Integrating Reliability Analysis with a Performance Tool
NASA Technical Reports Server (NTRS)
Nicol, David M.; Palumbo, Daniel L.; Ulrey, Michael
1995-01-01
A large number of commercial simulation tools support performance oriented studies of complex computer and communication systems. Reliability of these systems, when desired, must be obtained by remodeling the system in a different tool. This has obvious drawbacks: (1) substantial extra effort is required to create the reliability model; (2) through modeling error the reliability model may not reflect precisely the same system as the performance model; (3) as the performance model evolves one must continuously reevaluate the validity of assumptions made in that model. In this paper we describe an approach, and a tool that implements this approach, for integrating a reliability analysis engine into a production quality simulation based performance modeling tool, and for modeling within such an integrated tool. The integrated tool allows one to use the same modeling formalisms to conduct both performance and reliability studies. We describe how the reliability analysis engine is integrated into the performance tool, describe the extensions made to the performance tool to support the reliability analysis, and consider the tool's performance.
Integrated Control Modeling for Propulsion Systems Using NPSS
NASA Technical Reports Server (NTRS)
Parker, Khary I.; Felder, James L.; Lavelle, Thomas M.; Withrow, Colleen A.; Yu, Albert Y.; Lehmann, William V. A.
2004-01-01
The Numerical Propulsion System Simulation (NPSS), an advanced engineering simulation environment used to design and analyze aircraft engines, has been enhanced by integrating control development tools into it. One of these tools is a generic controller interface that allows NPSS to communicate with control development software environments such as MATLAB and EASY5. The other tool is a linear model generator (LMG) that gives NPSS the ability to generate linear, time-invariant state-space models. Integrating these tools into NPSS enables it to be used for control system development. This paper will discuss the development and integration of these tools into NPSS. In addition, it will show a comparison of transient model results of a generic, dual-spool, military-type engine model that has been implemented in NPSS and Simulink. It will also show the linear model generator s ability to approximate the dynamics of a nonlinear NPSS engine model.
Rapid SAW Sensor Development Tools
NASA Technical Reports Server (NTRS)
Wilson, William C.; Atkinson, Gary M.
2007-01-01
The lack of integrated design tools for Surface Acoustic Wave (SAW) devices has led us to develop tools for the design, modeling, analysis, and automatic layout generation of SAW devices. These tools enable rapid development of wireless SAW sensors. The tools developed have been designed to integrate into existing Electronic Design Automation (EDA) tools to take advantage of existing 3D modeling, and Finite Element Analysis (FEA). This paper presents the SAW design, modeling, analysis, and automated layout generation tools.
The effective integration of analysis, modeling, and simulation tools.
DOT National Transportation Integrated Search
2013-08-01
The need for model integration arises from the recognition that both transportation decisionmaking and the tools supporting it continue to increase in complexity. Many strategies that agencies evaluate require using tools that are sensitive to supply...
NASA Technical Reports Server (NTRS)
Mayer, Richard
1988-01-01
The integrated development support environment (IDSE) is a suite of integrated software tools that provide intelligent support for information modelling. These tools assist in function, information, and process modeling. Additional tools exist to assist in gathering and analyzing information to be modeled. This is a user's guide to application of the IDSE. Sections covering the requirements and design of each of the tools are presented. There are currently three integrated computer aided manufacturing definition (IDEF) modeling methodologies: IDEF0, IDEF1, and IDEF2. Also, four appendices exist to describe hardware and software requirements, installation procedures, and basic hardware usage.
DOT National Transportation Integrated Search
2010-04-19
The Federal Aviation Administration (FAA) aircraft noise modeling tools Aviation Environmental Design Tool (AEDTc) and Integrated Noise Model (INM) do not currently consider noise below 50 Hz in their computations. This paper describes a preliminary ...
ERIC Educational Resources Information Center
Knezek, Gerald; Christensen, Rhonda
2016-01-01
An expansion of the Will, Skill, Tool Model of Technology Integration to include teacher's pedagogical style is proposed by the authors as a means of advancing the predictive power of the model for level of classroom technology integration to beyond 90%. Suggested advantages to this expansion include more precise identification of areas to be…
Evaluating Uncertainty in Integrated Environmental Models: A Review of Concepts and Tools
This paper reviews concepts for evaluating integrated environmental models and discusses a list of relevant software-based tools. A simplified taxonomy for sources of uncertainty and a glossary of key terms with standard definitions are provided in the context of integrated appro...
An integrated modeling and design tool for advanced optical spacecraft
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.
1992-01-01
Consideration is given to the design and status of the Integrated Modeling of Optical Systems (IMOS) tool and to critical design issues. A multidisciplinary spacecraft design and analysis tool with support for structural dynamics, controls, thermal analysis, and optics, IMOS provides rapid and accurate end-to-end performance analysis, simulations, and optimization of advanced space-based optical systems. The requirements for IMOS-supported numerical arrays, user defined data structures, and a hierarchical data base are outlined, and initial experience with the tool is summarized. A simulation of a flexible telescope illustrates the integrated nature of the tools.
The Will, Skill, Tool Model of Technology Integration: Adding Pedagogy as a New Model Construct
ERIC Educational Resources Information Center
Knezek, Gerald; Christensen, Rhonda
2015-01-01
An expansion of the Will, Skill, Tool Model of Technology Integration to include teacher's pedagogical style is proposed by the authors as a means of advancing the predictive power for level of classroom technology integration to beyond 90%. Suggested advantages to this expansion include more precise identification of areas to be targeted for…
NASA Astrophysics Data System (ADS)
O'Neill, B. C.; Kauffman, B.; Lawrence, P.
2016-12-01
Integrated analysis of questions regarding land, water, and energy resources often requires integration of models of different types. One type of integration is between human and earth system models, since both societal and physical processes influence these resources. For example, human processes such as changes in population, economic conditions, and policies govern the demand for land, water and energy, while the interactions of these resources with physical systems determine their availability and environmental consequences. We have begun to develop and use a toolkit for linking human and earth system models called the Toolbox for Human-Earth System Integration and Scaling (THESIS). THESIS consists of models and software tools to translate, scale, and synthesize information from and between human system models and earth system models (ESMs), with initial application to linking the NCAR integrated assessment model, iPETS, with the NCAR earth system model, CESM. Initial development is focused on urban areas and agriculture, sectors that are both explicitly represented in both CESM and iPETS. Tools are being made available to the community as they are completed (see https://www2.cgd.ucar.edu/sections/tss/iam/THESIS_tools). We discuss four general types of functions that THESIS tools serve (Spatial Distribution, Spatial Properties, Consistency, and Outcome Evaluation). Tools are designed to be modular and can be combined in order to carry out more complex analyses. We illustrate their application to both the exposure of population to climate extremes and to the evaluation of climate impacts on the agriculture sector. For example, projecting exposure to climate extremes involves use of THESIS tools for spatial population, spatial urban land cover, the characteristics of both, and a tool to bring urban climate information together with spatial population information. Development of THESIS tools is continuing and open to the research community.
IGMS: An Integrated ISO-to-Appliance Scale Grid Modeling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan; Hale, Elaine; Hansen, Timothy M.
This paper describes the Integrated Grid Modeling System (IGMS), a novel electric power system modeling platform for integrated transmission-distribution analysis that co-simulates off-the-shelf tools on high performance computing (HPC) platforms to offer unprecedented resolution from ISO markets down to appliances and other end uses. Specifically, the system simultaneously models hundreds or thousands of distribution systems in co-simulation with detailed Independent System Operator (ISO) markets and AGC-level reserve deployment. IGMS uses a new MPI-based hierarchical co-simulation framework to connect existing sub-domain models. Our initial efforts integrate opensource tools for wholesale markets (FESTIV), bulk AC power flow (MATPOWER), and full-featured distribution systemsmore » including physics-based end-use and distributed generation models (many instances of GridLAB-D[TM]). The modular IGMS framework enables tool substitution and additions for multi-domain analyses. This paper describes the IGMS tool, characterizes its performance, and demonstrates the impacts of the coupled simulations for analyzing high-penetration solar PV and price responsive load scenarios.« less
Analyzing Human-Landscape Interactions: Tools That Integrate
NASA Astrophysics Data System (ADS)
Zvoleff, Alex; An, Li
2014-01-01
Humans have transformed much of Earth's land surface, giving rise to loss of biodiversity, climate change, and a host of other environmental issues that are affecting human and biophysical systems in unexpected ways. To confront these problems, environmental managers must consider human and landscape systems in integrated ways. This means making use of data obtained from a broad range of methods (e.g., sensors, surveys), while taking into account new findings from the social and biophysical science literatures. New integrative methods (including data fusion, simulation modeling, and participatory approaches) have emerged in recent years to address these challenges, and to allow analysts to provide information that links qualitative and quantitative elements for policymakers. This paper brings attention to these emergent tools while providing an overview of the tools currently in use for analysis of human-landscape interactions. Analysts are now faced with a staggering array of approaches in the human-landscape literature—in an attempt to bring increased clarity to the field, we identify the relative strengths of each tool, and provide guidance to analysts on the areas to which each tool is best applied. We discuss four broad categories of tools: statistical methods (including survival analysis, multi-level modeling, and Bayesian approaches), GIS and spatial analysis methods, simulation approaches (including cellular automata, agent-based modeling, and participatory modeling), and mixed-method techniques (such as alternative futures modeling and integrated assessment). For each tool, we offer an example from the literature of its application in human-landscape research. Among these tools, participatory approaches are gaining prominence for analysts to make the broadest possible array of information available to researchers, environmental managers, and policymakers. Further development of new approaches of data fusion and integration across sites or disciplines pose an important challenge for future work in integrating human and landscape components.
The Integrated Medical Model: A Decision Support Tool for In-flight Crew Health Care
NASA Technical Reports Server (NTRS)
Butler, Doug
2009-01-01
This viewgraph presentation reviews the development of an Integrated Medical Model (IMM) decision support tool for in-flight crew health care safety. Clinical methods, resources, and case scenarios are also addressed.
A Software Tool for Integrated Optical Design Analysis
NASA Technical Reports Server (NTRS)
Moore, Jim; Troy, Ed; DePlachett, Charles; Montgomery, Edward (Technical Monitor)
2001-01-01
Design of large precision optical systems requires multi-disciplinary analysis, modeling, and design. Thermal, structural and optical characteristics of the hardware must be accurately understood in order to design a system capable of accomplishing the performance requirements. The interactions between each of the disciplines become stronger as systems are designed lighter weight for space applications. This coupling dictates a concurrent engineering design approach. In the past, integrated modeling tools have been developed that attempt to integrate all of the complex analysis within the framework of a single model. This often results in modeling simplifications and it requires engineering specialist to learn new applications. The software described in this presentation addresses the concurrent engineering task using a different approach. The software tool, Integrated Optical Design Analysis (IODA), uses data fusion technology to enable a cross discipline team of engineering experts to concurrently design an optical system using their standard validated engineering design tools.
From Modelling to Execution of Enterprise Integration Scenarios: The GENIUS Tool
NASA Astrophysics Data System (ADS)
Scheibler, Thorsten; Leymann, Frank
One of the predominant problems IT companies are facing today is Enterprise Application Integration (EAI). Most of the infrastructures built to tackle integration issues are proprietary because no standards exist for how to model, develop, and actually execute integration scenarios. EAI patterns gain importance for non-technical business users to ease and harmonize the development of EAI scenarios. These patterns describe recurring EAI challenges and propose possible solutions in an abstract way. Therefore, one can use those patterns to describe enterprise architectures in a technology neutral manner. However, patterns are documentation only used by developers and systems architects to decide how to implement an integration scenario manually. Thus, patterns are not theoretical thought to stand for artefacts that will immediately be executed. This paper presents a tool supporting a method how EAI patterns can be used to generate executable artefacts for various target platforms automatically using a model-driven development approach, hence turning patterns into something executable. Therefore, we introduce a continuous tool chain beginning at the design phase and ending in executing an integration solution in a completely automatically manner. For evaluation purposes we introduce a scenario demonstrating how the tool is utilized for modelling and actually executing an integration scenario.
Integrated Wind Power Planning Tool
NASA Astrophysics Data System (ADS)
Rosgaard, M. H.; Giebel, G.; Nielsen, T. S.; Hahmann, A.; Sørensen, P.; Madsen, H.
2012-04-01
This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the working title "Integrated Wind Power Planning Tool". The project commenced October 1, 2011, and the goal is to integrate a numerical weather prediction (NWP) model with purely statistical tools in order to assess wind power fluctuations, with focus on long term power system planning for future wind farms as well as short term forecasting for existing wind farms. Currently, wind power fluctuation models are either purely statistical or integrated with NWP models of limited resolution. With regard to the latter, one such simulation tool has been developed at the Wind Energy Division, Risø DTU, intended for long term power system planning. As part of the PSO project the inferior NWP model used at present will be replaced by the state-of-the-art Weather Research & Forecasting (WRF) model. Furthermore, the integrated simulation tool will be improved so it can handle simultaneously 10-50 times more turbines than the present ~ 300, as well as additional atmospheric parameters will be included in the model. The WRF data will also be input for a statistical short term prediction model to be developed in collaboration with ENFOR A/S; a danish company that specialises in forecasting and optimisation for the energy sector. This integrated prediction model will allow for the description of the expected variability in wind power production in the coming hours to days, accounting for its spatio-temporal dependencies, and depending on the prevailing weather conditions defined by the WRF output. The output from the integrated prediction tool constitute scenario forecasts for the coming period, which can then be fed into any type of system model or decision making problem to be solved. The high resolution of the WRF results loaded into the integrated prediction model will ensure a high accuracy data basis is available for use in the decision making process of the Danish transmission system operator, and the need for high accuracy predictions will only increase over the next decade as Denmark approaches the goal of 50% wind power based electricity in 2020, from the current 20%.
Object-Oriented MDAO Tool with Aeroservoelastic Model Tuning Capability
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Li, Wesley; Lung, Shun-fat
2008-01-01
An object-oriented multi-disciplinary analysis and optimization (MDAO) tool has been developed at the NASA Dryden Flight Research Center to automate the design and analysis process and leverage existing commercial as well as in-house codes to enable true multidisciplinary optimization in the preliminary design stage of subsonic, transonic, supersonic and hypersonic aircraft. Once the structural analysis discipline is finalized and integrated completely into the MDAO process, other disciplines such as aerodynamics and flight controls will be integrated as well. Simple and efficient model tuning capabilities based on optimization problem are successfully integrated with the MDAO tool. More synchronized all phases of experimental testing (ground and flight), analytical model updating, high-fidelity simulations for model validation, and integrated design may result in reduction of uncertainties in the aeroservoelastic model and increase the flight safety.
Modelling the urban water cycle as an integrated part of the city: a review.
Urich, Christian; Rauch, Wolfgang
2014-01-01
In contrast to common perceptions, the urban water infrastructure system is a complex and dynamic system that is constantly evolving and adapting to changes in the urban environment, to sustain existing services and provide additional ones. Instead of simplifying urban water infrastructure to a static system that is decoupled from its urban context, new management strategies use the complexity of the system to their advantage by integrating centralised with decentralised solutions and explicitly embedding water systems into their urban form. However, to understand and test possible adaptation strategies, urban water modelling tools are required to support exploration of their effectiveness as the human-technology-environment system coevolves under different future scenarios. The urban water modelling community has taken first steps to developing these new modelling tools. This paper critically reviews the historical development of urban water modelling tools and provides a summary of the current state of integrated modelling approaches. It reflects on the challenges that arise through the current practice of coupling urban water management tools with urban development models and discusses a potential pathway towards a new generation of modelling tools.
2014-06-01
Integration of Advanced Sediment Transport Tools into HEC-RAS by Paul M. Boyd and Stanford A. Gibson PURPOSE: This Coastal and Hydraulics Engineering...Technical Note (CHETN) summarizes the development and initial testing of new sediment transport and modeling tools developed by the U.S. Army Corps...sediment transport within the USACE HEC River Analysis System (HEC-RAS) software package and to determine its applicability to Regional Sediment
MetaboTools: A comprehensive toolbox for analysis of genome-scale metabolic models
Aurich, Maike K.; Fleming, Ronan M. T.; Thiele, Ines
2016-08-03
Metabolomic data sets provide a direct read-out of cellular phenotypes and are increasingly generated to study biological questions. Previous work, by us and others, revealed the potential of analyzing extracellular metabolomic data in the context of the metabolic model using constraint-based modeling. With the MetaboTools, we make our methods available to the broader scientific community. The MetaboTools consist of a protocol, a toolbox, and tutorials of two use cases. The protocol describes, in a step-wise manner, the workflow of data integration, and computational analysis. The MetaboTools comprise the Matlab code required to complete the workflow described in the protocol. Tutorialsmore » explain the computational steps for integration of two different data sets and demonstrate a comprehensive set of methods for the computational analysis of metabolic models and stratification thereof into different phenotypes. The presented workflow supports integrative analysis of multiple omics data sets. Importantly, all analysis tools can be applied to metabolic models without performing the entire workflow. Taken together, the MetaboTools constitute a comprehensive guide to the intra-model analysis of extracellular metabolomic data from microbial, plant, or human cells. In conclusion, this computational modeling resource offers a broad set of computational analysis tools for a wide biomedical and non-biomedical research community.« less
An overview of the model integration process: From pre-integration assessment to testing
Integration of models requires linking models which can be developed using different tools, methodologies, and assumptions. We performed a literature review with the aim of improving our understanding of model integration process, and also presenting better strategies for buildin...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-01
... an improved understanding of methodological challenges associated with integrating existing tools and... methodological challenges associated with integrating existing tools (e.g., climate models, downscaling... sensitivity to methodological choices such as different approaches for downscaling global climate change...
NASA Astrophysics Data System (ADS)
Tironi, Antonio; Marin, Víctor H.; Campuzano, Francisco J.
2010-05-01
This article introduces a management tool for salmon farming, with a scope in the local sustainability of salmon aquaculture of the Aysen Fjord, Chilean Patagonia. Based on Integrated Coastal Zone Management (ICZM) principles, the tool combines a large 3-level nested hydrodynamic model, a particle tracking module and a GIS application into an assessment tool for particulate waste dispersal of salmon farming activities. The model offers an open source alternative to particulate waste modeling and evaluation, contributing with valuable information for local decision makers in the process of locating new facilities and monitoring stations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aurich, Maike K.; Fleming, Ronan M. T.; Thiele, Ines
Metabolomic data sets provide a direct read-out of cellular phenotypes and are increasingly generated to study biological questions. Previous work, by us and others, revealed the potential of analyzing extracellular metabolomic data in the context of the metabolic model using constraint-based modeling. With the MetaboTools, we make our methods available to the broader scientific community. The MetaboTools consist of a protocol, a toolbox, and tutorials of two use cases. The protocol describes, in a step-wise manner, the workflow of data integration, and computational analysis. The MetaboTools comprise the Matlab code required to complete the workflow described in the protocol. Tutorialsmore » explain the computational steps for integration of two different data sets and demonstrate a comprehensive set of methods for the computational analysis of metabolic models and stratification thereof into different phenotypes. The presented workflow supports integrative analysis of multiple omics data sets. Importantly, all analysis tools can be applied to metabolic models without performing the entire workflow. Taken together, the MetaboTools constitute a comprehensive guide to the intra-model analysis of extracellular metabolomic data from microbial, plant, or human cells. In conclusion, this computational modeling resource offers a broad set of computational analysis tools for a wide biomedical and non-biomedical research community.« less
Intelligent Model Management in a Forest Ecosystem Management Decision Support System
Donald Nute; Walter D. Potter; Frederick Maier; Jin Wang; Mark Twery; H. Michael Rauscher; Peter Knopp; Scott Thomasma; Mayukh Dass; Hajime Uchiyama
2002-01-01
Decision making for forest ecosystem management can include the use of a wide variety of modeling tools. These tools include vegetation growth models, wildlife models, silvicultural models, GIS, and visualization tools. NED-2 is a robust, intelligent, goal-driven decision support system that integrates tools in each of these categories. NED-2 uses a blackboard...
Integrated Wind Power Planning Tool
NASA Astrophysics Data System (ADS)
Rosgaard, Martin; Giebel, Gregor; Skov Nielsen, Torben; Hahmann, Andrea; Sørensen, Poul; Madsen, Henrik
2013-04-01
This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the title "Integrated Wind Power Planning Tool". The goal is to integrate a mesoscale numerical weather prediction (NWP) model with purely statistical tools in order to assess wind power fluctuations, with focus on long term power system planning for future wind farms as well as short term forecasting for existing wind farms. Currently, wind power fluctuation models are either purely statistical or integrated with NWP models of limited resolution. Using the state-of-the-art mesoscale NWP model Weather Research & Forecasting model (WRF) the forecast error is sought quantified in dependence of the time scale involved. This task constitutes a preparative study for later implementation of features accounting for NWP forecast errors in the DTU Wind Energy maintained Corwind code - a long term wind power planning tool. Within the framework of PSO 10464 research related to operational short term wind power prediction will be carried out, including a comparison of forecast quality at different mesoscale NWP model resolutions and development of a statistical wind power prediction tool taking input from WRF. The short term prediction part of the project is carried out in collaboration with ENFOR A/S; a Danish company that specialises in forecasting and optimisation for the energy sector. The integrated prediction model will allow for the description of the expected variability in wind power production in the coming hours to days, accounting for its spatio-temporal dependencies, and depending on the prevailing weather conditions defined by the WRF output. The output from the integrated short term prediction tool constitutes scenario forecasts for the coming period, which can then be fed into any type of system model or decision making problem to be solved. The high resolution of the WRF results loaded into the integrated prediction model will ensure a high accuracy data basis is available for use in the decision making process of the Danish transmission system operator. The need for high accuracy predictions will only increase over the next decade as Denmark approaches the goal of 50% wind power based electricity in 2025 from the current 20%.
DOT National Transportation Integrated Search
1998-09-16
This paper and presentation discuss some of the benefits of integrating travel : demand models and desktop GIS (ArchInfo and ArcView for PCs) as a : cost-effective and staff saving tool, as well as specific improvements to : transportation planning m...
Unified Approach to Modeling and Simulation of Space Communication Networks and Systems
NASA Technical Reports Server (NTRS)
Barritt, Brian; Bhasin, Kul; Eddy, Wesley; Matthews, Seth
2010-01-01
Network simulator software tools are often used to model the behaviors and interactions of applications, protocols, packets, and data links in terrestrial communication networks. Other software tools that model the physics, orbital dynamics, and RF characteristics of space systems have matured to allow for rapid, detailed analysis of space communication links. However, the absence of a unified toolset that integrates the two modeling approaches has encumbered the systems engineers tasked with the design, architecture, and analysis of complex space communication networks and systems. This paper presents the unified approach and describes the motivation, challenges, and our solution - the customization of the network simulator to integrate with astronautical analysis software tools for high-fidelity end-to-end simulation. Keywords space; communication; systems; networking; simulation; modeling; QualNet; STK; integration; space networks
Control/structure interaction conceptual design tool
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.
1990-01-01
The JPL Control/Structure Interaction Program is developing new analytical methods for designing micro-precision spacecraft with controlled structures. One of these, the Conceptual Design Tool, will illustrate innovative new approaches to the integration of multi-disciplinary analysis and design methods. The tool will be used to demonstrate homogeneity of presentation, uniform data representation across analytical methods, and integrated systems modeling. The tool differs from current 'integrated systems' that support design teams most notably in its support for the new CSI multi-disciplinary engineer. The design tool will utilize a three dimensional solid model of the spacecraft under design as the central data organization metaphor. Various analytical methods, such as finite element structural analysis, control system analysis, and mechanical configuration layout, will store and retrieve data from a hierarchical, object oriented data structure that supports assemblies of components with associated data and algorithms. In addition to managing numerical model data, the tool will assist the designer in organizing, stating, and tracking system requirements.
ERIC Educational Resources Information Center
Baxa, Julie; Christ, Tanya
2018-01-01
Selecting and integrating the use of digital texts/tools in literacy lessons are complex tasks. The DigiLit framework provides a succinct model to guide planning, reflection, coaching, and formative evaluation of teachers' successful digital text/tool selection and integration for literacy lessons. For digital text/tool selection, teachers need to…
Integrated landscape/hydrologic modeling tool for semiarid watersheds
Mariano Hernandez; Scott N. Miller
2000-01-01
An integrated hydrologic modeling/watershed assessment tool is being developed to aid in determining the susceptibility of semiarid landscapes to natural and human-induced changes across a range of scales. Watershed processes are by definition spatially distributed and are highly variable through time, and this approach is designed to account for their spatial and...
NASA Technical Reports Server (NTRS)
Kerstman, Eric; Minard, Charles G.; Saile, Lynn; FreiredeCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Lopez, Vilma
2010-01-01
The Integrated Medical Model (IMM) is a decision support tool that is useful to space flight mission planners and medical system designers in assessing risks and optimizing medical systems. The IMM employs an evidence-based, probabilistic risk assessment (PRA) approach within the operational constraints of space flight.
Integrated modeling of advanced optical systems
NASA Astrophysics Data System (ADS)
Briggs, Hugh C.; Needels, Laura; Levine, B. Martin
1993-02-01
This poster session paper describes an integrated modeling and analysis capability being developed at JPL under funding provided by the JPL Director's Discretionary Fund and the JPL Control/Structure Interaction Program (CSI). The posters briefly summarize the program capabilities and illustrate them with an example problem. The computer programs developed under this effort will provide an unprecedented capability for integrated modeling and design of high performance optical spacecraft. The engineering disciplines supported include structural dynamics, controls, optics and thermodynamics. Such tools are needed in order to evaluate the end-to-end system performance of spacecraft such as OSI, POINTS, and SMMM. This paper illustrates the proof-of-concept tools that have been developed to establish the technology requirements and demonstrate the new features of integrated modeling and design. The current program also includes implementation of a prototype tool based upon the CAESY environment being developed under the NASA Guidance and Control Research and Technology Computational Controls Program. This prototype will be available late in FY-92. The development plan proposes a major software production effort to fabricate, deliver, support and maintain a national-class tool from FY-93 through FY-95.
Design of a framework for modeling, integration and simulation of physiological models.
Erson, E Zeynep; Cavuşoğlu, M Cenk
2012-09-01
Multiscale modeling and integration of physiological models carry challenges due to the complex nature of physiological processes. High coupling within and among scales present a significant challenge in constructing and integrating multiscale physiological models. In order to deal with such challenges in a systematic way, there is a significant need for an information technology framework together with related analytical and computational tools that will facilitate integration of models and simulations of complex biological systems. Physiological Model Simulation, Integration and Modeling Framework (Phy-SIM) is an information technology framework providing the tools to facilitate development, integration and simulation of integrated models of human physiology. Phy-SIM brings software level solutions to the challenges raised by the complex nature of physiological systems. The aim of Phy-SIM, and this paper is to lay some foundation with the new approaches such as information flow and modular representation of the physiological models. The ultimate goal is to enhance the development of both the models and the integration approaches of multiscale physiological processes and thus this paper focuses on the design approaches that would achieve such a goal. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
ARC integration into the NEAMS Workbench
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stauff, N.; Gaughan, N.; Kim, T.
2017-01-01
One of the objectives of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Integration Product Line (IPL) is to facilitate the deployment of the high-fidelity codes developed within the program. The Workbench initiative was launched in FY-2017 by the IPL to facilitate the transition from conventional tools to high fidelity tools. The Workbench provides a common user interface for model creation, real-time validation, execution, output processing, and visualization for integrated codes.
MatchingTools: A Python library for symbolic effective field theory calculations
NASA Astrophysics Data System (ADS)
Criado, Juan C.
2018-06-01
MatchingTools is a Python library for doing symbolic calculations in effective field theory. It provides the tools to construct general models by defining their field content and their interaction Lagrangian. Once a model is given, the heavy particles can be integrated out at the tree level to obtain an effective Lagrangian in which only the light particles appear. After integration, some of the terms of the resulting Lagrangian might not be independent. MatchingTools contains functions for transforming these terms to rewrite them in terms of any chosen set of operators.
ERIC Educational Resources Information Center
Kim, Henry M.
2000-01-01
An enterprise model, a computational model of knowledge about an enterprise, is a useful tool for integrated decision-making by e-commerce suppliers and customers. Sharable knowledge, once represented in an enterprise model, can be integrated by the modeled enterprise's e-commerce partners. Presents background on enterprise modeling, followed by…
Information Extraction for System-Software Safety Analysis: Calendar Year 2007 Year-End Report
NASA Technical Reports Server (NTRS)
Malin, Jane T.
2008-01-01
This annual report describes work to integrate a set of tools to support early model-based analysis of failures and hazards due to system-software interactions. The tools perform and assist analysts in the following tasks: 1) extract model parts from text for architecture and safety/hazard models; 2) combine the parts with library information to develop the models for visualization and analysis; 3) perform graph analysis on the models to identify possible paths from hazard sources to vulnerable entities and functions, in nominal and anomalous system-software configurations; 4) perform discrete-time-based simulation on the models to investigate scenarios where these paths may play a role in failures and mishaps; and 5) identify resulting candidate scenarios for software integration testing. This paper describes new challenges in a NASA abort system case, and enhancements made to develop the integrated tool set.
Integration of the SSPM and STAGE with the MPACT Virtual Facility Distributed Test Bed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cipiti, Benjamin B.; Shoman, Nathan
The Material Protection Accounting and Control Technologies (MPACT) program within DOE NE is working toward a 2020 milestone to demonstrate a Virtual Facility Distributed Test Bed. The goal of the Virtual Test Bed is to link all MPACT modeling tools, technology development, and experimental work to create a Safeguards and Security by Design capability for fuel cycle facilities. The Separation and Safeguards Performance Model (SSPM) forms the core safeguards analysis tool, and the Scenario Toolkit and Generation Environment (STAGE) code forms the core physical security tool. These models are used to design and analyze safeguards and security systems and generatemore » performance metrics. Work over the past year has focused on how these models will integrate with the other capabilities in the MPACT program and specific model changes to enable more streamlined integration in the future. This report describes the model changes and plans for how the models will be used more collaboratively. The Virtual Facility is not designed to integrate all capabilities into one master code, but rather to maintain stand-alone capabilities that communicate results between codes more effectively.« less
Techniques to Access Databases and Integrate Data for Hydrologic Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, Gene; Tenney, Nathan D.; Pelton, Mitchell A.
2009-06-17
This document addresses techniques to access and integrate data for defining site-specific conditions and behaviors associated with ground-water and surface-water radionuclide transport applicable to U.S. Nuclear Regulatory Commission reviews. Environmental models typically require input data from multiple internal and external sources that may include, but are not limited to, stream and rainfall gage data, meteorological data, hydrogeological data, habitat data, and biological data. These data may be retrieved from a variety of organizations (e.g., federal, state, and regional) and source types (e.g., HTTP, FTP, and databases). Available data sources relevant to hydrologic analyses for reactor licensing are identified and reviewed.more » The data sources described can be useful to define model inputs and parameters, including site features (e.g., watershed boundaries, stream locations, reservoirs, site topography), site properties (e.g., surface conditions, subsurface hydraulic properties, water quality), and site boundary conditions, input forcings, and extreme events (e.g., stream discharge, lake levels, precipitation, recharge, flood and drought characteristics). Available software tools for accessing established databases, retrieving the data, and integrating it with models were identified and reviewed. The emphasis in this review was on existing software products with minimal required modifications to enable their use with the FRAMES modeling framework. The ability of four of these tools to access and retrieve the identified data sources was reviewed. These four software tools were the Hydrologic Data Acquisition and Processing System (HDAPS), Integrated Water Resources Modeling System (IWRMS) External Data Harvester, Data for Environmental Modeling Environmental Data Download Tool (D4EM EDDT), and the FRAMES Internet Database Tools. The IWRMS External Data Harvester and the D4EM EDDT were identified as the most promising tools based on their ability to access and retrieve the required data, and their ability to integrate the data into environmental models using the FRAMES environment.« less
Integrated network analysis and effective tools in plant systems biology
Fukushima, Atsushi; Kanaya, Shigehiko; Nishida, Kozo
2014-01-01
One of the ultimate goals in plant systems biology is to elucidate the genotype-phenotype relationship in plant cellular systems. Integrated network analysis that combines omics data with mathematical models has received particular attention. Here we focus on the latest cutting-edge computational advances that facilitate their combination. We highlight (1) network visualization tools, (2) pathway analyses, (3) genome-scale metabolic reconstruction, and (4) the integration of high-throughput experimental data and mathematical models. Multi-omics data that contain the genome, transcriptome, proteome, and metabolome and mathematical models are expected to integrate and expand our knowledge of complex plant metabolisms. PMID:25408696
An agent architecture for an integrated forest ecosystem management decision support system
Donald Nute; Walter D. Potter; Mayukh Dass; Astrid Glende; Frederick Maier; Hajime Uchiyama; Jin Wang; Mark Twery; Peter Knopp; Scott Thomasma; H. Michael Rauscher
2003-01-01
A wide variety of software tools are available to support decision in the management of forest ecosystems. These tools include databases, growth and yield models, wildlife models, silvicultural expert systems, financial models, geographical informations systems, and visualization tools. Typically, each of these tools has its own complex interface and data format. To...
Learning Aggregation Operators for Preference Modeling
NASA Astrophysics Data System (ADS)
Torra, Vicenç
Aggregation operators are useful tools for modeling preferences. Such operators include weighted means, OWA and WOWA operators, as well as some fuzzy integrals, e.g. Choquet and Sugeno integrals. To apply these operators in an effective way, their parameters have to be properly defined. In this chapter, we review some of the existing tools for learning these parameters from examples.
GLIMPSE: An integrated assessment model-based tool for coordinated energy and environmental planning
Dan Loughlin will describe the GCAM-USA integrated assessment model and how that model is being improved and integrated into the GLIMPSE decision support system. He will also demonstrate the application of the model to evaluate the emissions and health implications of hypothetica...
NASA Astrophysics Data System (ADS)
Williams, C. A.; Dicaprio, C.; Simons, M.
2003-12-01
With the advent of projects such as the Plate Boundary Observatory and future InSAR missions, spatially dense geodetic data of high quality will provide an increasingly detailed picture of the movement of the earth's surface. To interpret such information, powerful and easily accessible modeling tools are required. We are presently developing such a tool that we feel will meet many of the needs for evaluating quasi-static earth deformation. As a starting point, we begin with a modified version of the finite element code TECTON, which has been specifically designed to solve tectonic problems involving faulting and viscoelastic/plastic earth behavior. As our first priority, we are integrating the code into the GeoFramework, which is an extension of the Python-based Pyre modeling framework. The goal of this framework is to provide simplified user interfaces for powerful modeling codes, to provide easy access to utilities such as meshers and visualization tools, and to provide a tight integration between different modeling tools so they can interact with each other. The initial integration of the code into this framework is essentially complete, and a more thorough integration, where Python-based drivers control the entire solution, will be completed in the near future. We have an evolving set of priorities that we expect to solidify as we receive more input from the modeling community. Current priorities include the development of linear and quadratic tetrahedral elements, the development of a parallelized version of the code using the PETSc libraries, the addition of more complex rheologies, realistic fault friction models, adaptive time stepping, and spherical geometries. In this presentation we describe current progress toward our various priorities, briefly describe the structure of the code within the GeoFramework, and demonstrate some sample applications.
PathCase-SB architecture and database design
2011-01-01
Background Integration of metabolic pathways resources and regulatory metabolic network models, and deploying new tools on the integrated platform can help perform more effective and more efficient systems biology research on understanding the regulation in metabolic networks. Therefore, the tasks of (a) integrating under a single database environment regulatory metabolic networks and existing models, and (b) building tools to help with modeling and analysis are desirable and intellectually challenging computational tasks. Description PathCase Systems Biology (PathCase-SB) is built and released. The PathCase-SB database provides data and API for multiple user interfaces and software tools. The current PathCase-SB system provides a database-enabled framework and web-based computational tools towards facilitating the development of kinetic models for biological systems. PathCase-SB aims to integrate data of selected biological data sources on the web (currently, BioModels database and KEGG), and to provide more powerful and/or new capabilities via the new web-based integrative framework. This paper describes architecture and database design issues encountered in PathCase-SB's design and implementation, and presents the current design of PathCase-SB's architecture and database. Conclusions PathCase-SB architecture and database provide a highly extensible and scalable environment with easy and fast (real-time) access to the data in the database. PathCase-SB itself is already being used by researchers across the world. PMID:22070889
Calibration of a COTS Integration Cost Model Using Local Project Data
NASA Technical Reports Server (NTRS)
Boland, Dillard; Coon, Richard; Byers, Kathryn; Levitt, David
1997-01-01
The software measures and estimation techniques appropriate to a Commercial Off the Shelf (COTS) integration project differ from those commonly used for custom software development. Labor and schedule estimation tools that model COTS integration are available. Like all estimation tools, they must be calibrated with the organization's local project data. This paper describes the calibration of a commercial model using data collected by the Flight Dynamics Division (FDD) of the NASA Goddard Spaceflight Center (GSFC). The model calibrated is SLIM Release 4.0 from Quantitative Software Management (QSM). By adopting the SLIM reuse model and by treating configuration parameters as lines of code, we were able to establish a consistent calibration for COTS integration projects. The paper summarizes the metrics, the calibration process and results, and the validation of the calibration.
Optimal visual-haptic integration with articulated tools.
Takahashi, Chie; Watt, Simon J
2017-05-01
When we feel and see an object, the nervous system integrates visual and haptic information optimally, exploiting the redundancy in multiple signals to estimate properties more precisely than is possible from either signal alone. We examined whether optimal integration is similarly achieved when using articulated tools. Such tools (tongs, pliers, etc) are a defining characteristic of human hand function, but complicate the classical sensory 'correspondence problem' underlying multisensory integration. Optimal integration requires establishing the relationship between signals acquired by different sensors (hand and eye) and, therefore, in fundamentally unrelated units. The system must also determine when signals refer to the same property of the world-seeing and feeling the same thing-and only integrate those that do. This could be achieved by comparing the pattern of current visual and haptic input to known statistics of their normal relationship. Articulated tools disrupt this relationship, however, by altering the geometrical relationship between object properties and hand posture (the haptic signal). We examined whether different tool configurations are taken into account in visual-haptic integration. We indexed integration by measuring the precision of size estimates, and compared our results to optimal predictions from a maximum-likelihood integrator. Integration was near optimal, independent of tool configuration/hand posture, provided that visual and haptic signals referred to the same object in the world. Thus, sensory correspondence was determined correctly (trial-by-trial), taking tool configuration into account. This reveals highly flexible multisensory integration underlying tool use, consistent with the brain constructing internal models of tools' properties.
Applying Simulation and Logistics Modeling to Transportation Issues
DOT National Transportation Integrated Search
1995-08-15
This paper describes an application where transportation logistics and simulation tools are integrated to create a modeling environment for transportation planning. The Transportation Planning Model (TPM) is a tool developed for the Department of Ene...
Model Modules to Assist Assessing and Controlling SCC
DOT National Transportation Integrated Search
2008-04-04
This project developed and validated tools to assist in integrity assessment and management both forms of SCC. Because the understanding that underlies integrity management tools was most comprehensive for high-pH SCC, development targeted NN-pH SCC,...
General Pressurization Model in Simscape
NASA Technical Reports Server (NTRS)
Servin, Mario; Garcia, Vicky
2010-01-01
System integration is an essential part of the engineering design process. The Ares I Upper Stage (US) is a complex system which is made up of thousands of components assembled into subsystems including a J2-X engine, liquid hydrogen (LH2) and liquid oxygen (LO2) tanks, avionics, thrust vector control, motors, etc. System integration is the task of connecting together all of the subsystems into one large system. To ensure that all the components will "fit together" as well as safety and, quality, integration analysis is required. Integration analysis verifies that, as an integrated system, the system will behave as designed. Models that represent the actual subsystems are built for more comprehensive analysis. Matlab has been an instrument widely use by engineers to construct mathematical models of systems. Simulink, one of the tools offered by Matlab, provides multi-domain graphical environment to simulate and design time-varying systems. Simulink is a powerful tool to analyze the dynamic behavior of systems over time. Furthermore, Simscape, a tool provided by Simulink, allows users to model physical (such as mechanical, thermal and hydraulic) systems using physical networks. Using Simscape, a model representing an inflow of gas to a pressurized tank was created where the temperature and pressure of the tank are measured over time to show the behavior of the gas. By further incorporation of Simscape into model building, the full potential of this software can be discovered and it hopefully can become a more utilized tool.
Integrated Sensitivity Analysis Workflow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman-Hill, Ernest J.; Hoffman, Edward L.; Gibson, Marcus J.
2014-08-01
Sensitivity analysis is a crucial element of rigorous engineering analysis, but performing such an analysis on a complex model is difficult and time consuming. The mission of the DART Workbench team at Sandia National Laboratories is to lower the barriers to adoption of advanced analysis tools through software integration. The integrated environment guides the engineer in the use of these integrated tools and greatly reduces the cycle time for engineering analysis.
Integrated performance and reliability specification for digital avionics systems
NASA Technical Reports Server (NTRS)
Brehm, Eric W.; Goettge, Robert T.
1995-01-01
This paper describes an automated tool for performance and reliability assessment of digital avionics systems, called the Automated Design Tool Set (ADTS). ADTS is based on an integrated approach to design assessment that unifies traditional performance and reliability views of system designs, and that addresses interdependencies between performance and reliability behavior via exchange of parameters and result between mathematical models of each type. A multi-layer tool set architecture has been developed for ADTS that separates the concerns of system specification, model generation, and model solution. Performance and reliability models are generated automatically as a function of candidate system designs, and model results are expressed within the system specification. The layered approach helps deal with the inherent complexity of the design assessment process, and preserves long-term flexibility to accommodate a wide range of models and solution techniques within the tool set structure. ADTS research and development to date has focused on development of a language for specification of system designs as a basis for performance and reliability evaluation. A model generation and solution framework has also been developed for ADTS, that will ultimately encompass an integrated set of analytic and simulated based techniques for performance, reliability, and combined design assessment.
NASA Astrophysics Data System (ADS)
Cannata, Massimiliano; Neumann, Jakob; Cardoso, Mirko; Rossetto, Rudy; Foglia, Laura; Borsi, Iacopo
2017-04-01
In situ time-series are an important aspect of environmental modelling, especially with the advancement of numerical simulation techniques and increased model complexity. In order to make use of the increasing data available through the requirements of the EU Water Framework Directive, the FREEWAT GIS environment incorporates the newly developed Observation Analysis Tool for time-series analysis. The tool is used to import time-series data into QGIS from local CSV files, online sensors using the istSOS service, or MODFLOW model result files and enables visualisation, pre-processing of data for model development, and post-processing of model results. OAT can be used as a pre-processor for calibration observations, integrating the creation of observations for calibration directly from sensor time-series. The tool consists in an expandable Python library of processing methods and an interface integrated in the QGIS FREEWAT plug-in which includes a large number of modelling capabilities, data management tools and calibration capacity.
Technical integration of hippocampus, Basal Ganglia and physical models for spatial navigation.
Fox, Charles; Humphries, Mark; Mitchinson, Ben; Kiss, Tamas; Somogyvari, Zoltan; Prescott, Tony
2009-01-01
Computational neuroscience is increasingly moving beyond modeling individual neurons or neural systems to consider the integration of multiple models, often constructed by different research groups. We report on our preliminary technical integration of recent hippocampal formation, basal ganglia and physical environment models, together with visualisation tools, as a case study in the use of Python across the modelling tool-chain. We do not present new modeling results here. The architecture incorporates leaky-integrator and rate-coded neurons, a 3D environment with collision detection and tactile sensors, 3D graphics and 2D plots. We found Python to be a flexible platform, offering a significant reduction in development time, without a corresponding significant increase in execution time. We illustrate this by implementing a part of the model in various alternative languages and coding styles, and comparing their execution times. For very large-scale system integration, communication with other languages and parallel execution may be required, which we demonstrate using the BRAHMS framework's Python bindings.
Knecht, Carolin; Mort, Matthew; Junge, Olaf; Cooper, David N.; Krawczak, Michael
2017-01-01
Abstract The in silico prediction of the functional consequences of mutations is an important goal of human pathogenetics. However, bioinformatic tools that classify mutations according to their functionality employ different algorithms so that predictions may vary markedly between tools. We therefore integrated nine popular prediction tools (PolyPhen-2, SNPs&GO, MutPred, SIFT, MutationTaster2, Mutation Assessor and FATHMM as well as conservation-based Grantham Score and PhyloP) into a single predictor. The optimal combination of these tools was selected by means of a wide range of statistical modeling techniques, drawing upon 10 029 disease-causing single nucleotide variants (SNVs) from Human Gene Mutation Database and 10 002 putatively ‘benign’ non-synonymous SNVs from UCSC. Predictive performance was found to be markedly improved by model-based integration, whilst maximum predictive capability was obtained with either random forest, decision tree or logistic regression analysis. A combination of PolyPhen-2, SNPs&GO, MutPred, MutationTaster2 and FATHMM was found to perform as well as all tools combined. Comparison of our approach with other integrative approaches such as Condel, CoVEC, CAROL, CADD, MetaSVM and MetaLR using an independent validation dataset, revealed the superiority of our newly proposed integrative approach. An online implementation of this approach, IMHOTEP (‘Integrating Molecular Heuristics and Other Tools for Effect Prediction’), is provided at http://www.uni-kiel.de/medinfo/cgi-bin/predictor/. PMID:28180317
Integrated Modeling Tools for Thermal Analysis and Applications
NASA Technical Reports Server (NTRS)
Milman, Mark H.; Needels, Laura; Papalexandris, Miltiadis
1999-01-01
Integrated modeling of spacecraft systems is a rapidly evolving area in which multidisciplinary models are developed to design and analyze spacecraft configurations. These models are especially important in the early design stages where rapid trades between subsystems can substantially impact design decisions. Integrated modeling is one of the cornerstones of two of NASA's planned missions in the Origins Program -- the Next Generation Space Telescope (NGST) and the Space Interferometry Mission (SIM). Common modeling tools for control design and opto-mechanical analysis have recently emerged and are becoming increasingly widely used. A discipline that has been somewhat less integrated, but is nevertheless of critical concern for high precision optical instruments, is thermal analysis and design. A major factor contributing to this mild estrangement is that the modeling philosophies and objectives for structural and thermal systems typically do not coincide. Consequently the tools that are used in these discplines suffer a degree of incompatibility, each having developed along their own evolutionary path. Although standard thermal tools have worked relatively well in the past. integration with other disciplines requires revisiting modeling assumptions and solution methods. Over the past several years we have been developing a MATLAB based integrated modeling tool called IMOS (Integrated Modeling of Optical Systems) which integrates many aspects of structural, optical, control and dynamical analysis disciplines. Recent efforts have included developing a thermal modeling and analysis capability, which is the subject of this article. Currently, the IMOS thermal suite contains steady state and transient heat equation solvers, and the ability to set up the linear conduction network from an IMOS finite element model. The IMOS code generates linear conduction elements associated with plates and beams/rods of the thermal network directly from the finite element structural model. Conductances for temperature varying materials are accommodated. This capability both streamlines the process of developing the thermal model from the finite element model, and also makes the structural and thermal models compatible in the sense that each structural node is associated with a thermal node. This is particularly useful when the purpose of the analysis is to predict structural deformations due to thermal loads. The steady state solver uses a restricted step size Newton method, and the transient solver is an adaptive step size implicit method applicable to general differential algebraic systems. Temperature dependent conductances and capacitances are accommodated by the solvers. In addition to discussing the modeling and solution methods. applications where the thermal modeling is "in the loop" with sensitivity analysis, optimization and optical performance drawn from our experiences with the Space Interferometry Mission (SIM), and the Next Generation Space Telescope (NGST) are presented.
Integrated Exoplanet Modeling with the GSFC Exoplanet Modeling & Analysis Center (EMAC)
NASA Astrophysics Data System (ADS)
Mandell, Avi M.; Hostetter, Carl; Pulkkinen, Antti; Domagal-Goldman, Shawn David
2018-01-01
Our ability to characterize the atmospheres of extrasolar planets will be revolutionized by JWST, WFIRST and future ground- and space-based telescopes. In preparation, the exoplanet community must develop an integrated suite of tools with which we can comprehensively predict and analyze observations of exoplanets, in order to characterize the planetary environments and ultimately search them for signs of habitability and life.The GSFC Exoplanet Modeling and Analysis Center (EMAC) will be a web-accessible high-performance computing platform with science support for modelers and software developers to host and integrate their scientific software tools, with the goal of leveraging the scientific contributions from the entire exoplanet community to improve our interpretations of future exoplanet discoveries. Our suite of models will include stellar models, models for star-planet interactions, atmospheric models, planet system science models, telescope models, instrument models, and finally models for retrieving signals from observational data. By integrating this suite of models, the community will be able to self-consistently calculate the emergent spectra from the planet whether from emission, scattering, or in transmission, and use these simulations to model the performance of current and new telescopes and their instrumentation.The EMAC infrastructure will not only provide a repository for planetary and exoplanetary community models, modeling tools and intermodal comparisons, but it will include a "run-on-demand" portal with each software tool hosted on a separate virtual machine. The EMAC system will eventually include a means of running or “checking in” new model simulations that are in accordance with the community-derived standards. Additionally, the results of intermodal comparisons will be used to produce open source publications that quantify the model comparisons and provide an overview of community consensus on model uncertainties on the climates of various planetary targets.
Vertical integration increases opportunities for patient flow.
Radoccia, R A; Benvenuto, J A; Blancett, L
1991-08-01
New sources of patients will become more and more important in the next decade as hospitals continue to feel the squeeze of a competitive marketplace. Vertical integration, a distribution tool used in other industries, will be a significant tool for health care administrators. In the following article, the authors explain the vertical integration model that shows promise for other institutions.
DOT National Transportation Integrated Search
2012-05-01
The Vermont Integrated Land-Use and Transportation Carbon Estimator (VILTCE) project is part of a larger effort to develop environmental metrics related to travel, and to integrate these tools into a travel model under UVM TRC Signature Project No. 1...
A Hyperbolic Ontology Visualization Tool for Model Application Programming Interface Documentation
NASA Technical Reports Server (NTRS)
Hyman, Cody
2011-01-01
Spacecraft modeling, a critically important portion in validating planned spacecraft activities, is currently carried out using a time consuming method of mission to mission model implementations and integration. A current project in early development, Integrated Spacecraft Analysis (ISCA), aims to remedy this hindrance by providing reusable architectures and reducing time spent integrating models with planning and sequencing tools. The principle objective of this internship was to develop a user interface for an experimental ontology-based structure visualization of navigation and attitude control system modeling software. To satisfy this, a number of tree and graph visualization tools were researched and a Java based hyperbolic graph viewer was selected for experimental adaptation. Early results show promise in the ability to organize and display large amounts of spacecraft model documentation efficiently and effectively through a web browser. This viewer serves as a conceptual implementation for future development but trials with both ISCA developers and end users should be performed to truly evaluate the effectiveness of continued development of such visualizations.
Hybrid Wing Body Planform Design with Vehicle Sketch Pad
NASA Technical Reports Server (NTRS)
Wells, Douglas P.; Olson, Erik D.
2011-01-01
The objective of this paper was to provide an update on NASA s current tools for design and analysis of hybrid wing body (HWB) aircraft with an emphasis on Vehicle Sketch Pad (VSP). NASA started HWB analysis using the Flight Optimization System (FLOPS). That capability is enhanced using Phoenix Integration's ModelCenter(Registered TradeMark). Model Center enables multifidelity analysis tools to be linked as an integrated structure. Two major components are linked to FLOPS as an example; a planform discretization tool and VSP. The planform discretization tool ensures the planform is smooth and continuous. VSP is used to display the output geometry. This example shows that a smooth & continuous HWB planform can be displayed as a three-dimensional model and rapidly sized and analyzed.
NASA Technical Reports Server (NTRS)
Wissler, Steven S.; Maldague, Pierre; Rocca, Jennifer; Seybold, Calina
2006-01-01
The Deep Impact mission was ambitious and challenging. JPL's well proven, easily adaptable multi-mission sequence planning tools combined with integrated spacecraft subsystem models enabled a small operations team to develop, validate, and execute extremely complex sequence-based activities within very short development times. This paper focuses on the core planning tool used in the mission, APGEN. It shows how the multi-mission design and adaptability of APGEN made it possible to model spacecraft subsystems as well as ground assets throughout the lifecycle of the Deep Impact project, starting with models of initial, high-level mission objectives, and culminating in detailed predictions of spacecraft behavior during mission-critical activities.
Climbing the ladder: capability maturity model integration level 3
NASA Astrophysics Data System (ADS)
Day, Bryce; Lutteroth, Christof
2011-02-01
This article details the attempt to form a complete workflow model for an information and communication technologies (ICT) company in order to achieve a capability maturity model integration (CMMI) maturity rating of 3. During this project, business processes across the company's core and auxiliary sectors were documented and extended using modern enterprise modelling tools and a The Open Group Architectural Framework (TOGAF) methodology. Different challenges were encountered with regard to process customisation and tool support for enterprise modelling. In particular, there were problems with the reuse of process models, the integration of different project management methodologies and the integration of the Rational Unified Process development process framework that had to be solved. We report on these challenges and the perceived effects of the project on the company. Finally, we point out research directions that could help to improve the situation in the future.
NASA Technical Reports Server (NTRS)
Donnellan, Andrea; Parker, Jay W.; Lyzenga, Gregory A.; Granat, Robert A.; Norton, Charles D.; Rundle, John B.; Pierce, Marlon E.; Fox, Geoffrey C.; McLeod, Dennis; Ludwig, Lisa Grant
2012-01-01
QuakeSim 2.0 improves understanding of earthquake processes by providing modeling tools and integrating model applications and various heterogeneous data sources within a Web services environment. QuakeSim is a multisource, synergistic, data-intensive environment for modeling the behavior of earthquake faults individually, and as part of complex interacting systems. Remotely sensed geodetic data products may be explored, compared with faults and landscape features, mined by pattern analysis applications, and integrated with models and pattern analysis applications in a rich Web-based and visualization environment. Integration of heterogeneous data products with pattern informatics tools enables efficient development of models. Federated database components and visualization tools allow rapid exploration of large datasets, while pattern informatics enables identification of subtle, but important, features in large data sets. QuakeSim is valuable for earthquake investigations and modeling in its current state, and also serves as a prototype and nucleus for broader systems under development. The framework provides access to physics-based simulation tools that model the earthquake cycle and related crustal deformation. Spaceborne GPS and Inter ferometric Synthetic Aperture (InSAR) data provide information on near-term crustal deformation, while paleoseismic geologic data provide longerterm information on earthquake fault processes. These data sources are integrated into QuakeSim's QuakeTables database system, and are accessible by users or various model applications. UAVSAR repeat pass interferometry data products are added to the QuakeTables database, and are available through a browseable map interface or Representational State Transfer (REST) interfaces. Model applications can retrieve data from Quake Tables, or from third-party GPS velocity data services; alternatively, users can manually input parameters into the models. Pattern analysis of GPS and seismicity data has proved useful for mid-term forecasting of earthquakes, and for detecting subtle changes in crustal deformation. The GPS time series analysis has also proved useful as a data-quality tool, enabling the discovery of station anomalies and data processing and distribution errors. Improved visualization tools enable more efficient data exploration and understanding. Tools provide flexibility to science users for exploring data in new ways through download links, but also facilitate standard, intuitive, and routine uses for science users and end users such as emergency responders.
Integrated Modeling Environment
NASA Technical Reports Server (NTRS)
Mosier, Gary; Stone, Paul; Holtery, Christopher
2006-01-01
The Integrated Modeling Environment (IME) is a software system that establishes a centralized Web-based interface for integrating people (who may be geographically dispersed), processes, and data involved in a common engineering project. The IME includes software tools for life-cycle management, configuration management, visualization, and collaboration.
Frequency Domain Modeling of SAW Devices
NASA Technical Reports Server (NTRS)
Wilson, W. C.; Atkinson, G. M.
2007-01-01
New SAW sensors for integrated vehicle health monitoring of aerospace vehicles are being investigated. SAW technology is low cost, rugged, lightweight, and extremely low power. However, the lack of design tools for MEMS devices in general, and for Surface Acoustic Wave (SAW) devices specifically, has led to the development of tools that will enable integrated design, modeling, simulation, analysis and automatic layout generation of SAW devices. A frequency domain model has been created. The model is mainly first order, but it includes second order effects from triple transit echoes. This paper presents the model and results from the model for a SAW delay line device.
Evaluating the State of Water Management in the Rio Grande/Bravo Basin
NASA Astrophysics Data System (ADS)
Ortiz Partida, Jose Pablo; Sandoval-Solis, Samuel; Diaz Gomez, Romina
2017-04-01
Water resource modeling tools have been developed for many different regions and sub-basins of the Rio Grande/Bravo (RGB). Each of these tools has specific objectives, whether it is to explore drought mitigation alternatives, conflict resolution, climate change evaluation, tradeoff and economic synergies, water allocation, reservoir operations, or collaborative planning. However, there has not been an effort to integrate different available tools, or to link models developed for specific reaches into a more holistic watershed decision-support tool. This project outlines promising next steps to meet long-term goals of improved decision support tools and modeling. We identify, describe, and synthesize water resources management practices in the RGB basin and available water resources models and decision support tools that represent the RGB and the distribution of water for human and environmental uses. The extent body of water resources modeling is examined from a perspective of environmental water needs and water resources management and thereby allows subsequent prioritization of future research and monitoring needs for the development of river system modeling tools. This work communicates the state of the RGB science to diverse stakeholders, researchers, and decision-makers. The products of this project represent a planning tool to support an integrated water resources management framework to maximize economic and social welfare without compromising vital ecosystems.
Agur, Zvia; Elishmereni, Moran; Kheifetz, Yuri
2014-01-01
Despite its great promise, personalized oncology still faces many hurdles, and it is increasingly clear that targeted drugs and molecular biomarkers alone yield only modest clinical benefit. One reason is the complex relationships between biomarkers and the patient's response to drugs, obscuring the true weight of the biomarkers in the overall patient's response. This complexity can be disentangled by computational models that integrate the effects of personal biomarkers into a simulator of drug-patient dynamic interactions, for predicting the clinical outcomes. Several computational tools have been developed for personalized oncology, notably evidence-based tools for simulating pharmacokinetics, Bayesian-estimated tools for predicting survival, etc. We describe representative statistical and mathematical tools, and discuss their merits, shortcomings and preliminary clinical validation attesting to their potential. Yet, the individualization power of mathematical models alone, or statistical models alone, is limited. More accurate and versatile personalization tools can be constructed by a new application of the statistical/mathematical nonlinear mixed effects modeling (NLMEM) approach, which until recently has been used only in drug development. Using these advanced tools, clinical data from patient populations can be integrated with mechanistic models of disease and physiology, for generating personal mathematical models. Upon a more substantial validation in the clinic, this approach will hopefully be applied in personalized clinical trials, P-trials, hence aiding the establishment of personalized medicine within the main stream of clinical oncology. © 2014 Wiley Periodicals, Inc.
Human performance cognitive-behavioral modeling: a benefit for occupational safety.
Gore, Brian F
2002-01-01
Human Performance Modeling (HPM) is a computer-aided job analysis software methodology used to generate predictions of complex human-automation integration and system flow patterns with the goal of improving operator and system safety. The use of HPM tools has recently been increasing due to reductions in computational cost, augmentations in the tools' fidelity, and usefulness in the generated output. An examination of an Air Man-machine Integration Design and Analysis System (Air MIDAS) model evaluating complex human-automation integration currently underway at NASA Ames Research Center will highlight the importance to occupational safety of considering both cognitive and physical aspects of performance when researching human error.
Human performance cognitive-behavioral modeling: a benefit for occupational safety
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2002-01-01
Human Performance Modeling (HPM) is a computer-aided job analysis software methodology used to generate predictions of complex human-automation integration and system flow patterns with the goal of improving operator and system safety. The use of HPM tools has recently been increasing due to reductions in computational cost, augmentations in the tools' fidelity, and usefulness in the generated output. An examination of an Air Man-machine Integration Design and Analysis System (Air MIDAS) model evaluating complex human-automation integration currently underway at NASA Ames Research Center will highlight the importance to occupational safety of considering both cognitive and physical aspects of performance when researching human error.
Model Identification of Integrated ARMA Processes
ERIC Educational Resources Information Center
Stadnytska, Tetiana; Braun, Simone; Werner, Joachim
2008-01-01
This article evaluates the Smallest Canonical Correlation Method (SCAN) and the Extended Sample Autocorrelation Function (ESACF), automated methods for the Autoregressive Integrated Moving-Average (ARIMA) model selection commonly available in current versions of SAS for Windows, as identification tools for integrated processes. SCAN and ESACF can…
Li, Shasha; Nie, Hongchao; Lu, Xudong; Duan, Huilong
2015-02-01
Integration of heterogeneous systems is the key to hospital information construction due to complexity of the healthcare environment. Currently, during the process of healthcare information system integration, people participating in integration project usually communicate by free-format document, which impairs the efficiency and adaptability of integration. A method utilizing business process model and notation (BPMN) to model integration requirement and automatically transforming it to executable integration configuration was proposed in this paper. Based on the method, a tool was developed to model integration requirement and transform it to integration configuration. In addition, an integration case in radiology scenario was used to verify the method.
Community Coordinated Modeling Center Support of Science Needs for Integrated Data Environment
NASA Technical Reports Server (NTRS)
Kuznetsova, M. M.; Hesse, M.; Rastatter, L.; Maddox, M.
2007-01-01
Space science models are essential component of integrated data environment. Space science models are indispensable tools to facilitate effective use of wide variety of distributed scientific sources and to place multi-point local measurements into global context. The Community Coordinated Modeling Center (CCMC) hosts a set of state-of-the- art space science models ranging from the solar atmosphere to the Earth's upper atmosphere. The majority of models residing at CCMC are comprehensive computationally intensive physics-based models. To allow the models to be driven by data relevant to particular events, the CCMC developed an online data file generation tool that automatically downloads data from data providers and transforms them to required format. CCMC provides a tailored web-based visualization interface for the model output, as well as the capability to download simulations output in portable standard format with comprehensive metadata and user-friendly model output analysis library of routines that can be called from any C supporting language. CCMC is developing data interpolation tools that enable to present model output in the same format as observations. CCMC invite community comments and suggestions to better address science needs for the integrated data environment.
Integration of Dynamic Models in Range Operations
NASA Technical Reports Server (NTRS)
Bardina, Jorge; Thirumalainambi, Rajkumar
2004-01-01
This work addresses the various model interactions in real-time to make an efficient internet based decision making tool for Shuttle launch. The decision making tool depends on the launch commit criteria coupled with physical models. Dynamic interaction between a wide variety of simulation applications and techniques, embedded algorithms, and data visualizations are needed to exploit the full potential of modeling and simulation. This paper also discusses in depth details of web based 3-D graphics and applications to range safety. The advantages of this dynamic model integration are secure accessibility and distribution of real time information to other NASA centers.
Integrating and Managing Bim in GIS, Software Review
NASA Astrophysics Data System (ADS)
El Meouche, R.; Rezoug, M.; Hijazi, I.
2013-08-01
Since the advent of Computer-Aided Design (CAD) and Geographical Information System (GIS) tools, project participants have been increasingly leveraging these tools throughout the different phases of a civil infrastructure project. In recent years the number of GIS software that provides tools to enable the integration of Building information in geo context has risen sharply. More and more GIS software are added tools for this purposes and other software projects are regularly extending these tools. However, each software has its different strength and weakness and its purpose of use. This paper provides a thorough review to investigate the software capabilities and clarify its purpose. For this study, Autodesk Revit 2012 i.e. BIM editor software was used to create BIMs. In the first step, three building models were created, the resulted models were converted to BIM format and then the software was used to integrate it. For the evaluation of the software, general characteristics was studied such as the user interface, what formats are supported (import/export), and the way building information are imported.
Ciffroy, P; Alfonso, B; Altenpohl, A; Banjac, Z; Bierkens, J; Brochot, C; Critto, A; De Wilde, T; Fait, G; Fierens, T; Garratt, J; Giubilato, E; Grange, E; Johansson, E; Radomyski, A; Reschwann, K; Suciu, N; Tanaka, T; Tediosi, A; Van Holderbeke, M; Verdonck, F
2016-10-15
MERLIN-Expo is a library of models that was developed in the frame of the FP7 EU project 4FUN in order to provide an integrated assessment tool for state-of-the-art exposure assessment for environment, biota and humans, allowing the detection of scientific uncertainties at each step of the exposure process. This paper describes the main features of the MERLIN-Expo tool. The main challenges in exposure modelling that MERLIN-Expo has tackled are: (i) the integration of multimedia (MM) models simulating the fate of chemicals in environmental media, and of physiologically based pharmacokinetic (PBPK) models simulating the fate of chemicals in human body. MERLIN-Expo thus allows the determination of internal effective chemical concentrations; (ii) the incorporation of a set of functionalities for uncertainty/sensitivity analysis, from screening to variance-based approaches. The availability of such tools for uncertainty and sensitivity analysis aimed to facilitate the incorporation of such issues in future decision making; (iii) the integration of human and wildlife biota targets with common fate modelling in the environment. MERLIN-Expo is composed of a library of fate models dedicated to non biological receptor media (surface waters, soils, outdoor air), biological media of concern for humans (several cultivated crops, mammals, milk, fish), as well as wildlife biota (primary producers in rivers, invertebrates, fish) and humans. These models can be linked together to create flexible scenarios relevant for both human and wildlife biota exposure. Standardized documentation for each model and training material were prepared to support an accurate use of the tool by end-users. One of the objectives of the 4FUN project was also to increase the confidence in the applicability of the MERLIN-Expo tool through targeted realistic case studies. In particular, we aimed at demonstrating the feasibility of building complex realistic exposure scenarios and the accuracy of the modelling predictions through a comparison with actual measurements. Copyright © 2016 Elsevier B.V. All rights reserved.
3D Printed Organ Models with Physical Properties of Tissue and Integrated Sensors.
Qiu, Kaiyan; Zhao, Zichen; Haghiashtiani, Ghazaleh; Guo, Shuang-Zhuang; He, Mingyu; Su, Ruitao; Zhu, Zhijie; Bhuiyan, Didarul B; Murugan, Paari; Meng, Fanben; Park, Sung Hyun; Chu, Chih-Chang; Ogle, Brenda M; Saltzman, Daniel A; Konety, Badrinath R; Sweet, Robert M; McAlpine, Michael C
2018-03-01
The design and development of novel methodologies and customized materials to fabricate patient-specific 3D printed organ models with integrated sensing capabilities could yield advances in smart surgical aids for preoperative planning and rehearsal. Here, we demonstrate 3D printed prostate models with physical properties of tissue and integrated soft electronic sensors using custom-formulated polymeric inks. The models show high quantitative fidelity in static and dynamic mechanical properties, optical characteristics, and anatomical geometries to patient tissues and organs. The models offer tissue-mimicking tactile sensation and behavior and thus can be used for the prediction of organ physical behavior under deformation. The prediction results show good agreement with values obtained from simulations. The models also allow the application of surgical and diagnostic tools to their surface and inner channels. Finally, via the conformal integration of 3D printed soft electronic sensors, pressure applied to the models with surgical tools can be quantitatively measured.
3D Printed Organ Models with Physical Properties of Tissue and Integrated Sensors
Qiu, Kaiyan; Zhao, Zichen; Haghiashtiani, Ghazaleh; Guo, Shuang-Zhuang; He, Mingyu; Su, Ruitao; Zhu, Zhijie; Bhuiyan, Didarul B.; Murugan, Paari; Meng, Fanben; Park, Sung Hyun; Chu, Chih-Chang; Ogle, Brenda M.; Saltzman, Daniel A.; Konety, Badrinath R.
2017-01-01
The design and development of novel methodologies and customized materials to fabricate patient-specific 3D printed organ models with integrated sensing capabilities could yield advances in smart surgical aids for preoperative planning and rehearsal. Here, we demonstrate 3D printed prostate models with physical properties of tissue and integrated soft electronic sensors using custom-formulated polymeric inks. The models show high quantitative fidelity in static and dynamic mechanical properties, optical characteristics, and anatomical geometries to patient tissues and organs. The models offer tissue-mimicking tactile sensation and behavior and thus can be used for the prediction of organ physical behavior under deformation. The prediction results show good agreement with values obtained from simulations. The models also allow the application of surgical and diagnostic tools to their surface and inner channels. Finally, via the conformal integration of 3D printed soft electronic sensors, pressure applied to the models with surgical tools can be quantitatively measured. PMID:29608202
An introduction to Space Weather Integrated Modeling
NASA Astrophysics Data System (ADS)
Zhong, D.; Feng, X.
2012-12-01
The need for a software toolkit that integrates space weather models and data is one of many challenges we are facing with when applying the models to space weather forecasting. To meet this challenge, we have developed Space Weather Integrated Modeling (SWIM) that is capable of analysis and visualizations of the results from a diverse set of space weather models. SWIM has a modular design and is written in Python, by using NumPy, matplotlib, and the Visualization ToolKit (VTK). SWIM provides data management module to read a variety of spacecraft data products and a specific data format of Solar-Interplanetary Conservation Element/Solution Element MHD model (SIP-CESE MHD model) for the study of solar-terrestrial phenomena. Data analysis, visualization and graphic user interface modules are also presented in a user-friendly way to run the integrated models and visualize the 2-D and 3-D data sets interactively. With these tools we can locally or remotely analysis the model result rapidly, such as extraction of data on specific location in time-sequence data sets, plotting interplanetary magnetic field lines, multi-slicing of solar wind speed, volume rendering of solar wind density, animation of time-sequence data sets, comparing between model result and observational data. To speed-up the analysis, an in-situ visualization interface is used to support visualizing the data 'on-the-fly'. We also modified some critical time-consuming analysis and visualization methods with the aid of GPU and multi-core CPU. We have used this tool to visualize the data of SIP-CESE MHD model in real time, and integrated the Database Model of shock arrival, Shock Propagation Model, Dst forecasting model and SIP-CESE MHD model developed by SIGMA Weather Group at State Key Laboratory of Space Weather/CAS.
Integrating geographically isolated wetlands into land management decisions
Golden, Heather E.; Creed, Irena F.; Ali, Genevieve; Basu, Nandita; Neff, Brian; Rains, Mark C.; McLaughlin, Daniel L.; Alexander, Laurie C.; Ameli, Ali A.; Christensen, Jay R.; Evenson, Grey R.; Jones, Charles N.; Lane, Charles R.; Lang, Megan
2017-01-01
Wetlands across the globe provide extensive ecosystem services. However, many wetlands – especially those surrounded by uplands, often referred to as geographically isolated wetlands (GIWs) – remain poorly protected. Protection and restoration of wetlands frequently requires information on their hydrologic connectivity to other surface waters, and their cumulative watershed‐scale effects. The integration of measurements and models can supply this information. However, the types of measurements and models that should be integrated are dependent on management questions and information compatibility. We summarize the importance of GIWs in watersheds and discuss what wetland connectivity means in both science and management contexts. We then describe the latest tools available to quantify GIW connectivity and explore crucial next steps to enhancing and integrating such tools. These advancements will ensure that appropriate tools are used in GIW decision making and maintaining the important ecosystem services that these wetlands support.
Integrated optomechanical analysis and testing software development at MIT Lincoln Laboratory
NASA Astrophysics Data System (ADS)
Stoeckel, Gerhard P.; Doyle, Keith B.
2013-09-01
Advanced analytical software capabilities are being developed to advance the design of prototypical hardware in the Engineering Division at MIT Lincoln Laboratory. The current effort is focused on the integration of analysis tools tailored to the work flow, organizational structure, and current technology demands. These tools are being designed to provide superior insight into the interdisciplinary behavior of optical systems and enable rapid assessment and execution of design trades to optimize the design of optomechanical systems. The custom software architecture is designed to exploit and enhance the functionality of existing industry standard commercial software, provide a framework for centralizing internally developed tools, and deliver greater efficiency, productivity, and accuracy through standardization, automation, and integration. Specific efforts have included the development of a feature-rich software package for Structural-Thermal-Optical Performance (STOP) modeling, advanced Line Of Sight (LOS) jitter simulations, and improved integration of dynamic testing and structural modeling.
NASA Astrophysics Data System (ADS)
Makhijani, Vinod B.; Przekwas, Andrzej J.
2002-10-01
This report presents results of a DARPA/MTO Composite CAD Project aimed to develop a comprehensive microsystem CAD environment, CFD-ACE+ Multiphysics, for bio and microfluidic devices and complete microsystems. The project began in July 1998, and was a three-year team effort between CFD Research Corporation, California Institute of Technology (CalTech), University of California, Berkeley (UCB), and Tanner Research, with Mr. Don Verlee from Abbott Labs participating as a consultant on the project. The overall objective of this project was to develop, validate and demonstrate several applications of a user-configurable VLSI-type mixed-dimensionality software tool for design of biomicrofluidics devices and integrated systems. The developed tool would provide high fidelity 3-D multiphysics modeling capability, l-D fluidic circuits modeling, and SPICE interface for system level simulations, and mixed-dimensionality design. It would combine tools for layouts and process fabrication, geometric modeling, and automated grid generation, and interfaces to EDA tools (e.g. Cadence) and MCAD tools (e.g. ProE).
NASA Astrophysics Data System (ADS)
Nomaguch, Yutaka; Fujita, Kikuo
This paper proposes a design support framework, named DRIFT (Design Rationale Integration Framework of Three layers), which dynamically captures and manages hypothesis and verification in the design process. A core of DRIFT is a three-layered design process model of action, model operation and argumentation. This model integrates various design support tools and captures design operations performed on them. Action level captures the sequence of design operations. Model operation level captures the transition of design states, which records a design snapshot over design tools. Argumentation level captures the process of setting problems and alternatives. The linkage of three levels enables to automatically and efficiently capture and manage iterative hypothesis and verification processes through design operations over design tools. In DRIFT, such a linkage is extracted through the templates of design operations, which are extracted from the patterns embeded in design tools such as Design-For-X (DFX) approaches, and design tools are integrated through ontology-based representation of design concepts. An argumentation model, gIBIS (graphical Issue-Based Information System), is used for representing dependencies among problems and alternatives. A mechanism of TMS (Truth Maintenance System) is used for managing multiple hypothetical design stages. This paper also demonstrates a prototype implementation of DRIFT and its application to a simple design problem. Further, it is concluded with discussion of some future issues.
NASA Astrophysics Data System (ADS)
Yang, Xiaojun; Lu, Dun; Liu, Hui; Zhao, Wanhua
2018-06-01
The complicated electromechanical coupling phenomena due to different kinds of causes have significant influences on the dynamic precision of the direct driven feed system in machine tools. In this paper, a novel integrated modeling and analysis method of the multiple electromechanical couplings for the direct driven feed system in machine tools is presented. At first, four different kinds of electromechanical coupling phenomena in the direct driven feed system are analyzed systematically. Then a novel integrated modeling and analysis method of the electromechanical coupling which is influenced by multiple factors is put forward. In addition, the effects of multiple electromechanical couplings on the dynamic precision of the feed system and their main influencing factors are compared and discussed, respectively. Finally, the results of modeling and analysis are verified by the experiments. It finds out that multiple electromechanical coupling loops, which are overlapped and influenced by each other, are the main reasons of the displacement fluctuations in the direct driven feed system.
Automated Design Tools for Integrated Mixed-Signal Microsystems (NeoCAD)
2005-02-01
method, Model Order Reduction (MOR) tools, system-level, mixed-signal circuit synthesis and optimization tools, and parsitic extraction tools. A unique...Mission Area: Command and Control mixed signal circuit simulation parasitic extraction time-domain simulation IC design flow model order reduction... Extraction 1.2 Overall Program Milestones CHAPTER 2 FAST TIME DOMAIN MIXED-SIGNAL CIRCUIT SIMULATION 2.1 HAARSPICE Algorithms 2.1.1 Mathematical Background
A System for Integrated Reliability and Safety Analyses
NASA Technical Reports Server (NTRS)
Kostiuk, Peter; Shapiro, Gerald; Hanson, Dave; Kolitz, Stephan; Leong, Frank; Rosch, Gene; Coumeri, Marc; Scheidler, Peter, Jr.; Bonesteel, Charles
1999-01-01
We present an integrated reliability and aviation safety analysis tool. The reliability models for selected infrastructure components of the air traffic control system are described. The results of this model are used to evaluate the likelihood of seeing outcomes predicted by simulations with failures injected. We discuss the design of the simulation model, and the user interface to the integrated toolset.
Integrative systems modeling and multi-objective optimization
This presentation presents a number of algorithms, tools, and methods for utilizing multi-objective optimization within integrated systems modeling frameworks. We first present innovative methods using a genetic algorithm to optimally calibrate the VELMA and SWAT ecohydrological ...
NASA Technical Reports Server (NTRS)
Kerstman, Eric; Minard, Charles; Saile, Lynn; Freiere deCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David
2010-01-01
The goals of the Integrated Medical Model (IMM) are to develop an integrated, quantified, evidence-based decision support tool useful to crew health and mission planners and to help align science, technology, and operational activities intended to optimize crew health, safety, and mission success. Presentation slides address scope and approach, beneficiaries of IMM capabilities, history, risk components, conceptual models, development steps, and the evidence base. Space adaptation syndrome is used to demonstrate the model's capabilities.
Integrated workflows for spiking neuronal network simulations
Antolík, Ján; Davison, Andrew P.
2013-01-01
The increasing availability of computational resources is enabling more detailed, realistic modeling in computational neuroscience, resulting in a shift toward more heterogeneous models of neuronal circuits, and employment of complex experimental protocols. This poses a challenge for existing tool chains, as the set of tools involved in a typical modeler's workflow is expanding concomitantly, with growing complexity in the metadata flowing between them. For many parts of the workflow, a range of tools is available; however, numerous areas lack dedicated tools, while integration of existing tools is limited. This forces modelers to either handle the workflow manually, leading to errors, or to write substantial amounts of code to automate parts of the workflow, in both cases reducing their productivity. To address these issues, we have developed Mozaik: a workflow system for spiking neuronal network simulations written in Python. Mozaik integrates model, experiment and stimulation specification, simulation execution, data storage, data analysis and visualization into a single automated workflow, ensuring that all relevant metadata are available to all workflow components. It is based on several existing tools, including PyNN, Neo, and Matplotlib. It offers a declarative way to specify models and recording configurations using hierarchically organized configuration files. Mozaik automatically records all data together with all relevant metadata about the experimental context, allowing automation of the analysis and visualization stages. Mozaik has a modular architecture, and the existing modules are designed to be extensible with minimal programming effort. Mozaik increases the productivity of running virtual experiments on highly structured neuronal networks by automating the entire experimental cycle, while increasing the reliability of modeling studies by relieving the user from manual handling of the flow of metadata between the individual workflow stages. PMID:24368902
Integrated workflows for spiking neuronal network simulations.
Antolík, Ján; Davison, Andrew P
2013-01-01
The increasing availability of computational resources is enabling more detailed, realistic modeling in computational neuroscience, resulting in a shift toward more heterogeneous models of neuronal circuits, and employment of complex experimental protocols. This poses a challenge for existing tool chains, as the set of tools involved in a typical modeler's workflow is expanding concomitantly, with growing complexity in the metadata flowing between them. For many parts of the workflow, a range of tools is available; however, numerous areas lack dedicated tools, while integration of existing tools is limited. This forces modelers to either handle the workflow manually, leading to errors, or to write substantial amounts of code to automate parts of the workflow, in both cases reducing their productivity. To address these issues, we have developed Mozaik: a workflow system for spiking neuronal network simulations written in Python. Mozaik integrates model, experiment and stimulation specification, simulation execution, data storage, data analysis and visualization into a single automated workflow, ensuring that all relevant metadata are available to all workflow components. It is based on several existing tools, including PyNN, Neo, and Matplotlib. It offers a declarative way to specify models and recording configurations using hierarchically organized configuration files. Mozaik automatically records all data together with all relevant metadata about the experimental context, allowing automation of the analysis and visualization stages. Mozaik has a modular architecture, and the existing modules are designed to be extensible with minimal programming effort. Mozaik increases the productivity of running virtual experiments on highly structured neuronal networks by automating the entire experimental cycle, while increasing the reliability of modeling studies by relieving the user from manual handling of the flow of metadata between the individual workflow stages.
An Integrated Approach to Mathematical Modeling: A Classroom Study.
ERIC Educational Resources Information Center
Doerr, Helen M.
Modeling, simulation, and discrete mathematics have all been identified by professional mathematics education organizations as important areas for secondary school study. This classroom study focused on the components and tools for modeling and how students use these tools to construct their understanding of contextual problems in the content area…
Elucidating uncertainty and sensitivity structures in environmental models can be a difficult task, even for low-order, single-medium constructs driven by a unique set of site-specific data. Quantitative assessment of integrated, multimedia models that simulate hundreds of sites...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCorkle, D.; Yang, C.; Jordan, T.
2007-06-01
Modeling and simulation tools are becoming pervasive in the process engineering practice of designing advanced power generation facilities. These tools enable engineers to explore many what-if scenarios before cutting metal or constructing a pilot scale facility. While such tools enable investigation of crucial plant design aspects, typical commercial process simulation tools such as Aspen Plus®, gPROMS®, and HYSYS® still do not explore some plant design information, including computational fluid dynamics (CFD) models for complex thermal and fluid flow phenomena, economics models for policy decisions, operational data after the plant is constructed, and as-built information for use in as-designed models. Softwaremore » tools must be created that allow disparate sources of information to be integrated if environments are to be constructed where process simulation information can be accessed. At the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL), the Advanced Process Engineering Co-Simulator (APECS) has been developed as an integrated software suite that combines process simulation (e.g., Aspen Plus) and high-fidelity equipment simulation (e.g., Fluent® CFD), together with advanced analysis capabilities including case studies, sensitivity analysis, stochastic simulation for risk/uncertainty analysis, and multi-objective optimization. In this paper, we discuss the initial phases of integrating APECS with the immersive and interactive virtual engineering software, VE-Suite, developed at Iowa State University and Ames Laboratory. VE-Suite utilizes the ActiveX (OLE Automation) controls in Aspen Plus wrapped by the CASI library developed by Reaction Engineering International to run the process simulation and query for unit operation results. This integration permits any application that uses the VE-Open interface to integrate with APECS co-simulations, enabling construction of the comprehensive virtual engineering environment needed for the rapid engineering of advanced power generation facilities.« less
NASA Technical Reports Server (NTRS)
Rothmann, Elizabeth; Dugan, Joanne Bechta; Trivedi, Kishor S.; Mittal, Nitin; Bavuso, Salvatore J.
1994-01-01
The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. The Hybrid Automated Reliability Predictor (HARP) tutorial provides insight into HARP modeling techniques and the interactive textual prompting input language via a step-by-step explanation and demonstration of HARP's fault occurrence/repair model and the fault/error handling models. Example applications are worked in their entirety and the HARP tabular output data are presented for each. Simple models are presented at first with each succeeding example demonstrating greater modeling power and complexity. This document is not intended to present the theoretical and mathematical basis for HARP.
Global sensitivity analysis of DRAINMOD-FOREST, an integrated forest ecosystem model
Shiying Tian; Mohamed A. Youssef; Devendra M. Amatya; Eric D. Vance
2014-01-01
Global sensitivity analysis is a useful tool to understand process-based ecosystem models by identifying key parameters and processes controlling model predictions. This study reported a comprehensive global sensitivity analysis for DRAINMOD-FOREST, an integrated model for simulating water, carbon (C), and nitrogen (N) cycles and plant growth in lowland forests. The...
NASA Technical Reports Server (NTRS)
Shearrow, Charles A.
1999-01-01
One of the identified goals of EM3 is to implement virtual manufacturing by the time the year 2000 has ended. To realize this goal of a true virtual manufacturing enterprise the initial development of a machinability database and the infrastructure must be completed. This will consist of the containment of the existing EM-NET problems and developing machine, tooling, and common materials databases. To integrate the virtual manufacturing enterprise with normal day to day operations the development of a parallel virtual manufacturing machinability database, virtual manufacturing database, virtual manufacturing paradigm, implementation/integration procedure, and testable verification models must be constructed. Common and virtual machinability databases will include the four distinct areas of machine tools, available tooling, common machine tool loads, and a materials database. The machine tools database will include the machine envelope, special machine attachments, tooling capacity, location within NASA-JSC or with a contractor, and availability/scheduling. The tooling database will include available standard tooling, custom in-house tooling, tool properties, and availability. The common materials database will include materials thickness ranges, strengths, types, and their availability. The virtual manufacturing databases will consist of virtual machines and virtual tooling directly related to the common and machinability databases. The items to be completed are the design and construction of the machinability databases, virtual manufacturing paradigm for NASA-JSC, implementation timeline, VNC model of one bridge mill and troubleshoot existing software and hardware problems with EN4NET. The final step of this virtual manufacturing project will be to integrate other production sites into the databases bringing JSC's EM3 into a position of becoming a clearing house for NASA's digital manufacturing needs creating a true virtual manufacturing enterprise.
HiRel - Reliability/availability integrated workstation tool
NASA Technical Reports Server (NTRS)
Bavuso, Salvatore J.; Dugan, Joanne B.
1992-01-01
The HiRel software tool is described and demonstrated by application to the mission avionics subsystem of the Advanced System Integration Demonstrations (ASID) system that utilizes the PAVE PILLAR approach. HiRel marks another accomplishment toward the goal of producing a totally integrated computer-aided design (CAD) workstation design capability. Since a reliability engineer generally represents a reliability model graphically before it can be solved, the use of a graphical input description language increases productivity and decreases the incidence of error. The graphical postprocessor module HARPO makes it possible for reliability engineers to quickly analyze huge amounts of reliability/availability data to observe trends due to exploratory design changes. The addition of several powerful HARP modeling engines provides the user with a reliability/availability modeling capability for a wide range of system applications all integrated under a common interactive graphical input-output capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Andew; Di Vittorio, Alan; Collins, William
The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human-Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human-Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems.« less
NASA Astrophysics Data System (ADS)
Mendoza, A. M. M.; Rastaetter, L.; Kuznetsova, M. M.; Mays, M. L.; Chulaki, A.; Shim, J. S.; MacNeice, P. J.; Taktakishvili, A.; Collado-Vega, Y. M.; Weigand, C.; Zheng, Y.; Mullinix, R.; Patel, K.; Pembroke, A. D.; Pulkkinen, A. A.; Boblitt, J. M.; Bakshi, S. S.; Tsui, T.
2017-12-01
The Community Coordinated Modeling Center (CCMC), with the fundamental goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research, has been serving as an integral hub for over 15 years, providing invaluable resources to both space weather scientific and operational communities. CCMC has developed and provided innovative web-based point of access tools varying from: Runs-On-Request System - providing unprecedented global access to the largest collection of state-of-the-art solar and space physics models, Integrated Space Weather Analysis (iSWA) - a powerful dissemination system for space weather information, Advanced Online Visualization and Analysis tools for more accurate interpretation of model results, Standard Data formats for Simulation Data downloads, and Mobile apps to view space weather data anywhere to the scientific community. In addition to supporting research and performing model evaluations, CCMC also supports space science education by hosting summer students through local universities. In this poster, we will showcase CCMC's latest innovative tools and services, and CCMC's tools that revolutionized the way we do research and improve our operational space weather capabilities. CCMC's free tools and resources are all publicly available online (http://ccmc.gsfc.nasa.gov).
NASA Astrophysics Data System (ADS)
Jones, A. S.; Andales, A.; McGovern, C.; Smith, G. E. B.; David, O.; Fletcher, S. J.
2017-12-01
US agricultural and Govt. lands have a unique co-dependent relationship, particularly in the Western US. More than 30% of all irrigated US agricultural output comes from lands sustained by the Ogallala Aquifer in the western Great Plains. Six US Forest Service National Grasslands reside within the aquifer region, consisting of over 375,000 ha (3,759 km2) of USFS managed lands. Likewise, National Forest lands are the headwaters to many intensive agricultural regions. Our Ogallala Aquifer team is enhancing crop irrigation decision tools with predictive weather and remote sensing data to better manage water for irrigated crops within these regions. An integrated multi-model software framework is used to link irrigation decision tools, resulting in positive management benefits on natural water resources. Teams and teams-of-teams can build upon these multi-disciplinary multi-faceted modeling capabilities. For example, the CSU Catalyst for Innovative Partnerships program has formed a new multidisciplinary team that will address "Rural Wealth Creation" focusing on the many integrated links between economic, agricultural production and management, natural resource availabilities, and key social aspects of govt. policy recommendations. By enhancing tools like these with predictive weather and other related data (like in situ measurements, hydrologic models, remotely sensed data sets, and (in the near future) linking to agro-economic and life cycle assessment models) this work demonstrates an integrated data-driven future vision of inter-meshed dynamic systems that can address challenging multi-system problems. We will present the present state of the work and opportunities for future involvement.
NASA Technical Reports Server (NTRS)
Miller, David W.; Uebelhart, Scott A.; Blaurock, Carl
2004-01-01
This report summarizes work performed by the Space Systems Laboratory (SSL) for NASA Langley Research Center in the field of performance optimization for systems subject to uncertainty. The objective of the research is to develop design methods and tools to the aerospace vehicle design process which take into account lifecycle uncertainties. It recognizes that uncertainty between the predictions of integrated models and data collected from the system in its operational environment is unavoidable. Given the presence of uncertainty, the goal of this work is to develop means of identifying critical sources of uncertainty, and to combine these with the analytical tools used with integrated modeling. In this manner, system uncertainty analysis becomes part of the design process, and can motivate redesign. The specific program objectives were: 1. To incorporate uncertainty modeling, propagation and analysis into the integrated (controls, structures, payloads, disturbances, etc.) design process to derive the error bars associated with performance predictions. 2. To apply modern optimization tools to guide in the expenditure of funds in a way that most cost-effectively improves the lifecycle productivity of the system by enhancing the subsystem reliability and redundancy. The results from the second program objective are described. This report describes the work and results for the first objective: uncertainty modeling, propagation, and synthesis with integrated modeling.
GLIMPSE: An integrated assessment model-based tool for ...
Dan Loughlin will describe the GCAM-USA integrated assessment model and how that model is being improved and integrated into the GLIMPSE decision support system. He will also demonstrate the application of the model to evaluate the emissions and health implications of hypothetical state-level renewable electricity standards. Introduce the GLIMPSE project to state and regional environmental modelers and analysts. Presented as part of the State Energy and Air Quality Group Webinar Series, which is organized by NESCAUM.
Building the European Seismological Research Infrastructure: results from 4 years NERIES EC project
NASA Astrophysics Data System (ADS)
van Eck, T.; Giardini, D.
2010-12-01
The EC Research Infrastructure (RI) project, Network of Research Infrastructures for European Seismology (NERIES), implemented a comprehensive European integrated RI for earthquake seismological data that is scalable and sustainable. NERIES opened a significant amount of additional seismological data, integrated different distributed data archives, implemented and produced advanced analysis tools and advanced software packages and tools. A single seismic data portal provides a single access point and overview for European seismological data available for the earth science research community. Additional data access tools and sites have been implemented to meet user and robustness requirements, notably those at the EMSC and ORFEUS. The datasets compiled in NERIES and available through the portal include among others: - The expanded Virtual European Broadband Seismic Network (VEBSN) with real-time access to more then 500 stations from > 53 observatories. This data is continuously monitored, quality controlled and archived in the European Integrated Distributed waveform Archive (EIDA). - A unique integration of acceleration datasets from seven networks in seven European or associated countries centrally accessible in a homogeneous format, thus forming the core comprehensive European acceleration database. Standardized parameter analysis and actual software are included in the database. - A Distributed Archive of Historical Earthquake Data (AHEAD) for research purposes, containing among others a comprehensive European Macroseismic Database and Earthquake Catalogue (1000 - 1963, M ≥5.8), including analysis tools. - Data from 3 one year OBS deployments at three sites, Atlantic, Ionian and Ligurian Sea within the general SEED format, thus creating the core integrated data base for ocean, sea and land based seismological observatories. Tools to facilitate analysis and data mining of the RI datasets are: - A comprehensive set of European seismological velocity reference model including a standardized model description with several visualisation tools currently adapted on a global scale. - An integrated approach to seismic hazard modelling and forecasting, a community accepted forecasting testing and model validation approach and the core hazard portal developed along the same technologies as the NERIES data portal. - Implemented homogeneous shakemap estimation tools at several large European observatories and a complementary new loss estimation software tool. - A comprehensive set of new techniques for geotechnical site characterization with relevant software packages documented and maintained (www.geopsy.org). - A set of software packages for data mining, data reduction, data exchange and information management in seismology as research and observatory analysis tools NERIES has a long-term impact and is coordinated with related US initiatives IRIS and EarthScope. The follow-up EC project of NERIES, NERA (2010 - 2014), is funded and will integrate the seismological and the earthquake engineering infrastructures. NERIES further provided the proof of concept for the ESFRI2008 initiative: the European Plate Observing System (EPOS). Its preparatory phase (2010 - 2014) is also funded by the EC.
Integrated corridor management analysis, modeling, and simulation results for the test corridor.
DOT National Transportation Integrated Search
2008-06-01
This report documents the Integrated Corridor Management (ICM) Analysis Modeling and Simulation (AMS) tools and strategies used on a Test Corridor, presents results and lessons-learned, and documents the relative capability of AMS to support benefit-...
Integrating the Allen Brain Institute Cell Types Database into Automated Neuroscience Workflow.
Stockton, David B; Santamaria, Fidel
2017-10-01
We developed software tools to download, extract features, and organize the Cell Types Database from the Allen Brain Institute (ABI) in order to integrate its whole cell patch clamp characterization data into the automated modeling/data analysis cycle. To expand the potential user base we employed both Python and MATLAB. The basic set of tools downloads selected raw data and extracts cell, sweep, and spike features, using ABI's feature extraction code. To facilitate data manipulation we added a tool to build a local specialized database of raw data plus extracted features. Finally, to maximize automation, we extended our NeuroManager workflow automation suite to include these tools plus a separate investigation database. The extended suite allows the user to integrate ABI experimental and modeling data into an automated workflow deployed on heterogeneous computer infrastructures, from local servers, to high performance computing environments, to the cloud. Since our approach is focused on workflow procedures our tools can be modified to interact with the increasing number of neuroscience databases being developed to cover all scales and properties of the nervous system.
Refsgaard, A; Jacobsen, T; Jacobsen, B; Ørum, J-E
2007-01-01
The EU Water Framework Directive (WFD) requires an integrated approach to river basin management in order to meet environmental and ecological objectives. This paper presents concepts and full-scale application of an integrated modelling framework. The Ringkoebing Fjord basin is characterized by intensive agricultural production and leakage of nitrate constitute a major pollution problem with respect groundwater aquifers (drinking water), fresh surface water systems (water quality of lakes) and coastal receiving waters (eutrophication). The case study presented illustrates an advanced modelling approach applied in river basin management. Point sources (e.g. sewage treatment plant discharges) and distributed diffuse sources (nitrate leakage) are included to provide a modelling tool capable of simulating pollution transport from source to recipient to analyse the effects of specific, localized basin water management plans. The paper also includes a land rent modelling approach which can be used to choose the most cost-effective measures and the location of these measures. As a forerunner to the use of basin-scale models in WFD basin water management plans this project demonstrates the potential and limitations of comprehensive, integrated modelling tools.
NASA Technical Reports Server (NTRS)
Scheper, C.; Baker, R.; Frank, G.; Yalamanchili, S.; Gray, G.
1992-01-01
Systems for Space Defense Initiative (SDI) space applications typically require both high performance and very high reliability. These requirements present the systems engineer evaluating such systems with the extremely difficult problem of conducting performance and reliability trade-offs over large design spaces. A controlled development process supported by appropriate automated tools must be used to assure that the system will meet design objectives. This report describes an investigation of methods, tools, and techniques necessary to support performance and reliability modeling for SDI systems development. Models of the JPL Hypercubes, the Encore Multimax, and the C.S. Draper Lab Fault-Tolerant Parallel Processor (FTPP) parallel-computing architectures using candidate SDI weapons-to-target assignment algorithms as workloads were built and analyzed as a means of identifying the necessary system models, how the models interact, and what experiments and analyses should be performed. As a result of this effort, weaknesses in the existing methods and tools were revealed and capabilities that will be required for both individual tools and an integrated toolset were identified.
Space Science Cloud: a Virtual Space Science Research Platform Based on Cloud Model
NASA Astrophysics Data System (ADS)
Hu, Xiaoyan; Tong, Jizhou; Zou, Ziming
Through independent and co-operational science missions, Strategic Pioneer Program (SPP) on Space Science, the new initiative of space science program in China which was approved by CAS and implemented by National Space Science Center (NSSC), dedicates to seek new discoveries and new breakthroughs in space science, thus deepen the understanding of universe and planet earth. In the framework of this program, in order to support the operations of space science missions and satisfy the demand of related research activities for e-Science, NSSC is developing a virtual space science research platform based on cloud model, namely the Space Science Cloud (SSC). In order to support mission demonstration, SSC integrates interactive satellite orbit design tool, satellite structure and payloads layout design tool, payload observation coverage analysis tool, etc., to help scientists analyze and verify space science mission designs. Another important function of SSC is supporting the mission operations, which runs through the space satellite data pipelines. Mission operators can acquire and process observation data, then distribute the data products to other systems or issue the data and archives with the services of SSC. In addition, SSC provides useful data, tools and models for space researchers. Several databases in the field of space science are integrated and an efficient retrieve system is developing. Common tools for data visualization, deep processing (e.g., smoothing and filtering tools), analysis (e.g., FFT analysis tool and minimum variance analysis tool) and mining (e.g., proton event correlation analysis tool) are also integrated to help the researchers to better utilize the data. The space weather models on SSC include magnetic storm forecast model, multi-station middle and upper atmospheric climate model, solar energetic particle propagation model and so on. All the services above-mentioned are based on the e-Science infrastructures of CAS e.g. cloud storage and cloud computing. SSC provides its users with self-service storage and computing resources at the same time.At present, the prototyping of SSC is underway and the platform is expected to be put into trial operation in August 2014. We hope that as SSC develops, our vision of Digital Space may come true someday.
NASA Technical Reports Server (NTRS)
Bavuso, Salvatore J.; Rothmann, Elizabeth; Dugan, Joanne Bechta; Trivedi, Kishor S.; Mittal, Nitin; Boyd, Mark A.; Geist, Robert M.; Smotherman, Mark D.
1994-01-01
The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. HiRel consists of interactive graphical input/output programs and four reliability/availability modeling engines that provide analytical and simulative solutions to a wide host of reliable fault-tolerant system architectures and is also applicable to electronic systems in general. The tool system was designed to be compatible with most computing platforms and operating systems, and some programs have been beta tested, within the aerospace community for over 8 years. Volume 1 provides an introduction to the HARP program. Comprehensive information on HARP mathematical models can be found in the references.
Killeen, G F; McKenzie, F E; Foy, B D; Schieffelin, C; Billingsley, P F; Beier, J C
2000-05-01
We have used a relatively simple but accurate model for predicting the impact of integrated transmission control on the malaria entomologic inoculation rate (EIR) at four endemic sites from across sub-Saharan Africa and the southwest Pacific. The simulated campaign incorporated modestly effective vaccine coverage, bed net use, and larval control. The results indicate that such campaigns would reduce EIRs at all four sites by 30- to 50-fold. Even without the vaccine, 15- to 25-fold reductions of EIR were predicted, implying that integrated control with a few modestly effective tools can meaningfully reduce malaria transmission in a range of endemic settings. The model accurately predicts the effects of bed nets and indoor spraying and demonstrates that they are the most effective tools available for reducing EIR. However, the impact of domestic adult vector control is amplified by measures for reducing the rate of emergence of vectors or the level of infectiousness of the human reservoir. We conclude that available tools, including currently neglected methods for larval control, can reduce malaria transmission intensity enough to alleviate mortality. Integrated control programs should be implemented to the fullest extent possible, even in areas of intense transmission, using simple models as decision-making tools. However, we also conclude that to eliminate malaria in many areas of intense transmission is beyond the scope of methods which developing nations can currently afford. New, cost-effective, practical tools are needed if malaria is ever to be eliminated from highly endemic areas.
A Chemical Properties Simulator to Support Integrated Environmental Modeling
Users of Integrated Environmental Modeling (IEM) systems are responsible for defining individual chemicals and their properties, a process that is time-consuming at best and overwhelming at worst, especially for new chemicals with new structures. A software tool is needed to allo...
The Plant Genome Integrative Explorer Resource: PlantGenIE.org.
Sundell, David; Mannapperuma, Chanaka; Netotea, Sergiu; Delhomme, Nicolas; Lin, Yao-Cheng; Sjödin, Andreas; Van de Peer, Yves; Jansson, Stefan; Hvidsten, Torgeir R; Street, Nathaniel R
2015-12-01
Accessing and exploring large-scale genomics data sets remains a significant challenge to researchers without specialist bioinformatics training. We present the integrated PlantGenIE.org platform for exploration of Populus, conifer and Arabidopsis genomics data, which includes expression networks and associated visualization tools. Standard features of a model organism database are provided, including genome browsers, gene list annotation, Blast homology searches and gene information pages. Community annotation updating is supported via integration of WebApollo. We have produced an RNA-sequencing (RNA-Seq) expression atlas for Populus tremula and have integrated these data within the expression tools. An updated version of the ComPlEx resource for performing comparative plant expression analyses of gene coexpression network conservation between species has also been integrated. The PlantGenIE.org platform provides intuitive access to large-scale and genome-wide genomics data from model forest tree species, facilitating both community contributions to annotation improvement and tools supporting use of the included data resources to inform biological insight. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Watershed Management Optimization Support Tool v3
The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context that is, accou...
Watershed Health Assessment Tools Investigating Fisheries
WHATIF is software that integrates a number of calculators, tools, and models for assessing the health of watersheds and streams with an emphasis on fish communities. The tool set consists of hydrologic and stream geometry calculators, a fish assemblage predictor, a fish habitat ...
Modeling the Energy Use of a Connected and Automated Transportation System (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonder, J.; Brown, A.
Early research points to large potential impacts of connected and automated vehicles (CAVs) on transportation energy use - dramatic savings, increased use, or anything in between. Due to a lack of suitable data and integrated modeling tools to explore these complex future systems, analyses to date have relied on simple combinations of isolated effects. This poster proposes a framework for modeling the potential energy implications from increasing penetration of CAV technologies and for assessing technology and policy options to steer them toward favorable energy outcomes. Current CAV modeling challenges include estimating behavior change, understanding potential vehicle-to-vehicle interactions, and assessing trafficmore » flow and vehicle use under different automation scenarios. To bridge these gaps and develop a picture of potential future automated systems, NREL is integrating existing modeling capabilities with additional tools and data inputs to create a more fully integrated CAV assessment toolkit.« less
NASA Technical Reports Server (NTRS)
Koga, Dennis (Technical Monitor); Penix, John; Markosian, Lawrence Z.; OMalley, Owen; Brew, William A.
2003-01-01
Attempts to achieve widespread use of software verification tools have been notably unsuccessful. Even 'straightforward', classic, and potentially effective verification tools such as lint-like tools face limits on their acceptance. These limits are imposed by the expertise required applying the tools and interpreting the results, the high false positive rate of many verification tools, and the need to integrate the tools into development environments. The barriers are even greater for more complex advanced technologies such as model checking. Web-hosted services for advanced verification technologies may mitigate these problems by centralizing tool expertise. The possible benefits of this approach include eliminating the need for software developer expertise in tool application and results filtering, and improving integration with other development tools.
ERIC Educational Resources Information Center
Hutchison, Amy C.; Woodward, Lindsay
2018-01-01
Background: Presently, models of professional development aimed at supporting teachers' technology integration efforts are often short and decontextualized. With many schools across the country utilizing standards that require students to engage with digital tools, a situative model that supports building teachers' knowledge within their…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, Craig
Opportunities for combining energy efficiency, demand response, and energy storage with PV are often missed, because the required knowledge and expertise for these different technologies exist in separate organizations or individuals. Furthermore, there is a lack of quantitative tools to optimize energy efficiency, demand response and energy storage with PV, especially for existing buildings. Our goal is to develop a modeling tool, BEopt-CA (Ex), with capabilities to facilitate identification and implementation of a balanced integration of energy efficiency (EE), demand response (DR), and energy storage (ES) with photovoltaics (PV) within the residential retrofit market. To achieve this goal, we willmore » adapt and extend an existing tool -- BEopt -- that is designed to identify optimal combinations of efficiency and PV in new home designs. In addition, we will develop multifamily residential modeling capabilities for use in California, to facilitate integration of distributed solar power into the grid in order to maximize its value to California ratepayers. The project is follow-on research that leverages previous California Solar Initiative RD&D investment in the BEopt software. BEopt facilitates finding the least cost combination of energy efficiency and renewables to support integrated DSM (iDSM) and Zero Net Energy (ZNE) in California residential buildings. However, BEopt is currently focused on modeling single-family houses and does not include satisfactory capabilities for modeling multifamily homes. The project brings BEopt's existing modeling and optimization capabilities to multifamily buildings, including duplexes, triplexes, townhouses, flats, and low-rise apartment buildings.« less
Margaria, Tiziana; Kubczak, Christian; Steffen, Bernhard
2008-04-25
With Bio-jETI, we introduce a service platform for interdisciplinary work on biological application domains and illustrate its use in a concrete application concerning statistical data processing in R and xcms for an LC/MS analysis of FAAH gene knockout. Bio-jETI uses the jABC environment for service-oriented modeling and design as a graphical process modeling tool and the jETI service integration technology for remote tool execution. As a service definition and provisioning platform, Bio-jETI has the potential to become a core technology in interdisciplinary service orchestration and technology transfer. Domain experts, like biologists not trained in computer science, directly define complex service orchestrations as process models and use efficient and complex bioinformatics tools in a simple and intuitive way.
On the design of computer-based models for integrated environmental science.
McIntosh, Brian S; Jeffrey, Paul; Lemon, Mark; Winder, Nick
2005-06-01
The current research agenda in environmental science is dominated by calls to integrate science and policy to better understand and manage links between social (human) and natural (nonhuman) processes. Freshwater resource management is one area where such calls can be heard. Designing computer-based models for integrated environmental science poses special challenges to the research community. At present it is not clear whether such tools, or their outputs, receive much practical policy or planning application. It is argued that this is a result of (1) a lack of appreciation within the research modeling community of the characteristics of different decision-making processes including policy, planning, and (2) participation, (3) a lack of appreciation of the characteristics of different decision-making contexts, (4) the technical difficulties in implementing the necessary support tool functionality, and (5) the socio-technical demands of designing tools to be of practical use. This article presents a critical synthesis of ideas from each of these areas and interprets them in terms of design requirements for computer-based models being developed to provide scientific information support for policy and planning. Illustrative examples are given from the field of freshwater resources management. Although computer-based diagramming and modeling tools can facilitate processes of dialogue, they lack adequate simulation capabilities. Component-based models and modeling frameworks provide such functionality and may be suited to supporting problematic or messy decision contexts. However, significant technical (implementation) and socio-technical (use) challenges need to be addressed before such ambition can be realized.
Using stable isotopes and models to explore estuarine linkages at multiple scales
Estuarine managers need tools to respond to dynamic stressors that occur in three linked environments – coastal ocean, estuaries and watersheds. Models have been the tool of choice for examining these dynamic systems because they simplify processes and integrate over multiple sc...
Modelling the role of forests on water provision services: a hydro-economic valuation approach
NASA Astrophysics Data System (ADS)
Beguería, S.; Campos, P.
2015-12-01
Hydro-economic models that allow integrating the ecological, hydrological, infrastructure, economic and social aspects into a coherent, scientifically- informed framework constitute preferred tools for supporting decision making in the context of integrated water resources management. We present a case study of water regulation and provision services of forests in the Andalusia region of Spain. Our model computes the physical water flows and conducts an economic environmental income and asset valuation of forest surface and underground water yield. Based on available hydrologic and economic data, we develop a comprehensive water account for all the forest lands at the regional scale. This forest water environmental valuation is integrated within a much larger project aiming at providing a robust and easily replicable accounting tool to evaluate yearly the total income and capital of forests, encompassing all measurable sources of private and public incomes (timber and cork production, auto-consumption, recreational activities, biodiversity conservation, carbon sequestration, water production, etc.). We also force our simulation with future socio-economic scenarios to quantify the physical and economic efects of expected trends or simulated public and private policies on future water resources. Only a comprehensive integrated tool may serve as a basis for the development of integrated policies, such as those internationally agreed and recommended for the management of water resources.
A Chemical Properties Simulator to Support Integrated Environmental Modeling (proceeding)
Users of Integrated Environmental Modeling (IEM) systems are responsible for defining individual chemicals and their properties, a process that is time-consuming at best and overwhelming at worst, especially for new chemicals with new structures. A software tool is needed to allo...
NASA Technical Reports Server (NTRS)
Butler, Douglas J.; Kerstman, Eric
2010-01-01
This slide presentation reviews the goals and approach for the Integrated Medical Model (IMM). The IMM is a software decision support tool that forecasts medical events during spaceflight and optimizes medical systems during simulations. It includes information on the software capabilities, program stakeholders, use history, and the software logic.
Velderraín, José Dávila; Martínez-García, Juan Carlos; Álvarez-Buylla, Elena R
2017-01-01
Mathematical models based on dynamical systems theory are well-suited tools for the integration of available molecular experimental data into coherent frameworks in order to propose hypotheses about the cooperative regulatory mechanisms driving developmental processes. Computational analysis of the proposed models using well-established methods enables testing the hypotheses by contrasting predictions with observations. Within such framework, Boolean gene regulatory network dynamical models have been extensively used in modeling plant development. Boolean models are simple and intuitively appealing, ideal tools for collaborative efforts between theorists and experimentalists. In this chapter we present protocols used in our group for the study of diverse plant developmental processes. We focus on conceptual clarity and practical implementation, providing directions to the corresponding technical literature.
Watershed Management Optimization Support Tool (WMOST) v3: User Guide
The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context that is, accou...
Watershed Management Optimization Support Tool (WMOST) v3: Theoretical Documentation
The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context, accounting fo...
Department of the Army Cost Analysis Manual
2001-05-01
SECTION I - AUTOMATED COST ESTIMATING INTEGRATED TOOLS ( ACEIT ) ................................................................179 SECTION II - AUTOMATED...Management & Comptroller) endorsed the Automated Cost Estimating Integrated Tools ( ACEIT ) model and since it is widely used to prepare POEs, CCAs and...CRB IPT (in ACEIT ) will be the basis for information contained in the CAB. Any remaining unresolved issues from the IPT process will be raised at the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahidehpour, Mohammad
Integrating 20% or more wind energy into the system and transmitting large sums of wind energy over long distances will require a decision making capability that can handle very large scale power systems with tens of thousands of buses and lines. There is a need to explore innovative analytical and implementation solutions for continuing reliable operations with the most economical integration of additional wind energy in power systems. A number of wind integration solution paths involve the adoption of new operating policies, dynamic scheduling of wind power across interties, pooling integration services, and adopting new transmission scheduling practices. Such practicesmore » can be examined by the decision tool developed by this project. This project developed a very efficient decision tool called Wind INtegration Simulator (WINS) and applied WINS to facilitate wind energy integration studies. WINS focused on augmenting the existing power utility capabilities to support collaborative planning, analysis, and wind integration project implementations. WINS also had the capability of simulating energy storage facilities so that feasibility studies of integrated wind energy system applications can be performed for systems with high wind energy penetrations. The development of WINS represents a major expansion of a very efficient decision tool called POwer Market Simulator (POMS), which was developed by IIT and has been used extensively for power system studies for decades. Specifically, WINS provides the following superiorities; (1) An integrated framework is included in WINS for the comprehensive modeling of DC transmission configurations, including mono-pole, bi-pole, tri-pole, back-to-back, and multi-terminal connection, as well as AC/DC converter models including current source converters (CSC) and voltage source converters (VSC); (2) An existing shortcoming of traditional decision tools for wind integration is the limited availability of user interface, i.e., decision results are often text-based demonstrations. WINS includes a powerful visualization tool and user interface capability for transmission analyses, planning, and assessment, which will be of great interest to power market participants, power system planners and operators, and state and federal regulatory entities; and (3) WINS can handle extended transmission models for wind integration studies. WINS models include limitations on transmission flow as well as bus voltage for analyzing power system states. The existing decision tools often consider transmission flow constraints (dc power flow) alone which could result in the over-utilization of existing resources when analyzing wind integration. WINS can be used to assist power market participants including transmission companies, independent system operators, power system operators in vertically integrated utilities, wind energy developers, and regulatory agencies to analyze economics, security, and reliability of various options for wind integration including transmission upgrades and the planning of new transmission facilities. WINS can also be used by industry for the offline training of reliability and operation personnel when analyzing wind integration uncertainties, identifying critical spots in power system operation, analyzing power system vulnerabilities, and providing credible decisions for examining operation and planning options for wind integration. Researches in this project on wind integration included (1) Development of WINS; (2) Transmission Congestion Analysis in the Eastern Interconnection; (3) Analysis of 2030 Large-Scale Wind Energy Integration in the Eastern Interconnection; (4) Large-scale Analysis of 2018 Wind Energy Integration in the Eastern U.S. Interconnection. The research resulted in 33 papers, 9 presentations, 9 PhD degrees, 4 MS degrees, and 7 awards. The education activities in this project on wind energy included (1) Wind Energy Training Facility Development; (2) Wind Energy Course Development.« less
Exploration Medical System Trade Study Tools Overview
NASA Technical Reports Server (NTRS)
Mindock, J.; Myers, J.; Latorella, K.; Cerro, J.; Hanson, A.; Hailey, M.; Middour, C.
2018-01-01
ExMC is creating an ecosystem of tools to enable well-informed medical system trade studies. The suite of tools address important system implementation aspects of the space medical capabilities trade space and are being built using knowledge from the medical community regarding the unique aspects of space flight. Two integrating models, a systems engineering model and a medical risk analysis model, tie the tools together to produce an integrated assessment of the medical system and its ability to achieve medical system target requirements. This presentation will provide an overview of the various tools that are a part of the tool ecosystem. Initially, the presentation's focus will address the tools that supply the foundational information to the ecosystem. Specifically, the talk will describe how information that describes how medicine will be practiced is captured and categorized for efficient utilization in the tool suite. For example, the talk will include capturing what conditions will be planned for in-mission treatment, planned medical activities (e.g., periodic physical exam), required medical capabilities (e.g., provide imaging), and options to implement the capabilities (e.g., an ultrasound device). Database storage and configuration management will also be discussed. The presentation will include an overview of how these information tools will be tied to parameters in a Systems Modeling Language (SysML) model, allowing traceability to system behavioral, structural, and requirements content. The discussion will also describe an HRP-led enhanced risk assessment model developed to provide quantitative insight into each capability's contribution to mission success. Key outputs from these various tools, to be shared with the space medical and exploration mission development communities, will be assessments of medical system implementation option satisfaction of requirements and per-capability contributions toward achieving requirements.
Geral I. McDonald; Philip D. Tanimoto; Thomas M. Rice; David E. Hall; Jane E. Stewart; Paul J. Zambino; Jonalea R. Tonn; Ned B. Klopfenstein; Mee-Sook Kim
2005-01-01
The Root Disease Analyzer-Armillaria Response Tool (ART) is a Web-based tool that estimates Armillaria root disease risk in dry forests of the Western United States. This fact sheet identifies the intended users and uses, required inputs, what the model does and does not do, and tells the user how to obtain the model.
The Visual Geophysical Exploration Environment: A Multi-dimensional Scientific Visualization
NASA Astrophysics Data System (ADS)
Pandya, R. E.; Domenico, B.; Murray, D.; Marlino, M. R.
2003-12-01
The Visual Geophysical Exploration Environment (VGEE) is an online learning environment designed to help undergraduate students understand fundamental Earth system science concepts. The guiding principle of the VGEE is the importance of hands-on interaction with scientific visualization and data. The VGEE consists of four elements: 1) an online, inquiry-based curriculum for guiding student exploration; 2) a suite of El Nino-related data sets adapted for student use; 3) a learner-centered interface to a scientific visualization tool; and 4) a set of concept models (interactive tools that help students understand fundamental scientific concepts). There are two key innovations featured in this interactive poster session. One is the integration of concept models and the visualization tool. Concept models are simple, interactive, Java-based illustrations of fundamental physical principles. We developed eight concept models and integrated them into the visualization tool to enable students to probe data. The ability to probe data using a concept model addresses the common problem of transfer: the difficulty students have in applying theoretical knowledge to everyday phenomenon. The other innovation is a visualization environment and data that are discoverable in digital libraries, and installed, configured, and used for investigations over the web. By collaborating with the Integrated Data Viewer developers, we were able to embed a web-launchable visualization tool and access to distributed data sets into the online curricula. The Thematic Real-time Environmental Data Distributed Services (THREDDS) project is working to provide catalogs of datasets that can be used in new VGEE curricula under development. By cataloging this curricula in the Digital Library for Earth System Education (DLESE), learners and educators can discover the data and visualization tool within a framework that guides their use.
Methods, Tools and Current Perspectives in Proteogenomics *
Ruggles, Kelly V.; Krug, Karsten; Wang, Xiaojing; Clauser, Karl R.; Wang, Jing; Payne, Samuel H.; Fenyö, David; Zhang, Bing; Mani, D. R.
2017-01-01
With combined technological advancements in high-throughput next-generation sequencing and deep mass spectrometry-based proteomics, proteogenomics, i.e. the integrative analysis of proteomic and genomic data, has emerged as a new research field. Early efforts in the field were focused on improving protein identification using sample-specific genomic and transcriptomic sequencing data. More recently, integrative analysis of quantitative measurements from genomic and proteomic studies have identified novel insights into gene expression regulation, cell signaling, and disease. Many methods and tools have been developed or adapted to enable an array of integrative proteogenomic approaches and in this article, we systematically classify published methods and tools into four major categories, (1) Sequence-centric proteogenomics; (2) Analysis of proteogenomic relationships; (3) Integrative modeling of proteogenomic data; and (4) Data sharing and visualization. We provide a comprehensive review of methods and available tools in each category and highlight their typical applications. PMID:28456751
Hilde, Thomas; Paterson, Robert
2014-12-15
Scenario planning continues to gain momentum in the United States as an effective process for building consensus on long-range community plans and creating regional visions for the future. However, efforts to integrate more sophisticated information into the analytical framework to help identify important ecosystem services have lagged in practice. This is problematic because understanding the tradeoffs of land consumption patterns on ecological integrity is central to mitigating the environmental degradation caused by land use change and new development. In this paper we describe how an ecosystem services valuation model, i-Tree, was integrated into a mainstream scenario planning software tool, Envision Tomorrow, to assess the benefits of public street trees for alternative future development scenarios. The tool is then applied to development scenarios from the City of Hutto, TX, a Central Texas Sustainable Places Project demonstration community. The integrated tool represents a methodological improvement for scenario planning practice, offers a way to incorporate ecosystem services analysis into mainstream planning processes, and serves as an example of how open source software tools can expand the range of issues available for community and regional planning consideration, even in cases where community resources are limited. The tool also offers room for future improvements; feasible options include canopy analysis of various future land use typologies, as well as a generalized street tree model for broader U.S. application. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of managemen
The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management.
Integrating satellite imagery with simulation modeling to improve burn severity mapping
Eva C. Karau; Pamela G. Sikkink; Robert E. Keane; Gregory K. Dillon
2014-01-01
Both satellite imagery and spatial fire effects models are valuable tools for generating burn severity maps that are useful to fire scientists and resource managers. The purpose of this study was to test a new mapping approach that integrates imagery and modeling to create more accurate burn severity maps. We developed and assessed a statistical model that combines the...
Creating More Trauma-Informed Services for Children Using Assessment-Focused Tools
ERIC Educational Resources Information Center
Igelman, Robyn; Taylor, Nicole; Gilbert, Alicia; Ryan, Barbara; Steinberg, Alan; Wilson, Charles; Mann, Gail
2007-01-01
This article promotes integrating assessment and evidence-based practice in the treatment of traumatized children through a review of two newly developed trauma assessment tools: (1) the Child Welfare Trauma Referral Tool (CWT), and (2) Assessment-Based Treatment for Traumatized Children: A Trauma Assessment Pathway Model (TAP). These tools use…
FEST-C 1.3 & 2.0 for CMAQ Bi-directional NH3, Crop Production, and SWAT Modeling
The Fertilizer Emission Scenario Tool for CMAQ (FEST-C) is developed in a Linux environment, a festc JAVA interface that integrates 14 tools and scenario management options facilitating land use/crop data processing for the Community Multiscale Air Quality (CMAQ) modeling system ...
Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporates tools from environmental assessment into an effective problem-solving environment. SADA was developed by the Institute for Environmental Modeling at the University of Tennessee and inc...
Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporates tools from environmental assessment into an effective problem-solving environment. SADA was developed by the Institute for Environmental Modeling at the University of Tennessee and inc...
Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporates tools from environmental assessment into an effective problem-solving environment. SADA was developed by the Institute for Environmental Modeling at the University of Tennessee and inc...
Sufficiently elucidating uncertainty and sensitivity structures in environmental models can be a difficult task, even for low-order, single-media constructs driven by a unique set of site-specific data. The ensuing challenge of examining ever more complex, integrated, higher-ord...
Application of an Integrated Assessment Model to the Kevin Dome site, Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Minh; Zhang, Ye; Carey, James William
The objectives of the Integrated Assessment Model is to enable the Fault Swarm algorithm in the National Risk Assessment Partnership, ensure faults are working in the NRAP-IAM tool, calculate hypothetical fault leakage in NRAP-IAM, and compare leakage rates to Eclipse simulations.
The Parallel System for Integrating Impact Models and Sectors (pSIMS)
NASA Technical Reports Server (NTRS)
Elliott, Joshua; Kelly, David; Chryssanthacopoulos, James; Glotter, Michael; Jhunjhnuwala, Kanika; Best, Neil; Wilde, Michael; Foster, Ian
2014-01-01
We present a framework for massively parallel climate impact simulations: the parallel System for Integrating Impact Models and Sectors (pSIMS). This framework comprises a) tools for ingesting and converting large amounts of data to a versatile datatype based on a common geospatial grid; b) tools for translating this datatype into custom formats for site-based models; c) a scalable parallel framework for performing large ensemble simulations, using any one of a number of different impacts models, on clusters, supercomputers, distributed grids, or clouds; d) tools and data standards for reformatting outputs to common datatypes for analysis and visualization; and e) methodologies for aggregating these datatypes to arbitrary spatial scales such as administrative and environmental demarcations. By automating many time-consuming and error-prone aspects of large-scale climate impacts studies, pSIMS accelerates computational research, encourages model intercomparison, and enhances reproducibility of simulation results. We present the pSIMS design and use example assessments to demonstrate its multi-model, multi-scale, and multi-sector versatility.
NASA Astrophysics Data System (ADS)
Donato, M. B.; Milasi, M.; Vitanza, C.
2010-09-01
An existence result of a Walrasian equilibrium for an integrated model of exchange, consumption and production is obtained. The equilibrium model is characterized in terms of a suitable generalized quasi-variational inequality; so the existence result comes from an original technique which takes into account tools of convex and set-valued analysis.
Spike-train spectra and network response functions for non-linear integrate-and-fire neurons.
Richardson, Magnus J E
2008-11-01
Reduced models have long been used as a tool for the analysis of the complex activity taking place in neurons and their coupled networks. Recent advances in experimental and theoretical techniques have further demonstrated the usefulness of this approach. Despite the often gross simplification of the underlying biophysical properties, reduced models can still present significant difficulties in their analysis, with the majority of exact and perturbative results available only for the leaky integrate-and-fire model. Here an elementary numerical scheme is demonstrated which can be used to calculate a number of biologically important properties of the general class of non-linear integrate-and-fire models. Exact results for the first-passage-time density and spike-train spectrum are derived, as well as the linear response properties and emergent states of recurrent networks. Given that the exponential integrate-fire model has recently been shown to agree closely with the experimentally measured response of pyramidal cells, the methodology presented here promises to provide a convenient tool to facilitate the analysis of cortical-network dynamics.
Graeden, Ellie; Kerr, Justin; Sorrell, Erin M.; Katz, Rebecca
2018-01-01
Managing infectious disease requires rapid and effective response to support decision making. The decisions are complex and require understanding of the diseases, disease intervention and control measures, and the disease-relevant characteristics of the local community. Though disease modeling frameworks have been developed to address these questions, the complexity of current models presents a significant barrier to community-level decision makers in using the outputs of the most scientifically robust methods to support pragmatic decisions about implementing a public health response effort, even for endemic diseases with which they are already familiar. Here, we describe the development of an application available on the internet, including from mobile devices, with a simple user interface, to support on-the-ground decision-making for integrating disease control programs, given local conditions and practical constraints. The model upon which the tool is built provides predictive analysis for the effectiveness of integration of schistosomiasis and malaria control, two diseases with extensive geographical and epidemiological overlap, and which result in significant morbidity and mortality in affected regions. Working with data from countries across sub-Saharan Africa and the Middle East, we present a proof-of-principle method and corresponding prototype tool to provide guidance on how to optimize integration of vertical disease control programs. This method and tool demonstrate significant progress in effectively translating the best available scientific models to support practical decision making on the ground with the potential to significantly increase the efficacy and cost-effectiveness of disease control. Author summary Designing and implementing effective programs for infectious disease control requires complex decision-making, informed by an understanding of the diseases, the types of disease interventions and control measures available, and the disease-relevant characteristics of the local community. Though disease modeling frameworks have been developed to address these questions and support decision-making, the complexity of current models presents a significant barrier to on-the-ground end users. The picture is further complicated when considering approaches for integration of different disease control programs, where co-infection dynamics, treatment interactions, and other variables must also be taken into account. Here, we describe the development of an application available on the internet with a simple user interface, to support on-the-ground decision-making for integrating disease control, given local conditions and practical constraints. The model upon which the tool is built provides predictive analysis for the effectiveness of integration of schistosomiasis and malaria control, two diseases with extensive geographical and epidemiological overlap. This proof-of-concept method and tool demonstrate significant progress in effectively translating the best available scientific models to support pragmatic decision-making on the ground, with the potential to significantly increase the impact and cost-effectiveness of disease control. PMID:29649260
Telearch - Integrated visual simulation environment for collaborative virtual archaeology.
NASA Astrophysics Data System (ADS)
Kurillo, Gregorij; Forte, Maurizio
Archaeologists collect vast amounts of digital data around the world; however, they lack tools for integration and collaborative interaction to support reconstruction and interpretation process. TeleArch software is aimed to integrate different data sources and provide real-time interaction tools for remote collaboration of geographically distributed scholars inside a shared virtual environment. The framework also includes audio, 2D and 3D video streaming technology to facilitate remote presence of users. In this paper, we present several experimental case studies to demonstrate the integration and interaction with 3D models and geographical information system (GIS) data in this collaborative environment.
KILLEEN, GERRY F.; McKENZIE, F. ELLIS; FOY, BRIAN D.; SCHIEFFELIN, CATHERINE; BILLINGSLEY, PETER F.; BEIER, JOHN C.
2008-01-01
We have used a relatively simple but accurate model for predicting the impact of integrated transmission control on the malaria entomologic inoculation rate (EIR) at four endemic sites from across sub-Saharan Africa and the southwest Pacific. The simulated campaign incorporated modestly effective vaccine coverage, bed net use, and larval control. The results indicate that such campaigns would reduce EIRs at all four sites by 30- to 50-fold. Even without the vaccine, 15- to 25-fold reductions of EIR were predicted, implying that integrated control with a few modestly effective tools can meaningfully reduce malaria transmission in a range of endemic settings. The model accurately predicts the effects of bed nets and indoor spraying and demonstrates that they are the most effective tools available for reducing EIR. However, the impact of domestic adult vector control is amplified by measures for reducing the rate of emergence of vectors or the level of infectiousness of the human reservoir. We conclude that available tools, including currently neglected methods for larval control, can reduce malaria transmission intensity enough to alleviate mortality. Integrated control programs should be implemented to the fullest extent possible, even in areas of intense transmission, using simple models as decision-making tools. However, we also conclude that to eliminate malaria in many areas of intense transmission is beyond the scope of methods which developing nations can currently afford. New, cost-effective, practical tools are needed if malaria is ever to be eliminated from highly endemic areas. PMID:11289662
A web GIS based integrated flood assessment modeling tool for coastal urban watersheds
NASA Astrophysics Data System (ADS)
Kulkarni, A. T.; Mohanty, J.; Eldho, T. I.; Rao, E. P.; Mohan, B. K.
2014-03-01
Urban flooding has become an increasingly important issue in many parts of the world. In this study, an integrated flood assessment model (IFAM) is presented for the coastal urban flood simulation. A web based GIS framework has been adopted to organize the spatial datasets for the study area considered and to run the model within this framework. The integrated flood model consists of a mass balance based 1-D overland flow model, 1-D finite element based channel flow model based on diffusion wave approximation and a quasi 2-D raster flood inundation model based on the continuity equation. The model code is written in MATLAB and the application is integrated within a web GIS server product viz: Web Gram Server™ (WGS), developed at IIT Bombay, using Java, JSP and JQuery technologies. Its user interface is developed using open layers and the attribute data are stored in MySQL open source DBMS. The model is integrated within WGS and is called via Java script. The application has been demonstrated for two coastal urban watersheds of Navi Mumbai, India. Simulated flood extents for extreme rainfall event of 26 July, 2005 in the two urban watersheds of Navi Mumbai city are presented and discussed. The study demonstrates the effectiveness of the flood simulation tool in a web GIS environment to facilitate data access and visualization of GIS datasets and simulation results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quock, D. E. R.; Cianciarulo, M. B.; APS Engineering Support Division
2007-01-01
The Integrated Relational Model of Installed Systems (IRMIS) is a relational database tool that has been implemented at the Advanced Photon Source to maintain an updated account of approximately 600 control system software applications, 400,000 process variables, and 30,000 control system hardware components. To effectively display this large amount of control system information to operators and engineers, IRMIS was initially built with nine Web-based viewers: Applications Organizing Index, IOC, PLC, Component Type, Installed Components, Network, Controls Spares, Process Variables, and Cables. However, since each viewer is designed to provide details from only one major category of the control system, themore » necessity for a one-stop global search tool for the entire database became apparent. The user requirements for extremely fast database search time and ease of navigation through search results led to the choice of Asynchronous JavaScript and XML (AJAX) technology in the implementation of the IRMIS global search tool. Unique features of the global search tool include a two-tier level of displayed search results, and a database data integrity validation and reporting mechanism.« less
EPA announced the release of the final report, BASINs and WEPP Climate Assessment Tools (CAT): Case Study Guide to Potential Applications. This report supports application of two recently developed water modeling tools, the Better Assessment Science Integrating point & ...
Margaria, Tiziana; Kubczak, Christian; Steffen, Bernhard
2008-01-01
Background With Bio-jETI, we introduce a service platform for interdisciplinary work on biological application domains and illustrate its use in a concrete application concerning statistical data processing in R and xcms for an LC/MS analysis of FAAH gene knockout. Methods Bio-jETI uses the jABC environment for service-oriented modeling and design as a graphical process modeling tool and the jETI service integration technology for remote tool execution. Conclusions As a service definition and provisioning platform, Bio-jETI has the potential to become a core technology in interdisciplinary service orchestration and technology transfer. Domain experts, like biologists not trained in computer science, directly define complex service orchestrations as process models and use efficient and complex bioinformatics tools in a simple and intuitive way. PMID:18460173
Geometric modeling for computer aided design
NASA Technical Reports Server (NTRS)
Schwing, James L.
1993-01-01
Over the past several years, it has been the primary goal of this grant to design and implement software to be used in the conceptual design of aerospace vehicles. The work carried out under this grant was performed jointly with members of the Vehicle Analysis Branch (VAB) of NASA LaRC, Computer Sciences Corp., and Vigyan Corp. This has resulted in the development of several packages and design studies. Primary among these are the interactive geometric modeling tool, the Solid Modeling Aerospace Research Tool (smart), and the integration and execution tools provided by the Environment for Application Software Integration and Execution (EASIE). In addition, it is the purpose of the personnel of this grant to provide consultation in the areas of structural design, algorithm development, and software development and implementation, particularly in the areas of computer aided design, geometric surface representation, and parallel algorithms.
The Requirements and Design of the Rapid Prototyping Capabilities System
NASA Astrophysics Data System (ADS)
Haupt, T. A.; Moorhead, R.; O'Hara, C.; Anantharaj, V.
2006-12-01
The Rapid Prototyping Capabilities (RPC) system will provide the capability to rapidly evaluate innovative methods of linking science observations. To this end, the RPC will provide the capability to integrate the software components and tools needed to evaluate the use of a wide variety of current and future NASA sensors, numerical models, and research results, model outputs, and knowledge, collectively referred to as "resources". It is assumed that the resources are geographically distributed, and thus RPC will provide the support for the location transparency of the resources. The RPC system requires providing support for: (1) discovery, semantic understanding, secure access and transport mechanisms for data products available from the known data provides; (2) data assimilation and geo- processing tools for all data transformations needed to match given data products to the model input requirements; (3) model management including catalogs of models and model metadata, and mechanisms for creation environments for model execution; and (4) tools for model output analysis and model benchmarking. The challenge involves developing a cyberinfrastructure for a coordinated aggregate of software, hardware and other technologies, necessary to facilitate RPC experiments, as well as human expertise to provide an integrated, "end-to-end" platform to support the RPC objectives. Such aggregation is to be achieved through a horizontal integration of loosely coupled services. The cyberinfrastructure comprises several software layers. At the bottom, the Grid fabric encompasses network protocols, optical networks, computational resources, storage devices, and sensors. At the top, applications use workload managers to coordinate their access to physical resources. Applications are not tightly bounded to a single physical resource. Instead, they bind dynamically to resources (i.e., they are provisioned) via a common grid infrastructure layer. For the RPC system, the cyberinfrastructure must support organizing computations (or "data transformations" in general) into complex workflows with resource discovery, automatic resource allocation, monitoring, preserving provenance as well as to aggregate heterogeneous, distributed data into knowledge databases. Such service orchestration is the responsibility of the "collective services" layer. For RPC, this layer will be based on Java Business Integration (JBI, [JSR-208]) specification which is a standards-based integration platform that combines messaging, web services, data transformation, and intelligent routing to reliably connect and coordinate the interaction of significant numbers of diverse applications (plug-in components) across organizational boundaries. JBI concept is a new approach to integration that can provide the underpinnings for loosely coupled, highly distributed integration network that can scale beyond the limits of currently used hub-and-spoke brokers. This presentation discusses the requirements, design and early prototype of the NASA-sponsored RPC system under development at Mississippi State University, demonstrating the integration of data provisioning mechanisms, data transformation tools and computational models into a single interoperable system enabling rapid execution of RPC experiments.
NASA Technical Reports Server (NTRS)
Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Reddy, Uday; Ackley, Keith; Futrell, Mike
1991-01-01
The Framework Programmable Software Development Platform (FPP) is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software development environment. Guided by this model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated.
RSAT: regulatory sequence analysis tools.
Thomas-Chollier, Morgane; Sand, Olivier; Turatsinze, Jean-Valéry; Janky, Rekin's; Defrance, Matthieu; Vervisch, Eric; Brohée, Sylvain; van Helden, Jacques
2008-07-01
The regulatory sequence analysis tools (RSAT, http://rsat.ulb.ac.be/rsat/) is a software suite that integrates a wide collection of modular tools for the detection of cis-regulatory elements in genome sequences. The suite includes programs for sequence retrieval, pattern discovery, phylogenetic footprint detection, pattern matching, genome scanning and feature map drawing. Random controls can be performed with random gene selections or by generating random sequences according to a variety of background models (Bernoulli, Markov). Beyond the original word-based pattern-discovery tools (oligo-analysis and dyad-analysis), we recently added a battery of tools for matrix-based detection of cis-acting elements, with some original features (adaptive background models, Markov-chain estimation of P-values) that do not exist in other matrix-based scanning tools. The web server offers an intuitive interface, where each program can be accessed either separately or connected to the other tools. In addition, the tools are now available as web services, enabling their integration in programmatic workflows. Genomes are regularly updated from various genome repositories (NCBI and EnsEMBL) and 682 organisms are currently supported. Since 1998, the tools have been used by several hundreds of researchers from all over the world. Several predictions made with RSAT were validated experimentally and published.
Integrating Computers into the Problem-Solving Process.
ERIC Educational Resources Information Center
Lowther, Deborah L.; Morrison, Gary R.
2003-01-01
Asserts that within the context of problem-based learning environments, professors can encourage students to use computers as problem-solving tools. The ten-step Integrating Technology for InQuiry (NteQ) model guides professors through the process of integrating computers into problem-based learning activities. (SWM)
A python tool for the implementation of domain-specific languages
NASA Astrophysics Data System (ADS)
Dejanović, Igor; Vaderna, Renata; Milosavljević, Gordana; Simić, Miloš; Vuković, Željko
2017-07-01
In this paper we describe textX, a meta-language and a tool for building Domain-Specific Languages. It is implemented in Python using Arpeggio PEG (Parsing Expression Grammar) parser library. From a single language description (grammar) textX will build a parser and a meta-model (a.k.a. abstract syntax) of the language. The parser is used to parse textual representations of models conforming to the meta-model. As a result of parsing, a Python object graph will be automatically created. The structure of the object graph will conform to the meta-model defined by the grammar. This approach frees a developer from the need to manually analyse a parse tree and transform it to other suitable representation. The textX library is independent of any integrated development environment and can be easily integrated in any Python project. The textX tool works as a grammar interpreter. The parser is configured at run-time using the grammar. The textX tool is a free and open-source project available at GitHub.
Understanding Kidney Disease: Toward the Integration of Regulatory Networks Across Species
Ju, Wenjun; Brosius, Frank C.
2010-01-01
Animal models have long been useful in investigating both normal and abnormal human physiology. Systems biology provides a relatively new set of approaches to identify similarities and differences between animal models and humans that may lead to a more comprehensive understanding of human kidney pathophysiology. In this review, we briefly describe how genome-wide analyses of mouse models have helped elucidate features of human kidney diseases, discuss strategies to achieve effective network integration, and summarize currently available web-based tools that may facilitate integration of data across species. The rapid progress in systems biology and orthology, as well as the advent of web-based tools to facilitate these processes, now make it possible to take advantage of knowledge from distant animal species in targeted identification of regulatory networks that may have clinical relevance for human kidney diseases. PMID:21044762
Nguyen, Huu-Tho; Md Dawal, Siti Zawiah; Nukman, Yusoff; Aoyama, Hideki; Case, Keith
2015-01-01
Globalization of business and competitiveness in manufacturing has forced companies to improve their manufacturing facilities to respond to market requirements. Machine tool evaluation involves an essential decision using imprecise and vague information, and plays a major role to improve the productivity and flexibility in manufacturing. The aim of this study is to present an integrated approach for decision-making in machine tool selection. This paper is focused on the integration of a consistent fuzzy AHP (Analytic Hierarchy Process) and a fuzzy COmplex PRoportional ASsessment (COPRAS) for multi-attribute decision-making in selecting the most suitable machine tool. In this method, the fuzzy linguistic reference relation is integrated into AHP to handle the imprecise and vague information, and to simplify the data collection for the pair-wise comparison matrix of the AHP which determines the weights of attributes. The output of the fuzzy AHP is imported into the fuzzy COPRAS method for ranking alternatives through the closeness coefficient. Presentation of the proposed model application is provided by a numerical example based on the collection of data by questionnaire and from the literature. The results highlight the integration of the improved fuzzy AHP and the fuzzy COPRAS as a precise tool and provide effective multi-attribute decision-making for evaluating the machine tool in the uncertain environment.
Fertilizer Emission Scenario Tool for crop management system scenarios
The Fertilizer Emission Scenario Tool for CMAQ is a high-end computer interface that simulates daily fertilizer application information for any gridded domain. It integrates the Weather Research and Forecasting model and CMAQ.
Grid Integration Research | Wind | NREL
-generated simulation of a wind turbine. Wind Power Plant Modeling and Simulation Engineers at the National computer-aided engineering tool, FAST, as well as their wind power plant simulation tool, Wind-Plant
Data and Tools | Integrated Energy Solutions | NREL
for a research campus eQUEST. Detailed analysis of today's state-of-the-art building design source software tools to support whole building energy modeling and advanced daylight analysis BESTEST-EX
Cockpit System Situational Awareness Modeling Tool
NASA Technical Reports Server (NTRS)
Keller, John; Lebiere, Christian; Shay, Rick; Latorella, Kara
2004-01-01
This project explored the possibility of predicting pilot situational awareness (SA) using human performance modeling techniques for the purpose of evaluating developing cockpit systems. The Improved Performance Research Integration Tool (IMPRINT) was combined with the Adaptive Control of Thought-Rational (ACT-R) cognitive modeling architecture to produce a tool that can model both the discrete tasks of pilots and the cognitive processes associated with SA. The techniques for using this tool to predict SA were demonstrated using the newly developed Aviation Weather Information (AWIN) system. By providing an SA prediction tool to cockpit system designers, cockpit concepts can be assessed early in the design process while providing a cost-effective complement to the traditional pilot-in-the-loop experiments and data collection techniques.
An Evaluation of Internet-Based CAD Collaboration Tools
ERIC Educational Resources Information Center
Smith, Shana Shiang-Fong
2004-01-01
Due to the now widespread use of the Internet, most companies now require computer aided design (CAD) tools that support distributed collaborative design on the Internet. Such CAD tools should enable designers to share product models, as well as related data, from geographically distant locations. However, integrated collaborative design…
Integrating Computational Science Tools into a Thermodynamics Course
ERIC Educational Resources Information Center
Vieira, Camilo; Magana, Alejandra J.; García, R. Edwin; Jana, Aniruddha; Krafcik, Matthew
2018-01-01
Computational tools and methods have permeated multiple science and engineering disciplines, because they enable scientists and engineers to process large amounts of data, represent abstract phenomena, and to model and simulate complex concepts. In order to prepare future engineers with the ability to use computational tools in the context of…
Simulation of networks of spiking neurons: A review of tools and strategies
Brette, Romain; Rudolph, Michelle; Carnevale, Ted; Hines, Michael; Beeman, David; Bower, James M.; Diesmann, Markus; Morrison, Abigail; Goodman, Philip H.; Harris, Frederick C.; Zirpe, Milind; Natschläger, Thomas; Pecevski, Dejan; Ermentrout, Bard; Djurfeldt, Mikael; Lansner, Anders; Rochel, Olivier; Vieville, Thierry; Muller, Eilif; Davison, Andrew P.; El Boustani, Sami
2009-01-01
We review different aspects of the simulation of spiking neural networks. We start by reviewing the different types of simulation strategies and algorithms that are currently implemented. We next review the precision of those simulation strategies, in particular in cases where plasticity depends on the exact timing of the spikes. We overview different simulators and simulation environments presently available (restricted to those freely available, open source and documented). For each simulation tool, its advantages and pitfalls are reviewed, with an aim to allow the reader to identify which simulator is appropriate for a given task. Finally, we provide a series of benchmark simulations of different types of networks of spiking neurons, including Hodgkin–Huxley type, integrate-and-fire models, interacting with current-based or conductance-based synapses, using clock-driven or event-driven integration strategies. The same set of models are implemented on the different simulators, and the codes are made available. The ultimate goal of this review is to provide a resource to facilitate identifying the appropriate integration strategy and simulation tool to use for a given modeling problem related to spiking neural networks. PMID:17629781
Status of Technology Development to enable Large Stable UVOIR Space Telescopes
NASA Astrophysics Data System (ADS)
Stahl, H. Philip; MSFC AMTD Team
2017-01-01
NASA MSFC has two funded Strategic Astrophysics Technology projects to develop technology for potential future large missions: AMTD and PTC. The Advanced Mirror Technology Development (AMTD) project is developing technology to make mechanically stable mirrors for a 4-meter or larger UVOIR space telescope. AMTD is demonstrating this technology by making a 1.5 meter diameter x 200 mm thick ULE(C) mirror that is 1/3rd scale of a full size 4-m mirror. AMTD is characterizing the mechanical and thermal performance of this mirror and of a 1.2-meter Zerodur(R) mirror to validate integrate modeling tools. Additionally, AMTD has developed integrated modeling tools which are being used to evaluate primary mirror systems for a potential Habitable Exoplanet Mission and analyzed the interaction between optical telescope wavefront stability and coronagraph contrast leakage. Predictive Thermal Control (PTC) project is developing technology to enable high stability thermal wavefront performance by using integrated modeling tools to predict and actively control the thermal environment of a 4-m or larger UVOIR space telescope.
NASA Astrophysics Data System (ADS)
Bongartz, K.; Flügel, W. A.
2003-04-01
In the joint research project “Development of an integrated methodology for the sustainable management of river basins The Saale River Basin example”, coordinated by the Centre of Environmental Research (UFZ), concepts and tools for an integrated management of large river basins are developed and applied for the Saale river basin. The ultimate objective of the project is to contribute to the holistic assessment and benchmarking approaches in water resource planning, as required by the European Water Framework Directive. The study presented here deals (1) with the development of a river basin information and modelling system, (2) with the refinement of a regionalisation approach adapted for integrated basin modelling. The approach combines a user friendly basin disaggregation method preserving the catchment’s physiographic heterogeneity with a process oriented hydrological basin assessment for scale bridging integrated modelling. The well tested regional distribution concept of Response Units (RUs) will be enhanced by landscape metrics and decision support tools for objective, scale independent and problem oriented RU delineation to provide the spatial modelling entities for process oriented and distributed simulation of vertical and lateral hydrological transport processes. On basis of this RUs suitable hydrological modelling approaches will be further developed with strong respect to a more detailed simulation of the lateral surface and subsurface flows as well as the channel flow. This methodical enhancement of the well recognised RU-concept will be applied to the river basin of the Saale (Ac: 23 179 km2) and validated by a nested catchment approach, which allows multi-response-validation and estimation of uncertainties of the modelling results. Integrated modelling of such a complex basin strongly influenced by manifold human activities (reservoirs, agriculture, urban areas and industry) can only be achieved by coupling the various modelling approaches within a well defined model framework system. The latter is interactively linked with a sophisticated geo-relational database (DB) serving all research teams involved in the project. This interactive linkage is a core element comprising an object-oriented, internet-based modelling framework system (MFS) for building interdisciplinary modelling applications and offering different analysis and visualisation tools.
EPA announced the availability of the draft report, Updates to the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (ICLUS) for a 30-day public comment period. The ICLUS version 2 (v2) modeling tool furthered land change mod...
The integrated Earth system model version 1: formulation and functionality
Collins, W. D.; Craig, A. P.; Truesdale, J. E.; ...
2015-07-23
The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less
NASA Astrophysics Data System (ADS)
Lei, Xiaohui; Wang, Yuhui; Liao, Weihong; Jiang, Yunzhong; Tian, Yu; Wang, Hao
2011-09-01
Many regions are still threatened with frequent floods and water resource shortage problems in China. Consequently, the task of reproducing and predicting the hydrological process in watersheds is hard and unavoidable for reducing the risks of damage and loss. Thus, it is necessary to develop an efficient and cost-effective hydrological tool in China as many areas should be modeled. Currently, developed hydrological tools such as Mike SHE and ArcSWAT (soil and water assessment tool based on ArcGIS) show significant power in improving the precision of hydrological modeling in China by considering spatial variability both in land cover and in soil type. However, adopting developed commercial tools in such a large developing country comes at a high cost. Commercial modeling tools usually contain large numbers of formulas, complicated data formats, and many preprocessing or postprocessing steps that may make it difficult for the user to carry out simulation, thus lowering the efficiency of the modeling process. Besides, commercial hydrological models usually cannot be modified or improved to be suitable for some special hydrological conditions in China. Some other hydrological models are open source, but integrated into commercial GIS systems. Therefore, by integrating hydrological simulation code EasyDHM, a hydrological simulation tool named MWEasyDHM was developed based on open-source MapWindow GIS, the purpose of which is to establish the first open-source GIS-based distributed hydrological model tool in China by integrating modules of preprocessing, model computation, parameter estimation, result display, and analysis. MWEasyDHM provides users with a friendly manipulating MapWindow GIS interface, selectable multifunctional hydrological processing modules, and, more importantly, an efficient and cost-effective hydrological simulation tool. The general construction of MWEasyDHM consists of four major parts: (1) a general GIS module for hydrological analysis, (2) a preprocessing module for modeling inputs, (3) a model calibration module, and (4) a postprocessing module. The general GIS module for hydrological analysis is developed on the basis of totally open-source GIS software, MapWindow, which contains basic GIS functions. The preprocessing module is made up of three submodules including a DEM-based submodule for hydrological analysis, a submodule for default parameter calculation, and a submodule for the spatial interpolation of meteorological data. The calibration module contains parallel computation, real-time computation, and visualization. The postprocessing module includes model calibration and model results spatial visualization using tabular form and spatial grids. MWEasyDHM makes it possible for efficient modeling and calibration of EasyDHM, and promises further development of cost-effective applications in various watersheds.
2011-01-01
Background High income nations are currently exhibiting increasing ethno-cultural diversity which may present challenges for nursing practice. We performed an integrative review of literature published in North America and Europe between 1990 and 2007, to map the state of knowledge and to identify nursing assessment tools/models which are have an associated research or empirical perspective in relation to ethno-cultural dimensions of nursing care. Methods Data was retrieved from a wide variety of sources, including key electronic bibliographic databases covering research in biomedical fields, nursing and allied health, and culture, e.g. CINAHL, MEDline, PUBmed, Cochrane library, PsycINFO, Web of Science, and HAPI. We used the Critical Appraisal Skills Programme tools for quality assessment. We applied Torraco's definition and method of an integrative review that aims to create new knowledge and perspectives on a given phenomena. To add methodological rigor with respect to the search strategy and other key review components we also used the principles established by the Centre for Reviews and Dissemination. Results Thirteen thousand and thirteen articles were retrieved, from which 53 full papers were assessed for inclusion. Eight papers met the inclusion criteria, describing research on a total of eight ethno-cultural assessment tools/models. The tools/models are described and synthesized. Conclusions While many ethno-cultural assessment tools exist to guide nursing practice, few are informed by research perspectives. An increased focus on the efficiency and effectiveness of health services, patient safety, and risk management, means that provision of culturally responsive and competent health services will inevitably become paramount. PMID:21812960
Knowledge Management tools integration within DLR's concurrent engineering facility
NASA Astrophysics Data System (ADS)
Lopez, R. P.; Soragavi, G.; Deshmukh, M.; Ludtke, D.
The complexity of space endeavors has increased the need for Knowledge Management (KM) tools. The concept of KM involves not only the electronic storage of knowledge, but also the process of making this knowledge available, reusable and traceable. Establishing a KM concept within the Concurrent Engineering Facility (CEF) has been a research topic of the German Aerospace Centre (DLR). This paper presents the current KM tools of the CEF: the Software Platform for Organizing and Capturing Knowledge (S.P.O.C.K.), the data model Virtual Satellite (VirSat), and the Simulation Model Library (SimMoLib), and how their usage improved the Concurrent Engineering (CE) process. This paper also exposes the lessons learned from the introduction of KM practices into the CEF and elaborates a roadmap for the further development of KM in CE activities at DLR. The results of the application of the Knowledge Management tools have shown the potential of merging the three software platforms with their functionalities, as the next step towards the fully integration of KM practices into the CE process. VirSat will stay as the main software platform used within a CE study, and S.P.O.C.K. and SimMoLib will be integrated into VirSat. These tools will support the data model as a reference and documentation source, and as an access to simulation and calculation models. The use of KM tools in the CEF aims to become a basic practice during the CE process. The settlement of this practice will result in a much more extended knowledge and experience exchange within the Concurrent Engineering environment and, consequently, the outcome of the studies will comprise higher quality in the design of space systems.
Integration of Linear Dynamic Emission and Climate Models with Air Traffic Simulations
NASA Technical Reports Server (NTRS)
Sridhar, Banavar; Ng, Hok K.; Chen, Neil Y.
2012-01-01
Future air traffic management systems are required to balance the conflicting objectives of maximizing safety and efficiency of traffic flows while minimizing the climate impact of aviation emissions and contrails. Integrating emission and climate models together with air traffic simulations improve the understanding of the complex interaction between the physical climate system, carbon and other greenhouse gas emissions and aviation activity. This paper integrates a national-level air traffic simulation and optimization capability with simple climate models and carbon cycle models, and climate metrics to assess the impact of aviation on climate. The capability can be used to make trade-offs between extra fuel cost and reduction in global surface temperature change. The parameters in the simulation can be used to evaluate the effect of various uncertainties in emission models and contrails and the impact of different decision horizons. Alternatively, the optimization results from the simulation can be used as inputs to other tools that monetize global climate impacts like the FAA s Aviation Environmental Portfolio Management Tool for Impacts.
NASA Astrophysics Data System (ADS)
Sui, Haigang; Xiao, Jinghuan; Wang, Qi; Li, Qian
2007-06-01
PDA (Personal Digital Assistant) is a useful tool for navigation which has many advantages such as its smallness and portability. In the meantime, digital charts have been found a wide application in past ten years, and many users are hoping for giving up the paper chart entirely and using ENC by the law. However, traditional paper chart is a nonreplaced tool for people in hydrographical survey and other application fields, and would coexist with ENC for a long time. How to manage and display integrated chart for traditional paper chart and ENC together in PDA for navigating is still an unsolved problem. Aiming at this, a new integrated spatial data model and display techniques for ENC and paper chart are presented. The core idea of the new algorithm is to build an integrated spatial data model, structure and display environment for both paper chart and ENC. Based on the above algorithms and strategies, an Integrated Electronic Chart Pocket Navigator System named PNS based on PDA was developed. It has been applied in Tianjin Marine Safety Administration Bureau and obtained a good evaluation.
Hydro-economic modeling of the role of forests on water resources production in Andalusia, Spain
NASA Astrophysics Data System (ADS)
Beguería, Santiago; Serrano-Notivoli, Roberto; Álvarez-Palomino, Alejandro; Campos, Pablo
2014-05-01
The development of more refined information tools is a pre-requisite for supporting decision making in the context of integrated water resources management. Among these tools, hydro-economic models are favoured because they allow integrating the ecological, hydrological, infrastructure and economic aspects into a coherent, scientifically-informed framework. We present a case study that assesses physically the water resources of forest lands of the Andalusia region in Spain and conducts an economic environmental income and asset valuation of the forest surface water yield. We show how, based on available hydrologic and economic data, we can develop a comprehensive water account for all the forest lands at the regional scale. This forest water environmental valuation is part of the larger RECAMAN project, which aims at providing a robust and easily replicable accounting tool to evaluate yearly the total income an capital generated by the forest land, encompassing all measurable sources of private and public incomes (timber and cork production, auto-consumption, recreational activities, biodiversity conservation, carbon sequestration, water production, etc.). Only a comprehensive integrated tool such as the one built within the RECAMAN project may serve as a basis for the development of integrated policies such as those internationally agreed and recommended for the management of water resources.
Integrated Functional and Executional Modelling of Software Using Web-Based Databases
NASA Technical Reports Server (NTRS)
Kulkarni, Deepak; Marietta, Roberta
1998-01-01
NASA's software subsystems undergo extensive modification and updates over the operational lifetimes. It is imperative that modified software should satisfy safety goals. This report discusses the difficulties encountered in doing so and discusses a solution based on integrated modelling of software, use of automatic information extraction tools, web technology and databases.
Mungall, Christopher J.; McMurry, Julie A.; Köhler, Sebastian; Balhoff, James P.; Borromeo, Charles; Brush, Matthew; Carbon, Seth; Conlin, Tom; Dunn, Nathan; Engelstad, Mark; Foster, Erin; Gourdine, J.P.; Jacobsen, Julius O.B.; Keith, Dan; Laraway, Bryan; Lewis, Suzanna E.; NguyenXuan, Jeremy; Shefchek, Kent; Vasilevsky, Nicole; Yuan, Zhou; Washington, Nicole; Hochheiser, Harry; Groza, Tudor; Smedley, Damian; Robinson, Peter N.; Haendel, Melissa A.
2017-01-01
The correlation of phenotypic outcomes with genetic variation and environmental factors is a core pursuit in biology and biomedicine. Numerous challenges impede our progress: patient phenotypes may not match known diseases, candidate variants may be in genes that have not been characterized, model organisms may not recapitulate human or veterinary diseases, filling evolutionary gaps is difficult, and many resources must be queried to find potentially significant genotype–phenotype associations. Non-human organisms have proven instrumental in revealing biological mechanisms. Advanced informatics tools can identify phenotypically relevant disease models in research and diagnostic contexts. Large-scale integration of model organism and clinical research data can provide a breadth of knowledge not available from individual sources and can provide contextualization of data back to these sources. The Monarch Initiative (monarchinitiative.org) is a collaborative, open science effort that aims to semantically integrate genotype–phenotype data from many species and sources in order to support precision medicine, disease modeling, and mechanistic exploration. Our integrated knowledge graph, analytic tools, and web services enable diverse users to explore relationships between phenotypes and genotypes across species. PMID:27899636
Mungall, Christopher J.; McMurry, Julie A.; Köhler, Sebastian; ...
2016-11-29
The correlation of phenotypic outcomes with genetic variation and environmental factors is a core pursuit in biology and biomedicine. Numerous challenges impede our progress: patient phenotypes may not match known diseases, candidate variants may be in genes that have not been characterized, model organisms may not recapitulate human or veterinary diseases, filling evolutionary gaps is difficult, and many resources must be queried to find potentially significant genotype-phenotype associations. Nonhuman organisms have proven instrumental in revealing biological mechanisms. Advanced informatics tools can identify phenotypically relevant disease models in research and diagnostic contexts. Large-scale integration of model organism and clinical research datamore » can provide a breadth of knowledge not available from individual sources and can provide contextualization of data back to these sources. The Monarch Initiative (monarchinitiative.org) is a collaborative, open science effort that aims to semantically integrate genotype-phenotype data from many species and sources in order to support precision medicine, disease modeling, and mechanistic exploration. Our integrated knowledge graph, analytic tools, and web services enable diverse users to explore relationships between phenotypes and genotypes across species.« less
Army-NASA aircrew/aircraft integration program (A3I) software detailed design document, phase 3
NASA Technical Reports Server (NTRS)
Banda, Carolyn; Chiu, Alex; Helms, Gretchen; Hsieh, Tehming; Lui, Andrew; Murray, Jerry; Shankar, Renuka
1990-01-01
The capabilities and design approach of the MIDAS (Man-machine Integration Design and Analysis System) computer-aided engineering (CAE) workstation under development by the Army-NASA Aircrew/Aircraft Integration Program is detailed. This workstation uses graphic, symbolic, and numeric prototyping tools and human performance models as part of an integrated design/analysis environment for crewstation human engineering. Developed incrementally, the requirements and design for Phase 3 (Dec. 1987 to Jun. 1989) are described. Software tools/models developed or significantly modified during this phase included: an interactive 3-D graphic cockpit design editor; multiple-perspective graphic views to observe simulation scenarios; symbolic methods to model the mission decomposition, equipment functions, pilot tasking and loading, as well as control the simulation; a 3-D dynamic anthropometric model; an intermachine communications package; and a training assessment component. These components were successfully used during Phase 3 to demonstrate the complex interactions and human engineering findings involved with a proposed cockpit communications design change in a simulated AH-64A Apache helicopter/mission that maps to empirical data from a similar study and AH-1 Cobra flight test.
iTesla Power Systems Library (iPSL): A Modelica library for phasor time-domain simulations
NASA Astrophysics Data System (ADS)
Vanfretti, L.; Rabuzin, T.; Baudette, M.; Murad, M.
The iTesla Power Systems Library (iPSL) is a Modelica package providing a set of power system components for phasor time-domain modeling and simulation. The Modelica language provides a systematic approach to develop models using a formal mathematical description, that uniquely specifies the physical behavior of a component or the entire system. Furthermore, the standardized specification of the Modelica language (Modelica Association [1]) enables unambiguous model exchange by allowing any Modelica-compliant tool to utilize the models for simulation and their analyses without the need of a specific model transformation tool. As the Modelica language is being developed with open specifications, any tool that implements these requirements can be utilized. This gives users the freedom of choosing an Integrated Development Environment (IDE) of their choice. Furthermore, any integration solver can be implemented within a Modelica tool to simulate Modelica models. Additionally, Modelica is an object-oriented language, enabling code factorization and model re-use to improve the readability of a library by structuring it with object-oriented hierarchy. The developed library is released under an open source license to enable a wider distribution and let the user customize it to their specific needs. This paper describes the iPSL and provides illustrative application examples.
INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorensek, M.; Hamm, L.; Garcia, H.
2011-07-18
Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come frommore » many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.« less
CONFIG: Integrated engineering of systems and their operation
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Ryan, Dan; Fleming, Land
1994-01-01
This article discusses CONFIG 3, a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operations of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. CONFIG supports integration among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. CONFIG is designed to support integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems.
Coupled Crop/Hydrology Model to Estimate Expanded Irrigation Impact on Water Resources
NASA Astrophysics Data System (ADS)
Handyside, C. T.; Cruise, J.
2017-12-01
A coupled agricultural and hydrologic systems model is used to examine the environmental impact of irrigation in the Southeast. A gridded crop model for the Southeast is used to determine regional irrigation demand. This irrigation demand is used in a regional hydrologic model to determine the hydrologic impact of irrigation. For the Southeast to maintain/expand irrigated agricultural production and provide adaptation to climate change and climate variability it will require integrated agricultural and hydrologic system models that can calculate irrigation demand and the impact of the this demand on the river hydrology. These integrated models can be used as (1) historical tools to examine vulnerability of expanded irrigation to past climate extremes (2) future tools to examine the sustainability of expanded irrigation under future climate scenarios and (3) a real-time tool to allow dynamic water resource management. Such tools are necessary to assure stakeholders and the public that irrigation can be carried out in a sustainable manner. The system tools to be discussed include a gridded version of the crop modeling system (DSSAT). The gridded model is referred to as GriDSSAT. The irrigation demand from GriDSSAT is coupled to a regional hydrologic model developed by the Eastern Forest Environmental Threat Assessment Center of the USDA Forest Service) (WaSSI). The crop model provides the dynamic irrigation demand which is a function of the weather. The hydrologic model includes all other competing uses of water. Examples of use the crop model coupled with the hydrologic model include historical analyses which show the change in hydrology as additional acres of irrigated land are added to water sheds. The first order change in hydrology is computed in terms of changes in the Water Availability Stress Index (WASSI) which is the ratio of water demand (irrigation, public water supply, industrial use, etc.) and water availability from the hydrologic model. Also, statistics such as the number of times certain WASSI thresholds are exceeded are calculated to show the impact of expanded irrigation during times of hydrologic drought and the coincident use of water by other sectors. Also, integrated downstream impacts of irrigation are also calculated through changes in flows through the whole river systems.
Perriman, Noelyn; Davis, Deborah
2016-06-01
The objective of this systematic integrative review is to identify, summarise and communicate the findings of research relating to tools that measure maternal satisfaction with continuity of maternity care models. In so doing the most appropriate, reliable and valid tool that can be used to measure maternal satisfaction with continuity of maternity care will be determined. A systematic integrative review of published and unpublished literature was undertaken using selected databases. Research papers were included if they measured maternal satisfaction in a continuity model of maternity care, were published in English after 1999 and if they included (or made available) the instrument used to measure satisfaction. Six hundred and thirty two unique papers were identified and after applying the selection criteria, four papers were included in the review. Three of these originated in Australia and one in Canada. The primary focus of all papers was not on the development of a tool to measure maternal satisfaction but on the comparison of outcomes in different models of care. The instruments developed varied in terms of the degree to which they were tested for validity and reliability. Women's satisfaction with maternity services is an important measure of quality. Most satisfaction surveys in maternity appear to reflect fragmented models of care though continuity of care models are increasing in line with the evidence demonstrating their effectiveness. It is important that robust tools are developed for this context and that there is some consistency in the way this is measured and reported for the purposes of benchmarking and quality improvement. Copyright © 2016 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.
The Integrated Airport Competition Model, 1998
NASA Technical Reports Server (NTRS)
Veldhuis, J.; Essers, I.; Bakker, D.; Cohn, N.; Kroes, E.
1999-01-01
This paper addresses recent model development by the Directorate General of Civil Aviation (DGCA) and Hague Consulting Group (HCG) concerning long-distance travel, Long-distance travel demand is growing very quickly and raising a great deal of economic and policy issues. There is increasing competition among the main Western European airports, and smaller, regional airports are fighting for market share. New modes of transport, such as high speed rail, arc also coming into the picture and affect the mode split for medium distance transport within Europe. Developments such as these are demanding the attention of policy makers and a tool is required for their analysis. For DGCA, Hague Consulting Group has developed a model system to provide answers to the policy questions posed by these expected trends, and to identify areas where policy makers can influence the traveller choices. The development of this model system, the Integrated Airport Competition Model/Integral Luchthaven Competitive Model (ILCM), began in 1992. Since that time the sub-models, input data and user interface have been expanded, updated and improved. HCG and DGCA have transformed the ILCM from a prototype into an operational forecasting tool.
NASA Astrophysics Data System (ADS)
Jakeman, A. J.; Guillaume, J. H. A.; El Sawah, S.; Hamilton, S.
2014-12-01
Integrated modelling and assessment (IMA) is best regarded as a process that can support environmental decision-making when issues are strongly contested and uncertainties pervasive. To be most useful, the process must be multi-dimensional and phased. Principally, it must be tailored to the problem context to encompass diverse issues of concern, management settings and stakeholders. This in turn requires the integration of multiple processes and components of natural and human systems and their corresponding spatial and temporal scales. Modellers therefore need to be able to integrate multiple disciplines, methods, models, tools and data, and many sources and types of uncertainty. These dimensions are incorporated into iteration between the various phases of the IMA process, including scoping, problem framing and formulation, assessing options and communicating findings. Two case studies in Australia are employed to share the lessons of how integration can be achieved in these IMA phases using a mix of stakeholder participation processes and modelling tools. One case study aims to improve the relevance of modelling by incorporating stakeholder's views of irrigated viticulture and water management decision making. It used a novel methodology with the acronym ICTAM, consisting of Interviews to elicit mental models, Cognitive maps to represent and analyse individual and group mental models, Time-sequence diagrams to chronologically structure the decision making process, an All-encompassing conceptual model, and computational Models of stakeholder decision making. The second case uses a hydro-economic river network model to examine basin-wide impacts of water allocation cuts and adoption of farm innovations. The knowledge exchange approach used in each case was designed to integrate data and knowledge bearing in mind the contextual dimensions of the problem at hand, and the specific contributions that environmental modelling was thought to be able to make.
USDA-ARS?s Scientific Manuscript database
Process-level modeling at the farm scale provides a tool for evaluating both strategies for mitigating greenhouse gas emissions and strategies for adapting to climate change. The Integrated Farm System Model (IFSM) simulates representative crop, beef or dairy farms over many years of weather to pred...
Participatory scenario modeling – an interactive method for visualizing the future – is one of the most promising tools for achieving sustainable land use agreements amongst diverse stakeholder groups. The method has the potential to bridge the gap between the high...
NASA Astrophysics Data System (ADS)
Ran, L.; Cooter, E. J.; Gilliam, R. C.; Foroutan, H.; Kang, D.; Appel, W.; Wong, D. C.; Pleim, J. E.; Benson, V.; Pouliot, G.
2017-12-01
The combined meteorology and air quality modeling system composed of the Weather Research and Forecast (WRF) model and Community Multiscale Air Quality (CMAQ) model is an important decision support tool that is used in research and regulatory decisions related to emissions, meteorology, climate, and chemical transport. The Environmental Policy Integrated Climate (EPIC) is a cropping model which has long been used in a range of applications related to soil erosion, crop productivity, climate change, and water quality around the world. We have integrated WRF/CMAQ with EPIC using the Fertilizer Emission Scenario Tool for CMAQ (FEST-C) to estimate daily soil N information with fertilization for CMAQ bi-directional ammonia flux modeling. Driven by the weather and N deposition from WRF/CMAQ, FEST-C EPIC simulations are conducted on 22 different agricultural production systems ranging from managed grass lands (e.g. hay and alfalfa) to crop lands (e.g. corn grain and soybean) with rainfed and irrigated information across any defined conterminous United States (U.S.) CMAQ domain and grid resolution. In recent years, this integrated system has been enhanced and applied in many different air quality and ecosystem assessment projects related to land-water-atmosphere interactions. These enhancements have advanced this system to become a valuable tool for integrated assessments of air, land and water quality in light of social drivers and human and ecological outcomes. This presentation will focus on evaluating the sensitivity of precipitation and N deposition in the integrated system to MODIS vegetation input and lightning assimilation and their impacts on agricultural production and fertilization. We will describe the integrated modeling system and evaluate simulated precipitation and N deposition along with other weather information (e.g. temperature, humidity) for 2011 over the conterminous U.S. at 12 km grids from a coupled WRF/CMAQ with MODIS and lightning assimilation. Simulated agricultural production and fertilization from FEST-C EPIC driven by the changed meteorology and N deposition from MODIS and lightning assimilations will be evaluated and analyzed.
Open Tools for Integrated Modelling to Understand SDG development - The OPTIMUS program
NASA Astrophysics Data System (ADS)
Howells, Mark; Zepeda, Eduardo; Rogner, H. Holger; Sanchez, Marco; Roehrl, Alexander; Cicowiez, Matrin; Mentis, Dimitris; Korkevelos, Alexandros; Taliotis, Constantinos; Broad, Oliver; Alfstad, Thomas
2016-04-01
The recently adopted Sustainable Development Goals (SDGs) - a set of 17 measurable and time-bound goals with 169 associated targets for 2030 - are highly inclusive challenges before the world community ranging from eliminating poverty to human rights, inequality, a secure world and protection of the environment. Each individual goal or target by themselves present enormous tasks, taken together they are overwhelming. There strong and weak interlinkages, hence trade-offs and complementarities among goals and targets. Some targets may affect several goals while other goals and targets may conflict or be mutually exclusive (Ref). Meeting each of these requires the judicious exploitation of resource, with energy playing an important role. Such complexity demands to be addressed in an integrated way using systems analysis tools to support informed policy formulation, planning, allocation of scarce resources, monitoring progress, effectiveness and review at different scales. There is no one size fits all methodology that conceivably could include all goal and targets simultaneously. But there are methodologies encapsulating critical subsets of the goal and targets with strong interlinkages with a 'soft' reflection on the weak interlinkages. Universal food security or sustainable energy for all inherently support goals and targets on human rights and equality but possibly at the cost of biodiversity or desertification. Integrated analysis and planning tools are not yet commonplace at national universities - or indeed in many policy making organs. What is needed is a fundamental realignment of institutions and integrations of their planning processes and decision making. We introduce a series of open source tools to support the SDG planning and implementation process. The Global User-friendly CLEW Open Source (GLUCOSE) tool optimizes resource interactions and constraints; The Global Electrification Tool kit (GETit) provides the first global spatially explicit electrification simulator; A national CLEW tool allows for the optimization of national level integrated resource use and Macro-CLEW presents the same allowing for detailed economic-biophysical interactions. Finally open Model Management Infrastructure (MoManI) is presented that allows for the rapid prototyping of new additions to, or new resource optimization tools. Collectively these tools provide insights to some fifteen of the SDGs and are made publicly available with support to governments and academic institutions.
Goodsman, Devin W.; Aukema, Brian H.; McDowell, Nate G.; ...
2017-11-26
Phenology models are becoming increasingly important tools to accurately predict how climate change will impact the life histories of organisms. We propose a class of integral projection phenology models derived from stochastic individual-based models of insect development and demography. Our derivation, which is based on the rate summation concept, produces integral projection models that capture the effect of phenotypic rate variability on insect phenology, but which are typically more computationally frugal than equivalent individual-based phenology models. We demonstrate our approach using a temperature-dependent model of the demography of the mountain pine beetle (Dendroctonus ponderosae Hopkins), an insect that kills maturemore » pine trees. This work illustrates how a wide range of stochastic phenology models can be reformulated as integral projection models. Due to their computational efficiency, these integral projection models are suitable for deployment in large-scale simulations, such as studies of altered pest distributions under climate change.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodsman, Devin W.; Aukema, Brian H.; McDowell, Nate G.
Phenology models are becoming increasingly important tools to accurately predict how climate change will impact the life histories of organisms. We propose a class of integral projection phenology models derived from stochastic individual-based models of insect development and demography. Our derivation, which is based on the rate summation concept, produces integral projection models that capture the effect of phenotypic rate variability on insect phenology, but which are typically more computationally frugal than equivalent individual-based phenology models. We demonstrate our approach using a temperature-dependent model of the demography of the mountain pine beetle (Dendroctonus ponderosae Hopkins), an insect that kills maturemore » pine trees. This work illustrates how a wide range of stochastic phenology models can be reformulated as integral projection models. Due to their computational efficiency, these integral projection models are suitable for deployment in large-scale simulations, such as studies of altered pest distributions under climate change.« less
2018-01-01
Background Electronic health (eHealth) and mobile health (mHealth) tools can support and improve the whole process of workplace health promotion (WHP) projects. However, several challenges and opportunities have to be considered while integrating these tools in WHP projects. Currently, a large number of eHealth tools are developed for changing health behavior, but these tools can support the whole WHP process, including group administration, information flow, assessment, intervention development process, or evaluation. Objective To support a successful implementation of eHealth tools in the whole WHP processes, we introduce a concept of WHP (life cycle model of WHP) with 7 steps and present critical and success factors for the implementation of eHealth tools in each step. Methods We developed a life cycle model of WHP based on the World Health Organization (WHO) model of healthy workplace continual improvement process. We suggest adaptations to the WHO model to demonstrate the large number of possibilities to implement eHealth tools in WHP as well as possible critical points in the implementation process. Results eHealth tools can enhance the efficiency of WHP in each of the 7 steps of the presented life cycle model of WHP. Specifically, eHealth tools can support by offering easier administration, providing an information and communication platform, supporting assessments, presenting and discussing assessment results in a dashboard, and offering interventions to change individual health behavior. Important success factors include the possibility to give automatic feedback about health parameters, create incentive systems, or bring together a large number of health experts in one place. Critical factors such as data security, anonymity, or lack of management involvement have to be addressed carefully to prevent nonparticipation and dropouts. Conclusions Using eHealth tools can support WHP, but clear regulations for the usage and implementation of these tools at the workplace are needed to secure quality and reach sustainable results. PMID:29475828
Preserving Simplecticity in the Numerical Integration of Linear Beam Optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Christopher K.
2017-07-01
Presented are mathematical tools and methods for the development of numerical integration techniques that preserve the symplectic condition inherent to mechanics. The intended audience is for beam physicists with backgrounds in numerical modeling and simulation with particular attention to beam optics applications. The paper focuses on Lie methods that are inherently symplectic regardless of the integration accuracy order. Section 2 provides the mathematically tools used in the sequel and necessary for the reader to extend the covered techniques. Section 3 places those tools in the context of charged-particle beam optics; in particular linear beam optics is presented in terms ofmore » a Lie algebraic matrix representation. Section 4 presents numerical stepping techniques with particular emphasis on a third-order leapfrog method. Section 5 discusses the modeling of field imperfections with particular attention to the fringe fields of quadrupole focusing magnets. The direct computation of a third order transfer matrix for a fringe field is shown.« less
Knowledge-based approach for generating target system specifications from a domain model
NASA Technical Reports Server (NTRS)
Gomaa, Hassan; Kerschberg, Larry; Sugumaran, Vijayan
1992-01-01
Several institutions in industry and academia are pursuing research efforts in domain modeling to address unresolved issues in software reuse. To demonstrate the concepts of domain modeling and software reuse, a prototype software engineering environment is being developed at George Mason University to support the creation of domain models and the generation of target system specifications. This prototype environment, which is application domain independent, consists of an integrated set of commercial off-the-shelf software tools and custom-developed software tools. This paper describes the knowledge-based tool that was developed as part of the environment to generate target system specifications from a domain model.
A Multiscale Closed-Loop Cardiovascular Model, with Applications to Heart Pacing and Hemorrhage
NASA Astrophysics Data System (ADS)
Canuto, Daniel; Eldredge, Jeff; Chong, Kwitae; Benharash, Peyman; Dutson, Erik
2017-11-01
A computational tool is developed for simulating the dynamic response of the human cardiovascular system to various stressors and injuries. The tool couples zero-dimensional models of the heart, pulmonary vasculature, and peripheral vasculature to one-dimensional models of the major systemic arteries. To simulate autonomic response, this multiscale circulatory model is integrated with a feedback model of the baroreflex, allowing control of heart rate, cardiac contractility, and peripheral impedance. The performance of the tool is demonstrated in two scenarios: increasing heart rate by stimulating the sympathetic nervous system, and an acute 10 percent hemorrhage from the left femoral artery.
NASA Astrophysics Data System (ADS)
Holt, Jason; Icarus Allen, J.; Anderson, Thomas R.; Brewin, Robert; Butenschön, Momme; Harle, James; Huse, Geir; Lehodey, Patrick; Lindemann, Christian; Memery, Laurent; Salihoglu, Baris; Senina, Inna; Yool, Andrew
2014-12-01
It has long been recognised that there are strong interactions and feedbacks between climate, upper ocean biogeochemistry and marine food webs, and also that food web structure and phytoplankton community distribution are important determinants of variability in carbon production and export from the euphotic zone. Numerical models provide a vital tool to explore these interactions, given their capability to investigate multiple connected components of the system and the sensitivity to multiple drivers, including potential future conditions. A major driver for ecosystem model development is the demand for quantitative tools to support ecosystem-based management initiatives. The purpose of this paper is to review approaches to the modelling of marine ecosystems with a focus on the North Atlantic Ocean and its adjacent shelf seas, and to highlight the challenges they face and suggest ways forward. We consider the state of the art in simulating oceans and shelf sea physics, planktonic and higher trophic level ecosystems, and look towards building an integrative approach with these existing tools. We note how the different approaches have evolved historically and that many of the previous obstacles to harmonisation may no longer be present. We illustrate this with examples from the on-going and planned modelling effort in the Integrative Modelling Work Package of the EURO-BASIN programme.
GMODWeb: a web framework for the generic model organism database
O'Connor, Brian D; Day, Allen; Cain, Scott; Arnaiz, Olivier; Sperling, Linda; Stein, Lincoln D
2008-01-01
The Generic Model Organism Database (GMOD) initiative provides species-agnostic data models and software tools for representing curated model organism data. Here we describe GMODWeb, a GMOD project designed to speed the development of model organism database (MOD) websites. Sites created with GMODWeb provide integration with other GMOD tools and allow users to browse and search through a variety of data types. GMODWeb was built using the open source Turnkey web framework and is available from . PMID:18570664
Integration Defended: Berkeley Unified's Strategy to Maintain School Diversity
ERIC Educational Resources Information Center
Chavez, Lisa; Frankenberg, Erica
2009-01-01
In June 2007, the Supreme Court limited the tools that school districts could use to voluntarily integrate schools. In the aftermath of the decision, educators around the country have sought models of successful plans that would also be legal. One such model may be Berkeley Unified School District's (BUSD) plan. Earlier this year, the California…
An Integrative Model of "Information Visibility" and "Information Seeking" on the Web
ERIC Educational Resources Information Center
Mansourian, Yazdan; Ford, Nigel; Webber, Sheila; Madden, Andrew
2008-01-01
Purpose: This paper aims to encapsulate the main procedure and key findings of a qualitative research on end-users' interactions with web-based search tools in order to demonstrate how the concept of "information visibility" emerged and how an integrative model of information visibility and information seeking on the web was constructed.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleton, Richard Stephen
2017-05-22
This presentation is part of US-China Clean Coal project and describes the impact of power plant cycling, techno economic modeling of combined IGCC and CCS, integrated capacity generation decision making for power utilities, and a new decision support tool for integrated assessment of CCUS.
Nguyen, Huu-Tho; Md Dawal, Siti Zawiah; Nukman, Yusoff; Aoyama, Hideki; Case, Keith
2015-01-01
Globalization of business and competitiveness in manufacturing has forced companies to improve their manufacturing facilities to respond to market requirements. Machine tool evaluation involves an essential decision using imprecise and vague information, and plays a major role to improve the productivity and flexibility in manufacturing. The aim of this study is to present an integrated approach for decision-making in machine tool selection. This paper is focused on the integration of a consistent fuzzy AHP (Analytic Hierarchy Process) and a fuzzy COmplex PRoportional ASsessment (COPRAS) for multi-attribute decision-making in selecting the most suitable machine tool. In this method, the fuzzy linguistic reference relation is integrated into AHP to handle the imprecise and vague information, and to simplify the data collection for the pair-wise comparison matrix of the AHP which determines the weights of attributes. The output of the fuzzy AHP is imported into the fuzzy COPRAS method for ranking alternatives through the closeness coefficient. Presentation of the proposed model application is provided by a numerical example based on the collection of data by questionnaire and from the literature. The results highlight the integration of the improved fuzzy AHP and the fuzzy COPRAS as a precise tool and provide effective multi-attribute decision-making for evaluating the machine tool in the uncertain environment. PMID:26368541
SpineCreator: a Graphical User Interface for the Creation of Layered Neural Models.
Cope, A J; Richmond, P; James, S S; Gurney, K; Allerton, D J
2017-01-01
There is a growing requirement in computational neuroscience for tools that permit collaborative model building, model sharing, combining existing models into a larger system (multi-scale model integration), and are able to simulate models using a variety of simulation engines and hardware platforms. Layered XML model specification formats solve many of these problems, however they are difficult to write and visualise without tools. Here we describe a new graphical software tool, SpineCreator, which facilitates the creation and visualisation of layered models of point spiking neurons or rate coded neurons without requiring the need for programming. We demonstrate the tool through the reproduction and visualisation of published models and show simulation results using code generation interfaced directly into SpineCreator. As a unique application for the graphical creation of neural networks, SpineCreator represents an important step forward for neuronal modelling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starke, Michael R; Abdelaziz, Omar A; Jackson, Rogerick K
Residential Simulation Tool was developed to understand the impact of residential load consumption on utilities including the role of demand response. This is complicated as many different residential loads exist and are utilized for different purposes. The tool models human behavior and contributes this to load utilization, which contributes to the electrical consumption prediction by the tool. The tool integrates a number of different databases from Department of Energy and other Government websites to support the load consumption prediction.
The center for causal discovery of biomedical knowledge from big data
Bahar, Ivet; Becich, Michael J; Benos, Panayiotis V; Berg, Jeremy; Espino, Jeremy U; Glymour, Clark; Jacobson, Rebecca Crowley; Kienholz, Michelle; Lee, Adrian V; Lu, Xinghua; Scheines, Richard
2015-01-01
The Big Data to Knowledge (BD2K) Center for Causal Discovery is developing and disseminating an integrated set of open source tools that support causal modeling and discovery of biomedical knowledge from large and complex biomedical datasets. The Center integrates teams of biomedical and data scientists focused on the refinement of existing and the development of new constraint-based and Bayesian algorithms based on causal Bayesian networks, the optimization of software for efficient operation in a supercomputing environment, and the testing of algorithms and software developed using real data from 3 representative driving biomedical projects: cancer driver mutations, lung disease, and the functional connectome of the human brain. Associated training activities provide both biomedical and data scientists with the knowledge and skills needed to apply and extend these tools. Collaborative activities with the BD2K Consortium further advance causal discovery tools and integrate tools and resources developed by other centers. PMID:26138794
OpenQuake, a platform for collaborative seismic hazard and risk assessment
NASA Astrophysics Data System (ADS)
Henshaw, Paul; Burton, Christopher; Butler, Lars; Crowley, Helen; Danciu, Laurentiu; Nastasi, Matteo; Monelli, Damiano; Pagani, Marco; Panzeri, Luigi; Simionato, Michele; Silva, Vitor; Vallarelli, Giuseppe; Weatherill, Graeme; Wyss, Ben
2013-04-01
Sharing of data and risk information, best practices, and approaches across the globe is key to assessing risk more effectively. Through global projects, open-source IT development and collaborations with more than 10 regions, leading experts are collaboratively developing unique global datasets, best practice, tools and models for global seismic hazard and risk assessment, within the context of the Global Earthquake Model (GEM). Guided by the needs and experiences of governments, companies and international organisations, all contributions are being integrated into OpenQuake: a web-based platform that - together with other resources - will become accessible in 2014. With OpenQuake, stakeholders worldwide will be able to calculate, visualize and investigate earthquake hazard and risk, capture new data and share findings for joint learning. The platform is envisaged as a collaborative hub for earthquake risk assessment, used at global and local scales, around which an active network of users has formed. OpenQuake will comprise both online and offline tools, many of which can also be used independently. One of the first steps in OpenQuake development was the creation of open-source software for advanced seismic hazard and risk calculations at any scale, the OpenQuake Engine. Although in continuous development, a command-line version of the software is already being test-driven and used by hundreds worldwide; from non-profits in Central Asia, seismologists in sub-Saharan Africa and companies in South Asia to the European seismic hazard harmonization programme (SHARE). In addition, several technical trainings were organized with scientists from different regions of the world (sub-Saharan Africa, Central Asia, Asia-Pacific) to introduce the engine and other OpenQuake tools to the community, something that will continue to happen over the coming years. Other tools that are being developed of direct interest to the hazard community are: • OpenQuake Modeller; fundamental instruments for the creation of seismogenic input models for seismic hazard assessment, a critical input to the OpenQuake Engine. OpenQuake Modeller will consist of a suite of tools (Hazard Modellers Toolkit) for characterizing the seismogenic sources of earthquakes and their models of earthquakes recurrence. An earthquake catalogue homogenization tool, for integration, statistical comparison and user-defined harmonization of multiple catalogues of earthquakes is also included in the OpenQuake modeling tools. • A data capture tool for active faults; a tool that allows geologists to draw (new) fault discoveries on a map in an intuitive GIS-environment and add details on the fault through the tool. This data, once quality checked, can then be integrated with the global active faults database, which will increase in value with every new fault insertion. Building on many ongoing efforts and the knowledge of scientists worldwide, GEM will for the first time integrate state-of-the-art data, models, results and open-source tools into a single platform. The platform will continue to increase in value, in particular for use in local contexts, through contributions from and collaborations with scientists and organisations worldwide. This presentation will showcase the OpenQuake Platform, focusing on the IT solutions that have been adopted as well as the added value that the platform will bring to scientists worldwide.
Salmon recovery planning using the VELMA model
We developed a set of tools to provide decision support for community-based salmon recovery planning in Pacific Northwest watersheds. This seminar describes how these tools are being integrated and applied in collaboration with Puget Sound tribes and community stakeholders to add...
Integrated corridor management modeling results report : Dallas, Minneapolis, and San Diego.
DOT National Transportation Integrated Search
2012-02-01
This executive summary documents the analysis methodologies, tools, and performance measures used to analyze Integrated Corridor Management (ICM) strategies; and presents high-level results for the successful implementation of ICM at three Stage 2 Pi...
Integrated energy balance analysis for Space Station Freedom
NASA Technical Reports Server (NTRS)
Tandler, John
1991-01-01
An integrated simulation model is described which characterizes the dynamic interaction of the energy transport subsystems of Space Station Freedom for given orbital conditions and for a given set of power and thermal loads. Subsystems included in the model are the Electric Power System (EPS), the Internal Thermal Control System (ITCS), the External Thermal Control System (ETCS), and the cabin Temperature and Humidity Control System (THC) (which includes the avionics air cooling, cabin air cooling, and intermodule ventilation systems). Models of the subsystems were developed in a number of system-specific modeling tools and validated. The subsystem models are then combined into integrated models to address a number of integrated performance issues involving the ability of the integrated energy transport system of Space Station Freedom to provide power, controlled cabin temperature and humidity, and equipment thermal control to support operations.
The Modular Modeling System (MMS): A toolbox for water- and environmental-resources management
Leavesley, G.H.; Markstrom, S.L.; Viger, R.J.; Hay, L.E.; ,
2005-01-01
The increasing complexity of water- and environmental-resource problems require modeling approaches that incorporate knowledge from a broad range of scientific and software disciplines. To address this need, the U.S. Geological Survey (USGS) has developed the Modular Modeling System (MMS). MMS is an integrated system of computer software for model development, integration, and application. Its modular design allows a high level of flexibility and adaptability to enable modelers to incorporate their own software into a rich array of built-in models and modeling tools. These include individual process models, tightly coupled models, loosely coupled models, and fully- integrated decision support systems. A geographic information system (GIS) interface, the USGS GIS Weasel, has been integrated with MMS to enable spatial delineation and characterization of basin and ecosystem features, and to provide objective parameter-estimation methods for models using available digital data. MMS provides optimization and sensitivity-analysis tools to analyze model parameters and evaluate the extent to which uncertainty in model parameters affects uncertainty in simulation results. MMS has been coupled with the Bureau of Reclamation object-oriented reservoir and river-system modeling framework, RiverWare, to develop models to evaluate and apply optimal resource-allocation and management strategies to complex, operational decisions on multipurpose reservoir systems and watersheds. This decision support system approach has been developed, tested, and implemented in the Gunnison, Yakima, San Joaquin, Rio Grande, and Truckee River basins of the western United States. MMS is currently being coupled with the U.S. Forest Service model SIMulating Patterns and Processes at Landscape Scales (SIMPPLLE) to assess the effects of alternative vegetation-management strategies on a variety of hydrological and ecological responses. Initial development and testing of the MMS-SIMPPLLE integration is being conducted on the Colorado Plateau region of the western United Sates.
NASA Astrophysics Data System (ADS)
Turner, M. A.
2015-12-01
Because of a lack of centralized planning and no widely-adopted standards among hydrological modeling research groups, research communities, and the data management teams meant to support research, there is chaos when it comes to data formats, spatio-temporal resolutions, ontologies, and data availability. All this makes true scientific reproducibility and collaborative integrated modeling impossible without some glue to piece it all together. Our Virtual Watershed Integrated Modeling System provides the tools and modeling framework hydrologists need to accelerate and fortify new scientific investigations by tracking provenance and providing adaptors for integrated, collaborative hydrologic modeling and data management. Under global warming trends where water resources are under increasing stress, reproducible hydrological modeling will be increasingly important to improve transparency and understanding of the scientific facts revealed through modeling. The Virtual Watershed Data Engine is capable of ingesting a wide variety of heterogeneous model inputs, outputs, model configurations, and metadata. We will demonstrate one example, starting from real-time raw weather station data packaged with station metadata. Our integrated modeling system will then create gridded input data via geostatistical methods along with error and uncertainty estimates. These gridded data are then used as input to hydrological models, all of which are available as web services wherever feasible. Models may be integrated in a data-centric way where the outputs too are tracked and used as inputs to "downstream" models. This work is part of an ongoing collaborative Tri-state (New Mexico, Nevada, Idaho) NSF EPSCoR Project, WC-WAVE, comprised of researchers from multiple universities in each of the three states. The tools produced and presented here have been developed collaboratively alongside watershed scientists to address specific modeling problems with an eye on the bigger picture of scientific reproducibility and transparency, and data publication and reuse.
Optimization of Shipboard Manning Levels Using Imprint Pro Forces Module
2015-09-01
NPS-OR-15-008 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA OPTIMIZATION OF SHIPBOARD MANNING LEVELS USING IMPRINT PRO...Optimization of Shipboard Manning Levels Using IMPRINT Pro Forces Module 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...ABSTRACT The Improved Performance Research Integration Tool ( IMPRINT ) is a dynamic, stochastic, discrete-event modeling tool used to develop a model
USDA-ARS?s Scientific Manuscript database
This paper presents a new GIS-based Best Management Practice (BMP) Tool developed for watershed managers to assist in the decision making process by simulating various scenarios using various combinations of Best Management Practices (BMPs). The development of this BMPTool is based on the integratio...
Integrating Cache Performance Modeling and Tuning Support in Parallelization Tools
NASA Technical Reports Server (NTRS)
Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)
1998-01-01
With the resurgence of distributed shared memory (DSM) systems based on cache-coherent Non Uniform Memory Access (ccNUMA) architectures and increasing disparity between memory and processors speeds, data locality overheads are becoming the greatest bottlenecks in the way of realizing potential high performance of these systems. While parallelization tools and compilers facilitate the users in porting their sequential applications to a DSM system, a lot of time and effort is needed to tune the memory performance of these applications to achieve reasonable speedup. In this paper, we show that integrating cache performance modeling and tuning support within a parallelization environment can alleviate this problem. The Cache Performance Modeling and Prediction Tool (CPMP), employs trace-driven simulation techniques without the overhead of generating and managing detailed address traces. CPMP predicts the cache performance impact of source code level "what-if" modifications in a program to assist a user in the tuning process. CPMP is built on top of a customized version of the Computer Aided Parallelization Tools (CAPTools) environment. Finally, we demonstrate how CPMP can be applied to tune a real Computational Fluid Dynamics (CFD) application.
The Virtual Learning Commons (VLC): Enabling Co-Innovation Across Disciplines
NASA Astrophysics Data System (ADS)
Pennington, D. D.; Gandara, A.; Del Rio, N.
2014-12-01
A key challenge for scientists addressing grand-challenge problems is identifying, understanding, and integrating potentially relevant methods, models and tools that that are rapidly evolving in the informatics community. Such tools are essential for effectively integrating data and models in complex research projects, yet it is often difficult to know what tools are available and it is not easy to understand or evaluate how they might be used in a given research context. The goal of the National Science Foundation-funded Virtual Learning Commons (VLC) is to improve awareness and understanding of emerging methodologies and technologies, facilitate individual and group evaluation of these, and trace the impact of innovations within and across teams, disciplines, and communities. The VLC is a Web-based social bookmarking site designed specifically to support knowledge exchange in research communities. It is founded on well-developed models of technology adoption, diffusion of innovation, and experiential learning. The VLC makes use of Web 2.0 (Social Web) and Web 3.0 (Semantic Web) approaches. Semantic Web approaches enable discovery of potentially relevant methods, models, and tools, while Social Web approaches enable collaborative learning about their function. The VLC is under development and the first release is expected Fall 2014.
Integrated Modeling, Mapping, and Simulation (IMMS) framework for planning exercises.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman-Hill, Ernest J.; Plantenga, Todd D.
2010-06-01
The Integrated Modeling, Mapping, and Simulation (IMMS) program is designing and prototyping a simulation and collaboration environment for linking together existing and future modeling and simulation tools to enable analysts, emergency planners, and incident managers to more effectively, economically, and rapidly prepare, analyze, train, and respond to real or potential incidents. When complete, the IMMS program will demonstrate an integrated modeling and simulation capability that supports emergency managers and responders with (1) conducting 'what-if' analyses and exercises to address preparedness, analysis, training, operations, and lessons learned, and (2) effectively, economically, and rapidly verifying response tactics, plans and procedures.
Model-Driven Useware Engineering
NASA Astrophysics Data System (ADS)
Meixner, Gerrit; Seissler, Marc; Breiner, Kai
User-oriented hardware and software development relies on a systematic development process based on a comprehensive analysis focusing on the users' requirements and preferences. Such a development process calls for the integration of numerous disciplines, from psychology and ergonomics to computer sciences and mechanical engineering. Hence, a correspondingly interdisciplinary team must be equipped with suitable software tools to allow it to handle the complexity of a multimodal and multi-device user interface development approach. An abstract, model-based development approach seems to be adequate for handling this complexity. This approach comprises different levels of abstraction requiring adequate tool support. Thus, in this chapter, we present the current state of our model-based software tool chain. We introduce the use model as the core model of our model-based process, transformation processes, and a model-based architecture, and we present different software tools that provide support for creating and maintaining the models or performing the necessary model transformations.
1991-01-01
EXPERIENCE IN DEVELOPING INTEGRATED OPTICAL DEVICES, NONLINEAR MAGNETIC-OPTIC MATERIALS, HIGH FREQUENCY MODULATORS, COMPUTER-AIDED MODELING AND SOPHISTICATED... HIGH -LEVEL PRESENTATION AND DISTRIBUTED CONTROL MODELS FOR INTEGRATING HETEROGENEOUS MECHANICAL ENGINEERING APPLICATIONS AND TOOLS. THE DESIGN IS FOCUSED...STATISTICALLY ACCURATE WORST CASE DEVICE MODELS FOR CIRCUIT SIMULATION. PRESENT METHODS OF WORST CASE DEVICE DESIGN ARE AD HOC AND DO NOT ALLOW THE
Application of an Integrated HPC Reliability Prediction Framework to HMMWV Suspension System
2010-09-13
model number M966 (TOW Missle Carrier, Basic Armor without weapons), since they were available. Tires used for all simulations were the bias-type...vehicle fleet, including consideration of all kinds of uncertainty, especially including model uncertainty. The end result will be a tool to use...building an adequate vehicle reliability prediction framework for military vehicles is the accurate modeling of the integration of various types of
SiGe BiCMOS manufacturing platform for mmWave applications
NASA Astrophysics Data System (ADS)
Kar-Roy, Arjun; Howard, David; Preisler, Edward; Racanelli, Marco; Chaudhry, Samir; Blaschke, Volker
2010-10-01
TowerJazz offers high volume manufacturable commercial SiGe BiCMOS technology platforms to address the mmWave market. In this paper, first, the SiGe BiCMOS process technology platforms such as SBC18 and SBC13 are described. These manufacturing platforms integrate 200 GHz fT/fMAX SiGe NPN with deep trench isolation into 0.18μm and 0.13μm node CMOS processes along with high density 5.6fF/μm2 stacked MIM capacitors, high value polysilicon resistors, high-Q metal resistors, lateral PNP transistors, and triple well isolation using deep n-well for mixed-signal integration, and, multiple varactors and compact high-Q inductors for RF needs. Second, design enablement tools that maximize performance and lowers costs and time to market such as scalable PSP and HICUM models, statistical and Xsigma models, reliability modeling tools, process control model tools, inductor toolbox and transmission line models are described. Finally, demonstrations in silicon for mmWave applications in the areas of optical networking, mobile broadband, phased array radar, collision avoidance radar and W-band imaging are listed.
Integrating geographically isolated wetlands into land ...
Wetlands across the globe provide extensive ecosystem services. However, many wetlands – especially those surrounded by uplands, often referred to as geographically isolated wetlands (GIWs) – remain poorly protected. Protection and restoration of wetlands frequently requires information on their hydrologic connectivity to other surface waters, and their cumulative watershed-scale effects. The integration of measurements and models can supply this information. However, the types of measurements and models that should be integrated are dependent on management questions and information compatibility. We summarize the importance of GIWs in watersheds and discuss what wetland connectivity means in both science and management contexts. We then describe the latest tools available to quantify GIW connectivity and explore crucial next steps to enhancing and integrating such tools. These advancements will ensure that appropriate tools are used in GIW decision making and maintaining the important ecosystem services that these wetlands support. In a nutshell: Wetlands in general receive insufficient protection and this is particularly true for geographically isolated wetlands (GIWs), which are completely surrounded by upland areas GIWs have recently gained policy attention because they provide important ecosystem services, but like most wetlands, their loss and degradation continues Knowledge of the hydrologic connections of GIWs to downstream waters is necessary for th
Integrated tokamak modeling: when physics informs engineering and research planning
NASA Astrophysics Data System (ADS)
Poli, Francesca
2017-10-01
Simulations that integrate virtually all the relevant engineering and physics aspects of a real tokamak experiment are a power tool for experimental interpretation, model validation and planning for both present and future devices. This tutorial will guide through the building blocks of an ``integrated'' tokamak simulation, such as magnetic flux diffusion, thermal, momentum and particle transport, external heating and current drive sources, wall particle sources and sinks. Emphasis is given to the connection and interplay between external actuators and plasma response, between the slow time scales of the current diffusion and the fast time scales of transport, and how reduced and high-fidelity models can contribute to simulate a whole device. To illustrate the potential and limitations of integrated tokamak modeling for discharge prediction, a helium plasma scenario for the ITER pre-nuclear phase is taken as an example. This scenario presents challenges because it requires core-edge integration and advanced models for interaction between waves and fast-ions, which are subject to a limited experimental database for validation and guidance. Starting from a scenario obtained by re-scaling parameters from the demonstration inductive ``ITER baseline'', it is shown how self-consistent simulations that encompass both core and edge plasma regions, as well as high-fidelity heating and current drive source models are needed to set constraints on the density, magnetic field and heating scheme. This tutorial aims at demonstrating how integrated modeling, when used with adequate level of criticism, can not only support design of operational scenarios, but also help to asses the limitations and gaps in the available models, thus indicating where improved modeling tools are required and how present experiments can help their validation and inform research planning. Work supported by DOE under DE-AC02-09CH1146.
2009-01-01
Background The study of biological networks has led to the development of increasingly large and detailed models. Computer tools are essential for the simulation of the dynamical behavior of the networks from the model. However, as the size of the models grows, it becomes infeasible to manually verify the predictions against experimental data or identify interesting features in a large number of simulation traces. Formal verification based on temporal logic and model checking provides promising methods to automate and scale the analysis of the models. However, a framework that tightly integrates modeling and simulation tools with model checkers is currently missing, on both the conceptual and the implementational level. Results We have developed a generic and modular web service, based on a service-oriented architecture, for integrating the modeling and formal verification of genetic regulatory networks. The architecture has been implemented in the context of the qualitative modeling and simulation tool GNA and the model checkers NUSMV and CADP. GNA has been extended with a verification module for the specification and checking of biological properties. The verification module also allows the display and visual inspection of the verification results. Conclusions The practical use of the proposed web service is illustrated by means of a scenario involving the analysis of a qualitative model of the carbon starvation response in E. coli. The service-oriented architecture allows modelers to define the model and proceed with the specification and formal verification of the biological properties by means of a unified graphical user interface. This guarantees a transparent access to formal verification technology for modelers of genetic regulatory networks. PMID:20042075
Pal, Parimal; Thakura, Ritwik; Chakrabortty, Sankha
2016-05-01
A user-friendly, menu-driven simulation software tool has been developed for the first time to optimize and analyze the system performance of an advanced continuous membrane-integrated pharmaceutical wastewater treatment plant. The software allows pre-analysis and manipulation of input data which helps in optimization and shows the software performance visually on a graphical platform. Moreover, the software helps the user to "visualize" the effects of the operating parameters through its model-predicted output profiles. The software is based on a dynamic mathematical model, developed for a systematically integrated forward osmosis-nanofiltration process for removal of toxic organic compounds from pharmaceutical wastewater. The model-predicted values have been observed to corroborate well with the extensive experimental investigations which were found to be consistent under varying operating conditions like operating pressure, operating flow rate, and draw solute concentration. Low values of the relative error (RE = 0.09) and high values of Willmott-d-index (d will = 0.981) reflected a high degree of accuracy and reliability of the software. This software is likely to be a very efficient tool for system design or simulation of an advanced membrane-integrated treatment plant for hazardous wastewater.
Predictive models of moth development
USDA-ARS?s Scientific Manuscript database
Degree-day models link ambient temperature to insect life-stages, making such models valuable tools in integrated pest management. These models increase management efficacy by predicting pest phenology. In Wisconsin, the top insect pest of cranberry production is the cranberry fruitworm, Acrobasis v...
2008-08-18
fidelity will be used to reduce the massive experimental testing and associated time required for qualification of new materials. Tools and...develping a model of the thermo-oxidative process for polymer systems, that incorporates the effects of reaction rates, Fickian diffusion, time varying...degradation processes. Year: 2005 Month: 12 Not required at this time . AIR FORCE OFFICE OF SCIENTIFIC KESEARCH 04 SEP 2008 Page 2 of 2 DTIC Data
Li, Xia; Lao, Chunhua; Liu, Yilun; Liu, Xiaoping; Chen, Yimin; Li, Shaoying; Ai, Bing; He, Zijian
2013-11-30
Ecological security has become a major issue under fast urbanization in China. As the first two cities in this country, Shenzhen and Dongguan issued the ordinance of Eco-designated Line of Control (ELC) to "wire" ecologically important areas for strict protection in 2005 and 2009 respectively. Early warning systems (EWS) are a useful tool for assisting the implementation ELC. In this study, a multi-model approach is proposed for the early warning of illegal development by integrating cellular automata (CA) and artificial neural networks (ANN). The objective is to prevent the ecological risks or catastrophe caused by such development at an early stage. The integrated model is calibrated by using the empirical information from both remote sensing and handheld GPS (global positioning systems). The MAR indicator which is the ratio of missing alarms to all the warnings is proposed for better assessment of the model performance. It is found that the fast urban development has caused significant threats to natural-area protection in the study area. The integration of CA, ANN and GPS provides a powerful tool for describing and predicting illegal development which is in highly non-linear and fragmented forms. The comparison shows that this multi-model approach has much better performances than the single-model approach for the early warning. Compared with the single models of CA and ANN, this integrated multi-model can improve the value of MAR by 65.48% and 5.17% respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Toward improved simulation of river operations through integration with a hydrologic model
Morway, Eric D.; Niswonger, Richard G.; Triana, Enrique
2016-01-01
Advanced modeling tools are needed for informed water resources planning and management. Two classes of modeling tools are often used to this end–(1) distributed-parameter hydrologic models for quantifying supply and (2) river-operation models for sorting out demands under rule-based systems such as the prior-appropriation doctrine. Within each of these two broad classes of models, there are many software tools that excel at simulating the processes specific to each discipline, but have historically over-simplified, or at worse completely neglected, aspects of the other. As a result, water managers reliant on river-operation models for administering water resources need improved tools for representing spatially and temporally varying groundwater resources in conjunctive-use systems. A new tool is described that improves the representation of groundwater/surface-water (GW-SW) interaction within a river-operations modeling context and, in so doing, advances evaluation of system-wide hydrologic consequences of new or altered management regimes.
Integrating Visualizations into Modeling NEST Simulations
Nowke, Christian; Zielasko, Daniel; Weyers, Benjamin; Peyser, Alexander; Hentschel, Bernd; Kuhlen, Torsten W.
2015-01-01
Modeling large-scale spiking neural networks showing realistic biological behavior in their dynamics is a complex and tedious task. Since these networks consist of millions of interconnected neurons, their simulation produces an immense amount of data. In recent years it has become possible to simulate even larger networks. However, solutions to assist researchers in understanding the simulation's complex emergent behavior by means of visualization are still lacking. While developing tools to partially fill this gap, we encountered the challenge to integrate these tools easily into the neuroscientists' daily workflow. To understand what makes this so challenging, we looked into the workflows of our collaborators and analyzed how they use the visualizations to solve their daily problems. We identified two major issues: first, the analysis process can rapidly change focus which requires to switch the visualization tool that assists in the current problem domain. Second, because of the heterogeneous data that results from simulations, researchers want to relate data to investigate these effectively. Since a monolithic application model, processing and visualizing all data modalities and reflecting all combinations of possible workflows in a holistic way, is most likely impossible to develop and to maintain, a software architecture that offers specialized visualization tools that run simultaneously and can be linked together to reflect the current workflow, is a more feasible approach. To this end, we have developed a software architecture that allows neuroscientists to integrate visualization tools more closely into the modeling tasks. In addition, it forms the basis for semantic linking of different visualizations to reflect the current workflow. In this paper, we present this architecture and substantiate the usefulness of our approach by common use cases we encountered in our collaborative work. PMID:26733860
Multiscale modeling of mucosal immune responses
2015-01-01
Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation. PMID:26329787
Multiscale modeling of mucosal immune responses.
Mei, Yongguo; Abedi, Vida; Carbo, Adria; Zhang, Xiaoying; Lu, Pinyi; Philipson, Casandra; Hontecillas, Raquel; Hoops, Stefan; Liles, Nathan; Bassaganya-Riera, Josep
2015-01-01
Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation.Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM.
An overview of the model integration process: From pre ...
Integration of models requires linking models which can be developed using different tools, methodologies, and assumptions. We performed a literature review with the aim of improving our understanding of model integration process, and also presenting better strategies for building integrated modeling systems. We identified five different phases to characterize integration process: pre-integration assessment, preparation of models for integration, orchestration of models during simulation, data interoperability, and testing. Commonly, there is little reuse of existing frameworks beyond the development teams and not much sharing of science components across frameworks. We believe this must change to enable researchers and assessors to form complex workflows that leverage the current environmental science available. In this paper, we characterize the model integration process and compare integration practices of different groups. We highlight key strategies, features, standards, and practices that can be employed by developers to increase reuse and interoperability of science software components and systems. The paper provides a review of the literature regarding techniques and methods employed by various modeling system developers to facilitate science software interoperability. The intent of the paper is to illustrate the wide variation in methods and the limiting effect the variation has on inter-framework reuse and interoperability. A series of recommendation
Earth Observations, Models and Geo-Design in Support of SDG Implementation and Monitoring
NASA Astrophysics Data System (ADS)
Plag, H. P.; Jules-Plag, S.
2016-12-01
Implementation and Monitoring of the United Nations' Sustainable Development Goals (SDGs) requires support from Earth observation and scientific communities. Applying a goal-based approach to determine the data needs to the Targets and Indicators associated with the SDGs demonstrates that integration of environmental with socio-economic and statistical data is required. Large data gaps exist for the built environment. A Geo-Design platform can provide the infrastructure and conceptual model for the data integration. The development of policies and actions to foster the implementation of SDGs in many cases requires research and the development of tools to answer "what if" questions. Here, agent-based models and model webs combined with a Geo-Design platform are promising avenues. This advanced combined infrastructure can also play a crucial role in the necessary capacity building. We will use the example of SDG 5 (Gender equality) to illustrate these approaches. SDG 11 (Sustainable Cities and Communities) is used to underline the cross-goal linkages and the joint benefits of Earth observations, data integration, and modeling tools for multiple SDGs.
Installation and Testing of ITER Integrated Modeling and Analysis Suite (IMAS) on DIII-D
NASA Astrophysics Data System (ADS)
Lao, L.; Kostuk, M.; Meneghini, O.; Smith, S.; Staebler, G.; Kalling, R.; Pinches, S.
2017-10-01
A critical objective of the ITER Integrated Modeling Program is the development of IMAS to support ITER plasma operation and research activities. An IMAS framework has been established based on the earlier work carried out within the EU. It consists of a physics data model and a workflow engine. The data model is capable of representing both simulation and experimental data and is applicable to ITER and other devices. IMAS has been successfully installed on a local DIII-D server using a flexible installer capable of managing the core data access tools (Access Layer and Data Dictionary) and optionally the Kepler workflow engine and coupling tools. A general adaptor for OMFIT (a workflow engine) is being built for adaptation of any analysis code to IMAS using a new IMAS universal access layer (UAL) interface developed from an existing OMFIT EU Integrated Tokamak Modeling UAL. Ongoing work includes development of a general adaptor for EFIT and TGLF based on this new UAL that can be readily extended for other physics codes within OMFIT. Work supported by US DOE under DE-FC02-04ER54698.
GIS-MODFLOW: Ein kleines OpenSource-Werkzeug zur Anbindung von GIS-Daten an MODFLOW
NASA Astrophysics Data System (ADS)
Gossel, Wolfgang
2013-06-01
The numerical model MODFLOW (Harbaugh 2005) is an efficient and up-to-date tool for groundwater flow modelling. On the other hand, Geo-Information-Systems (GIS) provide useful tools for data preparation and visualization that can also be incorporated in numerical groundwater modelling. An interface between both would therefore be useful for many hydrogeological investigations. To date, several integrated stand-alone tools have been developed that rely on MODFLOW, MODPATH and transport modelling tools. Simultaneously, several open source-GIS codes were developed to improve functionality and ease of use. These GIS tools can be used as pre- and post-processors of the numerical model MODFLOW via a suitable interface. Here we present GIS-MODFLOW as an open-source tool that provides a new universal interface by using the ESRI ASCII GRID data format that can be converted into MODFLOW input data. This tool can also treat MODFLOW results. Such a combination of MODFLOW and open-source GIS opens new possibilities to render groundwater flow modelling, and simulation results, available to larger circles of hydrogeologists.
Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Mike; Cipiti, Ben; Demuth, Scott Francis
2017-01-30
The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less
Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durkee, Joe W.; Cipiti, Ben; Demuth, Scott Francis
The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less
Automation for System Safety Analysis
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Fleming, Land; Throop, David; Thronesbery, Carroll; Flores, Joshua; Bennett, Ted; Wennberg, Paul
2009-01-01
This presentation describes work to integrate a set of tools to support early model-based analysis of failures and hazards due to system-software interactions. The tools perform and assist analysts in the following tasks: 1) extract model parts from text for architecture and safety/hazard models; 2) combine the parts with library information to develop the models for visualization and analysis; 3) perform graph analysis and simulation to identify and evaluate possible paths from hazard sources to vulnerable entities and functions, in nominal and anomalous system-software configurations and scenarios; and 4) identify resulting candidate scenarios for software integration testing. There has been significant technical progress in model extraction from Orion program text sources, architecture model derivation (components and connections) and documentation of extraction sources. Models have been derived from Internal Interface Requirements Documents (IIRDs) and FMEA documents. Linguistic text processing is used to extract model parts and relationships, and the Aerospace Ontology also aids automated model development from the extracted information. Visualizations of these models assist analysts in requirements overview and in checking consistency and completeness.
Incorporation of Electrical Systems Models Into an Existing Thermodynamic Cycle Code
NASA Technical Reports Server (NTRS)
Freeh, Josh
2003-01-01
Integration of entire system includes: Fuel cells, motors, propulsors, thermal/power management, compressors, etc. Use of existing, pre-developed NPSS capabilities includes: 1) Optimization tools; 2) Gas turbine models for hybrid systems; 3) Increased interplay between subsystems; 4) Off-design modeling capabilities; 5) Altitude effects; and 6) Existing transient modeling architecture. Other factors inclde: 1) Easier transfer between users and groups of users; 2) General aerospace industry acceptance and familiarity; and 3) Flexible analysis tool that can also be used for ground power applications.
Integration of Irma tactical scene generator into directed-energy weapon system simulation
NASA Astrophysics Data System (ADS)
Owens, Monte A.; Cole, Madison B., III; Laine, Mark R.
2003-08-01
Integrated high-fidelity physics-based simulations that include engagement models, image generation, electro-optical hardware models and control system algorithms have previously been developed by Boeing-SVS for various tracking and pointing systems. These simulations, however, had always used images with featureless or random backgrounds and simple target geometries. With the requirement to engage tactical ground targets in the presence of cluttered backgrounds, a new type of scene generation tool was required to fully evaluate system performance in this challenging environment. To answer this need, Irma was integrated into the existing suite of Boeing-SVS simulation tools, allowing scene generation capabilities with unprecedented realism. Irma is a US Air Force research tool used for high-resolution rendering and prediction of target and background signatures. The MATLAB/Simulink-based simulation achieves closed-loop tracking by running track algorithms on the Irma-generated images, processing the track errors through optical control algorithms, and moving simulated electro-optical elements. The geometry of these elements determines the sensor orientation with respect to the Irma database containing the three-dimensional background and target models. This orientation is dynamically passed to Irma through a Simulink S-function to generate the next image. This integrated simulation provides a test-bed for development and evaluation of tracking and control algorithms against representative images including complex background environments and realistic targets calibrated using field measurements.
Perceptual attraction in tool use: evidence for a reliability-based weighting mechanism.
Debats, Nienke B; Ernst, Marc O; Heuer, Herbert
2017-04-01
Humans are well able to operate tools whereby their hand movement is linked, via a kinematic transformation, to a spatially distant object moving in a separate plane of motion. An everyday example is controlling a cursor on a computer monitor. Despite these separate reference frames, the perceived positions of the hand and the object were found to be biased toward each other. We propose that this perceptual attraction is based on the principles by which the brain integrates redundant sensory information of single objects or events, known as optimal multisensory integration. That is, 1 ) sensory information about the hand and the tool are weighted according to their relative reliability (i.e., inverse variances), and 2 ) the unisensory reliabilities sum up in the integrated estimate. We assessed whether perceptual attraction is consistent with optimal multisensory integration model predictions. We used a cursor-control tool-use task in which we manipulated the relative reliability of the unisensory hand and cursor position estimates. The perceptual biases shifted according to these relative reliabilities, with an additional bias due to contextual factors that were present in experiment 1 but not in experiment 2 The biased position judgments' variances were, however, systematically larger than the predicted optimal variances. Our findings suggest that the perceptual attraction in tool use results from a reliability-based weighting mechanism similar to optimal multisensory integration, but that certain boundary conditions for optimality might not be satisfied. NEW & NOTEWORTHY Kinematic tool use is associated with a perceptual attraction between the spatially separated hand and the effective part of the tool. We provide a formal account for this phenomenon, thereby showing that the process behind it is similar to optimal integration of sensory information relating to single objects. Copyright © 2017 the American Physiological Society.
Development of a green remediation tool in Japan.
Yasutaka, Tetsuo; Zhang, Hong; Murayama, Koki; Hama, Yoshihito; Tsukada, Yasuhisa; Furukawa, Yasuhide
2016-09-01
The green remediation assessment tool for Japan (GRATJ) presented in this study is a spreadsheet-based software package developed to facilitate comparisons of the environmental impacts associated with various countermeasures against contaminated soil in Japan. This tool uses a life-cycle assessment-based model to calculate inventory inputs/outputs throughout the activity life cycle during remediation. Processes of 14 remediation methods for heavy metal contamination and 12 for volatile organic compound contamination are built into the tool. This tool can evaluate 130 inventory inputs/outputs and easily integrate those inputs/outputs into 9 impact categories, 4 integrated endpoints, and 1 index. Comparative studies can be performed by entering basic data associated with a target site. The integrated results can be presented in a simpler and clearer manner than the results of an inventory analysis. As a case study, an arsenic-contaminated soil remediation site was examined using this tool. Results showed that the integrated environmental impacts were greater with onsite remediation methods than with offsite ones. Furthermore, the contributions of CO2 to global warming, SO2 to urban air pollution, and crude oil to resource consumption were greater than other inventory inputs/outputs. The GRATJ has the potential to improve green remediation and can serve as a valuable tool for decision makers and practitioners in selecting countermeasures in Japan. Copyright © 2016 Elsevier B.V. All rights reserved.
An integrative approach to ortholog prediction for disease-focused and other functional studies.
Hu, Yanhui; Flockhart, Ian; Vinayagam, Arunachalam; Bergwitz, Clemens; Berger, Bonnie; Perrimon, Norbert; Mohr, Stephanie E
2011-08-31
Mapping of orthologous genes among species serves an important role in functional genomics by allowing researchers to develop hypotheses about gene function in one species based on what is known about the functions of orthologs in other species. Several tools for predicting orthologous gene relationships are available. However, these tools can give different results and identification of predicted orthologs is not always straightforward. We report a simple but effective tool, the Drosophila RNAi Screening Center Integrative Ortholog Prediction Tool (DIOPT; http://www.flyrnai.org/diopt), for rapid identification of orthologs. DIOPT integrates existing approaches, facilitating rapid identification of orthologs among human, mouse, zebrafish, C. elegans, Drosophila, and S. cerevisiae. As compared to individual tools, DIOPT shows increased sensitivity with only a modest decrease in specificity. Moreover, the flexibility built into the DIOPT graphical user interface allows researchers with different goals to appropriately 'cast a wide net' or limit results to highest confidence predictions. DIOPT also displays protein and domain alignments, including percent amino acid identity, for predicted ortholog pairs. This helps users identify the most appropriate matches among multiple possible orthologs. To facilitate using model organisms for functional analysis of human disease-associated genes, we used DIOPT to predict high-confidence orthologs of disease genes in Online Mendelian Inheritance in Man (OMIM) and genes in genome-wide association study (GWAS) data sets. The results are accessible through the DIOPT diseases and traits query tool (DIOPT-DIST; http://www.flyrnai.org/diopt-dist). DIOPT and DIOPT-DIST are useful resources for researchers working with model organisms, especially those who are interested in exploiting model organisms such as Drosophila to study the functions of human disease genes.
International Space Station Alpha (ISSA) Integrated Traffic Model
NASA Technical Reports Server (NTRS)
Gates, R. E.
1995-01-01
The paper discusses the development process of the International Space Station Alpha (ISSA) Integrated Traffic Model which is a subsystem analyses tool utilized in the ISSA design analysis cycles. Fast-track prototyping of the detailed relationships between daily crew and station consumables, propellant needs, maintenance requirements and crew rotation via spread sheets provide adequate benchmarks to assess cargo vehicle design and performance characteristics.
Bechmann, Marianne; Stålnacke, Per; Kvaernø, Sigurn; Eggestad, Hans Olav; Oygarden, Lillian
2009-01-01
In recent years, increased attention has been focused on models for risk assessment of source areas in agricultural landscapes. Among the simplest of such models are index tools, which have been developed particularly for phosphorus (P) and to some extent nitrogen (N). However, only a few studies have considered the development of an integrated management strategy that includes erosion and losses of both P and N. Accordingly, the major objective of this study was to initiate the development of an integrated risk assessment tool, consisting of indices for erosion, P and N. The strategy used to create the integrated tool was based on the assumption that all input data at field scale should be readily available either from ordinary agricultural statistics or from the farmer. The results from using the indices in a pilot case study catchment illustrated that losses of P and N had often different critical source areas. The P index was highest for fields with manure application and/or high soil P status or with autumn ploughing, and the N index was highest for fields with excessive N application. The integrated risk was greatest for areas with manure application and some areas with a high erosion risk in combination with high nutrient application rate. Additionally, four different management options were assessed: (1) reduced fertilisation, (2) catch crops, (3) autumn ploughing, and (4) no autumn ploughing. The results verified that reduced nutrient application and stubble during autumn and winter led to the largest decrease in index values, and it was also apparent that management changes in high-risk areas had the greatest impact on the indices. Overall, our findings indicate that the present integrated risk assessment tool with readily available input data can be used to rank farm fields according to risk of soil erosion and losses of P and N.
An Integrated Software Package to Enable Predictive Simulation Capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yousu; Fitzhenry, Erin B.; Jin, Shuangshuang
The power grid is increasing in complexity due to the deployment of smart grid technologies. Such technologies vastly increase the size and complexity of power grid systems for simulation and modeling. This increasing complexity necessitates not only the use of high-performance-computing (HPC) techniques, but a smooth, well-integrated interplay between HPC applications. This paper presents a new integrated software package that integrates HPC applications and a web-based visualization tool based on a middleware framework. This framework can support the data communication between different applications. Case studies with a large power system demonstrate the predictive capability brought by the integrated software package,more » as well as the better situational awareness provided by the web-based visualization tool in a live mode. Test results validate the effectiveness and usability of the integrated software package.« less
Quinn, T. Alexander; Kohl, Peter
2013-01-01
Since the development of the first mathematical cardiac cell model 50 years ago, computational modelling has become an increasingly powerful tool for the analysis of data and for the integration of information related to complex cardiac behaviour. Current models build on decades of iteration between experiment and theory, representing a collective understanding of cardiac function. All models, whether computational, experimental, or conceptual, are simplified representations of reality and, like tools in a toolbox, suitable for specific applications. Their range of applicability can be explored (and expanded) by iterative combination of ‘wet’ and ‘dry’ investigation, where experimental or clinical data are used to first build and then validate computational models (allowing integration of previous findings, quantitative assessment of conceptual models, and projection across relevant spatial and temporal scales), while computational simulations are utilized for plausibility assessment, hypotheses-generation, and prediction (thereby defining further experimental research targets). When implemented effectively, this combined wet/dry research approach can support the development of a more complete and cohesive understanding of integrated biological function. This review illustrates the utility of such an approach, based on recent examples of multi-scale studies of cardiac structure and mechano-electric function. PMID:23334215
Cao, Hongrui; Niu, Linkai; He, Zhengjia
2012-01-01
Bearing defects are one of the most important mechanical sources for vibration and noise generation in machine tool spindles. In this study, an integrated finite element (FE) model is proposed to predict the vibration responses of a spindle bearing system with localized bearing defects and then the sensor placement for better detection of bearing faults is optimized. A nonlinear bearing model is developed based on Jones' bearing theory, while the drawbar, shaft and housing are modeled as Timoshenko's beam. The bearing model is then integrated into the FE model of drawbar/shaft/housing by assembling equations of motion. The Newmark time integration method is used to solve the vibration responses numerically. The FE model of the spindle-bearing system was verified by conducting dynamic tests. Then, the localized bearing defects were modeled and vibration responses generated by the outer ring defect were simulated as an illustration. The optimization scheme of the sensor placement was carried out on the test spindle. The results proved that, the optimal sensor placement depends on the vibration modes under different boundary conditions and the transfer path between the excitation and the response. PMID:23012514
Integration of Air Quality & Exposure Models for Health Studies
The presentation describes a new community-scale tool called exposure model for individuals (EMI), which predicts five tiers of individual-level exposure metrics for ambient PM using outdoor concentrations, questionnaires, weather, and time-location information. In this modeling ...
Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology
Paley, Suzanne M.; Krummenacker, Markus; Latendresse, Mario; Dale, Joseph M.; Lee, Thomas J.; Kaipa, Pallavi; Gilham, Fred; Spaulding, Aaron; Popescu, Liviu; Altman, Tomer; Paulsen, Ian; Keseler, Ingrid M.; Caspi, Ron
2010-01-01
Pathway Tools is a production-quality software environment for creating a type of model-organism database called a Pathway/Genome Database (PGDB). A PGDB such as EcoCyc integrates the evolving understanding of the genes, proteins, metabolic network and regulatory network of an organism. This article provides an overview of Pathway Tools capabilities. The software performs multiple computational inferences including prediction of metabolic pathways, prediction of metabolic pathway hole fillers and prediction of operons. It enables interactive editing of PGDBs by DB curators. It supports web publishing of PGDBs, and provides a large number of query and visualization tools. The software also supports comparative analyses of PGDBs, and provides several systems biology analyses of PGDBs including reachability analysis of metabolic networks, and interactive tracing of metabolites through a metabolic network. More than 800 PGDBs have been created using Pathway Tools by scientists around the world, many of which are curated DBs for important model organisms. Those PGDBs can be exchanged using a peer-to-peer DB sharing system called the PGDB Registry. PMID:19955237
Risk Reduction and Training using Simulation Based Tools - 12180
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Irin P.
2012-07-01
Process Modeling and Simulation (M and S) has been used for many years in manufacturing and similar domains, as part of an industrial engineer's tool box. Traditionally, however, this technique has been employed in small, isolated projects where models were created from scratch, often making it time and cost prohibitive. Newport News Shipbuilding (NNS) has recognized the value of this predictive technique and what it offers in terms of risk reduction, cost avoidance and on-schedule performance of highly complex work. To facilitate implementation, NNS has been maturing a process and the software to rapidly deploy and reuse M and Smore » based decision support tools in a variety of environments. Some examples of successful applications by NNS of this technique in the nuclear domain are a reactor refueling simulation based tool, a fuel handling facility simulation based tool and a tool for dynamic radiation exposure tracking. The next generation of M and S applications include expanding simulation based tools into immersive and interactive training. The applications discussed here take a tool box approach to creating simulation based decision support tools for maximum utility and return on investment. This approach involves creating a collection of simulation tools that can be used individually or integrated together for a larger application. The refueling simulation integrates with the fuel handling facility simulation to understand every aspect and dependency of the fuel handling evolutions. This approach translates nicely to other complex domains where real system experimentation is not feasible, such as nuclear fuel lifecycle and waste management. Similar concepts can also be applied to different types of simulation techniques. For example, a process simulation of liquid waste operations may be useful to streamline and plan operations, while a chemical model of the liquid waste composition is an important tool for making decisions with respect to waste disposition. Integrating these tools into a larger virtual system provides a tool for making larger strategic decisions. The key to integrating and creating these virtual environments is the software and the process used to build them. Although important steps in the direction of using simulation based tools for nuclear domain, the applications described here represent only a small cross section of possible benefits. The next generation of applications will, likely, focus on situational awareness and adaptive planning. Situational awareness refers to the ability to visualize in real time the state of operations. Some useful tools in this area are Geographic Information Systems (GIS), which help monitor and analyze geographically referenced information. Combined with such situational awareness capability, simulation tools can serve as the platform for adaptive planning tools. These are the tools that allow the decision maker to react to the changing environment in real time by synthesizing massive amounts of data into easily understood information. For the nuclear domains, this may mean creation of Virtual Nuclear Systems, from Virtual Waste Processing Plants to Virtual Nuclear Reactors. (authors)« less
Toward an Integrated Design, Inspection and Redundancy Research Program.
1984-01-01
William Creelman William H. Silcox National Marine Service Standard Oil Company of California St. Louis, Missouri San Francisco, California .-- N...develop physical models and generic tools for analyzing the effects of redundancy, reserve strength, and residual strength on the system behavior of marine...probabilistic analyses to be applicable to real-world problems, this program needs to provide - the deterministic physical models and generic tools upon
ERIC Educational Resources Information Center
Ranscombe, Charlie; Bissett-Johnson, Katherine
2017-01-01
Literature on the use of design tools in educational settings notes an uneasy relationship between student use of traditional hand sketching and digital modelling tools (CAD) during the industrial design process. This is often manifested in the transition from sketching to CAD and exacerbated by a preference of current students to use CAD. In this…
SedInConnect: a stand-alone, free and open source tool for the assessment of sediment connectivity
NASA Astrophysics Data System (ADS)
Crema, Stefano; Cavalli, Marco
2018-02-01
There is a growing call, within the scientific community, for solid theoretic frameworks and usable indices/models to assess sediment connectivity. Connectivity plays a significant role in characterizing structural properties of the landscape and, when considered in combination with forcing processes (e.g., rainfall-runoff modelling), can represent a valuable analysis for an improved landscape management. In this work, the authors present the development and application of SedInConnect: a free, open source and stand-alone application for the computation of the Index of Connectivity (IC), as expressed in Cavalli et al. (2013) with the addition of specific innovative features. The tool is intended to have a wide variety of users, both from the scientific community and from the authorities involved in the environmental planning. Thanks to its open source nature, the tool can be adapted and/or integrated according to the users' requirements. Furthermore, presenting an easy-to-use interface and being a stand-alone application, the tool can help management experts in the quantitative assessment of sediment connectivity in the context of hazard and risk assessment. An application to a sample dataset and an overview on up-to-date applications of the approach and of the tool shows the development potential of such analyses. The modelled connectivity, in fact, appears suitable not only to characterize sediment dynamics at the catchment scale but also to integrate prediction models and as a tool for helping geomorphological interpretation.
Watershed Management Optimization Support Tool (WMOST) is a software application designed tofacilitate integrated water resources management across wet and dry climate regions. It allows waterresources managers and planners to screen a wide range of practices across their watersh...
Calculation of the Actual Cost of Engine Maintenance
2003-03-01
Cost Estimating Integrated Tools ( ACEIT ) helps analysts store, retrieve, and analyze data; build cost models; analyze risk; time phase budgets; and...Tools ( ACEIT ).” n. pag. http://www.aceit.com/ 21 February 2003. • USAMC Logistics Support Activity (LOGSA). “Cost Analysis Strategy Assessment
INTEGRATING A LANDSCAPE HYDROLOGIC ANALYSIS FOR WATERSHED ASSESSMENT
Methods to provide linkages between a hydrologic modeling tool (AGW A) and landscape assessment tool (A TtILA) for determining the vulnerability of semi-arid landscapes to natural and human-induced landscape pattern changes have been developed. The objective of this study is to ...
Computational Methods to Assess the Production Potential of Bio-Based Chemicals.
Campodonico, Miguel A; Sukumara, Sumesh; Feist, Adam M; Herrgård, Markus J
2018-01-01
Elevated costs and long implementation times of bio-based processes for producing chemicals represent a bottleneck for moving to a bio-based economy. A prospective analysis able to elucidate economically and technically feasible product targets at early research phases is mandatory. Computational tools can be implemented to explore the biological and technical spectrum of feasibility, while constraining the operational space for desired chemicals. In this chapter, two different computational tools for assessing potential for bio-based production of chemicals from different perspectives are described in detail. The first tool is GEM-Path: an algorithm to compute all structurally possible pathways from one target molecule to the host metabolome. The second tool is a framework for Modeling Sustainable Industrial Chemicals production (MuSIC), which integrates modeling approaches for cellular metabolism, bioreactor design, upstream/downstream processes, and economic impact assessment. Integrating GEM-Path and MuSIC will play a vital role in supporting early phases of research efforts and guide the policy makers with decisions, as we progress toward planning a sustainable chemical industry.
Modeling Tools for Propulsion Analysis and Computational Fluid Dynamics on the Internet
NASA Technical Reports Server (NTRS)
Muss, J. A.; Johnson, C. W.; Gotchy, M. B.
2000-01-01
The existing RocketWeb(TradeMark) Internet Analysis System (httr)://www.iohnsonrockets.com/rocketweb) provides an integrated set of advanced analysis tools that can be securely accessed over the Internet. Since these tools consist of both batch and interactive analysis codes, the system includes convenient methods for creating input files and evaluating the resulting data. The RocketWeb(TradeMark) system also contains many features that permit data sharing which, when further developed, will facilitate real-time, geographically diverse, collaborative engineering within a designated work group. Adding work group management functionality while simultaneously extending and integrating the system's set of design and analysis tools will create a system providing rigorous, controlled design development, reducing design cycle time and cost.
LLIMAS: Revolutionizing integrating modeling and analysis at MIT Lincoln Laboratory
NASA Astrophysics Data System (ADS)
Doyle, Keith B.; Stoeckel, Gerhard P.; Rey, Justin J.; Bury, Mark E.
2017-08-01
MIT Lincoln Laboratory's Integrated Modeling and Analysis Software (LLIMAS) enables the development of novel engineering solutions for advanced prototype systems through unique insights into engineering performance and interdisciplinary behavior to meet challenging size, weight, power, environmental, and performance requirements. LLIMAS is a multidisciplinary design optimization tool that wraps numerical optimization algorithms around an integrated framework of structural, thermal, optical, stray light, and computational fluid dynamics analysis capabilities. LLIMAS software is highly extensible and has developed organically across a variety of technologies including laser communications, directed energy, photometric detectors, chemical sensing, laser radar, and imaging systems. The custom software architecture leverages the capabilities of existing industry standard commercial software and supports the incorporation of internally developed tools. Recent advances in LLIMAS's Structural-Thermal-Optical Performance (STOP), aeromechanical, and aero-optical capabilities as applied to Lincoln prototypes are presented.
Construction of integrated case environments.
Losavio, Francisca; Matteo, Alfredo; Pérez, María
2003-01-01
The main goal of Computer-Aided Software Engineering (CASE) technology is to improve the entire software system development process. The CASE approach is not merely a technology; it involves a fundamental change in the process of software development. The tendency of the CASE approach, technically speaking, is the integration of tools that assist in the application of specific methods. In this sense, the environment architecture, which includes the platform and the system's hardware and software, constitutes the base of the CASE environment. The problem of tools integration has been proposed for two decades. Current integration efforts emphasize the interoperability of tools, especially in distributed environments. In this work we use the Brown approach. The environment resulting from the application of this model is called a federative environment, focusing on the fact that this architecture pays special attention to the connections among the components of the environment. This approach is now being used in component-based design. This paper describes a concrete experience in civil engineering and architecture fields, for the construction of an integrated CASE environment. A generic architectural framework based on an intermediary architectural pattern is applied to achieve the integration of the different tools. This intermediary represents the control perspective of the PAC (Presentation-Abstraction-Control) style, which has been implemented as a Mediator pattern and it has been used in the interactive systems domain. In addition, a process is given to construct the integrated CASE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodsman, Devin W.; Aukema, Brian H.; McDowell, Nate G.
Phenology models are becoming increasingly important tools to accurately predict how climate change will impact the life histories of organisms. We propose a class of integral projection phenology models derived from stochastic individual-based models of insect development and demography.Our derivation, which is based on the rate-summation concept, produces integral projection models that capture the effect of phenotypic rate variability on insect phenology, but which are typically more computationally frugal than equivalent individual-based phenology models. We demonstrate our approach using a temperature-dependent model of the demography of the mountain pine beetle (Dendroctonus ponderosae Hopkins), an insect that kills mature pine trees.more » This work illustrates how a wide range of stochastic phenology models can be reformulated as integral projection models. Due to their computational efficiency, these integral projection models are suitable for deployment in large-scale simulations, such as studies of altered pest distributions under climate change.« less
Tools for visually exploring biological networks.
Suderman, Matthew; Hallett, Michael
2007-10-15
Many tools exist for visually exploring biological networks including well-known examples such as Cytoscape, VisANT, Pathway Studio and Patika. These systems play a key role in the development of integrative biology, systems biology and integrative bioinformatics. The trend in the development of these tools is to go beyond 'static' representations of cellular state, towards a more dynamic model of cellular processes through the incorporation of gene expression data, subcellular localization information and time-dependent behavior. We provide a comprehensive review of the relative advantages and disadvantages of existing systems with two goals in mind: to aid researchers in efficiently identifying the appropriate existing tools for data visualization; to describe the necessary and realistic goals for the next generation of visualization tools. In view of the first goal, we provide in the Supplementary Material a systematic comparison of more than 35 existing tools in terms of over 25 different features. Supplementary data are available at Bioinformatics online.
Inspection of the Math Model Tools for On-Orbit Assessment of Impact Damage Report
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Raju, Ivatury S.; Piascik, Robert S>
2007-01-01
In Spring of 2005, the NASA Engineering Safety Center (NESC) was engaged by the Space Shuttle Program (SSP) to peer review the suite of analytical tools being developed to support the determination of impact and damage tolerance of the Orbiter Thermal Protection Systems (TPS). The NESC formed an independent review team with the core disciplines of materials, flight sciences, structures, mechanical analysis and thermal analysis. The Math Model Tools reviewed included damage prediction and stress analysis, aeroheating analysis, and thermal analysis tools. Some tools are physics-based and other tools are empirically-derived. Each tool was created for a specific use and timeframe, including certification, real-time pre-launch assessments. In addition, the tools are used together in an integrated strategy for assessing the ramifications of impact damage to tile and RCC. The NESC teams conducted a peer review of the engineering data package for each Math Model Tool. This report contains the summary of the team observations and recommendations from these reviews.
Chen, J.; Wu, Y.
2012-01-01
This paper presents a study of the integration of the Soil and Water Assessment Tool (SWAT) model and the TOPographic MODEL (TOPMODEL) features for enhancing the physical representation of hydrologic processes. In SWAT, four hydrologic processes, which are surface runoff, baseflow, groundwater re-evaporation and deep aquifer percolation, are modeled by using a group of empirical equations. The empirical equations usually constrain the simulation capability of relevant processes. To replace these equations and to model the influences of topography and water table variation on streamflow generation, the TOPMODEL features are integrated into SWAT, and a new model, the so-called SWAT-TOP, is developed. In the new model, the process of deep aquifer percolation is removed, the concept of groundwater re-evaporation is refined, and the processes of surface runoff and baseflow are remodeled. Consequently, three parameters in SWAT are discarded, and two new parameters to reflect the TOPMODEL features are introduced. SWAT-TOP and SWAT are applied to the East River basin in South China, and the results reveal that, compared with SWAT, the new model can provide a more reasonable simulation of the hydrologic processes of surface runoff, groundwater re-evaporation, and baseflow. This study evidences that an established hydrologic model can be further improved by integrating the features of another model, which is a possible way to enhance our understanding of the workings of catchments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, William D.; Craig, Anthony P.; Truesdale, John E.
The integrated Earth System Model (iESM) has been developed as a new tool for pro- jecting the joint human/climate system. The iESM is based upon coupling an Integrated Assessment Model (IAM) and an Earth System Model (ESM) into a common modeling in- frastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species, land use and land cover change, and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human dimension modeling of an IAM and a fully coupled ESM within a sin- gle simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore- omitted feedbacks between natural and societal drivers, we can improve scientific under- standing of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper de- scribes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, W. D.; Craig, A. P.; Truesdale, J. E.
The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less
NASA Space Radiation Program Integrative Risk Model Toolkit
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris
2015-01-01
NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.
A Framework for Daylighting Optimization in Whole Buildings with OpenStudio
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-08-12
We present a toolkit and workflow for leveraging the OpenStudio (Guglielmetti et al. 2010) platform to perform daylighting analysis and optimization in a whole building energy modeling (BEM) context. We have re-implemented OpenStudio's integrated Radiance and EnergyPlus functionality as an OpenStudio Measure. The OpenStudio Radiance Measure works within the OpenStudio Application and Parametric Analysis Tool, as well as the OpenStudio Server large scale analysis framework, allowing a rigorous daylighting simulation to be performed on a single building model or potentially an entire population of programmatically generated models. The Radiance simulation results can automatically inform the broader building energy model, andmore » provide dynamic daylight metrics as a basis for decision. Through introduction and example, this paper illustrates the utility of the OpenStudio building energy modeling platform to leverage existing simulation tools for integrated building energy performance simulation, daylighting analysis, and reportage.« less
Modeling and Simulation of Phased Array Antennas to Support Next-Generation Satellite Design
NASA Technical Reports Server (NTRS)
Tchorowski, Nicole; Murawski, Robert; Manning, Robert; Fuentes, Michael
2016-01-01
Developing enhanced simulation capabilities has become a significant priority for the Space Communications and Navigation (SCaN) project at NASA as new space communications technologies are proposed to replace aging NASA communications assets, such as the Tracking and Data Relay Satellite System (TDRSS). When developing the architecture for these new space communications assets, it is important to develop updated modeling and simulation methodologies, such that competing architectures can be weighed against one another and the optimal path forward can be determined. There have been many simulation tools developed here at NASA for the simulation of single RF link budgets, or for the modeling and simulation of an entire network of spacecraft and their supporting SCaN network elements. However, the modeling capabilities are never fully complete and as new technologies are proposed, gaps are identified. One such gap is the ability to rapidly develop high fidelity simulation models of electronically steerable phased array systems. As future relay satellite architectures are proposed that include optical communications links, electronically steerable antennas will become more desirable due to the reduction in platform vibration introduced by mechanically steerable devices. In this research, we investigate how modeling of these antennas can be introduced into out overall simulation and modeling structure. The ultimate goal of this research is two-fold. First, to enable NASA engineers to model various proposed simulation architectures and determine which proposed architecture meets the given architectural requirements. Second, given a set of communications link requirements for a proposed satellite architecture, determine the optimal configuration for a phased array antenna. There is a variety of tools available that can be used to model phased array antennas. To meet our stated goals, the first objective of this research is to compare the subset of tools available to us, trading-off modeling fidelity of the tool with simulation performance. When comparing several proposed architectures, higher- fidelity modeling may be desirable, however, when iterating a proposed set of communication link requirements across ranges of phased array configuration parameters, the practicality of performance becomes a significant requirement. In either case, a minimum simulation - fidelity must be met, regardless of performance considerations, which will be discussed in this research. Given a suitable set of phased array modeling tools, this research then focuses on integration with current SCaN modeling and simulation tools. While properly modeling the antenna elements of a system are vital, this is only a small part of the end-to-end communication path between a satellite and the supporting ground station and/or relay satellite assets. To properly model a proposed simulation architecture, this toolset must be integrated with other commercial and government development tools, such that the overall architecture can be examined in terms of communications, reliability, and cost. In this research, integration with previously developed communication tools is investigated.
LINKING THE CMAQ AND HYSPLIT MODELING SYSTEM INTERFACE PROGRAM AND EXAMPLE APPLICATION
A new software tool has been developed to link the Eulerian-based Community Multiscale Air Quality (CMAQ) modeling system with the Lagrangian-based HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model. Both models require many of the same hourly meteorological...
Code modernization and modularization of APEX and SWAT watershed simulation models
USDA-ARS?s Scientific Manuscript database
SWAT (Soil and Water Assessment Tool) and APEX (Agricultural Policy / Environmental eXtender) are respectively large and small watershed simulation models derived from EPIC Environmental Policy Integrated Climate), a field-scale agroecology simulation model. All three models are coded in FORTRAN an...
OpenMI: the essential concepts and their implications for legacy software
NASA Astrophysics Data System (ADS)
Gregersen, J. B.; Gijsbers, P. J. A.; Westen, S. J. P.; Blind, M.
2005-08-01
Information & Communication Technology (ICT) tools such as computational models are very helpful in designing river basin management plans (rbmp-s). However, in the scientific world there is consensus that a single integrated modelling system to support e.g. the implementation of the Water Framework Directive cannot be developed and that integrated systems need to be very much tailored to the local situation. As a consequence there is an urgent need to increase the flexibility of modelling systems, such that dedicated model systems can be developed from available building blocks. The HarmonIT project aims at precisely that. Its objective is to develop and implement a standard interface for modelling components and other relevant tools: The Open Modelling Interface (OpenMI) standard. The OpenMI standard has been completed and documented. It relies entirely on the "pull" principle, where data are pulled by one model from the previous model in the chain. This paper gives an overview of the OpenMI standard, explains the foremost concepts and the rational behind it.
Introducing GHOST: The Geospace/Heliosphere Observation & Simulation Tool-kit
NASA Astrophysics Data System (ADS)
Murphy, J. J.; Elkington, S. R.; Schmitt, P.; Wiltberger, M. J.; Baker, D. N.
2013-12-01
Simulation models of the heliospheric and geospace environments can provide key insights into the geoeffective potential of solar disturbances such as Coronal Mass Ejections and High Speed Solar Wind Streams. Advanced post processing of the results of these simulations greatly enhances the utility of these models for scientists and other researchers. Currently, no supported centralized tool exists for performing these processing tasks. With GHOST, we introduce a toolkit for the ParaView visualization environment that provides a centralized suite of tools suited for Space Physics post processing. Building on the work from the Center For Integrated Space Weather Modeling (CISM) Knowledge Transfer group, GHOST is an open-source tool suite for ParaView. The tool-kit plugin currently provides tools for reading LFM and Enlil data sets, and provides automated tools for data comparison with NASA's CDAweb database. As work progresses, many additional tools will be added and through open-source collaboration, we hope to add readers for additional model types, as well as any additional tools deemed necessary by the scientific public. The ultimate end goal of this work is to provide a complete Sun-to-Earth model analysis toolset.
NASA Technical Reports Server (NTRS)
Bavuso, Salvatore J.; Rothmann, Elizabeth; Mittal, Nitin; Koppen, Sandra Howell
1994-01-01
The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. HiRel consists of interactive graphical input/output programs and four reliability/availability modeling engines that provide analytical and simulative solutions to a wide host of highly reliable fault-tolerant system architectures and is also applicable to electronic systems in general. The tool system was designed at the outset to be compatible with most computing platforms and operating systems, and some programs have been beta tested within the aerospace community for over 8 years. This document is a user's guide for the HiRel graphical preprocessor Graphics Oriented (GO) program. GO is a graphical user interface for the HARP engine that enables the drawing of reliability/availability models on a monitor. A mouse is used to select fault tree gates or Markov graphical symbols from a menu for drawing.
NASA Technical Reports Server (NTRS)
Sproles, Darrell W.; Bavuso, Salvatore J.
1994-01-01
The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. HiRel consists of interactive graphical input/output programs and four reliability/availability modeling engines that provide analytical and simulative solutions to a wide host of highly reliable fault-tolerant system architectures and is also applicable to electronic systems in general. The tool system was designed at the outset to be compatible with most computing platforms and operating systems and some programs have been beta tested within the aerospace community for over 8 years. This document is a user's guide for the HiRel graphical postprocessor program HARPO (HARP Output). HARPO reads ASCII files generated by HARP. It provides an interactive plotting capability that can be used to display alternate model data for trade-off analyses. File data can also be imported to other commercial software programs.
NASA Technical Reports Server (NTRS)
Kerstman, Eric L.; Minard, Charles; FreiredeCarvalho, Mary H.; Walton, Marlei E.; Myers, Jerry G., Jr.; Saile, Lynn G.; Lopez, Vilma; Butler, Douglas J.; Johnson-Throop, Kathy A.
2011-01-01
This slide presentation reviews the Integrated Medical Model (IMM) and its use as a risk assessment and decision support tool for human space flight missions. The IMM is an integrated, quantified, evidence-based decision support tool useful to NASA crew health and mission planners. It is intended to assist in optimizing crew health, safety and mission success within the constraints of the space flight environment for in-flight operations. It uses ISS data to assist in planning for the Exploration Program and it is not intended to assist in post flight research. The IMM was used to update Probability Risk Assessment (PRA) for the purpose of updating forecasts for the conditions requiring evacuation (EVAC) or Loss of Crew Life (LOC) for the ISS. The IMM validation approach includes comparison with actual events and involves both qualitative and quantitaive approaches. The results of these comparisons are reviewed. Another use of the IMM is to optimize the medical kits taking into consideration the specific mission and the crew profile. An example of the use of the IMM to optimize the medical kits is reviewed.
A fully integrated SWAT-MODFLOW hydrologic model
USDA-ARS?s Scientific Manuscript database
The Soil and Water Assessment Tool (SWAT) and MODFLOW models are being used worldwide for managing surface and groundwater water resources. The SWAT models hydrological processes occurring at the surface including shallow aquifers, while MODFLOW simulate groundwater processes. However, neither SWAT ...
NASA Astrophysics Data System (ADS)
Lau, Katherine; Isabelle, Martin; Lloyd, Gavin R.; Old, Oliver; Shepherd, Neil; Bell, Ian M.; Dorney, Jennifer; Lewis, Aaran; Gaifulina, Riana; Rodriguez-Justo, Manuel; Kendall, Catherine; Stone, Nicolas; Thomas, Geraint; Reece, David
2016-03-01
Despite the demonstrated potential as an accurate cancer diagnostic tool, Raman spectroscopy (RS) is yet to be adopted by the clinic for histopathology reviews. The Stratified Medicine through Advanced Raman Technologies (SMART) consortium has begun to address some of the hurdles in its adoption for cancer diagnosis. These hurdles include awareness and acceptance of the technology, practicality of integration into the histopathology workflow, data reproducibility and availability of transferrable models. We have formed a consortium, in joint efforts, to develop optimised protocols for tissue sample preparation, data collection and analysis. These protocols will be supported by provision of suitable hardware and software tools to allow statistically sound classification models to be built and transferred for use on different systems. In addition, we are building a validated gastrointestinal (GI) cancers model, which can be trialled as part of the histopathology workflow at hospitals, and a classification tool. At the end of the project, we aim to deliver a robust Raman based diagnostic platform to enable clinical researchers to stage cancer, define tumour margin, build cancer diagnostic models and discover novel disease bio markers.
Models Extracted from Text for System-Software Safety Analyses
NASA Technical Reports Server (NTRS)
Malin, Jane T.
2010-01-01
This presentation describes extraction and integration of requirements information and safety information in visualizations to support early review of completeness, correctness, and consistency of lengthy and diverse system safety analyses. Software tools have been developed and extended to perform the following tasks: 1) extract model parts and safety information from text in interface requirements documents, failure modes and effects analyses and hazard reports; 2) map and integrate the information to develop system architecture models and visualizations for safety analysts; and 3) provide model output to support virtual system integration testing. This presentation illustrates the methods and products with a rocket motor initiation case.
Jimenez, Paulino; Bregenzer, Anita
2018-02-23
Electronic health (eHealth) and mobile health (mHealth) tools can support and improve the whole process of workplace health promotion (WHP) projects. However, several challenges and opportunities have to be considered while integrating these tools in WHP projects. Currently, a large number of eHealth tools are developed for changing health behavior, but these tools can support the whole WHP process, including group administration, information flow, assessment, intervention development process, or evaluation. To support a successful implementation of eHealth tools in the whole WHP processes, we introduce a concept of WHP (life cycle model of WHP) with 7 steps and present critical and success factors for the implementation of eHealth tools in each step. We developed a life cycle model of WHP based on the World Health Organization (WHO) model of healthy workplace continual improvement process. We suggest adaptations to the WHO model to demonstrate the large number of possibilities to implement eHealth tools in WHP as well as possible critical points in the implementation process. eHealth tools can enhance the efficiency of WHP in each of the 7 steps of the presented life cycle model of WHP. Specifically, eHealth tools can support by offering easier administration, providing an information and communication platform, supporting assessments, presenting and discussing assessment results in a dashboard, and offering interventions to change individual health behavior. Important success factors include the possibility to give automatic feedback about health parameters, create incentive systems, or bring together a large number of health experts in one place. Critical factors such as data security, anonymity, or lack of management involvement have to be addressed carefully to prevent nonparticipation and dropouts. Using eHealth tools can support WHP, but clear regulations for the usage and implementation of these tools at the workplace are needed to secure quality and reach sustainable results. ©Paulino Jimenez, Anita Bregenzer. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 23.02.2018.
Open Source GIS based integrated watershed management
NASA Astrophysics Data System (ADS)
Byrne, J. M.; Lindsay, J.; Berg, A. A.
2013-12-01
Optimal land and water management to address future and current resource stresses and allocation challenges requires the development of state-of-the-art geomatics and hydrological modelling tools. Future hydrological modelling tools should be of high resolution, process based with real-time capability to assess changing resource issues critical to short, medium and long-term enviromental management. The objective here is to merge two renowned, well published resource modeling programs to create an source toolbox for integrated land and water management applications. This work will facilitate a much increased efficiency in land and water resource security, management and planning. Following an 'open-source' philosophy, the tools will be computer platform independent with source code freely available, maximizing knowledge transfer and the global value of the proposed research. The envisioned set of water resource management tools will be housed within 'Whitebox Geospatial Analysis Tools'. Whitebox, is an open-source geographical information system (GIS) developed by Dr. John Lindsay at the University of Guelph. The emphasis of the Whitebox project has been to develop a user-friendly interface for advanced spatial analysis in environmental applications. The plugin architecture of the software is ideal for the tight-integration of spatially distributed models and spatial analysis algorithms such as those contained within the GENESYS suite. Open-source development extends knowledge and technology transfer to a broad range of end-users and builds Canadian capability to address complex resource management problems with better tools and expertise for managers in Canada and around the world. GENESYS (Generate Earth Systems Science input) is an innovative, efficient, high-resolution hydro- and agro-meteorological model for complex terrain watersheds developed under the direction of Dr. James Byrne. GENESYS is an outstanding research and applications tool to address challenging resource management issues in industry, government and nongovernmental agencies. Current research and analysis tools were developed to manage meteorological, climatological, and land and water resource data efficiently at high resolution in space and time. The deliverable for this work is a Whitebox-GENESYS open-source resource management capacity with routines for GIS based watershed management including water in agriculture and food production. We are adding urban water management routines through GENESYS in 2013-15 with an engineering PhD candidate. Both Whitebox-GAT and GENESYS are already well-established tools. The proposed research will combine these products to create an open-source geomatics based water resource management tool that is revolutionary in both capacity and availability to a wide array of Canadian and global users
An integrated computational tool for precipitation simulation
NASA Astrophysics Data System (ADS)
Cao, W.; Zhang, F.; Chen, S.-L.; Zhang, C.; Chang, Y. A.
2011-07-01
Computer aided materials design is of increasing interest because the conventional approach solely relying on experimentation is no longer viable within the constraint of available resources. Modeling of microstructure and mechanical properties during precipitation plays a critical role in understanding the behavior of materials and thus accelerating the development of materials. Nevertheless, an integrated computational tool coupling reliable thermodynamic calculation, kinetic simulation, and property prediction of multi-component systems for industrial applications is rarely available. In this regard, we are developing a software package, PanPrecipitation, under the framework of integrated computational materials engineering to simulate precipitation kinetics. It is seamlessly integrated with the thermodynamic calculation engine, PanEngine, to obtain accurate thermodynamic properties and atomic mobility data necessary for precipitation simulation.
DOT National Transportation Integrated Search
2013-06-03
"Integrated Global Positioning System and Inertial Navigation Unit (GPS/INU) Simulator for Enhanced Traffic Safety," is a project awarded to Ohio State University to integrate different simulation models to accurately study the relationship between v...
A System Dynamics Model for Integrated Decision Making: The Durham-Orange Light Rail Project
EPA’s Sustainable and Healthy Communities Research Program (SHC) is conducting transdisciplinary research to inform and empower decision-makers. EPA tools and approaches are being developed to enable communities to effectively weigh and integrate human health, socioeconomic, envi...
Integrated Functional and Executional Modelling of Software Using Web-Based Databases
NASA Technical Reports Server (NTRS)
Kulkarni, Deepak; Marietta, Roberta
1998-01-01
NASA's software subsystems undergo extensive modification and updates over the operational lifetimes. It is imperative that modified software should satisfy safety goals. This report discusses the difficulties encountered in doing so and discusses a solution based on integrated modelling of software, use of automatic information extraction tools, web technology and databases. To appear in an article of Journal of Database Management.
International Space Station Alpha (ISSA) Integrated Traffic Model
NASA Technical Reports Server (NTRS)
Gates, Robert E.
1994-01-01
The paper discusses the development process of the International Space Station Alpha (ISSA) Integrated Traffic Model which is a subsystem analyses tool utilized in the ISSA design analysis cycles. Fast-track prototyping of the detailed relationships between daily crew and station consumables, propellant needs, maintenance requirements, and crew rotation via spread sheets provides adequate bench marks to assess cargo vehicle design and performance characteristics.
Probabilistic Model Development
NASA Technical Reports Server (NTRS)
Adam, James H., Jr.
2010-01-01
Objective: Develop a Probabilistic Model for the Solar Energetic Particle Environment. Develop a tool to provide a reference solar particle radiation environment that: 1) Will not be exceeded at a user-specified confidence level; 2) Will provide reference environments for: a) Peak flux; b) Event-integrated fluence; and c) Mission-integrated fluence. The reference environments will consist of: a) Elemental energy spectra; b) For protons, helium and heavier ions.
Design of an integrated airframe/propulsion control system architecture
NASA Technical Reports Server (NTRS)
Cohen, Gerald C.; Lee, C. William; Strickland, Michael J.
1990-01-01
The design of an integrated airframe/propulsion control system architecture is described. The design is based on a prevalidation methodology that used both reliability and performance tools. An account is given of the motivation for the final design and problems associated with both reliability and performance modeling. The appendices contain a listing of the code for both the reliability and performance model used in the design.
Blodgett, David L.; Lucido, Jessica M.; Kreft, James M.
2016-01-01
Critical water-resources issues ranging from flood response to water scarcity make access to integrated water information, services, tools, and models essential. Since 1995 when the first water data web pages went online, the U.S. Geological Survey has been at the forefront of water data distribution and integration. Today, real-time and historical streamflow observations are available via web pages and a variety of web service interfaces. The Survey has built partnerships with Federal and State agencies to integrate hydrologic data providing continuous observations of surface and groundwater, temporally discrete water quality data, groundwater well logs, aquatic biology data, water availability and use information, and tools to help characterize the landscape for modeling. In this paper, we summarize the status and design patterns implemented for selected data systems. We describe how these systems contribute to a U.S. Federal Open Water Data Initiative and present some gaps and lessons learned that apply to global hydroinformatics data infrastructure.
Development of Multi-slice Analytical Tool to Support BIM-based Design Process
NASA Astrophysics Data System (ADS)
Atmodiwirjo, P.; Johanes, M.; Yatmo, Y. A.
2017-03-01
This paper describes the on-going development of computational tool to analyse architecture and interior space based on multi-slice representation approach that is integrated with Building Information Modelling (BIM). Architecture and interior space is experienced as a dynamic entity, which have the spatial properties that might be variable from one part of space to another, therefore the representation of space through standard architectural drawings is sometimes not sufficient. The representation of space as a series of slices with certain properties in each slice becomes important, so that the different characteristics in each part of space could inform the design process. The analytical tool is developed for use as a stand-alone application that utilises the data exported from generic BIM modelling tool. The tool would be useful to assist design development process that applies BIM, particularly for the design of architecture and interior spaces that are experienced as continuous spaces. The tool allows the identification of how the spatial properties change dynamically throughout the space and allows the prediction of the potential design problems. Integrating the multi-slice analytical tool in BIM-based design process thereby could assist the architects to generate better design and to avoid unnecessary costs that are often caused by failure to identify problems during design development stages.
MMM: A toolbox for integrative structure modeling.
Jeschke, Gunnar
2018-01-01
Structural characterization of proteins and their complexes may require integration of restraints from various experimental techniques. MMM (Multiscale Modeling of Macromolecules) is a Matlab-based open-source modeling toolbox for this purpose with a particular emphasis on distance distribution restraints obtained from electron paramagnetic resonance experiments on spin-labelled proteins and nucleic acids and their combination with atomistic structures of domains or whole protomers, small-angle scattering data, secondary structure information, homology information, and elastic network models. MMM does not only integrate various types of restraints, but also various existing modeling tools by providing a common graphical user interface to them. The types of restraints that can support such modeling and the available model types are illustrated by recent application examples. © 2017 The Protein Society.
DIDEM - An integrated model for comparative health damage costs calculation of air pollution
NASA Astrophysics Data System (ADS)
Ravina, Marco; Panepinto, Deborah; Zanetti, Maria Chiara
2018-01-01
Air pollution represents a continuous hazard to human health. Administration, companies and population need efficient indicators of the possible effects given by a change in decision, strategy or habit. The monetary quantification of health effects of air pollution through the definition of external costs is increasingly recognized as a useful indicator to support decision and information at all levels. The development of modelling tools for the calculation of external costs can provide support to analysts in the development of consistent and comparable assessments. In this paper, the DIATI Dispersion and Externalities Model (DIDEM) is presented. The DIDEM model calculates the delta-external costs of air pollution comparing two alternative emission scenarios. This tool integrates CALPUFF's advanced dispersion modelling with the latest WHO recommendations on concentration-response functions. The model is based on the impact pathway method. It was designed to work with a fine spatial resolution and a local or national geographic scope. The modular structure allows users to input their own data sets. The DIDEM model was tested on a real case study, represented by a comparative analysis of the district heating system in Turin, Italy. Additional advantages and drawbacks of the tool are discussed in the paper. A comparison with other existing models worldwide is reported.
Computer assisted surgery with 3D robot models and visualisation of the telesurgical action.
Rovetta, A
2000-01-01
This paper deals with the support of virtual reality computer action in the procedures of surgical robotics. Computer support gives a direct representation of the surgical theatre. The modelization of the procedure in course and in development gives a psychological reaction towards safety and reliability. Robots similar to the ones used by the manufacturing industry can be used with little modification as very effective surgical tools. They have high precision, repeatability and are versatile in integrating with the medical instrumentation. Now integrated surgical rooms, with computer and robot-assisted intervention, are operating. The computer is the element for a decision taking aid, and the robot works as a very effective tool.
Decision support system based on DPSIR framework for a low flow Mediterranean river basin
NASA Astrophysics Data System (ADS)
Bangash, Rubab Fatima; Kumar, Vikas; Schuhmacher, Marta
2013-04-01
The application of decision making practices are effectively enhanced by adopting a procedural approach setting out a general methodological framework within which specific methods, models and tools can be integrated. Integrated Catchment Management is a process that recognizes the river catchment as a basic organizing unit for understanding and managing ecosystem process. Decision support system becomes more complex by considering unavoidable human activities within a catchment that are motivated by multiple and often competing criteria and/or constraints. DPSIR is a causal framework for describing the interactions between society and the environment. This framework has been adopted by the European Environment Agency and the components of this model are: Driving forces, Pressures, States, Impacts and Responses. The proposed decision support system is a two step framework based on DPSIR. Considering first three component of DPSIR, Driving forces, Pressures and States, hydrological and ecosystem services models are developed. The last two components, Impact and Responses, helped to develop Bayesian Network to integrate the models. This decision support system also takes account of social, economic and environmental aspects. A small river of Catalonia (Northeastern Spain), Francoli River with a low flow (~2 m3/s) is selected for integration of catchment assessment models and to improve knowledge transfer from research to the stakeholders with a view to improve decision making process. DHI's MIKE BASIN software is used to evaluate the low-flow Francolí River with respect to the water bodies' characteristics and also to assess the impact of human activities aiming to achieve good water status for all waters to comply with the WFD's River Basin Management Plan. Based on ArcGIS, MIKE BASIN is a versatile decision support tool that provides a simple and powerful framework for managers and stakeholders to address multisectoral allocation and environmental issues in river basins. While InVEST is a spatially explicit tool, used to model and map a suite of ecosystem services caused by land cover changes or climate change impacts. Moreover, results obtained from low-flow hydrological simulation and ecosystem services models serves as useful tools to develop decision support system based on DPSIR framework by integrating models. Bayesian Networks is used as a knowledge integration and visualization tool to summarize the outcomes of hydrological and ecosystem services models at the "Response" stage of DPSIR. Bayesian Networks provide a framework for modelling the logical relationship between catchment variables and decision objectives by quantifying the strength of these relationships using conditional probabilities. Participatory nature of this framework can provide better communication of water research, particularly in the context of a perceived lack of future awareness-raising with the public that helps to develop more sustainable water management strategies. Acknowledgements The present study was financially supported by Spanish Ministry of Economy and Competitiveness for its financial support through the project SCARCE (Consolider-Ingenio 2010 CSD2009-00065). R. F. Bangash also received PhD fellowship from AGAUR (Commissioner for Universities and Research of the Department of Innovation, Universities and Enterprise of the "Generalitat de Catalunya" and the European Social Fund).
ballaxy: web services for structural bioinformatics.
Hildebrandt, Anna Katharina; Stöckel, Daniel; Fischer, Nina M; de la Garza, Luis; Krüger, Jens; Nickels, Stefan; Röttig, Marc; Schärfe, Charlotta; Schumann, Marcel; Thiel, Philipp; Lenhof, Hans-Peter; Kohlbacher, Oliver; Hildebrandt, Andreas
2015-01-01
Web-based workflow systems have gained considerable momentum in sequence-oriented bioinformatics. In structural bioinformatics, however, such systems are still relatively rare; while commercial stand-alone workflow applications are common in the pharmaceutical industry, academic researchers often still rely on command-line scripting to glue individual tools together. In this work, we address the problem of building a web-based system for workflows in structural bioinformatics. For the underlying molecular modelling engine, we opted for the BALL framework because of its extensive and well-tested functionality in the field of structural bioinformatics. The large number of molecular data structures and algorithms implemented in BALL allows for elegant and sophisticated development of new approaches in the field. We hence connected the versatile BALL library and its visualization and editing front end BALLView with the Galaxy workflow framework. The result, which we call ballaxy, enables the user to simply and intuitively create sophisticated pipelines for applications in structure-based computational biology, integrated into a standard tool for molecular modelling. ballaxy consists of three parts: some minor modifications to the Galaxy system, a collection of tools and an integration into the BALL framework and the BALLView application for molecular modelling. Modifications to Galaxy will be submitted to the Galaxy project, and the BALL and BALLView integrations will be integrated in the next major BALL release. After acceptance of the modifications into the Galaxy project, we will publish all ballaxy tools via the Galaxy toolshed. In the meantime, all three components are available from http://www.ball-project.org/ballaxy. Also, docker images for ballaxy are available at https://registry.hub.docker.com/u/anhi/ballaxy/dockerfile/. ballaxy is licensed under the terms of the GPL. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A platform for dynamic simulation and control of movement based on OpenSim and MATLAB.
Mansouri, Misagh; Reinbolt, Jeffrey A
2012-05-11
Numerical simulations play an important role in solving complex engineering problems and have the potential to revolutionize medical decision making and treatment strategies. In this paper, we combine the rapid model-based design, control systems and powerful numerical method strengths of MATLAB/Simulink with the simulation and human movement dynamics strengths of OpenSim by developing a new interface between the two software tools. OpenSim is integrated with Simulink using the MATLAB S-function mechanism, and the interface is demonstrated using both open-loop and closed-loop control systems. While the open-loop system uses MATLAB/Simulink to separately reproduce the OpenSim Forward Dynamics Tool, the closed-loop system adds the unique feature of feedback control to OpenSim, which is necessary for most human movement simulations. An arm model example was successfully used in both open-loop and closed-loop cases. For the open-loop case, the simulation reproduced results from the OpenSim Forward Dynamics Tool with root mean square (RMS) differences of 0.03° for the shoulder elevation angle and 0.06° for the elbow flexion angle. MATLAB's variable step-size integrator reduced the time required to generate the forward dynamic simulation from 7.1s (OpenSim) to 2.9s (MATLAB). For the closed-loop case, a proportional-integral-derivative controller was used to successfully balance a pole on model's hand despite random force disturbances on the pole. The new interface presented here not only integrates the OpenSim and MATLAB/Simulink software tools, but also will allow neuroscientists, physiologists, biomechanists, and physical therapists to adapt and generate new solutions as treatments for musculoskeletal conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.
USGS perspectives on an integrated approach to watershed and coastal management
Larsen, Matthew C.; Hamilton, Pixie A.; Haines, John W.; Mason, Jr., Robert R.
2010-01-01
The writers discuss three critically important steps necessary for achieving the goal for improved integrated approaches on watershed and coastal protection and management. These steps involve modernization of monitoring networks, creation of common data and web services infrastructures, and development of modeling, assessment, and research tools. Long-term monitoring is needed for tracking the effectiveness approaches for controlling land-based sources of nutrients, contaminants, and invasive species. The integration of mapping and monitoring with conceptual and mathematical models, and multidisciplinary assessments is important in making well-informed decisions. Moreover, a better integrated data network is essential for mapping, statistical, and modeling applications, and timely dissemination of data and information products to a broad community of users.
NASA Technical Reports Server (NTRS)
Staveland, Lowell
1994-01-01
This is the experimental and software detailed design report for the prototype task loading model (TLM) developed as part of the man-machine integration design and analysis system (MIDAS), as implemented and tested in phase 6 of the Army-NASA Aircrew/Aircraft Integration (A3I) Program. The A3I program is an exploratory development effort to advance the capabilities and use of computational representations of human performance and behavior in the design, synthesis, and analysis of manned systems. The MIDAS TLM computationally models the demands designs impose on operators to aide engineers in the conceptual design of aircraft crewstations. This report describes TLM and the results of a series of experiments which were run this phase to test its capabilities as a predictive task demand modeling tool. Specifically, it includes discussions of: the inputs and outputs of TLM, the theories underlying it, the results of the test experiments, the use of the TLM as both stand alone tool and part of a complete human operator simulation, and a brief introduction to the TLM software design.
Toward a synthetic economic systems modeling tool for sustainable exploitation of ecosystems.
Richardson, Colin; Courvisanos, Jerry; Crawford, John W
2011-02-01
Environmental resources that underpin the basic human needs of water, energy, and food are predicted to become in such short supply by 2050 that global security and the well-being of millions will be under threat. These natural commodities have been allowed to reach crisis levels of supply because of a failure of economic systems to sustain them. This is largely because there have been no means of integrating their exploitation into any economic model that effectively addresses ecological systemic failures in a way that provides an integrated ecological-economic tool that can monitor and evaluate market and policy targets. We review the reasons for this and recent attempts to address the problem while identifying outstanding issues. The key elements of a policy-oriented economic model that integrates ecosystem processes are described and form the basis of a proposed new synthesis approach. The approach is illustrated by an indicative case study that develops a simple model for rainfed and irrigated food production in the Murray-Darling basin of southeastern Australia. © 2011 New York Academy of Sciences.
Development of the ECLSS Sizing Analysis Tool and ARS Mass Balance Model Using Microsoft Excel
NASA Technical Reports Server (NTRS)
McGlothlin, E. P.; Yeh, H. Y.; Lin, C. H.
1999-01-01
The development of a Microsoft Excel-compatible Environmental Control and Life Support System (ECLSS) sizing analysis "tool" for conceptual design of Mars human exploration missions makes it possible for a user to choose a certain technology in the corresponding subsystem. This tool estimates the mass, volume, and power requirements of every technology in a subsystem and the system as a whole. Furthermore, to verify that a design sized by the ECLSS Sizing Tool meets the mission requirements and integrates properly, mass balance models that solve for component throughputs of such ECLSS systems as the Water Recovery System (WRS) and Air Revitalization System (ARS) must be developed. The ARS Mass Balance Model will be discussed in this paper.
Verification of a Multiphysics Toolkit against the Magnetized Target Fusion Concept
NASA Technical Reports Server (NTRS)
Thomas, Scott; Perrell, Eric; Liron, Caroline; Chiroux, Robert; Cassibry, Jason; Adams, Robert B.
2005-01-01
In the spring of 2004 the Advanced Concepts team at MSFC embarked on an ambitious project to develop a suite of modeling routines that would interact with one another. The tools would each numerically model a portion of any advanced propulsion system. The tools were divided by physics categories, hence the name multiphysics toolset. Currently most of the anticipated modeling tools have been created and integrated. Results are given in this paper for both a quarter nozzle with chemically reacting flow and the interaction of two plasma jets representative of a Magnetized Target Fusion device. The results have not been calibrated against real data as of yet, but this paper demonstrates the current capability of the multiphysics tool and planned future enhancements
Ellett, Kevin M.; Middleton, Richard S.; Stauffer, Philip H.; ...
2017-08-18
The application of integrated system models for evaluating carbon capture and storage technology has expanded steadily over the past few years. To date, such models have focused largely on hypothetical scenarios of complex source-sink matching involving numerous large-scale CO 2 emitters, and high-volume, continuous reservoirs such as deep saline formations to function as geologic sinks for carbon storage. Though these models have provided unique insight on the potential costs and feasibility of deploying complex networks of integrated infrastructure, there remains a pressing need to translate such insight to the business community if this technology is to ever achieve a trulymore » meaningful impact in greenhouse gas mitigation. Here, we present a new integrated system modelling tool termed SimCCUS aimed at providing crucial decision support for businesses by extending the functionality of a previously developed model called SimCCS. The primary innovation of the SimCCUS tool development is the incorporation of stacked geological reservoir systems with explicit consideration of processes and costs associated with the operation of multiple CO 2 utilization and storage targets from a single geographic location. In such locations provide significant efficiencies through economies of scale, effectively minimizing CO 2 storage costs while simultaneously maximizing revenue streams via the utilization of CO 2 as a commodity for enhanced hydrocarbon recovery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellett, Kevin M.; Middleton, Richard S.; Stauffer, Philip H.
The application of integrated system models for evaluating carbon capture and storage technology has expanded steadily over the past few years. To date, such models have focused largely on hypothetical scenarios of complex source-sink matching involving numerous large-scale CO 2 emitters, and high-volume, continuous reservoirs such as deep saline formations to function as geologic sinks for carbon storage. Though these models have provided unique insight on the potential costs and feasibility of deploying complex networks of integrated infrastructure, there remains a pressing need to translate such insight to the business community if this technology is to ever achieve a trulymore » meaningful impact in greenhouse gas mitigation. Here, we present a new integrated system modelling tool termed SimCCUS aimed at providing crucial decision support for businesses by extending the functionality of a previously developed model called SimCCS. The primary innovation of the SimCCUS tool development is the incorporation of stacked geological reservoir systems with explicit consideration of processes and costs associated with the operation of multiple CO 2 utilization and storage targets from a single geographic location. In such locations provide significant efficiencies through economies of scale, effectively minimizing CO 2 storage costs while simultaneously maximizing revenue streams via the utilization of CO 2 as a commodity for enhanced hydrocarbon recovery.« less
ERIC Educational Resources Information Center
Krauskopf, Karsten; Zahn, Carmen; Hesse, Friedrich W.
2012-01-01
Web-based digital video tools enable learners to access video sources in constructive ways. To leverage these affordances teachers need to integrate their knowledge of a technology with their professional knowledge about teaching. We suggest that this is a cognitive process, which is strongly connected to a teacher's mental model of the tool's…
ePlant and the 3D data display initiative: integrative systems biology on the world wide web.
Fucile, Geoffrey; Di Biase, David; Nahal, Hardeep; La, Garon; Khodabandeh, Shokoufeh; Chen, Yani; Easley, Kante; Christendat, Dinesh; Kelley, Lawrence; Provart, Nicholas J
2011-01-10
Visualization tools for biological data are often limited in their ability to interactively integrate data at multiple scales. These computational tools are also typically limited by two-dimensional displays and programmatic implementations that require separate configurations for each of the user's computing devices and recompilation for functional expansion. Towards overcoming these limitations we have developed "ePlant" (http://bar.utoronto.ca/eplant) - a suite of open-source world wide web-based tools for the visualization of large-scale data sets from the model organism Arabidopsis thaliana. These tools display data spanning multiple biological scales on interactive three-dimensional models. Currently, ePlant consists of the following modules: a sequence conservation explorer that includes homology relationships and single nucleotide polymorphism data, a protein structure model explorer, a molecular interaction network explorer, a gene product subcellular localization explorer, and a gene expression pattern explorer. The ePlant's protein structure explorer module represents experimentally determined and theoretical structures covering >70% of the Arabidopsis proteome. The ePlant framework is accessed entirely through a web browser, and is therefore platform-independent. It can be applied to any model organism. To facilitate the development of three-dimensional displays of biological data on the world wide web we have established the "3D Data Display Initiative" (http://3ddi.org).
Information Management Workflow and Tools Enabling Multiscale Modeling Within ICME Paradigm
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Bednarcyk, Brett A.; Austin, Nic; Terentjev, Igor; Cebon, Dave; Marsden, Will
2016-01-01
With the increased emphasis on reducing the cost and time to market of new materials, the need for analytical tools that enable the virtual design and optimization of materials throughout their processing - internal structure - property - performance envelope, along with the capturing and storing of the associated material and model information across its lifecycle, has become critical. This need is also fueled by the demands for higher efficiency in material testing; consistency, quality and traceability of data; product design; engineering analysis; as well as control of access to proprietary or sensitive information. Fortunately, material information management systems and physics-based multiscale modeling methods have kept pace with the growing user demands. Herein, recent efforts to establish workflow for and demonstrate a unique set of web application tools for linking NASA GRC's Integrated Computational Materials Engineering (ICME) Granta MI database schema and NASA GRC's Integrated multiscale Micromechanics Analysis Code (ImMAC) software toolset are presented. The goal is to enable seamless coupling between both test data and simulation data, which is captured and tracked automatically within Granta MI®, with full model pedigree information. These tools, and this type of linkage, are foundational to realizing the full potential of ICME, in which materials processing, microstructure, properties, and performance are coupled to enable application-driven design and optimization of materials and structures.
NASA Astrophysics Data System (ADS)
Balaykin, A. V.; Bezsonov, K. A.; Nekhoroshev, M. V.; Shulepov, A. P.
2018-01-01
This paper dwells upon a variance parameterization method. Variance or dimensional parameterization is based on sketching, with various parametric links superimposed on the sketch objects and user-imposed constraints in the form of an equation system that determines the parametric dependencies. This method is fully integrated in a top-down design methodology to enable the creation of multi-variant and flexible fixture assembly models, as all the modeling operations are hierarchically linked in the built tree. In this research the authors consider a parameterization method of machine tooling used for manufacturing parts using multiaxial CNC machining centers in the real manufacturing process. The developed method allows to significantly reduce tooling design time when making changes of a part’s geometric parameters. The method can also reduce time for designing and engineering preproduction, in particular, for development of control programs for CNC equipment and control and measuring machines, automate the release of design and engineering documentation. Variance parameterization helps to optimize construction of parts as well as machine tooling using integrated CAE systems. In the framework of this study, the authors demonstrate a comprehensive approach to parametric modeling of machine tooling in the CAD package used in the real manufacturing process of aircraft engines.
Modeling biochemical transformation processes and information processing with Narrator.
Mandel, Johannes J; Fuss, Hendrik; Palfreyman, Niall M; Dubitzky, Werner
2007-03-27
Software tools that model and simulate the dynamics of biological processes and systems are becoming increasingly important. Some of these tools offer sophisticated graphical user interfaces (GUIs), which greatly enhance their acceptance by users. Such GUIs are based on symbolic or graphical notations used to describe, interact and communicate the developed models. Typically, these graphical notations are geared towards conventional biochemical pathway diagrams. They permit the user to represent the transport and transformation of chemical species and to define inhibitory and stimulatory dependencies. A critical weakness of existing tools is their lack of supporting an integrative representation of transport, transformation as well as biological information processing. Narrator is a software tool facilitating the development and simulation of biological systems as Co-dependence models. The Co-dependence Methodology complements the representation of species transport and transformation together with an explicit mechanism to express biological information processing. Thus, Co-dependence models explicitly capture, for instance, signal processing structures and the influence of exogenous factors or events affecting certain parts of a biological system or process. This combined set of features provides the system biologist with a powerful tool to describe and explore the dynamics of life phenomena. Narrator's GUI is based on an expressive graphical notation which forms an integral part of the Co-dependence Methodology. Behind the user-friendly GUI, Narrator hides a flexible feature which makes it relatively easy to map models defined via the graphical notation to mathematical formalisms and languages such as ordinary differential equations, the Systems Biology Markup Language or Gillespie's direct method. This powerful feature facilitates reuse, interoperability and conceptual model development. Narrator is a flexible and intuitive systems biology tool. It is specifically intended for users aiming to construct and simulate dynamic models of biology without recourse to extensive mathematical detail. Its design facilitates mappings to different formal languages and frameworks. The combined set of features makes Narrator unique among tools of its kind. Narrator is implemented as Java software program and available as open-source from http://www.narrator-tool.org.
Business intelligence tools for radiology: creating a prototype model using open-source tools.
Prevedello, Luciano M; Andriole, Katherine P; Hanson, Richard; Kelly, Pauline; Khorasani, Ramin
2010-04-01
Digital radiology departments could benefit from the ability to integrate and visualize data (e.g. information reflecting complex workflow states) from all of their imaging and information management systems in one composite presentation view. Leveraging data warehousing tools developed in the business world may be one way to achieve this capability. In total, the concept of managing the information available in this data repository is known as Business Intelligence or BI. This paper describes the concepts used in Business Intelligence, their importance to modern Radiology, and the steps used in the creation of a prototype model of a data warehouse for BI using open-source tools.
Web Instruction with the LBO Model.
ERIC Educational Resources Information Center
Agarwal, Rajshree; Day, A. Edward
2000-01-01
Presents a Web site that utilizes the Learning-by-Objective (LBO) model that integrates Internet tools for knowledge transmission, communication, and assessment of learning. Explains that the LBO model has been used in creating micro and macroeconomic course Web sites with WebCT software. (CMK)
Frequency Response Studies using Receptance Coupling Approach in High Speed Spindles
NASA Astrophysics Data System (ADS)
Shaik, Jakeer Hussain; Ramakotaiah, K.; Srinivas, J.
2018-01-01
In order to assess the stability of high speed machining, estimate the frequency response at the end of tool tip is of great importance. Evaluating dynamic response of several combinations of integrated spindle-tool holder-tool will consume a lot of time. This paper presents coupled field dynamic response at tool tip for the entire integrated spindle tool unit. The spindle unit is assumed to be relying over the front and rear bearings and investigated using the Timoshenko beam theory to arrive the receptances at different locations of the spindle-tool unit. The responses are further validated with conventional finite element model as well as with the experiments. This approach permits quick outputs without losing accuracy of solution and further these methods are utilized to analyze the various design variables on system dynamics. The results obtained through this analysis are needed to design the better spindle unit in an attempt to reduce the frequency amplitudes at the tool tip to improvise the milling stability during cutting process.
S.T.A. Pickett; M.L. Cadenasso; J.M. Grove
2004-01-01
Urban designers, ecologists, and social scientists have called for closer links among their disciplines. We examine a promising new tool for promoting this linkageâthe metaphor of "cities of resilience." To put this tool to best use, we indicate how metaphor fits with other conceptual tools in science. We then present the two opposing definitions of...
Modeling Ecosystem Services in an Arid Landscape Using the InVEST Tool
In this paper we describe the US Environmental Protection Agency’s Southwest Ecosystem Services Program (SwESP) initial efforts to use the InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) tool to quantify and map the values of multiple ecosystem services in the S...
Biological assessment is becoming an increasingly popular tool in the evaluation of stream ecosystem integrity. However, little progress has been made to date in developing tools to relate assessment results to specific stressors. This paper continues the investigation of the f...
Vezzaro, L; Sharma, A K; Ledin, A; Mikkelsen, P S
2015-03-15
The estimation of micropollutant (MP) fluxes in stormwater systems is a fundamental prerequisite when preparing strategies to reduce stormwater MP discharges to natural waters. Dynamic integrated models can be important tools in this step, as they can be used to integrate the limited data provided by monitoring campaigns and to evaluate the performance of different strategies based on model simulation results. This study presents an example where six different control strategies, including both source-control and end-of-pipe treatment, were compared. The comparison focused on fluxes of heavy metals (copper, zinc) and organic compounds (fluoranthene). MP fluxes were estimated by using an integrated dynamic model, in combination with stormwater quality measurements. MP sources were identified by using GIS land usage data, runoff quality was simulated by using a conceptual accumulation/washoff model, and a stormwater retention pond was simulated by using a dynamic treatment model based on MP inherent properties. Uncertainty in the results was estimated with a pseudo-Bayesian method. Despite the great uncertainty in the MP fluxes estimated by the runoff quality model, it was possible to compare the six scenarios in terms of discharged MP fluxes, compliance with water quality criteria, and sediment accumulation. Source-control strategies obtained better results in terms of reduction of MP emissions, but all the simulated strategies failed in fulfilling the criteria based on emission limit values. The results presented in this study shows how the efficiency of MP pollution control strategies can be quantified by combining advanced modeling tools (integrated stormwater quality model, uncertainty calibration). Copyright © 2014 Elsevier Ltd. All rights reserved.
FREEWAT: an HORIZON 2020 project to build open source tools for water management.
NASA Astrophysics Data System (ADS)
Foglia, L.; Rossetto, R.; Borsi, I.; Mehl, S.; Velasco Mansilla, V.
2015-12-01
FREEWAT is an HORIZON 2020 EU project. FREEWAT main result will be an open source and public domain GIS integrated modelling environment for the simulation of water quantity and quality in surface water and groundwater with an integrated water management and planning module. FREEWAT aims at promoting water resource management by simplifying the application of the Water Framework Directive and related Directives. Specific objectives of the project are: to coordinate previous EU and national funded research to integrate existing software modules for water management in a single environment into the GIS based FREEWAT and to support the FREEWAT application in an innovative participatory approach gathering technical staff and relevant stakeholders (policy and decision makers) in designing scenarios for application of water policies. The open source characteristics of the platform allow to consider this an initiative "ad includendum", as further institutions or developers may contribute to the development. Core of the platform is the SID&GRID framework (GIS integrated physically-based distributed numerical hydrological model based on a modified version of MODFLOW 2005; Rossetto et al. 2013) in its version ported to QGIS desktop. Activities are carried out on two lines: (i) integration of modules to fulfill the end-users requirements, including tools for producing feasibility and management plans; (ii) a set of activities to fix bugs and to provide a well-integrated interface for the different tools implemented. Further capabilities to be integrated are: - module for water management and planning; - calibration, uncertainty and sensitivity analysis; - module for solute transport in unsaturated zone; - module for crop growth and water requirements in agriculture; - tools for groundwater quality issues and for the analysis, interpretation and visualization of hydrogeological data. Through creating a common environment among water research/professionals, policy makers and implementers, FREEWAT main impact will be on enhancing science- and participatory approach and evidence-based decision making in water resource management, hence producing relevant and appropriate outcomes for policy implementation. Large stakeholders involvement is thought to guarantee results dissemination and exploitation.
A Study of a Social Annotation Modeling Learning System
ERIC Educational Resources Information Center
Samuel, Roy David; Kim, Chanmin; Johnson, Tristan E.
2011-01-01
The transition from classroom instruction to e-learning raises pedagogical challenges for university instructors. A controlled integration of e-learning tools into classroom instruction may offer learners tangible benefits and improved effectiveness. This design-based research (DBR) study engaged students in e-learning activities integrated into…
This study will provide a general methodology for integrating threshold information from multiple species ecological metrics, allow for prediction of changes of alternative stable states, and provide a risk assessment tool that can be applied to adaptive management. The integr...
The Integrated Farm System Model: A Tool for Whole Farm Nutrient Management Analysis
USDA-ARS?s Scientific Manuscript database
With tighter profit margins and increasing environmental constraints, strategic planning of farm production systems is becoming both more important and more difficult. This is especially true for integrated crop and animal production systems. Animal production is complex with a number of interacting...
Integrated Instrument Simulator Suites for Earth Science
NASA Technical Reports Server (NTRS)
Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, Johnathan; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.;
2012-01-01
The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.
Computer-aided operations engineering with integrated models of systems and operations
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Ryan, Dan; Fleming, Land
1994-01-01
CONFIG 3 is a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operation of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. Integration is supported among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. Support is provided for integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems. CONFIG supports abstracted qualitative and symbolic modeling, for early conceptual design. System models are component structure models with operating modes, with embedded time-related behavior models. CONFIG supports failure modeling and modeling of state or configuration changes that result in dynamic changes in dependencies among components. Operations and procedure models are activity structure models that interact with system models. CONFIG is designed to support evaluation of system operability, diagnosability and fault tolerance, and analysis of the development of system effects of problems over time, including faults, failures, and procedural or environmental difficulties.
Bim and Gis: when Parametric Modeling Meets Geospatial Data
NASA Astrophysics Data System (ADS)
Barazzetti, L.; Banfi, F.
2017-12-01
Geospatial data have a crucial role in several projects related to infrastructures and land management. GIS software are able to perform advanced geospatial analyses, but they lack several instruments and tools for parametric modelling typically available in BIM. At the same time, BIM software designed for buildings have limited tools to handle geospatial data. As things stand at the moment, BIM and GIS could appear as complementary solutions, notwithstanding research work is currently under development to ensure a better level of interoperability, especially at the scale of the building. On the other hand, the transition from the local (building) scale to the infrastructure (where geospatial data cannot be neglected) has already demonstrated that parametric modelling integrated with geoinformation is a powerful tool to simplify and speed up some phases of the design workflow. This paper reviews such mixed approaches with both simulated and real examples, demonstrating that integration is already a reality at specific scales, which are not dominated by "pure" GIS or BIM. The paper will also demonstrate that some traditional operations carried out with GIS software are also available in parametric modelling software for BIM, such as transformation between reference systems, DEM generation, feature extraction, and geospatial queries. A real case study is illustrated and discussed to show the advantage of a combined use of both technologies. BIM and GIS integration can generate greater usage of geospatial data in the AECOO (Architecture, Engineering, Construction, Owner and Operator) industry, as well as new solutions for parametric modelling with additional geoinformation.
NASA Technical Reports Server (NTRS)
Lowrie, J. W.; Fermelia, A. J.; Haley, D. C.; Gremban, K. D.; Vanbaalen, J.; Walsh, R. W.
1982-01-01
Documentation of the preliminary software developed as a framework for a generalized integrated robotic system simulation is presented. The program structure is composed of three major functions controlled by a program executive. The three major functions are: system definition, analysis tools, and post processing. The system definition function handles user input of system parameters and definition of the manipulator configuration. The analysis tools function handles the computational requirements of the program. The post processing function allows for more detailed study of the results of analysis tool function executions. Also documented is the manipulator joint model software to be used as the basis of the manipulator simulation which will be part of the analysis tools capability.
Integrative change model in psychotherapy: Perspectives from Indian thought.
Manickam, L S S
2013-01-01
Different psychotherapeutic approaches claim positive changes in patients as a result of therapy. Explanations related to the change process led to different change models. Some of the change models are experimentally oriented whereas some are theoretical. Apart from the core models of behavioral, psychodynamic, humanistic, cognitive and spiritually oriented models there are specific models, within psychotherapy that explains the change process. Integrative theory of a person as depicted in Indian thought provides a common ground for the integration of various therapies. Integrative model of change based on Indian thought, with specific reference to psychological concepts in Upanishads, Ayurveda, Bhagavad Gita and Yoga are presented. Appropriate psychological tools may be developed in order to help the clinicians to choose the techniques that match the problem and the origin of the dimension. Explorations have to be conducted to develop more techniques that are culturally appropriate and clinically useful. Research has to be initiated to validate the identified concepts.
Integrative change model in psychotherapy: Perspectives from Indian thought
Manickam, L. S. S
2013-01-01
Different psychotherapeutic approaches claim positive changes in patients as a result of therapy. Explanations related to the change process led to different change models. Some of the change models are experimentally oriented whereas some are theoretical. Apart from the core models of behavioral, psychodynamic, humanistic, cognitive and spiritually oriented models there are specific models, within psychotherapy that explains the change process. Integrative theory of a person as depicted in Indian thought provides a common ground for the integration of various therapies. Integrative model of change based on Indian thought, with specific reference to psychological concepts in Upanishads, Ayurveda, Bhagavad Gita and Yoga are presented. Appropriate psychological tools may be developed in order to help the clinicians to choose the techniques that match the problem and the origin of the dimension. Explorations have to be conducted to develop more techniques that are culturally appropriate and clinically useful. Research has to be initiated to validate the identified concepts. PMID:23858275
NoiseMap and AEDT Gap Analysis
DOT National Transportation Integrated Search
2017-09-30
NoiseMap and the Aviation Environmental Design Tool (AEDT) both use an integrated modeling approach to calculate aircraft noise in and around an airfield. Both models also employ the same general overall approach by using airfield operational data, s...
NREL and Panasonic | Energy Systems Integration Facility | NREL
with distribution system modeling for the first time. The tool combines NREL's building energy system distribution system models, and Panasonic will perform cost-benefit analyses. Along with the creation of the
Integrated city as a model for a new wave urban tourism
NASA Astrophysics Data System (ADS)
Ariani, V.
2018-03-01
Cities are a major player for an urban tourism destination. Massive tourism movement for urban tourism gains competitiveness to the city with similar characteristic. The new framework model for new wave urban tourism is crucial to give more experience to the tourist and valuing for the city itself. The integrated city is the answer for creating a new model for an urban tourism destination. The purpose of this preliminary research is to define integrated city framework for urban tourism development. It provides a rationale for tourism planner pursuing an innovative approach, competitive advantages, and general urban tourism destination model. The methodology applies to this research includes desk survey, literature review and focus group discussion. A conceptual framework is proposed, discussed and exemplified. The framework model adopts a place-based approach to tourism destination and suggests an integrated city model for urban tourism development. This model is a tool for strategy making in re-invention integrated city as an urban tourism destination.
Browsing Space Weather Data and Models with the Integrated Space Weather Analysis (iSWA) System
NASA Technical Reports Server (NTRS)
Maddox, Marlo M.; Mullinix, Richard E.; Berrios, David H.; Hesse, Michael; Rastaetter, Lutz; Pulkkinen, Antti; Hourcle, Joseph A.; Thompson, Barbara J.
2011-01-01
The Integrated Space Weather Analysis (iSWA) System is a comprehensive web-based platform for space weather information that combines data from solar, heliospheric and geospace observatories with forecasts based on the most advanced space weather models. The iSWA system collects, generates, and presents a wide array of space weather resources in an intuitive, user-configurable, and adaptable format - thus enabling users to respond to current and future space weather impacts as well as enabling post-impact analysis. iSWA currently provides over 200 data and modeling products, and features a variety of tools that allow the user to browse, combine, and examine data and models from various sources. This presentation will consist of a summary of the iSWA products and an overview of the customizable user interfaces, and will feature several tutorial demonstrations highlighting the interactive tools and advanced capabilities.
System Dynamics (SD) models are useful for holistic integration of data to evaluate indirect and cumulative effects and inform decisions. Complex SD models can provide key insights into how decisions affect the three interconnected pillars of sustainability. However, the complexi...
How models can support ecosystem-based management of coral reefs
NASA Astrophysics Data System (ADS)
Weijerman, Mariska; Fulton, Elizabeth A.; Janssen, Annette B. G.; Kuiper, Jan J.; Leemans, Rik; Robson, Barbara J.; van de Leemput, Ingrid A.; Mooij, Wolf M.
2015-11-01
Despite the importance of coral reef ecosystems to the social and economic welfare of coastal communities, the condition of these marine ecosystems have generally degraded over the past decades. With an increased knowledge of coral reef ecosystem processes and a rise in computer power, dynamic models are useful tools in assessing the synergistic effects of local and global stressors on ecosystem functions. We review representative approaches for dynamically modeling coral reef ecosystems and categorize them as minimal, intermediate and complex models. The categorization was based on the leading principle for model development and their level of realism and process detail. This review aims to improve the knowledge of concurrent approaches in coral reef ecosystem modeling and highlights the importance of choosing an appropriate approach based on the type of question(s) to be answered. We contend that minimal and intermediate models are generally valuable tools to assess the response of key states to main stressors and, hence, contribute to understanding ecological surprises. As has been shown in freshwater resources management, insight into these conceptual relations profoundly influences how natural resource managers perceive their systems and how they manage ecosystem recovery. We argue that adaptive resource management requires integrated thinking and decision support, which demands a diversity of modeling approaches. Integration can be achieved through complimentary use of models or through integrated models that systemically combine all relevant aspects in one model. Such whole-of-system models can be useful tools for quantitatively evaluating scenarios. These models allow an assessment of the interactive effects of multiple stressors on various, potentially conflicting, management objectives. All models simplify reality and, as such, have their weaknesses. While minimal models lack multidimensionality, system models are likely difficult to interpret as they require many efforts to decipher the numerous interactions and feedback loops. Given the breadth of questions to be tackled when dealing with coral reefs, the best practice approach uses multiple model types and thus benefits from the strength of different models types.
ExEP yield modeling tool and validation test results
NASA Astrophysics Data System (ADS)
Morgan, Rhonda; Turmon, Michael; Delacroix, Christian; Savransky, Dmitry; Garrett, Daniel; Lowrance, Patrick; Liu, Xiang Cate; Nunez, Paul
2017-09-01
EXOSIMS is an open-source simulation tool for parametric modeling of the detection yield and characterization of exoplanets. EXOSIMS has been adopted by the Exoplanet Exploration Programs Standards Definition and Evaluation Team (ExSDET) as a common mechanism for comparison of exoplanet mission concept studies. To ensure trustworthiness of the tool, we developed a validation test plan that leverages the Python-language unit-test framework, utilizes integration tests for selected module interactions, and performs end-to-end crossvalidation with other yield tools. This paper presents the test methods and results, with the physics-based tests such as photometry and integration time calculation treated in detail and the functional tests treated summarily. The test case utilized a 4m unobscured telescope with an idealized coronagraph and an exoplanet population from the IPAC radial velocity (RV) exoplanet catalog. The known RV planets were set at quadrature to allow deterministic validation of the calculation of physical parameters, such as working angle, photon counts and integration time. The observing keepout region was tested by generating plots and movies of the targets and the keepout zone over a year. Although the keepout integration test required the interpretation of a user, the test revealed problems in the L2 halo orbit and the parameterization of keepout applied to some solar system bodies, which the development team was able to address. The validation testing of EXOSIMS was performed iteratively with the developers of EXOSIMS and resulted in a more robust, stable, and trustworthy tool that the exoplanet community can use to simulate exoplanet direct-detection missions from probe class, to WFIRST, up to large mission concepts such as HabEx and LUVOIR.
Model-based setup assistant for progressive tools
NASA Astrophysics Data System (ADS)
Springer, Robert; Gräler, Manuel; Homberg, Werner; Henke, Christian; Trächtler, Ansgar
2018-05-01
In the field of production systems, globalization and technological progress lead to increasing requirements regarding part quality, delivery time and costs. Hence, today's production is challenged much more than a few years ago: it has to be very flexible and produce economically small batch sizes to satisfy consumer's demands and avoid unnecessary stock. Furthermore, a trend towards increasing functional integration continues to lead to an ongoing miniaturization of sheet metal components. In the industry of electric connectivity for example, the miniaturized connectors are manufactured by progressive tools, which are usually used for very large batches. These tools are installed in mechanical presses and then set up by a technician, who has to manually adjust a wide range of punch-bending operations. Disturbances like material thickness, temperatures, lubrication or tool wear complicate the setup procedure. In prospect of the increasing demand of production flexibility, this time-consuming process has to be handled more and more often. In this paper, a new approach for a model-based setup assistant is proposed as a solution, which is exemplarily applied in combination with a progressive tool. First, progressive tools, more specifically, their setup process is described and based on that, the challenges are pointed out. As a result, a systematic process to set up the machines is introduced. Following, the process is investigated with an FE-Analysis regarding the effects of the disturbances. In the next step, design of experiments is used to systematically develop a regression model of the system's behaviour. This model is integrated within an optimization in order to calculate optimal machine parameters and the following necessary adjustment of the progressive tool due to the disturbances. Finally, the assistant is tested in a production environment and the results are discussed.
Temperature-mediated growth thresholds of Acrobasis vaccinii (Lepidoptera: Pyralidae)
USDA-ARS?s Scientific Manuscript database
Degree-day models link ambient temperature to the development of insects, making such models valuable tools in integrated pest management. Phenology models increase management efficacy by quantifying and predicting pest phenology. In Wisconsin, the top pest of cranberry production is the cranberry f...
An MDA Based Ontology Platform: AIR
NASA Astrophysics Data System (ADS)
Gaševic, Dragan; Djuric, Dragan; Devedžic, Vladan
In the past few years, software engineering has witnessed two major shifts: model-driven engineering has entered the mainstream, and some leading development tools have become open and extensible.1 AI has always been a spring of new ideas that have been adopted in software engineering, but most of its gems have stayed buried in laboratories, available only to a limited number of AI practitioners. Should AI tools be integrated into mainstream tools and could it be done? We think that it is feasible, and that both communities can benefit from this integration. In fact, some efforts in this direction have already been made, both by major industrial standardization bodies such as the OMG, and by academic laboratories.
New Integrated Modeling Capabilities: MIDAS' Recent Behavioral Enhancements
NASA Technical Reports Server (NTRS)
Gore, Brian F.; Jarvis, Peter A.
2005-01-01
The Man-machine Integration Design and Analysis System (MIDAS) is an integrated human performance modeling software tool that is based on mechanisms that underlie and cause human behavior. A PC-Windows version of MIDAS has been created that integrates the anthropometric character "Jack (TM)" with MIDAS' validated perceptual and attention mechanisms. MIDAS now models multiple simulated humans engaging in goal-related behaviors. New capabilities include the ability to predict situations in which errors and/or performance decrements are likely due to a variety of factors including concurrent workload and performance influencing factors (PIFs). This paper describes a new model that predicts the effects of microgravity on a mission specialist's performance, and its first application to simulating the task of conducting a Life Sciences experiment in space according to a sequential or parallel schedule of performance.
The Open Source Snowpack modelling ecosystem
NASA Astrophysics Data System (ADS)
Bavay, Mathias; Fierz, Charles; Egger, Thomas; Lehning, Michael
2016-04-01
As a large number of numerical snow models are available, a few stand out as quite mature and widespread. One such model is SNOWPACK, the Open Source model that is developed at the WSL Institute for Snow and Avalanche Research SLF. Over the years, various tools have been developed around SNOWPACK in order to expand its use or to integrate additional features. Today, the model is part of a whole ecosystem that has evolved to both offer seamless integration and high modularity so each tool can easily be used outside the ecosystem. Many of these Open Source tools experience their own, autonomous development and are successfully used in their own right in other models and applications. There is Alpine3D, the spatially distributed version of SNOWPACK, that forces it with terrain-corrected radiation fields and optionally with blowing and drifting snow. This model can be used on parallel systems (either with OpenMP or MPI) and has been used for applications ranging from climate change to reindeer herding. There is the MeteoIO pre-processing library that offers fully integrated data access, data filtering, data correction, data resampling and spatial interpolations. This library is now used by several other models and applications. There is the SnopViz snow profile visualization library and application that supports both measured and simulated snow profiles (relying on the CAAML standard) as well as time series. This JavaScript application can be used standalone without any internet connection or served on the web together with simulation results. There is the OSPER data platform effort with a data management service (build on the Global Sensor Network (GSN) platform) as well as a data documenting system (metadata management as a wiki). There are several distributed hydrological models for mountainous areas in ongoing development that require very little information about the soil structure based on the assumption that in step terrain, the most relevant information is contained in the Digital Elevation Model (DEM). There is finally a set of tools making up the operational chain to automatically run, monitor and publish SNOWPACK simulations for operational avalanche warning purposes. This tool chain has been developed with the aim of offering very low maintenance operation and very fast deployment and to easily adapt to other avalanche services.
Information Extraction for System-Software Safety Analysis: Calendar Year 2008 Year-End Report
NASA Technical Reports Server (NTRS)
Malin, Jane T.
2009-01-01
This annual report describes work to integrate a set of tools to support early model-based analysis of failures and hazards due to system-software interactions. The tools perform and assist analysts in the following tasks: 1) extract model parts from text for architecture and safety/hazard models; 2) combine the parts with library information to develop the models for visualization and analysis; 3) perform graph analysis and simulation to identify and evaluate possible paths from hazard sources to vulnerable entities and functions, in nominal and anomalous system-software configurations and scenarios; and 4) identify resulting candidate scenarios for software integration testing. There has been significant technical progress in model extraction from Orion program text sources, architecture model derivation (components and connections) and documentation of extraction sources. Models have been derived from Internal Interface Requirements Documents (IIRDs) and FMEA documents. Linguistic text processing is used to extract model parts and relationships, and the Aerospace Ontology also aids automated model development from the extracted information. Visualizations of these models assist analysts in requirements overview and in checking consistency and completeness.
The integrated landscape assessment project
Miles A. Hemstrom; Janine Salwasser; Joshua Halofsky; Jimmy Kagan; Cyndi Comfort
2012-01-01
The Integrated Landscape Assessment Project (ILAP) is a three-year effort that produces information, models, data, and tools to help land managers, policymakers, and others examine mid- to broad-scale (e.g., watersheds to states and larger areas) prioritization of land management actions, perform landscape assessments, and estimate potential effects of management...
Constraint-Driven Software Design: An Escape from the Waterfall Model.
ERIC Educational Resources Information Center
de Hoog, Robert; And Others
1994-01-01
Presents the principles of a development methodology for software design based on a nonlinear, product-driven approach that integrates quality aspects. Two examples are given to show that the flexibility needed for building high quality systems leads to integrated development environments in which methodology, product, and tools are closely…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, David; Agarwal, Deborah A.; Sun, Xin
2011-09-01
The Carbon Capture Simulation Initiative is developing state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technology. The CCSI Toolset consists of an integrated multi-scale modeling and simulation framework, which includes extensive use of reduced order models (ROMs) and a comprehensive uncertainty quantification (UQ) methodology. This paper focuses on the interrelation among high performance computing, detailed device simulations, ROMs for scale-bridging, UQ and the integration framework.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, D.; Agarwal, D.; Sun, X.
2011-01-01
The Carbon Capture Simulation Initiative is developing state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technology. The CCSI Toolset consists of an integrated multi-scale modeling and simulation framework, which includes extensive use of reduced order models (ROMs) and a comprehensive uncertainty quantification (UQ) methodology. This paper focuses on the interrelation among high performance computing, detailed device simulations, ROMs for scale-bridging, UQ and the integration framework.
Execution environment for intelligent real-time control systems
NASA Technical Reports Server (NTRS)
Sztipanovits, Janos
1987-01-01
Modern telerobot control technology requires the integration of symbolic and non-symbolic programming techniques, different models of parallel computations, and various programming paradigms. The Multigraph Architecture, which has been developed for the implementation of intelligent real-time control systems is described. The layered architecture includes specific computational models, integrated execution environment and various high-level tools. A special feature of the architecture is the tight coupling between the symbolic and non-symbolic computations. It supports not only a data interface, but also the integration of the control structures in a parallel computing environment.
NASA Technical Reports Server (NTRS)
Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Ackley, Keith A.; Crump, Wes; Sanders, Les
1991-01-01
The design of the Framework Processor (FP) component of the Framework Programmable Software Development Platform (FFP) is described. The FFP is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software development environment. Guided by the model, this Framework Processor will take advantage of an integrated operating environment to provide automated support for the management and control of the software development process so that costly mistakes during the development phase can be eliminated.
Miller, Brian W.; Morisette, Jeffrey T.
2014-01-01
Developing resource management strategies in the face of climate change is complicated by the considerable uncertainty associated with projections of climate and its impacts and by the complex interactions between social and ecological variables. The broad, interconnected nature of this challenge has resulted in calls for analytical frameworks that integrate research tools and can support natural resource management decision making in the face of uncertainty and complex interactions. We respond to this call by first reviewing three methods that have proven useful for climate change research, but whose application and development have been largely isolated: species distribution modeling, scenario planning, and simulation modeling. Species distribution models provide data-driven estimates of the future distributions of species of interest, but they face several limitations and their output alone is not sufficient to guide complex decisions for how best to manage resources given social and economic considerations along with dynamic and uncertain future conditions. Researchers and managers are increasingly exploring potential futures of social-ecological systems through scenario planning, but this process often lacks quantitative response modeling and validation procedures. Simulation models are well placed to provide added rigor to scenario planning because of their ability to reproduce complex system dynamics, but the scenarios and management options explored in simulations are often not developed by stakeholders, and there is not a clear consensus on how to include climate model outputs. We see these strengths and weaknesses as complementarities and offer an analytical framework for integrating these three tools. We then describe the ways in which this framework can help shift climate change research from useful to usable.
ERIC Educational Resources Information Center
Goldschmidt, Pete; Jung, Hyekyung
2011-01-01
This evaluation focuses on the Seeds of Science/Roots of Reading: Effective Tools for Developing Literacy through Science in the Early Grades ("Seeds/Roots") model of science-literacy integration. The evaluation is based on a cluster randomized design of 100 teachers, half of which were in the treatment group. Multi-level models are employed to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.
Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy smore » Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.« less
SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo.
Jimenez-Romero, Cristian; Johnson, Jeffrey
2017-01-01
The scientific interest attracted by Spiking Neural Networks (SNN) has lead to the development of tools for the simulation and study of neuronal dynamics ranging from phenomenological models to the more sophisticated and biologically accurate Hodgkin-and-Huxley-based and multi-compartmental models. However, despite the multiple features offered by neural modelling tools, their integration with environments for the simulation of robots and agents can be challenging and time consuming. The implementation of artificial neural circuits to control robots generally involves the following tasks: (1) understanding the simulation tools, (2) creating the neural circuit in the neural simulator, (3) linking the simulated neural circuit with the environment of the agent and (4) programming the appropriate interface in the robot or agent to use the neural controller. The accomplishment of the above-mentioned tasks can be challenging, especially for undergraduate students or novice researchers. This paper presents an alternative tool which facilitates the simulation of simple SNN circuits using the multi-agent simulation and the programming environment Netlogo (educational software that simplifies the study and experimentation of complex systems). The engine proposed and implemented in Netlogo for the simulation of a functional model of SNN is a simplification of integrate and fire (I&F) models. The characteristics of the engine (including neuronal dynamics, STDP learning and synaptic delay) are demonstrated through the implementation of an agent representing an artificial insect controlled by a simple neural circuit. The setup of the experiment and its outcomes are described in this work.
Initial development of prototype performance model for highway design
DOT National Transportation Integrated Search
1997-12-01
The Federal Highway Administration (FHWA) has undertaken a multiyear project to develop the Interactive Highway Safety Design Model (IHSDM), which is a CADD-based integrated set of software tools to analyze a highway design to identify safety issues ...
Indicators and Measurement Tools for Health Systems Integration: A Knowledge Synthesis.
Suter, Esther; Oelke, Nelly D; da Silva Lima, Maria Alice Dias; Stiphout, Michelle; Janke, Robert; Witt, Regina Rigatto; Van Vliet-Brown, Cheryl; Schill, Kaela; Rostami, Mahnoush; Hepp, Shelanne; Birney, Arden; Al-Roubaiai, Fatima; Marques, Giselda Quintana
2017-11-13
Despite far reaching support for integrated care, conceptualizing and measuring integrated care remains challenging. This knowledge synthesis aimed to identify indicator domains and tools to measure progress towards integrated care. We used an established framework and a Delphi survey with integration experts to identify relevant measurement domains. For each domain, we searched and reviewed the literature for relevant tools. From 7,133 abstracts, we retrieved 114 unique tools. We found many quality tools to measure care coordination, patient engagement and team effectiveness/performance. In contrast, there were few tools in the domains of performance measurement and information systems, alignment of organizational goals and resource allocation. The search yielded 12 tools that measure overall integration or three or more indicator domains. Our findings highlight a continued gap in tools to measure foundational components that support integrated care. In the absence of such targeted tools, "overall integration" tools may be useful for a broad assessment of the overall state of a system. Continued progress towards integrated care depends on our ability to evaluate the success of strategies across different levels and context. This study has identified 114 tools that measure integrated care across 16 domains, supporting efforts towards a unified measurement framework.
Inspection of the Math Model Tools for On-Orbit Assessment of Impact Damage Report. Version 1.0
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Raju, Ivatury S.; Piascik, Robert S.; Kramer White, Julie; Labbe, Steve G.; Rotter, Hank A.
2005-01-01
In Spring of 2005, the NASA Engineering Safety Center (NESC) was engaged by the Space Shuttle Program (SSP) to peer review the suite of analytical tools being developed to support the determination of impact and damage tolerance of the Orbiter Thermal Protection Systems (TPS). The NESC formed an independent review team with the core disciplines of materials, flight sciences, structures, mechanical analysis and thermal analysis. The Math Model Tools reviewed included damage prediction and stress analysis, aeroheating analysis, and thermal analysis tools. Some tools are physics-based and other tools are empirically-derived. Each tool was created for a specific use and timeframe, including certification, real-time pre-launch assessments, and real-time on-orbit assessments. The tools are used together in an integrated strategy for assessing the ramifications of impact damage to tile and RCC. The NESC teams conducted a peer review of the engineering data package for each Math Model Tool. This report contains the summary of the team observations and recommendations from these reviews.
NASA Technical Reports Server (NTRS)
Keller, Richard M.
1991-01-01
The construction of scientific software models is an integral part of doing science, both within NASA and within the scientific community at large. Typically, model-building is a time-intensive and painstaking process, involving the design of very large, complex computer programs. Despite the considerable expenditure of resources involved, completed scientific models cannot easily be distributed and shared with the larger scientific community due to the low-level, idiosyncratic nature of the implemented code. To address this problem, we have initiated a research project aimed at constructing a software tool called the Scientific Modeling Assistant. This tool provides automated assistance to the scientist in developing, using, and sharing software models. We describe the Scientific Modeling Assistant, and also touch on some human-machine interaction issues relevant to building a successful tool of this type.
Pitkänen, Esa; Akerlund, Arto; Rantanen, Ari; Jouhten, Paula; Ukkonen, Esko
2008-08-25
ReMatch is a web-based, user-friendly tool that constructs stoichiometric network models for metabolic flux analysis, integrating user-developed models into a database collected from several comprehensive metabolic data resources, including KEGG, MetaCyc and CheBI. Particularly, ReMatch augments the metabolic reactions of the model with carbon mappings to facilitate (13)C metabolic flux analysis. The construction of a network model consisting of biochemical reactions is the first step in most metabolic modelling tasks. This model construction can be a tedious task as the required information is usually scattered to many separate databases whose interoperability is suboptimal, due to the heterogeneous naming conventions of metabolites in different databases. Another, particularly severe data integration problem is faced in (13)C metabolic flux analysis, where the mappings of carbon atoms from substrates into products in the model are required. ReMatch has been developed to solve the above data integration problems. First, ReMatch matches the imported user-developed model against the internal ReMatch database while considering a comprehensive metabolite name thesaurus. This, together with wild card support, allows the user to specify the model quickly without having to look the names up manually. Second, ReMatch is able to augment reactions of the model with carbon mappings, obtained either from the internal database or given by the user with an easy-touse tool. The constructed models can be exported into 13C-FLUX and SBML file formats. Further, a stoichiometric matrix and visualizations of the network model can be generated. The constructed models of metabolic networks can be optionally made available to the other users of ReMatch. Thus, ReMatch provides a common repository for metabolic network models with carbon mappings for the needs of metabolic flux analysis community. ReMatch is freely available for academic use at http://www.cs.helsinki.fi/group/sysfys/software/rematch/.
Non-communicable diseases and HIV care and treatment: models of integrated service delivery.
Duffy, Malia; Ojikutu, Bisola; Andrian, Soa; Sohng, Elaine; Minior, Thomas; Hirschhorn, Lisa R
2017-08-01
Non-communicable diseases (NCD) are a growing cause of morbidity in low-income countries including in people living with human immunodeficiency virus (HIV). Integration of NCD and HIV services can build upon experience with chronic care models from HIV programmes. We describe models of NCD and HIV integration, challenges and lessons learned. A literature review of published articles on integrated NCD and HIV programs in low-income countries and key informant interviews were conducted with leaders of identified integrated NCD and HIV programs. Information was synthesised to identify models of NCD and HIV service delivery integration. Three models of integration were identified as follows: NCD services integrated into centres originally providing HIV care; HIV care integrated into primary health care (PHC) already offering NCD services; and simultaneous introduction of integrated HIV and NCD services. Major challenges identified included NCD supply chain, human resources, referral systems, patient education, stigma, patient records and monitoring and evaluation. The range of HIV and NCD services varied widely within and across models. Regardless of model of integration, leveraging experience from HIV care models and adapting existing systems and tools is a feasible method to provide efficient care and treatment for the growing numbers of patients with NCDs. Operational research should be conducted to further study how successful models of HIV and NCD integration can be expanded in scope and scaled-up by managers and policymakers seeking to address all the chronic care needs of their patients. © 2017 John Wiley & Sons Ltd.
Integrated urban water cycle management: the UrbanCycle model.
Hardy, M J; Kuczera, G; Coombes, P J
2005-01-01
Integrated urban water cycle management presents a new framework in which solutions to the provision of urban water services can be sought. It enables new and innovative solutions currently constrained by the existing urban water paradigm to be implemented. This paper introduces the UrbanCycle model. The model is being developed in response to the growing and changing needs of the water management sector and in light of the need for tools to evaluate integrated watercycle management approaches. The key concepts underpinning the UrbanCycle model are the adoption of continuous simulation, hierarchical network modelling, and the careful management of computational complexity. The paper reports on the integration of modelling capabilities across the allotment, and subdivision scales, enabling the interactions between these scales to be explored. A case study illustrates the impacts of various mitigation measures possible under an integrated water management framework. The temporal distribution of runoff into ephemeral streams from a residential allotment in Western Sydney is evaluated and linked to the geomorphic and ecological regimes in receiving waters.
NASA Astrophysics Data System (ADS)
Hamlet, A. F.; Chiu, C. M.; Sharma, A.; Byun, K.; Hanson, Z.
2016-12-01
Physically based hydrologic modeling of surface and groundwater resources that can be flexibly and efficiently applied to support water resources policy/planning/management decisions at a wide range of spatial and temporal scales are greatly needed in the Midwest, where stakeholder access to such tools is currently a fundamental barrier to basic climate change assessment and adaptation efforts, and also the co-production of useful products to support detailed decision making. Based on earlier pilot studies in the Pacific Northwest Region, we are currently assembling a suite of end-to-end tools and resources to support various kinds of water resources planning and management applications across the region. One of the key aspects of these integrated tools is that the user community can access gridded products at any point along the end-to-end chain of models, looking backwards in time about 100 years (1915-2015), and forwards in time about 85 years using CMIP5 climate model projections. The integrated model is composed of historical and projected future meteorological data based on station observations and statistical and dynamically downscaled climate model output respectively. These gridded meteorological data sets serve as forcing data for the macro-scale VIC hydrologic model implemented over the Midwest at 1/16 degree resolution. High-resolution climate model (4km WRF) output provides inputs for the analyses of urban impacts, hydrologic extremes, agricultural impacts, and impacts to the Great Lakes. Groundwater recharge estimated by the surface water model provides input data for fine-scale and macro-scale groundwater models needed for specific applications. To highlight the multi-scale use of the integrated models in support of co-production of scientific information for decision making, we briefly describe three current case studies addressing different spatial scales of analysis: 1) Effects of climate change on the water balance of the Great Lakes, 2) Future hydropower resources in the St. Joseph River basin, 3) Effects of climate change on carbon cycling in small lakes in the Northern Highland Lakes District.
Improved Analysis of Earth System Models and Observations using Simple Climate Models
NASA Astrophysics Data System (ADS)
Nadiga, B. T.; Urban, N. M.
2016-12-01
Earth system models (ESM) are the most comprehensive tools we have to study climate change and develop climate projections. However, the computational infrastructure required and the cost incurred in running such ESMs precludes direct use of such models in conjunction with a wide variety of tools that can further our understanding of climate. Here we are referring to tools that range from dynamical systems tools that give insight into underlying flow structure and topology to tools that come from various applied mathematical and statistical techniques and are central to quantifying stability, sensitivity, uncertainty and predictability to machine learning tools that are now being rapidly developed or improved. Our approach to facilitate the use of such models is to analyze output of ESM experiments (cf. CMIP) using a range of simpler models that consider integral balances of important quantities such as mass and/or energy in a Bayesian framework.We highlight the use of this approach in the context of the uptake of heat by the world oceans in the ongoing global warming. Indeed, since in excess of 90% of the anomalous radiative forcing due greenhouse gas emissions is sequestered in the world oceans, the nature of ocean heat uptake crucially determines the surface warming that is realized (cf. climate sensitivity). Nevertheless, ESMs themselves are never run long enough to directly assess climate sensitivity. So, we consider a range of models based on integral balances--balances that have to be realized in all first-principles based models of the climate system including the most detailed state-of-the art climate simulations. The models range from simple models of energy balance to those that consider dynamically important ocean processes such as the conveyor-belt circulation (Meridional Overturning Circulation, MOC), North Atlantic Deep Water (NADW) formation, Antarctic Circumpolar Current (ACC) and eddy mixing. Results from Bayesian analysis of such models using both ESM experiments and actual observations are presented. One such result points to the importance of direct sequestration of heat below 700 m, a process that is not allowed for in the simple models that have been traditionally used to deduce climate sensitivity.
Integrated Hydrographical Basin Management. Study Case - Crasna River Basin
NASA Astrophysics Data System (ADS)
Visescu, Mircea; Beilicci, Erika; Beilicci, Robert
2017-10-01
Hydrographical basins are important from hydrological, economic and ecological points of view. They receive and channel the runoff from rainfall and snowmelt which, when adequate managed, can provide fresh water necessary for water supply, irrigation, food industry, animal husbandry, hydrotechnical arrangements and recreation. Hydrographical basin planning and management follows the efficient use of available water resources in order to satisfy environmental, economic and social necessities and constraints. This can be facilitated by a decision support system that links hydrological, meteorological, engineering, water quality, agriculture, environmental, and other information in an integrated framework. In the last few decades different modelling tools for resolving problems regarding water quantity and quality were developed, respectively water resources management. Watershed models have been developed to the understanding of water cycle and pollution dynamics, and used to evaluate the impacts of hydrotechnical arrangements and land use management options on water quantity, quality, mitigation measures and possible global changes. Models have been used for planning monitoring network and to develop plans for intervention in case of hydrological disasters: floods, flash floods, drought and pollution. MIKE HYDRO Basin is a multi-purpose, map-centric decision support tool for integrated hydrographical basin analysis, planning and management. MIKE HYDRO Basin is designed for analyzing water sharing issues at international, national and local hydrographical basin level. MIKE HYDRO Basin uses a simplified mathematical representation of the hydrographical basin including the configuration of river and reservoir systems, catchment hydrology and existing and potential water user schemes with their various demands including a rigorous irrigation scheme module. This paper analyzes the importance and principles of integrated hydrographical basin management and develop a case study for Crasna river basin, with the use of MIKE HYDRO Basin advanced hydroinformatic tool for integrated hydrographical basin analysis, planning and management.
Huser, Vojtech; Cimino, James J.
2013-01-01
Integrated data repositories (IDRs) are indispensable tools for numerous biomedical research studies. We compare three large IDRs (Informatics for Integrating Biology and the Bedside (i2b2), HMO Research Network’s Virtual Data Warehouse (VDW) and Observational Medical Outcomes Partnership (OMOP) repository) in order to identify common architectural features that enable efficient storage and organization of large amounts of clinical data. We define three high-level classes of underlying data storage models and we analyze each repository using this classification. We look at how a set of sample facts is represented in each repository and conclude with a list of desiderata for IDRs that deal with the information storage model, terminology model, data integration and value-sets management. PMID:24551366
Huser, Vojtech; Cimino, James J
2013-01-01
Integrated data repositories (IDRs) are indispensable tools for numerous biomedical research studies. We compare three large IDRs (Informatics for Integrating Biology and the Bedside (i2b2), HMO Research Network's Virtual Data Warehouse (VDW) and Observational Medical Outcomes Partnership (OMOP) repository) in order to identify common architectural features that enable efficient storage and organization of large amounts of clinical data. We define three high-level classes of underlying data storage models and we analyze each repository using this classification. We look at how a set of sample facts is represented in each repository and conclude with a list of desiderata for IDRs that deal with the information storage model, terminology model, data integration and value-sets management.
Pantropic retroviruses as a transduction tool for sea urchin embryos
Core, Amanda B.; Reyna, Arlene E.; Conaway, Evan A.; Bradham, Cynthia A.
2012-01-01
Sea urchins are an important model for experiments at the intersection of development and systems biology, and technical innovations that enhance the utility of this model are of great value. This study explores pantropic retroviruses as a transduction tool for sea urchin embryos, and demonstrates that pantropic retroviruses infect sea urchin embryos with high efficiency and genomically integrate at a copy number of one per cell. We successfully used a self-inactivation strategy to both insert a sea urchin-specific enhancer and disrupt the endogenous viral enhancer. The resulting self-inactivating viruses drive global and persistent gene expression, consistent with genomic integration during the first cell cycle. Together, these data provide substantial proof of principle for transduction technology in sea urchin embryos. PMID:22431628
Alexander Meets Michotte: A Simulation Tool Based on Pattern Programming and Phenomenology
ERIC Educational Resources Information Center
Basawapatna, Ashok
2016-01-01
Simulation and modeling activities, a key point of computational thinking, are currently not being integrated into the science classroom. This paper describes a new visual programming tool entitled the Simulation Creation Toolkit. The Simulation Creation Toolkit is a high level pattern-based phenomenological approach to bringing rapid simulation…
NASA Technical Reports Server (NTRS)
Ruggles, C. L.
1978-01-01
The PMR process development, tooling concepts, testing conducted to generate materials properties data, and the fabrication of a subscale model of the inner cowl are presented. It was concluded that the materials, processes, and tooling concepts were satisfactory for making an inner cowl with adequate structural integrity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.
2011-02-01
This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs,more » and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.« less
Modeling biochemical transformation processes and information processing with Narrator
Mandel, Johannes J; Fuß, Hendrik; Palfreyman, Niall M; Dubitzky, Werner
2007-01-01
Background Software tools that model and simulate the dynamics of biological processes and systems are becoming increasingly important. Some of these tools offer sophisticated graphical user interfaces (GUIs), which greatly enhance their acceptance by users. Such GUIs are based on symbolic or graphical notations used to describe, interact and communicate the developed models. Typically, these graphical notations are geared towards conventional biochemical pathway diagrams. They permit the user to represent the transport and transformation of chemical species and to define inhibitory and stimulatory dependencies. A critical weakness of existing tools is their lack of supporting an integrative representation of transport, transformation as well as biological information processing. Results Narrator is a software tool facilitating the development and simulation of biological systems as Co-dependence models. The Co-dependence Methodology complements the representation of species transport and transformation together with an explicit mechanism to express biological information processing. Thus, Co-dependence models explicitly capture, for instance, signal processing structures and the influence of exogenous factors or events affecting certain parts of a biological system or process. This combined set of features provides the system biologist with a powerful tool to describe and explore the dynamics of life phenomena. Narrator's GUI is based on an expressive graphical notation which forms an integral part of the Co-dependence Methodology. Behind the user-friendly GUI, Narrator hides a flexible feature which makes it relatively easy to map models defined via the graphical notation to mathematical formalisms and languages such as ordinary differential equations, the Systems Biology Markup Language or Gillespie's direct method. This powerful feature facilitates reuse, interoperability and conceptual model development. Conclusion Narrator is a flexible and intuitive systems biology tool. It is specifically intended for users aiming to construct and simulate dynamic models of biology without recourse to extensive mathematical detail. Its design facilitates mappings to different formal languages and frameworks. The combined set of features makes Narrator unique among tools of its kind. Narrator is implemented as Java software program and available as open-source from . PMID:17389034
Miyoshi, Newton Shydeo Brandão; Pinheiro, Daniel Guariz; Silva, Wilson Araújo; Felipe, Joaquim Cezar
2013-06-06
The use of the knowledge produced by sciences to promote human health is the main goal of translational medicine. To make it feasible we need computational methods to handle the large amount of information that arises from bench to bedside and to deal with its heterogeneity. A computational challenge that must be faced is to promote the integration of clinical, socio-demographic and biological data. In this effort, ontologies play an essential role as a powerful artifact for knowledge representation. Chado is a modular ontology-oriented database model that gained popularity due to its robustness and flexibility as a generic platform to store biological data; however it lacks supporting representation of clinical and socio-demographic information. We have implemented an extension of Chado - the Clinical Module - to allow the representation of this kind of information. Our approach consists of a framework for data integration through the use of a common reference ontology. The design of this framework has four levels: data level, to store the data; semantic level, to integrate and standardize the data by the use of ontologies; application level, to manage clinical databases, ontologies and data integration process; and web interface level, to allow interaction between the user and the system. The clinical module was built based on the Entity-Attribute-Value (EAV) model. We also proposed a methodology to migrate data from legacy clinical databases to the integrative framework. A Chado instance was initialized using a relational database management system. The Clinical Module was implemented and the framework was loaded using data from a factual clinical research database. Clinical and demographic data as well as biomaterial data were obtained from patients with tumors of head and neck. We implemented the IPTrans tool that is a complete environment for data migration, which comprises: the construction of a model to describe the legacy clinical data, based on an ontology; the Extraction, Transformation and Load (ETL) process to extract the data from the source clinical database and load it in the Clinical Module of Chado; the development of a web tool and a Bridge Layer to adapt the web tool to Chado, as well as other applications. Open-source computational solutions currently available for translational science does not have a model to represent biomolecular information and also are not integrated with the existing bioinformatics tools. On the other hand, existing genomic data models do not represent clinical patient data. A framework was developed to support translational research by integrating biomolecular information coming from different "omics" technologies with patient's clinical and socio-demographic data. This framework should present some features: flexibility, compression and robustness. The experiments accomplished from a use case demonstrated that the proposed system meets requirements of flexibility and robustness, leading to the desired integration. The Clinical Module can be accessed in http://dcm.ffclrp.usp.br/caib/pg=iptrans.
Stimulating Scientific Reasoning with Drawing-Based Modeling
NASA Astrophysics Data System (ADS)
Heijnes, Dewi; van Joolingen, Wouter; Leenaars, Frank
2018-02-01
We investigate the way students' reasoning about evolution can be supported by drawing-based modeling. We modified the drawing-based modeling tool SimSketch to allow for modeling evolutionary processes. In three iterations of development and testing, students in lower secondary education worked on creating an evolutionary model. After each iteration, the user interface and instructions were adjusted based on students' remarks and the teacher's observations. Students' conversations were analyzed on reasoning complexity as a measurement of efficacy of the modeling tool and the instructions. These findings were also used to compose a set of recommendations for teachers and curriculum designers for using and constructing models in the classroom. Our findings suggest that to stimulate scientific reasoning in students working with a drawing-based modeling, tool instruction about the tool and the domain should be integrated. In creating models, a sufficient level of scaffolding is necessary. Without appropriate scaffolds, students are not able to create the model. With scaffolding that is too high, students may show reasoning that incorrectly assigns external causes to behavior in the model.
NASA Astrophysics Data System (ADS)
Falinski, K. A.; Oleson, K.; Htun, H.; Kappel, C.; Lecky, J.; Rowe, C.; Selkoe, K.; White, C.
2016-12-01
Faced with anthropogenic stressors and declining coral reef states, managers concerned with restoration and resilience of coral reefs are increasingly recognizing the need to take a ridge-to-reef, ecosystem-based approach. An ecosystem services framing can help managers move towards these goals, helping to illustrate trade-offs and opportunities of management actions in terms of their impacts on society. We describe a research program building a spatial ecosystem services-based decision-support tool, and being applied to guide ridge-to-reef management in a NOAA priority site in West Maui. We use multiple modeling methods to link biophysical processes to ecosystem services and their spatial flows and social values in an integrating platform. Modeled services include water availability, sediment retention, nutrient retention and carbon sequestration on land. A coral reef ecosystem service model is under development to capture the linkages between terrestrial and coastal ecosystem services. Valuation studies are underway to quantify the implications for human well-being. The tool integrates techniques from decision science to facilitate decision making. We use the sediment retention model to illustrate the types of analyses the tool can support. The case study explores the tradeoffs between road rehabilitation costs and sediment export avoided. We couple the sediment and cost models with trade-off analysis to identify optimal distributed solutions that are most cost-effective in reducing erosion, and then use those models to estimate sediment exposure to coral reefs. We find that cooperation between land owners reveals opportunities for maximizing the benefits of fixing roads and minimizes costs. This research forms the building blocks of an ecosystem service decision support tool that we intend to continue to test and apply in other Pacific Island settings.
Inrig, Stephen J; Higashi, Robin T; Tiro, Jasmin A; Argenbright, Keith E; Lee, Simon J Craddock
2017-04-01
Despite federal funding for breast cancer screening, fragmented infrastructure and limited organizational capacity hinder access to the full continuum of breast cancer screening and clinical follow-up procedures among rural-residing women. We proposed a regional hub-and-spoke model, partnering with local providers to expand access across North Texas. We describe development and application of an iterative, mixed-method tool to assess county capacity to conduct community outreach and/or patient navigation in a partnership model. Our tool combined publicly-available quantitative data with qualitative assessments during site visits and semi-structured interviews. Application of our tool resulted in shifts in capacity designation in 10 of 17 county partners: 8 implemented local outreach with hub navigation; 9 relied on the hub for both outreach and navigation. Key factors influencing capacity: (1) formal linkages between partner organizations; (2) inter-organizational relationships; (3) existing clinical service protocols; (4) underserved populations. Qualitative data elucidate how our tool captured these capacity changes. Our capacity assessment tool enabled the hub to establish partnerships with county organizations by tailoring support to local capacity and needs. Absent a vertically integrated provider network for preventive services in these rural counties, our tool facilitated a virtually integrated regional network to extend access to breast cancer screening to underserved women. Copyright © 2016 Elsevier Ltd. All rights reserved.
Smart Grid Interoperability Maturity Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widergren, Steven E.; Levinson, Alex; Mater, J.
2010-04-28
The integration of automation associated with electricity resources (including transmission and distribution automation and demand-side resources operated by end-users) is key to supporting greater efficiencies and incorporating variable renewable resources and electric vehicles into the power system. The integration problems faced by this community are analogous to those faced in the health industry, emergency services, and other complex communities with many stakeholders. To highlight this issue and encourage communication and the development of a smart grid interoperability community, the GridWise Architecture Council (GWAC) created an Interoperability Context-Setting Framework. This "conceptual model" has been helpful to explain the importance of organizationalmore » alignment in addition to technical and informational interface specifications for "smart grid" devices and systems. As a next step to building a community sensitive to interoperability, the GWAC is investigating an interoperability maturity model (IMM) based on work done by others to address similar circumstances. The objective is to create a tool or set of tools that encourages a culture of interoperability in this emerging community. The tools would measure status and progress, analyze gaps, and prioritize efforts to improve the situation.« less
NURBS-Based Geometry for Integrated Structural Analysis
NASA Technical Reports Server (NTRS)
Oliver, James H.
1997-01-01
This grant was initiated in April 1993 and completed in September 1996. The primary goal of the project was to exploit the emerging defacto CAD standard of Non- Uniform Rational B-spline (NURBS) based curve and surface geometry to integrate and streamline the process of turbomachinery structural analysis. We focused our efforts on critical geometric modeling challenges typically posed by the requirements of structural analysts. We developed a suite of software tools that facilitate pre- and post-processing of NURBS-based turbomachinery blade models for finite element structural analyses. We also developed tools to facilitate the modeling of blades in their manufactured (or cold) state based on nominal operating shape and conditions. All of the software developed in the course of this research is written in the C++ language using the Iris Inventor 3D graphical interface tool-kit from Silicon Graphics. In addition to enhanced modularity, improved maintainability, and efficient prototype development, this design facilitates the re-use of code developed for other NASA projects and provides a uniform and professional 'look and feel' for all applications developed by the Iowa State Team.
Augmenting the SCaN Link Budget Tool with Validated Atmospheric Propagation
NASA Technical Reports Server (NTRS)
Steinkerchner, Leo; Welch, Bryan
2017-01-01
In any Earth-Space or Space-Earth communications link, atmospheric effects cause significant signal attenuation. In order to develop a communications system that is cost effective while meeting appropriate performance requirements, it is important to accurately predict these effects for the given link parameters. This project aimed to develop a Matlab(TradeMark) (The MathWorks, Inc.) program that could augment the existing Space Communications and Navigation (SCaN) Link Budget Tool with accurate predictions of atmospheric attenuation of both optical and radio-frequency signals according to the SCaN Optical Link Assessment Model Version 5 and the International Telecommunications Union, Radiocommunications Sector (ITU-R) atmospheric propagation loss model, respectively. When compared to data collected from the Advance Communications Technology Satellite (ACTS), the radio-frequency model predicted attenuation to within 1.3 dB of loss for 95 of measurements. Ultimately, this tool will be integrated into the SCaN Center for Engineering, Networks, Integration, and Communications (SCENIC) user interface in order to support analysis of existing SCaN systems and planning capabilities for future NASA missions.
NASA Astrophysics Data System (ADS)
Criollo, Rotman; Velasco, Violeta; Vázquez-Suñé, Enric; Nardi, Albert; Marazuela, Miguel A.; Rossetto, Rudy; Borsi, Iacopo; Foglia, Laura; Cannata, Massimiliano; De Filippis, Giovanna
2017-04-01
Due to the general increase of water scarcity (Steduto et al., 2012), water quantity and quality must be well known to ensure a proper access to water resources in compliance with local and regional directives. This circumstance can be supported by tools which facilitate process of data management and its analysis. Such analyses have to provide research/professionals, policy makers and users with the ability to improve the management of the water resources with standard regulatory guidelines. Compliance with the established standard regulatory guidelines (with a special focus on requirement deriving from the GWD) should have an effective monitoring, evaluation, and interpretation of a large number of physical and chemical parameters. These amounts of datasets have to be assessed and interpreted: (i) integrating data from different sources and gathered with different data access techniques and formats; (ii) managing data with varying temporal and spatial extent; (iii) integrating groundwater quality information with other relevant information such as further hydrogeological data (Velasco et al., 2014) and pre-processing these data generally for the realization of groundwater models. In this context, the Hydrochemical Analysis Tools, akvaGIS Tools, has been implemented within the H2020 FREEWAT project; which aims to manage water resources by modelling water resource management in an open source GIS platform (QGIS desktop). The main goal of AkvaGIS Tools is to improve water quality analysis through different capabilities to improve the case study conceptual model managing all data related into its geospatial database (implemented in Spatialite) and a set of tools for improving the harmonization, integration, standardization, visualization and interpretation of the hydrochemical data. To achieve that, different commands cover a wide range of methodologies for querying, interpreting, and comparing groundwater quality data and facilitate the pre-processing analysis for being used in the realization of groundwater modelling. They include, ionic balance calculations, chemical time-series analysis, correlation of chemical parameters, and calculation of various common hydrochemical diagrams (Salinity, Schöeller-Berkaloff, Piper, and Stiff), among others. Furthermore, it allows the generation of maps of the spatial distributions of parameters and diagrams and thematic maps for the parameters measured and classified in the queried area. References: Rossetto R., Borsi I., Schifani C., Bonari E., Mogorovich P., Primicerio M. (2013). SID&GRID: Integrating hydrological modeling in GIS environment. Rendiconti Online Societa Geologica Italiana, Vol. 24, 282-283 Steduto, P., Faurès, J.M., Hoogeveen, J., Winpenny, J.T., Burke, J.J. (2012). Coping with water scarcity: an action framework for agriculture and food security. ISSN 1020-1203 ; 38 Velasco, V., Tubau, I., Vázquez-Suñé, E., Gogu, R., Gaitanaru, D., Alcaraz, M., Sanchez-Vila, X. (2014). GIS-based hydrogeochemical analysis tools (QUIMET). Computers & Geosciences, 70, 164-180.
NASA Astrophysics Data System (ADS)
Donnelly, William J., III
2012-06-01
PURPOSE: To present a commercially available optical modeling software tool to assist the development of optical instrumentation and systems that utilize and/or integrate with the human eye. METHODS: A commercially available flexible eye modeling system is presented, the Advanced Human Eye Model (AHEM). AHEM is a module that the engineer can use to perform rapid development and test scenarios on systems that integrate with the eye. Methods include merging modeled systems initially developed outside of AHEM and performing a series of wizard-type operations that relieve the user from requiring an optometric or ophthalmic background to produce a complete eye inclusive system. Scenarios consist of retinal imaging of targets and sources through integrated systems. Uses include, but are not limited to, optimization, telescopes, microscopes, spectacles, contact and intraocular lenses, ocular aberrations, cataract simulation and scattering, and twin eye model (binocular) systems. RESULTS: Metrics, graphical data, and exportable CAD geometry are generated from the various modeling scenarios.
Modeling Interoperable Information Systems with 3LGM² and IHE.
Stäubert, S; Schaaf, M; Jahn, F; Brandner, R; Winter, A
2015-01-01
Strategic planning of information systems (IS) in healthcare requires descriptions of the current and the future IS state. Enterprise architecture planning (EAP) tools like the 3LGM² tool help to build up and to analyze IS models. A model of the planned architecture can be derived from an analysis of current state IS models. Building an interoperable IS, i. e. an IS consisting of interoperable components, can be considered a relevant strategic information management goal for many IS in healthcare. Integrating the healthcare enterprise (IHE) is an initiative which targets interoperability by using established standards. To link IHE concepts to 3LGM² concepts within the 3LGM² tool. To describe how an information manager can be supported in handling the complex IHE world and planning interoperable IS using 3LGM² models. To describe how developers or maintainers of IHE profiles can be supported by the representation of IHE concepts in 3LGM². Conceptualization and concept mapping methods are used to assign IHE concepts such as domains, integration profiles actors and transactions to the concepts of the three-layer graph-based meta-model (3LGM²). IHE concepts were successfully linked to 3LGM² concepts. An IHE-master-model, i. e. an abstract model for IHE concepts, was modeled with the help of 3LGM² tool. Two IHE domains were modeled in detail (ITI, QRPH). We describe two use cases for the representation of IHE concepts and IHE domains as 3LGM² models. Information managers can use the IHE-master-model as reference model for modeling interoperable IS based on IHE profiles during EAP activities. IHE developers are supported in analyzing consistency of IHE concepts with the help of the IHE-master-model and functions of the 3LGM² tool The complex relations between IHE concepts can be modeled by using the EAP method 3LGM². 3LGM² tool offers visualization and analysis features which are now available for the IHE-master-model. Thus information managers and IHE developers can use or develop IHE profiles systematically. In order to improve the usability and handling of the IHE-master-model and its usage as a reference model, some further refinements have to be done. Evaluating the use of the IHE-master-model by information managers and IHE developers is subject to further research.
Learning with Artificial Worlds: Computer-Based Modelling in the Curriculum.
ERIC Educational Resources Information Center
Mellar, Harvey, Ed.; And Others
With the advent of the British National Curriculum, computer-based modeling has become an integral part of the school curriculum. This book is about modeling in education and providing children with computer tools to create and explore representations of the world. Members of the London Mental Models Group contributed their research: (1)…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yi; Errichello, Robert
2013-08-29
An analytical model is developed to evaluate the design of a spline coupling. For a given torque and shaft misalignment, the model calculates the number of teeth in contact, tooth loads, stiffnesses, stresses, and safety factors. The analytic model provides essential spline coupling design and modeling information and could be easily integrated into gearbox design and simulation tools.
The combined meteorology and air quality modeling system composed of the Weather Research and Forecast (WRF) model and Community Multiscale Air Quality (CMAQ) model is an important decision support tool that is used in research and regulatory decisions related to emissions, meteo...
NASA Technical Reports Server (NTRS)
Chaparro, Daniel; Fujiwara, Gustavo E. C.; Ting, Eric; Nguyen, Nhan
2016-01-01
The need to rapidly scan large design spaces during conceptual design calls for computationally inexpensive tools such as the vortex lattice method (VLM). Although some VLM tools, such as Vorview have been extended to model fully-supersonic flow, VLM solutions are typically limited to inviscid, subcritical flow regimes. Many transport aircraft operate at transonic speeds, which limits the applicability of VLM for such applications. This paper presents a novel approach to correct three-dimensional VLM through coupling of two-dimensional transonic small disturbance (TSD) solutions along the span of an aircraft wing in order to accurately predict transonic aerodynamic loading and wave drag for transport aircraft. The approach is extended to predict flow separation and capture the attenuation of aerodynamic forces due to boundary layer viscosity by coupling the TSD solver with an integral boundary layer (IBL) model. The modeling framework is applied to the NASA General Transport Model (GTM) integrated with a novel control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF).
Integrating Computational Science Tools into a Thermodynamics Course
NASA Astrophysics Data System (ADS)
Vieira, Camilo; Magana, Alejandra J.; García, R. Edwin; Jana, Aniruddha; Krafcik, Matthew
2018-01-01
Computational tools and methods have permeated multiple science and engineering disciplines, because they enable scientists and engineers to process large amounts of data, represent abstract phenomena, and to model and simulate complex concepts. In order to prepare future engineers with the ability to use computational tools in the context of their disciplines, some universities have started to integrate these tools within core courses. This paper evaluates the effect of introducing three computational modules within a thermodynamics course on student disciplinary learning and self-beliefs about computation. The results suggest that using worked examples paired to computer simulations to implement these modules have a positive effect on (1) student disciplinary learning, (2) student perceived ability to do scientific computing, and (3) student perceived ability to do computer programming. These effects were identified regardless of the students' prior experiences with computer programming.
Leavesley, G.H.; Markstrom, S.L.; Viger, R.J.
2004-01-01
The interdisciplinary nature and increasing complexity of water- and environmental-resource problems require the use of modeling approaches that can incorporate knowledge from a broad range of scientific disciplines. The large number of distributed hydrological and ecosystem models currently available are composed of a variety of different conceptualizations of the associated processes they simulate. Assessment of the capabilities of these distributed models requires evaluation of the conceptualizations of the individual processes, and the identification of which conceptualizations are most appropriate for various combinations of criteria, such as problem objectives, data constraints, and spatial and temporal scales of application. With this knowledge, "optimal" models for specific sets of criteria can be created and applied. The U.S. Geological Survey (USGS) Modular Modeling System (MMS) is an integrated system of computer software that has been developed to provide these model development and application capabilities. MMS supports the integration of models and tools at a variety of levels of modular design. These include individual process models, tightly coupled models, loosely coupled models, and fully-integrated decision support systems. A variety of visualization and statistical tools are also provided. MMS has been coupled with the Bureau of Reclamation (BOR) object-oriented reservoir and river-system modeling framework, RiverWare, under a joint USGS-BOR program called the Watershed and River System Management Program. MMS and RiverWare are linked using a shared relational database. The resulting database-centered decision support system provides tools for evaluating and applying optimal resource-allocation and management strategies to complex, operational decisions on multipurpose reservoir systems and watersheds. Management issues being addressed include efficiency of water-resources management, environmental concerns such as meeting flow needs for endangered species, and optimizing operations within the constraints of multiple objectives such as power generation, irrigation, and water conservation. This decision support system approach is being developed, tested, and implemented in the Gunni-son, Yakima, San Juan, Rio Grande, and Truckee River basins of the western United States. Copyright ASCE 2004.
Full Life Cycle of Data Analysis with Climate Model Diagnostic Analyzer (CMDA)
NASA Astrophysics Data System (ADS)
Lee, S.; Zhai, C.; Pan, L.; Tang, B.; Zhang, J.; Bao, Q.; Malarout, N.
2017-12-01
We have developed a system that supports the full life cycle of a data analysis process, from data discovery, to data customization, to analysis, to reanalysis, to publication, and to reproduction. The system called Climate Model Diagnostic Analyzer (CMDA) is designed to demonstrate that the full life cycle of data analysis can be supported within one integrated system for climate model diagnostic evaluation with global observational and reanalysis datasets. CMDA has four subsystems that are highly integrated to support the analysis life cycle. Data System manages datasets used by CMDA analysis tools, Analysis System manages CMDA analysis tools which are all web services, Provenance System manages the meta data of CMDA datasets and the provenance of CMDA analysis history, and Recommendation System extracts knowledge from CMDA usage history and recommends datasets/analysis tools to users. These four subsystems are not only highly integrated but also easily expandable. New datasets can be easily added to Data System and scanned to be visible to the other subsystems. New analysis tools can be easily registered to be available in the Analysis System and Provenance System. With CMDA, a user can start a data analysis process by discovering datasets of relevance to their research topic using the Recommendation System. Next, the user can customize the discovered datasets for their scientific use (e.g. anomaly calculation, regridding, etc) with tools in the Analysis System. Next, the user can do their analysis with the tools (e.g. conditional sampling, time averaging, spatial averaging) in the Analysis System. Next, the user can reanalyze the datasets based on the previously stored analysis provenance in the Provenance System. Further, they can publish their analysis process and result to the Provenance System to share with other users. Finally, any user can reproduce the published analysis process and results. By supporting the full life cycle of climate data analysis, CMDA improves the research productivity and collaboration level of its user.
Integrative models are needed to "decode the toxicological blueprint of active substances that interact with living systems" (Systems toxicology). Computational biology is uniquely positioned to capture this connectivity and help shift decision-making to mechanistic pre...
To facilitate evaluation of existing site characterization data, ORD has developed on-line tools and models that integrate data and models into innovative applications. Forty calculators have been developed in four groups: parameter estimators, models, scientific demos and unit ...
Averaging Models: Parameters Estimation with the R-Average Procedure
ERIC Educational Resources Information Center
Vidotto, G.; Massidda, D.; Noventa, S.
2010-01-01
The Functional Measurement approach, proposed within the theoretical framework of Information Integration Theory (Anderson, 1981, 1982), can be a useful multi-attribute analysis tool. Compared to the majority of statistical models, the averaging model can account for interaction effects without adding complexity. The R-Average method (Vidotto &…
Empowering Prospective Teachers to Become Active Sense-Makers: Multimodal Modeling of the Seasons
ERIC Educational Resources Information Center
Kim, Mi Song
2015-01-01
Situating science concepts in concrete and authentic contexts, using information and communications technologies, including multimodal modeling tools, is important for promoting the development of higher-order thinking skills in learners. However, teachers often struggle to integrate emergent multimodal models into a technology-rich informal…
Lotus Base: An integrated information portal for the model legume Lotus japonicus
Mun, Terry; Bachmann, Asger; Gupta, Vikas; Stougaard, Jens; Andersen, Stig U.
2016-01-01
Lotus japonicus is a well-characterized model legume widely used in the study of plant-microbe interactions. However, datasets from various Lotus studies are poorly integrated and lack interoperability. We recognize the need for a comprehensive repository that allows comprehensive and dynamic exploration of Lotus genomic and transcriptomic data. Equally important are user-friendly in-browser tools designed for data visualization and interpretation. Here, we present Lotus Base, which opens to the research community a large, established LORE1 insertion mutant population containing an excess of 120,000 lines, and serves the end-user tightly integrated data from Lotus, such as the reference genome, annotated proteins, and expression profiling data. We report the integration of expression data from the L. japonicus gene expression atlas project, and the development of tools to cluster and export such data, allowing users to construct, visualize, and annotate co-expression gene networks. Lotus Base takes advantage of modern advances in browser technology to deliver powerful data interpretation for biologists. Its modular construction and publicly available application programming interface enable developers to tap into the wealth of integrated Lotus data. Lotus Base is freely accessible at: https://lotus.au.dk. PMID:28008948
Model-based sensorimotor integration for multi-joint control: development of a virtual arm model.
Song, D; Lan, N; Loeb, G E; Gordon, J
2008-06-01
An integrated, sensorimotor virtual arm (VA) model has been developed and validated for simulation studies of control of human arm movements. Realistic anatomical features of shoulder, elbow and forearm joints were captured with a graphic modeling environment, SIMM. The model included 15 musculotendon elements acting at the shoulder, elbow and forearm. Muscle actions on joints were evaluated by SIMM generated moment arms that were matched to experimentally measured profiles. The Virtual Muscle (VM) model contained appropriate admixture of slow and fast twitch fibers with realistic physiological properties for force production. A realistic spindle model was embedded in each VM with inputs of fascicle length, gamma static (gamma(stat)) and dynamic (gamma(dyn)) controls and outputs of primary (I(a)) and secondary (II) afferents. A piecewise linear model of Golgi Tendon Organ (GTO) represented the ensemble sampling (I(b)) of the total muscle force at the tendon. All model components were integrated into a Simulink block using a special software tool. The complete VA model was validated with open-loop simulation at discrete hand positions within the full range of alpha and gamma drives to extrafusal and intrafusal muscle fibers. The model behaviors were consistent with a wide variety of physiological phenomena. Spindle afferents were effectively modulated by fusimotor drives and hand positions of the arm. These simulations validated the VA model as a computational tool for studying arm movement control. The VA model is available to researchers at website http://pt.usc.edu/cel .
NASA Astrophysics Data System (ADS)
Cota, Stephen A.; Lomheim, Terrence S.; Florio, Christopher J.; Harbold, Jeffrey M.; Muto, B. Michael; Schoolar, Richard B.; Wintz, Daniel T.; Keller, Robert A.
2011-10-01
In a previous paper in this series, we described how The Aerospace Corporation's Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) tool may be used to model space and airborne imaging systems operating in the visible to near-infrared (VISNIR). PICASSO is a systems-level tool, representative of a class of such tools used throughout the remote sensing community. It is capable of modeling systems over a wide range of fidelity, anywhere from conceptual design level (where it can serve as an integral part of the systems engineering process) to as-built hardware (where it can serve as part of the verification process). In the present paper, we extend the discussion of PICASSO to the modeling of Thermal Infrared (TIR) remote sensing systems, presenting the equations and methods necessary to modeling in that regime.
Fang, Yu-Hua Dean; Asthana, Pravesh; Salinas, Cristian; Huang, Hsuan-Ming; Muzic, Raymond F
2010-01-01
An integrated software package, Compartment Model Kinetic Analysis Tool (COMKAT), is presented in this report. COMKAT is an open-source software package with many functions for incorporating pharmacokinetic analysis in molecular imaging research and has both command-line and graphical user interfaces. With COMKAT, users may load and display images, draw regions of interest, load input functions, select kinetic models from a predefined list, or create a novel model and perform parameter estimation, all without having to write any computer code. For image analysis, COMKAT image tool supports multiple image file formats, including the Digital Imaging and Communications in Medicine (DICOM) standard. Image contrast, zoom, reslicing, display color table, and frame summation can be adjusted in COMKAT image tool. It also displays and automatically registers images from 2 modalities. Parametric imaging capability is provided and can be combined with the distributed computing support to enhance computation speeds. For users without MATLAB licenses, a compiled, executable version of COMKAT is available, although it currently has only a subset of the full COMKAT capability. Both the compiled and the noncompiled versions of COMKAT are free for academic research use. Extensive documentation, examples, and COMKAT itself are available on its wiki-based Web site, http://comkat.case.edu. Users are encouraged to contribute, sharing their experience, examples, and extensions of COMKAT. With integrated functionality specifically designed for imaging and kinetic modeling analysis, COMKAT can be used as a software environment for molecular imaging and pharmacokinetic analysis.
ASTEC and MODEL: Controls software development at Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Downing, John P.; Bauer, Frank H.; Surber, Jeffrey L.
1993-01-01
The ASTEC (Analysis and Simulation Tools for Engineering Controls) software is under development at the Goddard Space Flight Center (GSFC). The design goal is to provide a wide selection of controls analysis tools at the personal computer level, as well as the capability to upload compute-intensive jobs to a mainframe or supercomputer. In the last three years the ASTEC (Analysis and Simulation Tools for Engineering Controls) software has been under development. ASTEC is meant to be an integrated collection of controls analysis tools for use at the desktop level. MODEL (Multi-Optimal Differential Equation Language) is a translator that converts programs written in the MODEL language to FORTRAN. An upgraded version of the MODEL program will be merged into ASTEC. MODEL has not been modified since 1981 and has not kept with changes in computers or user interface techniques. This paper describes the changes made to MODEL in order to make it useful in the 90's and how it relates to ASTEC.
Trame, MN; Lesko, LJ
2015-01-01
A systems pharmacology model typically integrates pharmacokinetic, biochemical network, and systems biology concepts into a unifying approach. It typically consists of a large number of parameters and reaction species that are interlinked based upon the underlying (patho)physiology and the mechanism of drug action. The more complex these models are, the greater the challenge of reliably identifying and estimating respective model parameters. Global sensitivity analysis provides an innovative tool that can meet this challenge. CPT Pharmacometrics Syst. Pharmacol. (2015) 4, 69–79; doi:10.1002/psp4.6; published online 25 February 2015 PMID:27548289
Measuring the Impact of Data Mining on Churn Management.
ERIC Educational Resources Information Center
Lejeune, Miguel A. P. M.
2001-01-01
Churn management is a concern for businesses, particularly in the digital economy. A customer relationship framework is proposed to help deal with churn issues. The model integrates the electronic channel and involves four tools for enhancing data collection, data treatment, data analysis and data integration in the decision-making process.…
Developing and Sustaining an Inclusive Dance Program: Strategic Tools and Methods
ERIC Educational Resources Information Center
Morris, Merry Lynn; Baldeon, Marion; Scheuneman, Dwayne
2015-01-01
In the 1980s, mixed ability or physically integrated dance companies, such as AXIS and DancingWheels, began with professional performance goals, aimed at producing highquality choreographic work involving individuals with and without disabilities. Those companies are pioneers in the integrated dance field and serve as beneficial models of…
Takahashi, Chie; Watt, Simon J.
2014-01-01
When we hold an object while looking at it, estimates from visual and haptic cues to size are combined in a statistically optimal fashion, whereby the “weight” given to each signal reflects their relative reliabilities. This allows object properties to be estimated more precisely than would otherwise be possible. Tools such as pliers and tongs systematically perturb the mapping between object size and the hand opening. This could complicate visual-haptic integration because it may alter the reliability of the haptic signal, thereby disrupting the determination of appropriate signal weights. To investigate this we first measured the reliability of haptic size estimates made with virtual pliers-like tools (created using a stereoscopic display and force-feedback robots) with different “gains” between hand opening and object size. Haptic reliability in tool use was straightforwardly determined by a combination of sensitivity to changes in hand opening and the effects of tool geometry. The precise pattern of sensitivity to hand opening, which violated Weber's law, meant that haptic reliability changed with tool gain. We then examined whether the visuo-motor system accounts for these reliability changes. We measured the weight given to visual and haptic stimuli when both were available, again with different tool gains, by measuring the perceived size of stimuli in which visual and haptic sizes were varied independently. The weight given to each sensory cue changed with tool gain in a manner that closely resembled the predictions of optimal sensory integration. The results are consistent with the idea that different tool geometries are modeled by the brain, allowing it to calculate not only the distal properties of objects felt with tools, but also the certainty with which those properties are known. These findings highlight the flexibility of human sensory integration and tool-use, and potentially provide an approach for optimizing the design of visual-haptic devices. PMID:24592245
A Synthetic Vision Preliminary Integrated Safety Analysis
NASA Technical Reports Server (NTRS)
Hemm, Robert; Houser, Scott
2001-01-01
This report documents efforts to analyze a sample of aviation safety programs, using the LMI-developed integrated safety analysis tool to determine the change in system risk resulting from Aviation Safety Program (AvSP) technology implementation. Specifically, we have worked to modify existing system safety tools to address the safety impact of synthetic vision (SV) technology. Safety metrics include reliability, availability, and resultant hazard. This analysis of SV technology is intended to be part of a larger effort to develop a model that is capable of "providing further support to the product design and development team as additional information becomes available". The reliability analysis portion of the effort is complete and is fully documented in this report. The simulation analysis is still underway; it will be documented in a subsequent report. The specific goal of this effort is to apply the integrated safety analysis to SV technology. This report also contains a brief discussion of data necessary to expand the human performance capability of the model, as well as a discussion of human behavior and its implications for system risk assessment in this modeling environment.
Multi -omics and metabolic modelling pipelines: challenges and tools for systems microbiology.
Fondi, Marco; Liò, Pietro
2015-02-01
Integrated -omics approaches are quickly spreading across microbiology research labs, leading to (i) the possibility of detecting previously hidden features of microbial cells like multi-scale spatial organization and (ii) tracing molecular components across multiple cellular functional states. This promises to reduce the knowledge gap between genotype and phenotype and poses new challenges for computational microbiologists. We underline how the capability to unravel the complexity of microbial life will strongly depend on the integration of the huge and diverse amount of information that can be derived today from -omics experiments. In this work, we present opportunities and challenges of multi -omics data integration in current systems biology pipelines. We here discuss which layers of biological information are important for biotechnological and clinical purposes, with a special focus on bacterial metabolism and modelling procedures. A general review of the most recent computational tools for performing large-scale datasets integration is also presented, together with a possible framework to guide the design of systems biology experiments by microbiologists. Copyright © 2015. Published by Elsevier GmbH.
Defining Scenarios: Linking Integrated Models, Regional Concerns, and Stakeholders
NASA Astrophysics Data System (ADS)
Hartmann, H. C.; Stewart, S.; Liu, Y.; Mahmoud, M.
2007-05-01
Scenarios are important tools for long-term planning, and there is great interest in using integrated models in scenario studies. However, scenario definition and assessment are creative, as well as scientific, efforts. Using facilitated creative processes, we have worked with stakeholders to define regionally significant scenarios that encompass a broad range of hydroclimatic, socioeconomic, and institutional dimensions. The regional scenarios subsequently inform the definition of local scenarios that work with context-specific integrated models that, individually, can address only a subset of overall regional complexity. Based on concerns of stakeholders in the semi-arid US Southwest, we prioritized three dimensions that are especially important, yet highly uncertain, for long-term planning: hydroclimatic conditions (increased variability, persistent drought), development patterns (urban consolidation, distributed rural development), and the nature of public institutions (stressed, proactive). Linking across real-world decision contexts and integrated modeling efforts poses challenges of creatively connecting the conceptual models held by both the research and stakeholder communities.
Modeling biological pathway dynamics with timed automata.
Schivo, Stefano; Scholma, Jetse; Wanders, Brend; Urquidi Camacho, Ricardo A; van der Vet, Paul E; Karperien, Marcel; Langerak, Rom; van de Pol, Jaco; Post, Janine N
2014-05-01
Living cells are constantly subjected to a plethora of environmental stimuli that require integration into an appropriate cellular response. This integration takes place through signal transduction events that form tightly interconnected networks. The understanding of these networks requires capturing their dynamics through computational support and models. ANIMO (analysis of Networks with Interactive Modeling) is a tool that enables the construction and exploration of executable models of biological networks, helping to derive hypotheses and to plan wet-lab experiments. The tool is based on the formalism of Timed Automata, which can be analyzed via the UPPAAL model checker. Thanks to Timed Automata, we can provide a formal semantics for the domain-specific language used to represent signaling networks. This enforces precision and uniformity in the definition of signaling pathways, contributing to the integration of isolated signaling events into complex network models. We propose an approach to discretization of reaction kinetics that allows us to efficiently use UPPAAL as the computational engine to explore the dynamic behavior of the network of interest. A user-friendly interface hides the use of Timed Automata from the user, while keeping the expressive power intact. Abstraction to single-parameter kinetics speeds up construction of models that remain faithful enough to provide meaningful insight. The resulting dynamic behavior of the network components is displayed graphically, allowing for an intuitive and interactive modeling experience.
JIMM: the next step for mission-level models
NASA Astrophysics Data System (ADS)
Gump, Jamieson; Kurker, Robert G.; Nalepka, Joseph P.
2001-09-01
The (Simulation Based Acquisition) SBA process is one in which the planning, design, and test of a weapon system or other product is done through the more effective use of modeling and simulation, information technology, and process improvement. This process results in a product that is produced faster, cheaper, and more reliably than its predecessors. Because the SBA process requires realistic and detailed simulation conditions, it was necessary to develop a simulation tool that would provide a simulation environment acceptable for doing SBA analysis. The Joint Integrated Mission Model (JIMM) was created to help define and meet the analysis, test and evaluation, and training requirements of a Department of Defense program utilizing SBA. Through its generic nature of representing simulation entities, its data analysis capability, and its robust configuration management process, JIMM can be used to support a wide range of simulation applications as both a constructive and a virtual simulation tool. JIMM is a Mission Level Model (MLM). A MLM is capable of evaluating the effectiveness and survivability of a composite force of air and space systems executing operational objectives in a specific scenario against an integrated air and space defense system. Because MLMs are useful for assessing a system's performance in a realistic, integrated, threat environment, they are key to implementing the SBA process. JIMM is a merger of the capabilities of one legacy model, the Suppressor MLM, into another, the Simulated Warfare Environment Generator (SWEG) MLM. By creating a more capable MLM, JIMM will not only be a tool to support the SBA initiative, but could also provide the framework for the next generation of MLMs.
Ahmad, Zulfiqar; Ashraf, Arshad; Fryar, Alan; Akhter, Gulraiz
2011-02-01
The integration of the Geographic Information System (GIS) with groundwater modeling and satellite remote sensing capabilities has provided an efficient way of analyzing and monitoring groundwater behavior and its associated land conditions. A 3-dimensional finite element model (Feflow) has been used for regional groundwater flow modeling of Upper Chaj Doab in Indus Basin, Pakistan. The approach of using GIS techniques that partially fulfill the data requirements and define the parameters of existing hydrologic models was adopted. The numerical groundwater flow model is developed to configure the groundwater equipotential surface, hydraulic head gradient, and estimation of the groundwater budget of the aquifer. GIS is used for spatial database development, integration with a remote sensing, and numerical groundwater flow modeling capabilities. The thematic layers of soils, land use, hydrology, infrastructure, and climate were developed using GIS. The Arcview GIS software is used as additive tool to develop supportive data for numerical groundwater flow modeling and integration and presentation of image processing and modeling results. The groundwater flow model was calibrated to simulate future changes in piezometric heads from the period 2006 to 2020. Different scenarios were developed to study the impact of extreme climatic conditions (drought/flood) and variable groundwater abstraction on the regional groundwater system. The model results indicated a significant response in watertable due to external influential factors. The developed model provides an effective tool for evaluating better management options for monitoring future groundwater development in the study area.
Developments in the CCP4 molecular-graphics project.
Potterton, Liz; McNicholas, Stuart; Krissinel, Eugene; Gruber, Jan; Cowtan, Kevin; Emsley, Paul; Murshudov, Garib N; Cohen, Serge; Perrakis, Anastassis; Noble, Martin
2004-12-01
Progress towards structure determination that is both high-throughput and high-value is dependent on the development of integrated and automatic tools for electron-density map interpretation and for the analysis of the resulting atomic models. Advances in map-interpretation algorithms are extending the resolution regime in which fully automatic tools can work reliably, but at present human intervention is required to interpret poor regions of macromolecular electron density, particularly where crystallographic data is only available to modest resolution [for example, I/sigma(I) < 2.0 for minimum resolution 2.5 A]. In such cases, a set of manual and semi-manual model-building molecular-graphics tools is needed. At the same time, converting the knowledge encapsulated in a molecular structure into understanding is dependent upon visualization tools, which must be able to communicate that understanding to others by means of both static and dynamic representations. CCP4 mg is a program designed to meet these needs in a way that is closely integrated with the ongoing development of CCP4 as a program suite suitable for both low- and high-intervention computational structural biology. As well as providing a carefully designed user interface to advanced algorithms of model building and analysis, CCP4 mg is intended to present a graphical toolkit to developers of novel algorithms in these fields.
Real-time micro-modelling of city evacuations
NASA Astrophysics Data System (ADS)
Löhner, Rainald; Haug, Eberhard; Zinggerling, Claudio; Oñate, Eugenio
2018-01-01
A methodology to integrate geographical information system (GIS) data with large-scale pedestrian simulations has been developed. Advances in automatic data acquisition and archiving from GIS databases, automatic input for pedestrian simulations, as well as scalable pedestrian simulation tools have made it possible to simulate pedestrians at the individual level for complete cities in real time. An example that simulates the evacuation of the city of Barcelona demonstrates that this is now possible. This is the first step towards a fully integrated crowd prediction and management tool that takes into account not only data gathered in real time from cameras, cell phones or other sensors, but also merges these with advanced simulation tools to predict the future state of the crowd.
NASA Technical Reports Server (NTRS)
Antle, John M.; Basso, Bruno; Conant, Richard T.; Godfray, H. Charles J.; Jones, James W.; Herrero, Mario; Howitt, Richard E.; Keating, Brian A.; Munoz-Carpena, Rafael; Rosenzweig, Cynthia
2016-01-01
This paper presents ideas for a new generation of agricultural system models that could meet the needs of a growing community of end-users exemplified by a set of Use Cases. We envision new data, models and knowledge products that could accelerate the innovation process that is needed to achieve the goal of achieving sustainable local, regional and global food security. We identify desirable features for models, and describe some of the potential advances that we envisage for model components and their integration. We propose an implementation strategy that would link a "pre-competitive" space for model development to a "competitive space" for knowledge product development and through private-public partnerships for new data infrastructure. Specific model improvements would be based on further testing and evaluation of existing models, the development and testing of modular model components and integration, and linkages of model integration platforms to new data management and visualization tools.
Antle, John M; Basso, Bruno; Conant, Richard T; Godfray, H Charles J; Jones, James W; Herrero, Mario; Howitt, Richard E; Keating, Brian A; Munoz-Carpena, Rafael; Rosenzweig, Cynthia; Tittonell, Pablo; Wheeler, Tim R
2017-07-01
This paper presents ideas for a new generation of agricultural system models that could meet the needs of a growing community of end-users exemplified by a set of Use Cases. We envision new data, models and knowledge products that could accelerate the innovation process that is needed to achieve the goal of achieving sustainable local, regional and global food security. We identify desirable features for models, and describe some of the potential advances that we envisage for model components and their integration. We propose an implementation strategy that would link a "pre-competitive" space for model development to a "competitive space" for knowledge product development and through private-public partnerships for new data infrastructure. Specific model improvements would be based on further testing and evaluation of existing models, the development and testing of modular model components and integration, and linkages of model integration platforms to new data management and visualization tools.
A web-enabled system for integrated assessment of watershed development
Dymond, R.; Lohani, V.; Regmi, B.; Dietz, R.
2004-01-01
Researchers at Virginia Tech have put together the primary structure of a web enabled integrated modeling system that has potential to be a planning tool to help decision makers and stakeholders in making appropriate watershed management decisions. This paper describes the integrated system, including data sources, collection, analysis methods, system software and design, and issues of integrating the various component models. The integrated system has three modeling components, namely hydrology, economics, and fish health, and is accompanied by descriptive 'help files.' Since all three components have a related spatial aspect, GIS technology provides the integration platform. When completed, a user will access the integrated system over the web to choose pre-selected land development patterns to create a 'what if' scenario using an easy-to-follow interface. The hydrologic model simulates effects of the scenario on annual runoff volume, flood peaks of various return periods, and ground water recharge. The economics model evaluates tax revenue and fiscal costs as a result of a new land development scenario. The fish health model evaluates effects of new land uses in zones of influence to the health of fish populations in those areas. Copyright ASCE 2004.
The Integrated Airport Competition Model, 1998
NASA Technical Reports Server (NTRS)
Veldhuis, J.; Essers, I.; Bakker, D.; Cohn, N.; Kroes, E.
1999-01-01
This paper addresses recent model development by the Directorate General of Civil Aviation (DGCA) and Hague Consulting Group (HCG) concerning long-distance travel. Long-distance travel demand is growing very quickly and raising a great deal of economic and policy issues. There is increasing competition among the main Western European airports, and smaller, regional airports are fighting for market share. New modes of transport, such as high speed rail, are also coming into the picture and affect the mode split for medium distance transport within Europe. Developments such as these are demanding the attention of policy makers and a tool is required for their analysis. For DGCA, Hague Consulting Group has developed a model system to provide answers to the policy questions posed by these expected trends, and to identify areas where policy makers can influence the traveller choices. The development of this model system, the Integrated Airport Competition Model/integraal Luchthaven Competitie Model (ILCM), began in 1992. Since that time the sub-models, input data and user interface have been expanded, updated and improved. HCG and DGCA have transformed the ILCM from a prototype into an operational forecasting tool.
Chabiniok, Radomir; Wang, Vicky Y; Hadjicharalambous, Myrianthi; Asner, Liya; Lee, Jack; Sermesant, Maxime; Kuhl, Ellen; Young, Alistair A; Moireau, Philippe; Nash, Martyn P; Chapelle, Dominique; Nordsletten, David A
2016-04-06
With heart and cardiovascular diseases continually challenging healthcare systems worldwide, translating basic research on cardiac (patho)physiology into clinical care is essential. Exacerbating this already extensive challenge is the complexity of the heart, relying on its hierarchical structure and function to maintain cardiovascular flow. Computational modelling has been proposed and actively pursued as a tool for accelerating research and translation. Allowing exploration of the relationships between physics, multiscale mechanisms and function, computational modelling provides a platform for improving our understanding of the heart. Further integration of experimental and clinical data through data assimilation and parameter estimation techniques is bringing computational models closer to use in routine clinical practice. This article reviews developments in computational cardiac modelling and how their integration with medical imaging data is providing new pathways for translational cardiac modelling.
Bouaud, Jacques; Guézennec, Gilles; Séroussi, Brigitte
2018-01-01
The integration of clinical information models and termino-ontological models into a unique ontological framework is highly desirable for it facilitates data integration and management using the same formal mechanisms for both data concepts and information model components. This is particularly true for knowledge-based decision support tools that aim to take advantage of all facets of semantic web technologies in merging ontological reasoning, concept classification, and rule-based inferences. We present an ontology template that combines generic data model components with (parts of) existing termino-ontological resources. The approach is developed for the guideline-based decision support module on breast cancer management within the DESIREE European project. The approach is based on the entity attribute value model and could be extended to other domains.
The center for causal discovery of biomedical knowledge from big data.
Cooper, Gregory F; Bahar, Ivet; Becich, Michael J; Benos, Panayiotis V; Berg, Jeremy; Espino, Jeremy U; Glymour, Clark; Jacobson, Rebecca Crowley; Kienholz, Michelle; Lee, Adrian V; Lu, Xinghua; Scheines, Richard
2015-11-01
The Big Data to Knowledge (BD2K) Center for Causal Discovery is developing and disseminating an integrated set of open source tools that support causal modeling and discovery of biomedical knowledge from large and complex biomedical datasets. The Center integrates teams of biomedical and data scientists focused on the refinement of existing and the development of new constraint-based and Bayesian algorithms based on causal Bayesian networks, the optimization of software for efficient operation in a supercomputing environment, and the testing of algorithms and software developed using real data from 3 representative driving biomedical projects: cancer driver mutations, lung disease, and the functional connectome of the human brain. Associated training activities provide both biomedical and data scientists with the knowledge and skills needed to apply and extend these tools. Collaborative activities with the BD2K Consortium further advance causal discovery tools and integrate tools and resources developed by other centers. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.All rights reserved. For Permissions, please email: journals.permissions@oup.com.
New directions in photonics simulation: Lanczos recursion and finite-difference time-domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawkins, R.J.; McLeod, R.R.; Kallman, J.S.
1992-06-01
Computational Integrated Photonics (CIP) is the area of computational physics that treats the propagation of light in optical fibers and in integrated optical circuits. The purpose of integrated photonics simulation is to develop the computational tools that will support the design of photonic and optoelectronic integrated devices. CIP has, in general, two thrusts: (1) predictive models of photonic device behavior that can be used reliably to enhance significantly the speed with which designs axe optimized for development applications, and (2) to further our ability to describe the linear and nonlinear processes that occur - and can be exploited - inmore » real photonic devices. Experimental integrated optics has been around for over a decade with much of the work during this period. centered on proof-of-principle devices that could be described using simple analytic and numerical models. Recent advances in material growths, photolithography, and device complexity have conspired to reduce significantly the number of devices that can be designed with simple models and to increase dramatically the interest in CIP. In the area of device design, CIP is viewed as critical to understanding device behavior and to optimization. In the area of propagation physics, CIP is an important tool in the study of nonlinear processes in integrated optical devices and fibers. In this talk I will discuss two of the new directions we have been investigating in CIP: Lanczos recursion and finite-difference time-domain.« less
NASA Technical Reports Server (NTRS)
Katz, Daniel S.; Cwik, Tom; Fu, Chuigang; Imbriale, William A.; Jamnejad, Vahraz; Springer, Paul L.; Borgioli, Andrea
2000-01-01
The process of designing and analyzing a multiple-reflector system has traditionally been time-intensive, requiring large amounts of both computational and human time. At many frequencies, a discrete approximation of the radiation integral may be used to model the system. The code which implements this physical optics (PO) algorithm was developed at the Jet Propulsion Laboratory. It analyzes systems of antennas in pairs, and for each pair, the analysis can be computationally time-consuming. Additionally, the antennas must be described using a local coordinate system for each antenna, which makes it difficult to integrate the design into a multi-disciplinary framework in which there is traditionally one global coordinate system, even before considering deforming the antenna as prescribed by external structural and/or thermal factors. Finally, setting up the code to correctly analyze all the antenna pairs in the system can take a fair amount of time, and introduces possible human error. The use of parallel computing to reduce the computational time required for the analysis of a given pair of antennas has been previously discussed. This paper focuses on the other problems mentioned above. It will present a methodology and examples of use of an automated tool that performs the analysis of a complete multiple-reflector system in an integrated multi-disciplinary environment (including CAD modeling, and structural and thermal analysis) at the click of a button. This tool, named MOD Tool (Millimeter-wave Optics Design Tool), has been designed and implemented as a distributed tool, with a client that runs almost identically on Unix, Mac, and Windows platforms, and a server that runs primarily on a Unix workstation and can interact with parallel supercomputers with simple instruction from the user interacting with the client.
DOT National Transportation Integrated Search
2013-03-01
It has become apparent in recent years that significant benefits will be obtained if : the Maryland State Highway Administration (SHA) can combine its data products : and modeling tools for integrated transportation operations and planning. Examples ...
The Integrated Exposure Uptake Biokinetic (IEUBK) Model for Lead in Children (version 0.99d) was released in March 1994, and has been widely accepted in the risk assessment community as a tool for implementing the site specific risk assessment process when the issue is childhood...
The Thermal Infrared Sensor on the Landsat Data Continutiy Mission
USDA-ARS?s Scientific Manuscript database
The REGularized canopy reFLECtance (REGFLEC) modeling tool integrates leaf optics, canopy reflectance, and atmospheric radiative transfer model components, facilitating accurate retrieval of leaf area index (LAI) and leaf chlorophyll content (Cab) directly from at-sensor radiances in green, red and ...
(EDMUNDS, WA) WILDLAND FIRE EMISSIONS MODELING: INTEGRATING BLUESKY AND SMOKE
This presentation is a status update of the BlueSky emissions modeling system. BlueSky-EM has been coupled with the Sparse Matrix Operational Kernel Emissions (SMOKE) system, and is now available as a tool for estimating emissions from wildland fires
Amaddeo, Francesco; Gutiérrez-Colosía, Mencia R.; Salazzari, Damiano; Gonzalez-Caballero, Juan Luis; Montagni, Ilaria; Tedeschi, Federico; Cetrano, Gaia; Chevreul, Karine; Kalseth, Jorid; Hagmair, Gisela; Straßmayr, Christa; Park, A-La; Sfetcu, Raluca; Wahlbeck, Kristian; Garcia-Alonso, Carlos
2015-01-01
Introduction Mental health care is a critical area to better understand integrated care and to pilot the different components of the integrated care model. However, there is an urgent need for better tools to compare and understand the context of integrated mental health care in Europe. Method The REMAST tool (REFINEMENT MApping Services Tool) combines a series of standardised health service research instruments and geographical information systems (GIS) to develop local atlases of mental health care from the perspective of horizontal and vertical integrated care. It contains five main sections: (a) Population Data; (b) the Verona Socio-economic Status (SES) Index; (c) the Mental Health System Checklist; (d) the Mental Health Services Inventory using the DESDE-LTC instrument; and (e) Geographical Data. Expected results The REMAST tool facilitates context analysis in mental health by providing the comparative rates of mental health service provision according to the availability of main types of care; care placement capacity; workforce capacity; and geographical accessibility to services in the local areas in eight study areas in Austria, England, Finland, France, Italy, Norway, Romania and Spain. Discussion The outcomes of this project will facilitate cooperative work and knowledge transfer on mental health care to the different agencies involved in mental health planning and provision. This project would improve the information to users and society on the available resources for mental health care and system thinking at the local level by the different stakeholders. The techniques used in this project and the knowledge generated could eventually be transferred to the mapping of other fields of integrated care. PMID:27118959
A measurement theory of illusory conjunctions.
Prinzmetal, William; Ivry, Richard B; Beck, Diane; Shimizu, Naomi
2002-04-01
Illusory conjunctions refer to the incorrect perceptual combination of correctly perceived features, such as color and shape. Research on the phenomenon has been hampered by the lack of a measurement theory that accounts for guessing features, as well as the incorrect combination of correctly perceived features. Recently, several investigators have suggested using multinomial models as a tool for measuring feature integration. The authors examined the adequacy of these models in 2 experiments by testing whether model parameters reflect changes in stimulus factors. In a third experiment, confidence ratings were used as a tool for testing the model. Multinomial models accurately reflected both variations in stimulus factors and observers' trial-by-trial confidence ratings.
ERIC Educational Resources Information Center
Kooloos, Jan G. M.; Vorstenbosch, Marc A. T. M.
2013-01-01
A teaching tool that facilitates student understanding of a three-dimensional (3D) integration of dermatomes with peripheral cutaneous nerve field distributions is described. This model is inspired by the confusion in novice learners between dermatome maps and nerve field distribution maps. This confusion leads to the misconception that these two…
Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include n...
Integration of tools for binding archetypes to SNOMED CT.
Sundvall, Erik; Qamar, Rahil; Nyström, Mikael; Forss, Mattias; Petersson, Håkan; Karlsson, Daniel; Ahlfeldt, Hans; Rector, Alan
2008-10-27
The Archetype formalism and the associated Archetype Definition Language have been proposed as an ISO standard for specifying models of components of electronic healthcare records as a means of achieving interoperability between clinical systems. This paper presents an archetype editor with support for manual or semi-automatic creation of bindings between archetypes and terminology systems. Lexical and semantic methods are applied in order to obtain automatic mapping suggestions. Information visualisation methods are also used to assist the user in exploration and selection of mappings. An integrated tool for archetype authoring, semi-automatic SNOMED CT terminology binding assistance and terminology visualization was created and released as open source. Finding the right terms to bind is a difficult task but the effort to achieve terminology bindings may be reduced with the help of the described approach. The methods and tools presented are general, but here only bindings between SNOMED CT and archetypes based on the openEHR reference model are presented in detail.
Integration of tools for binding archetypes to SNOMED CT
Sundvall, Erik; Qamar, Rahil; Nyström, Mikael; Forss, Mattias; Petersson, Håkan; Karlsson, Daniel; Åhlfeldt, Hans; Rector, Alan
2008-01-01
Background The Archetype formalism and the associated Archetype Definition Language have been proposed as an ISO standard for specifying models of components of electronic healthcare records as a means of achieving interoperability between clinical systems. This paper presents an archetype editor with support for manual or semi-automatic creation of bindings between archetypes and terminology systems. Methods Lexical and semantic methods are applied in order to obtain automatic mapping suggestions. Information visualisation methods are also used to assist the user in exploration and selection of mappings. Results An integrated tool for archetype authoring, semi-automatic SNOMED CT terminology binding assistance and terminology visualization was created and released as open source. Conclusion Finding the right terms to bind is a difficult task but the effort to achieve terminology bindings may be reduced with the help of the described approach. The methods and tools presented are general, but here only bindings between SNOMED CT and archetypes based on the openEHR reference model are presented in detail. PMID:19007444
A Prototype for the Support of Integrated Software Process Development and Improvement
NASA Astrophysics Data System (ADS)
Porrawatpreyakorn, Nalinpat; Quirchmayr, Gerald; Chutimaskul, Wichian
An efficient software development process is one of key success factors for quality software. Not only can the appropriate establishment but also the continuous improvement of integrated project management and of the software development process result in efficiency. This paper hence proposes a software process maintenance framework which consists of two core components: an integrated PMBOK-Scrum model describing how to establish a comprehensive set of project management and software engineering processes and a software development maturity model advocating software process improvement. Besides, a prototype tool to support the framework is introduced.
Indicators and Measurement Tools for Health Systems Integration: A Knowledge Synthesis
Oelke, Nelly D.; da Silva Lima, Maria Alice Dias; Stiphout, Michelle; Janke, Robert; Witt, Regina Rigatto; Van Vliet-Brown, Cheryl; Schill, Kaela; Rostami, Mahnoush; Hepp, Shelanne; Birney, Arden; Al-Roubaiai, Fatima; Marques, Giselda Quintana
2017-01-01
Background: Despite far reaching support for integrated care, conceptualizing and measuring integrated care remains challenging. This knowledge synthesis aimed to identify indicator domains and tools to measure progress towards integrated care. Methods: We used an established framework and a Delphi survey with integration experts to identify relevant measurement domains. For each domain, we searched and reviewed the literature for relevant tools. Findings: From 7,133 abstracts, we retrieved 114 unique tools. We found many quality tools to measure care coordination, patient engagement and team effectiveness/performance. In contrast, there were few tools in the domains of performance measurement and information systems, alignment of organizational goals and resource allocation. The search yielded 12 tools that measure overall integration or three or more indicator domains. Discussion: Our findings highlight a continued gap in tools to measure foundational components that support integrated care. In the absence of such targeted tools, “overall integration” tools may be useful for a broad assessment of the overall state of a system. Conclusions: Continued progress towards integrated care depends on our ability to evaluate the success of strategies across different levels and context. This study has identified 114 tools that measure integrated care across 16 domains, supporting efforts towards a unified measurement framework. PMID:29588637
A model for flexible tools used in minimally invasive medical virtual environments.
Soler, Francisco; Luzon, M Victoria; Pop, Serban R; Hughes, Chris J; John, Nigel W; Torres, Juan Carlos
2011-01-01
Within the limits of current technology, many applications of a virtual environment will trade-off accuracy for speed. This is not an acceptable compromise in a medical training application where both are essential. Efficient algorithms must therefore be developed. The purpose of this project is the development and validation of a novel physics-based real time tool manipulation model, which is easy to integrate into any medical virtual environment that requires support for the insertion of long flexible tools into complex geometries. This encompasses medical specialities such as vascular interventional radiology, endoscopy, and laparoscopy, where training, prototyping of new instruments/tools and mission rehearsal can all be facilitated by using an immersive medical virtual environment. Our model recognises and uses accurately patient specific data and adapts to the geometrical complexity of the vessel in real time.
Mindful Self-Hypnosis for Self-Care: An Integrative Model and Illustrative Case Example.
Elkins, Gary R; Roberts, R Lynae; Simicich, Lauren
2018-07-01
The combination of mindfulness and self-hypnosis could provide a tool that is easily implemented by individuals who want to care for their well-being in times of high stress. Each discipline has been shown to be effective in relieving stress, and integration could further facilitate change while creating a tool that is highly accessible. There are many similarities between the two practices, such as focusing of attention and the emphasis on mind-body connection. However, important distinctions in psychological (e.g., self-monitoring) and neural (e.g., functional connectivity) elements are noted. A theory of how integrated mindful self-hypnosis may create change is presented. An illustrative case example of mindful self-hypnosis practice and a self-hypnosis transcript are provided.
Integration of Multidisciplinary Sensory Data:
Miller, Perry L.; Nadkarni, Prakash; Singer, Michael; Marenco, Luis; Hines, Michael; Shepherd, Gordon
2001-01-01
The paper provides an overview of neuroinformatics research at Yale University being performed as part of the national Human Brain Project. This research is exploring the integration of multidisciplinary sensory data, using the olfactory system as a model domain. The neuroinformatics activities fall into three main areas: 1) building databases and related tools that support experimental olfactory research at Yale and can also serve as resources for the field as a whole, 2) using computer models (molecular models and neuronal models) to help understand data being collected experimentally and to help guide further laboratory experiments, 3) performing basic neuroinformatics research to develop new informatics technologies, including a flexible data model (EAV/CR, entity-attribute-value with classes and relationships) designed to facilitate the integration of diverse heterogeneous data within a single unifying framework. PMID:11141511
Beyond the buildingcentric approach: A vision for an integrated evaluation of sustainable buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conte, Emilia, E-mail: conte@poliba.it; Monno, Valeria, E-mail: vmonno@poliba.it
2012-04-15
The available sustainable building evaluation systems have produced a new environmental design paradigm. However, there is an increasing need to overcome the buildingcentric approach of these systems, in order to further exploit their innovate potential for sustainable building practices. The paper takes this challenge by developing a cross-scale evaluation approach focusing on the reliability of sustainable building design solutions for the context in which the building is situated. An integrated building-urban evaluation model is proposed based on the urban matrix, which is a conceptualisation of the built environment as a social-ecological system. The model aims at evaluating the sustainability ofmore » a building considering it as an active entity contributing to the resilience of the urban matrix. Few holistic performance indicators are used for evaluating such contribution, so expressing the building reliability. The discussion on the efficacy of the model shows that it works as a heuristic tool, supporting the acquisition of a better insight into the complexity which characterises the relationships between the building and the built environment sustainability. Shading new lights on the meaning of sustainable buildings, the model can play a positive role in innovating sustainable building design practices, thus complementing current evaluation systems. - Highlights: Black-Right-Pointing-Pointer We model an integrated building-urban evaluation approach. Black-Right-Pointing-Pointer The urban matrix represents the social-ecological functioning of the urban context. Black-Right-Pointing-Pointer We introduce the concept of reliability to evaluate sustainable buildings. Black-Right-Pointing-Pointer Holistic indicators express the building reliability. Black-Right-Pointing-Pointer The evaluation model works as heuristic tool and complements other tools.« less
Methodology and application of combined watershed and ground-water models in Kansas
Sophocleous, M.; Perkins, S.P.
2000-01-01
Increased irrigation in Kansas and other regions during the last several decades has caused serious water depletion, making the development of comprehensive strategies and tools to resolve such problems increasingly important. This paper makes the case for an intermediate complexity, quasi-distributed, comprehensive, large-watershed model, which falls between the fully distributed, physically based hydrological modeling system of the type of the SHE model and the lumped, conceptual rainfall-runoff modeling system of the type of the Stanford watershed model. This is achieved by integrating the quasi-distributed watershed model SWAT with the fully-distributed ground-water model MODFLOW. The advantage of this approach is the appreciably smaller input data requirements and the use of readily available data (compared to the fully distributed, physically based models), the statistical handling of watershed heterogeneities by employing the hydrologic-response-unit concept, and the significantly increased flexibility in handling stream-aquifer interactions, distributed well withdrawals, and multiple land uses. The mechanics of integrating the component watershed and ground-water models are outlined, and three real-world management applications of the integrated model from Kansas are briefly presented. Three different aspects of the integrated model are emphasized: (1) management applications of a Decision Support System for the integrated model (Rattlesnake Creek subbasin); (2) alternative conceptual models of spatial heterogeneity related to the presence or absence of an underlying aquifer with shallow or deep water table (Lower Republican River basin); and (3) the general nature of the integrated model linkage by employing a watershed simulator other than SWAT (Wet Walnut Creek basin). These applications demonstrate the practicality and versatility of this relatively simple and conceptually clear approach, making public acceptance of the integrated watershed modeling system much easier. This approach also enhances model calibration and thus the reliability of model results. (C) 2000 Elsevier Science B.V.Increased irrigation in Kansas and other regions during the last several decades has caused serious water depletion, making the development of comprehensive strategies and tools to resolve such problems increasingly important. This paper makes the case for an intermediate complexity, quasi-distributed, comprehensive, large-watershed model, which falls between the fully distributed, physically based hydrological modeling system of the type of the SHE model and the lumped, conceptual rainfall-runoff modeling system of the type of the Stanford watershed model. This is achieved by integrating the quasi-distributed watershed model SWAT with the fully-distributed ground-water model MODFLOW. The advantage of this approach is the appreciably smaller input data requirements and the use of readily available data (compared to the fully distributed, physically based models), the statistical handling of watershed heterogeneities by employing the hydrologic-response-unit concept, and the significantly increased flexibility in handling stream-aquifer interactions, distributed well withdrawals, and multiple land uses. The mechanics of integrating the component watershed and ground-water models are outlined, and three real-world management applications of the integrated model from Kansas are briefly presented. Three different aspects of the integrated model are emphasized: (1) management applications of a Decision Support System for the integrated model (Rattlesnake Creek subbasin); (2) alternative conceptual models of spatial heterogeneity related to the presence or absence of an underlying aquifer with shallow or deep water table (Lower Republican River basin); and (3) the general nature of the integrated model linkage by employing a watershed simulator other than SWAT (Wet Walnut Creek basin). These applications demonstrate the practicality and ve
Cladé, Thierry; Snyder, Joshua C.
2010-01-01
Clinical trials which use imaging typically require data management and workflow integration across several parties. We identify opportunities for all parties involved to realize benefits with a modular interoperability model based on service-oriented architecture and grid computing principles. We discuss middleware products for implementation of this model, and propose caGrid as an ideal candidate due to its healthcare focus; free, open source license; and mature developer tools and support. PMID:20449775
A path integral approach to asset-liability management
NASA Astrophysics Data System (ADS)
Decamps, Marc; De Schepper, Ann; Goovaerts, Marc
2006-05-01
Functional integrals constitute a powerful tool in the investigation of financial models. In the recent econophysics literature, this technique was successfully used for the pricing of a number of derivative securities. In the present contribution, we introduce this approach to the field of asset-liability management. We work with a representation of cash flows by means of a two-dimensional delta-function perturbation, in the case of a Brownian model and a geometric Brownian model. We derive closed-form solutions for a finite horizon ALM policy. The results are numerically and graphically illustrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tim, U.S.; Jolly, R.
1994-01-01
Considerable progress has been made in developing physically based, distributed parameter, hydrologic/water quality (HIWQ) models for planning and control of nonpoint-source pollution. The widespread use of these models is often constrained by the excessive and time-consuming input data demands and the lack of computing efficiencies necessary for iterative simulation of alternative management strategies. Recent developments in geographic information systems (GIS) provide techniques for handling large amounts of spatial data for modeling nonpoint-source pollution problems. Because a GIS can be used to combine information from several sources to form an array of model input data and to examine any combinations ofmore » spatial input/output data, it represents a highly effective tool for HiWQ modeling. This paper describes the integration of a distributed-parameter model (AGNPS) with a GIS (ARC/INFO) to examine nonpoint sources of pollution in an agricultural watershed. The ARC/INFO GIS provided the tools to generate and spatially organize the disparate data to support modeling, while the AGNPS model was used to predict several water quality variables including soil erosion and sedimentation within a watershed. The integrated system was used to evaluate the effectiveness of several alternative management strategies in reducing sediment pollution in a 417-ha watershed located in southern Iowa. The implementation of vegetative filter strips and contour buffer (grass) strips resulted in a 41 and 47% reduction in sediment yield at the watershed outlet, respectively. In addition, when the integrated system was used, the combination of the above management strategies resulted in a 71% reduction in sediment yield. In general, the study demonstrated the utility of integrating a simulation model with GIS for nonpoini-source pollution control and planning. Such techniques can help characterize the diffuse sources of pollution at the landscape level. 52 refs., 6 figs., 1 tab.« less
RADSS: an integration of GIS, spatial statistics, and network service for regional data mining
NASA Astrophysics Data System (ADS)
Hu, Haitang; Bao, Shuming; Lin, Hui; Zhu, Qing
2005-10-01
Regional data mining, which aims at the discovery of knowledge about spatial patterns, clusters or association between regions, has widely applications nowadays in social science, such as sociology, economics, epidemiology, crime, and so on. Many applications in the regional or other social sciences are more concerned with the spatial relationship, rather than the precise geographical location. Based on the spatial continuity rule derived from Tobler's first law of geography: observations at two sites tend to be more similar to each other if the sites are close together than if far apart, spatial statistics, as an important means for spatial data mining, allow the users to extract the interesting and useful information like spatial pattern, spatial structure, spatial association, spatial outlier and spatial interaction, from the vast amount of spatial data or non-spatial data. Therefore, by integrating with the spatial statistical methods, the geographical information systems will become more powerful in gaining further insights into the nature of spatial structure of regional system, and help the researchers to be more careful when selecting appropriate models. However, the lack of such tools holds back the application of spatial data analysis techniques and development of new methods and models (e.g., spatio-temporal models). Herein, we make an attempt to develop such an integrated software and apply it into the complex system analysis for the Poyang Lake Basin. This paper presents a framework for integrating GIS, spatial statistics and network service in regional data mining, as well as their implementation. After discussing the spatial statistics methods involved in regional complex system analysis, we introduce RADSS (Regional Analysis and Decision Support System), our new regional data mining tool, by integrating GIS, spatial statistics and network service. RADSS includes the functions of spatial data visualization, exploratory spatial data analysis, and spatial statistics. The tool also includes some fundamental spatial and non-spatial database in regional population and environment, which can be updated by external database via CD or network. Utilizing this data mining and exploratory analytical tool, the users can easily and quickly analyse the huge mount of the interrelated regional data, and better understand the spatial patterns and trends of the regional development, so as to make a credible and scientific decision. Moreover, it can be used as an educational tool for spatial data analysis and environmental studies. In this paper, we also present a case study on Poyang Lake Basin as an application of the tool and spatial data mining in complex environmental studies. At last, several concluding remarks are discussed.
Integrated modeling approach for optimal management of water, energy and food security nexus
NASA Astrophysics Data System (ADS)
Zhang, Xiaodong; Vesselinov, Velimir V.
2017-03-01
Water, energy and food (WEF) are inextricably interrelated. Effective planning and management of limited WEF resources to meet current and future socioeconomic demands for sustainable development is challenging. WEF production/delivery may also produce environmental impacts; as a result, green-house-gas emission control will impact WEF nexus management as well. Nexus management for WEF security necessitates integrated tools for predictive analysis that are capable of identifying the tradeoffs among various sectors, generating cost-effective planning and management strategies and policies. To address these needs, we have developed an integrated model analysis framework and tool called WEFO. WEFO provides a multi-period socioeconomic model for predicting how to satisfy WEF demands based on model inputs representing productions costs, socioeconomic demands, and environmental controls. WEFO is applied to quantitatively analyze the interrelationships and trade-offs among system components including energy supply, electricity generation, water supply-demand, food production as well as mitigation of environmental impacts. WEFO is demonstrated to solve a hypothetical nexus management problem consistent with real-world management scenarios. Model parameters are analyzed using global sensitivity analysis and their effects on total system cost are quantified. The obtained results demonstrate how these types of analyses can be helpful for decision-makers and stakeholders to make cost-effective decisions for optimal WEF management.
An Ecosystem Service Evaluation Tool to Support Ridge-to-Reef Management and Conservation in Hawaii
NASA Astrophysics Data System (ADS)
Oleson, K.; Callender, T.; Delevaux, J. M. S.; Falinski, K. A.; Htun, H.; Jin, G.
2014-12-01
Faced with increasing anthropogenic stressors and diverse stakeholders, local managers are adopting a ridge-to-reef and multi-objective management approach to restore declining coral reef health state. An ecosystem services framework, which integrates ecological indicators and stakeholder values, can foster more applied and integrated research, data collection, and modeling, and thus better inform the decision-making process and realize decision outcomes grounded in stakeholders' values. Here, we describe a research program that (i) leverages remotely sensed and empirical data to build an ecosystem services-based decision-support tool geared towards ridge-to-reef management; and (ii) applies it as part of a structured, value-based decision-making process to inform management in west Maui, a NOAA coral reef conservation priority site. The tool links terrestrial and marine biophysical models in a spatially explicit manner to quantify and map changes in ecosystem services delivery resulting from management actions, projected climate change impacts, and adaptive responses. We couple model outputs with localized valuation studies to translate ecosystem service outcomes into benefits and their associated socio-cultural and/or economic values. Managers can use this tool to run scenarios during their deliberations to evaluate trade-offs, cost-effectiveness, and equity implications of proposed policies. Ultimately, this research program aims at improving the effectiveness, efficiency, and equity outcomes of ecosystem-based management. This presentation will describe our approach, summarize initial results from the terrestrial modeling and economic valuations for west Maui, and highlight how this decision support tool benefits managers in west Maui.
DAWN (Design Assistant Workstation) for advanced physical-chemical life support systems
NASA Technical Reports Server (NTRS)
Rudokas, Mary R.; Cantwell, Elizabeth R.; Robinson, Peter I.; Shenk, Timothy W.
1989-01-01
This paper reports the results of a project supported by the National Aeronautics and Space Administration, Office of Aeronautics and Space Technology (NASA-OAST) under the Advanced Life Support Development Program. It is an initial attempt to integrate artificial intelligence techniques (via expert systems) with conventional quantitative modeling tools for advanced physical-chemical life support systems. The addition of artificial intelligence techniques will assist the designer in the definition and simulation of loosely/well-defined life support processes/problems as well as assist in the capture of design knowledge, both quantitative and qualitative. Expert system and conventional modeling tools are integrated to provide a design workstation that assists the engineer/scientist in creating, evaluating, documenting and optimizing physical-chemical life support systems for short-term and extended duration missions.
Validation of TGLF in C-Mod and DIII-D using machine learning and integrated modeling tools
NASA Astrophysics Data System (ADS)
Rodriguez-Fernandez, P.; White, Ae; Cao, Nm; Creely, Aj; Greenwald, Mj; Grierson, Ba; Howard, Nt; Meneghini, O.; Petty, Cc; Rice, Je; Sciortino, F.; Yuan, X.
2017-10-01
Predictive models for steady-state and perturbative transport are necessary to support burning plasma operations. A combination of machine learning algorithms and integrated modeling tools is used to validate TGLF in C-Mod and DIII-D. First, a new code suite, VITALS, is used to compare SAT1 and SAT0 models in C-Mod. VITALS exploits machine learning and optimization algorithms for the validation of transport codes. Unlike SAT0, the SAT1 saturation rule contains a model to capture cross-scale turbulence coupling. Results show that SAT1 agrees better with experiments, further confirming that multi-scale effects are needed to model heat transport in C-Mod L-modes. VITALS will next be used to analyze past data from DIII-D: L-mode ``Shortfall'' plasma and ECH swing experiments. A second code suite, PRIMA, allows for integrated modeling of the plasma response to Laser Blow-Off cold pulses. Preliminary results show that SAT1 qualitatively reproduces the propagation of cold pulses after LBO injections and SAT0 does not, indicating that cross-scale coupling effects play a role in the plasma response. PRIMA will be used to ``predict-first'' cold pulse experiments using the new LBO system at DIII-D, and analyze existing ECH heat pulse data. Work supported by DE-FC02-99ER54512, DE-FC02-04ER54698.
System analysis tools for an ELT at ESO
NASA Astrophysics Data System (ADS)
Mueller, Michael; Koch, Franz
2006-06-01
Engineering of complex, large scale systems like the ELT designs currently investigated and developed in Europe and Northern America require powerful and sophisticated tools within specific technical disciplines such as mechanics, optics and control engineering. However, even analyzing a certain component of the telescope like the telescope structure necessitates a system approach to evaluate the structural effects onto the optical performance. This paper shows several software tools developed by the European Southern Observatory (ESO) which focus onto the system approach in the analyses: Using modal results of a finite element analysis the SMI-toolbox allows an easy generation of structural models with different sizes and levels of accuracy for the control design and closed-loop simulations. The optical modeling code BeamWarrior was developed by ESO and Astrium GmbH, Germany) especially for integrated modeling and interfering with a structural model. Within BeamWarrior displacements and deformations can be applied in an arbitrary coordinate system, and hence also in the global coordinates of the FE model avoiding error prone transformations. In addition to this, a sparse state space model object was developed for Matlab to gain in computational efficiency and reduced memory requirements due to the sparsity pattern of both the structural models and the control architecture. As one result these tools allow building an integrated model in order to reliably simulate interactions, cross-coupling effects, system responses, and to evaluate global performance. In order to evaluate disturbance effects on the optical performance in openloop more efficiently, an optical evaluation toolbox was built in the FE software ANSYS which performs Zernike decomposition and best-fit computation of the deformations directly in the FE analysis.
BiGG Models: A platform for integrating, standardizing and sharing genome-scale models
King, Zachary A.; Lu, Justin; Drager, Andreas; ...
2015-10-17
In this study, genome-scale metabolic models are mathematically structured knowledge bases that can be used to predict metabolic pathway usage and growth phenotypes. Furthermore, they can generate and test hypotheses when integrated with experimental data. To maximize the value of these models, centralized repositories of high-quality models must be established, models must adhere to established standards and model components must be linked to relevant databases. Tools for model visualization further enhance their utility. To meet these needs, we present BiGG Models (http://bigg.ucsd.edu), a completely redesigned Biochemical, Genetic and Genomic knowledge base. BiGG Models contains more than 75 high-quality, manually-curated genome-scalemore » metabolic models. On the website, users can browse, search and visualize models. BiGG Models connects genome-scale models to genome annotations and external databases. Reaction and metabolite identifiers have been standardized across models to conform to community standards and enable rapid comparison across models. Furthermore, BiGG Models provides a comprehensive application programming interface for accessing BiGG Models with modeling and analysis tools. As a resource for highly curated, standardized and accessible models of metabolism, BiGG Models will facilitate diverse systems biology studies and support knowledge-based analysis of diverse experimental data.« less
BiGG Models: A platform for integrating, standardizing and sharing genome-scale models
King, Zachary A.; Lu, Justin; Dräger, Andreas; Miller, Philip; Federowicz, Stephen; Lerman, Joshua A.; Ebrahim, Ali; Palsson, Bernhard O.; Lewis, Nathan E.
2016-01-01
Genome-scale metabolic models are mathematically-structured knowledge bases that can be used to predict metabolic pathway usage and growth phenotypes. Furthermore, they can generate and test hypotheses when integrated with experimental data. To maximize the value of these models, centralized repositories of high-quality models must be established, models must adhere to established standards and model components must be linked to relevant databases. Tools for model visualization further enhance their utility. To meet these needs, we present BiGG Models (http://bigg.ucsd.edu), a completely redesigned Biochemical, Genetic and Genomic knowledge base. BiGG Models contains more than 75 high-quality, manually-curated genome-scale metabolic models. On the website, users can browse, search and visualize models. BiGG Models connects genome-scale models to genome annotations and external databases. Reaction and metabolite identifiers have been standardized across models to conform to community standards and enable rapid comparison across models. Furthermore, BiGG Models provides a comprehensive application programming interface for accessing BiGG Models with modeling and analysis tools. As a resource for highly curated, standardized and accessible models of metabolism, BiGG Models will facilitate diverse systems biology studies and support knowledge-based analysis of diverse experimental data. PMID:26476456
Health impact assessment – A survey on quantifying tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fehr, Rainer, E-mail: rainer.fehr@uni-bielefeld.de; Mekel, Odile C.L., E-mail: odile.mekel@lzg.nrw.de; Fintan Hurley, J., E-mail: fintan.hurley@iom-world.org
Integrating human health into prospective impact assessments is known to be challenging. This is true for both approaches: dedicated health impact assessments (HIA) as well as inclusion of health into more general impact assessments. Acknowledging the full range of participatory, qualitative, and quantitative approaches, this study focuses on the latter, especially on computational tools for quantitative health modelling. We conducted a survey among tool developers concerning the status quo of development and availability of such tools; experiences made with model usage in real-life situations; and priorities for further development. Responding toolmaker groups described 17 such tools, most of them beingmore » maintained and reported as ready for use and covering a wide range of topics, including risk & protective factors, exposures, policies, and health outcomes. In recent years, existing models have been improved and were applied in new ways, and completely new models emerged. There was high agreement among respondents on the need to further develop methods for assessment of inequalities and uncertainty. The contribution of quantitative modeling to health foresight would benefit from building joint strategies of further tool development, improving the visibility of quantitative tools and methods, and engaging continuously with actual and potential users. - Highlights: • A survey investigated computational tools for health impact quantification. • Formal evaluation of such tools has been rare. • Handling inequalities and uncertainties are priority areas for further development. • Health foresight would benefit from tool developers and users forming a community. • Joint development strategies across computational tools are needed.« less
NASA Astrophysics Data System (ADS)
Kern, Bastian; Jöckel, Patrick
2016-10-01
Numerical climate and weather models have advanced to finer scales, accompanied by large amounts of output data. The model systems hit the input and output (I/O) bottleneck of modern high-performance computing (HPC) systems. We aim to apply diagnostic methods online during the model simulation instead of applying them as a post-processing step to written output data, to reduce the amount of I/O. To include diagnostic tools into the model system, we implemented a standardised, easy-to-use interface based on the Modular Earth Submodel System (MESSy) into the ICOsahedral Non-hydrostatic (ICON) modelling framework. The integration of the diagnostic interface into the model system is briefly described. Furthermore, we present a prototype implementation of an advanced online diagnostic tool for the aggregation of model data onto a user-defined regular coarse grid. This diagnostic tool will be used to reduce the amount of model output in future simulations. Performance tests of the interface and of two different diagnostic tools show, that the interface itself introduces no overhead in form of additional runtime to the model system. The diagnostic tools, however, have significant impact on the model system's runtime. This overhead strongly depends on the characteristics and implementation of the diagnostic tool. A diagnostic tool with high inter-process communication introduces large overhead, whereas the additional runtime of a diagnostic tool without inter-process communication is low. We briefly describe our efforts to reduce the additional runtime from the diagnostic tools, and present a brief analysis of memory consumption. Future work will focus on optimisation of the memory footprint and the I/O operations of the diagnostic interface.
Overview of the Development for a Suite of Low-Thrust Trajectory Analysis Tools
NASA Technical Reports Server (NTRS)
Kos, Larry D.; Polsgrove, Tara; Hopkins, Randall; Thomas, Dan; Sims, Jon A.
2006-01-01
A NASA intercenter team has developed a suite of low-thrust trajectory analysis tools to make a significant improvement in three major facets of low-thrust trajectory and mission analysis. These are: 1) ease of use, 2) ability to more robustly converge to solutions, and 3) higher fidelity modeling and accuracy of results. Due mostly to the short duration of the development, the team concluded that a suite of tools was preferred over having one integrated tool. This tool-suite, their characteristics, and their applicability will be described. Trajectory analysts can read this paper and determine which tool is most appropriate for their problem.
BASINs and WEPP Climate Assessment Tools (CAT): Case ...
EPA announced the release of the final report, BASINs and WEPP Climate Assessment Tools (CAT): Case Study Guide to Potential Applications. This report supports application of two recently developed water modeling tools, the Better Assessment Science Integrating point & Non-point Sources (BASINS) and the Water Erosion Prediction Project Climate Assessment Tool (WEPPCAT). The report presents a series of short case studies designed to illustrate the capabilities of these tools for conducting scenario based assessments of the potential effects of climate change on streamflow and water quality. This report presents a series of short, illustrative case studies using the BASINS and WEPP climate assessment tools.
Systems Engineering Models and Tools | Wind | NREL
(tm)) that provides wind turbine and plant engineering and cost models for holistic system analysis turbine/component models and wind plant analysis models that the systems engineering team produces. If you integrated modeling of wind turbines and plants. It provides guidance for overall wind turbine and plant
Systems biology driven software design for the research enterprise.
Boyle, John; Cavnor, Christopher; Killcoyne, Sarah; Shmulevich, Ilya
2008-06-25
In systems biology, and many other areas of research, there is a need for the interoperability of tools and data sources that were not originally designed to be integrated. Due to the interdisciplinary nature of systems biology, and its association with high throughput experimental platforms, there is an additional need to continually integrate new technologies. As scientists work in isolated groups, integration with other groups is rarely a consideration when building the required software tools. We illustrate an approach, through the discussion of a purpose built software architecture, which allows disparate groups to reuse tools and access data sources in a common manner. The architecture allows for: the rapid development of distributed applications; interoperability, so it can be used by a wide variety of developers and computational biologists; development using standard tools, so that it is easy to maintain and does not require a large development effort; extensibility, so that new technologies and data types can be incorporated; and non intrusive development, insofar as researchers need not to adhere to a pre-existing object model. By using a relatively simple integration strategy, based upon a common identity system and dynamically discovered interoperable services, a light-weight software architecture can become the focal point through which scientists can both get access to and analyse the plethora of experimentally derived data.
XLinkDB 2.0: integrated, large-scale structural analysis of protein crosslinking data
Schweppe, Devin K.; Zheng, Chunxiang; Chavez, Juan D.; Navare, Arti T.; Wu, Xia; Eng, Jimmy K.; Bruce, James E.
2016-01-01
Motivation: Large-scale chemical cross-linking with mass spectrometry (XL-MS) analyses are quickly becoming a powerful means for high-throughput determination of protein structural information and protein–protein interactions. Recent studies have garnered thousands of cross-linked interactions, yet the field lacks an effective tool to compile experimental data or access the network and structural knowledge for these large scale analyses. We present XLinkDB 2.0 which integrates tools for network analysis, Protein Databank queries, modeling of predicted protein structures and modeling of docked protein structures. The novel, integrated approach of XLinkDB 2.0 enables the holistic analysis of XL-MS protein interaction data without limitation to the cross-linker or analytical system used for the analysis. Availability and Implementation: XLinkDB 2.0 can be found here, including documentation and help: http://xlinkdb.gs.washington.edu/. Contact: jimbruce@uw.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153666
Computerized power supply analysis: State equation generation and terminal models
NASA Technical Reports Server (NTRS)
Garrett, S. J.
1978-01-01
To aid engineers that design power supply systems two analysis tools that can be used with the state equation analysis package were developed. These tools include integration routines that start with the description of a power supply in state equation form and yield analytical results. The first tool uses a computer program that works with the SUPER SCEPTRE circuit analysis program and prints the state equation for an electrical network. The state equations developed automatically by the computer program are used to develop an algorithm for reducing the number of state variables required to describe an electrical network. In this way a second tool is obtained in which the order of the network is reduced and a simpler terminal model is obtained.
Enhancements to an Agriculture-land Modeling System - FEST-C and Its Applications
The Fertilizer Emission Scenario Tool for CMAQ (FEST-C) system was originally developed to simulate daily fertilizer application information using the Environmental Policy Integrated Climate (EPIC) model across any defined CMAQ conterminous United States (U.S.) CMAQ domain and gr...
Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) Systems Integration Strategy
NASA Technical Reports Server (NTRS)
Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tri, Terry; Toups, Larry; Howe, A. Scott
2011-01-01
The Habitat Demonstration Unit (HDU) project team constructed an analog prototype lunar surface laboratory called the Pressurized Excursion Module (PEM). The prototype unit subsystems were integrated in a short amount of time, utilizing a rapid prototyping approach that brought together over 20 habitation-related technologies from a variety of NASA centers. This paper describes the system integration strategies and lessons learned, that allowed the PEM to be brought from paper design to working field prototype using a multi-center team. The system integration process was based on a rapid prototyping approach. Tailored design review and test and integration processes facilitated that approach. The use of collaboration tools including electronic tools as well as documentation enabled a geographically distributed team take a paper concept to an operational prototype in approximately one year. One of the major tools used in the integration strategy was a coordinated effort to accurately model all the subsystems using computer aided design (CAD), so conflicts were identified before physical components came together. A deliberate effort was made following the deployment of the HDU PEM for field operations to collect lessons learned to facilitate process improvement and inform the design of future flight or analog versions of habitat systems. Significant items within those lessons learned were limitations with the CAD integration approach and the impact of shell design on flexibility of placing systems within the HDU shell.
NASA Technical Reports Server (NTRS)
Verma, Savita; Lee, Hanbong; Dulchinos, Victoria L.; Martin, Lynne; Stevens, Lindsay; Jung, Yoon; Chevalley, Eric; Jobe, Kim; Parke, Bonny
2017-01-01
NASA has been working with the FAA and aviation industry partners to develop and demonstrate new concepts and technologies that integrate arrival, departure, and surface traffic management capabilities. In March 2017, NASA conducted a human-in-the-loop (HITL) simulation for integrated surface and airspace operations, modeling Charlotte Douglas International Airport, to evaluate the operational procedures and information requirements for the tactical surface metering tool, and data exchange elements between the airline controlled ramp and ATC Tower. In this paper, we focus on the calibration of the tactical surface metering tool using various metrics measured from the HITL simulation results. Key performance metrics include gate hold times from pushback advisories, taxi-in-out times, runway throughput, and departure queue size. Subjective metrics presented in this paper include workload, situational awareness, and acceptability of the metering tool and its calibration.
NASA Technical Reports Server (NTRS)
Verma, Savita; Lee, Hanbong; Martin, Lynne; Stevens, Lindsay; Jung, Yoon; Dulchinos, Victoria; Chevalley, Eric; Jobe, Kim; Parke, Bonny
2017-01-01
NASA has been working with the FAA and aviation industry partners to develop and demonstrate new concepts and technologies that integrate arrival, departure, and surface traffic management capabilities. In March 2017, NASA conducted a human-in-the-loop (HITL) simulation for integrated surface and airspace operations, modeling Charlotte Douglas International Airport, to evaluate the operational procedures and information requirements for the tactical surface metering tool, and data exchange elements between the airline controlled ramp and ATC Tower. In this paper, we focus on the calibration of the tactical surface metering tool using various metrics measured from the HITL simulation results. Key performance metrics include gate hold times from pushback advisories, taxi-in/out times, runway throughput, and departure queue size. Subjective metrics presented in this paper include workload, situational awareness, and acceptability of the metering tool and its calibration
Seasonal-Scale Optimization of Conventional Hydropower Operations in the Upper Colorado System
NASA Astrophysics Data System (ADS)
Bier, A.; Villa, D.; Sun, A.; Lowry, T. S.; Barco, J.
2011-12-01
Sandia National Laboratories is developing the Hydropower Seasonal Concurrent Optimization for Power and the Environment (Hydro-SCOPE) tool to examine basin-wide conventional hydropower operations at seasonal time scales. This tool is part of an integrated, multi-laboratory project designed to explore different aspects of optimizing conventional hydropower operations. The Hydro-SCOPE tool couples a one-dimensional reservoir model with a river routing model to simulate hydrology and water quality. An optimization engine wraps around this model framework to solve for long-term operational strategies that best meet the specific objectives of the hydrologic system while honoring operational and environmental constraints. The optimization routines are provided by Sandia's open source DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) software. Hydro-SCOPE allows for multi-objective optimization, which can be used to gain insight into the trade-offs that must be made between objectives. The Hydro-SCOPE tool is being applied to the Upper Colorado Basin hydrologic system. This system contains six reservoirs, each with its own set of objectives (such as maximizing revenue, optimizing environmental indicators, meeting water use needs, or other objectives) and constraints. This leads to a large optimization problem with strong connectedness between objectives. The systems-level approach used by the Hydro-SCOPE tool allows simultaneous analysis of these objectives, as well as understanding of potential trade-offs related to different objectives and operating strategies. The seasonal-scale tool will be tightly integrated with the other components of this project, which examine day-ahead and real-time planning, environmental performance, hydrologic forecasting, and plant efficiency.
NASA Technical Reports Server (NTRS)
Strutzenberg, L. L.; Dougherty, N. S.; Liever, P. A.; West, J. S.; Smith, S. D.
2007-01-01
This paper details advances being made in the development of Reynolds-Averaged Navier-Stokes numerical simulation tools, models, and methods for the integrated Space Shuttle Vehicle at launch. The conceptual model and modeling approach described includes the development of multiple computational models to appropriately analyze the potential debris transport for critical debris sources at Lift-Off. The conceptual model described herein involves the integration of propulsion analysis for the nozzle/plume flow with the overall 3D vehicle flowfield at Lift-Off. Debris Transport Analyses are being performed using the Shuttle Lift-Off models to assess the risk to the vehicle from Lift-Off debris and appropriately prioritized mitigation of potential debris sources to continue to reduce vehicle risk. These integrated simulations are being used to evaluate plume-induced debris environments where the multi-plume interactions with the launch facility can potentially accelerate debris particles toward the vehicle.
Zadpoor, Amir A; Weinans, Harrie
2015-03-18
Patient-specific analysis of bones is considered an important tool for diagnosis and treatment of skeletal diseases and for clinical research aimed at understanding the etiology of skeletal diseases and the effects of different types of treatment on their progress. In this article, we discuss how integration of several important components enables accurate and cost-effective patient-specific bone analysis, focusing primarily on patient-specific finite element (FE) modeling of bones. First, the different components are briefly reviewed. Then, two important aspects of patient-specific FE modeling, namely integration of modeling components and automation of modeling approaches, are discussed. We conclude with a section on validation of patient-specific modeling results, possible applications of patient-specific modeling procedures, current limitations of the modeling approaches, and possible areas for future research. Copyright © 2014 Elsevier Ltd. All rights reserved.
Advanced 3D Characterization and Reconstruction of Reactor Materials FY16 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fromm, Bradley; Hauch, Benjamin; Sridharan, Kumar
2016-12-01
A coordinated effort to link advanced materials characterization methods and computational modeling approaches is critical to future success for understanding and predicting the behavior of reactor materials that operate at extreme conditions. The difficulty and expense of working with nuclear materials have inhibited the use of modern characterization techniques on this class of materials. Likewise, mesoscale simulation efforts have been impeded due to insufficient experimental data necessary for initialization and validation of the computer models. The objective of this research is to develop methods to integrate advanced materials characterization techniques developed for reactor materials with state-of-the-art mesoscale modeling and simulationmore » tools. Research to develop broad-ion beam sample preparation, high-resolution electron backscatter diffraction, and digital microstructure reconstruction techniques; and methods for integration of these techniques into mesoscale modeling tools are detailed. Results for both irradiated and un-irradiated reactor materials are presented for FY14 - FY16 and final remarks are provided.« less
USDA-ARS?s Scientific Manuscript database
Water quality models address nonpoint source pollution from agricultural land at a range of scales and complexities and involve a variety of input parameters. It is often difficult for conservationists and stakeholders to understand and reconcile water quality results from different models. However,...
Models Based Practices in Physical Education: A Sociocritical Reflection
ERIC Educational Resources Information Center
Landi, Dillon; Fitzpatrick, Katie; McGlashan, Hayley
2016-01-01
In this paper, we reflect on models-based practices in physical education using a sociocritical lens. Drawing links between neoliberal moves in education, and critical approaches to the body and physicality, we take a view that models are useful tools that are worth integrating into physical education, but we are apprehensive to suggest they…
Explorations in Elementary Mathematical Modeling
ERIC Educational Resources Information Center
Shahin, Mazen
2010-01-01
In this paper we will present the methodology and pedagogy of Elementary Mathematical Modeling as a one-semester course in the liberal arts core. We will focus on the elementary models in finance and business. The main mathematical tools in this course are the difference equations and matrix algebra. We also integrate computer technology and…
Simulating forage crop production in a northern climate with the Integrated Farm System Model
USDA-ARS?s Scientific Manuscript database
Whole-farm simulation models are useful tools for evaluating the effect of management practices and climate variability on the agro-environmental and economic performance of farms. A few process-based farm-scale models have been developed, but none have been evaluated in a northern region with a sho...
NASA Technical Reports Server (NTRS)
Arnold, Steven M. (Editor); Wong, Terry T. (Editor)
2011-01-01
Topics covered include: An Annotative Review of Multiscale Modeling and its Application to Scales Inherent in the Field of ICME; and A Multiscale, Nonlinear, Modeling Framework Enabling the Design and Analysis of Composite Materials and Structures.
An augmented reality tool for learning spatial anatomy on mobile devices.
Jain, Nishant; Youngblood, Patricia; Hasel, Matthew; Srivastava, Sakti
2017-09-01
Augmented Realty (AR) offers a novel method of blending virtual and real anatomy for intuitive spatial learning. Our first aim in the study was to create a prototype AR tool for mobile devices. Our second aim was to complete a technical evaluation of our prototype AR tool focused on measuring the system's ability to accurately render digital content in the real world. We imported Computed Tomography (CT) data derived virtual surface models into a 3D Unity engine environment and implemented an AR algorithm to display these on mobile devices. We investigated the accuracy of the virtual renderings by comparing a physical cube with an identical virtual cube for dimensional accuracy. Our comparative study confirms that our AR tool renders 3D virtual objects with a high level of accuracy as evidenced by the degree of similarity between measurements of the dimensions of a virtual object (a cube) and the corresponding physical object. We developed an inexpensive and user-friendly prototype AR tool for mobile devices that creates highly accurate renderings. This prototype demonstrates an intuitive, portable, and integrated interface for spatial interaction with virtual anatomical specimens. Integrating this AR tool with a library of CT derived surface models provides a platform for spatial learning in the anatomy curriculum. The segmentation methodology implemented to optimize human CT data for mobile viewing can be extended to include anatomical variations and pathologies. The ability of this inexpensive educational platform to deliver a library of interactive, 3D models to students worldwide demonstrates its utility as a supplemental teaching tool that could greatly benefit anatomical instruction. Clin. Anat. 30:736-741, 2017. © 2017Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmadi, Rouhollah, E-mail: rouhollahahmadi@yahoo.com; Khamehchi, Ehsan
Conditioning stochastic simulations are very important in many geostatistical applications that call for the introduction of nonlinear and multiple-point data in reservoir modeling. Here, a new methodology is proposed for the incorporation of different data types into multiple-point statistics (MPS) simulation frameworks. Unlike the previous techniques that call for an approximate forward model (filter) for integration of secondary data into geologically constructed models, the proposed approach develops an intermediate space where all the primary and secondary data are easily mapped onto. Definition of the intermediate space, as may be achieved via application of artificial intelligence tools like neural networks andmore » fuzzy inference systems, eliminates the need for using filters as in previous techniques. The applicability of the proposed approach in conditioning MPS simulations to static and geologic data is verified by modeling a real example of discrete fracture networks using conventional well-log data. The training patterns are well reproduced in the realizations, while the model is also consistent with the map of secondary data.« less
Development of Advanced Computational Aeroelasticity Tools at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Bartels, R. E.
2008-01-01
NASA Langley Research Center has continued to develop its long standing computational tools to address new challenges in aircraft and launch vehicle design. This paper discusses the application and development of those computational aeroelastic tools. Four topic areas will be discussed: 1) Modeling structural and flow field nonlinearities; 2) Integrated and modular approaches to nonlinear multidisciplinary analysis; 3) Simulating flight dynamics of flexible vehicles; and 4) Applications that support both aeronautics and space exploration.
Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.; ...
2016-06-09
Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy smore » Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.« less
Measurement of W + bb and a search for MSSM Higgs bosons with the CMS detector at the LHC
NASA Astrophysics Data System (ADS)
O'Connor, Alexander Pinpin
Tooling used to cure composite laminates in the aerospace and automotive industries must provide a dimensionally stable geometry throughout the thermal cycle applied during the part curing process. This requires that the Coefficient of Thermal Expansion (CTE) of the tooling materials match that of the composite being cured. The traditional tooling material for production applications is a nickel alloy. Poor machinability and high material costs increase the expense of metallic tooling made from nickel alloys such as 'Invar 36' or 'Invar 42'. Currently, metallic tooling is unable to meet the needs of applications requiring rapid affordable tooling solutions. In applications where the tooling is not required to have the durability provided by metals, such as for small area repair, an opportunity exists for non-metallic tooling materials like graphite, carbon foams, composites, or ceramics and machinable glasses. Nevertheless, efficient machining of brittle, non-metallic materials is challenging due to low ductility, porosity, and high hardness. The machining of a layup tool comprises a large portion of the final cost. Achieving maximum process economy requires optimization of the machining process in the given tooling material. Therefore, machinability of the tooling material is a critical aspect of the overall cost of the tool. In this work, three commercially available, brittle/porous, non-metallic candidate tooling materials were selected, namely: (AAC) Autoclaved Aerated Concrete, CB1100 ceramic block and Cfoam carbon foam. Machining tests were conducted in order to evaluate the machinability of these materials using end milling. Chip formation, cutting forces, cutting tool wear, machining induced damage, surface quality and surface integrity were investigated using High Speed Steel (HSS), carbide, diamond abrasive and Polycrystalline Diamond (PCD) cutting tools. Cutting forces were found to be random in magnitude, which was a result of material porosity. The abrasive nature of Cfoam produced rapid tool wear when using HSS and PCD type cutting tools. However, tool wear was not significant in AAC or CB1100 regardless of the type of cutting edge. Machining induced damage was observed in the form of macro-scale chipping and fracture in combination with micro-scale cracking. Transverse rupture test results revealed significant reductions in residual strength and damage tolerance in CB1100. In contrast, AAC and Cfoam showed no correlation between machining induced damage and a reduction in surface integrity. Cutting forces in machining were modeled for all materials. Cutting force regression models were developed based on Design of Experiment and Analysis of Variance. A mechanistic cutting force model was proposed based upon conventional end milling force models and statistical distributions of material porosity. In order to validate the model, predicted cutting forces were compared to experimental results. Predicted cutting forces agreed well with experimental measurements. Furthermore, over the range of cutting conditions tested, the proposed model was shown to have comparable predictive accuracy to empirically produced regression models; greatly reducing the number of cutting tests required to simulate cutting forces. Further, this work demonstrates a key adaptation of metallic cutting force models to brittle porous material; a vital step in the research into the machining of these materials using end milling.
PSAMM: A Portable System for the Analysis of Metabolic Models
Steffensen, Jon Lund; Dufault-Thompson, Keith; Zhang, Ying
2016-01-01
The genome-scale models of metabolic networks have been broadly applied in phenotype prediction, evolutionary reconstruction, community functional analysis, and metabolic engineering. Despite the development of tools that support individual steps along the modeling procedure, it is still difficult to associate mathematical simulation results with the annotation and biological interpretation of metabolic models. In order to solve this problem, here we developed a Portable System for the Analysis of Metabolic Models (PSAMM), a new open-source software package that supports the integration of heterogeneous metadata in model annotations and provides a user-friendly interface for the analysis of metabolic models. PSAMM is independent of paid software environments like MATLAB, and all its dependencies are freely available for academic users. Compared to existing tools, PSAMM significantly reduced the running time of constraint-based analysis and enabled flexible settings of simulation parameters using simple one-line commands. The integration of heterogeneous, model-specific annotation information in PSAMM is achieved with a novel format of YAML-based model representation, which has several advantages, such as providing a modular organization of model components and simulation settings, enabling model version tracking, and permitting the integration of multiple simulation problems. PSAMM also includes a number of quality checking procedures to examine stoichiometric balance and to identify blocked reactions. Applying PSAMM to 57 models collected from current literature, we demonstrated how the software can be used for managing and simulating metabolic models. We identified a number of common inconsistencies in existing models and constructed an updated model repository to document the resolution of these inconsistencies. PMID:26828591
A Landscape Model (LEEMATH) to Evaluate Effects of Management Impacts on Timber and Wildlife Habitat
Harbin Li; David L. Gartner; Pu Mou; Carl C. Trettin
2000-01-01
Managing forest resources for sustainability requires the successful integration of economic and ecological goals. To attain such integration, land managers need decision support tools that incorporate science, land-use strategies, and policy options to assess resources sustainability at large scales. Landscape Evaluation of Effects of Management Activities on Timber...
Training University Faculty To Integrate Hypermedia into the Teacher Training Curriculum.
ERIC Educational Resources Information Center
Tucker, S. A.; And Others
Funded under the Apple Model Program for the Integration of Computers in the Preparation of Educators, the University of South Alabama began a 3-year project in 1989 to train faculty in its College of Education to incorporate hypermedia into their curriculum. HyperCard was selected as a course presentation and development tool because of its…
ERIC Educational Resources Information Center
1996
This paper discusses a model of integrated instruction and assessment called SMART (Special Multimedia Arenas for Refining Thinking). SMART involves interactive use of the Internet and multimedia software. The Internet serves three important functions: it acts as a formative assessment tool by providing individualized feedback to students, creates…
NextGen Operational Improvements: Will they Improve Human Performance
NASA Technical Reports Server (NTRS)
Beard, Bettina L.; Johnston, James C.; Holbrook, Jon
2013-01-01
Modernization of the National Airspace System depends critically on the development of advanced technology, including cutting-edge automation, controller decision-support tools and integrated on-demand information. The Next Generation Air Transportation System national plan envisions air traffic control tower automation that proposes solutions for seven problems: 1) departure metering, 2) taxi routing, 3) taxi and runway scheduling, 4) departure runway assignments, 5) departure flow management, 6) integrated arrival and departure scheduling and 7) runway configuration management. Government, academia and industry are simultaneously pursuing the development of these tools. For each tool, the development process typically begins by assessing its potential benefits, and then progresses to designing preliminary versions of the tool, followed by testing the tool's strengths and weaknesses using computational modeling, human-in-the-loop simulation and/or field tests. We compiled the literature, evaluated the methodological rigor of the studies and served as referee for partisan conclusions that were sometimes overly optimistic. Here we provide the results of this review.
Coordinating complex decision support activities across distributed applications
NASA Technical Reports Server (NTRS)
Adler, Richard M.
1994-01-01
Knowledge-based technologies have been applied successfully to automate planning and scheduling in many problem domains. Automation of decision support can be increased further by integrating task-specific applications with supporting database systems, and by coordinating interactions between such tools to facilitate collaborative activities. Unfortunately, the technical obstacles that must be overcome to achieve this vision of transparent, cooperative problem-solving are daunting. Intelligent decision support tools are typically developed for standalone use, rely on incompatible, task-specific representational models and application programming interfaces (API's), and run on heterogeneous computing platforms. Getting such applications to interact freely calls for platform independent capabilities for distributed communication, as well as tools for mapping information across disparate representations. Symbiotics is developing a layered set of software tools (called NetWorks! for integrating and coordinating heterogeneous distributed applications. he top layer of tools consists of an extensible set of generic, programmable coordination services. Developers access these services via high-level API's to implement the desired interactions between distributed applications.
Wess-Zumino and super Yang-Mills theories in D=4 integral superspace
NASA Astrophysics Data System (ADS)
Castellani, L.; Catenacci, R.; Grassi, P. A.
2018-05-01
We reconstruct the action of N = 1 , D = 4 Wess-Zumino and N = 1 , 2 , D = 4 super-Yang-Mills theories, using integral top forms on the supermanifold M^{(.4|4)} . Choosing different Picture Changing Operators, we show the equivalence of their rheonomic and superspace actions. The corresponding supergeometry and integration theory are discussed in detail. This formalism is an efficient tool for building supersymmetric models in a geometrical framework.
NASA Technical Reports Server (NTRS)
Arnold, William R.
2015-01-01
Since last year, a number of expanded capabilities have been added to the modeler. The support the integration with thermal modeling, the program can now produce simplified thermal models with the same geometric parameters as the more detailed dynamic and even more refined stress models. The local mesh refinement and mesh improvement tools have been expanded and more user friendly. The goal is to provide a means of evaluating both monolithic and segmented mirrors to the same level of fidelity and loading conditions at reasonable man-power efforts. The paper will demonstrate most of these new capabilities.
NASA Technical Reports Server (NTRS)
Arnold, William R., Sr.
2015-01-01
Since last year, a number of expanded capabilities have been added to the modeler. The support the integration with thermal modeling, the program can now produce simplified thermal models with the same geometric parameters as the more detailed dynamic and even more refined stress models. The local mesh refinement and mesh improvement tools have been expanded and more user friendly. The goal is to provide a means of evaluating both monolithic and segmented mirrors to the same level of fidelity and loading conditions at reasonable man-power efforts. The paper will demonstrate most of these new capabilities.
EpiModel: An R Package for Mathematical Modeling of Infectious Disease over Networks.
Jenness, Samuel M; Goodreau, Steven M; Morris, Martina
2018-04-01
Package EpiModel provides tools for building, simulating, and analyzing mathematical models for the population dynamics of infectious disease transmission in R. Several classes of models are included, but the unique contribution of this software package is a general stochastic framework for modeling the spread of epidemics on networks. EpiModel integrates recent advances in statistical methods for network analysis (temporal exponential random graph models) that allow the epidemic modeling to be grounded in empirical data on contacts that can spread infection. This article provides an overview of both the modeling tools built into EpiModel , designed to facilitate learning for students new to modeling, and the application programming interface for extending package EpiModel , designed to facilitate the exploration of novel research questions for advanced modelers.
EpiModel: An R Package for Mathematical Modeling of Infectious Disease over Networks
Jenness, Samuel M.; Goodreau, Steven M.; Morris, Martina
2018-01-01
Package EpiModel provides tools for building, simulating, and analyzing mathematical models for the population dynamics of infectious disease transmission in R. Several classes of models are included, but the unique contribution of this software package is a general stochastic framework for modeling the spread of epidemics on networks. EpiModel integrates recent advances in statistical methods for network analysis (temporal exponential random graph models) that allow the epidemic modeling to be grounded in empirical data on contacts that can spread infection. This article provides an overview of both the modeling tools built into EpiModel, designed to facilitate learning for students new to modeling, and the application programming interface for extending package EpiModel, designed to facilitate the exploration of novel research questions for advanced modelers. PMID:29731699
From Physical Process to Economic Cost - Integrated Approaches of Landslide Risk Assessment
NASA Astrophysics Data System (ADS)
Klose, M.; Damm, B.
2014-12-01
The nature of landslides is complex in many respects, with landslide hazard and impact being dependent on a variety of factors. This obviously requires an integrated assessment for fundamental understanding of landslide risk. Integrated risk assessment, according to the approach presented in this contribution, implies combining prediction of future landslide occurrence with analysis of landslide impact in the past. A critical step for assessing landslide risk in integrated perspective is to analyze what types of landslide damage affected people and property in which way and how people contributed and responded to these damage types. In integrated risk assessment, the focus is on systematic identification and monetization of landslide damage, and analytical tools that allow deriving economic costs from physical landslide processes are at the heart of this approach. The broad spectrum of landslide types and process mechanisms as well as nonlinearity between landslide magnitude, damage intensity, and direct costs are some main factors explaining recent challenges in risk assessment. The two prevailing approaches for assessing the impact of landslides in economic terms are cost survey (ex-post) and risk analysis (ex-ante). Both approaches are able to complement each other, but yet a combination of them has not been realized so far. It is common practice today to derive landslide risk without considering landslide process-based cause-effect relationships, since integrated concepts or new modeling tools expanding conventional methods are still widely missing. The approach introduced in this contribution is based on a systematic framework that combines cost survey and GIS-based tools for hazard or cost modeling with methods to assess interactions between land use practices and landslides in historical perspective. Fundamental understanding of landslide risk also requires knowledge about the economic and fiscal relevance of landslide losses, wherefore analysis of their impact on public budgets is a further component of this approach. In integrated risk assessment, combination of methods plays an important role, with the objective of collecting and integrating complex data sets on landslide risk.
NASA Astrophysics Data System (ADS)
Illing, Sebastian; Schuster, Mareike; Kadow, Christopher; Kröner, Igor; Richling, Andy; Grieger, Jens; Kruschke, Tim; Lang, Benjamin; Redl, Robert; Schartner, Thomas; Cubasch, Ulrich
2016-04-01
MiKlip is project for medium-term climate prediction funded by the Federal Ministry of Education and Research in Germany (BMBF) and aims to create a model system that is able provide reliable decadal climate forecasts. During the first project phase of MiKlip the sub-project INTEGRATION located at Freie Universität Berlin developed a framework for scientific infrastructures (FREVA). More information about FREVA can be found in EGU2016-13060. An instance of this framework is used as Central Evaluation System (CES) during the MiKlip project. Throughout the first project phase various sub-projects developed over 25 analysis tools - so called plugins - for the CES. The main focus of these plugins is on the evaluation and verification of decadal climate prediction data, but most plugins are not limited to this scope. They target a wide range of scientific questions. Starting from preprocessing tools like the "LeadtimeSelector", which creates lead-time dependent time-series from decadal hindcast sets, over tracking tools like the "Zykpak" plugin, which can objectively locate and track mid-latitude cyclones, to plugins like "MurCSS" or "SPECS", which calculate deterministic and probabilistic skill metrics. We also integrated some analyses from Model Evaluation Tools (MET), which was developed at NCAR. We will show the theoretical background, technical implementation strategies, and some interesting results of the evaluation of the MiKlip Prototype decadal prediction system for a selected set of these tools.
Using Virtualization to Integrate Weather, Climate, and Coastal Science Education
NASA Astrophysics Data System (ADS)
Davis, J. R.; Paramygin, V. A.; Figueiredo, R.; Sheng, Y.
2012-12-01
To better understand and communicate the important roles of weather and climate on the coastal environment, a unique publically available tool is being developed to support research, education, and outreach activities. This tool uses virtualization technologies to facilitate an interactive, hands-on environment in which students, researchers, and general public can perform their own numerical modeling experiments. While prior efforts have focused solely on the study of the coastal and estuary environments, this effort incorporates the community supported weather and climate model (WRF-ARW) into the Coastal Science Educational Virtual Appliance (CSEVA), an education tool used to assist in the learning of coastal transport processes; storm surge and inundation; and evacuation modeling. The Weather Research and Forecasting (WRF) Model is a next-generation, community developed and supported, mesoscale numerical weather prediction system designed to be used internationally for research, operations, and teaching. It includes two dynamical solvers (ARW - Advanced Research WRF and NMM - Nonhydrostatic Mesoscale Model) as well as a data assimilation system. WRF-ARW is the ARW dynamics solver combined with other components of the WRF system which was developed primarily at NCAR, community support provided by the Mesoscale and Microscale Meteorology (MMM) division of National Center for Atmospheric Research (NCAR). Included with WRF is the WRF Pre-processing System (WPS) which is a set of programs to prepare input for real-data simulations. The CSEVA is based on the Grid Appliance (GA) framework and is built using virtual machine (VM) and virtual networking technologies. Virtualization supports integration of an operating system, libraries (e.g. Fortran, C, Perl, NetCDF, etc. necessary to build WRF), web server, numerical models/grids/inputs, pre-/post-processing tools (e.g. WPS / RIP4 or UPS), graphical user interfaces, "Cloud"-computing infrastructure and other tools into a single ready-to-use package. Thus, the previous ornery task of setting up and compiling these tools becomes obsolete and the research, educator or student can focus on using the tools to study the interactions between weather, climate and the coastal environment. The incorporation of WRF into the CSEVA has been designed to be synergistic with the extensive online tutorials and biannual tutorials hosted by NCAR. Included are working examples of the idealized test simulations provided with WRF (2D sea breeze and squalls, a large eddy simulation, a Held and Suarez simulation, etc.) To demonstrate the integration of weather, coastal and coastal science education, example applications are being developed to demonstrate how the system can be used to couple a coastal and estuarine circulation, transport and storm surge model with downscale reanalysis weather and future climate predictions. Documentation, tutorials and the enhanced CSEVA itself will be found on the web at: http://cseva.coastal.ufl.edu.
3D FEM Simulation of Flank Wear in Turning
NASA Astrophysics Data System (ADS)
Attanasio, Aldo; Ceretti, Elisabetta; Giardini, Claudio
2011-05-01
This work deals with tool wear simulation. Studying the influence of tool wear on tool life, tool substitution policy and influence on final part quality, surface integrity, cutting forces and power consumption it is important to reduce the global process costs. Adhesion, abrasion, erosion, diffusion, corrosion and fracture are some of the phenomena responsible of the tool wear depending on the selected cutting parameters: cutting velocity, feed rate, depth of cut, …. In some cases these wear mechanisms are described by analytical models as a function of process variables (temperature, pressure and sliding velocity along the cutting surface). These analytical models are suitable to be implemented in FEM codes and they can be utilized to simulate the tool wear. In the present paper a commercial 3D FEM software has been customized to simulate the tool wear during turning operations when cutting AISI 1045 carbon steel with uncoated tungsten carbide tip. The FEM software was improved by means of a suitable subroutine able to modify the tool geometry on the basis of the estimated tool wear as the simulation goes on. Since for the considered couple of tool-workpiece material the main phenomena generating wear are the abrasive and the diffusive ones, the tool wear model implemented into the subroutine was obtained as combination between the Usui's and the Takeyama and Murata's models. A comparison between experimental and simulated flank tool wear curves is reported demonstrating that it is possible to simulate the tool wear development.
Modelling of Tool Wear and Residual Stress during Machining of AISI H13 Tool Steel
NASA Astrophysics Data System (ADS)
Outeiro, José C.; Umbrello, Domenico; Pina, José C.; Rizzuti, Stefania
2007-05-01
Residual stresses can enhance or impair the ability of a component to withstand loading conditions in service (fatigue, creep, stress corrosion cracking, etc.), depending on their nature: compressive or tensile, respectively. This poses enormous problems in structural assembly as this affects the structural integrity of the whole part. In addition, tool wear issues are of critical importance in manufacturing since these affect component quality, tool life and machining cost. Therefore, prediction and control of both tool wear and the residual stresses in machining are absolutely necessary. In this work, a two-dimensional Finite Element model using an implicit Lagrangian formulation with an automatic remeshing was applied to simulate the orthogonal cutting process of AISI H13 tool steel. To validate such model the predicted and experimentally measured chip geometry, cutting forces, temperatures, tool wear and residual stresses on the machined affected layers were compared. The proposed FE model allowed us to investigate the influence of tool geometry, cutting regime parameters and tool wear on residual stress distribution in the machined surface and subsurface of AISI H13 tool steel. The obtained results permit to conclude that in order to reduce the magnitude of surface residual stresses, the cutting speed should be increased, the uncut chip thickness (or feed) should be reduced and machining with honed tools having large cutting edge radii produce better results than chamfered tools. Moreover, increasing tool wear increases the magnitude of surface residual stresses.
Integrated modeling: a look back
NASA Astrophysics Data System (ADS)
Briggs, Clark
2015-09-01
This paper discusses applications and implementation approaches used for integrated modeling of structural systems with optics over the past 30 years. While much of the development work focused on control system design, significant contributions were made in system modeling and computer-aided design (CAD) environments. Early work appended handmade line-of-sight models to traditional finite element models, such as the optical spacecraft concept from the ACOSS program. The IDEAS2 computational environment built in support of Space Station collected a wider variety of existing tools around a parametric database. Later, IMOS supported interferometer and large telescope mission studies at JPL with MATLAB modeling of structural dynamics, thermal analysis, and geometric optics. IMOS's predecessor was a simple FORTRAN command line interpreter for LQG controller design with additional functions that built state-space finite element models. Specialized language systems such as CAESY were formulated and prototyped to provide more complex object-oriented functions suited to control-structure interaction. A more recent example of optical modeling directly in mechanical CAD is used to illustrate possible future directions. While the value of directly posing the optical metric in system dynamics terms is well understood today, the potential payoff is illustrated briefly via project-based examples. It is quite likely that integrated structure thermal optical performance (STOP) modeling could be accomplished in a commercial off-the-shelf (COTS) tool set. The work flow could be adopted, for example, by a team developing a small high-performance optical or radio frequency (RF) instrument.
Woodcock, James; Givoni, Moshe; Morgan, Andrei Scott
2013-01-01
Background Achieving health benefits while reducing greenhouse gas emissions from transport offers a potential policy win-win; the magnitude of potential benefits, however, is likely to vary. This study uses an Integrated Transport and Health Impact Modelling tool (ITHIM) to evaluate the health and environmental impacts of high walking and cycling transport scenarios for English and Welsh urban areas outside London. Methods Three scenarios with increased walking and cycling and lower car use were generated based upon the Visions 2030 Walking and Cycling project. Changes to carbon dioxide emissions were estimated by environmental modelling. Health impact assessment modelling was used to estimate changes in Disability Adjusted Life Years (DALYs) resulting from changes in exposure to air pollution, road traffic injury risk, and physical activity. We compare the findings of the model with results generated using the World Health Organization's Health Economic Assessment of Transport (HEAT) tools. Results This study found considerable reductions in disease burden under all three scenarios, with the largest health benefits attributed to reductions in ischemic heart disease. The pathways that produced the largest benefits were, in order, physical activity, road traffic injuries, and air pollution. The choice of dose response relationship for physical activity had a large impact on the size of the benefits. Modelling the impact on all-cause mortality rather than through individual diseases suggested larger benefits. Using the best available evidence we found fewer road traffic injuries for all scenarios compared with baseline but alternative assumptions suggested potential increases. Conclusions Methods to estimate the health impacts from transport related physical activity and injury risk are in their infancy; this study has demonstrated an integration of transport and health impact modelling approaches. The findings add to the case for a move from car transport to walking and cycling, and have implications for empirical and modelling research. PMID:23326315
Woodcock, James; Givoni, Moshe; Morgan, Andrei Scott
2013-01-01
Achieving health benefits while reducing greenhouse gas emissions from transport offers a potential policy win-win; the magnitude of potential benefits, however, is likely to vary. This study uses an Integrated Transport and Health Impact Modelling tool (ITHIM) to evaluate the health and environmental impacts of high walking and cycling transport scenarios for English and Welsh urban areas outside London. Three scenarios with increased walking and cycling and lower car use were generated based upon the Visions 2030 Walking and Cycling project. Changes to carbon dioxide emissions were estimated by environmental modelling. Health impact assessment modelling was used to estimate changes in Disability Adjusted Life Years (DALYs) resulting from changes in exposure to air pollution, road traffic injury risk, and physical activity. We compare the findings of the model with results generated using the World Health Organization's Health Economic Assessment of Transport (HEAT) tools. This study found considerable reductions in disease burden under all three scenarios, with the largest health benefits attributed to reductions in ischemic heart disease. The pathways that produced the largest benefits were, in order, physical activity, road traffic injuries, and air pollution. The choice of dose response relationship for physical activity had a large impact on the size of the benefits. Modelling the impact on all-cause mortality rather than through individual diseases suggested larger benefits. Using the best available evidence we found fewer road traffic injuries for all scenarios compared with baseline but alternative assumptions suggested potential increases. Methods to estimate the health impacts from transport related physical activity and injury risk are in their infancy; this study has demonstrated an integration of transport and health impact modelling approaches. The findings add to the case for a move from car transport to walking and cycling, and have implications for empirical and modelling research.
Applying Model Based Systems Engineering to NASA's Space Communications Networks
NASA Technical Reports Server (NTRS)
Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert
2013-01-01
System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its results and impact. We will highlight the insights gained by applying the Model Based System Engineering and provide recommendations for its applications and improvements.
Conversion of HSPF Legacy Model to a Platform-Independent, Open-Source Language
NASA Astrophysics Data System (ADS)
Heaphy, R. T.; Burke, M. P.; Love, J. T.
2015-12-01
Since its initial development over 30 years ago, the Hydrologic Simulation Program - FORTAN (HSPF) model has been used worldwide to support water quality planning and management. In the United States, HSPF receives widespread endorsement as a regulatory tool at all levels of government and is a core component of the EPA's Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) system, which was developed to support nationwide Total Maximum Daily Load (TMDL) analysis. However, the model's legacy code and data management systems have limitations in their ability to integrate with modern software, hardware, and leverage parallel computing, which have left voids in optimization, pre-, and post-processing tools. Advances in technology and our scientific understanding of environmental processes that have occurred over the last 30 years mandate that upgrades be made to HSPF to allow it to evolve and continue to be a premiere tool for water resource planners. This work aims to mitigate the challenges currently facing HSPF through two primary tasks: (1) convert code to a modern widely accepted, open-source, high-performance computing (hpc) code; and (2) convert model input and output files to modern widely accepted, open-source, data model, library, and binary file format. Python was chosen as the new language for the code conversion. It is an interpreted, object-oriented, hpc code with dynamic semantics that has become one of the most popular open-source languages. While python code execution can be slow compared to compiled, statically typed programming languages, such as C and FORTRAN, the integration of Numba (a just-in-time specializing compiler) has allowed this challenge to be overcome. For the legacy model data management conversion, HDF5 was chosen to store the model input and output. The code conversion for HSPF's hydrologic and hydraulic modules has been completed. The converted code has been tested against HSPF's suite of "test" runs and shown good agreement and similar execution times while using the Numba compiler. Continued verification of the accuracy of the converted code against more complex legacy applications and improvement upon execution times by incorporating an intelligent network change detection tool is currently underway, and preliminary results will be presented.
Beyond magic bullets: true innovation in health care.
Narayan, Vaibhav A; Mohwinckel, Marco; Pisano, Gary; Yang, Michael; Manji, Husseini K
2013-02-01
The time has come to move beyond product-focused 'magic bullet' therapeutic development strategies towards models that can also incorporate devices, tools and services to provide integrated health-care solutions.
BGFit: management and automated fitting of biological growth curves.
Veríssimo, André; Paixão, Laura; Neves, Ana Rute; Vinga, Susana
2013-09-25
Existing tools to model cell growth curves do not offer a flexible integrative approach to manage large datasets and automatically estimate parameters. Due to the increase of experimental time-series from microbiology and oncology, the need for a software that allows researchers to easily organize experimental data and simultaneously extract relevant parameters in an efficient way is crucial. BGFit provides a web-based unified platform, where a rich set of dynamic models can be fitted to experimental time-series data, further allowing to efficiently manage the results in a structured and hierarchical way. The data managing system allows to organize projects, experiments and measurements data and also to define teams with different editing and viewing permission. Several dynamic and algebraic models are already implemented, such as polynomial regression, Gompertz, Baranyi, Logistic and Live Cell Fraction models and the user can add easily new models thus expanding current ones. BGFit allows users to easily manage their data and models in an integrated way, even if they are not familiar with databases or existing computational tools for parameter estimation. BGFit is designed with a flexible architecture that focus on extensibility and leverages free software with existing tools and methods, allowing to compare and evaluate different data modeling techniques. The application is described in the context of bacterial and tumor cells growth data fitting, but it is also applicable to any type of two-dimensional data, e.g. physical chemistry and macroeconomic time series, being fully scalable to high number of projects, data and model complexity.
FIA BioSum: a tool to evaluate financial costs, opportunities and effectiveness of fuel treatments.
Jeremy Fried; Glenn Christensen
2004-01-01
FIA BioSum, a tool developed by the USDA Forest Services Forest Inventory and Analysis (FIA) Program, generates reliable cost estimates, identifies opportunities and evaluates the effectiveness of fuel treatments in forested landscapes. BioSum is an analytic framework that integrates a suite of widely used computer models with a foundation of attribute-rich,...
Michelle F. Tacconelli; Edward F. Loewenstein
2012-01-01
Natural resource managers must often balance multiple objectives on a single property. When these objectives are seemingly conflicting, the managerâs job can be extremely difficult and complex. This paper presents a decision support tool, designed to aid land managers in optimizing wildlife habitat needs while accomplishing additional objectives such as ecosystem...
Department of the Army Cost Analysis Manual
2002-05-01
TOOLS ( ACEIT ) ........................................................171 SECTION II - AUTOMATED COST DATA BASE (ACDB...Integrated Tools ( ACEIT ) model and since it is widely used to prepare POEs, CCAs and ICEs, it would expedite the comparative analysis of the submission if...IPT Co-chairs. The documentation produced by the Cost/CRB IPT (in ACEIT ) will be the basis for information contained in the CAB. Any remaining
Teaching the Teacher: Tutoring SimStudent Leads to More Effective Cognitive Tutor Authoring
ERIC Educational Resources Information Center
Matsuda, Noboru; Cohen, William W.; Koedinger, Kenneth R.
2015-01-01
SimStudent is a machine-learning agent initially developed to help novice authors to create cognitive tutors without heavy programming. Integrated into an existing suite of software tools called Cognitive Tutor Authoring Tools (CTAT), SimStudent helps authors to create an expert model for a cognitive tutor by tutoring SimStudent on how to solve…