorithms, and to provide data on dynamic landscape characteristics. The case studies illustrate how such a database supports research on spatial heterogeneity, land use, sensitivity analysis, and scaling issues

  11. Integrated optimal allocation model for complex adaptive system of water resources management (II): Case study

    NASA Astrophysics Data System (ADS)

    Zhou, Yanlai; Guo, Shenglian; Xu, Chong-Yu; Liu, Dedi; Chen, Lu; Wang, Dong

    2015-12-01

    Climate change, rapid economic development and increase of the human population are considered as the major triggers of increasing challenges for water resources management. This proposed integrated optimal allocation model (IOAM) for complex adaptive system of water resources management is applied in Dongjiang River basin located in the Guangdong Province of China. The IOAM is calibrated and validated under baseline period 2010 year and future period 2011-2030 year, respectively. The simulation results indicate that the proposed model can make a trade-off between demand and supply for sustainable development of society, economy, ecology and environment and achieve adaptive management of water resources allocation. The optimal scheme derived by multi-objective evaluation is recommended for decision-makers in order to maximize the comprehensive benefits of water resources management.

  12. Modeling and Detecting Feature Interactions among Integrated Services of Home Network Systems

    NASA Astrophysics Data System (ADS)

    Igaki, Hiroshi; Nakamura, Masahide

    This paper presents a framework for formalizing and detecting feature interactions (FIs) in the emerging smart home domain. We first establish a model of home network system (HNS), where every networked appliance (or the HNS environment) is characterized as an object consisting of properties and methods. Then, every HNS service is defined as a sequence of method invocations of the appliances. Within the model, we next formalize two kinds of FIs: (a) appliance interactions and (b) environment interactions. An appliance interaction occurs when two method invocations conflict on the same appliance, whereas an environment interaction arises when two method invocations conflict indirectly via the environment. Finally, we propose offline and online methods that detect FIs before service deployment and during execution, respectively. Through a case study with seven practical services, it is shown that the proposed framework is generic enough to capture feature interactions in HNS integrated services. We also discuss several FI resolution schemes within the proposed framework.

  13. Model predictive control system and method for integrated gasification combined cycle power generation

    SciTech Connect

    Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

    2013-04-09

    Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

  14. Quantifying changes in water use and groundwater availability in a megacity using novel integrated systems modeling

    NASA Astrophysics Data System (ADS)

    Hyndman, D. W.; Xu, T.; Deines, J. M.; Cao, G.; Nagelkirk, R.; Viña, A.; McConnell, W.; Basso, B.; Kendall, A. D.; Li, S.; Luo, L.; Lupi, F.; Ma, D.; Winkler, J. A.; Yang, W.; Zheng, C.; Liu, J.

    2017-08-01

    Water sustainability in megacities is a growing challenge with far-reaching effects. Addressing sustainability requires an integrated, multidisciplinary approach able to capture interactions among hydrology, population growth, and socioeconomic factors and to reflect changes due to climate variability and land use. We developed a new systems modeling framework to quantify the influence of changes in land use, crop growth, and urbanization on groundwater storage for Beijing, China. This framework was then used to understand and quantify causes of observed decreases in groundwater storage from 1993 to 2006, revealing that the expansion of Beijing's urban areas at the expense of croplands has enhanced recharge while reducing water lost to evapotranspiration, partially ameliorating groundwater declines. The results demonstrate the efficacy of such a systems approach to quantify the impacts of changes in climate and land use on water sustainability for megacities, while providing a quantitative framework to improve mitigation and adaptation strategies that can help address future water challenges.

  15. ProcessGene-Connect: SOA Integration between Business Process Models and Enactment Transactions of Enterprise Software Systems

    NASA Astrophysics Data System (ADS)

    Wasser, Avi; Lincoln, Maya

    In recent years, both practitioners and applied researchers have become increasingly interested in methods for integrating business process models and enterprise software systems through the deployment of enabling middleware. Integrative BPM research has been mainly focusing on the conversion of workflow notations into enacted application procedures, and less effort has been invested in enhancing the connectivity between design level, non-workflow business process models and related enactment systems such as: ERP, SCM and CRM. This type of integration is useful at several stages of an IT system lifecycle, from design and implementation through change management, upgrades and rollout. The paper presents an integration method that utilizes SOA for connecting business process models with corresponding enterprise software systems. The method is then demonstrated through an Oracle E-Business Suite procurement process and its ERP transactions.

  16. On the integration of the baroreflex control mechanism in a heterogeneous model of the cardiovascular system.

    PubMed

    Blanco, P J; Trenhago, P R; Fernandes, L G; Feijóo, R A

    2012-04-01

    The aim of the present work is to describe the integration of a mathematical model for the baroreceptor reflex mechanism to provide regulatory action into a dimensionally heterogeneous (3D-1D-0D) closed-loop model of the cardiovascular system. Such heterogeneous model comprises a 1D description of the arterial tree, a 0D network for the venous, cardiac and pulmonary circulations and 3D patient-specific geometries for vascular districts of interest. Thus, the detailed topological description of the arterial network allows us to perform vasomotor control actions in a differentiated way, while gaining insight about the effects of the baroreflex regulation over hemodynamic quantities of interest throughout the entire network. Two examples of application are presented. Firstly, we simulate the hemorrhage in the abdominal aorta artery and analyze the action of the baroreflex over the system. Secondly, the self-regulated closed-loop model is applied to study the influence of the control action in the hemodynamic environment that determines the blood flow pattern in a cerebral aneurism in the presence of a regurgitating aortic valve.

  17. The SISMA prototype system: integrating Geophysical Modeling and Earth Observation for time dependent seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Peresan, A.; Panza, G. F.; Sabadini, R.; Barzaghi, R.; Amodio, A.; Bianco, G.

    2009-12-01

    A new approach to seismic hazard assessment is illustrated that, based on the available knowledge of the physical properties of the Earth structure and of seismic sources, as well as on the geophysical forward modeling, allows for a time dependent definition of the seismic input. According to the proposed approach, a fully formalized system integrating Earth Observation data and new advanced methods in seismological and geophysical data analysis, is currently under development in the framework of the Pilot Project SISMA, funded by the Italian Space Agency (ASI). The synergic use of geodetic Earth Observation data (EO) and Geophysical Forward Modeling (GFM) deformation maps at the national scale complements the space and time dependent information provided by real-time monitoring of seismic flow (performed by means of the earthquake prediction algorithms CN and M8S), so as to permit the identification and routine updating of alerted areas. At the small spatial scale (tens of km) of the seismogenic nodes identified by pattern recognition analysis, both GNSS (Global Navigation Satellite System) and SAR (Synthetic Aperture Radar) techniques, coupled with expressly developed models for inter-seismic phases, allow us to retrieve the deformation style and stress evolution within the seismogenic areas. The displacements fields obtained from EO data provide the input for the geophysical modeling, which permits to indicate whether a specific fault is in a "critical state". The scenarios of expected ground motion, associated with the alerted areas are then defined by means of full waveforms modeling, based on the possibility to compute synthetic seismograms by the modal summation technique. In this way a set of deterministic scenarios of ground motion, which refers to the time interval when a strong event is likely to occur within the alerted area, can be defined either at national and local scale. The considered integrated approach opens new routes in understanding the

  18. Global/Regional Integrated Model System (GRIMs): Double Fourier Series (DFS) Dynamical Core

    NASA Astrophysics Data System (ADS)

    Koo, M.; Hong, S.

    2013-12-01

    A multi-scale atmospheric/oceanic model system with unified physics, the Global/Regional Integrated Model system (GRIMs) has been created for use in numerical weather prediction, seasonal simulations, and climate research projects, from global to regional scales. It includes not only the model code, but also the test cases and scripts. The model system is developed and practiced by taking advantage of both operational and research applications. We outlines the history of GRIMs, its current applications, and plans for future development, providing a summary useful to present and future users. In addition to the traditional spherical harmonics (SPH) dynamical core, a new spectral method with a double Fourier series (DFS) is available in the GRIMs (Table 1). The new DFS dynamical core with full physics is evaluated against the SPH dynamical core in terms of short-range forecast capability for a heavy rainfall event and seasonal simulation framework. Comparison of the two dynamical cores demonstrates that the new DFS dynamical core exhibits performance comparable to the SPH in terms of simulated climatology accuracy and the forecast of a heavy rainfall event. Most importantly, the DFS algorithm guarantees improved computational efficiency in the cluster computer as the model resolution increases, which is consistent with theoretical values computed from the dry primitive equation model framework of Cheong (Fig. 1). The current study shows that, at higher resolutions, the DFS approach can be a competitive dynamical core because the DFS algorithm provides the advantages of both the spectral method for high numerical accuracy and the grid-point method for high performance computing in the aspect of computational cost. GRIMs dynamical cores

  19. An Integrated Gulf Coast Monitoring System Using Field, Remote Sensing and Model Results (Invited)

    NASA Astrophysics Data System (ADS)

    D'Sa, E. J.; Ko, D. S.; Stone, G.; Walker, N. D.

    2010-12-01

    The northern Gulf of Mexico is strongly influenced by the discharge of water, nutrients, dissolved and suspended particulate matter from the Mississippi-Atchafalaya River system, the largest in North America. It is also frequently impacted by energetic meteorological events that cause storm surge, high waves and affects water quality along its coastal waters. We describe the components of an integrated web-based Gulf Coast Information System (GCIS) (http://gulf-coast.lsu.edu) developed to serve remotely sensed products from a number of NASA satellite sensors such as the SeaWiFS and MODIS ocean color and the QuikSCAT wind sensors. GCIS also serves high-resolution nowcast and 48-hour forecast outputs (sea level variations, temperature, salinity and currents) from a 3-dimensional NCOM coastal circulation model for the coastal states of Mississippi, Louisiana and Texas. The GCIS is coupled to the near real-time outputs of a field monitoring and satellite receiving system, the Wave-Current Information System (WAVCIS) (http://www.wavcis.lsu.edu) and Earth Scan Laboratory (ESL) (www.esl.lsu.edu), respectively that provide critical decision support during hurricanes to the Gulf Coast. We present results on the use of the combined field, satellite and model outputs to monitor the effects of fronts, hurricanes, oil spill and the potential to study longer term climate impacts along the Gulf coast.

  20. Mercury Lightcraft Project Update: 3-D Modeling, Systems Analysis and Integration

    NASA Astrophysics Data System (ADS)

    Buckton, Thomas W.; Myrabo, Leik N.

    2005-04-01

    This paper is a progress report on the laser-propelled Mercury Lightcraft Project at Rensselaer Polytechnic Institute. The laser-propelled, 1-person craft has a diameter of 252-cm, height of 217-cm, internal volume of 3 m3, `dry' mass of 700 kg, and gross liftoff mass of 1 metric ton. Expendable liquids including 70 kg of liquid hydrogen, and an equivalent mass (at least) of de-ionized water serves as open-cycle coolants for the 520 MWe laser/electric power conversion system. Its hyper-energetic airbreathing engine can easily accelerate the vehicle at 10 Gs or more. The tractor-beam lightcraft is intended as a prototype for use in a future global aerospace transportation system based on a constellation of satellite solar power stations in geostationary orbit, with laser relay stations in low Earth orbit. Using SolidWorks® 3-D modeling software, several important features were successfully integrated into the Mercury lightcraft model - principally: a rotating shroud (for spin stabilization) simple actuation system for a new variable-geometry air inlet; refined optical train for the laser-heated H2 plasma generators; pneumatically deployed, robotic quadra-pod landing gear; ejection seat/pod/hatch system; and a more detailed airframe structural concept. The CAD effort has brought the Mercury Lightcraft concept one significant step closer to reality.

  1. An integrated material metabolism model for stocks of urban road system in Beijing, China.

    PubMed

    Guo, Zhen; Hu, Dan; Zhang, Fuhua; Huang, Guolong; Xiao, Qiang

    2014-02-01

    Rapid urbanization has greatly altered the urban metabolism of material and energy. As a significant part of the infrastructure, urban roads are being rapidly developed worldwide. Quantitative analysis of metabolic processes on urban road systems, especially the scale, composition and spatial distribution of their stocks, could help to assess the resource appropriation and potential environmental impacts, as well as improve urban metabolism models. In this paper, an integrated model, which covered all types of roads, intersection structures and ancillary facilities, was built for calculating the material stocks of urban road systems. Based on a bottom-up method, the total stocks were disassembled into a number of stock parts rather than obtained by input-output data, which provided an approach promoting data availability and inner structure understanding. The combination with GIS enabled the model to tackle the complex structures of road networks and avoid double counting. In the case study of Beijing, the following results are shown: 1) The total stocks for the entire road system reached 159 million tons, of which nearly 80% was stored in roads, and 20% in ancillary facilities. 2) Macadam was the largest stock (111 million tons), while stone mastic asphalt, polyurethane plastics, and atactic polypropylene accounted for smaller components of the overall system. 3) The stock per unit area of pedestrian overcrossing was higher than that of the other stock units in the entire system, and its steel stocks reached 0.49 t/m(2), which was 10 times as high as that in interchanges. 4) The high stock areas were mainly distributed in ring-shaped and radial expressways, as well as in major interchanges. 5) Expressways and arterials were excessively emphasized, while minor roads were relatively ignored. However, the variation of cross-sectional thickness in branches and neighborhood roads will have a significant impact on the scale of material stocks in the entire road system.

  2. Integrated analysis environment for high impact systems

    SciTech Connect

    Martinez, M.; Davis, J.; Scott, J.; Sztipanovits, J.; Karsai, G.

    1998-02-01

    Modeling and analysis of high consequence, high assurance systems requires special modeling considerations. System safety and reliability information must be captured in the models. Previously, high consequence systems were modeled using separate, disjoint models for safety, reliability, and security. The MultiGraph Architecture facilitates the implementation of a model integrated system for modeling and analysis of high assurance systems. Model integrated computing allows an integrated modeling technique to be applied to high consequence systems. Among the tools used for analyzing safety and reliability are a behavioral simulator and an automatic fault tree generation and analysis tool. Symbolic model checking techniques are used to efficiently investigate the system models. A method for converting finite state machine models to ordered binary decision diagrams allows the application of symbolic model checking routines to the integrated system models. This integrated approach to modeling and analysis of high consequence systems ensures consistency between the models and the different analysis tools.

  3. The MIT Integrated Global System Model: A facility for Assessing and Communicating Climate Change Uncertainty (Invited)

    NASA Astrophysics Data System (ADS)

    Prinn, R. G.

    2013-12-01

    The world is facing major challenges that create tensions between human development and environmental sustenance. In facing these challenges, computer models are invaluable tools for addressing the need for probabilistic approaches to forecasting. To illustrate this, I use the MIT Integrated Global System Model framework (IGSM; http://globalchange.mit.edu ). The IGSM consists of a set of coupled sub-models of global economic and technological development and resultant emissions, and physical, dynamical and chemical processes in the atmosphere, land, ocean and ecosystems (natural and managed). Some of the sub-models have both complex and simplified versions available, with the choice of which version to use being guided by the questions being addressed. Some sub-models (e.g.urban air pollution) are reduced forms of complex ones created by probabilistic collocation with polynomial chaos bases. Given the significant uncertainties in the model components, it is highly desirable that forecasts be probabilistic. We achieve this by running 400-member ensembles (Latin hypercube sampling) with different choices for key uncertain variables and processes within the human and natural system model components (pdfs of inputs estimated by model-observation comparisons, literature surveys, or expert elicitation). The IGSM has recently been used for probabilistic forecasts of climate, each using 400-member ensembles: one ensemble assumes no explicit climate mitigation policy and others assume increasingly stringent policies involving stabilization of greenhouse gases at various levels. These forecasts indicate clearly that the greatest effect of these policies is to lower the probability of extreme changes. The value of such probability analyses for policy decision-making lies in their ability to compare relative (not just absolute) risks of various policies, which are less affected by the earth system model uncertainties. Given the uncertainties in forecasts, it is also clear that

  4. Integrating Soft Set Theory and Fuzzy Linguistic Model to Evaluate the Performance of Training Simulation Systems

    PubMed Central

    Chang, Kuei-Hu; Chang, Yung-Chia; Chain, Kai; Chung, Hsiang-Yu

    2016-01-01

    The advancement of high technologies and the arrival of the information age have caused changes to the modern warfare. The military forces of many countries have replaced partially real training drills with training simulation systems to achieve combat readiness. However, considerable types of training simulation systems are used in military settings. In addition, differences in system set up time, functions, the environment, and the competency of system operators, as well as incomplete information have made it difficult to evaluate the performance of training simulation systems. To address the aforementioned problems, this study integrated analytic hierarchy process, soft set theory, and the fuzzy linguistic representation model to evaluate the performance of various training simulation systems. Furthermore, importance–performance analysis was adopted to examine the influence of saving costs and training safety of training simulation systems. The findings of this study are expected to facilitate applying military training simulation systems, avoiding wasting of resources (e.g., low utility and idle time), and providing data for subsequent applications and analysis. To verify the method proposed in this study, the numerical examples of the performance evaluation of training simulation systems were adopted and compared with the numerical results of an AHP and a novel AHP-based ranking technique. The results verified that not only could expert-provided questionnaire information be fully considered to lower the repetition rate of performance ranking, but a two-dimensional graph could also be used to help administrators allocate limited resources, thereby enhancing the investment benefits and training effectiveness of a training simulation system. PMID:27598390

  5. Integrating Soft Set Theory and Fuzzy Linguistic Model to Evaluate the Performance of Training Simulation Systems.

    PubMed

    Chang, Kuei-Hu; Chang, Yung-Chia; Chain, Kai; Chung, Hsiang-Yu

    2016-01-01

    The advancement of high technologies and the arrival of the information age have caused changes to the modern warfare. The military forces of many countries have replaced partially real training drills with training simulation systems to achieve combat readiness. However, considerable types of training simulation systems are used in military settings. In addition, differences in system set up time, functions, the environment, and the competency of system operators, as well as incomplete information have made it difficult to evaluate the performance of training simulation systems. To address the aforementioned problems, this study integrated analytic hierarchy process, soft set theory, and the fuzzy linguistic representation model to evaluate the performance of various training simulation systems. Furthermore, importance-performance analysis was adopted to examine the influence of saving costs and training safety of training simulation systems. The findings of this study are expected to facilitate applying military training simulation systems, avoiding wasting of resources (e.g., low utility and idle time), and providing data for subsequent applications and analysis. To verify the method proposed in this study, the numerical examples of the performance evaluation of training simulation systems were adopted and compared with the numerical results of an AHP and a novel AHP-based ranking technique. The results verified that not only could expert-provided questionnaire information be fully considered to lower the repetition rate of performance ranking, but a two-dimensional graph could also be used to help administrators allocate limited resources, thereby enhancing the investment benefits and training effectiveness of a training simulation system.

  6. System integration report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.; Korein, J. D.; Meyer, C.; Manoochehri, K.; Rovins, J.; Beale, J.; Barr, B.

    1985-01-01

    Several areas that arise from the system integration issue were examined. Intersystem analysis is discussed as it relates to software development, shared data bases and interfaces between TEMPUS and PLAID, shaded graphics rendering systems, object design (BUILD), the TEMPUS animation system, anthropometric lab integration, ongoing TEMPUS support and maintenance, and the impact of UNIX and local workstations on the OSDS environment.

  7. Human Systems Integration Requirements

    DTIC Science & Technology

    2009-09-01

    HUMAN SYSTEMS INTEGRATION OFFICE HUMAN SYSTEMS INTEGRATION REQUIREMENTS POCKET GUIDE SEPTEMBER 2009 Report Documentation Page Form ApprovedOMB No...collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE SEP 2009 2. REPORT TYPE Pocket Guide 3. DATES...COVERED 00-09-2009 to 00-12-2011 4. TITLE AND SUBTITLE Human Systems Integration Requirements Pocket Guide 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  8. Integrated decision-making about housing, energy and wellbeing: a qualitative system dynamics model.

    PubMed

    Macmillan, Alexandra; Davies, Michael; Shrubsole, Clive; Luxford, Naomi; May, Neil; Chiu, Lai Fong; Trutnevyte, Evelina; Bobrova, Yekatherina; Chalabi, Zaid

    2016-03-08

    integrated approach to housing. The qualitative model has begun to improve the assessment of future policy options across a broad range of outcomes. Future work is needed to validate the model and increase its utility through computer simulation incorporating best quality data and evidence. Combining system dynamics modelling with other methods for weighing up policy options, as well as methods to support shifts in the conceptual frameworks underpinning policy, will be necessary to achieve shared housing goals across physical, mental, environmental, economic and social wellbeing.

  9. Holistic Modeling, Design & Analysis of Integrated Stirling and Auxiliary Clean Energy Systems for Combined Heat and Power Applications

    NASA Astrophysics Data System (ADS)

    Nayak, Amrit Om

    The research revolves around the development of a model to design and analyze Stirling systems. Lack of a standard approach to study Stirling systems and difficulty in generalizing existing approaches pose stiff challenges. A stable mathematical model (integrated second order adiabatic and dynamic model) is devised and validated for general use. The research attempts to design compact combined heat and power (CHP) system to run on multiple biomass fuels and solar energy. Analysis is also carried out regarding the design of suitable auxiliary systems like thermal energy storage system, biomass moisture removal system and Fresnel solar collector for the CHP Stirling system.

  10. Modeling the Integration of Open Systems and Evolutionary Acquisition in DoD Programs

    DTIC Science & Technology

    2008-06-06

    Integration Production Readiness, LRIP & IOT &E Full Rate Production & Deployment 80% Solution FRP 80% Solution LRIP System Development...Demonstration System Demonstration System Integration Full Rate Production & Deployment Production & Deployment Production Readiness, LRIP & IOT &E...FRP2 Milestones, Iter #3 A3 B3 DRR3 C3 FRP3 Time Periods Figure 4. Information Flows in a Three-block Acquisition Project = = ^Åèìáëáíáçå=oÉëÉ

  11. Avionics systems integration technology

    NASA Technical Reports Server (NTRS)

    Stech, George; Williams, James R.

    1988-01-01

    A very dramatic and continuing explosion in digital electronics technology has been taking place in the last decade. The prudent and timely application of this technology will provide Army aviation the capability to prevail against a numerically superior enemy threat. The Army and NASA have exploited this technology explosion in the development and application of avionics systems integration technology for new and future aviation systems. A few selected Army avionics integration technology base efforts are discussed. Also discussed is the Avionics Integration Research Laboratory (AIRLAB) that NASA has established at Langley for research into the integration and validation of avionics systems, and evaluation of advanced technology in a total systems context.

  12. State-of-The-Art of Modeling Methodologies and Optimization Operations in Integrated Energy System

    NASA Astrophysics Data System (ADS)

    Zheng, Zhan; Zhang, Yongjun

    2017-08-01

    Rapid advances in low carbon technologies and smart energy communities are reshaping future patterns. Uncertainty in energy productions and demand sides are paving the way towards decentralization management. Current energy infrastructures could not meet with supply and consumption challenges, along with emerging environment and economic requirements. Integrated Energy System(IES) whereby electric power, natural gas, heating couples with each other demonstrates that such a significant technique would gradually become one of main comprehensive and optimal energy solutions with high flexibility, friendly renewables absorption and improving efficiency. In these global energy trends, we summarize this literature review. Firstly the accurate definition and characteristics of IES have been presented. Energy subsystem and coupling elements modeling issues are analyzed. It is pointed out that decomposed and integrated analysis methods are the key algorithms for IES optimization operations problems, followed by exploring the IES market mechanisms. Finally several future research tendencies of IES, such as dynamic modeling, peer-to-peer trading, couple market design, sare under discussion.

  13. GIBSI: an integrated modelling system for watershed management - sample applications and current developments

    NASA Astrophysics Data System (ADS)

    Quilbé, R.; Rousseau, A. N.

    2007-11-01

    Hydrological and pollutant fate models have long been developed for research purposes. Today, they find an application in integrated watershed management, as decision support systems (DSS). GIBSI is such a DSS designed to assist stakeholders in watershed management. It includes a watershed database coupled to a GIS and accessible through a user-friendly interface, as well as modelling tools that simulate, on a daily time step, hydrological processes such as evapotranspiration, runoff, soil erosion, agricultural pollutant transport and surface water quality. Therefore, GIBSI can be used to assess a priori the effect of management scenarios (reservoirs, land use, waste water effluents, diffuse sources of pollution that is agricultural pollution) on surface hydrology and water quality. For illustration purposes, this paper presents several management-oriented applications using GIBSI on the 6680 km2 Chaudière River watershed, located near Quebec City (Canada). They include impact assessments of: (i) municipal clean water program; (ii) agricultural nutrient management scenarios; (iii) past and future land use changes, as well as (iv) determination of achievable performance standards of pesticides management practices. Current and future developments of GIBSI are also presented as these will extend current uses of this tool and make it useable and applicable by stakeholders on other watersheds. Finally, the conclusion emphasizes some of the challenges that remain for a better use of DSS in integrated watershed management.

  14. The Parallel System for Integrating Impact Models and Sectors (pSIMS)

    NASA Technical Reports Server (NTRS)

    Elliott, Joshua; Kelly, David; Chryssanthacopoulos, James; Glotter, Michael; Jhunjhnuwala, Kanika; Best, Neil; Wilde, Michael; Foster, Ian

    2014-01-01

    We present a framework for massively parallel climate impact simulations: the parallel System for Integrating Impact Models and Sectors (pSIMS). This framework comprises a) tools for ingesting and converting large amounts of data to a versatile datatype based on a common geospatial grid; b) tools for translating this datatype into custom formats for site-based models; c) a scalable parallel framework for performing large ensemble simulations, using any one of a number of different impacts models, on clusters, supercomputers, distributed grids, or clouds; d) tools and data standards for reformatting outputs to common datatypes for analysis and visualization; and e) methodologies for aggregating these datatypes to arbitrary spatial scales such as administrative and environmental demarcations. By automating many time-consuming and error-prone aspects of large-scale climate impacts studies, pSIMS accelerates computational research, encourages model intercomparison, and enhances reproducibility of simulation results. We present the pSIMS design and use example assessments to demonstrate its multi-model, multi-scale, and multi-sector versatility.

  15. Assessing Urban Wastewater System Upgrades Using Integrated Modeling, Life Cycle Analysis, and Shadow Pricing.

    PubMed

    Hadjimichael, Antonia; Morera, Serni; Benedetti, Lorenzo; Flameling, Tony; Corominas, Lluís; Weijers, Stefan; Comas, Joaquim

    2016-12-06

    This study assesses the environmental impacts of four measures proposed for upgrading of the urban wastewater system of Eindhoven and the Dommel River in The Netherlands, against the base case, "do-nothing" option. The measures aim to reduce the overall environmental impact of the Eindhoven urban wastewater system (UWS) by targeting river dissolved oxygen depletion and ammonia peaks, reducing combined sewer overflows, and enhancing nutrient removal. The measures are evaluated using a life cycle analysis with the boundaries including the receiving river section by means of an integrated model of the UWS. An uncertainty analysis of the estimated impacts has been performed to support the outcomes. The study also uses the economic concept of shadow prices to assign relative weights of socio-economic importance to the estimated life cycle impacts. This novel integration of tools complements the assessments of this UWS with the inclusion of long-term global environmental impacts and the investigation of trade-offs between different environmental impacts through a single monetary unit. The results support the selection of deeper clarifiers as the most environmentally beneficial measure for upgrade.

  16. Evaluation of medium-range weather forecasts about Korea Institute of Atmospheric Prediction Systems (KIAPS) Integrated Model System (KIM)

    NASA Astrophysics Data System (ADS)

    Lee, J.; Seol, K. H.

    2015-12-01

    The Korea Institute of Atmospheric Prediction Systems (KIAPS) is a government funded non-profit research and development institute located in Seoul, South Korea. KIAPS was established in 2011 by the Korea Meteorological Administration, KIAPS' primary sponsor. KIAPS is developing the KIAPS Integrated Model System (KIM), a backbone for the next-generation operational global numerical weather prediction (NWP) system. The KIM will be a unified model that can be used for global modeling as well as local areas, particularly optimized to topographic and meteorological features of the Korean Peninsula. We have been completed developing major model components based on KIAPS own research and release the KIAPS beta version model on September 2014. We evaluated the results of KIM by using verification system developed KIAPS, it is composed of standard verification score based on WMO report. The system consists of four parts: verification against analysis, observations, vertical verification and quantitative precipitation forecasts. The results of verification against analysis, we found that increase of error for temperature under 700 hPa. In case of MSLP, poor performance except for tropical region is represented, and the increase of error for geopotential height is shown in tropical region. For verification against observations, positive bias is represented for upper level geopotential height, for low level wind speed in tropical region in summer, for all level wind speed in Northern Hemisphere in winter, and for specific humidity in Northern Hemisphere in summer. As previously stated about the result against analysis, cold bias for low level temperature is shown in Northern Hemisphere in summer. In case of verification for rain about KIM, the model value is underestimated in heavy rain category in summer, on the contrary, that is overestimated in heavy rain category in winter. Overall, there is overestimation in ocean for all models. Our findings indicate that continuing

  17. HIV Education and Welfare Services in Primary Care: An Empirical Model of Integration in Brazil’s Unified Health System

    PubMed Central

    Rahman, Rahbel; Pinto, Rogério M.; Wall, Melanie M.

    2017-01-01

    Integration of health education and welfare services in primary care systems is a key strategy to solve the multiple determinants of chronic diseases, such as Human Immunodeficiency Virus Infection and Acquired Immune Deficiency Syndrome (HIV/AIDS). However, there is a scarcity of conceptual models from which to build integration strategies. We provide a model based on cross-sectional data from 168 Community Health Agents, 62 nurses, and 32 physicians in two municipalities in Brazil’s Unified Health System (UHS). The outcome, service integration, comprised HIV education, community activities (e.g., health walks and workshops), and documentation services (e.g., obtainment of working papers and birth certificates). Predictors included individual factors (provider confidence, knowledge/skills, perseverance, efficacy); job characteristics (interprofessional collaboration, work-autonomy, decision-making autonomy, skill variety); and organizational factors (work conditions and work resources). Structural equation modeling was used to identify factors associated with service integration. Knowledge and skills, skill variety, confidence, and perseverance predicted greater integration of HIV education alongside community activities and documentation services. Job characteristics and organizational factors did not predict integration. Our study offers an explanatory model that can be adapted to examine other variables that may influence integration of different services in global primary healthcare systems. Findings suggest that practitioner trainings to improve integration should focus on cognitive constructs—confidence, perseverance, knowledge, and skills. PMID:28335444

  18. HIV Education and Welfare Services in Primary Care: An Empirical Model of Integration in Brazil's Unified Health System.

    PubMed

    Rahman, Rahbel; Pinto, Rogério M; Wall, Melanie M

    2017-03-14

    Integration of health education and welfare services in primary care systems is a key strategy to solve the multiple determinants of chronic diseases, such as Human Immunodeficiency Virus Infection and Acquired Immune Deficiency Syndrome (HIV/AIDS). However, there is a scarcity of conceptual models from which to build integration strategies. We provide a model based on cross-sectional data from 168 Community Health Agents, 62 nurses, and 32 physicians in two municipalities in Brazil's Unified Health System (UHS). The outcome, service integration, comprised HIV education, community activities (e.g., health walks and workshops), and documentation services (e.g., obtainment of working papers and birth certificates). Predictors included individual factors (provider confidence, knowledge/skills, perseverance, efficacy); job characteristics (interprofessional collaboration, work-autonomy, decision-making autonomy, skill variety); and organizational factors (work conditions and work resources). Structural equation modeling was used to identify factors associated with service integration. Knowledge and skills, skill variety, confidence, and perseverance predicted greater integration of HIV education alongside community activities and documentation services. Job characteristics and organizational factors did not predict integration. Our study offers an explanatory model that can be adapted to examine other variables that may influence integration of different services in global primary healthcare systems. Findings suggest that practitioner trainings to improve integration should focus on cognitive constructs-confidence, perseverance, knowledge, and skills.

  19. Video integrated measurement system.

    PubMed

    Spector, B; Eilbert, L; Finando, S; Fukuda, F

    1982-06-01

    A Video Integrated Measurement (VIM) System is described which incorporates the use of various noninvasive diagnostic procedures (moire contourography, electromyography, posturometry, infrared thermography, etc.), used individually or in combination, for the evaluation of neuromusculoskeletal and other disorders and their management with biofeedback and other therapeutic procedures. The system provides for measuring individual diagnostic and therapeutic modes, or multiple modes by split screen superimposition, of real time (actual) images of the patient and idealized (ideal-normal) models on a video monitor, along with analog and digital data, graphics, color, and other transduced symbolic information. It is concluded that this system provides an innovative and efficient method by which the therapist and patient can interact in biofeedback training/learning processes and holds considerable promise for more effective measurement and treatment of a wide variety of physical and behavioral disorders.

  20. Integrated Modeling and Simulation Verification, Validation, and Accreditation Strategy for Exploration Systems Mission Directorate

    NASA Technical Reports Server (NTRS)

    Hale, Joseph P.

    2006-01-01

    Models and simulations (M&S) are critical resources in the exploration of space. They support program management, systems engineering, integration, analysis, test, and operations and provide critical information and data supporting key analyses and decisions (technical, cost and schedule). Consequently, there is a clear need to establish a solid understanding of M&S strengths and weaknesses, and the bounds within which they can credibly support decision-making. Their usage requires the implementation of a rigorous approach to verification, validation and accreditation (W&A) and establishment of formal process and practices associated with their application. To ensure decision-making is suitably supported by information (data, models, test beds) from activities (studies, exercises) from M&S applications that are understood and characterized, ESMD is establishing formal, tailored W&A processes and practices. In addition, to ensure the successful application of M&S within ESMD, a formal process for the certification of analysts that use M&S is being implemented. This presentation will highlight NASA's Exploration Systems Mission Directorate (ESMD) management approach for M&S W&A to ensure decision-makers receive timely information on the model's fidelity, credibility, and quality.

  1. Integrated System Dynamics Modelling for water scarcity assessment: case study of the Kairouan region.

    PubMed

    Sušnik, Janez; Vamvakeridou-Lyroudia, Lydia S; Savić, Dragan A; Kapelan, Zoran

    2012-12-01

    A System Dynamics Model (SDM) assessing water scarcity and potential impacts of socio-economic policies in a complex hydrological system is developed. The model, simulating water resources deriving from numerous catchment sources and demand from four sectors (domestic, industrial, agricultural, external pumping), contains multiple feedback loops and sub-models. The SDM is applied to the Merguellil catchment, Tunisia; the first time such an integrated model has been developed for the water scarce Kairouan region. The application represents an early step in filling a critical research gap. The focus of this paper is to a) assess the applicability of SDM for assessment of the evolution of a water-scarce catchment and b) to analyse the current and future behaviour of the catchment to evaluate water scarcity, focusing on understanding trends to inform policy. Baseline results indicate aquifer over-exploitation, agreeing with observed trends. If current policy and social behaviour continue, serious aquifer depletion is possible in the not too distant future, with implications for the economy and environment. This is unlikely to occur because policies preventing depletion will be implemented. Sensitivity tests were carried out to show which parameters most impacted aquifer behaviour. Results show non-linear model behaviour. Some tests showed negligible change in behaviour. Others showed unrealistic exponential changes in demand, revenue and aquifer water volume. Policy-realistic parameters giving the greatest positive impact on model behaviour were those controlling per-capita domestic water demand and the pumped volume to coastal cities. All potentially beneficial policy options should be considered, giving the best opportunity for preservation of Kairouan aquifer water quantity/quality, ecologically important habitats and the agricultural socio-economic driver of regional development. SDM is a useful tool for assessing the potential impacts of possible policy measures

  2. An integrated air pollution modeling system for urban and regional scales: 2. Simulations for SCAQS 1987

    NASA Astrophysics Data System (ADS)

    Lu, Rong; Turco, Richard P.; Jacobson, Mark Z.

    1997-03-01

    A new air quality modeling system, the surface meteorology and ozone generation (SMOG) model, is used to investigate the evolution and properties of air pollution in the Los Angeles basin during the southern California air quality study (SCAQS) intensive field program. The SMOG model includes four major components: a meteorological model, a tracer transport code, a chemistry and aerosol microphysics model, and a radiative transfer code. The fidelity of the coupled modeling system is evaluated by comparing model predictions against SCAQS data. Predictions of surface winds and temperatures are found to be in excellent agreement with measurements during daylight hours, when a strong sea breeze and mountain-upslope flows are predominant but are less reliable at night when winds are typically lighter and more variable. Winds aloft, including shear and temporal variations, are also simulated quite well, although the forecasts (which are not constrained through continuous data assimilation) tend to drift from actual conditions as time progresses. Accordingly, the large-scale flow is reinitialized each morning in the simulations. The dispersion patterns of two inert tracers released during the SCAQS period are accurately reproduced by the model. The two releases, one in the early morning hours and one around noon, led to quite different transport rates and distributions owing to the evolution of the sea breeze over die course of the day. Overall, the three-dimensional development of thermally induced winds and their influences on tracer transport in the Los Angeles basin are accurately captured by the model. The predicted surface concentrations of ozone and other key pollutants have been spatially and temporally correlated with measured abundance, and the values agree to within 25-30% for ozone, with somewhat larger mean differences for several other species. In the case of the vertical distribution of ozone, the SMOG simulations generate dense oxidant (ozone) layers

  3. Human cancer classification: a systems biology- based model integrating morphology, cancer stem cells, proteomics, and genomics.

    PubMed

    Idikio, Halliday A

    2011-02-22

    Human cancer classification is currently based on the idea of cell of origin, light and electron microscopic attributes of the cancer. What is not yet integrated into cancer classification are the functional attributes of these cancer cells. Recent innovative techniques in biology have provided a wealth of information on the genomic, transcriptomic and proteomic changes in cancer cells. The emergence of the concept of cancer stem cells needs to be included in a classification model to capture the known attributes of cancer stem cells and their potential contribution to treatment response, and metastases. The integrated model of cancer classification presented here incorporates all morphology, cancer stem cell contributions, genetic, and functional attributes of cancer. Integrated cancer classification models could eliminate the unclassifiable cancers as used in current classifications. Future cancer treatment may be advanced by using an integrated model of cancer classification.

  4. Problems with integrating legacy systems.

    PubMed Central

    van Mulligen, E. M.; Cornet, R.; Timmers, T.

    1995-01-01

    The economic and organizational impact of imposing state-of-the-art technology to the large number of proprietary legacy systems operational in most hospitals requires integrated clinical professional workstations to provide flexible encapsulation mechanisms for these systems rather than reengineering these systems to this new technology. In this paper the implications of different input/output and translation models of legacy systems for their integration into a clinical workstation is described. Examples of legacy systems that have been integrated in the HERMES clinical workstation are presented as examples of the range of difficulties one might encounter. The features that an integrated workstation should offer for integrating a broad range of legacy systems are also addressed in this paper. PMID:8563389

  5. Integrated modeling for the VLTI

    NASA Astrophysics Data System (ADS)

    Mueller, Michael; Wilhelm, Rainer; Baier, Horst; Koehler, Bertrand

    2003-02-01

    Within the scope of the Very Large Telescope Interferometer (VLTI) project, a set of software tools for integrated modeling of ground- and space-based stellar interferometers has been developed. Integrated modeling aims at time-dependent system analysis combining different technical disciplines (optics, mechanical structure, control system with sensors and actuators, environmental disturbances). The main components of the software are BeamWarrior, a tool for creation of dynamic optical models, and SMI (Structural Modeling Interface), which generates linear state-space models from finite element models of a mechanical structure. Based on these tools, models of the various subsystems (e.g. telescope, delay line, beam combiner) can be created in the relevant technical disciplines (e.g. optics, structure). All subsystem models are integrated into the Matlab/Simulink environment for dynamic control system simulations. The output of the dynamic model is a complete description of the time-dependent electromagnetic field in each interferometer arm. This output serves as input to an instrument model simulating the creation of interference fringes. This paper shows the application of the integrated modeling concept to the VLTI. The architecture of a Simulink-based integrated model with its main components, telescope structures, optics and control loops, is presented. Disturbance models for wind load, seismic ground excitation and atmospheric turbulence are included. Beam combination is performed using a simplified model of the VINCI instrument. Results of closed-loop dynamic simulations are presented.

  6. Integrating water data, models and forecasts - the Australian Water Resources Information System (Invited)

    NASA Astrophysics Data System (ADS)

    Argent, R.; Sheahan, P.; Plummer, N.

    2010-12-01

    working with the OGC’s Hydrology Domain Working Group on the development of WaterML 2, which will provide an international standard applicable to a sub-set of the information handled by WDTF. Making water data accessible for multiple uses, such as for predictive models and external products, has required the development of consistent data models for describing the relationships between the various data elements. Early development of the AWRIS data model has utilised a model-driven architecture approach, the benefits of which are likely to accrue in the long term, as more products and services are developed from the common core. Moving on from our initial focus on data organisation and management, the Bureau is in the early stages of developing an integrated modelling suite (the Bureau Hydrological Modelling System - BHMS) which will encompass the variety of hydrological modelling needs of the Bureau, ranging from water balances, assessments and accounts, to streamflow and hydrological forecasting over scales from hours and days to years and decades. It is envisaged that this modelling suite will also be developed, as far as possible, using standardised, discoverable services to enhance data-model and model-model integration.

  7. Integrated Experimental and Modelling Research for Non-Ferrous Smelting and Recycling Systems

    NASA Astrophysics Data System (ADS)

    Jak, Evgueni; Hidayat, Taufiq; Shishin, Denis; Mehrjardi, Ata Fallah; Chen, Jiang; Decterov, Sergei; Hayes, Peter

    The chemistries of industrial pyrometallurgical non-ferrous smelting and recycling processes are becoming increasingly complex. Optimisation of process conditions, charge composition, temperature, oxygen partial pressure, and partitioning of minor elements between phases and different process streams require accurate description of phase equilibria and thermodynamics which are the focus of the present research. The experiments involve high temperature equilibration in controlled gas atmospheres, rapid quenching and direct measurement of equilibrium phase compositions with quantitative microanalytical techniques including electron probe X-ray microanalysis and Laser Ablation ICP-MS. The thermodynamic modelling is undertaken using computer package FactSage with the quasi-chemical model for the liquid slag phase and other advanced models. Experimental and modelling studies are combined into an integrated research program focused on the major elements Cu-Pb-Fe-O-Si-S system, slagging Al, Ca, Mg and other minor elements. The ongoing development of the research methodologies has resulted in significant advances in research capabilities. Examples of applications are given.

  8. Modeling of integrated environmental control systems for coal-fired power plants. Final report

    SciTech Connect

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to ``conventional`` technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  9. Modeling of integrated environmental control systems for coal-fired power plants

    SciTech Connect

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to conventional'' technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  10. Integrated Information Support System (IISS). Volume 5. Common Data Model Subsystem. Part 49. CDM IRDS Feature Evaluation Report

    DTIC Science & Technology

    1990-09-30

    Common Data Model and IDEFIX integration methodology. ONTEK Responsible for defining and testing a representative integrated system base in Artificial...information at the next lower level. IRD620341500 30 Septenbt’r 1990 IDEFIX DEFINITION DEFINITION ---------------------- defines &t describes I I 9...category entities). Sub-type categories may be defined as complete or incomplete. Layer 2 - The CDM1 The CDM1 is the schema definition ( IDEFiX model

  11. Integrated Information Support System (IISS). Volume 5. Common Data Model Subsystem. Part 47. Embedded SQL User’s Manual

    DTIC Science & Technology

    1990-09-30

    Responsible for providing software information services for the Common Data Model and IDEFIX integration methodology. ONTEK Responsible for defining and...contains a Conceptual Schema IDEFIX model used as an example throughout this manual. APPENDIX D, SAMPLE COBOL PROGRAMS This appendix consists of COBOL... IDEFIX is the extended version of IDEF1. Integrated Information Support System - (IISS) A test computing environment used to investigate, demonstrate and

  12. The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Space Flight Medical Systems

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles; Saile, Lynn; deCarvalho, Mary Freire; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David

    2009-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to mission planners and medical system designers in assessing risks and designing medical systems for space flight missions. The IMM provides an evidence based approach for optimizing medical resources and minimizing risks within space flight operational constraints. The mathematical relationships among mission and crew profiles, medical condition incidence data, in-flight medical resources, potential crew functional impairments, and clinical end-states are established to determine probable mission outcomes. Stochastic computational methods are used to forecast probability distributions of crew health and medical resource utilization, as well as estimates of medical evacuation and loss of crew life. The IMM has been used in support of the International Space Station (ISS) medical kit redesign, the medical component of the ISS Probabilistic Risk Assessment, and the development of the Constellation Medical Conditions List. The IMM also will be used to refine medical requirements for the Constellation program. The IMM outputs for ISS and Constellation design reference missions will be presented to demonstrate the potential of the IMM in assessing risks, planning missions, and designing medical systems. The implementation of the IMM verification and validation plan will be reviewed. Additional planned capabilities of the IMM, including optimization techniques and the inclusion of a mission timeline, will be discussed. Given the space flight constraints of mass, volume, and crew medical training, the IMM is a valuable risk assessment and decision support tool for medical system design and mission planning.

  13. Power system modeling and optimization methods vis-a-vis integrated resource planning (IRP)

    NASA Astrophysics Data System (ADS)

    Arsali, Mohammad H.

    1998-12-01

    The state-of-the-art restructuring of power industries is changing the fundamental nature of retail electricity business. As a result, the so-called Integrated Resource Planning (IRP) strategies implemented on electric utilities are also undergoing modifications. Such modifications evolve from the imminent considerations to minimize the revenue requirements and maximize electrical system reliability vis-a-vis capacity-additions (viewed as potential investments). IRP modifications also provide service-design bases to meet the customer needs towards profitability. The purpose of this research as deliberated in this dissertation is to propose procedures for optimal IRP intended to expand generation facilities of a power system over a stretched period of time. Relevant topics addressed in this research towards IRP optimization are as follows: (1) Historical prospective and evolutionary aspects of power system production-costing models and optimization techniques; (2) A survey of major U.S. electric utilities adopting IRP under changing socioeconomic environment; (3) A new technique designated as the Segmentation Method for production-costing via IRP optimization; (4) Construction of a fuzzy relational database of a typical electric power utility system for IRP purposes; (5) A genetic algorithm based approach for IRP optimization using the fuzzy relational database.

  14. Effective integration of systems biology, biomarkers, biosimulation and modelling in streamlining drug development.

    PubMed

    Krishna, Rajesh; Schaefer, Hans Guenter; Bjerrum, Ole J

    2007-05-01

    The European Federation of Pharmaceutical Sciences (EUFEPS) has long established itself as leaders in the field of interdisciplinary meetings to discuss issues that face drug development. It's ever popular and well attended "Optimizing Drug Development" series has tackled numerous issues, most recent of which have been drug interactions, getting the dose right, candidate selection, and biomarkers (Lesko et al., 2000; Rolan et al., 2003; Stanski et al., 2005; Tucker et al., 2001). Over a course of 3 productive days, the meeting on "Effective Integration of Systems Biology, Biomarkers, Biosimulation and Modelling in Streamlining Drug Development", held in Basel, Switzerland was jointly sponsored by EUFEPS, European Biosimulation Network of Excellence (BioSim), American College of Clinical Pharmacology (ACCP), European Centre of Pharmaceutical Medicine (ECPM), and Swiss Society of Pharmaceutical Sciences (SGRW). The meeting was focused on emerging aspects related to the quantitative understanding of underlying pathways in drug discovery and clinical development, i.e. moving from an empirical to a model-based, quantitative drug development process. The objectives of the meeting were: (1) to highlight the current state of the art on biomarkers (as they relate to quantitative fingerprinting of disease), systems biology, modelling and simulation; (2) to illustrate the applications of these emerging tools in increasing the efficiency and productivity of new drug development by case examples; (3) to understand the gaps in the technology and organizational implementations in governance, and (4) allow an opportunity for cross-disciplinary interaction, i.e., scientists with more theoretical and technical modelling and simulation expertise of the BioSim network and researchers experienced in applying modelling and simulation techniques in day-to-day drug development were drawn together. This report summarizes the outcome from this meeting.

  15. Incorporating Stakeholder Decision Support Needs into an Integrated Regional Earth System Model

    SciTech Connect

    Rice, Jennie S.; Moss, Richard H.; Runci, Paul J.; Anderson, K. L.; Malone, Elizabeth L.

    2012-03-21

    A new modeling effort exploring the opportunities, constraints, and interactions between mitigation and adaptation at regional scale is utilizing stakeholder engagement in an innovative approach to guide model development and demonstration, including uncertainty characterization, to effectively inform regional decision making. This project, the integrated Regional Earth System Model (iRESM), employs structured stakeholder interactions and literature reviews to identify the most relevant adaptation and mitigation alternatives and decision criteria for each regional application of the framework. The information is used to identify important model capabilities and to provide a focus for numerical experiments. This paper presents the stakeholder research results from the first iRESM pilot region. The pilot region includes the Great Lakes Basin in the Midwest portion of the United States as well as other contiguous states. This geographic area (14 states in total) permits cohesive modeling of hydrologic systems while also providing gradients in climate, demography, land cover/land use, and energy supply and demand. The results from the stakeholder research indicate that iRESM should prioritize addressing adaptation alternatives in the water resources, urban infrastructure, and agriculture sectors, such as water conservation, expanded water quality monitoring, altered reservoir releases, lowered water intakes, urban infrastructure upgrades, increased electric power reserves in urban areas, and land use management/crop selection changes. Regarding mitigation alternatives, the stakeholder research shows a need for iRESM to focus on policies affecting the penetration of renewable energy technologies, and the costs and effectiveness of energy efficiency, bioenergy production, wind energy, and carbon capture and sequestration.

  16. An Integrated Modeling and Simulation Methodology for Intelligent Systems Design and Testing

    DTIC Science & Technology

    2002-08-01

    Model continuity refers to the ability to use the same model of a system throughout its design phases. For intelligent systems , we can restrict such...paper, we show how a modeling and simulation environment, based on the DEVS formalism, can support model continuity in the design of intelligent systems . For

  17. Systems Integration (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    The Systems Integration (SI) subprogram works closely with industry, universities, and the national laboratories to overcome technical barriers to the large-scale deployment of solar technologies. To support these goals, the subprogram invests primarily in four areas: grid integration, technology validation, solar resource assessment, and balance of system development.

  18. Systems Integration (Fact Sheet)

    SciTech Connect

    DOE Solar Energy Technologies Program

    2011-10-13

    The Systems Integration (SI) subprogram works closely with industry, universities, and the national laboratories to overcome technical barriers to the large-scale deployment of solar technologies. To support these goals, the subprogram invests primarily in four areas: grid integration, technology validation, solar resource assessment, and balance of system development.

  19. Academic Research Integration System

    ERIC Educational Resources Information Center

    Surugiu, Iula; Velicano, Manole

    2008-01-01

    This paper comprises results concluding the research activity done so far regarding enhanced web services and system integration. The objective of the paper is to define the software architecture for a coherent framework and methodology for enhancing existing web services into an integrated system. This document presents the research work that has…

  20. Integrated geochemical and basin modeling approach to hydrocarbon systems analysis, Bohai Basin, People Republic of China

    SciTech Connect

    Gardemal, M.; Sofer, Z.; Womer, M.; Sun Xiao Hong

    1996-12-31

    An integrated hydrocarbon systems evaluation was undertaken in the Bozhong and Liaodong Bay areas of the Bohai Basin in an effort to delineate trends and clarify risks for value-based bid decisions. The Bohai Basin is part of the North China Basin (currently producing >1.2 MMBO/D), which is an intracontinental rift basin 200,000 km{sup 2} in size and contains up to 11 km of Tertiary continental to lacustrine rocks. Geochemical analyses of biomarker data (GC/MS) from 43 oils and rock extracts from 41 wells indicate that two main types of lacustrine oils, both generated from the Shahejie 3 Formation, can be distinguished. One type, from the Upper Shahejie 3, has algal affinities, high relative gammacerane content, and is generated and expelled at vitrinite reflectance equivalents (VRE) of 0.5 to 0.6 %, based on sterane isomer ratios. The other oil type, from the Lower Shahejie 3, has higher bacterial relative to algal input, lower relative gammacerane content, and is generated and expelled at 0.8 to 0.9 % VRE. Basin modeling studies and migration pathway analyses were integrated with results from the geochemical work to calibrate the thermal model, estimate timing of generation and expulsion, and calculate potential resources available for migration to traps. A rifting heat flow thermal model was calibrated to measured maturity data (Ro, Tmax, and VRE from sterane ratios) and corrected bottom hole temperature data for 30 wells throughout the basin. The time of major Tertiary rifting was estimated at 55-38 mybp, and beta stretching factors of 1.6 to 2.0 were used. Continuous down-well estimates of hydrocarbon yields for resource estimates were calculated from an empirical relationship between measured TOC and Hydrogen Indices (HI) from well samples and{Delta} log R calculations of TOC and HI.

  1. Integrated geochemical and basin modeling approach to hydrocarbon systems analysis, Bohai Basin, People Republic of China

    SciTech Connect

    Gardemal, M.; Sofer, Z.; Womer, M. ); Sun Xiao Hong )

    1996-01-01

    An integrated hydrocarbon systems evaluation was undertaken in the Bozhong and Liaodong Bay areas of the Bohai Basin in an effort to delineate trends and clarify risks for value-based bid decisions. The Bohai Basin is part of the North China Basin (currently producing >1.2 MMBO/D), which is an intracontinental rift basin 200,000 km[sup 2] in size and contains up to 11 km of Tertiary continental to lacustrine rocks. Geochemical analyses of biomarker data (GC/MS) from 43 oils and rock extracts from 41 wells indicate that two main types of lacustrine oils, both generated from the Shahejie 3 Formation, can be distinguished. One type, from the Upper Shahejie 3, has algal affinities, high relative gammacerane content, and is generated and expelled at vitrinite reflectance equivalents (VRE) of 0.5 to 0.6 %, based on sterane isomer ratios. The other oil type, from the Lower Shahejie 3, has higher bacterial relative to algal input, lower relative gammacerane content, and is generated and expelled at 0.8 to 0.9 % VRE. Basin modeling studies and migration pathway analyses were integrated with results from the geochemical work to calibrate the thermal model, estimate timing of generation and expulsion, and calculate potential resources available for migration to traps. A rifting heat flow thermal model was calibrated to measured maturity data (Ro, Tmax, and VRE from sterane ratios) and corrected bottom hole temperature data for 30 wells throughout the basin. The time of major Tertiary rifting was estimated at 55-38 mybp, and beta stretching factors of 1.6 to 2.0 were used. Continuous down-well estimates of hydrocarbon yields for resource estimates were calculated from an empirical relationship between measured TOC and Hydrogen Indices (HI) from well samples and[Delta] log R calculations of TOC and HI.

  2. Systems Integration, Analysis and Modeling Support to the HEDS Technology/Commercialization Initiative (HTCI)

    NASA Technical Reports Server (NTRS)

    Feingold, Harvey; ONeil, Dan (Technical Monitor)

    2002-01-01

    In response to a recommendation from OMB, NASA's Fiscal Year 2001 budget included a new program within the HEDS (Human Exploration and Development of Space) Enterprise called HEDS Technology/ Commercialization Initiative (HTCI). HTCI had three overarching goals: to support REDS analysis and planning for safe, affordable and effective future programs and projects that advance human exploration, scientific discovery, and the commercial development of space; to pursue research, development, and validation of breakthrough technologies and highly innovative systems concepts; and to advance die creation of strong partnerships within NASA, with U.S. industry and universities, and internationally. As part of its contracted effort, SAIC was to write a report contribution, describing die results of its task activities, to a final HTCI report prepared by MSFC. Unfortunately, government cancellation of the HTCI program in the summer of 2001 curtailed all efforts on the program including die Final HTCI report. In the absence of that report, SAIC has issued this final report in an attempt to document some of the technical material it produced. The report contains SAIC presentations for both HTCI workshops; a set of roadmap charts for the Systems Analysis, Integration and Modeling; and charts showing the evolution of the current TITAN modeling architecture.

  3. Modeling of an Integrated Renewable Energy System (IRES) with hydrogen storage

    NASA Astrophysics Data System (ADS)

    Shenoy, Navin Kodange

    2010-12-01

    Scope and Method of Study. The purpose of the study was to consider the integration of hydrogen storage technology as means of energy storage with renewable sources of energy. Hydrogen storage technology consists of an alkaline electrolyzer, gas storage tank and a fuel cell. The Integrated Renewable Energy System (IRES) under consideration includes wind energy, solar energy from photovoltaics, solar thermal energy and biomass energy in the form of biogas. Energy needs are categorized depending on the type and quality of the energy requirements. After meeting all the energy needs, any excess energy available from wind and PVs is converted into hydrogen using an electrolyzer for later use in a fuel cell. Similarly, when renewable energy generation is not able to supply the actual load demand, the stored hydrogen is utilized through fuel cell to fulfill load demand. Analysis of how IRES operates in order to satisfy different types of energy needs is discussed. Findings and Conclusions. All simulations are performed using MATLAB software. Hydrogen storage technology consisting of an electrolyzer, gas storage tank and a fuel cell is incorporated in the IRES design process for a hypothetical remote community. Results show that whenever renewable energy generated is greater than the electrical demand, excess energy is stored in the form of hydrogen and in case of energy shortfall, the stored hydrogen is utilized through the fuel cell to supply to excess power demand. The overall operation of IRES is enhanced as a result of energy storage in the form of hydrogen. Hydrogen has immense potential to be the energy carrier of the future because of its clean character and the model of hydrogen storage discussed here can form an integral part of IRES for remote area applications.

  4. An Integrated Model of Atopic Dermatitis Biomarkers Highlights the Systemic Nature of the Disease.

    PubMed

    Ungar, Benjamin; Garcet, Sandra; Gonzalez, Juana; Dhingra, Nikhil; Correa da Rosa, Joel; Shemer, Avner; Krueger, James G; Suarez-Farinas, Mayte; Guttman-Yassky, Emma

    2017-03-01

    Current atopic dermatitis (AD) models link epidermal abnormalities in lesional skin to cytokine activation. However, there is evolving evidence of systemic immune activation and detectable abnormalities in nonlesional skin. Because some of the best single correlations with severity (Scoring of AD, or SCORAD) are detected not only in lesional but also nonlesional skin and blood, more complex biomarker models of AD are needed. We thus performed extensive biomarker measures in these compartments using univariate and multivariate approaches to correlate disease biomarkers with SCORAD and with a combined hyperplasia score [thickness and keratin 16 (K16) mRNA] at baseline and after cyclosporine A treatment in 25 moderate to severe AD patients. Increases in serum cytokines and chemokines (IL-13, IL-22, CCL17) were found in AD versus healthy individuals and were reduced with treatment. SCORAD correlated with immune (IL-13, IL-22) and epidermal (thickness, K16) measures in lesional and, even more strongly, in nonlesional AD. Serum cytokines also had higher correlations with nonlesional markers at baseline and with treatment. Multivariate U statistics improved baseline and treatment-response SCORAD correlations. Nonlesional models showed the strongest correlations, with further improvement upon integration of serum markers. Even better correlations were obtained between biomarkers and the hyperplasia score. Larger cohorts are needed to confirm these preliminary data.

  5. Dynamic modeling, experimental evaluation, optimal design and control of integrated fuel cell system and hybrid energy systems for building demands

    NASA Astrophysics Data System (ADS)

    Nguyen, Gia Luong Huu

    Fuel cells can produce electricity with high efficiency, low pollutants, and low noise. With the advent of fuel cell technologies, fuel cell systems have since been demonstrated as reliable power generators with power outputs from a few watts to a few megawatts. With proper equipment, fuel cell systems can produce heating and cooling, thus increased its overall efficiency. To increase the acceptance from electrical utilities and building owners, fuel cell systems must operate more dynamically and integrate well with renewable energy resources. This research studies the dynamic performance of fuel cells and the integration of fuel cells with other equipment in three levels: (i) the fuel cell stack operating on hydrogen and reformate gases, (ii) the fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit, and (iii) the hybrid energy system consisting of photovoltaic panels, fuel cell system, and energy storage. In the first part, this research studied the steady-state and dynamic performance of a high temperature PEM fuel cell stack. Collaborators at Aalborg University (Aalborg, Denmark) conducted experiments on a high temperature PEM fuel cell short stack at steady-state and transients. Along with the experimental activities, this research developed a first-principles dynamic model of a fuel cell stack. The dynamic model developed in this research was compared to the experimental results when operating on different reformate concentrations. Finally, the dynamic performance of the fuel cell stack for a rapid increase and rapid decrease in power was evaluated. The dynamic model well predicted the performance of the well-performing cells in the experimental fuel cell stack. The second part of the research studied the dynamic response of a high temperature PEM fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit with high thermal integration. After verifying the model performance with the

  6. Modeling of integrated environmental control systems for coal-fired power plants. Technical progress report, [period ending December 31, 1987

    SciTech Connect

    Rubin, E.S.

    1988-01-01

    This is the first quarterly report of DOE/PETC Contract No. DE-AC22-87PC79864, entitled, ``Modeling of Integrated Environmental Control Systems for Coal-Fired Power Plants.`` Refining, creating, and documenting of computer models concerning coal/flue gas cleaning and desulfurization are discussed. (VC)

  7. An Integrated Model of the Cardiovascular and Central Nervous Systems for Analysis of Microgravity Induced Fluid Redistribution

    NASA Technical Reports Server (NTRS)

    Price, R.; Gady, S.; Heinemann, K.; Nelson, E. S.; Mulugeta, L.; Ethier, C. R.; Samuels, B. C.; Feola, A.; Vera, J.; Myers, J. G.

    2015-01-01

    A recognized side effect of prolonged microgravity exposure is visual impairment and intracranial pressure (VIIP) syndrome. The medical understanding of this phenomenon is at present preliminary, although it is hypothesized that the headward shift of bodily fluids in microgravity may be a contributor. Computational models can be used to provide insight into the origins of VIIP. In order to further investigate this phenomenon, NASAs Digital Astronaut Project (DAP) is developing an integrated computational model of the human body which is divided into the eye, the cerebrovascular system, and the cardiovascular system. This presentation will focus on the development and testing of the computational model of an integrated model of the cardiovascular system (CVS) and central nervous system (CNS) that simulates the behavior of pressures, volumes, and flows within these two physiological systems.

  8. Glacial integrative modelling.

    PubMed

    Ganopolski, Andrey

    2003-09-15

    Understanding the mechanisms of past climate changes requires modelling of the complex interaction between all major components of the Earth system: atmosphere, ocean, cryosphere, lithosphere and biosphere. This paper reviews attempts at such an integrative approach to modelling climate changes during the glacial age. In particular, the roles of different factors in shaping glacial climate are compared based on the results of simulations with an Earth-system model of intermediate complexity, CLIMBER-2. It is shown that ice sheets, changes in atmospheric compositions, vegetation cover, and reorganization of the ocean thermohaline circulation play important roles in glacial climate changes. Another example of this approach is the modelling of two major types of abrupt glacial climate changes: Dansgaard-Oeschger and Heinrich events. Our results corroborate some of the early proposed mechanisms, which relate abrupt climate changes to the internal instability of the ocean thermohaline circulation and ice sheets. At the same time, it is shown that realistic representation of the temporal evolution of the palaeoclimatic background is crucial to simulate observed features of the glacial abrupt climate changes.

  9. Integrated library systems.

    PubMed Central

    Goldstein, C M

    1983-01-01

    The development of integrated library systems is discussed. The four major discussion points are (1) initial efforts; (2) network resources; (3) minicomputer-based systems; and (4) beyond library automation. Four existing systems are cited as examples of current systems. PMID:6354321

  10. Hybrid Environmental Control System Integrated Modeling Trade Study Analysis for Commercial Aviation

    NASA Astrophysics Data System (ADS)

    Parrilla, Javier

    Current industry trends demonstrate aircraft electrification will be part of future platforms in order to achieve higher levels of efficiency in various vehicle level sub-systems. However electrification requires a substantial change in aircraft design that is not suitable for re-winged or re-engined applications as some aircraft manufacturers are opting for today. Thermal limits arise as engine cores progressively get smaller and hotter to improve overall engine efficiency, while legacy systems still demand a substantial amount of pneumatic, hydraulic and electric power extraction. The environmental control system (ECS) provides pressurization, ventilation and air conditioning in commercial aircraft, making it the main heat sink for all aircraft loads with exception of the engine. To mitigate the architecture thermal limits in an efficient manner, the form in which the ECS interacts with the engine will have to be enhanced as to reduce the overall energy consumed and achieve an energy optimized solution. This study examines a tradeoff analysis of an electric ECS by use of a fully integrated Numerical Propulsion Simulation System (NPSS) model that is capable of studying the interaction between the ECS and the engine cycle deck. It was found that a peak solution lays in a hybrid ECS where it utilizes the correct balance between a traditional pneumatic and a fully electric system. This intermediate architecture offers a substantial improvement in aircraft fuel consumptions due to a reduced amount of waste heat and customer bleed in exchange for partial electrification of the air-conditions pack which is a viable option for re-winged applications.

  11. The Integrated Medical Model

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles; Saile, Lynn; Freiere deCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David

    2010-01-01

    The goals of the Integrated Medical Model (IMM) are to develop an integrated, quantified, evidence-based decision support tool useful to crew health and mission planners and to help align science, technology, and operational activities intended to optimize crew health, safety, and mission success. Presentation slides address scope and approach, beneficiaries of IMM capabilities, history, risk components, conceptual models, development steps, and the evidence base. Space adaptation syndrome is used to demonstrate the model's capabilities.

  12. Integral habitat transport system

    NASA Technical Reports Server (NTRS)

    Elliott, Bill; Frazer, Scott; Higgs, Joey; Huff, Jason; Milam, Tigree

    1994-01-01

    In the 1993 Fall quarter, the ME 4182 design class was sponsored to study various scenarios that needed to be studied for Martian travel. The class was sponsored by NASA and there were several different design projects. The design that group three chose was an integral transport system for a Martian habitat. An integral transport system means the design had to be one that was attached to the habitat. There were several criteria that the design had to meet. Group three performed an in depth study of the Martian environment and looked at several different design ideas. The concept group three developed involved the use of kinematic linkages and the use of Martian gravity to move the habitat. The various design concepts, the criteria matrices and all other aspects that helped group three develop their design can be found in their 1993 ME 4182 design report. Now it is Winter quarter 1994 and group three is faced with another problem. The problem is building a working prototype of their Fall design. The limitations this quarter were the parts. The group had to make the prototype work with existing manufactured parts or make the parts themselves in a machine shop. The prototype was scaled down roughly about twelve times smaller than the original design. The following report describes the actions taken by group three to build a working model.

  13. The Integrated Farm System Model: A Tool for Whole Farm Nutrient Management Analysis

    USDA-ARS?s Scientific Manuscript database

    With tighter profit margins and increasing environmental constraints, strategic planning of farm production systems is becoming both more important and more difficult. This is especially true for integrated crop and animal production systems. Animal production is complex with a number of interacting...

  14. Intelligent Integrated System Health Management

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando

    2012-01-01

    Intelligent Integrated System Health Management (ISHM) is the management of data, information, and knowledge (DIaK) with the purposeful objective of determining the health of a system (Management: storage, distribution, sharing, maintenance, processing, reasoning, and presentation). Presentation discusses: (1) ISHM Capability Development. (1a) ISHM Knowledge Model. (1b) Standards for ISHM Implementation. (1c) ISHM Domain Models (ISHM-DM's). (1d) Intelligent Sensors and Components. (2) ISHM in Systems Design, Engineering, and Integration. (3) Intelligent Control for ISHM-Enabled Systems

  15. Fuzzy Integration of Support Vector Regression Models for Anticipatory Control of Complex Energy Systems

    DOE PAGES

    Alamaniotis, Miltiadis; Agarwal, Vivek

    2014-04-01

    Anticipatory control systems are a class of systems whose decisions are based on predictions for the future state of the system under monitoring. Anticipation denotes intelligence and is an inherent property of humans that make decisions by projecting in future. Likewise, artificially intelligent systems equipped with predictive functions may be utilized for anticipating future states of complex systems, and therefore facilitate automated control decisions. Anticipatory control of complex energy systems is paramount to their normal and safe operation. In this paper a new intelligent methodology integrating fuzzy inference with support vector regression is introduced. Our proposed methodology implements an anticipatorymore » system aiming at controlling energy systems in a robust way. Initially a set of support vector regressors is adopted for making predictions over critical system parameters. Furthermore, the predicted values are fed into a two stage fuzzy inference system that makes decisions regarding the state of the energy system. The inference system integrates the individual predictions into a single one at its first stage, and outputs a decision together with a certainty factor computed at its second stage. The certainty factor is an index of the significance of the decision. The proposed anticipatory control system is tested on a real world set of data obtained from a complex energy system, describing the degradation of a turbine. Results exhibit the robustness of the proposed system in controlling complex energy systems.« less

  16. Fuzzy Integration of Support Vector Regression Models for Anticipatory Control of Complex Energy Systems

    SciTech Connect

    Alamaniotis, Miltiadis; Agarwal, Vivek

    2014-04-01

    Anticipatory control systems are a class of systems whose decisions are based on predictions for the future state of the system under monitoring. Anticipation denotes intelligence and is an inherent property of humans that make decisions by projecting in future. Likewise, artificially intelligent systems equipped with predictive functions may be utilized for anticipating future states of complex systems, and therefore facilitate automated control decisions. Anticipatory control of complex energy systems is paramount to their normal and safe operation. In this paper a new intelligent methodology integrating fuzzy inference with support vector regression is introduced. Our proposed methodology implements an anticipatory system aiming at controlling energy systems in a robust way. Initially a set of support vector regressors is adopted for making predictions over critical system parameters. Furthermore, the predicted values are fed into a two stage fuzzy inference system that makes decisions regarding the state of the energy system. The inference system integrates the individual predictions into a single one at its first stage, and outputs a decision together with a certainty factor computed at its second stage. The certainty factor is an index of the significance of the decision. The proposed anticipatory control system is tested on a real world set of data obtained from a complex energy system, describing the degradation of a turbine. Results exhibit the robustness of the proposed system in controlling complex energy systems.

  17. Integrative structure modeling with IMP.

    PubMed

    Webb, Benjamin; Viswanath, Shruthi; Bonomi, Massimiliano; Pellarin, Riccardo; Greenberg, Charles H; Saltzberg, Daniel; Sali, Andrej

    2017-09-28

    Building models of a biological system that are consistent with the myriad data available is one of the key challenges in biology. Modeling the structure and dynamics of macromolecular assemblies, for example, can give insights into how biological systems work, evolved, might be controlled, and even designed. Integrative structure modeling casts the building of structural models as a computational optimization problem, for which information about the assembly is encoded into a scoring function that evaluates candidate models. Here, we describe our open source software suite for integrative structure modeling, Integrative Modeling Platform (IMP) (https://integrativemodeling.org), and demonstrate its use. This article is protected by copyright. All rights reserved. © 2017 The Protein Society.

  18. A fully integrated Earth System Model: focus on dynamical coupling of climatic and cryospheric model sub-systems

    NASA Astrophysics Data System (ADS)

    Morozova, Polina; Volodin, Evgeny; Rybak, Oleg; Huybrechts, Philippe; Korneva, Irina; Kaminskaia, Mariia

    2017-04-01

    Earth system models (ESMs) have been widely used in the recent years for complex studies of the climate system of the planet in the context of interactions between the atmosphere, oceans, ice sheets and the biosphere. Incorporation of the Earth syb-systems with very different spatial and temporal scales and response times into one model is really a challenging task. In particular, coupling of an AO GCM and ice sheet models of Greenland and Antarctic ice sheets (GrIS and AIS) requires application of special downscaling procedures. Within the frameworks of our research study, we implemented several coupling strategies. The choice of a strategy is dictated mostly by two factors - by the purpose of the research and by spatial resolution of an AO GCM. Several versions of the latter (called INMCM) were developed in the Institute of Numerical Mathematics (Moscow, Russia). For instance, the version aimed primarily for the relatively long numerical experiments (for e.g. palaeostudies) has spatial resolution of 5°×4°, 21 vertical layers in the atmospheric block, 2.5°×2°, 33 vertical layers in the oceanic block. To provide proper data exchange between the INMCM and GrIS and AIS models (spatial resolution 20×20 km), we employ rather simple buffer (sub-) models, describing regional heat and moisture diffusion. Applying buffer models enables to avoid systematic shifts in INMCM-generated precipitation fields and to much more realistically describe influence orographically driven precipitation (in Greenland) and elevation-temperature dependence. Novel versions of the INMCM with the spatial resolution of 2,5°×2° and higher generate much more realistic climatic fields, therefore the coupling procedure can be simplified to just averaging, resampling and remapping data from the AO GCM global domain to regional domains enclosing ice sheets. Increase in spatial resolution inevitably causes additional computational cost and reduces the area of the ESM application to

  19. Integrated Farm System Model Version 4.3 and Dairy Gas Emissions Model Version 3.3 Software development and distribution

    USDA-ARS?s Scientific Manuscript database

    Modeling routines of the Integrated Farm System Model (IFSM version 4.2) and Dairy Gas Emission Model (DairyGEM version 3.2), two whole-farm simulation models developed and maintained by USDA-ARS, were revised with new components for: (1) simulation of ammonia (NH3) and greenhouse gas emissions gene...

  20. OOMM--Object-Oriented Matrix Modelling: an instrument for the integration of the Brasilia Regional Health Information System.

    PubMed

    Cammarota, M; Huppes, V; Gaia, S; Degoulet, P

    1998-01-01

    The development of Health Information Systems is widely determined by the establishment of the underlying information models. An Object-Oriented Matrix Model (OOMM) is described which target is to facilitate the integration of the overall health system. The model is based on information modules named micro-databases that are structured in a three-dimensional network: planning, health structures and information systems. The modelling tool has been developed as a layer on top of a relational database system. A visual browser facilitates the development and maintenance of the information model. The modelling approach has been applied to the Brasilia University Hospital since 1991. The extension of the modelling approach to the Brasilia regional health system is considered.

  1. PRISMA: Program of Research to Integrate the Services for the Maintenance of Autonomy. A system-level integration model in Quebec.

    PubMed

    MacAdam, Margaret

    2015-01-01

    The Program of Research to Integrate the Services for the Maintenance of Autonomy (PRISMA) began in Quebec in 1999. Evaluation results indicated that the PRISMA Project improved the system of care for the frail elderly at no additional cost. In 2001, the Quebec Ministry of Health and Social Services made implementing the six features of the PRISMA approach a province-wide goal in the programme now known as RSIPA (French acronym). Extensive Province-wide progress has been made since then, but ongoing challenges include reducing unmet need for case management and home care services, creating incentives for increased physician participation in care planning and improving the computerized client chart, among others. PRISMA is the only evaluated international model of a coordination approach to integration and one of the few, if not the only, integration model to have been adopted at the system level by policy-makers.

  2. PRISMA: Program of Research to Integrate the Services for the Maintenance of Autonomy. A system-level integration model in Quebec

    PubMed Central

    MacAdam, Margaret

    2015-01-01

    The Program of Research to Integrate the Services for the Maintenance of Autonomy (PRISMA) began in Quebec in 1999. Evaluation results indicated that the PRISMA Project improved the system of care for the frail elderly at no additional cost. In 2001, the Quebec Ministry of Health and Social Services made implementing the six features of the PRISMA approach a province-wide goal in the programme now known as RSIPA (French acronym). Extensive Province-wide progress has been made since then, but ongoing challenges include reducing unmet need for case management and home care services, creating incentives for increased physician participation in care planning and improving the computerized client chart, among others. PRISMA is the only evaluated international model of a coordination approach to integration and one of the few, if not the only, integration model to have been adopted at the system level by policy-makers. PMID:26417212

  3. Modeling of multiple-optical-axis pattern-integrated interference lithography systems.

    PubMed

    Sedivy, Donald E; Gaylord, Thomas K

    2014-06-01

    The image quality and collimation in a multiple-optical-axis pattern-integrated interference lithography system are evaluated for an elementary optical system composed of single-element lenses. Image quality and collimation are individually and jointly optimized for these lenses. Example images for a jointly optimized system are simulated using a combination of ray tracing and Fourier analysis. Even with these nonoptimized components, reasonable fidelity is shown to be possible.

  4. Systems Integration Fact Sheet

    SciTech Connect

    2016-06-01

    This fact sheet is an overview of the Systems Integration subprogram at the U.S. Department of Energy SunShot Initiative. The Systems Integration subprogram enables the widespread deployment of safe, reliable, and cost-effective solar energy technologies by addressing the associated technical and non-technical challenges. These include timely and cost-effective interconnection procedures, optimal system planning, accurate prediction of solar resources, monitoring and control of solar power, maintaining grid reliability and stability, and many more. To address the challenges associated with interconnecting and integrating hundreds of gigawatts of solar power onto the electricity grid, the Systems Integration program funds research, development, and demonstration projects in four broad, interrelated focus areas: grid performance and reliability, dispatchability, power electronics, and communications.

  5. Human Systems Integration Introduction

    NASA Image and Video Library

    This lecture provides an overview of Human Systems Integration (HSI), its implementation cost and return on investment, HSI domains, how HSI fits into the NASA organization structure, HSI roles and...

  6. Integrable discrete PT symmetric model.

    PubMed

    Ablowitz, Mark J; Musslimani, Ziad H

    2014-09-01

    An exactly solvable discrete PT invariant nonlinear Schrödinger-like model is introduced. It is an integrable Hamiltonian system that exhibits a nontrivial nonlinear PT symmetry. A discrete one-soliton solution is constructed using a left-right Riemann-Hilbert formulation. It is shown that this pure soliton exhibits unique features such as power oscillations and singularity formation. The proposed model can be viewed as a discretization of a recently obtained integrable nonlocal nonlinear Schrödinger equation.

  7. Research on efficiency evaluation model of integrated energy system based on hybrid multi-attribute decision-making.

    PubMed

    Li, Yan

    2017-05-25

    The efficiency evaluation model of integrated energy system, involving many influencing factors, and the attribute values are heterogeneous and non-deterministic, usually cannot give specific numerical or accurate probability distribution characteristics, making the final evaluation result deviation. According to the characteristics of the integrated energy system, a hybrid multi-attribute decision-making model is constructed. The evaluation model considers the decision maker's risk preference. In the evaluation of the efficiency of the integrated energy system, the evaluation value of some evaluation indexes is linguistic value, or the evaluation value of the evaluation experts is not consistent. These reasons lead to ambiguity in the decision information, usually in the form of uncertain linguistic values and numerical interval values. In this paper, the risk preference of decision maker is considered when constructing the evaluation model. Interval-valued multiple-attribute decision-making method and fuzzy linguistic multiple-attribute decision-making model are proposed. Finally, the mathematical model of efficiency evaluation of integrated energy system is constructed.

  8. An integrated crop and hydrologic modeling system to estimate hydrologic impacts of crop irrigation demands

    Treesearch

    R.T. McNider; C. Handyside; K. Doty; W.L. Ellenburg; J.F. Cruise; J.R. Christy; D. Moss; V. Sharda; G. Hoogenboom; Peter Caldwell

    2015-01-01

    The present paper discusses a coupled gridded crop modeling and hydrologic modeling system that can examine the benefits of irrigation and costs of irrigation and the coincident impact of the irrigation water withdrawals on surface water hydrology. The system is applied to the Southeastern U.S. The system tools to be discussed include a gridded version (GriDSSAT) of...

  9. Developing an Integrated Model Framework for the Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    SciTech Connect

    David Muth, Jr.; Jared Abodeely; Richard Nelson; Douglas McCorkle; Joshua Koch; Kenneth Bryden

    2011-08-01

    Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues can have negative impacts on soil health. Models and datasets that can support decisions about sustainable agricultural residue removal are available; however, no tools currently exist capable of simultaneously addressing all environmental factors that can limit availability of residue. The VE-Suite model integration framework has been used to couple a set of environmental process models to support agricultural residue removal decisions. The RUSLE2, WEPS, and Soil Conditioning Index models have been integrated. A disparate set of databases providing the soils, climate, and management practice data required to run these models have also been integrated. The integrated system has been demonstrated for two example cases. First, an assessment using high spatial fidelity crop yield data has been run for a single farm. This analysis shows the significant variance in sustainably accessible residue across a single farm and crop year. A second example is an aggregate assessment of agricultural residues available in the state of Iowa. This implementation of the integrated systems model demonstrates the capability to run a vast range of scenarios required to represent a large geographic region.

  10. Integrated water system simulation by considering hydrological and biogeochemical processes: model development, with parameter sensitivity and autocalibration

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Shao, Q. X.; Ye, A. Z.; Xing, H. T.; Xia, J.

    2016-02-01

    Integrated water system modeling is a feasible approach to understanding severe water crises in the world and promoting the implementation of integrated river basin management. In this study, a classic hydrological model (the time variant gain model: TVGM) was extended to an integrated water system model by coupling multiple water-related processes in hydrology, biogeochemistry, water quality, and ecology, and considering the interference of human activities. A parameter analysis tool, which included sensitivity analysis, autocalibration and model performance evaluation, was developed to improve modeling efficiency. To demonstrate the model performances, the Shaying River catchment, which is the largest highly regulated and heavily polluted tributary of the Huai River basin in China, was selected as the case study area. The model performances were evaluated on the key water-related components including runoff, water quality, diffuse pollution load (or nonpoint sources) and crop yield. Results showed that our proposed model simulated most components reasonably well. The simulated daily runoff at most regulated and less-regulated stations matched well with the observations. The average correlation coefficient and Nash-Sutcliffe efficiency were 0.85 and 0.70, respectively. Both the simulated low and high flows at most stations were improved when the dam regulation was considered. The daily ammonium-nitrogen (NH4-N) concentration was also well captured with the average correlation coefficient of 0.67. Furthermore, the diffuse source load of NH4-N and the corn yield were reasonably simulated at the administrative region scale. This integrated water system model is expected to improve the simulation performances with extension to more model functionalities, and to provide a scientific basis for the implementation in integrated river basin managements.

  11. An integrated prediction and optimization model of biogas production system at a wastewater treatment facility.

    PubMed

    Akbaş, Halil; Bilgen, Bilge; Turhan, Aykut Melih

    2015-11-01

    This study proposes an integrated prediction and optimization model by using multi-layer perceptron neural network and particle swarm optimization techniques. Three different objective functions are formulated. The first one is the maximization of methane percentage with single output. The second one is the maximization of biogas production with single output. The last one is the maximization of biogas quality and biogas production with two outputs. Methane percentage, carbon dioxide percentage, and other contents' percentage are used as the biogas quality criteria. Based on the formulated models and data from a wastewater treatment facility, optimal values of input variables and their corresponding maximum output values are found out for each model. It is expected that the application of the integrated prediction and optimization models increases the biogas production and biogas quality, and contributes to the quantity of electricity production at the wastewater treatment facility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. An approach to modeling and optimization of integrated renewable energy system (ires)

    NASA Astrophysics Data System (ADS)

    Maheshwari, Zeel

    The purpose of this study was to cost optimize electrical part of IRES (Integrated Renewable Energy Systems) using HOMER and maximize the utilization of resources using MATLAB programming. IRES is an effective and a viable strategy that can be employed to harness renewable energy resources to energize remote rural areas of developing countries. The resource- need matching, which is the basis for IRES makes it possible to provide energy in an efficient and cost effective manner. Modeling and optimization of IRES for a selected study area makes IRES more advantageous when compared to hybrid concepts. A remote rural area with a population of 700 in 120 households and 450 cattle is considered as an example for cost analysis and optimization. Mathematical models for key components of IRES such as biogas generator, hydropower generator, wind turbine, PV system and battery banks are developed. A discussion of the size of water reservoir required is also presented. Modeling of IRES on the basis of need to resource and resource to need matching is pursued to help in optimum use of resources for the needs. Fixed resources such as biogas and water are used in prioritized order whereas movable resources such as wind and solar can be used simultaneously for different priorities. IRES is cost optimized for electricity demand using HOMER software that is developed by the NREL (National Renewable Energy Laboratory). HOMER optimizes configuration for electrical demand only and does not consider other demands such as biogas for cooking and water for domestic and irrigation purposes. Hence an optimization program based on the need-resource modeling of IRES is performed in MATLAB. Optimization of the utilization of resources for several needs is performed. Results obtained from MATLAB clearly show that the available resources can fulfill the demand of the rural areas. Introduction of IRES in rural communities has many socio-economic implications. It brings about improvement in living

  13. Dynamic modeling of gas turbines in integrated gasification fuel cell systems

    NASA Astrophysics Data System (ADS)

    Maclay, James Davenport

    2009-12-01

    Solid oxide fuel cell-gas turbine (SOFC-GT) hybrid systems for use in integrated gasification fuel cell (IGFC) systems operating on coal will stretch existing fossil fuel reserves, generate power with less environmental impact, while having a cost of electricity advantage over most competing technologies. However, the dynamic performance of a SOFC-GT in IGFC applications has not been previously studied in detail. Of particular importance is how the turbo-machinery will be designed, controlled and operated in such applications; this is the focus of the current work. Perturbation and dynamic response analyses using numerical SimulinkRTM models indicate that compressor surge is the predominant concern for safe dynamic turbo-machinery operation while shaft over-speed and excessive turbine inlet temperatures are secondary concerns. Fuel cell temperature gradients and anode-cathode differential pressures were found to be the greatest concerns for safe dynamic fuel cell operation. Two control strategies were compared, that of constant gas turbine shaft speed and constant fuel cell temperature, utilizing a variable speed gas turbine. Neither control strategy could eliminate all vulnerabilities during dynamic operation. Constant fuel cell temperature control ensures safe fuel cell operation, while constant speed control does not. However, compressor surge is more likely with constant fuel cell temperature control than with constant speed control. Design strategies that provide greater surge margin while utilizing constant fuel cell temperature control include increasing turbine design mass flow and decreasing turbine design inlet pressure, increasing compressor design pressure ratio and decreasing compressor design mass flow, decreasing plenum volume, decreasing shaft moment of inertia, decreasing fuel cell pressure drop, maintaining constant compressor inlet air temperature. However, these strategies in some cases incur an efficiency penalty. A broad comparison of cycles

  14. INTEGRATED PROCESS GAS MODELING FOR TRITIUM SYSTEMS AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Hang, T; Anita Poore, A

    2007-08-30

    Significant savings are being realized from the consolidated tritium gas-processing operations at the Savannah River Site. However, the trade-off is some reduction of operational flexibility due to decreased storage capacity for process and waste gases. Savannah River National Laboratory researchers are developing an integrated process gas model for tritium processing using Aspen Custom Modeler{trademark} (ACM) software. The modeling involves fully characterizing process flow streams (gas composition, quantity), frequency of batch transfers, and availability of equipment in the flow stream. The model provides a valuable engineering tool to identify flow bottlenecks, thereby enabling adjustments to be made to improve process operations.

  15. Attorneys Interacting with Legal Information Systems: Tools for Mental Model Building and Task Integration.

    ERIC Educational Resources Information Center

    Komlodi, Anita; Soergel, Dagobert

    2002-01-01

    Considers search histories and their role in human information seeking and identifies potential application areas for history information to enhance information-seeking user interfaces. Reports results related to supporting mental model development and task integration, based on a study of legal information seeking. (LRW)

  16. Integrative approaches for modeling regulation and function of the respiratory system.

    PubMed

    Ben-Tal, Alona; Tawhai, Merryn H

    2013-01-01

    Mathematical models have been central to understanding the interaction between neural control and breathing. Models of the entire respiratory system-which comprises the lungs and the neural circuitry that controls their ventilation-have been derived using simplifying assumptions to compartmentalize each component of the system and to define the interactions between components. These full system models often rely-through necessity-on empirically derived relationships or parameters, in addition to physiological values. In parallel with the development of whole respiratory system models are mathematical models that focus on furthering a detailed understanding of the neural control network, or of the several functions that contribute to gas exchange within the lung. These models are biophysically based, and rely on physiological parameters. They include single-unit models for a breathing lung or neural circuit, through to spatially distributed models of ventilation and perfusion, or multicircuit models for neural control. The challenge is to bring together these more recent advances in models of neural control with models of lung function, into a full simulation for the respiratory system that builds upon the more detailed models but remains computationally tractable. This requires first understanding the mathematical models that have been developed for the respiratory system at different levels, and which could be used to study how physiological levels of O2 and CO2 in the blood are maintained.

  17. Integrative approaches for modeling regulation and function of the respiratory system

    PubMed Central

    Ben-Tal, Alona

    2013-01-01

    Mathematical models have been central to understanding the interaction between neural control and breathing. Models of the entire respiratory system – which comprises the lungs and the neural circuitry that controls their ventilation - have been derived using simplifying assumptions to compartmentalise each component of the system and to define the interactions between components. These full system models often rely – through necessity - on empirically derived relationships or parameters, in addition to physiological values. In parallel with the development of whole respiratory system models are mathematical models that focus on furthering a detailed understanding of the neural control network, or of the several functions that contribute to gas exchange within the lung. These models are biophysically based, and rely on physiological parameters. They include single-unit models for a breathing lung or neural circuit, through to spatially-distributed models of ventilation and perfusion, or multi-circuit models for neural control. The challenge is to bring together these more recent advances in models of neural control with models of lung function, into a full simulation for the respiratory system that builds upon the more detailed models but remains computationally tractable. This requires first understanding the mathematical models that have been developed for the respiratory system at different levels, and which could be used to study how physiological levels of O2 and CO2 in the blood are maintained. PMID:24591490

  18. Arcjet system integration development

    NASA Technical Reports Server (NTRS)

    Zafran, Sidney

    1994-01-01

    Compatibility between an arcjet propulsion system and a communications satellite was verified by testing a Government-furnished, 1.4 kW hydrazine arcjet system with the FLTSATCOM qualification model satellite in a 9.1-meter (30-foot) diameter thermal-vacuum test chamber. Background pressure was maintained at 10(exp -5) torr during arcjet operation by cryopumping the thruster exhaust with an array of 5 K liquid helium cooled panels. Power for the arcjet system was obtained from the FLTSATCOM battery simulator. Spacecraft telemetry was monitored during each thruster firing period. No changes in telemetry data attributable to arcjet operation were detected in any of the tests. Electromagnetic compatibility data obtained included radiated emission measurements, conducted emission measurements, and cable coupling measurements. Significant noise was observed at lower frequencies. Above 500 MHz, radiated emissions were generally within limits, indicating that communication links at S-band and higher frequencies will not be affected. Other test data taken with a diagnostic array of calorimeters, radiometers, witness plates, and a residual gas analyzer evidenced compatible operation, and added to the data base for arcjet system integration. Two test series were conducted. The first series only included the arcjet and diagnostic array operating at approximately 0.1 torr background pressure. The second series added the qualification model spacecraft, a solar panel, and the helium cryopanels. Tests were conducted at 0.1 torr and 10(exp-5) torr. The arcjet thruster was canted 20 degrees relative to the solar panel axis, typical of the configuration used for stationkeeping thrusters on geosynchronous communications satellites.

  19. Arcjet system integration development

    NASA Astrophysics Data System (ADS)

    Zafran, Sidney

    1994-03-01

    Compatibility between an arcjet propulsion system and a communications satellite was verified by testing a Government-furnished, 1.4 kW hydrazine arcjet system with the FLTSATCOM qualification model satellite in a 9.1-meter (30-foot) diameter thermal-vacuum test chamber. Background pressure was maintained at 10(exp -5) torr during arcjet operation by cryopumping the thruster exhaust with an array of 5 K liquid helium cooled panels. Power for the arcjet system was obtained from the FLTSATCOM battery simulator. Spacecraft telemetry was monitored during each thruster firing period. No changes in telemetry data attributable to arcjet operation were detected in any of the tests. Electromagnetic compatibility data obtained included radiated emission measurements, conducted emission measurements, and cable coupling measurements. Significant noise was observed at lower frequencies. Above 500 MHz, radiated emissions were generally within limits, indicating that communication links at S-band and higher frequencies will not be affected. Other test data taken with a diagnostic array of calorimeters, radiometers, witness plates, and a residual gas analyzer evidenced compatible operation, and added to the data base for arcjet system integration. Two test series were conducted. The first series only included the arcjet and diagnostic array operating at approximately 0.1 torr background pressure. The second series added the qualification model spacecraft, a solar panel, and the helium cryopanels. Tests were conducted at 0.1 torr and 10(exp-5) torr. The arcjet thruster was canted 20 degrees relative to the solar panel axis, typical of the configuration used for stationkeeping thrusters on geosynchronous communications satellites.

  20. The electromotor system of the stargazer: a model for integrative actions at electrotonic synapses.

    PubMed

    Bennett, M V; Pappas, G D

    1983-04-01

    The electric organs of Astroscopus are modified from extraocular muscles and innervated by the enlarged oculomotor nuclei. The electromotor neuron somata are contacted by fine processes with which they form gap junctions. Presynaptic vesicles and active zones are also present, although physiological data give no indication of chemically mediated transmission. Antidromic stimulation produces long lasting graded depolarizations in the electromotor neurons. The latency is sufficiently short to indicate that the cells are electrotonically coupled, which was confirmed by direct measurement. Antidromic invasion may normally fail and is easily blocked by hyperpolarization revealing initial segment and axon spikes. Spinal stimulation evokes postsynaptic potentials (PSPs) and orthodromic impulses; the PSPs are not smoothly graded in amplitude. A medullary nucleus innervates the electromotor nucleus; the medullary cells also show short latency graded antidromic depolarizations and presumably are electrotonically coupled. Their coupling accounts for the variability in PSPs evoked by spinal stimulation. Apparent time constants differ greatly for direct stimulation of a single cell, decay of afterhyperpolarization, electrotonic spread from one cell to a neighbor, and decay of PSPs and graded antidromic depolarizations. The differences can be accounted for in terms of a highly interconnected network of electrotonically coupled cells, which was simulated computationally. Because of the long membrane time constant graded antidromic depolarizations summate. Because antidromic invasion is facilitated by depolarization, the antidromic depolarizations can show pronounced facilitation. The observed "plasticity" within this electrotonically coupled system provides a model for integrative actions at other sites of coupling.

  1. Dynamic model of a micro-tubular solid oxide fuel cell stack including an integrated cooling system

    NASA Astrophysics Data System (ADS)

    Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang

    2017-02-01

    A novel dynamic micro-tubular solid oxide fuel cell (MT-SOFC) and stack model including an integrated cooling system is developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. The modeling approach includes a simplified tubular geometry and stack design including an integrated cooling structure, detailed pressure drop and gas property calculations, the electrical and physical constraints of the stack design that determine the current, as well as control strategies for the temperature. Moreover, an advanced heat transfer balance with detailed radiative heat transfer between the cells and the integrated cooling-tubes, convective heat transfer between the gas flows and the surrounding structures and conductive heat transfer between the solid structures inside of the stack, is included. The detailed model can be used as a design basis for the novel MT-SOFC stack assembly including an integrated cooling system, as well as for the development of a dynamic system control strategy. The evaluated best-case design achieves very high electrical efficiency between around 75 and 55% in the entire power density range between 50 and 550 mW /cm2 due to the novel stack design comprising an integrated cooling structure.

  2. Integrated modeling for the VLTI

    NASA Astrophysics Data System (ADS)

    Muller, Michael; Wilhelm, Rainer C.; Baier, Horst J.; Koch, Franz

    2004-07-01

    Within the scope of the Very Large Telescope Interferometer (VLTI) project, ESO has developed a software package for integrated modeling of single- and multi-aperture optical telescopes. Integrated modeling is aiming at time-dependent system analysis combining different technical disciplines (optics, mechanical structure, control system with sensors and actuators, environmental disturbances). This allows multi-disciplinary analysis and gives information about cross-coupling effects for system engineering of complex stellar interferometers and telescopes. At the moment the main components of the Integrated Modeling Toolbox are BeamWarrior, a numerical tool for optical analysis of single- and multi-aperture telescopes, and the Structural Modeling Interface, which allows to generate Simulink blocks with reduced size from Finite Element Models of a telescope structure. Based on these tools, models of the various subsystems (e.g. telescope, delay line, beam combiner, atmosphere) can be created in the appropriate disciplines (e.g. optics, structure, disturbance). All subsystem models are integrated into the Matlab/Simulink environment for dynamic control system simulations. The basic output of the model is a complete description of the time-dependent electromagnetic field in each interferometer arm. Alternatively, a more elaborated output can be created, such as an interference fringe pattern at the focus of a beam combining instrument. The concern of this paper is the application of the modeling concept to large complex telescope systems. The concept of the Simulink-based integrated model with the main components telescope structure, optics and control loops is presented. The models for wind loads and atmospheric turbulence are explained. Especially the extension of the modeling approach to a 50 - 100 m class telescope is discussed.

  3. Modeling the Integration of Open Systems and Evolutionary Acquisition in DoD Programs

    DTIC Science & Technology

    2008-04-23

    Solution LRIP Production & Deployment System Demonstration System Integration Production Readiness, LRIP & IOT &E Full Rate Production...Deployment Production & Deployment Production Readiness, LRIP & IOT &E Operations and Support Pre-Milestone 0 0 Program Initiation Program Initiation...Manufacturing User Product Testing Milestones, Iter #1 A1 B1 DRR1 C1 FRP1 Milestones, Iter #2 A2 B2 DRR2 C2 FRP2 Milestones, Iter #3 A3 B3 DRR3 C3 FRP3 Time

  4. Integrated Farm System Model Version 4.1 and Dairy Gas Emissions Model Version 3.1 software release and distribution

    USDA-ARS?s Scientific Manuscript database

    Animal facilities are significant contributors of gaseous emissions including ammonia (NH3) and nitrous oxide (N2O). Previous versions of the Integrated Farm System Model (IFSM version 4.0) and Dairy Gas Emissions Model (DairyGEM version 3.0), two whole-farm simulation models developed by USDA-ARS, ...

  5. Integrated biogas systems

    NASA Astrophysics Data System (ADS)

    Amaratunga, M.

    1980-01-01

    Integrated biogas systems as alternatives to fossil fuels in Sri Lanka are considered from standpoints of population growth, land availability, and employment opportunities. Agricultural practices would be improved by use of chemical fertilizers, and health/nutrition problems be alleviated by using biogas systems. Fuel for cooking and rural industries will become more easily available; water weeds, such as water hyacinth and salvinia which pose a threat to waterways and rice paddy lands could be used for the production of biogas and fertilizers. A concept of an integrated biogas system comprising photosynthesis and anaerobic degradation processes to produce food and energy is presented.

  6. The "Integrated Library System."

    ERIC Educational Resources Information Center

    Dowlin, Kenneth E.

    1985-01-01

    Reviews internal and external dimensions of library environment that must be taken into account by library managers when choosing an integrated library system. The selection, acquisition, and implementation stages of Maggie III--a computerized library system sensitive to the internal and external organizational environment--are described. (MBR)

  7. Integrated Flexible Welding System.

    DTIC Science & Technology

    1985-11-09

    systems are employed at the top of the 7 INTEGRATED FLEXIBLE WELDING SYSTEM ARCHMiECTURE II * II COMUN CAD DEMUI=TNS WELD IAIN CMMUNICATTHNSCO UTION A TA...planning and online functional processes is successful in this case because much is known for certain about the environment and task. Thus, it is

  8. Aviation Data Integration System

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak; Wang, Yao; Windrem, May; Patel, Hemil; Keller, Richard

    2003-01-01

    During the analysis of flight data and safety reports done in ASAP and FOQA programs, airline personnel are not able to access relevant aviation data for a variety of reasons. We have developed the Aviation Data Integration System (ADIS), a software system that provides integrated heterogeneous data to support safety analysis. Types of data available in ADIS include weather, D-ATIS, RVR, radar data, and Jeppesen charts, and flight data. We developed three versions of ADIS to support airlines. The first version has been developed to support ASAP teams. A second version supports FOQA teams, and it integrates aviation data with flight data while keeping identification information inaccessible. Finally, we developed a prototype that demonstrates the integration of aviation data into flight data analysis programs. The initial feedback from airlines is that ADIS is very useful in FOQA and ASAP analysis.

  9. On Quantum Integrable Systems

    SciTech Connect

    Danilov, Viatcheslav; Nagaitsev, Sergei; /Fermilab

    2011-11-01

    Many quantum integrable systems are obtained using an accelerator physics technique known as Ermakov (or normalized variables) transformation. This technique was used to create classical nonlinear integrable lattices for accelerators and nonlinear integrable plasma traps. Now, all classical results are carried over to a nonrelativistic quantum case. In this paper we have described an extension of the Ermakov-like transformation to the Schroedinger and Pauli equations. It is shown that these newly found transformations create a vast variety of time dependent quantum equations that can be solved in analytic functions, or, at least, can be reduced to time-independent ones.

  10. Integrated work management system.

    SciTech Connect

    Williams, Edward J., Jr.; Henry, Karen Lynne

    2010-06-01

    Sandia National Laboratories develops technologies to: (1) sustain, modernize, and protect our nuclear arsenal (2) Prevent the spread of weapons of mass destruction; (3) Provide new capabilities to our armed forces; (4) Protect our national infrastructure; (5) Ensure the stability of our nation's energy and water supplies; and (6) Defend our nation against terrorist threats. We identified the need for a single overarching Integrated Workplace Management System (IWMS) that would enable us to focus on customer missions and improve FMOC processes. Our team selected highly configurable commercial-off-the-shelf (COTS) software with out-of-the-box workflow processes that integrate strategic planning, project management, facility assessments, and space management, and can interface with existing systems, such as Oracle, PeopleSoft, Maximo, Bentley, and FileNet. We selected the Integrated Workplace Management System (IWMS) from Tririga, Inc. Facility Management System (FMS) Benefits are: (1) Create a single reliable source for facility data; (2) Improve transparency with oversight organizations; (3) Streamline FMOC business processes with a single, integrated facility-management tool; (4) Give customers simple tools and real-time information; (5) Reduce indirect costs; (6) Replace approximately 30 FMOC systems and 60 homegrown tools (such as Microsoft Access databases); and (7) Integrate with FIMS.

  11. Optimization of Integrated Reservoir, Wellbore, and Power Plant Models for Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Peluchette, Jason

    Geothermal energy has the potential to become a substantially greater contributor to the U.S. energy market. An adequate investment in Enhanced Geothermal Systems (EGS) technology will be necessary in order to realize the potential of geothermal energy. This study presents an optimization of a waterbased Enhanced Geothermal System (EGS) modeled for AltaRock Energy's Newberry EGS Demonstration location. The optimization successfully integrates all three components of the geothermal system: (1) the present wellbore design, (2) the reservoir design, and (3) the surface plant design. Since the Newberry EGS Demonstration will use an existing well (NWG 55-29), there is no optimization of the wellbore design, and the aim of the study for this component is to replicate the present wellbore conditions and design. An in-house wellbore model is used to accurately reflect the temperature and pressure changes that occur in the wellbore fluid and the surrounding casing, cement, and earth during injection and production. For the reservoir design, the existing conditions, such as temperature and pressure at depth and rock density, are incorporated into the model, and several design variables are investigated. The engineered reservoir is modeled using the reservoir simulator TOUGH2 while using the graphical interface PetraSim for visualization. Several fracture networks are investigated with the goal of determining which fracture network yields the greatest electrical output when optimized jointly with the surface plant. A topological optimization of the surface is completed to determine what type of power plant is best suited for this location, and a parametric optimization of the surface plant is completed to determine the optimal operating conditions. The conditions present at the Newberry, Oregon EGS project site are the basis for this optimization. The subsurface conditions are favorable for the production of electricity from geothermal energy with rock temperatures exceeding

  12. Getting expert systems off the ground: Lessons learned from integrating model-based diagnostics with prototype flight hardware

    NASA Technical Reports Server (NTRS)

    Stephan, Amy; Erikson, Carol A.

    1991-01-01

    As an initial attempt to introduce expert system technology into an onboard environment, a model based diagnostic system using the TRW MARPLE software tool was integrated with prototype flight hardware and its corresponding control software. Because this experiment was designed primarily to test the effectiveness of the model based reasoning technique used, the expert system ran on a separate hardware platform, and interactions between the control software and the model based diagnostics were limited. While this project met its objective of showing that model based reasoning can effectively isolate failures in flight hardware, it also identified the need for an integrated development path for expert system and control software for onboard applications. In developing expert systems that are ready for flight, artificial intelligence techniques must be evaluated to determine whether they offer a real advantage onboard, identify which diagnostic functions should be performed by the expert systems and which are better left to the procedural software, and work closely with both the hardware and the software developers from the beginning of a project to produce a well designed and thoroughly integrated application.

  13. Integrated Data Modeling and Simulation on the Joint Polar Satellite System Program

    NASA Technical Reports Server (NTRS)

    Roberts, Christopher J.; Boyce, Leslye; Smith, Gary; Li, Angela; Barrett, Larry

    2012-01-01

    The Joint Polar Satellite System is a modern, large-scale, complex, multi-mission aerospace program, and presents a variety of design, testing and operational challenges due to: (1) System Scope: multi-mission coordination, role, responsibility and accountability challenges stemming from porous/ill-defined system and organizational boundaries (including foreign policy interactions) (2) Degree of Concurrency: design, implementation, integration, verification and operation occurring simultaneously, at multiple scales in the system hierarchy (3) Multi-Decadal Lifecycle: technical obsolesce, reliability and sustainment concerns, including those related to organizational and industrial base. Additionally, these systems tend to become embedded in the broader societal infrastructure, resulting in new system stakeholders with perhaps different preferences (4) Barriers to Effective Communications: process and cultural issues that emerge due to geographic dispersion and as one spans boundaries including gov./contractor, NASA/Other USG, and international relationships.

  14. Using Discrete Event Simulation to Model Integrated Commodities Consumption for a Launch Campaign of the Space Launch System

    NASA Technical Reports Server (NTRS)

    Leonard, Daniel; Parsons, Jeremy W.; Cates, Grant

    2014-01-01

    In May 2013, NASA's GSDO Program requested a study to develop a discrete event simulation (DES) model that analyzes the launch campaign process of the Space Launch System (SLS) from an integrated commodities perspective. The scope of the study includes launch countdown and scrub turnaround and focuses on four core launch commodities: hydrogen, oxygen, nitrogen, and helium. Previously, the commodities were only analyzed individually and deterministically for their launch support capability, but this study was the first to integrate them to examine the impact of their interactions on a launch campaign as well as the effects of process variability on commodity availability. The study produced a validated DES model with Rockwell Arena that showed that Kennedy Space Center's ground systems were capable of supporting a 48-hour scrub turnaround for the SLS. The model will be maintained and updated to provide commodity consumption analysis of future ground system and SLS configurations.

  15. Integrated Medical-Dental Delivery Systems: Models in a Changing Environment and Their Implications for Dental Education.

    PubMed

    Jones, Judith A; Snyder, John J; Gesko, David S; Helgeson, Michael J

    2017-09-01

    Models and systems of the dental care delivery system are changing. Solo practice is no longer the only alternative for graduating dentists. Over half of recent graduates are employees, and more than ever before, dentists are practicing in groups. This trend is expected to increase over the next 25 years. This article examines various models of dental care delivery, explains why it is important to practice in integrated medical-dental teams, and defines person-centered care, contrasting it with patient-centered care. Systems of care in which teams are currently practicing integrated oral health care delivery are described, along with speculation on the future of person-centered care and the team approach. Critical steps in the education of dental and other health care professionals and the development of clinical models of care in moving forward are considered. This article was written as part of the project "Advancing Dental Education in the 21(st) Century."

  16. An integrated and modular digital modeling approach for the space station electrical power system development

    NASA Technical Reports Server (NTRS)

    Gombos, Frank J.; Dravid, Narayan

    1988-01-01

    An electrical power system for the Space Station was designed, developed and built. This system provides for electrical power generation, conditioning, storage, and distribution. The initial configuration uses photovoltaic power generation. The power system control is based on a hierarchical architecture to support the requirements of automation. In the preliminary design and technology development phase of the program, various modeling techniques and software tools were evaluated for the purpose of meeting the Space Station power system modeling requirements. Rocketdyne and LeRC jointly selected the EASY5 simulation software, developed by Boeing Computer Services, as a system level modeling tool. The application of the selected analytical modeling approach to represent the entire power system is described. Typical results of model predictions are also summarized. The equipment modeled includes solar arrays, dc to ac converters, resonant inverters, battery storage system, alternator, transmission line, switch gear, and system level microprocessor controls. During the advanced development phase of this program, several models were developed using this approach.

  17. An integrated and modular digital modeling approach for the Space Station electrical power system development

    NASA Technical Reports Server (NTRS)

    Gombos, Frank J.; Dravid, Narayan

    1988-01-01

    An electrical power system for the Space Station was designed, developed and built. This system provides for electrical power generation, conditioning, storage, and distribution. The initial configuration uses photovoltaic power generation. The power system control is based on a hierarchical architecture to support the requirements of automation. In the preliminary design and technology development phase of the program, various modeling techniques and software tools were evaluated for the purpose of meeting the Space Station power system modeling requirements. Rocketdyne and LeRC jointly selected the EASY5 simulation software, developed by Boeing Computer Services, as a system level modeling tool. The application of the selected analytical modeling approach to represent the entire power system is described. Typical results of model predictions are also summarized. The equipment modeled includes solar arrays, dc to ac converters, resonant inverters, battery storage system, alternator, transmission line, switch gear, and system level microprocessor controls. During the advanced development phase of this program, several models were developed using this approach.

  18. A Model for Integrating a Job-Aiding, Training, and Performance Assessment System--A Preliminary Concept Paper. Final Technical Paper for Period June-August 1985.

    ERIC Educational Resources Information Center

    Kline, Charles R., Jr.; Lester, Mark

    This paper presents a model for an integrated system used for job-aiding, training, and performance assessment for persons who maintain systems of various types. The model is driven by updatable job aids, by integrated human-machine heuristics, and by an expanding matrix of maintenance activities. The model uses the job-aiding base, updated by…

  19. Integrated transducer systems

    NASA Astrophysics Data System (ADS)

    Syrzycki, Marek; Parameswaran, M.; Chapman, Glenn H.

    1995-06-01

    In the paper we discuss possible solutions to problems pertaining the implementation of integrated transducer systems, based on examples of WSI image transducers, magnetic field sensors and tactile sensors arrays, as well as arrays of chemical sensors. We also present the issues common to large area transducer arrays, such as building-in redundancy into WSI transducer arrays, and frequency domain circuits for the future communication pathway in integrated transducer systems. Advantages of standard CMOS technology, enhanced with various post-fabrication processes such as silicon micromachining and laser linking, are also stressed.

  20. Integrated system design report

    SciTech Connect

    Not Available

    1989-07-01

    The primary objective of the integrated system test phase is to demonstrate the commercial potential of a coal fueled diesel engine in its actual operating environment. The integrated system in this project is defined as a coal fueled diesel locomotive. This locomotive, shown on drawing 41D715542, is described in the separate Concept Design Report. The test locomotive will be converted from an existing oil fueled diesel locomotive in three stages, until it nearly emulates the concept locomotive. Design drawings of locomotive components (diesel engine, locomotive, flatcar, etc.) are included.

  1. Integrated system design report

    SciTech Connect

    Not Available

    1989-07-01

    The primary objective of the integrated system test phase is to demonstrate the commercial potential of a coal fueled diesel engine in its actual operating environment. The integrated system in this project is defined as a coal fueled diesel locomotive. This locomotive, shown on drawing 41D715542, is described in the separate Concept Design Report. The test locomotive will be converted from an existing oil fueled diesel locomotive in three stages, until it nearly emulates the concept locomotive. Design drawings of locomotive components (diesel engine, locomotive, flatcar, etc.) are included.

  2. Evaluating Depth-Integrated Steric Contributions to Sea-Level Trends and Variability in Earth System Model Ensembles

    NASA Astrophysics Data System (ADS)

    Hogan, E.; Sriver, R. L.

    2015-12-01

    Earth system model ensembles exhibit considerable uncertainties surrounding trends and magnitude of steric sea-level variations, due in part to structural model differences, internal model variability, and parameterizations that influence ocean heat uptake. Here we analyze depth-integrated steric sea-level changes using the CMIP5 models and a new CESM ensemble that samples internal variability of the coupled Earth system. The CESM ensemble contains 50 members, with historical and future projections (1850-2100) initialized from unique model states sampled from a ~10,000 year fully coupled unforced equilibrium simulation. The CESM ensemble enables us to examine how initial conditions uncertainty (internal variability) within the full-ocean can influence depth-integrated steric sea-level variability. The second ensemble is comprised of runs from 32 different CMIP5 models. We performed grid-level drift correction for each model using the pre-industrial control simulations, which enables us to examine depth-integrated variability and trends due to different model structures. We compare and contrast our results with published observational datasets, and we analyze the effect of different sources of uncertainty on simulated sea-level variability and trends for different ocean depths. Results point to the importance of the deep ocean in attempting to attribute and predict temporal patterns of steric sea-level on a global scale.

  3. A volumetric CMUT-based ultrasound imaging system simulator with integrated reception and μ-beamforming electronics models.

    PubMed

    Matrone, Giulia; Savoia, Alessandro S; Terenzi, Marco; Caliano, Giosuè; Quaglia, Fabio; Magenes, Giovanni

    2014-05-01

    In modern ultrasound imaging devices, two-dimensional probes and electronic scanning allow volumetric imaging of anatomical structures. When dealing with the design of such complex 3-D ultrasound (US) systems, as the number of transducers and channels dramatically increases, new challenges concerning the integration of electronics and the implementation of smart micro-beamforming strategies arise. Hence, the possibility to predict the behavior of the whole system is mandatory. In this paper, we propose and describe an advanced simulation tool for ultrasound system modeling and simulation, which conjugates the US propagation and scattering, signal transduction, electronic signal conditioning, and beamforming in a single environment. In particular, we present the architecture and model of an existing 16-channel integrated receiver, which includes an amplification and micro-beamforming stage, and validate it by comparison with circuit simulations. The developed model is then used in conjunction with the transducer and US field models to perform a system simulation, aimed at estimating the performance of an example 3-D US imaging system that uses a capacitive micromachined ultrasonic transducer (CMUT) 2-D phased-array coupled to the modeled reception front-end. Results of point spread function (PSF) calculations, as well as synthetic imaging of a virtual phantom, show that this tool is actually able to model the complete US image reconstruction process, and that it could be used to quickly provide valuable system-level feedback for an optimized tuning of electronic design parameters.

  4. Integrated Modeling System for Analysis of Watershed Water Balance: A Case Study in the Tims Branch Watershed, South Carolina

    NASA Astrophysics Data System (ADS)

    Setegn, S. G.; Mahmoudi, M.; Lawrence, A.; Duque, N.

    2015-12-01

    The Applied Research Center at Florida International University (ARC-FIU) is supporting the soil and groundwater remediation efforts of the U.S. Department of Energy (DOE) Savannah River Site (SRS) by developing a surface water model to simulate the hydrology and the fate and transport of contaminants and sediment in the Tims Branch watershed. Hydrological models are useful tool in water and land resource development and decision-making for watershed management. Moreover, simulation of hydrological processes improves understanding of the environmental dynamics and helps to manage and protect water resources and the environment. MIKE SHE, an advanced integrated modeling system is used to simulate the hydrological processes of the Tim Branch watershed with the objective of developing an integrated modeling system to improve understanding of the physical, chemical and biological processes within the Tims Branch watershed. MIKE SHE simulates water flow in the entire land based phase of the hydrological cycle from rainfall to river flow, via various flow processes such as, overland flow, infiltration, evapotranspiration, and groundwater flow. In this study a MIKE SHE model is developed and applied to the Tim branch watershed to study the watershed response to storm events and understand the water balance of the watershed under different climatic and catchment characteristics. The preliminary result of the integrated model indicated that variation in the depth of overland flow highly depend on the amount and distribution of rainfall in the watershed. The ultimate goal of this project is to couple the MIKE SHE and MIKE 11 models to integrate the hydrological component in the land phase of hydrological cycle and stream flow process. The coupled MIKE SHE/MIKE 11 model will further be integrated with an Ecolab module to represent a range of water quality, contaminant transport, and ecological processes with respect to the stream, surface water and groundwater in the Tims

  5. Improved system integration for integrated gasification combined cycle (IGCC) systems.

    PubMed

    Frey, H Christopher; Zhu, Yunhua

    2006-03-01

    Integrated gasification combined cycle (IGCC) systems are a promising technology for power generation. They include an air separation unit (ASU), a gasification system, and a gas turbine combined cycle power block, and feature competitive efficiency and lower emissions compared to conventional power generation technology. IGCC systems are not yet in widespread commercial use and opportunities remain to improve system feasibility via improved process integration. A process simulation model was developed for IGCC systems with alternative types of ASU and gas turbine integration. The model is applied to evaluate integration schemes involving nitrogen injection, air extraction, and combinations of both, as well as different ASU pressure levels. The optimal nitrogen injection only case in combination with an elevated pressure ASU had the highest efficiency and power output and approximately the lowest emissions per unit output of all cases considered, and thus is a recommended design option. The optimal combination of air extraction coupled with nitrogen injection had slightly worse efficiency, power output, and emissions than the optimal nitrogen injection only case. Air extraction alone typically produced lower efficiency, lower power output, and higher emissions than all other cases. The recommended nitrogen injection only case is estimated to provide annualized cost savings compared to a nonintegrated design. Process simulation modeling is shown to be a useful tool for evaluation and screening of technology options.

  6. Resource Planning Model: An Integrated Resource Planning and Dispatch Tool for Regional Electric Systems

    SciTech Connect

    Mai, T.; Drury, E.; Eurek, K.; Bodington, N.; Lopez, A.; Perry, A.

    2013-01-01

    This report introduces a new capacity expansion model, the Resource Planning Model (RPM), with high spatial and temporal resolution that can be used for mid- and long-term scenario planning of regional power systems. Although RPM can be adapted to any geographic region, the report describes an initial version of the model adapted for the power system in Colorado. It presents examples of scenario results from the first version of the model, including an example of a 30%-by-2020 renewable electricity penetration scenario.

  7. Developing Flexible, Integrated Hydrologic Modeling Systems for Multiscale Analysis in the Midwest and Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Hamlet, A. F.; Chiu, C. M.; Sharma, A.; Byun, K.; Hanson, Z.

    2016-12-01

    Physically based hydrologic modeling of surface and groundwater resources that can be flexibly and efficiently applied to support water resources policy/planning/management decisions at a wide range of spatial and temporal scales are greatly needed in the Midwest, where stakeholder access to such tools is currently a fundamental barrier to basic climate change assessment and adaptation efforts, and also the co-production of useful products to support detailed decision making. Based on earlier pilot studies in the Pacific Northwest Region, we are currently assembling a suite of end-to-end tools and resources to support various kinds of water resources planning and management applications across the region. One of the key aspects of these integrated tools is that the user community can access gridded products at any point along the end-to-end chain of models, looking backwards in time about 100 years (1915-2015), and forwards in time about 85 years using CMIP5 climate model projections. The integrated model is composed of historical and projected future meteorological data based on station observations and statistical and dynamically downscaled climate model output respectively. These gridded meteorological data sets serve as forcing data for the macro-scale VIC hydrologic model implemented over the Midwest at 1/16 degree resolution. High-resolution climate model (4km WRF) output provides inputs for the analyses of urban impacts, hydrologic extremes, agricultural impacts, and impacts to the Great Lakes. Groundwater recharge estimated by the surface water model provides input data for fine-scale and macro-scale groundwater models needed for specific applications. To highlight the multi-scale use of the integrated models in support of co-production of scientific information for decision making, we briefly describe three current case studies addressing different spatial scales of analysis: 1) Effects of climate change on the water balance of the Great Lakes, 2) Future

  8. Modeling evaluation of integrated strategies to meet proposed dissolved oxygen standards for the Chicago waterway system.

    PubMed

    Melching, Charles S; Ao, Yaping; Alp, Emre

    2013-02-15

    The Chicago Waterway System (CWS) is a 113.8 km branching network of navigable waterways controlled by hydraulic structures in which the majority of flow is treated sewage effluent and there are periods of substantial combined sewer overflow. The Illinois Pollution Control Board (IPCB) designated the majority of the CWS as Secondary Contact and Indigenous Aquatic Life Use waters in the 1970s and made small alterations to these designations in 1988. Between 1988 and 2002 substantial improvements in the pollution control and water-quality management facilities were made in the Chicago area. The results of a Use Attainability Analysis led the Illinois Environmental Protection Agency (IEPA) to propose the division of the CWS into two new aquatic life use classes with appropriate dissolved oxygen (DO) standards. To aid the IPCB in their deliberations regarding the appropriate water use classifications and DO standards for the CWS, the DUFLOW model that is capable of simulating hydraulics and water-quality processes under unsteady-flow conditions was used to evaluate integrated strategies of water-quality improvement facilities that could meet the proposed DO standards during representative wet (2001) and dry (2003) years. A total of 28 new supplementary aeration stations with a maximum DO load of 80 or 100 g/s and aerated flow transfers at three locations in the CWS would be needed to achieve the IEPA proposed DO standards 100% of the time for both years. A much simpler and less costly (≈one tenth of the cost) system of facilities would be needed to meet the IEPA proposed DO standards 90% of the time. In theory, the combinations of flow augmentation and new supplemental aeration stations can achieve 100% compliance with the IEPA proposed DO standards, however, 100% compliance will be hard to achieve in practice because of-(1) difficulties in determining when to turn on the aeration stations and (2) localized heavy loads of pollutants during storms that may yield

  9. Power Systems integration

    NASA Technical Reports Server (NTRS)

    Brantley, L. W.

    1982-01-01

    Power systems integration in large flexible space structures is discussed with emphasis upon body control. A solar array is discussed as a typical example of spacecraft configuration problems. Information on how electric batteries dominate life-cycle costs is presented in chart form. Information is given on liquid metal droplet generators and collectors, hot spot analysis, power dissipation in solar arrays, solar array protection optimization, and electromagnetic compatibility for a power system platform.

  10. ELECANS--an integrated model development environment for multiscale cancer systems biology.

    PubMed

    Chaudhary, Safee Ullah; Shin, Sung-Young; Lee, Daewon; Song, Je-Hoon; Cho, Kwang-Hyun

    2013-04-01

    Computational multiscale models help cancer biologists to study the spatiotemporal dynamics of complex biological systems and to reveal the underlying mechanism of emergent properties. To facilitate the construction of such models, we have developed a next generation modelling platform for cancer systems biology, termed 'ELECANS' (electronic cancer system). It is equipped with a graphical user interface-based development environment for multiscale modelling along with a software development kit such that hierarchically complex biological systems can be conveniently modelled and simulated by using the graphical user interface/software development kit combination. Associated software accessories can also help users to perform post-processing of the simulation data for visualization and further analysis. In summary, ELECANS is a new modelling platform for cancer systems biology and provides a convenient and flexible modelling and simulation environment that is particularly useful for those without an intensive programming background. ELECANS, its associated software accessories, demo examples, documentation and issues database are freely available at http://sbie.kaist.ac.kr/sub_0204.php. Supplementary data are available at Bioinformatics online.

  11. The MIKS (Member Integrated Knowledge System) Model: A Visualization of the Individual Organizational Member's Role When a Knowledge Management System Is Utilized in the Learning Organization

    ERIC Educational Resources Information Center

    Grobmeier, Cynthia

    2007-01-01

    Relating knowledge management (KM) case studies in various organizational contexts to existing theoretical constructs of learning organizations, a new model, the MIKS (Member Integrated Knowledge System) Model is proposed to include the role of the individual in the process. Their degree of motivation as well as communication and learning…

  12. An Integrated Model Recontextualized

    ERIC Educational Resources Information Center

    O'Meara, KerryAnn; Saltmarsh, John

    2016-01-01

    In this commentary, authors KerryAnn O'Meara and John Saltmarsh reflect on their 2008 "Journal of Higher Education Outreach and Engagement" article "An Integrated Model for Advancing the Scholarship of Engagement: Creating Academic Homes for the Engaged Scholar," reprinted in this 20th anniversary issue of "Journal of…

  13. Model-Based Design and Integration of Large Li-ion Battery Systems

    SciTech Connect

    Smith, Kandler; Kim, Gi-Heon; Santhanagopalan, Shriram; Shi, Ying; Pesaran, Ahmad; Mukherjee, Partha; Barai, Pallab; Maute, Kurt; Behrou, Reza; Patil, Chinmaya

    2015-11-17

    This presentation introduces physics-based models of batteries and software toolsets, including those developed by the U.S. Department of Energy's (DOE) Computer-Aided Engineering for Electric-Drive Vehicle Batteries Program (CAEBAT). The presentation highlights achievements and gaps in model-based tools for materials-to-systems design, lifetime prediction and control.

  14. Enviro-HIRLAM online integrated meteorology-chemistry modelling system: strategy, methodology, developments and applications (v7.2)

    NASA Astrophysics Data System (ADS)

    Baklanov, Alexander; Smith Korsholm, Ulrik; Nuterman, Roman; Mahura, Alexander; Pagh Nielsen, Kristian; Hansen Sass, Bent; Rasmussen, Alix; Zakey, Ashraf; Kaas, Eigil; Kurganskiy, Alexander; Sørensen, Brian; González-Aparicio, Iratxe

    2017-08-01

    The Environment - High Resolution Limited Area Model (Enviro-HIRLAM) is developed as a fully online integrated numerical weather prediction (NWP) and atmospheric chemical transport (ACT) model for research and forecasting of joint meteorological, chemical and biological weather. The integrated modelling system is developed by the Danish Meteorological Institute (DMI) in collaboration with several European universities. It is the baseline system in the HIRLAM Chemical Branch and used in several countries and different applications. The development was initiated at DMI more than 15 years ago. The model is based on the HIRLAM NWP model with online integrated pollutant transport and dispersion, chemistry, aerosol dynamics, deposition and atmospheric composition feedbacks. To make the model suitable for chemical weather forecasting in urban areas, the meteorological part was improved by implementation of urban parameterisations. The dynamical core was improved by implementing a locally mass-conserving semi-Lagrangian numerical advection scheme, which improves forecast accuracy and model performance. The current version (7.2), in comparison with previous versions, has a more advanced and cost-efficient chemistry, aerosol multi-compound approach, aerosol feedbacks (direct and semi-direct) on radiation and (first and second indirect effects) on cloud microphysics. Since 2004, the Enviro-HIRLAM has been used for different studies, including operational pollen forecasting for Denmark since 2009 and operational forecasting atmospheric composition with downscaling for China since 2017. Following the main research and development strategy, further model developments will be extended towards the new NWP platform - HARMONIE. Different aspects of online coupling methodology, research strategy and possible applications of the modelling system, and fit-for-purpose model configurations for the meteorological and air quality communities are discussed.

  15. Integration of Water Resource Models with Fayetteville Shale Decision Support and Information System

    SciTech Connect

    Cothren, Jackson; Thoma, Greg; DiLuzio, Mauro; Limp, Fred

    2013-06-30

    Significant issues can arise with the timing, location, and volume of surface water withdrawals associated with hydraulic fracturing of gas shale reservoirs as impacted watersheds may be sensitive, especially in drought years, during low flow periods, or during periods of the year when activities such as irrigation place additional demands on the surface supply of water. Significant energy production and associated water withdrawals may have a cumulative impact to watersheds over the short-term. Hence, hydraulic fracturing based on water withdrawal could potentially create shifts in the timing and magnitude of low or high flow events or change the magnitude of river flow at daily, monthly, seasonal, or yearly time scales. These changes in flow regimes can result in dramatically altered river systems. Currently little is known about the impact of fracturing on stream flow behavior. Within this context the objective of this study is to assess the impact of the hydraulic fracturing on the water balance of the Fayetteville Shale play area and examine the potential impacts of hydraulic fracturing on river flow regime at subbasin scale. This project addressed that need with four unique but integrated research and development efforts: 1) Evaluate the predictive reliability of the Soil and Water Assessment Tool (SWAT) model based at a variety of scales (Task/Section 3.5). The Soil and Water Assessment Tool (SWAT) model was used to simulate the across-scale water balance and the respective impact of hydraulic fracturing. A second hypothetical scenario was designed to assess the current and future impacts of water withdrawals for hydraulic fracturing on the flow regime and on the environmental flow components (EFCs) of the river. The shifting of these components, which present critical elements to water supply and water quality, could influence the ecological dynamics of river systems. For this purpose, we combined the use of SWAT model and Richter et al.’s (1996

  16. An integrative top-down and bottom-up qualitative model construction framework for exploration of biochemical systems.

    PubMed

    Wu, Zujian; Pang, Wei; Coghill, George M

    Computational modelling of biochemical systems based on top-down and bottom-up approaches has been well studied over the last decade. In this research, after illustrating how to generate atomic components by a set of given reactants and two user pre-defined component patterns, we propose an integrative top-down and bottom-up modelling approach for stepwise qualitative exploration of interactions among reactants in biochemical systems. Evolution strategy is applied to the top-down modelling approach to compose models, and simulated annealing is employed in the bottom-up modelling approach to explore potential interactions based on models constructed from the top-down modelling process. Both the top-down and bottom-up approaches support stepwise modular addition or subtraction for the model evolution. Experimental results indicate that our modelling approach is feasible to learn the relationships among biochemical reactants qualitatively. In addition, hidden reactants of the target biochemical system can be obtained by generating complex reactants in corresponding composed models. Moreover, qualitatively learned models with inferred reactants and alternative topologies can be used for further web-lab experimental investigations by biologists of interest, which may result in a better understanding of the system.

  17. Modeling of integrated environmental control systems for coal-fired power plants

    SciTech Connect

    Rubin, E.S.

    1989-10-01

    The general goal of this research project is to enhance, and transfer to DOE, a new computer simulation model for analyzing the performance and cost of environmental control systems for coal-fired power plants. Systems utilizing pre-combustion, combustion, or post-combustion control methods, individually or in combination, may be considered. A unique capability of this model is the probabilistic representation of uncertainty in model input parameters. This stochastic simulation capability allows the performance and cost of environmental control systems to be quantified probabilistically, accounting for the interactions among all uncertain process and economic parameters. This method facilitates more rigorous comparisons between conventional and advanced clean coal technologies promising improved cost and/or effectiveness for SO{sub 2} and NO{sub x} removal. Detailed modeling of several pre-combustion and post-combustion processes of interest to DOE/PETC have been selected for analysis as part of this project.

  18. Risk-based integrity and inspection modeling (RBIIM) of process components/system.

    PubMed

    Khan, Faisal I; Haddara, Mahmoud M; Bhattacharya, Subrata K

    2006-02-01

    Process plants deal with hazardous (highly flammable and toxic) chemicals at extreme conditions of temperature and pressure. Proper inspection and maintenance of these facilities is paramount for the maintenance of safe and continuous operation. This article proposes a risk-based methodology for integrity and inspection modeling (RBIIM) to ensure safe and fault-free operation of the facility. This methodology uses a gamma distribution to model the material degradation and a Bayesian updating method to improve the distribution based on actual inspection results. The method deals with the two cases of perfect and imperfect inspections. The measurement error resulting from imperfect inspections is modeled as a zero-mean, normally distributed random process. The risk is calculated using the probability of failure and the consequence is assessed in terms of cost as a function of time. The risk function is used to determine an optimal inspection and replacement interval. The calculated inspection and replacement interval is subsequently used in the design of an integrity inspection plan. Two case studies are presented: the maintenance of an autoclave and the maintenance of a pipeline segment. For the autoclave, the interval between two successive inspections is found to be 19 years. For the pipeline, the next inspection is due after 5 years from now. Measurements taken at inspections are used in estimating a new degradation rate that can then be used to update the failure distribution function.

  19. Performance Assessment of a Low-Level Radioactive Waste Disposal Site using GoldSim Integrated Systems Model

    NASA Astrophysics Data System (ADS)

    Merrell, G.; Singh, A.; Tauxe, J.; Perona, R.; Dornsife, W.; grisak, G. E.; Holt, R. M.

    2011-12-01

    Texas Commission on Environmental Quality has approved licenses for four landfills at the Waste Control Specialists (WCS) site located in Andrews County, West Texas. The site includes a hazardous waste landfill and three landfills for radioactive waste. An updated performance assessment is necessary prior to acceptance of waste at the landfills. The updated performance assessment a) provides for more realistic and flexible dose modeling capabilities, b) addresses all plausible release and accident scenarios as they relate to the performance objectives, c) includes impact of climate and hydrologic scenarios that may impact long-term performance of the landfill, d) addresses impact of cover naturalization and degradation on the landfill, and e) incorporates uncertainty and sensitivity analysis for critical parameters. For the updated performance assessment, WCS has developed an integrated systems level performance assessment model using the GoldSim platform. GoldSim serves as a model for integrating all of the major components of a performance assessment, which include the radionuclide source term, facility design, environmental transport pathways, exposure scenarios, and radiological doses. Unlike many computer models that are based on first principles, GoldSim is a systems level model that can be used to integrate and abstract more complex sub-models into one system. This can then be used to assess the results into a unified model of the disposal system and environment. In this particular application, the GoldSim model consists of a) hydrogeologic model that simulates flow and transport through the Dockum geologic unit that underlies all of the waste facilities, b) waste cells that represent the containment unit and simulate degradation of waste forms, radionuclide leaching, and partitioning into the liquid and vapor phase within the waste unit, c) a cover system model that simulates upward diffusive transport from the underground repository to the atmosphere. In

  20. Integration of Evidence into a Detailed Clinical Model-based Electronic Nursing Record System

    PubMed Central

    Park, Hyeoun-Ae; Jeon, Eunjoo; Chung, Eunja

    2012-01-01

    Objectives The purpose of this study was to test the feasibility of an electronic nursing record system for perinatal care that is based on detailed clinical models and clinical practice guidelines in perinatal care. Methods This study was carried out in five phases: 1) generating nursing statements using detailed clinical models; 2) identifying the relevant evidence; 3) linking nursing statements with the evidence; 4) developing a prototype electronic nursing record system based on detailed clinical models and clinical practice guidelines; and 5) evaluating the prototype system. Results We first generated 799 nursing statements describing nursing assessments, diagnoses, interventions, and outcomes using entities, attributes, and value sets of detailed clinical models for perinatal care which we developed in a previous study. We then extracted 506 recommendations from nine clinical practice guidelines and created sets of nursing statements to be used for nursing documentation by grouping nursing statements according to these recommendations. Finally, we developed and evaluated a prototype electronic nursing record system that can provide nurses with recommendations for nursing practice and sets of nursing statements based on the recommendations for guiding nursing documentation. Conclusions The prototype system was found to be sufficiently complete, relevant, useful, and applicable in terms of content, and easy to use and useful in terms of system user interface. This study has revealed the feasibility of developing such an ENR system. PMID:22844649

  1. Integration of Evidence into a Detailed Clinical Model-based Electronic Nursing Record System.

    PubMed

    Park, Hyeoun-Ae; Min, Yul Ha; Jeon, Eunjoo; Chung, Eunja

    2012-06-01

    The purpose of this study was to test the feasibility of an electronic nursing record system for perinatal care that is based on detailed clinical models and clinical practice guidelines in perinatal care. THIS STUDY WAS CARRIED OUT IN FIVE PHASES: 1) generating nursing statements using detailed clinical models; 2) identifying the relevant evidence; 3) linking nursing statements with the evidence; 4) developing a prototype electronic nursing record system based on detailed clinical models and clinical practice guidelines; and 5) evaluating the prototype system. We first generated 799 nursing statements describing nursing assessments, diagnoses, interventions, and outcomes using entities, attributes, and value sets of detailed clinical models for perinatal care which we developed in a previous study. We then extracted 506 recommendations from nine clinical practice guidelines and created sets of nursing statements to be used for nursing documentation by grouping nursing statements according to these recommendations. Finally, we developed and evaluated a prototype electronic nursing record system that can provide nurses with recommendations for nursing practice and sets of nursing statements based on the recommendations for guiding nursing documentation. The prototype system was found to be sufficiently complete, relevant, useful, and applicable in terms of content, and easy to use and useful in terms of system user interface. This study has revealed the feasibility of developing such an ENR system.

  2. Integration of Data Assimilation, Stochastic Optimization and Uncertainty Modeling within NASA's Land Information System (LIS)

    NASA Astrophysics Data System (ADS)

    Harrison, K.; Peters-Lidard, C. D.; Kumar, S.; Santanello, J. A.; Kirschbaum, D. B.

    2011-12-01

    Recent advances in information systems technology have significantly improved our ability to fully exploit the information content of remote sensing data. In this talk, we discuss a range of applications for the optimization and uncertainty tools recently incorporated into the NASA Land Information System (LIS) to address this challenge. LIS is a high-resolution, high-performance, land surface modeling and data assimilation system that supports a wide range of land surface research and applications. The applications of the new optimization and uncertainty tools involve several LIS land-coupled models, including the Weather Research and Forecasting Model (WRF), models of land microwave emission (the Soil Moisture and Ocean Salinity (SMOS) Community Microwave Emission Model (CMEM)), radiative transfer (Joint Center for Satellite Data Assimilation's Community Radiative Transfer Model (CRTM)), landslide and streamflow simulation. The impact of parameter estimation on land surface modeling is investigated for a range of studies, including soil moisture modeling in the Walnut Gulch experimental watershed, land data assimilation over the continental United States, and coupled land-atmosphere forecasts using WRF for the Southern Great Plains. In addition, the uncertainty in the outputs of such coupled systems is investigated. The uncertainty methods include Monte Carlo for propagating parameter uncertainties and model errors as well as Markov chain Monte Carlo methods that enable the updating of parameter uncertainties with remote sensing data. The tradeoffs between uncertainty estimation and parameter estimation are also highlighted. Finally, remaining challenges for the development of information systems of this kind are identified, including challenges in their use as part of mission simulation experiments.

  3. A system model to integrate the “Green Manufacturing” concept in Romanian manufacturing organisation

    NASA Astrophysics Data System (ADS)

    Tilină, D. I.; Zapciu, M.; Mohora, C.

    2015-11-01

    In Romania, the large majorities of the manufacturing companies consume natural resources and energy in an unsustainable manner. Over the years, the emissions of greenhouse gases have led not only to many environmental problems but also to important social and economic problems. A real solution to help the Romanian manufacturing companies to adapt to the new legislative requirements is the green manufacturing implementation. Considering the current situation, the purpose of this paper is to present a model that will integrate the green manufacturing concept at the organizational level based on the practices identified in the Romanian manufacturing companies at the operational level in the context of sustainable development.

  4. Integral Projection Models for host-parasite systems with an application to amphibian chytrid fungus.

    PubMed

    Wilber, Mark Q; Langwig, Kate E; Kilpatrick, A Marm; McCallum, Hamish I; Briggs, Cheryl J

    2016-10-01

    Host parasite models are typically constructed under either a microparasite or macroparasite paradigm. However, this has long been recognized as a false dichotomy because many infectious disease agents, including most fungal pathogens, have attributes of both microparasites and macroparasites.We illustrate how Integral Projection Models (IPM)s provide a novel, elegant modeling framework to represent both types of pathogens. We build a simple host-parasite IPM that tracks both the number of susceptible and infected hosts and the distribution of parasite burdens in infected hosts.The vital rate functions necessary to build IPMs for disease dynamics share many commonalities with classic micro and macroparasite models and we discuss how these functions can be parameterized to build a host-parasite IPM. We illustrate the utility of this IPM approach by modeling the temperature-dependent epizootic dynamics of amphibian chytrid fungus in Mountain yellow-legged frogs (Rana muscosa).The host-parasite IPM can be applied to other diseases such as facial tumor disease in Tasmanian devils and white-nose syndrome in bats. Moreover, the host-parasite IPM can be easily extended to capture more complex disease dynamics and provides an exciting new frontier in modeling wildlife disease.

  5. Integrated driver modelling considering state transition feature for individual adaptation of driver assistance systems

    NASA Astrophysics Data System (ADS)

    Raksincharoensak, Pongsathorn; Khaisongkram, Wathanyoo; Nagai, Masao; Shimosaka, Masamichi; Mori, Taketoshi; Sato, Tomomasa

    2010-12-01

    This paper describes the modelling of naturalistic driving behaviour in real-world traffic scenarios, based on driving data collected via an experimental automobile equipped with a continuous sensing drive recorder. This paper focuses on the longitudinal driving situations which are classified into five categories - car following, braking, free following, decelerating and stopping - and are referred to as driving states. Here, the model is assumed to be represented by a state flow diagram. Statistical machine learning of driver-vehicle-environment system model based on driving database is conducted by a discriminative modelling approach called boosting sequential labelling method.

  6. An Integrated Bayesian Uncertainty Estimator: fusion of Input, Parameter and Model Structural Uncertainty Estimation in Hydrologic Prediction System

    NASA Astrophysics Data System (ADS)

    Ajami, N. K.; Duan, Q.; Sorooshian, S.

    2005-12-01

    To-date single conceptual hydrologic models often applied to interpret physical processes within a watershed. Nevertheless hydrologic models regardless of their sophistication and complexity are simplified representation of the complex, spatially distributed and highly nonlinear real world system. Consequently their hydrologic predictions contain considerable uncertainty from different sources including: hydrometeorological forcing inputs, boundary/initial conditions, model structure, model parameters which need to be accounted for. Thus far the effort has gone to address these sources of uncertainty explicitly, making an implicit assumption that uncertainties from different sources are additive. Nevertheless because of the nonlinear nature of the hydrologic systems, it is not feasible to account for these uncertainties independently. Here we present the Integrated Bayesian Uncertainty Estimator (IBUNE) which accounts for total uncertainties from all major sources: inputs forcing, model structure, model parameters. This algorithm explores multi-model framework to tackle model structural uncertainty while using the Bayesian rules to estimate parameter and input uncertainty within individual models. Three hydrologic models including SACramento Soil Moisture Accounting (SAC-SMA) model, Hydrologic model (HYMOD) and Simple Water Balance (SWB) model were considered within IBUNE framework for this study. The results which are presented for the Leaf River Basin, MS, indicates that IBUNE gives a better quantification of uncertainty through hydrological modeling processes, therefore provide more reliable and less bias prediction with realistic uncertainty boundaries.

  7. Integrated oxygen recovery system

    NASA Technical Reports Server (NTRS)

    Lee, M. Gene; Davenport, Ronald J.

    1993-01-01

    Life Systems has conceptualized an innovative Integrated Oxygen Recovery System (IORS) applicable to advanced mission air revitalization. The IORS provides the capability to electrochemically generate metabolic oxygen (O2) and recover O2 from the space habitat atmosphere via a carbon dioxide (CO2) reduction process within a single assembly. To achieve this capability, the IORS utilizes a Solid Metal Cathode (SMC) water electrolysis unit that simultaneously serves as the Sabatier CO2 reduction reactor. The IORS enables two major life support systems currently baselined in closed loop air revitalization systems to be combined into one smaller, less complex system. This concept reduces fluidic and electrical interface requirements and eliminates a hydrogen (H2) interface. Life Systems is performing an evaluation of the IORS process directed at demonstrating performance and quantifying key physical characteristics including power, weight, and volume. The results of the checkout, shakedown, and initial parametric tests are summarized.

  8. Integrated oxygen recovery system

    NASA Technical Reports Server (NTRS)

    Lee, M. Gene; Davenport, Ronald J.

    1993-01-01

    Life Systems has conceptualized an innovative Integrated Oxygen Recovery System (IORS) applicable to advanced mission air revitalization. The IORS provides the capability to electrochemically generate metabolic oxygen (O2) and recover O2 from the space habitat atmosphere via a carbon dioxide (CO2) reduction process within a single assembly. To achieve this capability, the IORS utilizes a Solid Metal Cathode (SMC) water electrolysis unit that simultaneously serves as the Sabatier CO2 reduction reactor. The IORS enables two major life support systems currently baselined in closed loop air revitalization systems to be combined into one smaller, less complex system. This concept reduces fluidic and electrical interface requirements and eliminates a hydrogen (H2) interface. Life Systems is performing an evaluation of the IORS process directed at demonstrating performance and quantifying key physical characteristics including power, weight, and volume. Technical progress achieved during the first two months of the program is summarized.

  9. Integrated modeling: a look back

    NASA Astrophysics Data System (ADS)

    Briggs, Clark

    2015-09-01

    This paper discusses applications and implementation approaches used for integrated modeling of structural systems with optics over the past 30 years. While much of the development work focused on control system design, significant contributions were made in system modeling and computer-aided design (CAD) environments. Early work appended handmade line-of-sight models to traditional finite element models, such as the optical spacecraft concept from the ACOSS program. The IDEAS2 computational environment built in support of Space Station collected a wider variety of existing tools around a parametric database. Later, IMOS supported interferometer and large telescope mission studies at JPL with MATLAB modeling of structural dynamics, thermal analysis, and geometric optics. IMOS's predecessor was a simple FORTRAN command line interpreter for LQG controller design with additional functions that built state-space finite element models. Specialized language systems such as CAESY were formulated and prototyped to provide more complex object-oriented functions suited to control-structure interaction. A more recent example of optical modeling directly in mechanical CAD is used to illustrate possible future directions. While the value of directly posing the optical metric in system dynamics terms is well understood today, the potential payoff is illustrated briefly via project-based examples. It is quite likely that integrated structure thermal optical performance (STOP) modeling could be accomplished in a commercial off-the-shelf (COTS) tool set. The work flow could be adopted, for example, by a team developing a small high-performance optical or radio frequency (RF) instrument.

  10. Geo-Semantic Framework for Integrating Long-Tail Data and Model Resources for Advancing Earth System Science

    NASA Astrophysics Data System (ADS)

    Elag, M.; Kumar, P.

    2014-12-01

    Often, scientists and small research groups collect data, which target to address issues and have limited geographic or temporal range. A large number of such collections together constitute a large database that is of immense value to Earth Science studies. Complexity of integrating these data include heterogeneity in dimensions, coordinate systems, scales, variables, providers, users and contexts. They have been defined as long-tail data. Similarly, we use "long-tail models" to characterize a heterogeneous collection of models and/or modules developed for targeted problems by individuals and small groups, which together provide a large valuable collection. Complexity of integrating across these models include differing variable names and units for the same concept, model runs at different time steps and spatial resolution, use of differing naming and reference conventions, etc. Ability to "integrate long-tail models and data" will provide an opportunity for the interoperability and reusability of communities' resources, where not only models can be combined in a workflow, but each model will be able to discover and (re)use data in application specific context of space, time and questions. This capability is essential to represent, understand, predict, and manage heterogeneous and interconnected processes and activities by harnessing the complex, heterogeneous, and extensive set of distributed resources. Because of the staggering production rate of long-tail models and data resulting from the advances in computational, sensing, and information technologies, an important challenge arises: how can geoinformatics bring together these resources seamlessly, given the inherent complexity among model and data resources that span across various domains. We will present a semantic-based framework to support integration of "long-tail" models and data. This builds on existing technologies including: (i) SEAD (Sustainable Environmental Actionable Data) which supports curation

  11. An integrated modelling framework to aid smallholder farming system management in the Olifants River Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Magombeyi, M. S.; Taigbenu, A. E.

    Computerised integrated models from science contribute to better informed and holistic assessments of multifaceted policies and technologies than individual models. This view has led to considerable effort being devoted to developing integrated models to support decision-making under integrated water resources management (IWRM). Nevertheless, an appraisal of previous and ongoing efforts to develop such decision support systems shows considerable deficiencies in attempts to address the hydro-socio-economic effects on livelihoods. To date, no universal standard integration method or framework is in use. For the existing integrated models, their application failures have pointed to the lack of stakeholder participation. In an endeavour to close this gap, development and application of a seasonal time-step integrated model with prediction capability is presented in this paper. This model couples existing hydrology, agronomy and socio-economic models with feedbacks to link livelihoods of resource-constrained smallholder farmers to water resources at catchment level in the semi-arid Olifants subbasin in South Africa. These three models, prior to coupling, were calibrated and validated using observed data and participation of local stakeholders. All the models gave good representation of the study conditions, as indicated by the statistical indicators. The integrated model is of general applicability, hence can be extended to other catchments. The impacts of untied ridges, planting basins and supplemental irrigation were compared to conventional rainfed tillage under maize crop production and for different farm typologies. Over the 20 years of simulation, the predicted benefit of untied ridges and planting basins versus conventional rainfed tillage on surface runoff (Mm 3/year) reduction was 14.3% and 19.8%, respectively, and about 41-46% sediment yield (t/year) reduction in the catchment. Under supplemental irrigation, maize yield improved by up to 500% from the long

  12. [Improving the cancer screening model: experience applying an integrated operating system].

    PubMed

    Wu, Pei-Hua; Lin, Wen-Li

    2009-12-01

    Cancer patient numbers have continued to rise in recent years. In terms of deaths from various cancers, malignancies are involved in 28.9% of cases. Over the course of disease contraction, treatment and aftercare, patients face unease and pressure of various forms and degrees. Patients may abort treatment due to treatment pain and discomfort. The case manager may play a positive role by following up at appropriate moments to understand patient needs and deliver proper resources in order to avoid cancer recrudescence, which may delay treatment progress. The objective of this study was to improve nursing quality and management performance in cancer patient care. Through the integration of the management information system, A "Cancer Case Screening System" was built using a management information system to shorten the amount of time spent on scanning new cases and to reduce the rate of scanning error. Using a decision matrix, the research team proposed the following solution: (1) Define the system infrastructure currently employed in hospitals; (2) Discuss the Cancer Cases Screening System workflow and determine system specifications; (3) Write the Cancer Cases Screening System program to establish an effective management information system. The time spent on scanning case per day dropped from 117.14 to 28.57 minutes. The error rate was also reduced from 34.65% to 8.87%. These results achieved the objective of the project. Promoting the developed screening system in the broader medical community can help reduce medical treatment costs and increase treatment continuity. This project may be considered and referenced by managers of relevant medical organizations.

  13. Modeling and Simulation Resource Repository (MSRR)(System Engineering/Integrated M&S Management Approach

    NASA Technical Reports Server (NTRS)

    Milroy, Audrey; Hale, Joe

    2006-01-01

    NASA s Exploration Systems Mission Directorate (ESMD) is implementing a management approach for modeling and simulation (M&S) that will provide decision-makers information on the model s fidelity, credibility, and quality, including the verification, validation and accreditation information. The NASA MSRR will be implemented leveraging M&S industry best practices. This presentation will discuss the requirements that will enable NASA to capture and make available the "meta data" or "simulation biography" data associated with a model. The presentation will also describe the requirements that drive how NASA will collect and document relevant information for models or suites of models in order to facilitate use and reuse of relevant models and provide visibility across NASA organizations and the larger M&S community.

  14. Isms dimensions: toward a more comprehensive and integrative model of belief-system components.

    PubMed

    Saucier, Gerard

    2013-05-01

    Psychological research on beliefs, values, worldview, and ideology has been limited by inadequate structural models to organize the plethora of constructs. The present studies investigate the potential of a dimensional model based on lexical, dictionary-represented -ism concepts to form an organizing structural model. Four isms factors found previously in college samples are shown to replicate in community-sample data with better controls for acquiescent responding. But analyses also reveal a 5th factor involving egalitarianism and inequality-aversion, increasing the comprehensiveness of the structural model. Relations of frequently used constructs (values, authoritarianism, social dominance orientation) to the isms dimensions are detailed, demonstrating both the integrative and value-adding potentials of the model. The possibility of potential additional nonlexical factors (Trust in Government, Ethnocentrism, Xenophobia, and Nativism) is evaluated. Factors identified in these studies are demonstrated to show interesting relations with political-party preference, subjective well-being, and change over time in the Big Five personality dimensions. PsycINFO Database Record (c) 2013 APA, all rights reserved

  15. A mixed-contact formulation for a dynamics simulation of flexible systems: An integration with model-reduction techniques

    NASA Astrophysics Data System (ADS)

    Starc, Blaž; Čepon, Gregor; Boltežar, Miha

    2017-04-01

    A new numerical procedure for efficient dynamics simulations of linear-elastic systems with unilateral contacts is proposed. The method is based on the event-driven integration of a contact problem with a combination of single- and set-valued force laws together with classical model-reduction techniques. According to the contact state, the developed event-driven integration enables the formulation of reduced system matrices. Moreover, to enable the transition among different reduced spaces the formulation of the initial conditions is also presented. The method has been developed separately for each of the four most popular model-reduction techniques (Craig-Bampton, MacNeal, Rubin and dual Craig-Bampton). The applicability of the newly presented method is demonstrated on a simple clamped-beam structure with a unilateral contact, which is excited with a harmonic force at the free end.

  16. Modeling and Control System Design for an Integrated Solar Generation and Energy Storage System with a Ride-Through Capability: Preprint

    SciTech Connect

    Wang, X.; Yue, M.; Muljadi, E.

    2012-09-01

    This paper presents a generic approach for PV panel modeling. Data for this modeling can be easily obtained from manufacturer datasheet, which provides a convenient way for the researchers and engineers to investigate the PV integration issues. A two-stage power conversion system (PCS) is adopted in this paper for the PV generation system and a Battery Energy Storage System (BESS) can be connected to the dc-link through a bi-directional dc/dc converter. In this way, the BESS can provide some ancillary services which may be required in the high penetration PV generation scenario. In this paper, the fault ride-through (FRT) capability is specifically focused. The integrated BESS and PV generation system together with the associated control systems is modeled in PSCAD and Matlab platforms and the effectiveness of the controller is validated by the simulation results.

  17. Integrated flow and structural modeling for rocket engine component test facility propellant systems

    NASA Technical Reports Server (NTRS)

    Dequay, L.; Lusk, A.; Nunez, S.

    1991-01-01

    A set of PC-based computational Dynamic Fluid Flow Simulation models is presented for modeling facility gas and cryogenic systems. Data obtained provide important information regarding performance envelope parameters for the facility using different engine components; time-dependent valve setting for controlling steady-state, quasi-steady state, and transient profiles; optimum facility pipe and pipe component sizes and parameters; momentum transfer loads; and fluid conditions at critical points. A set of COSMIC NASTRAN-based finite element models is also presented to evaluate the loads and stresses on test facility piping systems from fluid and gaseous effects, thermal chill down, and occasional wind loads. The models are based on Apple Macintosh software which makes it possible to change numerous parameters.

  18. CHOmine: an integrated data warehouse for CHO systems biology and modeling.

    PubMed

    Gerstl, Matthias P; Hanscho, Michael; Ruckerbauer, David E; Zanghellini, Jürgen; Borth, Nicole

    2017-01-01

    The last decade has seen a surge in published genome-scale information for Chinese hamster ovary (CHO) cells, which are the main production vehicles for therapeutic proteins. While a single access point is available at www.CHOgenome.org, the primary data is distributed over several databases at different institutions. Currently research is frequently hampered by a plethora of gene names and IDs that vary between published draft genomes and databases making systems biology analyses cumbersome and elaborate. Here we present CHOmine, an integrative data warehouse connecting data from various databases and links to other ones. Furthermore, we introduce CHOmodel, a web based resource that provides access to recently published CHO cell line specific metabolic reconstructions. Both resources allow to query CHO relevant data, find interconnections between different types of data and thus provides a simple, standardized entry point to the world of CHO systems biology. http://www.chogenome.org.

  19. Developing an Action Model for Integration of Health System Response to HIV/AIDS and Noncommunicable Diseases (NCDs) in Developing Countries

    PubMed Central

    Haregu, Tilahun Nigatu; Setswe, Geoffrey; Elliott, Julian; Oldenburg, Brian

    2014-01-01

    Introduction: Although there are several models of integrated architecture, we still lack models and theories about the integration process of health system responses to HIV/AIDS and NCDs. Objective: The overall purpose of this study is to design an action model, a systematic approach, for the integration of health system responses to HIV/AIDS and NCDs in developing countries. Methods: An iterative and progressive approach of model development using inductive qualitative evidence synthesis techniques was applied. As evidence about integration is spread across different fields, synthesis of evidence from a broad range of disciplines was conducted. Results: An action model of integration having 5 underlying principles, 4 action fields, and a 9-step action cycle is developed. The INTEGRATE model is an acronym of the 9 steps of the integration process: 1) Interrelate the magnitude and distribution of the problems, 2) Navigate the linkage between the problems, 3) Testify individual level co-occurrence of the problems, 4) Examine the similarities and understand the differences between the response functions, 5) Glance over the health system’s environment for integration, 6) Repackage and share evidence in a useable form, 7) Ascertain the plan for integration, 8) Translate the plan in to action, 9) Evaluate and Monitor the integration. Conclusion: Our model provides a basis for integration of health system responses to HIV/AIDS and NCDs in the context of developing countries. We propose that future empirical work is needed to refine the validity and applicability of the model. PMID:24373260

  20. Modelling the root system architecture of Poaceae. Can we simulate integrated traits from morphological parameters of growth and branching?

    PubMed

    Pagès, Loïc; Picon-Cochard, Catherine

    2014-10-01

    Our objective was to calibrate a model of the root system architecture on several Poaceae species and to assess its value to simulate several 'integrated' traits measured at the root system level: specific root length (SRL), maximum root depth and root mass. We used the model ArchiSimple, made up of sub-models that represent and combine the basic developmental processes, and an experiment on 13 perennial grassland Poaceae species grown in 1.5-m-deep containers and sampled at two different dates after planting (80 and 120 d). Model parameters were estimated almost independently using small samples of the root systems taken at both dates. The relationships obtained for calibration validated the sub-models, and showed species effects on the parameter values. The simulations of integrated traits were relatively correct for SRL and were good for root depth and root mass at the two dates. We obtained some systematic discrepancies that were related to the slight decline of root growth in the last period of the experiment. Because the model allowed correct predictions on a large set of Poaceae species without global fitting, we consider that it is a suitable tool for linking root traits at different organisation levels. © 2014 INRA. New Phytologist © 2014 New Phytologist Trust.

  1. Integrated multisensor navigation systems

    NASA Technical Reports Server (NTRS)

    Vangraas, Frank

    1988-01-01

    The multisensor navigation systems research evolved from the availability of several stand alone navigation systems and the growing concern for aircraft navigation reliability and safety. The intent is to develop a multisensor navigation system during the next decade that will be capable of providing reliable aircraft position data. These data will then be transmitted directly, or by satellite, to surveillance centers to aid the process of air traffic flow control. In order to satisfy the requirements for such a system, the following issues need to be examined: performance, coverage, reliability, availability, and integrity. The presence of a multisensor navigation system in all aircraft will improve safety for the aviation community and allow for more economical operation.

  2. Towards intelligent diagnostic system employing integration of mathematical and engineering model

    SciTech Connect

    Isa, Nor Ashidi Mat

    2015-05-15

    The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well

  3. Towards intelligent diagnostic system employing integration of mathematical and engineering model

    NASA Astrophysics Data System (ADS)

    Isa, Nor Ashidi Mat

    2015-05-01

    The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well

  4. Benefit/Cost Ratio in Systems Engineering: Integrated Models, Tests, Design, and Production

    SciTech Connect

    Nitta, C; Logan, R; Chidester, S; Foltz, M F

    2004-10-27

    We have previously described our methodology for quantification of risk and risk reduction, and the use of risk, quantified as a dollar value, in the Value Engineering and decision tradeoff process. In this work we extend our example theme of the safety of reactive materials during accidental impacts. We have begun to place the validation of our impact safety model into a systems engineering context. In that sense, we have made connections between the data and the trends in the data, our models of the impact safety process, and the implications regarding confidence levels and reliability based on given impact safety requirements. We have folded this information into a quantitative risk assessment, and shown the assessed risk reduction value of developing an even better model, with more model work or more experimental data or both. Since there is a cost incurred for either model improvement or testing, we have used a Benefit/Cost Ratio metric to quantify this, where Benefit is our quantification of assessed risk reduction, and cost is the cost of the new test data, code development, and model validation. This has left us with further questions posed for our evolving system engineering representation for impact safety and its implications. We had concluded that the Benefit/Cost Ratio for more model validation was high, but such improvement could take several paths. We show our progress along two such paths; simple and high fidelity modeling of the impact safety process, and the implications of our knowledge and assumptions of the probability distribution functions involved. At the other end of the systems engineering scale, we discuss the implications of our linkage from model validation to risk on our production plant operations. Naturally, the nature of most such methodologies is still evolving, and this work represents the views of the authors and not necessarily the views of Lawrence Livermore National Laboratory.

  5. Slimplectic Integrators: Variational Integrators for Nonconservative systems

    NASA Astrophysics Data System (ADS)

    Tsang, David

    2016-05-01

    Symplectic integrators are widely used for long-term integration of conservative astrophysical problems due to their ability to preserve the constants of motion; however, they cannot in general be applied in the presence of nonconservative interactions. Here we present the “slimplectic” integrator, a new type of numerical integrator that shares many of the benefits of traditional symplectic integrators yet is applicable to general nonconservative systems. We utilize a fixed-time-step variational integrator formalism applied to a newly developed principle of stationary nonconservative action (Galley, 2013, Galley et al 2014). As a result, the generalized momenta and energy (Noether current) evolutions are well-tracked. We discuss several example systems, including damped harmonic oscillators, Poynting-Robertson drag, and gravitational radiation reaction, by utilizing our new publicly available code to demonstrate the slimplectic integrator algorithm. Slimplectic integrators are well-suited for integrations of systems where nonconservative effects play an important role in the long-term dynamical evolution. As such they are particularly appropriate for cosmological or celestial N-body dynamics problems where nonconservative interactions, e.g., gas interactions or dissipative tides, can play an important role.

  6. An integrated system dynamics model developed for managing lake water quality at the watershed scale.

    PubMed

    Liu, Hui; Benoit, Gaboury; Liu, Tao; Liu, Yong; Guo, Huaicheng

    2015-05-15

    A reliable system simulation to relate socioeconomic development with water environment and to comprehensively represent a watershed's dynamic features is important. In this study, after identifying lake watershed system processes, we developed a system dynamics modeling framework for managing lake water quality at the watershed scale. Two reinforcing loops (Development and Investment Promotion) and three balancing loops (Pollution, Resource Consumption, and Pollution Control) were constituted. Based on this work, we constructed Stock and Flow Diagrams that embedded a pollutant load model and a lake water quality model into a socioeconomic system dynamics model. The Dianchi Lake in Yunnan Province, China, which is the sixth largest and among the most severely polluted freshwater lakes in China, was employed as a case study to demonstrate the applicability of the model. Water quality parameters considered in the model included chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP). The business-as-usual (BAU) scenario and three alternative management scenarios on spatial adjustment of industries and population (S1), wastewater treatment capacity construction (S2), and structural adjustment of agriculture (S3), were simulated to assess the effectiveness of certain policies in improving water quality. Results showed that S2 is most effective scenario, and the COD, TN, and TP concentrations in Caohai in 2030 are 52.5, 10.9, and 0.8 mg/L, while those in Waihai are 9.6, 1.2, and 0.08 mg/L, with sustained development in the watershed. Thus, the model can help support the decision making required in development and environmental protection strategies.

  7. Surface water vulnerability assessment applying the integrity model as a decision support system for quality improvement

    SciTech Connect

    Mirauda, Domenica; Ostoich, Marco

    2011-04-15

    The implementation of the Water Framework Directive (WFD) 2000/60/EC, aimed at achieving a 'Good' Ecological Status of surface water bodies by 2015, indicates the adoption of a River Basin Management approach by using a model which works as a support for decision making. This work has applied the suggestions put forward by the WFD by means of a mathematical model called the Integrity Model. This represents valid support when assessing the efficiency of planned interventions which may directly or indirectly play a role in enhancing the quality of surface waters at the basin scale. Herein the results of a preliminary application limited to just two indexes on the Bacchiglione river basin, located in Northern Italy, are both presented and compared with the results of institutional monitoring activities in compliance with set technical regulations. The proposed model appears to be useful when carrying out Strategic Environmental Assessment (SEA) procedures in accordance with Directive 2001/42/EC concerning water management and protection plans as well as for the Environmental Impact Assessment (EIA) procedure to be carried out on the interventions identified.

  8. Integrated groundwater-surface water modeling at the neighborhood scale in urbanized hydrologic systems

    NASA Astrophysics Data System (ADS)

    Barnes, M.; Welty, C.; Miller, A. J.; Cole, J.

    2013-12-01

    Modification of the hydrologic cycle by urban development is influenced by fine-scale spatial characteristics of cut-and-fill topography, road networks, and subsurface utilities. To address impacts on both groundwater and surface water in an integrated manner, we are using ParFlow, a parallel distributed watershed model, to conduct high-resolution simulations. We are applying ParFlow across six watershed subbasins with drainage areas of 0.3-0.6 km2 using a horizontal grid resolution of 10 m and vertical resolution of 1 m. Sites have been selected to represent a range of development intensity, age, and stormwater management practices, and each is instrumented for stage and discharge. A LIDAR-derived DEM defines model topography, and an orthoimagery and LIDAR-derived land cover classification from U. Vermont is used to develop model surface hydrologic properties. In some cases, portions of the watershed divide modified by large infrastructure elements, such as freeways, roads, and stormwater features, pose difficulties to overland flow routing within the model and to watershed delineation. In these cases, additional information, including the location of stormwater infrastructure, has been used to modify the DEM and represent where surface flow paths follow the storm drain network instead of topography. Results of these methods have improved estimation of domain extent and flow paths in overland flow tests of these basins. Boundary and initial conditions have been selected for each basin using legacy well data and a conceptual model of the Piedmont physiographic province hydrogeology. Steady-state simulations have been conducted in some cases to help refine model boundary conditions. Model spin-up has been conducted using surface forcing (P and ET) for the years 2008-2009 from NLDAS2 dataset. Ongoing analysis is focused on modeling the impact of development patterns and type of stormwater management. Challenges related to applying a coupled model in an urban setting

  9. The Strategic Impact Model: An Integrative Approach to Performance Improvement and Instructional Systems Design

    ERIC Educational Resources Information Center

    Molenda, Michael; Pershing, James A.

    2004-01-01

    Training in business settings and instruction in academic settings have never taken place in a vacuum, but in earlier times many instructional technology professionals behaved as though they did. Models of instructional systems design (ISD) placed training and instruction at the center of the universe ignoring the impact of the external…

  10. Methods for integrated modeling of landscape change: Interior Northwest Landscape Analysis System.

    Treesearch

    Jane L. Hayes; Alan. A. Ager; R. James Barbour

    2004-01-01

    The Interior Northwest Landscape Analysis System (INLAS) links a number of resource, disturbance, and landscape simulations models to examine the interactions of vegetative succession, management, and disturbance with policy goals. The effects of natural disturbance like wildfire, herbivory, forest insects and diseases, as well as specific management actions are...

  11. A Model for Developing High-Quality Online Courses: Integrating a Systems Approach with Learning Theory

    ERIC Educational Resources Information Center

    Puzziferro, Maria; Shelton, Kaye

    2008-01-01

    As the demand for online education continues to increase, institutions are faced with developing process models for efficient, high-quality online course development. This paper describes a systems, team-based, approach that centers on an online instructional design theory ("Active Mastery Learning") implemented at Colorado State…

  12. The Strategic Impact Model: An Integrative Approach to Performance Improvement and Instructional Systems Design

    ERIC Educational Resources Information Center

    Molenda, Michael; Pershing, James A.

    2004-01-01

    Training in business settings and instruction in academic settings have never taken place in a vacuum, but in earlier times many instructional technology professionals behaved as though they did. Models of instructional systems design (ISD) placed training and instruction at the center of the universe ignoring the impact of the external…

  13. Microfabricated Mammalian Organ Systems and Their Integration into Models of Whole Animals and Humans

    PubMed Central

    Sung, Jong H; Esch, Mandy B; Prot, Jean-Matthieu; Long, Christopher J; Smith, Alec; Hickman, James; Shuler, Michael L

    2013-01-01

    While in vitro cell based systems have been an invaluable tool in biology, they often suffer from a lack of physiological relevance. The discrepancy between the in vitro and in vivo systems has been a bottleneck in drug development process and biological sciences. The recent progress in microtechnology has enabled manipulation of cellular environment at a physiologically relevant length scale, which has led to the development of novel in vitro organ systems, often termed ‘organ-on-a-chip’ systems. By mimicking the cellular environment of in vivo tissues, various organ-on-a-chip systems have been reported to reproduce target organ functions better than conventional in vitro model systems. Ultimately, these organ-on-a-chip systems will converge into multi-organ ‘body-on-a-chip’ systems composed of functional tissues that reproduce the dynamics of the whole-body response. Such microscale in vitro systems will open up new possibilities in medical science and in the pharmaceutical industry. PMID:23388858

  14. Integrated workflow for characterizing and modeling a mixed sedimentary system: The Ilerdian Alveolina Limestone Formation (Graus-Tremp Basin, Spain)

    NASA Astrophysics Data System (ADS)

    Hamon, Youri; Deschamps, Remy; Joseph, Philippe; Doligez, Brigitte; Schmitz, Julien; Lerat, Olivier

    2016-09-01

    This paper proposes an advanced stochastic workflow to jointly model sedimentary facies and diagenesis. The formation of interest is the Early Eocene Alveolina Limestone Formation, which outcrops in the Serraduy area (Graus-Tremp Basin, NE Spain). Ten sedimentary lithotypes representing facies or facies associations of a mixed siliciclastic-carbonate ramp system were identified within the succession. A 3D model describing the depositional architecture is also proposed. The results from the diagenetic study evidenced the occurrence of several successive calcite cements, which were grouped into five diagenetic imprints for modeling. These imprints were then quantified to ease their integration into numerical models. The following step consisted in building a 3D gridded model with seven different modeling units. They were populated using a bi-plurigaussian simulation approach that reproduced both the sedimentary organization and the observed diagenetic imprint distributions. Last, the simulation results were validated referring to paleogeographic and diagenetic conceptual maps.

  15. An Integrated Modeling System for Estimating Glacier and Snow Melt Driven Streamflow from Remote Sensing and Earth System Data Products in the Himalayas

    NASA Technical Reports Server (NTRS)

    Brown, M. E.; Racoviteanu, A. E.; Tarboton, D. G.; Sen Gupta, A.; Nigro, J.; Policelli, F.; Habib, S.; Tokay, M.; Shrestha, M. S.; Bajracharya, S.

    2014-01-01

    Quantification of the contribution of the hydrologic components (snow, ice and rain) to river discharge in the Hindu Kush Himalayan (HKH) region is important for decision-making in water sensitive sectors, and for water resources management and flood risk reduction. In this area, access to and monitoring of the glaciers and their melt outflow is challenging due to difficult access, thus modeling based on remote sensing offers the potential for providing information to improve water resources management and decision making. This paper describes an integrated modeling system developed using downscaled NASA satellite based and earth system data products coupled with in-situ hydrologic data to assess the contribution of snow and glaciers to the flows of the rivers in the HKH region. Snow and glacier melt was estimated using the Utah Energy Balance (UEB) model, further enhanced to accommodate glacier ice melt over clean and debris-covered tongues, then meltwater was input into the USGS Geospatial Stream Flow Model (Geo- SFM). The two model components were integrated into Better Assessment Science Integrating point and Nonpoint Sources modeling framework (BASINS) as a user-friendly open source system and was made available to countries in high Asia. Here we present a case study from the Langtang Khola watershed in the monsoon-influenced Nepal Himalaya, used to validate our energy balance approach and to test the applicability of our modeling system. The snow and glacier melt model predicts that for the eight years used for model evaluation (October 2003-September 2010), the total surface water input over the basin was 9.43 m, originating as 62% from glacier melt, 30% from snowmelt and 8% from rainfall. Measured streamflow for those years were 5.02 m, reflecting a runoff coefficient of 0.53. GeoSFM simulated streamflow was 5.31 m indicating reasonable correspondence between measured and model confirming the capability of the integrated system to provide a quantification

  16. An integrated modeling system for estimating glacier and snow melt driven streamflow from remote sensing and earth system data products in the Himalayas

    NASA Astrophysics Data System (ADS)

    Brown, M. E.; Racoviteanu, A. E.; Tarboton, D. G.; Gupta, A. Sen; Nigro, J.; Policelli, F.; Habib, S.; Tokay, M.; Shrestha, M. S.; Bajracharya, S.; Hummel, P.; Gray, M.; Duda, P.; Zaitchik, B.; Mahat, V.; Artan, G.; Tokar, S.

    2014-11-01

    Quantification of the contribution of the hydrologic components (snow, ice and rain) to river discharge in the Hindu Kush Himalayan (HKH) region is important for decision-making in water sensitive sectors, and for water resources management and flood risk reduction. In this area, access to and monitoring of the glaciers and their melt outflow is challenging due to difficult access, thus modeling based on remote sensing offers the potential for providing information to improve water resources management and decision making. This paper describes an integrated modeling system developed using downscaled NASA satellite based and earth system data products coupled with in-situ hydrologic data to assess the contribution of snow and glaciers to the flows of the rivers in the HKH region. Snow and glacier melt was estimated using the Utah Energy Balance (UEB) model, further enhanced to accommodate glacier ice melt over clean and debris-covered tongues, then meltwater was input into the USGS Geospatial Stream Flow Model (GeoSFM). The two model components were integrated into Better Assessment Science Integrating point and Nonpoint Sources modeling framework (BASINS) as a user-friendly open source system and was made available to countries in high Asia. Here we present a case study from the Langtang Khola watershed in the monsoon-influenced Nepal Himalaya, used to validate our energy balance approach and to test the applicability of our modeling system. The snow and glacier melt model predicts that for the eight years used for model evaluation (October 2003-September 2010), the total surface water input over the basin was 9.43 m, originating as 62% from glacier melt, 30% from snowmelt and 8% from rainfall. Measured streamflow for those years were 5.02 m, reflecting a runoff coefficient of 0.53. GeoSFM simulated streamflow was 5.31 m indicating reasonable correspondence between measured and model confirming the capability of the integrated system to provide a quantification of

  17. DoD Lead System Integrator (LSI) Transformation - Creating a Model Based Acquisition Framework (MBAF)

    DTIC Science & Technology

    2014-04-30

    directly interface to that model-driven IWC input and map their outputs to it in order to demonstrate that the POR system level requirements can fulfill...Reqmts IWC LSI, SoS, Models Opera onal & Mission Reqmts SDEA ^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW= `êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 55 - workforce...mission level requirements.  Define and control system interfaces consistent with the overall systems architecture—both in the SoS operational

  18. Integrated hydrometeorological predictions with the fully-coupled WRF-Hydro modeling system in western North America

    NASA Astrophysics Data System (ADS)

    Gochis, D. J.; Yu, W.

    2013-12-01

    Prediction of heavy rainfall and associated streamflow responses remain as critical hydrometeorological challenges and require improved understanding of the linkages between atmospheric and land surface processes. Streamflow prediction skill is intrinsically liked to quantitative precipitation forecast skill, which emphasizes the need to produce mesoscale predictions of rainfall of high fidelity. However, in many cases land surface parameters can also exert significant control on the runoff response to heavy rainfall and on the formation or localization of heavy rainfall as well. A new generation of integrated atmospheric-hydrologic modeling systems is emerging from different groups around the world to meet the challenge of integrated water cycle predictions. In this talk the community WRF-Hydro modeling system will be presented. After a brief reviewing the architectural features of the WRF-Hydro system short-term forecasting and regional hydroclimate prediction applications of the model from western North America will be presented. In these applications, analyses will present results from observation-validated prediction experiments where atmospheric and terrestrial hydrologic model components are run in both a fully coupled mode and separately without two-way interactions. Emphasis is placed on illustrating an assessment framework using an initial state perturbation methodology to quantify the role of land-atmosphere energy and moisture flux partitioning in controlling precipitation and runoff forecast skill. Issues related to experimental design of fully-coupled model prediction experiments will also be discussed as will issues related to computational performance.

  19. Integrating human and natural systems in community psychology: an ecological model of stewardship behavior.

    PubMed

    Moskell, Christine; Allred, Shorna Broussard

    2013-03-01

    Community psychology (CP) research on the natural environment lacks a theoretical framework for analyzing the complex relationship between human systems and the natural world. We introduce other academic fields concerned with the interactions between humans and the natural environment, including environmental sociology and coupled human and natural systems. To demonstrate how the natural environment can be included within CP's ecological framework, we propose an ecological model of urban forest stewardship action. Although ecological models of behavior in CP have previously modeled health behaviors, we argue that these frameworks are also applicable to actions that positively influence the natural environment. We chose the environmental action of urban forest stewardship because cities across the United States are planting millions of trees and increased citizen participation in urban tree planting and stewardship will be needed to sustain the benefits provided by urban trees. We used the framework of an ecological model of behavior to illustrate multiple levels of factors that may promote or hinder involvement in urban forest stewardship actions. The implications of our model for the development of multi-level ecological interventions to foster stewardship actions are discussed, as well as directions for future research to further test and refine the model.

  20. Integrated microfluidic systems.

    PubMed

    Kaneda, Shohei; Fujii, Teruo

    2010-01-01

    Using unique physical phenomena at the microscale, such as laminar flow, mixing by diffusion, relative increase of the efficiency of heat exchange, surface tension and friction due to the increase of surface-to-volume ratio by downscaling, research in the field of microfluidic devices, aims at miniaturization of (bio)chemical apparatus for high-throughput analyses. Microchannel networks as core components of microfluidic devices are fabricated on various materials, such as silicon, glass, polymers, metals, etc., using microfabrication techniques adopted from the semiconductor industry and microelectromechanical systems (MEMS) technology, enabling integration of the components capable of performing various operations in microchannel networks. This chapter describes examples of diverse integrated microfluidic devices that incorporate functional components such as heaters for reaction temperature control, micropumps for liquid transportation, air vent structures for pneumatic manipulation of small volume droplets, optical fibers with aspherical lens structures for fluorescence detection, and electrochemical sensors for monitoring of glucose consumption during cell culture. The focus of this review is these integrated components and systems that realize useful functionalities for biochemical analyses.

  1. Integrated Microfluidic Systems

    NASA Astrophysics Data System (ADS)

    Kaneda, Shohei; Fujii, Teruo

    Using unique physical phenomena at the microscale, such as laminar flow, mixing by diffusion, relative increase of the efficiency of heat exchange, surface tension and friction due to the increase of surface-to-volume ratio by downscaling, research in the field of microfluidic devices, aims at miniaturization of (bio)chemical apparatus for high-throughput analyses. Microchannel networks as core components of microfluidic devices are fabricated on various materials, such as silicon, glass, polymers, metals, etc., using microfabrication techniques adopted from the semiconductor industry and microelectromechanical systems (MEMS) technology, enabling integration of the components capable of performing various operations in microchannel networks. This chapter describes examples of diverse integrated microfluidic devices that incorporate functional components such as heaters for reaction temperature control, micropumps for liquid transportation, air vent structures for pneumatic manipulation of small volume droplets, optical fibers with aspherical lens structures for fluorescence detection, and electrochemical sensors for monitoring of glucose consumption during cell culture. The focus of this review is these integrated components and systems that realize useful functionalities for biochemical analyses.

  2. On an improved sub-regional water resources management representation for integration into earth system models

    SciTech Connect

    Voisin, Nathalie; Li, Hongyi; Ward, Duane L.; Huang, Maoyi; Wigmosta, Mark S.; Leung, Lai-Yung R.

    2013-09-30

    Human influence on the hydrologic cycle includes regulation and storage, consumptive use and overall redistribution of water resources in space and time. Representing these processes is essential for applications of earth system models in hydrologic and climate predictions, as well as impact studies at regional to global scales. Emerging large-scale research reservoir models use generic operating rules that are flexible for coupling with earth system models. Those generic operating rules have been successful in reproducing the overall regulated flow at large basin scales. This study investigates the uncertainties of the reservoir models from different implementations of the generic operating rules using the complex multi-objective Columbia River Regulation System in northwestern United States as an example to understand their effects on not only regulated flow but also reservoir storage and fraction of the demand that is met. Numerical experiments are designed to test new generic operating rules that combine storage and releases targets for multi-purpose reservoirs and to compare the use of reservoir usage priorities, withdrawals vs. consumptive demand, as well as natural vs. regulated mean flow for calibrating operating rules. Overall the best performing implementation is the use of the combined priorities (flood control storage targets and irrigation release targets) operating rules calibrated with mean annual natural flow and mean monthly withdrawals. The challenge of not accounting for groundwater withdrawals, or on the contrary, assuming that all remaining demand is met through groundwater extractions, is discussed.

  3. Materials integrity in microsystems: a framework for a petascale predictive-science-based multiscale modeling and simulation system

    NASA Astrophysics Data System (ADS)

    To, Albert C.; Liu, Wing Kam; Olson, Gregory B.; Belytschko, Ted; Chen, Wei; Shephard, Mark S.; Chung, Yip-Wah; Ghanem, Roger; Voorhees, Peter W.; Seidman, David N.; Wolverton, Chris; Chen, J. S.; Moran, Brian; Freeman, Arthur J.; Tian, Rong; Luo, Xiaojuan; Lautenschlager, Eric; Challoner, A. Dorian

    2008-09-01

    Microsystems have become an integral part of our lives and can be found in homeland security, medical science, aerospace applications and beyond. Many critical microsystem applications are in harsh environments, in which long-term reliability needs to be guaranteed and repair is not feasible. For example, gyroscope microsystems on satellites need to function for over 20 years under severe radiation, thermal cycling, and shock loading. Hence a predictive-science-based, verified and validated computational models and algorithms to predict the performance and materials integrity of microsystems in these situations is needed. Confidence in these predictions is improved by quantifying uncertainties and approximation errors. With no full system testing and limited sub-system testings, petascale computing is certainly necessary to span both time and space scales and to reduce the uncertainty in the prediction of long-term reliability. This paper presents the necessary steps to develop predictive-science-based multiscale modeling and simulation system. The development of this system will be focused on the prediction of the long-term performance of a gyroscope microsystem. The environmental effects to be considered include radiation, thermo-mechanical cycling and shock. Since there will be many material performance issues, attention is restricted to creep resulting from thermal aging and radiation-enhanced mass diffusion, material instability due to radiation and thermo-mechanical cycling and damage and fracture due to shock. To meet these challenges, we aim to develop an integrated multiscale software analysis system that spans the length scales from the atomistic scale to the scale of the device. The proposed software system will include molecular mechanics, phase field evolution, micromechanics and continuum mechanics software, and the state-of-the-art model identification strategies where atomistic properties are calibrated by quantum calculations. We aim to predict the

  4. Integrated cellular systems

    NASA Astrophysics Data System (ADS)

    Harper, Jason C.

    integrate cells and direct their behaviors. This process permits, for the first time, the selection and in situ isolation of a single target cell from a population of cells with mixed phenotypes, and the subsequent monitoring of its behavior, and that of its progeny, under well defined conditions. These techniques promise a new means to integrate biomolecules with nanostructures and macroscale systems, and to manipulate cellular behavior at the individual cell level, having significant implications towards development of practical and robust integrated cellular systems.

  5. Modeling integrated fixed-film activated sludge and moving-bed biofilm reactor systems I: mathematical treatment and model development.

    PubMed

    Boltz, Joshua P; Johnson, Bruce R; Daigger, Glen T; Sandino, Julian

    2009-06-01

    A mathematical model for integrated fixed-film activated sludge (IFAS) and moving-bed biofilm reactor wastewater treatment processes was developed. The model is based on theoretical considerations that include simultaneous diffusion and Monod-type reaction kinetics inside the biofilm, competition between aerobic autotrophic nitrifiers, non-methanol-degrading facultative heterotrophs, methanol-degrading heterotrophs, slowly biodegradable chemical oxygen demand, and inert biomass for substrate (when appropriate) and space inside the biofilm; and biofilm and suspended biomass compartments, which compete for both the electron donor and electron acceptor. The model assumes identical reaction kinetics for bacteria within suspended biomass and biofilm. Analytical solutions to a 1-dimensional biofilm (assuming both zero- and first-order kinetics) applied to describe substrate flux across the biofilm surface are integrated with a revised and expanded matrix similar to that presented as the International Water Association (London, United Kingdom) Activated Sludge Model Number 2d (ASM2d) stoichiometric and kinetic matrix. The steady-state mathematical model describes a continuous-flow stirred-tank reactor.

  6. Agent-based re-engineering of ErbB signaling: a modeling pipeline for integrative systems biology.

    PubMed

    Das, Arya A; Ajayakumar Darsana, T; Jacob, Elizabeth

    2017-03-01

    Experiments in systems biology are generally supported by a computational model which quantitatively estimates the parameters of the system by finding the best fit to the experiment. Mathematical models have proved to be successful in reverse engineering the system. The data generated is interpreted to understand the dynamics of the underlying phenomena. The question we have sought to answer is that - is it possible to use an agent-based approach to re-engineer a biological process, making use of the available knowledge from experimental and modelling efforts? Can the bottom-up approach benefit from the top-down exercise so as to create an integrated modelling formalism for systems biology? We propose a modelling pipeline that learns from the data given by reverse engineering, and uses it for re-engineering the system, to carry out in-silico experiments. A mathematical model that quantitatively predicts co-expression of EGFR-HER2 receptors in activation and trafficking has been taken for this study. The pipeline architecture takes cues from the population model that gives the rates of biochemical reactions, to formulate knowledge-based rules for the particle model. Agent-based simulations using these rules, support the existing facts on EGFR-HER2 dynamics. We conclude that, re-engineering models, built using the results of reverse engineering, opens up the possibility of harnessing the power pack of data which now lies scattered in literature. Virtual experiments could then become more realistic when empowered with the findings of empirical cell biology and modelling studies. Implemented on the Agent Modelling Framework developed in-house. C ++ code templates available in Supplementary material . liz.csir@gmail.com. Supplementary data are available at Bioinformatics online.

  7. An integrated and dynamic optimisation model for the multi-level emergency logistics network in anti-bioterrorism system

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Zhao, Lindu

    2012-08-01

    Demand for emergency resources is usually uncertain and varies quickly in anti-bioterrorism system. Besides, emergency resources which had been allocated to the epidemic areas in the early rescue cycle will affect the demand later. In this article, an integrated and dynamic optimisation model with time-varying demand based on the epidemic diffusion rule is constructed. The heuristic algorithm coupled with the MATLAB mathematical programming solver is adopted to solve the optimisation model. In what follows, the application of the optimisation model as well as a short sensitivity analysis of the key parameters in the time-varying demand forecast model is presented. The results show that both the model and the solution algorithm are useful in practice, and both objectives of inventory level and emergency rescue cost can be controlled effectively. Thus, it can provide some guidelines for decision makers when coping with emergency rescue problem with uncertain demand, and offers an excellent reference when issues pertain to bioterrorism.

  8. Integrated Canada-U.S. Power Sector Modeling with the Regional Energy Deployment System (ReEDS)

    SciTech Connect

    Martinez, A.; Eurek, K.; Mai, T.; Perry, A.

    2013-02-01

    The electric power system in North America is linked between the United States and Canada. Canada has historically been a net exporter of electricity to the United States. The extent to which this remains true will depend on the future evolution of power markets, technology deployment, and policies. To evaluate these and related questions, we modify the Regional Energy Deployment System (ReEDS) model to include an explicit representation of the grid-connected power system in Canada to the continental United States. ReEDS is unique among long-term capacity expansion models for its high spatial resolution and statistical treatment of the impact of variable renewable generation on capacity planning and dispatch. These unique traits are extended to new Canadian regions. We present example scenario results using the fully integrated Canada-U.S. version of ReEDS to demonstrate model capabilities. The newly developed, integrated Canada-U.S. ReEDS model can be used to analyze the dynamics of electricity transfers and other grid services between the two countries under different scenarios.

  9. Modeling, control, and dynamic performance analysis of a reverse osmosis desalination plant integrated within hybrid energy systems

    SciTech Connect

    Kim, Jong Suk; Chen, Jun; Garcia, Humberto E.

    2016-06-17

    An RO (reverse osmosis) desalination plant is proposed as an effective, FLR (flexible load resource) to be integrated into HES (hybrid energy systems) to support various types of ancillary services to the electric grid, under variable operating conditions. To study the dynamic (transient) analysis of such system, among the various unit operations within HES, special attention is given here to the detailed dynamic modeling and control design of RO desalination process with a spiral-wound membrane module. The model incorporates key physical phenomena that have been investigated individually into a dynamic integrated model framework. In particular, the solution-diffusion model modified with the concentration polarization theory is applied to predict RO performance over a large range of operating conditions. Simulation results involving several case studies suggest that an RO desalination plant, acting as a FLR, can provide operational flexibility to participate in energy management at the utility scale by dynamically optimizing the use of excess electrical energy. Here, the incorporation of additional commodity (fresh water) produced from a FLR allows a broader range of HES operations for maximizing overall system performance and profitability. For the purpose of assessing the incorporation of health assessment into process operations, an online condition monitoring approach for RO membrane fouling supervision is addressed in the case study presented.

  10. Modeling, control, and dynamic performance analysis of a reverse osmosis desalination plant integrated within hybrid energy systems

    DOE PAGES

    Kim, Jong Suk; Chen, Jun; Garcia, Humberto E.

    2016-06-17

    An RO (reverse osmosis) desalination plant is proposed as an effective, FLR (flexible load resource) to be integrated into HES (hybrid energy systems) to support various types of ancillary services to the electric grid, under variable operating conditions. To study the dynamic (transient) analysis of such system, among the various unit operations within HES, special attention is given here to the detailed dynamic modeling and control design of RO desalination process with a spiral-wound membrane module. The model incorporates key physical phenomena that have been investigated individually into a dynamic integrated model framework. In particular, the solution-diffusion model modified withmore » the concentration polarization theory is applied to predict RO performance over a large range of operating conditions. Simulation results involving several case studies suggest that an RO desalination plant, acting as a FLR, can provide operational flexibility to participate in energy management at the utility scale by dynamically optimizing the use of excess electrical energy. Here, the incorporation of additional commodity (fresh water) produced from a FLR allows a broader range of HES operations for maximizing overall system performance and profitability. For the purpose of assessing the incorporation of health assessment into process operations, an online condition monitoring approach for RO membrane fouling supervision is addressed in the case study presented.« less

  11. Integrating traditional Chinese medicine into mainstream healthcare system in Hong Kong, China-A model of integrative medicine in the HKU-SZ Hospital.

    PubMed

    Lao, Lixing; Ning, Zhipeng

    2015-11-01

    The European Congress for Integrative Medicine 2015 Global Summit on Integrative Medicine and Healthcare in Greater Copenhagen has successfully promoted integrative medicine to the public once again. Integrative medicine, which is called the art and science of healthcare by Nordic Integrative Medicine, has been widely used in the world. In Hong Kong, integrated traditional Chinese and Western medicine, which is also known as the Chinese version of integrative medicine, provides a valuable reference for the development of integrative medicine in the world. In this article, we introduce the development of traditional Chinese medicine in Hong Kong and an integrated traditional Chinese and Western medicine model in the University of Hong Kong-Shenzhen Hospital.

  12. The Integral System

    PubMed Central

    2011-01-01

    The Integral System is a total care management system based on the Integral Theory which states ‘prolapse and symptoms of urinary stress, urge, abnormal bowel & bladder emptying, and some forms of pelvic pain, mainly arise, for different reasons, from laxity in the vagina or its supporting ligaments, a result of altered connective tissue’. Normal function The organs are suspended by ligaments against which muscles contract to open or close the their outlet tubes, urethra and anus. These ligaments fall naturally into a three-zone zone classification, anterior, middle, and posterior. Dysfunction Damaged ligaments weaken the force of muscle contraction, causing prolapse and abnormal bladder and bowel symptoms Diagnosis A pictorial diagnostic algorithm relates specific symptoms to damaged ligaments in each zone. Treatment In mild cases, new pelvic floor muscle exercises based on a squatting principle strengthen the natural closure muscles and their ligamentous insertions, thereby improving the symptoms predicted by the Theory. With more severe cases, polypropylene tapes applied through “keyhole” incision using special instruments reinforce the damaged ligaments, restoring structure and function. Problems that can be potentially addressed by application of the Integral System Urinary stress incontinenceUrinary urge incontinenceAbnormal bladder emptyingFacal incontinence and “obstructed evacuation” (“constipation”)Pelvic pain, and some types of vulvodynia and interstitial cystitisOrgan prolapse Conclusions Organ prolapse and symptoms are related, and both are mainly caused by laxity in the four main suspensory ligaments and perineal body. Restoration of ligament/fascial length and tension is required to restore anatomy and function. PMID:24578877

  13. Hydrological Modelling of Cherial Watershed Integrating Remote Sensing and Geographical Information System (gis)

    NASA Astrophysics Data System (ADS)

    Siva Sankar, A.

    2004-12-01

    The increasing population growth is continuing to exert extra pressure on existing water resources all over the world. An imperative need for the development and judicious use of these resources is therefore essential. Rainfall in southern India is very erratic, unpredictable, uneven and distributed over a short period of 3-4 Months. Out of 4000 billion cubic meters of rainfall received annually, 41% is lost as evaporation and transpiration, 40% lost as runoff into seas and 10% seeps in for recharging groundwater. As a result Krishna and Godavari rivers of southern India are almost in dry conditions throughout the year with farmers suffering from droughts since past 20 years especially in the state of Andhra Pradesh. An imperative need for the development and judicious use of these resources is therefore essential for conservation of water resources and maintaining the hydrologic table when water is becoming a scarce material. Keeping this in view an integrated model is developed for the chronically drought prone area of Cherial watershed in Warangal district of Andhra Pradesh using Remote sensing and GIS techniques. This model explores and suggests cost-effective and sustainable methods of increasing the crop yield by increasing the ground water potential artificially. The main objective of the study is to evaluate both surface and groundwater resources in the region and develop methods for its efficient utilization and sustainable management. Remote sensing and GIS applications are adopted as an effective tool in meeting the objective of the study. The thematic layers v.i.z. drainage pattern, land use/ land cover, hydrogeomorphology, slope, soil, physiography and ground water prospects are all derived from IRS-ID PAN + LISS-III merged satellite imagery and Survey of India (SOI) topomaps using visual interpretation technique. These maps are then converted to digital format using AutoCAD software and further integrated using Arc/Info and ArcView GIS software for

  14. Application of watershed modeling system (WMS) for integrated management of a watershed in Turkey.

    PubMed

    Erturk, Ali; Gurel, Melike; Baloch, Mansoor Ahmed; Dikerler, Teoman; Varol, Evren; Akbulut, Neslihan; Tanik, Aysegul

    2006-01-01

    Watershed models, that enable the quantification of current and future pollution loading impacts, are essential tools to address the functions and conflicts faced in watershed planning and management. In this study, the Watershed Modeling System (WMS) version 7.1 was used for the delineation of boundaries of Koycegiz Lake-Dalyan Lagoon watershed located in the southwest of Turkey at the Mediterranean Sea coast. A Digital Elevation Model (DEM) was created for one of the major streams of the watershed, namely, Kargicak Creek by using WMS, and DEM data were further used to extract stream networks and delineate the watershed boundaries. Typical properties like drainage areas, characteristic length and slope of sub-drainage areas have also been determined to be used as model inputs in hydrological and diffuse pollution modeling. Besides, run-off hydrographs for the sub-drainages have been calculated using the Rational Method, which produces valuable data for calculating the time variable inflow and input pollution loads to be further utilized in the future water quality models of the Creek. Application of WMS in the study has shown that, it is capable to visualize the results in establishing watershed management strategies.

  15. Integration of 3d Models and Diagnostic Analyses Through a Conservation-Oriented Information System

    NASA Astrophysics Data System (ADS)

    Mandelli, A.; Achille, C.; Tommasi, C.; Fassi, F.

    2017-08-01

    In the recent years, mature technologies for producing high quality virtual 3D replicas of Cultural Heritage (CH) artefacts has grown thanks to the progress of Information Technologies (IT) tools. These methods are an efficient way to present digital models that can be used with several scopes: heritage managing, support to conservation, virtual restoration, reconstruction and colouring, art cataloguing and visual communication. The work presented is an emblematic case of study oriented to the preventive conservation through monitoring activities, using different acquisition methods and instruments. It was developed inside a project founded by Lombardy Region, Italy, called "Smart Culture", which was aimed to realise a platform that gave the users the possibility to easily access to the CH artefacts, using as an example a very famous statue. The final product is a 3D reality-based model that contains a lot of information inside it, and that can be consulted through a common web browser. In the end, it was possible to define the general strategies oriented to the maintenance and the valorisation of CH artefacts, which, in this specific case, must consider the integration of different techniques and competencies, to obtain a complete, accurate and continuative monitoring of the statue.

  16. Future energy system challenges for Africa: Insights from Integrated Assessment Models

    SciTech Connect

    Lucas, Paul; Nielsen, Jens; Calvin, Katherine V.; McCollum, David; Marangoni, Giacomo; Strefler, Jessica; van der Zwaan, Bob; Van Vuuren, Detlef

    2015-11-01

    Although Africa’s share in the global energy system is only small today, the ongoing population growth and economic development imply that this can change significantly. In this paper, we discuss long-term energy developments in Africa using the results of the LIMITS model inter-comparison study. The analysis focusses on the position of Africa in the wider global energy system and climate mitigation. The results show a considerable spread in model outcomes. Without specific climate policy, Africa’s share in global CO2 emissions is projected to increase from around 1-4% today to 3-23% by 2100. In all models, emissions only start to become really significant on a global scale after 2050. Furthermore, by 2030 still around 50% of total household energy use is supplied through traditional bio-energy, in contrast to existing ambitions from international organisations to provide access to modern energy for all. After 2050, the energy mix is projected to converge towards a global average energy mix with high shares of fossil fuels and electricity use. Finally, although the continent is now a large net exporter of oil and gas, towards 2050 it most likely needs most of its resources to meet its rapidly growing domestic demand. With respect to climate policy, the rapid expansion of the industrial and the power sector also create large mitigation potential and thereby the possibility to align the investment peak in the energy system with climate policy and potential revenues from international carbon trading.

  17. Integration of multiscale dendritic spine structure and function data into systems biology models.

    PubMed

    Mancuso, James J; Cheng, Jie; Yin, Zheng; Gilliam, Jared C; Xia, Xiaofeng; Li, Xuping; Wong, Stephen T C

    2014-01-01

    Comprising 10(11) neurons with 10(14) synaptic connections the human brain is the ultimate systems biology puzzle. An increasing body of evidence highlights the observation that changes in brain function, both normal and pathological, consistently correlate with dynamic changes in neuronal anatomy. Anatomical changes occur on a full range of scales from the trafficking of individual proteins, to alterations in synaptic morphology both individually and on a systems level, to reductions in long distance connectivity and brain volume. The major sites of contact for synapsing neurons are dendritic spines, which provide an excellent metric for the number and strength of signaling connections between elements of functional neuronal circuits. A comprehensive model of anatomical changes and their functional consequences would be a holy grail for the field of systems neuroscience but its realization appears far on the horizon. Various imaging technologies have advanced to allow for multi-scale visualization of brain plasticity and pathology, but computational analysis of the big data sets involved forms the bottleneck toward the creation of multiscale models of brain structure and function. While a full accounting of techniques and progress toward a comprehensive model of brain anatomy and function is beyond the scope of this or any other single paper, this review serves to highlight the opportunities for analysis of neuronal spine anatomy and function provided by new imaging technologies and the high-throughput application of older technologies while surveying the strengths and weaknesses of currently available computational analytical tools and room for future improvement.

  18. An Integrated Ecological Modeling System for Assessing Impacts of Multiple Stressors on Stream and Riverine Ecosystem Services within River Basins.

    PubMed

    Johnston, John M; Barber, M Craig; Wolfe, Kurt; Galvin, Mike; Cyterski, Mike; Parmar, Rajbir

    2017-06-24

    We demonstrate a novel, spatially explicit assessment of the current condition of aquatic ecosystem services, with limited sensitivity analysis for the atmospheric contaminant mercury. The Integrated Ecological Modeling System (IEMS) forecasts water quality and quantity, habitat suitability for aquatic biota, fish biomasses, population densities, productivities, and contamination by methylmercury across headwater watersheds. We applied this IEMS to the Coal River Basin (CRB), West Virginia (USA), an 8-digit hydrologic unit watershed, by simulating a network of 97 stream segments using the SWAT watershed model, a watershed mercury loading model, the WASP water quality model, the PiSCES fish community estimation model, a fish habitat suitability model, the BASS fish community and bioaccumulation model, and an ecoservices post-processer. Model application was facilitated by automated data retrieval and model setup and updated model wrappers and interfaces for data transfers between these models from a prior study. This companion study evaluates baseline predictions of ecoservices provided for 1990 - 2010 for the population of streams in the CRB and serves as a foundation for future model development.

  19. cuSwift --- a suite of numerical integration methods for modelling planetary systems implemented in C/CUDA

    NASA Astrophysics Data System (ADS)

    Hellmich, S.; Mottola, S.; Hahn, G.; Kührt, E.; Hlawitschka, M.

    2014-07-01

    Simulations of dynamical processes in planetary systems represent an important tool for studying the orbital evolution of the systems [1--3]. Using modern numerical integration methods, it is possible to model systems containing many thousands of objects over timescales of several hundred million years. However, in general, supercomputers are needed to get reasonable simulation results in acceptable execution times [3]. To exploit the ever-growing computation power of Graphics Processing Units (GPUs) in modern desktop computers, we implemented cuSwift, a library of numerical integration methods for studying long-term dynamical processes in planetary systems. cuSwift can be seen as a re-implementation of the famous SWIFT integrator package written by Hal Levison and Martin Duncan. cuSwift is written in C/CUDA and contains different integration methods for various purposes. So far, we have implemented three algorithms: a 15th-order Radau integrator [4], the Wisdom-Holman Mapping (WHM) integrator [5], and the Regularized Mixed Variable Symplectic (RMVS) Method [6]. These algorithms treat only the planets as mutually gravitationally interacting bodies whereas asteroids and comets (or other minor bodies of interest) are treated as massless test particles which are gravitationally influenced by the massive bodies but do not affect each other or the massive bodies. The main focus of this work is on the symplectic methods (WHM and RMVS) which use a larger time step and thus are capable of integrating many particles over a large time span. As an additional feature, we implemented the non-gravitational Yarkovsky effect as described by M. Brož [7]. With cuSwift, we show that the use of modern GPUs makes it possible to speed up these methods by more than one order of magnitude compared to the single-core CPU implementation, thereby enabling modest workstation computers to perform long-term dynamical simulations. We use these methods to study the influence of the Yarkovsky

  20. Integration of modeling and simulation into hospital-based decision support systems guiding pediatric pharmacotherapy

    PubMed Central

    Barrett, Jeffrey S; Mondick, John T; Narayan, Mahesh; Vijayakumar, Kalpana; Vijayakumar, Sundararajan

    2008-01-01

    Background Decision analysis in hospital-based settings is becoming more common place. The application of modeling and simulation approaches has likewise become more prevalent in order to support decision analytics. With respect to clinical decision making at the level of the patient, modeling and simulation approaches have been used to study and forecast treatment options, examine and rate caregiver performance and assign resources (staffing, beds, patient throughput). There us a great need to facilitate pharmacotherapeutic decision making in pediatrics given the often limited data available to guide dosing and manage patient response. We have employed nonlinear mixed effect models and Bayesian forecasting algorithms coupled with data summary and visualization tools to create drug-specific decision support systems that utilize individualized patient data from our electronic medical records systems. Methods Pharmacokinetic and pharmacodynamic nonlinear mixed-effect models of specific drugs are generated based on historical data in relevant pediatric populations or from adults when no pediatric data is available. These models are re-executed with individual patient data allowing for patient-specific guidance via a Bayesian forecasting approach. The models are called and executed in an interactive manner through our web-based dashboard environment which interfaces to the hospital's electronic medical records system. Results The methotrexate dashboard utilizes a two-compartment, population-based, PK mixed-effect model to project patient response to specific dosing events. Projected plasma concentrations are viewable against protocol-specific nomograms to provide dosing guidance for potential rescue therapy with leucovorin. These data are also viewable against common biomarkers used to assess patient safety (e.g., vital signs and plasma creatinine levels). As additional data become available via therapeutic drug monitoring, the model is re-executed and projections are

  1. Integration of modeling and simulation into hospital-based decision support systems guiding pediatric pharmacotherapy.

    PubMed

    Barrett, Jeffrey S; Mondick, John T; Narayan, Mahesh; Vijayakumar, Kalpana; Vijayakumar, Sundararajan

    2008-01-28

    Decision analysis in hospital-based settings is becoming more common place. The application of modeling and simulation approaches has likewise become more prevalent in order to support decision analytics. With respect to clinical decision making at the level of the patient, modeling and simulation approaches have been used to study and forecast treatment options, examine and rate caregiver performance and assign resources (staffing, beds, patient throughput). There us a great need to facilitate pharmacotherapeutic decision making in pediatrics given the often limited data available to guide dosing and manage patient response. We have employed nonlinear mixed effect models and Bayesian forecasting algorithms coupled with data summary and visualization tools to create drug-specific decision support systems that utilize individualized patient data from our electronic medical records systems. Pharmacokinetic and pharmacodynamic nonlinear mixed-effect models of specific drugs are generated based on historical data in relevant pediatric populations or from adults when no pediatric data is available. These models are re-executed with individual patient data allowing for patient-specific guidance via a Bayesian forecasting approach. The models are called and executed in an interactive manner through our web-based dashboard environment which interfaces to the hospital's electronic medical records system. The methotrexate dashboard utilizes a two-compartment, population-based, PK mixed-effect model to project patient response to specific dosing events. Projected plasma concentrations are viewable against protocol-specific nomograms to provide dosing guidance for potential rescue therapy with leucovorin. These data are also viewable against common biomarkers used to assess patient safety (e.g., vital signs and plasma creatinine levels). As additional data become available via therapeutic drug monitoring, the model is re-executed and projections are revised. The management of

  2. Systems analysis with an integrated medical analysis system (IMAS)

    NASA Astrophysics Data System (ADS)

    Koelsch, John; Mabry, Susan L.; Rodriquez, Samuel; Takemura, Paul

    1998-05-01

    This paper describes the integrated medical analysis system (IMAS) The evolving system consists of an integrated suite of models and tools providing quantitative and dynamic analysis from multiple physiological function models, clinical care patient input, medical device data, and integrated medical systems. The system is being developed for requirements definition, patient assessment, control theory, training, instrumentation testing and validation. Traditionally, human models and simulations are performed on small scale, isolated problems, usually consisting of detached mathematical models or measurements studies. These systems are not capable of portraying the interactive effects of such systems and certainly are not capable of integrating multiple external entities such as device data, patient data, etc. The human body in and of itself is a complex, integrated system. External monitors, treatments, and medical conditions interact at yet another level. Hence, a highly integrated, interactive simulation system with detailed subsystem models is required for effective quantitative analysis. The current prototype emphasizes cardiovascular, respiratory and thermoregulatory functions with integration of patient device data. Unique system integration of these components is achieved through four facilitators. These facilitators include a distributed interactive computing architecture, application of fluid and structural engineering principles to the models, real-time scientific visualization, and application of strong system integration principles. The IMAS forms a complex analytical tool with emphasis on integration and interaction at multiple levels between components. This unique level of integration and interaction facilitates quantitative analysis for multiple purposes and varying levels of fidelity. An overview of the project and preliminary findings are introduced.

  3. An Integrative Model of the Cardiovascular System Coupling Heart Cellular Mechanics with Arterial Network Hemodynamics

    PubMed Central

    Kim, Young-Tae; Lee, Jeong Sang; Youn, Chan-Hyun; Choi, Jae-Sung

    2013-01-01

    The current study proposes a model of the cardiovascular system that couples heart cell mechanics with arterial hemodynamics to examine the physiological role of arterial blood pressure (BP) in left ventricular hypertrophy (LVH). We developed a comprehensive multiphysics and multiscale cardiovascular model of the cardiovascular system that simulates physiological events, from membrane excitation and the contraction of a cardiac cell to heart mechanics and arterial blood hemodynamics. Using this model, we delineated the relationship between arterial BP or pulse wave velocity and LVH. Computed results were compared with existing clinical and experimental observations. To investigate the relationship between arterial hemodynamics and LVH, we performed a parametric study based on arterial wall stiffness, which was obtained in the model. Peak cellular stress of the left ventricle and systolic blood pressure (SBP) in the brachial and central arteries also increased; however, further increases were limited for higher arterial stiffness values. Interestingly, when we doubled the value of arterial stiffness from the baseline value, the percentage increase of SBP in the central artery was about 6.7% whereas that of the brachial artery was about 3.4%. It is suggested that SBP in the central artery is more critical for predicting LVH as compared with other blood pressure measurements. PMID:23960442

  4. Integrated power system

    SciTech Connect

    Waddington, C.

    1987-10-13

    An integrated power system is described for transmitting power from a gas turbine engine, including a gas producer and a free turbine engine, to the driving elements of a vehicle comprising: a pair of independent output shafts; a pair of combining planetary gear systems, each being drivingly coupled to an associated one of the output shafts; a variable speed transmission drivingly coupled to the free power turbine; drive means operatively connecting the transmission and each of the combining planetary gear systems; steering means operatively coupled to each of the combining planetary gear systems for selectively driving at least one of the combining planetary gear systems; the steering means including a variable displacement hydraulic motor in driving engagement with the planetary gear systems and an hydraulic pump in driving engagement with the transmission for supplying fluid under pressure to the hydraulic motor to thereby effect steering of the vehicle; a fuel control for controlling the power output of the gas turbine engine; and an adjustable relief valve operatively interposed between the hydraulic motor and the hydraulic pump, the valve being responsive to the fuel control to establish a maximum fluid pressure imparted by the hydraulic pump to the hydraulic motor.

  5. Integrating Predictive Modeling with Control