Science.gov

Sample records for integrated photovoltaic-thermal collector

  1. Photovoltaic-thermal collectors

    DOEpatents

    Cox, III, Charles H.

    1984-04-24

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  2. An innovative system for heating and cooling a gymnasium using integrated photovoltaic-thermal solar collectors

    SciTech Connect

    Fanchiotti, A.; Herkel, S.; Laukamp, H.; Priolo, C.

    1996-11-01

    The paper describes a new solar energy based system to heat and cool a gymnasium and to generate electricity in the city of Palermo, Italy. The gymnasium will be built in 1996 as part of the structures that will host the Universiadi Games in 1997. Main objectives of the project are: (a) to grant better environmental conditions in the area occupied by the public, with limited use of fossil energy; (b) to reduce the temperature of the photovoltaic elements, thus increasing their efficiency. The system consists of an array of 203 m{sup 2} integrated photovoltaic-thermal solar air collectors. In the winter mode of operation, the heated air is passed through the concrete benches where the public is seated. In the summer mode of operation outside air is evaporatively cooled, passed through the benches, then exhausted to the outside after passing through the collectors. The paper presents some of the results obtained by simulating the system at the design stage for winter conditions.

  3. Performance of a hybrid photovoltaic thermal solar collector

    SciTech Connect

    Sopian, K.; Liu, H.T.; Kakac, S.; Veziroglu, T.N.

    1996-12-31

    Closed form solutions have been obtained for both a single-pass and a double-pass collectors and, for a passively cooled photovoltaic panel. The mean plate temperature, photovoltaic cell, thermal, and combined efficiencies have been obtained. The results show that the double-pass photovoltaic thermal collector has a more productive cooling effect compared to the single-pass photovoltaic thermal collector, and thus has better photovoltaic cells performance. The effect of the mass flow rate, duct depth, and packing factor on the photovoltaic cell performance are also discussed.

  4. Integrated photovoltaic-thermal solar energy conversion systems

    NASA Technical Reports Server (NTRS)

    Samara, G. A.

    1975-01-01

    A combined photovoltaic/thermal collector has been built and is now being tested. Initial tests have concentrated on evaluating the thermal efficiency of the collector before and after the silicon cells are mounted. With likely improvements in bonding between cells and receiver and in the absorptivity of the cells, thermal efficiencies greater than 50% can be expected for the combined receiver operating at 100 C.

  5. Analytical prediction of the performance of an air photovoltaic/thermal flat-plate collector

    SciTech Connect

    Raghuraman, P.

    1980-04-30

    A one-dimensional analysis developed by MIT Lincoln Laboratory predicts the electrical and thermal performance of an air photovoltaic/thermal flat-plate collector. The analysis compares well with test measurements, predicting the thermal efficiency to within 2 percent. From the analysis, the poor thermal performance of the collector is attributable, in part, to the large undulations of the cell/silicone pottant surface in contact with the flowing air that results in less effective convective heat-transfer areas between the cell and the air.

  6. Review of combined photovoltaic/thermal collector: solar assisted heat pump system options

    SciTech Connect

    Sheldon, D. B.; Russell, M. C.

    1980-01-01

    The advantages of using photovoltaic (PV) and combined photovoltaic/thermal (PV/T) collectors in conjunction with residential heat pumps are examined. The thermal and electrical power requirements of similar residences in New York City and Fort Worth are the loads under consideration. The TRNSYS energy balance program is used to simulate the operations of parallel, series, and cascade solar assisted heat pump systems. Similar work involving exclusively thermal collectors is reviewed, and the distinctions between thermal and PV/T systems are emphasized. Provided the defrost problem can be satisfactorily controlled, lifecycle cost analyses show that at both locations the optimum collector area is less than 50 m/sup 2/ and that the parallel system is preferred.

  7. Cost goals for a residential photovoltaic/thermal liquid collector system set in three northern locations

    NASA Astrophysics Data System (ADS)

    Dinwoodie, T. L.; Kavanaugh, J. P.

    1980-10-01

    The allowable costs for a residential PV/T liquid collector system are compared with those of both PV only and side-by-side PV and thermal collector systems. Four typs of conventional energy systems provide backup: all oil, all gas, all electric resistance, and electric resistance hot water with space heating by parallel heat pump. Electric space cooling is modeled, and the electric utility serves as backup for all electrical needs. The analysis is separated into two parts: (1) a base case study using conservative market and financial parameters for comparing PV/T economics in three northern locations; and (2) the sensitivity of PV/T economics to pertinent physical, market, and financial variables is examined. The difference in economic outlook for PV/T in retrofit applications is also estimated. It is indicated that, it for northern locations modeled, is less than that of separate (side-by-side) collector systems, at total array areas between 40-80 sq m. Below this range, allowable costs diverge, benefiting optimally sized separate collector systems.

  8. Structurally integrated steel solar collector

    DOEpatents

    Moore, S.W.

    1975-06-03

    Herein is disclosed a flate plate solar heat collector unit. The solar collector is integrated as a structural unit so that the collector also functions as the building roof. The functions of efficient heat collection, liquid coolant flow passages, roof structural support, and building insulation are combined into one unit.

  9. Structurally integrated steel solar collector

    DOEpatents

    Moore, Stanley W.

    1977-03-08

    Herein is disclosed a flat plate solar heat collector unit. The solar collector is integrated as a structural unit so that the collector also functions as the building roof. The functions of efficient heat collection, liquid coolant flow passages, roof structural support and building insulation are combined into one unit.

  10. Integrated solar collector

    DOEpatents

    Tchernev, Dimiter I.

    1985-01-01

    A solar collector having a copper panel in a contiguous space relationship with a condenser-evaporator heat exchanger located under the panel, the panel having a honeycomb-like structure on its interior defining individual cells which are filled with zeolite loaded, in its adsorbed condition, with 18 to 20% by weight of water. The interior of the panel and heat exchanger are maintained at subatmospheric pressure of about 0.1 to 1 psia. The panel and heat exchanger are insulated on their lateral sides and bottoms and on the top of the heat exchange. The panel has a black coating on its top which is exposed to and absorbs solar energy. Surrounding the insulation (which supports the panel) is an extruded aluminum framework which supports a pair of spaced-apart glass panels above the solar panel. Water in conduits from a system for heating or cooling or both is connected to flow into an inlet and discharge from outlet of a finned coil received within the heat exchanger. The collector panel provides heat during the day through desorption and condensing of water vapor from the heated solar panel in the heat exchanger and cools at night by the re-adsorption of the water vapor from the heat exchanger which lowers the absolute pressure within the system and cools the heat exchange coils by evaporation.

  11. Photovoltaic/thermal hybrid projects

    NASA Astrophysics Data System (ADS)

    Kush, E. A.

    1980-03-01

    Systems which utilize a combination of photovoltaic and thermal collection in the same solar collectors (PV/T Systems) can have advantages over PV or thermal only systems in that the cost effectiveness of the collectors and their support structure may be improved, active cooling may allow the cells to run at lower temperatures-hence higher conversion efficiency, and space limitations on side by side collectors can be avoided. Evaluation of such systems requires formulation and assessment of collector concepts, power conditioning, storage, and control strategies, and their interactions when combined into a total system. Systems with flat plate PV/T collectors and vapor compression heat pump driven by the photovoltaic electric output are considered along with PV/T concentrating collectors and their potential applications, particularly to solar driven absorption chillers.

  12. Building-integrated fluorescent solar collector

    SciTech Connect

    Neuroth, N.

    1987-02-24

    This patent describes a building wall wherein the building wall includes windows, window parapets and areas below the window parapets. The window parapets include overhanging lips defining slots with the areas beneath the parapets. Fluorescent solar collectors are received in the slots to form an exterior facing over the area beneath the parapets. A photoelectric cell means is arranged with the fluorescent panels and has leads thereon for conducting electric current therefrom, the photoelectric cell means being positioned within the slots so as to be protected thereby.

  13. Solar cells having integral collector grids

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1978-01-01

    A heterojunction or Schottky barrier photovoltaic device is described, comprising a conductive base metal layer. A back surface field region was formed at the interface between the device and the base metal layer, a transparent, conductive mixed metal oxide layer in integral contact with the n-type layer of the heterojunction or Schottky barrier device. A metal alloy grid network was included. An insulating layer prevented electrical contact between the conductive metal base layer and the transparent, conductive metal oxide layer.

  14. Integrated current collector and catalyst support

    DOEpatents

    Bregoli, Lawrence J.

    1985-10-22

    An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer. The particulate material positioned within the gas flow channels may be a ceramic conductor such as a perovskite or a spinel for enhanced current collection.

  15. Integrated current collector and catalyst support

    DOEpatents

    Bregoli, L.J.

    1984-10-17

    An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer. The particulate material positioned within the gas flow channels may be a ceramic conductor such as a perovskite or a spinel for enhanced current collection.

  16. Integrated main rail, feed rail, and current collector

    DOEpatents

    Petri, Randy J.; Meek, John; Bachta, Robert P.; Marianowski, Leonard G.

    1994-01-01

    A separator plate for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced.

  17. Integrated main rail, feed rail, and current collector

    DOEpatents

    Petri, R.J.; Meek, J.; Bachta, R.P.; Marianowski, L.G.

    1994-11-08

    A separator plate is described for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced. 9 figs.

  18. Integral collector storage system with heat exchange apparatus

    DOEpatents

    Rhodes, Richard O.

    2004-04-20

    The present invention relates to an integral solar energy collector storage systems. Generally, an integral collector storage system includes a tank system, a plurality of heat exchange tubes with at least some of the heat exchange tubes arranged within the tank system, a first glazing layer positioned over the tank system and a base plate positioned under the tank system. In one aspect of the invention, the tank system, the first glazing layer an the base plate each include protrusions and a clip is provided to hold the layers together. In another aspect of the invention, the first glazing layer and the base plate are ribbed to provide structural support. This arrangement is particularly useful when these components are formed from plastic. In yet another aspect of the invention, the tank system has a plurality of interconnected tank chambers formed from tubes. In this aspect, a supply header pipe and a fluid return header pipe are provided at a first end of the tank system. The heat exchange tubes have inlets coupled to the supply header pipe and outlets coupled to the return header pipe. With this arrangement, the heat exchange tubes may be inserted into the tank chambers from the first end of the tank system.

  19. Integrated Design of Undepressed Collector for Low Power Gyrotron

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Goswami, Uttam K.; Poonia, Sunita; Singh, Udaybir; Kumar, Nitin; Alaria, M. K.; Bera, A.; Khatun, Hasina; Sinha, A. K.

    2011-06-01

    A 42 GHz, 200 kW continuous wave (CW) gyrotron, operating at TE03 mode is under development for the electron cyclotron resonance plasma heating of the Indian TOKAMAK system. The gyrotron is made up of an undepressed collector. The undepressed collector is simple to design and cost effective. In this paper, a detailed design study of the undepressed collector for the 42 GHz gyrotron is presented. The EGUN code is used to analyze the spent electron beam trajectory for the maximum spread to reduce the power loading on the collector surface. To achieve wall loading ≤1 kW/cm2, a collector with a length of 800 mm and a radius of 42.5 mm is designed. The design also includes the three magnet systems around the collector for maximum and uniform beam spread. The thermal and the structural analyses are done using the ANSYS code to optimize the collector structure and dimensions with tolerance.

  20. Photovoltaic-Thermal New Technology Demonstration

    SciTech Connect

    Dean, Jesse; McNutt, Peter; Lisell, Lars; Burch, Jay; Jones, Dennis; Heinicke, David

    2015-01-01

    Photovoltaic-thermal (PV-T) hybrid solar systems offer increased electricity production by cooling the PV panel, and using the removed thermal energy to heat water - all in the same footprint as a standard PV system. GPG's assessment of the nation's first large-scale PV-T system installed at the Thomas P. O'Neill, Jr. Federal Building in Boston, MA, provided numerous lessons learned in system design, and identified a target market of locations with high utility costs and electric hot water backup.

  1. EVALUATION OF FLAT-PLATE PHOTOVOLTAIC THERMAL HYBRID SYSTEMS FOR SOLAR ENERGY UTILIZATION.

    SciTech Connect

    ANDREWS,J.W.

    1981-06-01

    The technical and economic attractiveness of combined photovoltaic/thermal (PV/T) solar energy collectors was evaluated. The study was limited to flat-plate collectors since concentrating photovoltaic collectors require active cooling and thus are inherently PV/T collectors, the only decision being whether to use the thermal energy or to dump it. it was also specified at the outset that reduction in required roof area was not to be used as an argument for combining the collection of thermal and electrical energy into one module. Three tests of economic viability were identified, all of which PV/T must pass if it is to be considered a promising alternative: PV/T must prove to be competitive with photovoltaic-only, thermal-only, and side-by-side photovoltaic-plus-thermal collectors and systems. These three tests were applied to systems using low-temperature (unglazed) collectors and to systems using medium-temperature (glazed) collectors in Los Angeles, New York, and Tampa. For photovoltaics, the 1986 DOE cost goals were assumed to have been realized, and for thermal energy collection two technologies were considered: a current technology based on metal and glass, and a future technology based on thin-film plastics. The study showed that for medium-temperature applications PV/T is not an attractive option in any of the locations studied. For low-temperature applications, PV/T appears to be marginally attractive.

  2. Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab

    SciTech Connect

    da Silva, R.M.; Fernandes, J.L.M.

    2010-12-15

    The purpose of this work consists in thermodynamic modeling of hybrid photovoltaic-thermal (PV/T) solar systems, pursuing a modular strategy approach provided by Simulink/Matlab. PV/T solar systems are a recently emerging solar technology that allows for the simultaneous conversion of solar energy into both electricity and heat. This type of technology present some interesting advantages over the conventional ''side-by-side'' thermal and PV solar systems, such as higher combined electrical/thermal energy outputs per unit area, and a more uniform and aesthetical pleasant roof area. Despite the fact that early research on PV/T systems can be traced back to the seventies, only recently it has gained a renewed impetus. In this work, parametric studies and annual transient simulations of PV/T systems are undertaken in Simulink/Matlab. The obtained results show an average annual solar fraction of 67%, and a global overall efficiency of 24% (i.e. 15% thermal and 9% electrical), for a typical four-person single-family residence in Lisbon, with p-Si cells, and a collector area of 6 m{sup 2}. A sensitivity analysis performed on the PV/T collector suggests that the most important variable that should be addressed to improve thermal performance is the photovoltaic (PV) module emittance. Based on those results, some additional improvements are proposed, such as the use of vacuum, or a noble gas at low-pressure, to allow for the removal of PV cells encapsulation without air oxidation and degradation, and thus reducing the PV module emittance. Preliminary results show that this option allows for an 8% increase on optical thermal efficiency, and a substantial reduction of thermal losses, suggesting the possibility of working at higher fluid temperatures. The higher working temperatures negative effect in electrical efficiency was negligible, due to compensation by improved optical properties. The simulation results are compared with experimental data obtained from other authors

  3. Experiments and simulations on a thermosyphon solar collector with integrated storage

    NASA Astrophysics Data System (ADS)

    Toninelli, P.; Mariani, A.; Del, D., Col

    2015-11-01

    This paper deals with the thermal behaviour of a new type of flat solar collector that integrates the fluid storage tank. Often the main limitation of the solar thermosyphon installations is the prohibition to adopt external storage tanks due to their impact, especially for historical centres of particular architectural significance. To avoid this issue, a new system, that includes the collector and the storage, has been developed. This new apparatus works as a thermosyphon: it is possible to take advantage of the natural convection to avoid using a pump. Experimental tests have been conducted in such a collector with and without the absorbing plate. Furthermore, CFD simulations are reported to analyze in detail the dynamic thermal performance of the innovative solar collector and a good-agreement with the experimental tests has been found. Finally, both in numerical simulations and in experimental data the thermosyphon effect has been verified, obtaining the desired water temperature for domestic applications.

  4. Participation in multilateral effort to develop high performance integrated CPC evacuated collectors. [Compound Parabolic Concentrator (CPC)

    SciTech Connect

    Winston, R.; O'Gallagher, J.J.

    1992-05-31

    The University of Chicago Solar Energy Group has had a continuing program and commitment to develop an advanced evacuated solar collector integrating nonimaging concentration into its design. During the period from 1985--1987, some of our efforts were directed toward designing and prototyping a manufacturable version of an Integrated Compound Parabolic Concentrator (ICPC) evacuated collector tube as part of an international cooperative effort involving six organizations in four different countries. This multilateral'' project made considerable progress towards a commercially practical collector. One of two basic designs considered employed a heat pipe and an internal metal reflector CPC. We fabricated and tested two large diameter (125mm) borosilicate glass collector tubes to explore this concept. The other design also used a large diameter (125mm) glass tube but with a specially configured internal shaped mirror CPC coupled to a U-tube absorber. Performance projections in a variety of systems applications using the computer design tools developed by the International Energy Agency (IEA) task on evacuated collectors were used to optimize the optical and thermal design. The long-term goal of this work continues to be the development of a high efficiency, low cost solar collector to supply solar thermal energy at temperatures up to 250{degree}C. Some experience and perspectives based on our work are presented and reviewed. Despite substantial progress, the stability of research support and the market for commercial solar thermal collectors were such that the project could not be continued. A cooperative path involving university, government and industrial collaboration remains the most attractive near term option for developing a commercial ICPC.

  5. Hybrid solar collector using nonimaging optics and photovoltaic components

    NASA Astrophysics Data System (ADS)

    Winston, Roland; Yablonovitch, Eli; Jiang, Lun; Widyolar, Bennett K.; Abdelhamid, Mahmoud; Scranton, Gregg; Cygan, David; Kozlov, Alexandr

    2015-08-01

    The project team of University of California at Merced (UC-M), Gas Technology Institute, and Dr. Eli Yablonovitch of University of California at Berkeley developed a novel hybrid concentrated solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record single-junction Gallium arsenide (GaAs) PV components integrated with particle laden gas as thermal transfer and storage media, to simultaneously generate electricity and high temperature dispatchable heat. The collector transforms a parabolic trough, commonly used in CSP plants, into an integrated spectrum-splitting device. This places a spectrum-sensitive topping element on a secondary reflector that is registered to the thermal collection loop. The secondary reflector transmits higher energy photons for PV topping while diverting the remaining lower energy photons to the thermal media, achieving temperatures of around 400°C even under partial utilization of the solar spectrum. The collector uses the spectral selectivity property of Gallium arsenide (GaAs) cells to maximize the exergy output of the system, resulting in an estimated exergy efficiency of 48%. The thermal media is composed of fine particles of high melting point material in an inert gas that increases heat transfer and effectively stores excess heat in hot particles for later on-demand use.

  6. Method for fabricating solar cells having integrated collector grids

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1979-01-01

    A heterojunction or Schottky barrier photovoltaic device comprising a conductive base metal layer compatible with and coating predominately the exposed surface of the p-type substrate of the device such that a back surface field region is formed at the interface between the device and the base metal layer, a transparent, conductive mixed metal oxide layer in integral contact with the n-type layer of the heterojunction or Schottky barrier device having a metal alloy grid network of the same metal elements of the oxide constituents of the mixed metal oxide layer embedded in the mixed metal oxide layer, an insulating layer which prevents electrical contact between the conductive metal base layer and the transparent, conductive metal oxide layer, and a metal contact means covering the insulating layer and in intimate contact with the metal grid network embedded in the transparent, conductive oxide layer for conducting electrons generated by the photovoltaic process from the device.

  7. Participation in multilateral effort to develop high performance integrated CPC evacuated collectors. Final report, July 1, 1986--May 31, 1987

    SciTech Connect

    Winston, R.; O`Gallagher, J.J.

    1992-05-31

    The University of Chicago Solar Energy Group has had a continuing program and commitment to develop an advanced evacuated solar collector integrating nonimaging concentration into its design. During the period from 1985--1987, some of our efforts were directed toward designing and prototyping a manufacturable version of an Integrated Compound Parabolic Concentrator (ICPC) evacuated collector tube as part of an international cooperative effort involving six organizations in four different countries. This ``multilateral`` project made considerable progress towards a commercially practical collector. One of two basic designs considered employed a heat pipe and an internal metal reflector CPC. We fabricated and tested two large diameter (125mm) borosilicate glass collector tubes to explore this concept. The other design also used a large diameter (125mm) glass tube but with a specially configured internal shaped mirror CPC coupled to a U-tube absorber. Performance projections in a variety of systems applications using the computer design tools developed by the International Energy Agency (IEA) task on evacuated collectors were used to optimize the optical and thermal design. The long-term goal of this work continues to be the development of a high efficiency, low cost solar collector to supply solar thermal energy at temperatures up to 250{degree}C. Some experience and perspectives based on our work are presented and reviewed. Despite substantial progress, the stability of research support and the market for commercial solar thermal collectors were such that the project could not be continued. A cooperative path involving university, government and industrial collaboration remains the most attractive near term option for developing a commercial ICPC.

  8. Systems and applications analysis for concentrating photovoltaic-thermal systems

    NASA Astrophysics Data System (ADS)

    Schwinkendorf, W. E.

    Numerical simulations were carried out of the performance, costs, and land use requirements of five commercial and six residential applications of combined photovoltaic-thermal (PVT) power plants. Line focus Fresnel concentrators (LFF) systems were selected after a simulated comparison of different PVT systems. Load profiles were configured from industrial data and ASHRAE and building codes. Assumptions included costs of $1/Wp, 0.15 efficiency, and a cost of $275/sq m, as well as a 25 percent solar tax credit. The calculations showed that a significant low temperature thermal load must be available, but no heat recovery system. Industrial situations were identified which favor solar thermal energy alone rather than a combined system. The thermal energy displacement was determined to be the critical factor in assessing the economics of the PVT systems.

  9. Application of local exhaust ventilation system and integrated collectors for control of air pollutants in mining company.

    PubMed

    Ghorbani Shahna, Farshid; Bahrami, Abdulrahman; Farasati, Farhad

    2012-01-01

    Local exhaust ventilation (LEV) systems and integrated collectors were designed and implemented in a mining company in order to control emitted air pollutant from furnaces. The LEV was designed for capture and transition of air pollutants emitted from furnaces to the integrated collectors. The integrated collectors including four high efficiency Stairmand model cyclones for control of particulate matter, a venturi scrubber for control of the fine particles, SO(2) and a part of H(2)S to follow them, and a packed scrubber for treatment of the residual H(2)S and SO(2) were designed. Pollutants concentration were measured to determine system effectiveness. The results showed that the effectiveness of LEV for reducing workplace pollution is 91.83%, 96.32% and 83.67% for dust, SO(2) and H(2)S, respectively. Average removal efficiency of particles by combination of cyclone and venturi scrubber was 98.72%. Average removal efficiency of SO(2) and H(2)S were 95.85% and 47.13% for the venturi scrubber and 68.45% and 92.7% for the packed bed scrubber. The average removal efficiency of SO(2) and H(2)S were increased to 99.1% and 95.95% by the combination of venturi and packed bed scrubbers. According to the results, integrated collectors are a good air pollution control option for industries with economic constraints and ancient technologies. PMID:22878358

  10. Enhancing the thermal conductivity of ethylene-vinyl acetate (EVA) in a photovoltaic thermal collector

    NASA Astrophysics Data System (ADS)

    Allan, J.; Pinder, H.; Dehouche, Z.

    2016-03-01

    Samples of Ethylene-Vinyl Acetate (EVA) were doped with particles of Boron Nitride (BN) in concentrations ranging from 0-60% w/w. Thermal conductivity was measured using a Differential Scanning Calorimetery (DSC) technique. The thermal conductivity of parent EVA was increased from 0.24W/m ṡ K to 0.80W/m ṡ K for the 60% w/w sample. Two PV laminates were made; one using the parent EVA the other using EVA doped with 50% BN. When exposed to a one directional heat flux the doped laminate was, on average, 6% cooler than the standard laminate. A finite difference model had good agreement with experimental results and showed that the use of 60% BN composite achieved a PV performance increase of 0.3% compared to the standard laminate.

  11. Study of thermal effects and optical properties of an innovative absorber in integrated collector storage solar water heater

    NASA Astrophysics Data System (ADS)

    Taheri, Yaser; Alimardani, Kazem; Ziapour, Behrooz M.

    2015-10-01

    Solar passive water heaters are potential candidates for enhanced heat transfer. Solar water heaters with an integrated water tank and with the low temperature energy resource are used as the simplest and cheapest recipient devices of the solar energy for heating and supplying hot water in the buildings. The solar thermal performances of one primitive absorber were determined by using both the experimental and the simulation model of it. All materials applied for absorber such as the cover glass, the black colored sands and the V shaped galvanized plate were submerged into the water. The water storage tank was manufactured from galvanized sheet of 0.0015 m in thickness and the effective area of the collector was 0.67 m2. The absorber was installed on a compact solar water heater. The constructed flat-plate collectors were tested outdoors. However the simulation results showed that the absorbers operated near to the gray materials and all experimental results showed that the thermal efficiencies of the collector are over than 70 %.

  12. A point focusing collector for an integrated water/power complex

    NASA Technical Reports Server (NTRS)

    Zewen, H.; Schmidt, G.; Moustafa, S.

    1982-01-01

    The utilization potential of the point focusing parabolic dish is identified. Its main design parameters are summarized. Performance tests and the utilization of the collector as primary energy source in a food-water-power complex are described. Process heat, heat storage, heat transfer, and cogeneration are discussed.

  13. Heat collector

    DOEpatents

    Merrigan, Michael A.

    1984-01-01

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  14. Heat collector

    DOEpatents

    Merrigan, M.A.

    1981-06-29

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  15. A 30kwp concentrating photovoltaic/thermal hybrid system application

    SciTech Connect

    Nakata, Y.; Kobe, T.; Machida, T.; Shibuya, N.; Takemoto, T.; Tsuji, T.

    1982-09-01

    The objectives of this program are to construct a 30kWp concentrating PV/TH hybrid system and to demonstrate the availability of the system. The 30kWp (5kWp electric and 25kWp thermal energies) system is being constructed in Hiroshima and is expected to be operational by March of 1983. The concentrator consists of a turntable and three arrays on it. A circular Fresnel lens is specifically designed to obtain a uniform light distribution on the cell. The concentrator solar cell is a 50 mm diameter silicon cell. The hybrid collector consists of 6 cells and a copper tube for water flow. The power from the arrays is used for lighting, showering, washing and air conditioning. This is the first concentrating PV/TH hybrid system for practical application in Japan.

  16. A Review on Suitable Standards for Hybrid Photovoltaic/Thermal Systems

    NASA Astrophysics Data System (ADS)

    Vivar, Marta; Clarke, Matthew; Ratcliff, Tom; Everett, Vernie

    2011-12-01

    This paper will present an evaluation of the available standards and their considerations when using active-cooled CPV systems, along with an initial assessment of the most appropriate tests, including additional test requirements, for hybrid Photovoltaic-Thermal (PV-T) systems in order to guarantee their long-time electrical and thermal performance.

  17. Solar Collectors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Solar Energy's solar panels are collectors for a solar energy system which provides heating for a drive-in bank in Akron, OH. Collectors were designed and manufactured by Solar Energy Products, a firm established by three former NASA employees. Company President, Frank Rom, an example of a personnel-type technology transfer, was a Research Director at Lewis Research Center, which conducts extensive solar heating and cooling research, including development and testing of high-efficiency flat-plate collectors. Rom acquired solar energy expertise which helped the company develop two types of collectors, one for use in domestic/commercial heating systems and the other for drying grain.

  18. Performance Analysis of a Thermoelectric Solar Collector Integrated with a Heat Pump

    NASA Astrophysics Data System (ADS)

    Lertsatitthanakorn, C.; Jamradloedluk, J.; Rungsiyopas, M.; Therdyothin, A.; Soponronnarit, S.

    2013-07-01

    A novel heat pump system is proposed. A thermoelectric solar collector was coupled to a solar-assisted heat pump (TESC-HP) to work as an evaporator. The cooling effect of the system's refrigerant allowed the cold side of the system's thermoelectric modules to work at lower temperature, improving the conversion efficiency. The TESC-HP system mainly consisted of transparent glass, an air gap, an absorber plate that acted as a direct expansion-type collector/evaporator, an R-134a piston-type hermetic compressor, a water-cooled plate-type condenser, thermoelectric modules, and a water storage tank. Test results indicated that the TESC-HP has better coefficient of performance (COP) and conversion efficiency than the separate units. For the meteorological conditions in Mahasarakham, the COP of the TESC-HP system can reach 5.48 when the average temperature of 100 L of water is increased from 28°C to 40°C in 60 min with average ambient temperature of 32.5°C and average solar intensity of 815 W/m2, whereas the conversion efficiency of the TE power generator was around 2.03%.

  19. Multi-Antenna Data Collector for Smart Metering Networks with Integrated Source Separation by Spatial Filtering

    NASA Astrophysics Data System (ADS)

    Quednau, Philipp; Trommer, Ralph; Schmidt, Lorenz-Peter

    2016-03-01

    Wireless transmission systems in smart metering networks share the advantage of lower installation costs due to the expandability of separate infrastructure but suffer from transmission problems. In this paper the issue of interference of wireless transmitted smart meter data with third party systems and data from other meters is investigated and an approach for solving the problem is presented. A multi-channel wireless m-bus receiver was developed to separate the desired data from unwanted interferers by spatial filtering. The according algorithms are presented and the influence of different antenna types on the spatial filtering is investigated. The performance of the spatial filtering is evaluated by extensive measurements in a realistic surrounding with several hundreds of active wireless m-bus transponders. These measurements correspond to the future environment for data-collectors as they took place in rural and urban areas with smart gas meters equipped with wireless m-bus transponders installed in almost all surrounding buildings.

  20. Phase II experiment test plan: solar photovoltaic/thermal residential experiment

    SciTech Connect

    Sheldon, D. B.

    1980-01-23

    The Solar Photovoltaic/Thermal Energy Project being carried out by the Massachusetts Institute of Technology Lincoln Laboratory under US Department of Energy funding requires a Phase II test plan for its Solar Energy Research Facility (SERF) located at the University of Texas at Arlington. This Phase II test plan is provided. The purpose of the research being conducted at the SERF is reviewed, and references describing Phase I work are listed.

  1. NiCo2O4 nanosheets in-situ grown on three dimensional porous Ni film current collectors as integrated electrodes for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Guo, Ying; Zhao, Bo; Yu, Shuhui; Yang, Hai-Peng; Lu, Daniel; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping

    2015-07-01

    Three dimensional interconnected hierarchical porous Ni films are easily fabricated as effective current collectors through hydrogen bubble template electrochemical deposition. The binder-free integrated electrodes of spinel NiCo2O4 nanosheets directly coated the three dimensional porous Ni films are facilely obtained through successively electrochemical co-deposition of Ni/Co alloy layer then followed by subsequent annealing at 350 °C in air. Compared with NiCo2O4 nanosheets on smooth Ni foil or porous NiO/Ni film electrodes, the porous NiCo2O4/Ni integrated film electrodes for supercapacitors demonstrate remarkably higher area specific capacitance. The porous NiCo2O4/Ni film electrodes also exhibit excellent rate capability and cycling stability. The super electrochemical capacitive performances are attributed to the unique integrated architecture of NiCo2O4 nanosheets in-situ grown on three dimensional continuous hierarchical porous Ni collector collectors, which could provide large electrode-electrolyte interface area, high active sites, low contact resistance between current collector and active materials, fast electron conduction and ion/electrolyte diffusion.

  2. A hybrid air conditioner driven by a hybrid solar collector

    NASA Astrophysics Data System (ADS)

    Al-Alili, Ali

    The objective of this thesis is to search for an efficient way of utilizing solar energy in air conditioning applications. The current solar Air Conditioners (A/C)s suffer from low Coefficient of Performance (COP) and performance degradation in hot and humid climates. By investigating the possible ways of utilizing solar energy in air conditioning applications, the bottlenecks in these approaches were identified. That resulted in proposing a novel system whose subsystem synergy led to a COP higher than unity. The proposed system was found to maintain indoor comfort at a higher COP compared to the most common solar A/Cs, especially under very hot and humid climate conditions. The novelty of the proposed A/C is to use a concentrating photovoltaic/thermal collector, which outputs thermal and electrical energy simultaneously, to drive a hybrid A/C. The performance of the hybrid A/C, which consists of a desiccant wheel, an enthalpy wheel, and a vapor compression cycle (VCC), was investigated experimentally. This work also explored the use of a new type of desiccant material, which can be regenerated with a low temperature heat source. The experimental results showed that the hybrid A/C is more effective than the standalone VCC in maintaining the indoor conditions within the comfort zone. Using the experimental data, the COP of the hybrid A/C driven by a hybrid solar collector was found to be at least double that of the current solar A/Cs. The innovative integration of its subsystems allows each subsystem to do what it can do best. That leads to lower energy consumption which helps reduce the peak electrical loads on electric utilities and reduces the consumer operating cost since less energy is purchased during the on peak periods and less solar collector area is needed. In order for the proposed A/C to become a real alternative to conventional systems, its performance and total cost were optimized using the experimentally validated model. The results showed that for an

  3. Solar collector assembly

    SciTech Connect

    Murphy, J.A.

    1980-09-09

    A solar collector assembly includes shingles which have integral tubes projecting therefrom, and which are mounted in overlapping parallel array. Mounting brackets for the shingles are engaged on roof rafters or the like, and interlocked light transmissive plates overlie the shingles. The plates are also engaged with shingle components. A special fitting for the tube ends is provided.

  4. Solar collector

    DOEpatents

    Wilhelm, W.G.

    The invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  5. Solar collector

    DOEpatents

    Wilhelm, William G.

    1982-01-01

    The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  6. Roof Integrated Solar Absorbers: The Measured Performance of ''Invisible'' Solar Collectors: Preprint

    SciTech Connect

    Colon, C. J.; Merrigan, T.

    2001-10-19

    The Florida Solar Energy Center (FSEC), with the support of the National Renewable Energy Laboratory, has investigated the thermal performance of solar absorbers that are an integral, yet indistinguishable, part of a building's roof. The first roof-integrated solar absorber (RISA) system was retrofitted into FSEC's Flexible Roof Facility in Cocoa, Florida, in September 1998. This ''proof-of-concept'' system uses the asphalt shingle roof surface and the plywood decking under the shingles as an unglazed solar absorber. Data was gathered for a one-year period on the system performance. In Phase 2, two more RISA prototypes were constructed and submitted for testing. The first used the asphalt shingles on the roof surface with the tubing mounted on the underside of the plywood decking. The second prototype used metal roofing panels over a plywood substrate and placed the polymer tubing between the plywood decking and the metal roofing. This paper takes a first look at the thermal performance results for the ''invisible'' solar absorbers that use the actual roof surface of a building for solar heat collection.

  7. Experimental investigation and modeling of a direct-coupled PV/T air collector

    SciTech Connect

    Shahsavar, A.; Ameri, M.

    2010-11-15

    Photovoltaic/thermal (PV/T) systems refer to the integration of photovoltaic and solar thermal technologies into one single system, in that both useful heat energy and electricity are produced. The impetus of this paper is to model a direct-coupled PV/T air collector which is designed, built, and tested at a geographic location of Kerman, Iran. In this system, a thin aluminum sheet suspended at the middle of air channel is used to increase the heat exchange surface and consequently improve heat extraction from PV panels. This PV/T system is tested in natural convection and forced convection (with two, four and eight fans operating) and its unsteady results are presented in with and without glass cover cases. A theoretical model is developed and validated against experimental data, where good agreement between the measured values and those calculated by the simulation model were achieved. Comparisons are made between electrical performance of the different modes of operation, and it is concluded that there is an optimum number of fans for achieving maximum electrical efficiency. Also, results show that setting glass cover on photovoltaic panels leads to an increase in thermal efficiency and decrease in electrical efficiency of the system. (author)

  8. A study of PV/T collector with honeycomb heat exchanger

    NASA Astrophysics Data System (ADS)

    Hussain, F.; Othman, M. Y. H.; Yatim, B.; Ruslan, H.; Sopian, K.; Ibarahim, Z.

    2013-11-01

    This paper present a study of a single pass photovoltaic/thermal (PV/T) solar collector combined with honeycomb heat exchanger. A PV/T system is a combination of photovoltaic panel and solar thermal components in one integrated system. In order to enhance the performance of the system, a honeycomb heat exchanger is installed horizontally into the channel located under the PV module. Air is used as the heat remover medium. The system is tested with and without the honeycomb at irradiance of 828 W/m2 and mass flow rate spanning from 0.02 kg/s to 0.13 kg/s. It is observed that the aluminum honeycomb is capable of enhancing the thermal efficiency of the system efficiently. At mass flow rate of 0.11 kg/s, the thermal efficiency of the system without honeycomb is 27% and with honeycomb is 87 %. Throughout the range of the mass flow rate, the electrical efficiency of the PV module improved by 0.1 %. The improved design is suitable to be further investigated as solar drying system and space heating.

  9. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect

    Fang, Guiyin; Hu, Hainan; Liu, Xu

    2010-09-15

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  10. Desiccant cooling using unglazed transpired solar collectors

    SciTech Connect

    Pesaran, A.A. ); Wipke, K. )

    1992-05-01

    The use of unglazed solar collectors for desiccant regeneration in a solid desiccant cooling cycle was investigated because these collectors are lower in cost than conventional glazed flat-plate collectors. Using computer models, the performance of a desiccant cooling ventilation cycle integrated with either unglazed transpired collectors or conventional glazed flat-plate collectors was obtained. We found that the thermal performance of the unglazed system was lower than the thermal performance of the glazed system because the unglazed system could not take advantage of the heat of adsorption released during the dehumidification process. For a 3-ton cooling system, although the area required for the unglazed collector was 69% more than that required for the glazed collector, the cost of the unglazed collector array was 44% less than the cost of the glazed collector array. The simple payback period of the unglazed system was half of the payback period of the glazed collector when compared to an equivalent gas-fired system. Although the use of unglazed transpired collectors makes economic sense, some practical considerations may limit their use in desiccant regeneration. 8 refs.

  11. Energy and economic assessment of desiccant cooling systems coupled with single glazed air and hybrid PV/thermal solar collectors for applications in hot and humid climate

    SciTech Connect

    Beccali, Marco; Finocchiaro, Pietro; Nocke, Bettina

    2009-10-15

    This paper presents a detailed analysis of the energy and economic performance of desiccant cooling systems (DEC) equipped with both single glazed standard air and hybrid photovoltaic/thermal (PV/t) collectors for applications in hot and humid climates. The use of 'solar cogeneration' by means of PV/t hybrid collectors enables the simultaneous production of electricity and heat, which can be directly used by desiccant air handling units, thereby making it possible to achieve very energy savings. The present work shows the results of detailed simulations conducted for a set of desiccant cooling systems operating without any heat storage. System performance was investigated through hourly simulations for different systems and load combinations. Three configurations of DEC systems were considered: standard DEC, DEC with an integrated heat pump and DEC with an enthalpy wheel. Two kinds of building occupations were considered: office and lecture room. Moreover, three configurations of solar-assisted air handling units (AHU) equipped with desiccant wheels were considered and compared with standard AHUs, focusing on achievable primary energy savings. The relationship between the solar collector's area and the specific primary energy consumption for different system configurations and building occupation patterns is described. For both occupation patterns, sensitivity analysis on system performance was performed for different solar collector areas. Also, this work presents an economic assessment of the systems. The cost of conserved energy and the payback time were calculated, with and without public incentives for solar cooling systems. It is worth noting that the use of photovoltaics, and thus the exploitation of related available incentives in many European countries, could positively influence the spread of solar air cooling technologies (SAC). An outcome of this work is that SAC systems equipped with PV/t collectors are shown to have better performance in terms of

  12. Simple, economical solar collector

    NASA Technical Reports Server (NTRS)

    Anthony, K.

    1979-01-01

    Hot air solar collector designed for economy and simplicity is assembled from only three parts: (1) molded urethane foam body, (2) flat sheet metal collector panel and (3) transparent cover. Large arrays may be assembled by inserting male fittings of each collector into female fitting of adjacent collector.

  13. Improving of the photovoltaic / thermal system performance using water cooling technique

    NASA Astrophysics Data System (ADS)

    Hussien, Hashim A.; Numan, Ali H.; Abdulmunem, Abdulmunem R.

    2015-04-01

    This work is devoted to improving the electrical efficiency by reducing the rate of thermal energy of a photovoltaic/thermal system (PV/T).This is achieved by design cooling technique which consists of a heat exchanger and water circulating pipes placed at PV module rear surface to solve the problem of the high heat stored inside the PV cells during the operation. An experimental rig is designed to investigate and evaluate PV module performance with the proposed cooling technique. This cooling technique is the first work in Iraq to dissipate the heat from PV module. The experimental results indicated that due to the heat loss by convection between water and the PV panel's upper surface, an increase of output power is achieved. It was found that without active cooling, the temperature of the PV module was high and solar cells could only achieve a conversion efficiency of about 8%. However, when the PV module was operated under active water cooling condition, the temperature was dropped from 76.8°C without cooling to 70.1°C with active cooling. This temperature dropping led to increase in the electrical efficiency of solar panel to 9.8% at optimum mass flow rate (0.2L/s) and thermal efficiency to (12.3%).

  14. Study of potential photovoltaic/thermal applications in the commercial sector. Final report

    SciTech Connect

    Parker, C.D.; Whisnant, R.A.; Ferrell, G.C.; Hamlin, R.V.

    1981-07-01

    To identify the most promising applications for photovoltaic-thermal (PV/T) systems, a procedure has been evolved for ranking applications in the service, commercial, and institutional (SCI) sectors by using FEA's Energy Consumption Data Base, which tabulates energy use by sector, region, fuel type, and end use. Ranking takes into account such factors as temperature requirements of end-use, effects of temperature on efficiencies, cost of fuels replaced, and thermal and electrical loads. The electrical load and the temperature requirement of the thermal load determine size of the array, which meets the requirements of the entire electrical load. Hospitals and nursing homes, public office buildings, and schools rank high as potential applications. The rankings also indicate the PV/T arrays are more cost-effective than PV-only arrays for most commercial applications. Heating and cooling load profiles are determined for a hospital, a high school, and a shopping center, each in a different location; absorption cooling can usually be substituted for vapor-compression cooling. The high school load profiles are used as a case study of a PV/T array application in several energy cost scenarios. The analysis shows the PV/T array can be used advantageously in each scenario considered.

  15. Modified horizontal solar collector for low temperature grain drying

    SciTech Connect

    1980-01-27

    The project consisted of constructing a horizontal solar collector with a small amount of rock storage integrated into the collector air stream. The collected energy was used to dry corn in a 6000 bushel low-temperature drying facility. The collector proved to be economically feasible to build and collected sufficient energy to show a reasonable return on the investment.

  16. The International Space Station 2B Photovoltaic Thermal Control System (PVTCS) Leak: An Operational History

    NASA Technical Reports Server (NTRS)

    Vareha, Anthony N.

    2014-01-01

    As early as 2004, the Photovoltaic Thermal Control System (PVTCS) for the International Space Station's 2B electrical power channel began slowly leaking ammonia overboard. Initially, the operations strategy was "feed the leak," a strategy successfully put into action via Extra Vehicular Activity (EVA) during the STS-134 Space Shuttle mission. This recharge was to have allowed for continued power channel operation into 2014 or 2015, at which point another EVA would have been required. In mid-2012, the leak rate increased from 1.5lbm/year to approximately 5lbm/year. As a result, an EVA was planned and executed within a 5 week timeframe to drastically alter the architecture of the PVTCS via connection to an adjacent dormant thermal control system. This EVA, US EVA 20, was successfully executed on November 1, 2012 and left the 2B PVTCS in a configuration where the system was now being adequately cooled via a different radiator than what the system was designed to utilize. Data monitoring over the next several months showed that the isolated radiator had not been leaking, and the system itself continued to leak steadily until May 9th, 2013. It was on this day that the ISS crew noticed the visible presence of ammonia crystals escaping from the 2B channel's truss segment, signifying a rapid acceleration of the leak from 5lbm/year to 5lbm/day. Within 48 hours of the crew noticing the leak, US EVA 21 was in progress to replace the coolant pump - the only remaining replaceable leak source. This was successful, and telemetry monitoring has shown that indeed the coolant pump was the leak source and was thus isolated from the running 2B PVTCS. This paper will explore the management of the 2B PVTCS leak from the operations perspective.

  17. MSFC hot air collectors

    NASA Technical Reports Server (NTRS)

    Anthony, K.

    1978-01-01

    A description of the hot air collector is given that includes a history of development, a history of the materials development, and a program summary. The major portion of the solar energy system cost is the collector. Since the collector is the heart of the system and the most costly subsystem, reducing the cost of producing collectors in large quantities is a major goal. This solar collector is designed to heat air and/or water cheaply and efficiently through the use of solar energy.

  18. Pulsed depressed collector

    DOEpatents

    Kemp, Mark A

    2015-11-03

    A high power RF device has an electron beam cavity, a modulator, and a circuit for feed-forward energy recovery from a multi-stage depressed collector to the modulator. The electron beam cavity include a cathode, an anode, and the multi-stage depressed collector, and the modulator is configured to provide pulses to the cathode. Voltages of the electrode stages of the multi-stage depressed collector are allowed to float as determined by fixed impedances seen by the electrode stages. The energy recovery circuit includes a storage capacitor that dynamically biases potentials of the electrode stages of the multi-stage depressed collector and provides recovered energy from the electrode stages of the multi-stage depressed collector to the modulator. The circuit may also include a step-down transformer, where the electrode stages of the multi-stage depressed collector are electrically connected to separate taps on the step-down transformer.

  19. Internal absorber solar collector

    DOEpatents

    Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.

    1981-01-01

    Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

  20. City sewer collectors biocorrosion

    NASA Astrophysics Data System (ADS)

    Ksiażek, Mariusz

    2014-12-01

    This paper presents the biocorrosion of city sewer collectors impregnated with special polymer sulphur binders, polymerized sulphur, which is applied as the industrial waste material. The city sewer collectors are settled with a colony of soil bacteria which have corrosive effects on its structure. Chemoautotrophic nitrifying bacteria utilize the residues of halites (carbamide) which migrate in the city sewer collectors, due to the damaged dampproofing of the roadway and produce nitrogen salts. Chemoorganotrophic bacteria utilize the traces of organic substrates and produce a number of organic acids (formic, acetic, propionic, citric, oxalic and other). The activity of microorganisms so enables the origination of primary and secondary salts which affect physical properties of concretes in city sewer collectors unfavourably.

  1. Horizontally mounted solar collector

    NASA Technical Reports Server (NTRS)

    Black, D. H. (Inventor)

    1979-01-01

    Solar energy is collected by using a vertical deflector assembly, a stationary reflector and a horizontally mounted solar collector. The deflector assembly contains a plurality of vanes which change the direction of the solar energy to the vertical, while constantly keeping the same side of the deflector facing the sun. The vertical rays are then reflected off the stationary reflector and are then absorbed by the collector.

  2. Fuel cell current collector

    DOEpatents

    Katz, Murray; Bonk, Stanley P.; Maricle, Donald L.; Abrams, Martin

    1991-01-01

    A fuel cell has a current collector plate (22) located between an electrode (20) and a separate plate (25). The collector plate has a plurality of arches (26, 28) deformed from a single flat plate in a checkerboard pattern. The arches are of sufficient height (30) to provide sufficient reactant flow area. Each arch is formed with sufficient stiffness to accept compressive load and sufficient resiliently to distribute the load and maintain electrical contact.

  3. Experimental Performance Investigation of Photovoltaic/Thermal (PV-T) System

    NASA Astrophysics Data System (ADS)

    Ozgoren, M.; Aksoy, M. H.; Bakir, C.; Dogan, S.

    2013-04-01

    Photovoltaic solar cells convert light energy from the sun into electricity. Photovoltaic cells are produced by semi-conducting materials to convert the energy into electricity and during this process heat is absorbed by the solar radiation. This heat causes a loss of electricity generation efficiencies.In this study, an experimental setup was designed and established to test two separate photovoltaic panel systems with alone PV and with water cooling system PV/T to examine the heat effect on PV systems. The absorbed heat energy behind the photovoltaic cell's surface in insulated ambient was removed by means of a water cooling system and the tests for both systems were simultaneously performed along the July 2011. It is found that without active water cooling, the temperature of the PV module was higher during day time and solar cells could only achieve around 8% conversion efficiency. On the other hand, when the PV module was operated with active water cooling condition, the temperature dropped significantly, leading to an increase in the efficiency of solarcells as much as 13.6%. Gained from absorbed solar heat and maximum thermal conversion efficiencies of the system are determined as 49% and 51% for two different mass flow rates. It is observed that water flow rate is effective on the increasing the conversion efficiency as well as absorption and transitionrates of cover glass in PV/T (PV-Thermal) collector, the insulation material and cell efficiency. As a conclusion, the conversion efficiency of the PV system with water cooling might be improved on average about 10%. Therefore, it is recommended that PV system should be designed with most efficient type cooling system to enhance the efficiency and to decrease the payback period.

  4. Solvent vapor collector

    DOEpatents

    Ellison, Kenneth; Whike, Alan S.

    1979-01-30

    A solvent vapor collector is mounted on the upstream inlet end of an oven having a gas-circulating means and intended for curing a coating applied to a strip sheet metal at a coating station. The strip sheet metal may be hot and solvent vapors are evaporated at the coating station and from the strip as it passes from the coating station to the oven. Upper and lower plenums within a housing of the collector are supplied with oven gases or air from the gas-circulating means and such gases or air are discharged within the collector obliquely in a downstream direction against the strip passing through that collector to establish downstream gas flows along the top and under surfaces of the strip so as, in turn, to induct solvent vapors into the collector at the coating station. A telescopic multi-piece shroud is usefully provided on the housing for movement between an extended position in which it overlies the coating station to collect solvent vapors released thereat and a retracted position permitting ready cleaning and adjustment of that coating station.

  5. Tracking system for solar collectors

    DOEpatents

    Butler, Barry L.

    1984-01-01

    A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

  6. Tracking system for solar collectors

    DOEpatents

    Butler, B.

    1980-10-01

    A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

  7. Miniature, ruggedized data collector

    NASA Astrophysics Data System (ADS)

    Jackson, Scott; Calcutt, Wade; Knobler, Ron; Jones, Barry; Klug, Robert

    2009-05-01

    McQ has developed a miniaturized, programmable, ruggedized data collector intended for use in weapon testing or data collection exercises that impose severe stresses on devices under test. The recorder is designed to survive these stresses which include acceleration and shock levels up to 100,000 G. The collector acquires and stores up to four channels of signal data to nonvolatile memory for later retrieval by a user. It is small (< 7 in3), light weight (< 1 lb), and can operate from various battery chemistries. A built-in menuing system, accessible via a USB interface, allows the user to configure parameters of the recorder operation, such as channel gain, filtering, and signal offsets, and also to retrieve recorded data for analysis. An overview of the collector, its features, performance, and potential uses, is presented.

  8. Biological sample collector

    DOEpatents

    Murphy, Gloria A.

    2010-09-07

    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  9. Black Liquid Solar Collector Demonstrator.

    ERIC Educational Resources Information Center

    Weichman, F. L.; Austen, D. J.

    1979-01-01

    Describes the details of constructing, and use of, a solar collector. Uses a black liquid to absorb the energy, the thermosyphon effect to drive the liquid through the collector, and a floodlamp as a surrogate sun. (GA)

  10. Sheldon Jackson the Collector.

    ERIC Educational Resources Information Center

    Carlton, Rosemary

    Missionary, educator, humanitarian, and collector, the Reverend Sheldon Jackson came to Alaska in 1877 to assimilate Native populations into the dominant White culture, but his collecting efforts between 1877 and 1902 represent a significant effort to preserve the legacy of Alaska Natives during a period of tumultuous change. A zealous missionary,…

  11. Leaves: Nature's Solar Collectors

    ERIC Educational Resources Information Center

    Isabelle, Aaron D.; de Groot, Cornelis

    2009-01-01

    One of the most captivating things about plants is the way they capture the Sun's energy, but this can be a difficult topic to cover with elementary students. Therefore, to help students to make a concrete connection to this abstract concept, this series of solar-energy lessons focuses on leaves and how they act as "solar collectors." As students…

  12. Solar energy collector

    DOEpatents

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  13. Multiple discharge cylindrical pump collector

    DOEpatents

    Dunn, Charlton; Bremner, Robert J.; Meng, Sen Y.

    1989-01-01

    A space-saving discharge collector 40 for the rotary pump 28 of a pool-type nuclear reactor 10. An annular collector 50 is located radially outboard for an impeller 44. The annular collector 50 as a closed outer periphery 52 for collecting the fluid from the impeller 44 and producing a uniform circumferential flow of the fluid. Turning means comprising a plurality of individual passageways 54 are located in an axial position relative to the annular collector 50 for receiving the fluid from the annular collector 50 and turning it into a substantially axial direction.

  14. Cylindrical solar energy collector

    SciTech Connect

    Kelton, W.G.

    1981-10-27

    A solar energy collector for utilizing the energy of the sun to heat a working fluid is described. The collector comprises a core conduit having a working fluid inlet end and a closure fit across the other end. A single return conduit is spirally wound upon the exterior surface of the core conduit, wherein the windings are in close lateral juxtaposition but with the return conduit and the core conduit both exposed to direct impingement of solar rays. A transparent tube coaxially surrounds the core conduit. Annular members are positioned at each end of the transparent tube to maintain the spatial relationship of the members and form an annular air insulation zone around the core conduit and return conduit.

  15. Solar collector array

    SciTech Connect

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  16. Optical fiber sensor for tracking line-focus solar collectors.

    PubMed

    Wiczer, J J

    1982-08-01

    Currently there is a need to provide an alignment monitor feedback signal to the tracking mechanism of line-focus trough-type concentrating solar collectors. We report here on the novel use of an optical fiber as a distributed integrating sensor to generate such a signal. Experiments have shown that 3.0 m of optical fiber exposed to concentrated sunlight equal to ~40 suns in intensity will generate 1 microA of signal current in a silicon photodiode. These data were measured in an experimental line-focus solar collector using solar flux conditions common to this type of collector.

  17. Turning collectors for solar radiation

    DOEpatents

    Barak, Amitzur Z.

    1976-01-01

    A device is provided for turning a solar collector about the polar axis so that the collector is directed toward the sun as the sun tracks the sky each day. It includes two heat-expansive elements and a shadow plate. In the morning a first expansive element is heated, expands to turn the collector to face the sun, while the second expansive element is shaded by the plate. In the afternoon the second element is heated, expands to turn the collector to face the sun, while the first is shaded by the plate.

  18. Current collector for AMTEC

    NASA Technical Reports Server (NTRS)

    Williams, Roger M. (Inventor)

    1989-01-01

    An electrode having higher power output is formed of an open mesh current collector such as expanded nickel covering an electrode film applied to a tube of beta-alumina solid electrolyte (BASE). A plurality of cross-members such as spaced, parallel loops of molybdenum metal wire surround the BASE tube. The loops are electrically connected by a bus wire. As the AMTEC cell is heated, the grid of expanded nickel expands more than the BASE tube and the surrounding loop of wire and become diffusion welded to the electrode film and to the wire loops.

  19. The PKI collector

    NASA Technical Reports Server (NTRS)

    Rice, M. P.

    1982-01-01

    The design and manufacturing of a solar thermal collector is discussed. The collector has three primary subsystems: concentrator, receiver/fluid loop, and controls. Identical curved reflective columns are utilized in a faceted Fresnel design to support 864 one foot square flat inexpensive second-surface, silvered glass mirrors. The columns are ganged together and rotated through their centers of gravity to provide elevation tracking. The concentrator is supported by a lightweight spaceframe structure which distributes all wind and gravity loads to the base supports. The base of the structure is a track which rotates on wheels mounted on concrete piers. A parallel tube steel heat exchanger is mounted at the concentrator focal area in a well insulated, galvanized steel housing. Two rows of vertical close-packed, staggered tubes connect a mud header and a steam header. Automatic two axis tracking and operational control is provided with a microprocessor based package. Concentrator-mounted shadowbands are the basis for active tracking. A software program provides azimuthal tracking during cloudy periods.

  20. 10-MWe solar-thermal central-receiver pilot plant, solar facilities design integration: collector-field optimization report (RADL item 2-25)

    SciTech Connect

    Not Available

    1981-01-01

    Appropriate cost and performance models and computer codes have been developed to carry out the collector field optimization, as well as additional computer codes to define the actual heliostat locations in the optimized field and to compute in detail the performance to be expected of the defined field. The range of capabilities of the available optimization and performance codes is described. The role of the optimization code in the definition of the pilot plant is specified, and a complete description of the optimization process itself is given. The detailed cost model used by the optimizer for the commercial system optimization is presented in the form of equations relating the cost element to each of the factors that determine it. The design basis for the commercial system is presented together with the rationale for its selection. The development of the individual heliostat performance code is presented. Use of the individual heliostat code in a completed study of receiver panel power under sunrise startup conditions is described. The procedure whereby performance and heliostat spacing data from the representative commercial-scale system are converted into coefficients of use in the layout processor is described, and the actual procedure used in the layout processor is described. Numerous special studies in support of the pilot plant design are described. (LEW)

  1. Fin-tube solar collectors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Report presents test procedures and results of thermal-performance evaluation of seven commercial fin tube (liquid) solar collector-absorber plates. Tests were conducted indoors at Marshall Space Flight Center Solar simulator. Results are graphically shown along with supporting test data and summary, indicating efficiency as function of collector inlet temperature.

  2. High-performance solar collector

    NASA Technical Reports Server (NTRS)

    Beekley, D. C.; Mather, G. R., Jr.

    1979-01-01

    Evacuated all-glass concentric tube collector using air or liquid transfer mediums is very efficient at high temperatures. Collector can directly drive existing heating systems that are presently driven by fossil fuel with relative ease of conversion and less expense than installation of complete solar heating systems.

  3. A Passive Nuclear Debris Collector.

    ERIC Educational Resources Information Center

    Griffin, John J.; And Others

    1979-01-01

    Describes a nuclear debris collector which removes trace substances from the lower atmosphere during rainfall. Suggests that the collector could be implemented into courses at various educational levels and could result in developing a network for monitoring the geographical extent of nuclear contamination. (Author/SA)

  4. (Solar greenhouse and barn collector)

    SciTech Connect

    Woodward, M.V.

    1981-08-04

    Use of a solar greenhouse and solar collectors to provide heat on a farm is briefly discussed. The greenhouse was used to heat the home, and the solar collectors provided hot water and heat for the barn. About $1500 was saved in oil bills from the previous year. (BCS)

  5. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Stanley Miller; Rich Gebert; William Swanson

    1999-11-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a manner that has not been done before. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and collection of dust in conventional baghouses. The AHPC is currently being tested at the 2.7-MW scale at the Big Stone power station.

  6. Biobriefcase aerosol collector

    DOEpatents

    Bell, Perry M.; Christian, Allen T.; Bailey, Christopher G.; Willis, Ladona; Masquelier, Donald A.; Nasarabadi, Shanavaz L.

    2009-09-22

    A system for sampling air and collecting particles entrained in the air that potentially include bioagents. The system comprises providing a receiving surface, directing a liquid to the receiving surface and producing a liquid surface. Collecting samples of the air and directing the samples of air so that the samples of air with particles entrained in the air impact the liquid surface. The particles potentially including bioagents become captured in the liquid. The air with particles entrained in the air impacts the liquid surface with sufficient velocity to entrain the particles into the liquid but cause minor turbulence. The liquid surface has a surface tension and the collector samples the air and directs the air to the liquid surface so that the air with particles entrained in the air impacts the liquid surface with sufficient velocity to entrain the particles into the liquid, but cause minor turbulence on the surface resulting in insignificant evaporation of the liquid.

  7. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Stanley J. Miller; Grant L. Schelkoph

    1999-04-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a manner that has not been done before. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in transfer of the dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and collection of dust in conventional baghouses.

  8. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Grant L. Schelkoph; Stanley J. Miller

    1999-07-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a manner that has not been done before. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in transfer of the dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and collection of dust in conventional baghouses.

  9. Radiant energy collector

    DOEpatents

    McIntire, William R.

    1983-01-01

    A cylindrical radiant energy collector is provided which includes a reflector spaced apart from an energy absorber. The reflector is of a particular shape which ideally eliminates gap losses. The reflector includes a plurality of adjacent facets of V shaped segments sloped so as to reflect all energy entering between said absorber and said reflector onto said absorber. The outer arms of each facet are sloped to reflect one type of extremal ray in a line substantially tangent to the lowermost extremity of the energy absorber. The inner arms of the facets are sloped to reflect onto the absorber all rays either falling directly thereon or as a result of reflection from an outer arm.

  10. Shenandoah parabolic dish solar collector

    SciTech Connect

    Kinoshita, G.S.

    1985-01-01

    The objectives of the Shenandoah, Georgia, Solar Total Energy System are to design, construct, test, and operate a solar energy system to obtain experience with large-scale hardware systems for future applications. This report describes the initial design and testing activities conducted to select and develop a collector that would serve the need of such a solar total energy system. The parabolic dish was selected as the collector most likely to maximize energy collection as required by this specific site. The fabrication, testing, and installation of the parabolic dish collector incorporating improvements identified during the development testing phase are described.

  11. AEROSOL PARTICLE COLLECTOR DESIGN STUDY

    SciTech Connect

    Lee, S; Richard Dimenna, R

    2007-09-27

    A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

  12. FRACTIONATING COLUMN PRODUCT COLLECTOR CONTROL

    DOEpatents

    Paxson, G.D. Jr.

    1964-03-10

    Means for detecting minute fluid products from a chemical separation column and for advancing a collector tube rack in order to automatically separate and collect successive fractionated products are described. A charge is imposed on the forming drops at the column orifice to create an electric field as the drop falls in the vicinity of a sensing plate. The field is detected by an electrometer tube coupled to the plate causing an output signal to actuate rotation of a collector turntable rack, thereby positioning new collectors under the orifice. The invention provides reliable automatic collection independent of drop size, rate of fall, or chemical composition. (AEC)

  13. Solar collector manufacturing activity, 1992

    SciTech Connect

    Not Available

    1993-11-09

    This report presents data provided by US-based manufacturers and importers of solar collectors. Summary data on solar thermal collector shipments are presented for the years 1974 through 1992. Summary data on photovoltaic cell and module shipments are presented for the years 1982 through 1992. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1992. Appendix A describes the survey methodology. Appendix B contains the 1992 survey forms and instructions. Appendices C and D list the companies that responded to the 1992 surveys and granted permission for their names and addresses to appear in the report. Appendix E provides selected tables from this report with data shown in the International System of Units (SI) metric units. Appendix F provides an estimate of installed capacity and energy production from solar collectors for 1992.

  14. Solar collector with altitude tracking

    DOEpatents

    Barak, Amitzur Z.

    1977-01-01

    A device is provided for turning a solar collector about an east-west horizontal axis so that the collector is tilted toward the sun as the EWV altitude of the sun varies each day. It includes one or more heat responsive elements and a shading means aligned so that within a range of EWV altitudes of the sun during daylight hours the shading means shades the element or elements while during the rest of the daylight hours the elements or elements are heated by the sun to assume heated, stable states. Mechanical linkage between the collector and the element is responsive to the states of the element or elements to tilt the collector in accordance with variations in the EWV altitude of the sun.

  15. Manifold Insulation for Solar Collectors

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Results of computer analysis of effects of various manifold insulation detailed in 23-page report show that if fluid is distributed to and gathered from array of solar collectors by external rather than internal manifold, effectiveness of manifold insulation has major influence on efficiency. Report describes required input data and presents equations that govern computer model. Provides graphs comparing collector efficiencies for representative manifold sizes and insulations.

  16. Low-cost EUV collector development: design, process, and fabrication

    NASA Astrophysics Data System (ADS)

    Venables, Ranju D.; Goldstein, Michael; Engelhaupt, Darell; Lee, Sang H.; Panning, Eric M.

    2007-03-01

    Cost of ownership (COO) is an area of concern that may limit the adoption and usage of Extreme Ultraviolet Lithography (EUVL). One of the key optical components that contribute to the COO budget is the collector. The collectors being fabricated today are based on existing x-ray optic design and fabrication processes. The main contributors to collector COO are fabrication cost and lifetime. We present experimental data and optical modeling to demonstrate a roadmap for optimized efficiency and a possible approach for significant reduction in collector COO. Current state of the art collectors are based on a Wolter type-1 design and have been adapted from x-ray telescopes. It uses a long format that is suitable for imaging distant light sources such as stars. As applied to industrial equipment and very bright nearby sources, however, a Wolter collector tends to be expensive and requires significant debris shielding and integrated cooling solutions due to the source proximity and length of the collector shells. Three collector concepts are discussed in this work. The elliptical collector that has been used as a test bed to demonstrate alternative cost effective fabrication method has been optimized for collection efficiency. However, this fabrication method can be applied to other optical designs as well. The number of shells and their design may be modified to increase the collection efficiency and to accommodate different EUV sources The fabrication process used in this work starts with a glass mandrel, which is elliptical on the inside. A seed layer is coated on the inside of the glass mandrel, which is then followed by electroplating nickel. The inside/exposed surface of the electroformed nickel is then polished to meet the figure and finish requirements for the particular shell and finally coated with Ru or a multilayer film depending on the angle of incidence of EUV light. Finally the collector shell is released from the inside surface of the mandrel. There are

  17. Elastocapillary mist collector

    NASA Astrophysics Data System (ADS)

    Duprat, Camille; Labbé, Romain; Rewakowicz, Ana

    2015-11-01

    Fibrous media are commonly used to collect droplets from an aerosol. In particular, woven textiles are used to harvest fresh water from fog, and coalescing filters made of non-woven entangled fibers are used to extract oil drops from gas streams. We propose a novel mist collector made of a forest of vertical flexible threads. As the droplets accumulate on the fibers, capillary bridges are formed, leading to the collapse of adjacent fibers thus forming liquid columns. This improve the liquid collection by preventing clogging, enabling high capture and precluding re-entrainment of drops in the gas stream due to the immediate coalescence of incoming droplets, and promoting fast drainage. We find that the collection flow rate is constant and can be adjusted by varying the fibers arrangement and flexibility. We show that there is an optimal situation for which this collection rate, i.e. the global efficiency, is maximal due to an elastocapillary coupling that we further characterize with a model experiment. Specifically, we study the drainage between two flexible fibers. Depending on the geometry and the fiber deformations, several flow regimes are observed. We characterize these regimes, and discuss the consequences on the drainage velocity, and thus the collection efficiency.

  18. SOLAR NANTENNA ELECTROMAGNETIC COLLECTORS

    SciTech Connect

    Steven D. Novack; Dale K. Kotter; Dennis Slafer; Patrick Pinhero

    2008-08-01

    This research explores a new efficient approach for producing electricity from the abundant energy of the sun. A nanoantenna electromagnetic collector (NEC) has been designed, prototyped, and tested. Proof of concept has been validated. The device targets mid-infrared wavelengths where conventional photovoltaic (PV) solar cells do not respond but is abundant in solar energy. The initial concept of designing NEC antennas was based on scaling of radio frequency antenna theory. This approach has proven unsuccessful by many due to not fully understanding and accounting for the optical behavior of materials in the THz region. Also until recent years the nanofabrication methods were not available to fabricate the optical antenna elements. We have addressed and overcome both technology barriers. Several factors were critical in successful implementation of NEC including: 1) frequency-dependent modeling of antenna elements, 2) selection of materials with proper THz properties and 3) novel manufacturing methods that enable economical large-scale manufacturing. The work represents an important step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity, which will lead to a wide spectrum, high conversion efficiency, and low cost solution to complement conventional PVs.

  19. The Hera TGIP Sample Collector

    NASA Astrophysics Data System (ADS)

    Franzen, M. A.; Sears, D. W. G.; Roe, L.; Buffington, J.; Venechuk, E.; Azouggagh-McBride, S.

    2004-11-01

    We are entering a phase of solar system exploration in which sample return is playing an increasingly important role. Many sample collectors have been developed or proposed, depending on the nature of the surface to be sampled and the complexity and cost of the mission. A collector for low-cost missions to bodies with regoliths is now being developed by the University of Arkansas as a touch-and-go-impregnable-pad (TGIP). TGIP is the collector on the Hera near-Earth asteroid sample return Discovery mission recently proposed to NASA. TGIP consists of a 1 cm deep layer of silicone grease, a high viscosity version of the oil used by NASA's cosmic dust collection program. The grease is encased within a retractable aluminum ring. A 12 cm disk can collect on the order of 100 g of material, ranging from dust to centimeter-sized fragments. By stacking collectors, the collected sample is protected from physical and chemical alteration until processing in the laboratory. We have recently completed collection, temperature, vacuum, impact, and radiation tests on this collector. The TGIP has a high collection efficiency, satisfactory vacuum performance, can withstand impacts of 2000 g (equivalent to direct re-entry without a parachute),and exposure to 640 times the radiation dose expected on a six-year mission. We are now developing procedures for processing the returned collectors, based on those used for the cosmic dust program.

  20. Solar radiation on a catenary collector

    NASA Technical Reports Server (NTRS)

    Crutchik, M.; Appelbaum, J.

    1992-01-01

    A tent-shaped structure with a flexible photovoltaic blanket acting as a catenary collector is presented. The shadow cast by one side of the collector produces a shadow on the other side of the collector. This self-shading effect is analyzed. The direct beam, the diffuse, and the albedo radiation on the collector are determined. An example is given for the insolation on the collector operating on Viking Lander 1 (VL1).

  1. Design package for concentrating solar collector panels

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information used to evaluate the design of the Northrup concentrating collector is presented. Included are the system performance specifications, the applications manual, and the detailed design drawings of the collector. The collector is a water/glycol/working fluid type, with a dipped galvanized steel housing, transparent acrylic Fresnel lens cover, copper absorber tube, and fiber glass insulation. It weights 98 pounds. A collector assembly includes four collector units within a tracking mount array.

  2. Photovoltaic concentrator technology development project. Sixth project integration meeting

    SciTech Connect

    1980-10-01

    Thirty-three abstracts and short papers are presented which describe the current status of research, development, and demonstration of concentrator solar cell technology. Solar concentrators discussed include the parabolic trough, linear focus Fresnel lens, point focus Fresnel lens, and the parabolic dish. Solar cells studied include silicon, GaAs, and AlGaAs. Research on multiple junction cells, combined photovoltaic/thermal collectors, back contact solar cells, and beam splitter modules is described. Concentrator solar cell demonstration programs are reported. Contractor status summaries are given for 33 US DOE concentrator solar cell contracts; a description of the project, project status, and key results to date is included. (WHK)

  3. Bi-coolant flat plate solar collector

    NASA Astrophysics Data System (ADS)

    Chon, W. Y.; Green, L. L.

    The feasibility study of a flat plate solar collector which heats air and water concurrently or separately was carried out. Air flows above the collector absorber plate, while water flows in tubes soldered or brazed beneath the plate. The collector efficiencies computed for the flow of both air and water are compared with those for the flow of a single coolant. The results show that the bi-coolant collector efficiency computed for the entire year in Buffalo, New York is higher than the single-coolant collector efficiency, although the efficiency of the water collector is higher during the warmer months.

  4. Aid To Solar Collector Development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Solar heating and cooling systems employ coatings to increase efficiency. Designers want a coating which absorbs solar heat to the maximum extent possible with minimal emittance of infrared radiation, which occurs when the collector plate gets hot. The coating is important because too much coating causes energy loss by emittance, too little reduces the collector's ability to absorb heat. NASA's Lewis Research Center, which conducts solar energy research, saw a need for a simple means of testing coating samples for emittance. Such equipment is available to research laboratories, but it is complex and expensive

  5. Pyrolytic graphite collector development program

    NASA Technical Reports Server (NTRS)

    Wilkins, W. J.

    1982-01-01

    Pyrolytic graphite promises to have significant advantages as a material for multistage depressed collector electrodes. Among these advantages are lighter weight, improved mechanical stiffness under shock and vibration, reduced secondary electron back-streaming for higher efficiency, and reduced outgassing at higher operating temperatures. The essential properties of pyrolytic graphite and the necessary design criteria are discussed. This includes the study of suitable electrode geometries and methods of attachment to other metal and ceramic collector components consistent with typical electrical, thermal, and mechanical requirements.

  6. Thin film solar energy collector

    DOEpatents

    Aykan, Kamran; Farrauto, Robert J.; Jefferson, Clinton F.; Lanam, Richard D.

    1983-11-22

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  7. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  8. Corrugated cover plate for flat plate collector

    DOEpatents

    Hollands, K. G. Terry; Sibbitt, Bruce

    1978-01-01

    A flat plate radiant energy collector is providing having a transparent cover. The cover has a V-corrugated shape which reduces the amount of energy reflected by the cover away from the flat plate absorber of the collector.

  9. Solar radiation on a catenary collector

    NASA Technical Reports Server (NTRS)

    Crutchik, M.; Appelbaum, J.

    1992-01-01

    A tent-shaped structure with a flexible photovoltaic blanket acting as a catenary collector is presented. The shadow cast by one side of the collector on the other side producing a self shading effect is analyzed. The direct beam, the diffuse and the albedo radiation on the collector are determined. An example is given for the insolation on the collector operating on the martian surface for the location of Viking Lander 1 (VL1).

  10. Thermosyphon circulation in solar collectors

    NASA Astrophysics Data System (ADS)

    Morrison, G. L.; Ranatunga, D. B. J.

    1980-01-01

    Theoretical predictions of flow rate in thermosyphon solar collectors are compared with experimental measurements obtained using a laser Doppler anemometer. Modifications to the usual method of analysis are proposed to improve the accuracy of the predictions, and the results are compared with flow rate predictions and measurements in other investigations.

  11. Experience with development of solar collectors made of heat-resistant plastics

    NASA Astrophysics Data System (ADS)

    Popel', O. S.; Prokopchenko, I. V.; Mordynskii, A. V.; Frid, S. E.; Ryzhikov, I. A.; Ilyin, A. S.; Lapin, R. S.

    2008-12-01

    The results obtained from measurements of the spectral optical characteristics of monolithic sheet and honeycomb polycarbonate, and from calculations of the integral transmission coefficient for transparent coatings of solar collectors are presented. The effect of solar radiation incidence angle on the transmission capacity of these coatings is evaluated. Data from a comparison between the integral power performance characteristics of conventional and plastic solar collectors are presented together with the results of preliminary research activities on applying selective absorbing coatings on polymeric materials.

  12. High-performance supercapacitors using a nanoporous current collector made from super-aligned carbon nanotubes.

    PubMed

    Zhou, Ruifeng; Meng, Chuizhou; Zhu, Feng; Li, Qunqing; Liu, Changhong; Fan, Shoushan; Jiang, Kaili

    2010-08-27

    Nanoporous current collectors for supercapacitors have been fabricated by cross-stacking super-aligned carbon nanotube (SACNT) films as a replacement for heavy conventional metallic current collectors. The CNT-film current collectors have good conductivity, extremely low density (27 microg cm(-2)), high specific surface area, excellent flexibility and good electrochemical stability. Nanosized active materials such as NiO, Co(3)O(4) or Mn(2)O(3) nanoparticles can be directly synthesized on the SACNT films by a straightforward one-step, in situ decomposition strategy that is both efficient and environmentally friendly. These composite films can be integrated into a pseudo-capacitor that does not use metallic current collectors, but nevertheless shows very good performance, including high specific capacitance (approximately 500 F g(-1), including the current collector mass), reliable electrochemical stability (<4.5% degradation in 2500 cycles) and a very high rate capability (245 F g(-1) at 155 A g(-1)).

  13. An evaluation of the LEC-460 solar collector

    SciTech Connect

    Strachan, J.W.

    1987-09-01

    The optical performance of the LaJet Energy Corporation's membrane faceted concentrator, Model LEC-460, was evaluated at Sandia National Laboratories, Albuquerque, using a fluxmapper, a device that measures flux intensity in the aperture plane of the collector with a movable Kendall radiometer. Three-dimensional flux intensity plots and flux contour maps were produced from the data, and numerical integration of the data was performed to obtain an estimate of the total integrated power into the aperture plane. The test results, normalized to a reference insolation value of 0.1 W/cm/sup 2/, indicated a peak flux of 172 W/cm/sup 2/ and a total integrated power of 30.2 kW. The net efficiency of the collector in a clean mirror condition was estimated to be 77.4%.

  14. Terrestrial photovoltaic collector technology trends

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Costogue, E.

    1984-01-01

    Following the path of space PV collector development in its early stages, terrestrial PV technologies based upon single-crystal silicon have matured rapidly. Currently, terrestrial PV cells with efficiencies approaching space cell efficiencies are being fabricated into modules at a fraction of the space PV module cost. New materials, including CuInSe2 and amorphous silicon, are being developed for lowering the cost, and multijunction materials for achieving higher efficiency. Large grid-interactive, tracking flat-plate power systems and concentrator PV systems totaling about 10 MW, are already in operation. Collector technology development both flat-plate and concentrator, will continue under an extensive government and private industry partnership.

  15. Collector ring project at FAIR

    NASA Astrophysics Data System (ADS)

    Dolinskii, A.; Berkaev, D.; Blell, U.; Dimopoulou, C.; Gorda, O.; Leibrock, H.; Litvinov, S.; Laier, U.; Koop, I.; Schurig, I.; Starostenko, A.; Shatunov, P.; Weinrich, U.

    2015-11-01

    The collector ring is a dedicated ring for fast cooling of ions coming from separators at the FAIR project. To accommodate optimal technical solutions, a structure of a magnet lattice was recently reviewed and modified. Consequently, more appropriate technical solutions for the main magnets could be adopted. A general layout and design of the present machine is shown. The demanding extraction schemes have been detailed and open design issues were completed.

  16. [Integrons: gene collectors].

    PubMed

    Di Conza, J A; Gutkind, G O

    2010-01-01

    Integrons gained great interest due to their participation in resistance gene recruitment and expression. Their basic structure includes a fragment that encodes an integrase (intI) followed by a recognition sequence (attI) into which they may incorporate gene cassettes (encoding resistance mechanisms). A promoter (Pc) embedded within the integrase gene controls the transcription of integrated resistance markers, as these genes do not have their own promoters. When in cassettes, resistance genes are flanked by specific sequences (attC), which are recognized by the integrase that, by site specific recombination, incorporates them after attI in proper orientation for their expression. In the past, integrons were classified according to their sequence homology; currently they are classified according to their location. In general, they are divided into "mobile" integrons (those associated with insertion sequences, transposons and/or plasmids, being most of them associated with resistance mechanisms), and chromosomally-located "super" integrons with large arrangements of cassette genes. "Mobile" class 1 integrons are the most abundant in clinical isolates and are generally associated with Tn21 subgroup transposons, followed by class 2, derived primarily from Tn7. These elements are not mobile themselves, but their association with mobile platforms that facilitate horizontal transfer, explains their wide distribution among bacteria. This review also attempts to describe the mobile integrons described so far in Argentina.

  17. Equivalencing the Collector System of a Large Wind Power Plant

    SciTech Connect

    Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hocheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

    2006-01-01

    As the size and number of wind power plants (also called wind farms) increases, power system planners will need to study their impact on the power system in more detail. As the level of wind power penetration into the grid increases, the transmission system integration requirements will become more critical [1-2]. A very large wind power plant may contain hundreds of megawatt-size wind turbines. These turbines are interconnected by an intricate collector system. While the impact of individual turbines on the larger power system network is minimal, collectively, wind turbines can have a significant impact on the power systems during a severe disturbance such as a nearby fault. Since it is not practical to represent all individual wind turbines to conduct simulations, a simplified equivalent representation is required. This paper focuses on our effort to develop an equivalent representation of a wind power plant collector system for power system planning studies. The layout of the wind power plant, the size and type of conductors used, and the method of delivery (overhead or buried cables) all influence the performance of the collector system inside the wind power plant. Our effort to develop an equivalent representation of the collector system for wind power plants is an attempt to simplify power system modeling for future developments or planned expansions of wind power plants. Although we use a specific large wind power plant as a case study, the concept is applicable for any type of wind power plant.

  18. Tubular solid oxide fuel cell current collector

    DOEpatents

    Bischoff, Brian L.; Sutton, Theodore G.; Armstrong, Timothy R.

    2010-07-20

    An internal current collector for use inside a tubular solid oxide fuel cell (TSOFC) electrode comprises a tubular coil spring disposed concentrically within a TSOFC electrode and in firm uniform tangential electrical contact with the electrode inner surface. The current collector maximizes the contact area between the current collector and the electrode. The current collector is made of a metal that is electrically conductive and able to survive under the operational conditions of the fuel cell, i.e., the cathode in air, and the anode in fuel such as hydrogen, CO, CO.sub.2, H.sub.2O or H.sub.2S.

  19. Performance of a heat pipe solar collector

    SciTech Connect

    Ismail, K.A.R.; Abogderah, M.M.

    1998-02-01

    This paper presents a comparative study between theoretical predictions and experimental results of a flat-plate solar collector with heat pipes. The theoretical model for the heat pipe solar collector is based upon the method by Duffie and Beckman (1980), modified to use heat pipes for energy transport. The methanol filled heat pipes are self-contained devices whose evaporators are inserted under pressure in the flat plate of the solar collector and the heat exchange is carried out at their condensers. The evaporators contain a wick of one mesh layer to ensure a better distribution of the working fluid. The condensers are wickless and inclined 15 deg more than the inclination of the evaporators to facilitate the return of the condensate to the evaporators. The time constant of the heat pipe solar collector was calculated and found to be about 23 minutes. Also presented in this paper are comparative experimental results of the proposed solar collector and a conventional commercial solar collector. The two collectors were tested simultaneously. The instantaneous efficiencies of the heat pipe solar collector are lower than the conventional collector in the morning and higher when the heat pipes reach their operating temperatures.

  20. Fog collectors and collection techniques

    NASA Astrophysics Data System (ADS)

    Höhler, I.; Suau, C.

    2010-07-01

    The earth sciences taught that due to the occurrence of water in three phases: gas, liquid and solid, solar energy keeps the hydrological cycle going, shaping the earth surface while regulating the climate and thus allowing smart technologies to interfere in the natural process by rerouting water and employing its yield for natural and human environments’ subsistence. This is the case of traditional fog collectors implemented by several researchers along the Atacama Desert since late ’50s such as vertical tensile mesh or macro-diamonds structures. Nevertheless, these basic prototypes require to be upgraded, mainly through new shapes, fabrics and frameworks’ types by following the principles of lightness, transformability, portability and polyvalence. The vertical canvas of conventional fog collectors contain too much stressed at each joints and as result it became vulnerable. Our study constitutes a research by design of two fog-trap devices along the Atacama Desert. Different climatic factors influence the efficiency of fog harvesting. In order to increase yield of collected fog water, we need to establish suitable placements that contain high rates of fog’s accumulation. As important as the location is also the building reliability of these collectors that will be installed. Their frames and skins have to be adjustable to the wind direction and resistant against strong winds and rust. Its fabric need to be more hydrophobic, elastic and with light colours to ease dripping/drainage and avoid ultra-violet deterioration. In addition, meshes should be well-tensed and frames well-embraced too. In doing so we have conceived two fog collectors: DropNet© (Höhler) and FogHive© (Suau). These designs explore climatic design parameters combined with the agile structural principles of Tensegrity and Geodesic widely developed by Bucky Fuller and Frei Otto. The research methods mainly consisted of literature review; fieldwork; comparative analysis of existing fog

  1. Automated solar collector installation design

    DOEpatents

    Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

    2014-08-26

    Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives.

  2. Grid Collector: Using an event catalog to speed up user analysisin distributed environment

    SciTech Connect

    Wu, Kesheng; Shoshani, Arie; Zhang, Wei-Ming; Lauret, Jerome; Perevoztchikov, Victor

    2004-11-01

    Nuclear and High Energy Physics experiments such as STAR at BNL are generating millions of files with Peta Bytes of data each year. In most cases, analysis programs have to read all events in a file in order to find the interesting ones. Since the interesting events may be a small fraction of events in the file, a significant portion of the computer time is wasted on reading the unwanted events. To address this issue, we developed a software system called Grid Collector. The core of Grid Collector is an Event Catalog. This catalog can be efficiently searched with compressed bitmap indices. Tests show that Grid Collector can index and search STAR event data much faster than database systems. It is fully integrated with an existing analysis framework so that a minimal effort is required to use Grid Collector. In addition, by taking advantage of existing file catalogs, Storage Resource Managers (SRMs) and GridFTP, Grid Collector automatically downloads the needed files anywhere on the Grid without user intervention. Grid Collector can significantly improve user productivity. For a user that typically performs computation on 50 percent of the events, using Grid Collector could reduce the turn around time by 30 percent. The improvement is more significant when searching for rare events, because only a small number of events with appropriate properties are read into memory and the necessary files are automatically located and down loaded through the best available route.

  3. Optimization of dish solar collectors

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1983-01-01

    Methods for optimizing parabolic dish solar collectors and the consequent effects of various optical, thermal, mechanical, and cost variables are examined. The most important performance optimization is adjusting the receiver aperture to maximize collector efficiency. Other parameters that can be adjusted to optimize efficiency include focal length, and, if a heat engine is used, the receiver temperature. The efficiency maxima associated with focal length and receiver temperature are relatively broad; it may, accordingly, be desirable to design somewhat away from the maxima. Performance optimization is sensitive to the slope and specularity errors of the concentrator. Other optical and thermal variables affecting optimization are the reflectance and blocking factor of the concentrator, the absorptance and losses of the receiver, and, if a heat engine is used, the shape of the engine efficiency versus temperature curve. Performance may sometimes be improved by use of an additional optical element (a secondary concentrator) or a receiver window if the errors of the primary concentrator are large or the receiver temperature is high. Previously announced in STAR as N83-19224

  4. Cleaner for Solar-Collector Covers

    NASA Technical Reports Server (NTRS)

    Frickland, P. O.; Cleland, E. L.

    1983-01-01

    Simple self-contained cleaning system proposed for solar collectors or solar-collector protective domes. Perforated transparent plastic cap attached to top of protective dome in heliostat solar-energy collection system distributes cleaning fluid over surface of dome without blocking significant fraction of solar radiation.

  5. Design review of a liquid solar collector

    NASA Technical Reports Server (NTRS)

    Wiesewmaier, B. L.

    1979-01-01

    Report documents procedures, results, and recommendations for in-depth analysis of problems with liquid-filled version of concentric-tube solar collector. Problems are related to loss of vacuum and/or violent fracture of collector elements, fluid leakage, freezing, flow anomalies, manifold damage, and other component failures.

  6. Combined solar collector and energy storage system

    NASA Technical Reports Server (NTRS)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  7. Development and testing of the Shenandoah collector

    NASA Technical Reports Server (NTRS)

    Kinoshita, G. S.

    1981-01-01

    The test and development of the 7-meter Shenandoah parabolic dish collector incorporating an FEK-244 film reflective surface and cavity receiver are described. Four prototypes tested in the midtemperature Solar System Test Facility indicate, with changes incorporated from these development tests, that the improvements should lead to predicted performance levels in the production collectors.

  8. Collectors Of Airborne And Spaceborne Particles

    NASA Technical Reports Server (NTRS)

    Frazer, Robert E.

    1991-01-01

    Brushlike collectors capture samples of dust and other particles in space vacuum or air for optical, scanning-electron-microscope, and/or x-ray analysis. Gently decelerates particles without damaging them, minimizing tendency of some particles to rebound. Depending on design of specific collector of this type, it captures particles ranging upward in size from fractions of micrometer to few micrometers.

  9. Solar collector with improved thermal concentration

    DOEpatents

    Barak, Amitzur Z.

    1976-01-01

    Reduced heat loss from the absorbing surface of the energy receiver of a cylindrical radiant energy collector is achieved by providing individual, insulated, cooling tubes for adjacent parallel longitudinal segments of the receiver. Control means allow fluid for removing heat absorbed by the tubes to flow only in those tubes upon which energy is then being directed by the reflective wall of the collector.

  10. 49 CFR 229.77 - Current collectors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Current collectors. 229.77 Section 229.77 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....77 Current collectors. (a) Pantographs shall be so arranged that they can be operated from...

  11. 49 CFR 229.77 - Current collectors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Current collectors. 229.77 Section 229.77 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....77 Current collectors. (a) Pantographs shall be so arranged that they can be operated from...

  12. 49 CFR 229.77 - Current collectors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Current collectors. 229.77 Section 229.77 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....77 Current collectors. (a) Pantographs shall be so arranged that they can be operated from...

  13. 49 CFR 229.77 - Current collectors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Current collectors. 229.77 Section 229.77 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....77 Current collectors. (a) Pantographs shall be so arranged that they can be operated from...

  14. 49 CFR 229.77 - Current collectors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Current collectors. 229.77 Section 229.77 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....77 Current collectors. (a) Pantographs shall be so arranged that they can be operated from...

  15. Solar collector performance without flow measurement

    SciTech Connect

    Lobo, P.C.

    1981-01-01

    A method is described for characterizing solar collector performance in four series of experiments with temperature and radiation measurements. The proposed method eliminates the requirement for mass flow rate meters and is therefore suited to small thermosyphon flow collection circuits. Experimental measurements on a specific system were not reliable because of the occurrence of internal mass transfers between collector and storage reservoir.

  16. 27 CFR 479.25 - Collector's items.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2011-04-01 2010-04-01 true Collector's items. 479.25... OTHER FIREARMS Administrative and Miscellaneous Provisions § 479.25 Collector's items. The Director shall determine in accordance with 26 U.S.C. 5845(a), whether a firearm or device, which...

  17. The Thermal Collector With Varied Glass Covers

    NASA Astrophysics Data System (ADS)

    Luminosu, I.; Pop, N.

    2010-08-01

    The thermal collector with varied glass covers represents an innovation realized in order to build a collector able to reach the desired temperature by collecting the solar radiation from the smallest surface, with the highest efficiency. In the case of the thermal collector with variable cover glasses, the number of the glass plates covering the absorber increases together with the length of the circulation pipe for the working fluid. The thermal collector with varied glass covers compared to the conventional collector better meet user requirements because: for the same temperature increase, has the collecting area smaller; for the same collection area, realizes the highest temperature increase and has the highest efficiency. This works is addressed to researchers in the solar energy and to engineers responsible with air-conditioning systems design or industrial and agricultural products drying.

  18. Direct expansion solar collector and heat pump

    NASA Astrophysics Data System (ADS)

    1982-05-01

    A hybrid heat pump/solar collector combination in which solar collectors replace the outside air heat exchanger found in conventional air-to-air heat pump systems is discussed. The solar panels ordinarily operate at or below ambient temperature, eliminating the need to install the collector panels in a glazed and insulated enclosure. The collectors simply consist of a flat plate with a centrally located tube running longitudinally. Solar energy absorbed by exposed panels directly vaporizes the refrigerant fluid. The resulting vapor is compressed to higher temperature and pressure; then, it is condensed to release the heat absorbed during the vaporization process. Control and monitoring of the demonstration system are addressed, and the tests conducted with the demonstration system are described. The entire heat pump system is modelled, including predicted performance and costs, and economic comparisons are made with conventional flat-plate collector systems.

  19. A mobile apparatus for solar collector testing

    NASA Technical Reports Server (NTRS)

    Hotchkiss, G. B.; Simon, F. F.; Burmeister, L. C.

    1979-01-01

    The design, construction, and operation of a mobile apparatus for solar collector testing (MASCOT) is described. The MASCOT is a self-contained test unit costing about $10,000 whose only external requirement for operation is electrical power and which is capable of testing two water-cooled flat-plate solar collectors simultaneously. The MASCOT is small enough and light enough to be transported to any geographical site for outdoor tests at the location of collector usage. It has been used in both indoor solar simulator tests and outdoor tests.

  20. Next Generation Solar Collectors for CSP

    SciTech Connect

    Molnar, Attila; Charles, Ruth

    2014-07-31

    The intent of “Next Generation Solar Collectors for CSP” program was to develop key technology elements for collectors in Phase 1 (Budget Period 1), design these elements in Phase 2 (Budget Period 2) and to deploy and test the final collector in Phase 3 (Budget Period 3). 3M and DOE mutually agreed to terminate the program at the end of Budget Period 1, primarily due to timeline issues. However, significant advancements were achieved in developing a next generation reflective material and panel that has the potential to significantly improve the efficiency of CSP systems.

  1. Performance after weathering of a liquid solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Results from retesting of liquid solar collector described in "Performance evaluation of liquid collector" (M-FS-23931), after long term exposure to natural weathering indicate no detectable degradation in collector performance and no visable deterioration in appearance of collector. Supporting data and pretest/post test efficiency comparison are included.

  2. Thermal comparison among several beverage can solar collectors

    SciTech Connect

    Chen, P.Y.S.

    1984-01-01

    Four air-heated solar collectors were built using four different configurations of aluminum beverage cans. The collectors were then tested for four consecutive seasons for their daily efficiencies. One of the collectors was also evaluated for one season for the effect of air velocity on efficiency, temperature rise, and power consumption of the collector.

  3. Collation of quarterly reports on air flat plate collectors

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The solar 2 air flat plate collectors are described. The development and fabrication of a prototype air flat plate collector subsystem containing 320 square feet of collector area are described. Three instrumented panels were completely assembled with glazing and insulation. Manufacture of the last seven prototype collectors was completed in October 1977.

  4. Design, development, and results from a charge-collector diagnostic for a toroidal electron plasma experiment.

    PubMed

    Pahari, Sambaran; Lachhvani, Lavkesh; Bajpai, Manu; Rathod, Karan; Yeole, Yogesh; Chattopadhyay, P K

    2015-08-01

    A suitable charge-collector has been designed and developed to estimate charge-content of electron plasmas in a Small Aspect Ratio Toroidal Experiment in a C-shaped trap (SMARTEX-C). The electrons are periodically injected and held in the trap with the aid of electrostatic end-fields and a toroidal magnetic field. After a preset "hold" time, the trapped charges are dumped onto a grounded collector (by gating it). As the charges flow along the magnetic field lines onto the collector, the integrated current gives the charge-content of the plasma at the instant of dump. In designing such a charge collector, several challenges peculiar to the geometry of the trap and the nature of the plasma had to be addressed. Instantaneous charge measurements synchronised with the E × B drift of the plasma, along with fast transit times of electrons to the collector (few 100 ns or less) (due to the low aspect ratio of the trap) essentially require fast gating of the collector. The resulting large capacitive transients alongside low charge content (few nC) of such plasmas further lead to increasing demands on response and sensitivity of the collector. Complete cancellation of such transients is shown to be possible, in principle, by including the return path in our measurement circuit but the "non-neutrality" of the plasma acts as a further impediment. Ultimately, appropriate shielding and measurement circuits allow us to (re)distribute the capacitance and delineate the paths of these currents, leading to effective cancellation of transients and marked improvement in sensitivity. Improved charge-collector has thus been used to successfully estimate the time evolution of total charge of the confined electron plasma in SMARTEX-C.

  5. Design, development, and results from a charge-collector diagnostic for a toroidal electron plasma experiment

    SciTech Connect

    Pahari, Sambaran; Lachhvani, Lavkesh Bajpai, Manu; Rathod, Karan; Yeole, Yogesh; Chattopadhyay, P. K.

    2015-08-15

    A suitable charge-collector has been designed and developed to estimate charge-content of electron plasmas in a Small Aspect Ratio Toroidal Experiment in a C-shaped trap (SMARTEX-C). The electrons are periodically injected and held in the trap with the aid of electrostatic end-fields and a toroidal magnetic field. After a preset “hold” time, the trapped charges are dumped onto a grounded collector (by gating it). As the charges flow along the magnetic field lines onto the collector, the integrated current gives the charge-content of the plasma at the instant of dump. In designing such a charge collector, several challenges peculiar to the geometry of the trap and the nature of the plasma had to be addressed. Instantaneous charge measurements synchronised with the E × B drift of the plasma, along with fast transit times of electrons to the collector (few 100 ns or less) (due to the low aspect ratio of the trap) essentially require fast gating of the collector. The resulting large capacitive transients alongside low charge content (few nC) of such plasmas further lead to increasing demands on response and sensitivity of the collector. Complete cancellation of such transients is shown to be possible, in principle, by including the return path in our measurement circuit but the “non-neutrality” of the plasma acts as a further impediment. Ultimately, appropriate shielding and measurement circuits allow us to (re)distribute the capacitance and delineate the paths of these currents, leading to effective cancellation of transients and marked improvement in sensitivity. Improved charge-collector has thus been used to successfully estimate the time evolution of total charge of the confined electron plasma in SMARTEX-C.

  6. Current dependence of base-collector capacitance of bipolar transistors

    NASA Astrophysics Data System (ADS)

    Liu, William; Harris, James S.

    1992-08-01

    We present analytical expressions for the base-collector capacitance of bipolar transistors in three operating conditions as the collector current density is continuously increased until the collector is fully depleted. A simple model is also presented to calculate this capacitance after base pushout occurs. The critical current densities separating each operating condition are discussed. The capacitance as a function of current density is calculated for various base-collector biases, collector thicknesses and collector dopings. The calculated results of this simple base-collector capacitance model are in close agreement with SEDAN simulation results. In addition, these results are shown to agree with published experimental work.

  7. Concentrating solar collector-performance tests

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report summarizes test results from evaluation of concentrating solar collector thermal performance, from transient behavior, and incident-of-angle behavior. Tests were conducted using National Bureau of Standards recommedations and specifications.

  8. Collector/Receiver Characterization (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    Fact sheet describing NREL CSP Program capabilities for collector/receiver characterization: determining optical efficiency, measuring heat loss, developing and testing concentrators, concentrating the sun's power, and optically characterizing CSP plants.

  9. Modern multistage depressed collectors - A review

    NASA Astrophysics Data System (ADS)

    Kosmahl, H. G.

    1982-11-01

    The design and performance of the Lewis Research Center (LeRC) electrostatic collector and the associated passive permanent magnetic beam reconditioning (refocusing) are discussed and compared with numerous experimental results on wide- and narrow-band TWT and two klystron cases. Universal designs for efficient collectors for TV klystrons are presented. Collectors other than those based on the symmetric LeRC concept are reviewed only briefly, either because they have not been treated analytically or because only sporadic or incomplete experimental evaluation results are available. It is concluded that significant, a priori predictable performance improvements for TWTs have been demonstrated and that a substantial reduction in the dc power input to TV klystron transmitters could be effected by using well-designed multistage depressed collectors.

  10. Subsystem design package for Solar II collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The requirements for the design and performance of the Solar 2 Collector Subsystem developed for use in solar heating of single family residences and mobile homes are presented. Installation drawings are included.

  11. Concentrating solar collector subsystem: Preliminary design package

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Preliminary design data are presented for a concentrating solar collector including an attitude controller. Provided are schedules, technical status, all documents required for preliminary design, and other program activities.

  12. Tilt assembly for tracking solar collector assembly

    DOEpatents

    Almy, Charles; Peurach, John; Sandler, Reuben

    2012-01-24

    A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.

  13. Breaksun shield operating as a collector

    SciTech Connect

    Faudarole, E.

    1980-03-04

    A sun shield for installation on the outside of building facades comprises a plurality of orientable adjacent pallets. The pallets are adapted to act as sun shields and also as collectors of solar energy. Each pallet has at least one transparent surface and an inner collector which is irradiated through the transparent surface and within which an intermediate fluid is circulated to be warmed by solar radiation incident on the pallet.

  14. Qualification test and analysis report: Solar collectors

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Test results show that the Owens-Illinois Sunpak TM Model SEC 601 air-cooled collector meets the national standards and codes as defined in the Subsystem Peformance Specification and Verification Plan of NASA/MSFC, dated October 28, 1976. The program calls for the development, fabrication, qualification and delivery of an air-cooled solar collector for solar heating, combined heating and cooling, and/or hot water systems.

  15. Installation package for air flat plate collector

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Solar 2 dimensions are four feet by eight feet by two and one half inches. The collector weighs 130 pounds and has an effective solar collection area of over 29.5 square feet. This area represents 95 percent of the total surface of the collector. The installation, operation and maintenance manual, safety hazard analysis, special handling instructions, materials list, installation concept drawings, warranty and certification statement are included in the installation package.

  16. Wind loading on solar collectors

    SciTech Connect

    Bhaduri, S.; Murphy, L.M.

    1985-06-01

    The present design methodology for the determination of wind loading on the various solar collectors has been reviewed and assessed. The total force coefficients of flat plates of aspect ratios 1.0 and 3.0, respectively, at various angles of attack obtained by using the guidelines of the ANSI A58.1-1982, have been compared with those obtained by using the methodology of the ASCE Task Committee, 1961, and the experimental results of the full-scale test of heliostats by Peglow. The turbulent energy spectra, currently employed in the building code, are compared with those of Kaimal et al., Lumley, and Ponofsky for wind velocities of 20.0 m/s and 40.24 m/s at an elevation of 9.15 m. The longitudinal spectra of the building code overestimates the Kaimal spectra in the frequency range of 0.007 Hz to 0.08 Hz and underestimates beyond the frequency of 0.08 Hz. The peak angles of attack, on the heliostat, stowed in horizontal position, due to turbulent vertical and lateral components of wind velocity, have been estimated by using Daniel's methodology for three wind velocities and compared with the value suggested by the code. The experimental results of a simple test in the laboratory indicate the feasibility of decreasing the drag forces of the flat plate by reducing the solidity ratio.

  17. Research and Development of a Low Cost Solar Collector

    SciTech Connect

    Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

    2012-08-01

    This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the

  18. Insect thin films as sun blocks, not solar collectors.

    PubMed

    Koon, D W; Crawford, A B

    2000-05-20

    We measured the visible reflectance spectra of whole wing sections from three species of iridescent butterflies and moths, for normal incidence, integrated over all reflected angles. In this manner, we separated the optics of the thin films causing the iridescence from the optics of the rest of the scale. We found that iridescence reduces solar absorption by the wing in all cases, typically by approximately 20% or less, in contrast to claims by Miaoulis and Heilman [Ann. Entomol. Soc. Am. 91, 122 (1998)] that the thin-film structures that produce iridescence act as solar collectors.

  19. Single collector attachment efficiency of colloid capture by a cylindrical collector in laminar overland flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little research has been conducted to investigate fate and transport of colloids in surface vegetation in overland flow under unfavorable chemical conditions. In this work, single collector attachment efficiency (a) of colloid capture by a simulated plant stem (i.e. cylindrical collector) in laminar...

  20. Step tracking program for concentrator solar collectors

    NASA Astrophysics Data System (ADS)

    Ciobanu, D.; Jaliu, C.

    2016-08-01

    The increasing living standards in developed countries lead to increased energy consumption. The fossil fuel consumption and greenhouse gas effect that accompany the energy production can be reduced by using renewable energy. For instance, the solar thermal systems can be used in temperate climates to provide heating during the transient period or cooling during the warmer months. Most used solar thermal systems contain flat plate solar collectors. In order to provide the necessary energy for the house cooling system, the cooling machine uses a working fluid with a high temperature, which can be supplied by dish concentrator collectors. These collectors are continuously rotated towards sun by biaxial tracking systems, process that increases the consumed power. An algorithm for a step tracking program to be used in the orientation of parabolic dish concentrator collectors is proposed in the paper to reduce the consumed power due to actuation. The algorithm is exemplified on a case study: a dish concentrator collector to be implemented in Brasov, Romania, a location with the turbidity factor TR equal to 3. The size of the system is imposed by the environment, the diameter of the dish reflector being of 3 meters. By applying the proposed algorithm, 60 sub-programs are obtained for the step orientation of the parabolic dish collector over the year. Based on the results of the numerical simulations for the step orientation, the efficiency of the direct solar radiation capture on the receptor is up to 99%, while the energy consumption is reduced by almost 80% compared to the continuous actuation of the concentrator solar collector.

  1. Bioinspired plate-based fog collectors.

    PubMed

    Heng, Xin; Luo, Cheng

    2014-09-24

    In a recent work, we explored the feeding mechanism of a shorebird to transport liquid drops by repeatedly opening and closing its beak. In this work, we apply the corresponding results to develop a new artificial fog collector. The collector includes two nonparallel plates. It has three advantages in comparison with existing artificial collectors: (i) easy fabrication, (ii) simple design to scale up, and (iii) active transport of condensed water drops. Two collectors have been built. A small one with dimensions of 4.2 × 2.1 × 0.05 cm(3) (length × width × thickness) was first built and tested to examine (i) the time evolution of condensed drop sizes and (ii) the collection processes and efficiencies on the glass, SiO2, and SU-8 plates. Under similar experimental conditions, the amount of water collected per unit area on the small collector is about 9.0, 4.7, and 3.7 times, respectively, as much as the ones reported for beetles, grasses, and metal wires, and the total amount of water collected is around 33, 18, and 15 times. On the basis of the understanding gained from the tests on the small collector, a large collector with dimensions of 26 × 10 × 0.2 cm(3) was further built and tested, which was capable of collecting 15.8 mL of water during a period of 36 min. The amount of water collected, when it is scaled from 36 to 120 min, is about 878, 479, or 405 times more than what was collected by individual beetles, grasses, or metal wires.

  2. Bioinspired plate-based fog collectors.

    PubMed

    Heng, Xin; Luo, Cheng

    2014-09-24

    In a recent work, we explored the feeding mechanism of a shorebird to transport liquid drops by repeatedly opening and closing its beak. In this work, we apply the corresponding results to develop a new artificial fog collector. The collector includes two nonparallel plates. It has three advantages in comparison with existing artificial collectors: (i) easy fabrication, (ii) simple design to scale up, and (iii) active transport of condensed water drops. Two collectors have been built. A small one with dimensions of 4.2 × 2.1 × 0.05 cm(3) (length × width × thickness) was first built and tested to examine (i) the time evolution of condensed drop sizes and (ii) the collection processes and efficiencies on the glass, SiO2, and SU-8 plates. Under similar experimental conditions, the amount of water collected per unit area on the small collector is about 9.0, 4.7, and 3.7 times, respectively, as much as the ones reported for beetles, grasses, and metal wires, and the total amount of water collected is around 33, 18, and 15 times. On the basis of the understanding gained from the tests on the small collector, a large collector with dimensions of 26 × 10 × 0.2 cm(3) was further built and tested, which was capable of collecting 15.8 mL of water during a period of 36 min. The amount of water collected, when it is scaled from 36 to 120 min, is about 878, 479, or 405 times more than what was collected by individual beetles, grasses, or metal wires. PMID:25192549

  3. Ceramic materials for solar collectors. Final report

    SciTech Connect

    Ankeny, A.E.

    1982-09-29

    The purpose of this project was to identify ceramic materials which exhibit solar absorption properties which are appropriate for flat plate solar collectors. To accomplish this, various glaze formulations and clay combinations were produced and evaluated for their potential as solar absorbers. For purposes of comparison a black coated copper sheet was also tested concurrently with the ceramic materials. Thirty-five different coatings were prepared on fifty-six tiles. Two different clays, a porcelain and a stoneware clay, were used to make the tiles. From the tiles prepared, thirty of the most promising coatings were chosen for evaluation. The test apparatus consisted of a wooden frame which enclosed four mini-collectors. Each mini-collector was a rectangular ceramic heat exchanger on which a test tile could be mounted. The working fluid, water, was circulated into the collector, passed under the test tile where it gained heat, and then was discharged out of the collector. Thermometers were installed in the inlet and discharge areas to indicate the temperature increase of the water. The quantity of heat absorbed was determined by measuring the water flow (pounds per minute) and multiplying it by the temperature increase (/sup 0/F). The control sample, a copper wheet painted flat black, provided a base by which to compare the performance of the test tiles installed in the other three mini-collectors. Testing was conducted on various days during August and September, 1982. The test results indicate that coatings with very satisfactory solar absorbing properties can be made with ceramic materials. The results suggest that an economically viable ceramic solar collector could be constructed if engineered to minimize the effects of relatively low thermal conductivity of clay.

  4. Heat Pumps With Direct Expansion Solar Collectors

    NASA Astrophysics Data System (ADS)

    Ito, Sadasuke

    In this paper, the studies of heat pump systems using solar collectors as the evaporators, which have been done so far by reserchers, are reviwed. Usually, a solar collector without any cover is preferable to one with ac over because of the necessity of absorbing heat from the ambient air when the intensity of the solar energy on the collector is not enough. The performance of the collector depends on its area and the intensity of the convective heat transfer on the surface. Fins are fixed on the backside of the collector-surface or on the tube in which the refrigerant flows in order to increase the convective heat transfer. For the purpose of using a heat pump efficiently throughout year, a compressor with variable capacity is applied. The solar assisted heat pump can be used for air conditioning at night during the summer. Only a few groups of people have studied cooling by using solar assisted heat pump systems. In Japan, a kind of system for hot water supply has been produced commercially in a company and a kind of system for air conditioning has been installed in buildings commercially by another company.

  5. Materials for luminescent greenhouse solar collectors.

    PubMed

    Levitt, J A; Weber, W H

    1977-10-01

    Luminescent greenhouse solar collectors are potentially useful for concentrating sunlight onto photovoltaic power cells. Measurements of the performance of small-scale collectors made of two commercially available materials (Owens-Illinois ED2 neodymium-doped laser glass and rhodamine 6G-doped plastic) are presented. The results are encouraging, but they indicate a need for further spectral sensitization and for reduced matrix loss coefficient. The measurements with monochromatic illumination agree with the predictions of a mathematical model developed to take account of reemission following the absorption of luminescence. Under solar illumination, the model predicts photon flux concentrations of about 15 for optimized full-scale collectors made of the materials studied and concentrations of 110 for reasonably improved glass.

  6. Recent progress in terrestrial photovoltaic collector technology

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.

    1982-01-01

    The U.S. Photovoltaic Research and Development Program has the objective to develop the technology necessary to foster widespread grid-competitive electric power generation by the late 1980s. The flat-plate and the concentrator collector activities form the nucleus of the program. The project is concerned with the refining of silicon, silicon sheet production, solar cell processing and fabrication, encapsulation materials development, and collector design and production. The Large-Area Silicon Sheet Task has the objective to develop and demonstrate the feasibility of several methods for producing large area silicon sheet material suitable for fabricating low-cost, high-efficiency solar cells. It is expected that a variety of economic flat-plate and concentrator collectors will become commercially available for grid-connected applications.

  7. Ellipsoid-conic radiation collector and method

    SciTech Connect

    Brunsting, A.; Hogg, W.R.

    1980-02-19

    Disclosed is a radiation collector apparatus and method primarily for counting and analyzing a flow of dilute particulate material, such as blood cells, sperm cells and the like, through the use of light detection. The radiation collector apparatus comprises a reflector chamber having an ellipsoidal reflector surface with a pair of elipsoidal foci defining a first focus, f11, and second focus, f12, and a second reflector surface with a primary focus, f21, positioned at the same point as focus f12, and a secondary focus, f22. The second reflector surface has the configuration of one of the conic sections of revolution. In operation the radiation collector apparatus is provided with an intensifed beam of light and a stream of particulate material aligned to intersect the intensifed beam of light at focus f11. Detectable light signals, after two reflections, are received in a focused beam by a photosensitive detector.

  8. Experimental study on flat plate air solar collector using a thin sand layer

    NASA Astrophysics Data System (ADS)

    Lati, Moukhtar; Boughali, Slimane; Bouguettaia, Hamza; Mennouche, Djamel; Bechki, Djamel

    2016-07-01

    A flat plate air solar collector was constructed in the laboratory of New and Renewable Energy in Arid Zones LENREZA, Ouargla University-South East Algeria. The absorber of the flat plate air solar collector was laminated with a thin layer of local sand. This acted as a thermal storage system (packed bed) with a collecting area of 2.15 m2 (0.86 m × 2.5 m). It was noticed that the solar heater integrated with the thermal storage material delivered comparatively higher temperatures; thus, giving a better efficiency than the air heater without the thermal storage system.

  9. A numerical study of a vertical solar air collector with obstacle

    NASA Astrophysics Data System (ADS)

    Moumeni, A.; Bouchekima, B.; Lati, M.

    2016-07-01

    Because of the lack of heat exchange obtained by a solar air between the fluid and the absorber, the introduction of obstacles arranged in rows overlapping in the ducts of these systems improves heat transfer. In this work, a numerical study using the finite volume methods is made to model the dynamic and thermal behavior of air flow in a vertical solar collector with baffles destined for integration in building. We search essentially to compare between three air collectors models with different inclined obstacles angle. The first kind with 90° shows a good performance energetic and turbulent.

  10. Power losses in liquid metal current collectors

    NASA Astrophysics Data System (ADS)

    Hurwitz, M. M.; Wallace, D. R.

    1980-05-01

    A numerical capability has been developed which will compute ohmic and viscous power losses in liquid metal current collectors. The present work extends previous analytical investigations in that semi-infinite collector geometries are no longer assumed. This new capability is based on the finite element method and makes use of electrical current densities computed by the heat transfer portion of the NASTRAN structural analysis program. Although some limitations and questions remain, a comparison between the new numerical capability and experiment shows very good agreement in the computation of the power losses.

  11. Economic analysis based on land costs of collector spacing in a collector field

    NASA Astrophysics Data System (ADS)

    Lee, D. O.

    1981-10-01

    Three collector fluid outlet average field temperatures were used: 200, 250, and 300 C. Land cost varied from $0.54/sq m to $215.20/sq m. and collector costs from $53.80/sq. m to $322.80/sq. m FOB factory. Costs of fees, controls, foundations, etc, are considered as separate items which are added to the land and collector costs to obtain the total cost of the systems. These studies were normalized to a 5,000,000 Btu/day requirement. Thus, the life-cycle costs of the various configurations are, in essence, the cost of energy.

  12. Effects of collector types in sampling of atmospheric depositional fluxes.

    PubMed

    Dueñas, C; Fernández, M C; Cañete, S; Pérez Barea, J J; Pérez, M

    2009-02-01

    The bulk gross alpha, gross beta and (7)Be depositional fluxes were measured in Málaga (36.7 degrees N, 4.5 degrees W), a coastal Mediterranean station in the south of Spain for one whole year. In order to quantify the local variation of deposition rates, we have analysed the monthly results from two deposition collectors: a "pot "collector with a continuous water-covered surface and a "funnel" collector. In general, the alpha and beta depositional fluxes from the funnel collector were approximately two times lower than the pot collector. Whereas for the cosmogenic (7)Be, the depositional flux of (7)Be from funnel collector was also approximately two times lower than the pot collector. A good correlation of the depositional flux of (7)Be has been obtained from both collectors.

  13. Grid collector: An event catalog with automated file management

    SciTech Connect

    Wu, Kesheng; Zhang, Wei-Ming; Sim, Alexander; Gu, Junmin; Shoshani, Arie

    2003-10-17

    High Energy Nuclear Physics (HENP) experiments such as STAR at BNL and ATLAS at CERN produce large amounts of data that are stored as files on mass storage systems in computer centers. In these files, the basic unit of data is an event. Analysis is typically performed on a selected set of events. The files containing these events have to be located, copied from mass storage systems to disks before analysis, and removed when no longer needed. These file management tasks are tedious and time consuming. Typically, all events contained in the files are read into memory before a selection is made. Since the time to read the events dominate the overall execution time, reading the unwanted event needlessly increases the analysis time. The Grid Collector is a set of software modules that works together to address these two issues. It automates the file management tasks and provides ''direct'' access to the selected events for analyses. It is currently integrated with the STAR analysis framework. The users can select events based on tags, such as, ''production date between March 10 and 20, and the number of charged tracks > 100.'' The Grid Collector locates the files containing relevant events, transfers the files across the Grid if necessary, and delivers the events to the analysis code through the familiar iterators. There has been some research efforts to address the file management issues, the Grid Collector is unique in that it addresses the event access issue together with the file management issues. This makes it more useful to a large variety of users.

  14. Multivelocity electron beam as a source of microwave oscillations in the collector region of a traveling-wave tube

    NASA Astrophysics Data System (ADS)

    Starodubov, A. V.; Kalinin, Yu. A.

    2013-10-01

    The generation of noise-like broadband oscillations in the collector system region of a traveling-wave tube (TWT) is investigated experimentally. Analysis of experimental results shows that noise-like broad-band oscillations are generated in the collector region of the TWT due to the injection of a multivelocity electron beam into it. It is found that the maximal integrated power output from the collector region of the TWT is 12 W, and the maximal frequency and generation band are f max = 7 GHz and Δ f/ f ≈ 0.8, respectively. It is shown that a TWT with a collector-generator can simultaneously operate as an amplifier of an external signal and as a generator.

  15. Flat plate collector performance determined experimentally with a solar simulator

    NASA Technical Reports Server (NTRS)

    Vernon, R. W.; Simon, F. F.

    1974-01-01

    The NASA is constructing a new office building at Langley Research Center that will utilize solar energy for heating and cooling. A collector technology program being conducted at Lewis will provide the basis for selecting collectors for use at Langley. The technology program includes testing collectors in an indoor facility under simulated solar radiation. Tests have been conducted on five collectors to date and performance data are presented herein.

  16. Solar Air Collectors: How Much Can You Save?

    DOE R&D Accomplishments Database

    Newburn, J. D.

    1985-04-01

    A collector efficiency curve is used to determine the output of solar air collectors based on the testing of seven solar collectors sold in Iowa. In this application the solar heater is being used as a space heater for a house. The performance of the solar air heater was analyzed and an 8% savings in energy was achieved over a one year period using two 4 x 8 collectors in a typical house.

  17. Angular solar absorptance of absorbers used in solar thermal collectors.

    PubMed

    Tesfamichael, T; Wäckelgård, E

    1999-07-01

    The optical characterization of solar absorbers for thermal solar collectors is usually performed by measurement of the spectral reflectance at near-normal angle of incidence and calculation of the solar absorptance from the measured reflectance. The solar absorptance is, however, a function of the angle of incidence of the light impinging on the absorber. The total reflectance of two types of commercial solar-selective absorbers, nickel-pigmented anodized aluminum, and sputtered nickel nickel oxide coated aluminum are measured at angles of incidence from 5 to 80 in the wavelength range 300-2500 nm by use of an integrating sphere. From these measurements the angular integrated solar absorptance is determined. Experimental data are compared with theoretical calculations, and it is found that optical thin-film interference effects can explain the significant difference in solar absorptance at higher angles for the two types of absorbers.

  18. Research and Development Needs for Building-Integrated Solar Technologies

    SciTech Connect

    none,

    2014-01-01

    The Building Technologies Office (BTO) has identified Building Integrated Solar Technologies (BIST) as a potentially valuable piece of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to identify the key research and development (R&D) needs that will be required for BIST to make a substantial contribution toward that goal. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).

  19. Solar collector apparatus having increased energy rejection during stagnation

    DOEpatents

    Moore, S.W.

    1981-01-16

    An active solar collector having increased energy rejection during stagnation is disclosed. The collector's glazing is brought into substantial contact with absorber during stagnation to increase re-emittance and thereby to maintan lower temperatures when the collector is not in operation.

  20. Solar collector apparatus having increased energy rejection during stagnation

    DOEpatents

    Moore, Stanley W.

    1983-07-12

    The disclosure relates to an active solar collector having increased energy rejection during stagnation. The collector's glazing is brought into substantial contact with absorber during stagnation to increase re-emittance and thereby to maintain lower temperatures when the collector is not in operation.

  1. 10 CFR 26.85 - Collector qualifications and responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Collector qualifications and responsibilities. 26.85 Section 26.85 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.85 Collector qualifications and responsibilities. (a) Urine collector qualifications....

  2. 10 CFR 26.85 - Collector qualifications and responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Collector qualifications and responsibilities. 26.85 Section 26.85 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.85 Collector qualifications and responsibilities. (a) Urine collector qualifications....

  3. 10 CFR 26.85 - Collector qualifications and responsibilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Collector qualifications and responsibilities. 26.85 Section 26.85 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.85 Collector qualifications and responsibilities. (a) Urine collector qualifications....

  4. 10 CFR 26.85 - Collector qualifications and responsibilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Collector qualifications and responsibilities. 26.85 Section 26.85 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.85 Collector qualifications and responsibilities. (a) Urine collector qualifications....

  5. 10 CFR 26.85 - Collector qualifications and responsibilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Collector qualifications and responsibilities. 26.85 Section 26.85 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.85 Collector qualifications and responsibilities. (a) Urine collector qualifications....

  6. Development, testing, and certification of life sciences engineering solar collector

    NASA Technical Reports Server (NTRS)

    Caudle, J. M.

    1978-01-01

    Results are presented for the development of an air flat plate collector for use with solar heating, combined heating and cooling, and hot water systems. The contract was for final development, testing, and certification of the collector, and for delivery of a 320 square feet collector panel.

  7. Non-tracking solar energy collector system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Inventor)

    1978-01-01

    A solar energy collector system characterized by an improved concentrator for directing incident rays of solar energy on parallel vacuum-jacketed receivers or absorbers is described. Numerous individually mounted reflector modules of a common asymmetrical triangular cross-sectional configuration are supported for independent reorientation. Asymmetric vee-trough concentrators are defined.

  8. Performance evaluation of an air solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Indoor tests on signal-glazed flat-plate collector are described in report. Marhsall Space Flight Center solar simulator is used to make tests. Test included evaluations on thermal performance under various combinations of flow rate, incident flux, inlet temperature, and wind speed. Results are presented in graph/table form.

  9. A test program for solar collectors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Rigorous environmental and performance tests qualify solar collector for use in residential solar-energy systems. Testing over 7 month period examined pressurized effects, wind and snow loading, hail damage, solar and thermal degradation, effects of pollutants, efficiency, and outgassing. Test procedures and results are summarized in tables, graphs, and text.

  10. Natural-oxide solar-collector coatings

    NASA Technical Reports Server (NTRS)

    Krupnick, A. C.; Roberts, M. L.; Sharpe, M. H.

    1979-01-01

    Optically selective coatings for solar collectors are produced by thermally treating stainless steel in furnace after series of cleaning and soaking operations. Coatings have withstood 18-month exposure tests at 100 percent relative humidity and temperatures of 95 F. Room temperature coatings are valuable as they are inexpensive to produce, highly production oriented, and environmentally stable.

  11. Selective optical coatings for solar collectors

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1980-01-01

    For best performance, energy-absorbing surface of solar collector should be characterized by high ratio of solar absorptance to thermal emitance. Report on optical characteristics of several chemical treatments and electrodeposited coatings for metal solar-absorbing surfaces should interest designers and users of solar-energy systems. Moisture resistance of some coatings is also reported.

  12. Hybrid thermoelectric solar collector design and analysis

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.; Shaheen, K. E.

    1982-01-01

    A flat-plate solar collector is conceived where energy cascades through thermoelectric power modules generating direct-current electricity. The intent of this work was to choose a collector configuration and to perform a steady-state thermal performance assessment. A set of energy balance equations were written and solved numerically for the purpose of optimizing collector thermal and electrical performance. The collector design involves finned columns of thermoelectric modules imbedded in the absorber plate (hot junction) over a parallel array of vertical tubes. The thermoelectric power output is limited by the small hot-junction/cold-junction temperature difference which can be maintained under steady-state conditions. The electric power per unit tube pass area is found to have a maximum as a function of a geometric parameter, while electric power is maximized with respect to an electric resistance ratio. Although the electric power efficiency is small, results indicate that there is sufficient electric power production to drive a coolant circulator, suggesting the potential for a stand-alone system.

  13. Thermionic converter performance with oxide collectors

    NASA Technical Reports Server (NTRS)

    Lieb, D.; Goodale, D.; Briere, T.; Balestra, C.

    1977-01-01

    Thermionic converters using a variety of metal oxide collector surfaces have been fabricated and tested. Both work function and power output data are presented and evaluated. Oxides of barium, strontium, zinc, tungsten and titanium have been incorporated into a variable spacing converter. Tungsten oxide was found to give the highest converter performance and to furnish oxygen for the emitter at the same time. Oxygenated emitters operate at reduced cesium pressure with an increase in electrode spacing. Electron spectroscopy for chemical analysis (ESCA) performed on several tungsten oxide collectors showed cesium penetration of the oxide layer, possibly forming a cesium tungstate bronze. Titanium oxide showed high performance but did not furnish oxygen for the emitter; strontium oxide, in the form of a sprayed layer, appeared to dissociate in the presence of cesium. Sprayed coatings of barium and zinc oxides produced collector work functions of about 1.3 eV, but had excessive series resistance. Lanthanum hexaboride, in combination with oxygen introduced through a silver tube, and cesium produced a low work function collector and better than average performance.

  14. 27 CFR 479.25 - Collector's items.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2013-04-01 2013-04-01 false Collector's items. 479.25 Section 479.25 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND...

  15. 27 CFR 479.25 - Collector's items.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2014-04-01 2014-04-01 false Collector's items. 479.25 Section 479.25 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND...

  16. 27 CFR 479.25 - Collector's items.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2012-04-01 2010-04-01 true Collector's items. 479.25 Section 479.25 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND...

  17. 27 CFR 479.25 - Collector's items.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Collector's items. 479.25 Section 479.25 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND...

  18. 31 CFR 203.17 - Collector depositaries.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... business day that the TSC receives an AOC from a collector depositary, the TSC will debit the depositary's reserve account for the amount reported on the AOC and credit that amount to Treasury's account. (b) Late delivery of AOC. If an AOC does not arrive at the TSC before the designated cutoff time on the...

  19. Standardized performance tests of collectors of solar thermal energy: An evacuated flatplate copper collector with a serpentine flow distribution

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.

    1976-01-01

    Basic test results are given for a flat plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  20. A Self-Biasing Pulsed Depressed Collector

    SciTech Connect

    Kemp, Mark A.; Jensen, Aaron; Neilson, Jeff; /SLAC

    2014-05-29

    Depressed collectors have been utilized successfully for many years to improve the electrical efficiency of vacuum electron devices. Increasingly, pulsed, high-peak power accelerator applications are placing a premium on electrical efficiency. As RF systems are responsible for a large percentage of the overall energy usage at accelerator laboratories, methods to improve upon the state-of-the-art in pulsed high-power sources are desired. This paper presents a technique for self-biasing the stages in a multistage depressed collector. With this technique, the energy lost during the rise and fall times of the pulse can be recovered, separate power supplies are not needed, and existing modulators can be retrofitted. Calculations show that significant cost savings can be realized with the implementation of this device in high-power systems. In this paper, the technique is described along with experimental demonstration. (auth)

  1. High performance flat plate solar collector

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.; Reynolds, R.

    1976-01-01

    The potential use of porous construction is presented to achieve efficient heat removal from a power producing solid and is applied to solar air heaters. Analytical solutions are given for the temperature distribution within a gas-cooled porous flat plate having its surface exposed to the sun's energy. The extracted thermal energy is calculated for two different types of plate transparency. Results show the great improvement in performance obtained with porous flat plate collectors as compared with analogous nonporous types.

  2. Focusing solar collector and method for manufacturing same

    DOEpatents

    Murphy, L.M.

    1984-01-01

    Disclosed is a solar collector comprising an annular-shaped frame and a composite membrane member for concentrating and focusing sun radiation. The composite membrane member is supported and tensioned by the frame and consists of first and second differentially pretensioned sheet members which are integrally bonded to one another. The frame and one of the two sheet members are adapted to allow tensions in both of the two sheets to be adjusted. Subsequent to bonding and upon adjusting a tension in one of the two sheet members, both of the two bonded sheet members react with one another so as to cause the composite membrane member to have a contoured configuration, which enables the membrane member to be focusable. Additionally, adjusting the tension in one of the two sheet members provides a reciprocal adjustment in a focus provided by the membrane member.

  3. Focusing solar collector and method for manufacturing same

    DOEpatents

    Murphy, Lawrence M.

    1984-01-01

    Disclosed is a solar collector comprising an annular-shaped frame and a composite membrane member for concentrating and focusing sun radiation. The composite membrane member is supported and tensioned by the frame and consists of first and second differentially pretensioned sheet members which are integrally bonded to one another. The frame and one of the two sheet members are adapted to allow tensions in both of the sheets to be adjusted. Subsequent to bonding and upon adjusting a tension in one of the two sheet members, both of the two bonded sheet members react with one another so as to cause the composite membrane member to have a contoured configuration, which enables the membrane member to be focusable. Additionally, adjusting the tension in one of the two sheet members provides a reciprocal adjustment in a focus provided by the membrane member.

  4. Introducing CFD in the optical simulation of linear Fresnel collectors

    NASA Astrophysics Data System (ADS)

    Moghimi, M. A.; Rungasamy, A.; Craig, K. J.; Meyer, J. P.

    2016-05-01

    This paper seeks to determine whether the Finite Volume method within a commercially available Computational Fluid Dynamics (CFD) solver (ANSYS Fluent) can model radiation with comparable accuracy to a Monte Carlo ray-tracing software package (SolTrace). A detailed investigation was performed into modeling techniques that can be used to significantly reduce the optical errors traditionally associated with CFD modeling of radiation false scattering and ray effect using a simple optical test case. The strategies formulated in the first part of this paper were used to model a variety of Linear Fresnel Collector Concentrating Solar Power Plants. This paper shows that commercial CFD packages yield accurate results for line focusing concentrating solar applications and simple geometries, validating its use in an integrated environment where both optical and thermal performance of these plants can be simulated and optimized.

  5. Thin film absorber for a solar collector

    DOEpatents

    Wilhelm, William G.

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  6. Improved Collectors for High Power Gyrotrons

    SciTech Connect

    Ives, R. Lawrence; Singh, Amarjit; Read, Michael; Borchard, Phillipp; Neilson, Jeff

    2009-05-20

    High power gyrotrons are used for electron cyclotron heating, current drive and parasitic mode suppression in tokamaks for fusion energy research. These devices are crucial for successful operation of many research programs around the world, including the ITER program currently being constructed in France. Recent gyrotron failures resulted from cyclic fatigue of the copper material used to fabricated the collectors. The techniques used to collect the spent beam power is common in many gyrotrons produced around the world. There is serious concern that these tubes may also be at risk from cyclic fatigue. This program addresses the cause of the collector failure. The Phase I program successfully demonstrated feasibility of a mode of operation that eliminates the cyclic operation that caused the failure. It also demonstrated that new material can provide increased lifetime under cyclic operation that could increase the lifetime by more than on order of magnitude. The Phase II program will complete that research and develop a collector that eliminates the fatigue failures. Such a design would find application around the world.

  7. Targeted flight opportunities with large area collectors

    NASA Technical Reports Server (NTRS)

    Mackinnon, I. D. R.

    1986-01-01

    A major factor in the stratospheric collection process is the relative density of particles at the collection altitude. With current aircraft-borne collector plate geometries, one potential extraterrestrial particle of about 10 micron diameter is collected approximately every hour. However, a new design for the collector plate, termed the Large Area Collector (LAC), allows a factor of 10 improvement in collection efficiency over current conventional geometry. The implementation of LAC design on future stratospheric collection flights will provide many opportunities for additional data on both terrestrial and extraterrestrial phenomena. With the improvement in collection efficiency, LAC's may provide a suitable number of potential extraterrestrial particles in one short flight of between 4 and 8 hours duration. Alternatively, total collection periods of approximately 40 hours enhance the probability that rare particles can be retrieved from the stratosphere. This latter approach is of great value for the cosmochemist who may wish to perform sophisticated analyses on interplanetary dust greater than a picogram. The former approach, involving short duration flights, may also provide invaluable data on the source of many extraterrestrial particles. The time dependence of particle entry to the collection altitude is an important parameter which may be correlated with specific global events (e.g., meteoroid streams) provided the collection time is known to an accuracy of 2 hours.

  8. An improved passive activated C collector for measuring environmental 222Rn in indoor air.

    PubMed

    George, A C; Weber, T

    1990-05-01

    A modified version of an activated C monitor has been developed for the time-weighted average measurement of 222Rn for periods ranging from 1-7 d. The new collector consists of a metal can containing 50 g of activated C with a sintered metal filter covering the 3.2-cm diameter sample port in its lid. The new configuration reduces the adsorption and desorption rate of both 222Rn and water vapor by a factor of 4-5, as compared to an open-faced canister. The device measures the average 222Rn concentration accurately, even if the 222Rn concentration varies by more than a factor of 10. For practical situations encountered indoors, the modified collector yields results that are accurate to within +/- 10%. The integration time constant of the collector, tested at relative humidities ranging from 23-75%, is 9-11 d, which is more than three times longer than that of existing diffusion barrier collectors. It is simple to use, inexpensive (total cost of materials is +3.50), maintenance-free, easily sent and returned in the mail (total weight = 100 g), and is reusable for multiple exposures after simple regeneration by heating. The lower limit of detection for a 10-min counting interval is 7 Bq m-3 (0.2 pCi L-1) when counted within 3 d after the end of exposure.

  9. Low-current field-assisted assembly of copper nanoparticles for current collectors.

    PubMed

    Liu, Lehao; Choi, Bong Gill; Tung, Siu On; Hu, Tao; Liu, Yajie; Li, Tiehu; Zhao, Tingkai; Kotov, Nicholas A

    2015-01-01

    Current collectors are essential features of batteries and many other electronic devices being responsible for efficient charge transport to active electrode materials. Three-dimensional (3D), high surface area current collectors considerably improve the performance of cathodes and anodes in batteries, but their technological implementation is impeded by the complexity of their preparation, which needs to be simple, fast, and energy efficient. Here we demonstrate that field-stimulated assembly of ∼3 nm copper nanoparticles (NPs) enables the preparation of porous Cu NP films. The use of NP dispersions enables 30× reduction of the deposition current for making functional 3D coatings. In addition to high surface area, lattice-to-lattice connectivity in the self-assembly of NPs in 3D structures enables fast charge transport. The mesoscale dimensions of out-of-plane features and the spacing between them in Cu films made by field-stimulated self-assembly of NPs provides promising morphology for current collection in lithium ion batteries (LIBs). Half-cell electrochemical models based on self-assembled films show improved specific capacity, total capacity, and cycling performance compared to traditional flat and other 3D current collectors. While integration of active electrode material into the 3D topography of the current collector needs to be improved, this study indicates that self-assembled NP films represent a viable manufacturing approach for 3D electrodes. PMID:25996240

  10. Evaluating the Performance and Economics of Transpired Solar Collectors for Commercial Applications

    SciTech Connect

    Kozubal, E.; Deru, M.; Slayzak, S.; Norton, P.; Barker, G.; McClendon, J.

    2008-01-01

    Using transpired solar collectors to preheat ventilation air has recently become recognized as an economic alternative for integrating renewable energy into commercial buildings in heating climates. The collectors have relatively low installed costs and operate on simple principles. Theory and performance testing have shown that solar collection efficiency can exceed 70% of incident solar. However, implementation and current absorber designs have adversely affected the efficiency and associated economics from this initial analysis. The National Renewable Energy Laboratory (NREL) has actively studied this technology and monitored performance at several installations. A calibrated model that uses typical meteorological weather data to determine absorber plate efficiency resulted from this work. With this model, an economic analysis across heating climates was done to show the effects of collector size, tilt, azimuth, and absorptivity. The analysis relates the internal rate of return of a system based on the cost of the installed absorber area. In general, colder and higher latitude climates return a higher rate of return because the heating season extends into months with good solar resource. Wal-Mart has installed approximately 8,000 ft{sup 2} of absorber at its experimental store in Aurora, Colorado. The delivered energy efficiency was measured at 8-11% during January and February 2007. The low collection efficiency is largely due to the oversized absorber and to the multizone control strategy that limits the amount of air pulled through the collector. Analysis shows that more than 50% of the incident solar energy could be delivered with proper control strategy changes.

  11. Design, fabrication, testing and delivery of a solar collector

    NASA Technical Reports Server (NTRS)

    Sims, W. H.; Ballheim, R. W.; Bartley, S. M.; Smith, G. W.

    1976-01-01

    A two phase program encompassing the redesign and fabrication of a solar collector which is low in cost and aesthetically appealing is described. Phase one work reviewed the current collector design and developed a low-cost design based on specific design/performance/cost requirements. Throughout this phase selected collector component materials were evaluated by testing and by considering cost, installation, maintainability and durability. The resultant collector design was composed of an absorber plate, insulation, frame, cover, desiccant and sealant. In Phase two, three collector prototypes were fabricated and evaluated for both nonthermal and thermal characteristics. Tests included static load tests of covers, burst pressure tests of absorber plates, and tests for optical characteristics of selective absorber plate coatings. The three prototype collectors were shipped to Marshall Space Flight Center for use in their solar heating and cooling test facility.

  12. Initial Subdivision of Genesis Early Science Polished Aluminum Collector

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Stansbery, E. K.; McNamara, K. M.; Meshik, A.; See, T. H.; Bastien, R.

    2005-01-01

    A large surface, about 245 square centimeters, of highly polished aluminum 6061 T6 alloy was attached to the science canister thermal panel for the purpose of collecting solar wind noble gases. The analysis of this collector will be part of the Genesis Early Science results. The pre-launch configuration of the collector is shown. The collector sustained some damage during the recovery impact in Utah, September 8, 2004.

  13. Low-cost solar collector test and evaluation. Final report

    SciTech Connect

    Benjamin, C M

    1983-01-01

    Project was to test and evaluate a highly efficient low cost solar collector and to make this technology available to the average homeowner. The basic collector design was for use in mass production, so approximately forty collector panels were made for testing and to make it simple to be hand built. The collectors performed better than expected and written and visual material was prepared to make construction easier for a first time builder. Publicity was generated to make public aware of benefits with stories by Associated Press and in publications like Popular Science.

  14. Tensioning device for a stretched membrane collector

    DOEpatents

    Murphy, Lawrence M.

    1984-01-01

    Disclosed is a solar concentrating collector comprising an elastic membrane member for concentrating sunlight, a frame for holding the membrane member in plane and in tension, and a tensioning means for varying the tension of the membrane member. The tensioning means is disposed at the frame and is adapted to releasably attach the membrane member thereto. The tensioning means is also adapted to uniformly and symmetrically subject the membrane member to stretching forces such that membrane stresses produced thereby are distributed uniformly over a thickness of the membrane member and reciprocal twisting moments are substantially prevented from acting about said frame.

  15. Tensioning device for a stretched membrane collector

    DOEpatents

    Murphy, L.M.

    1984-01-01

    Disclosed is a solar concentrating collector comprising an elestic membrane member for concentrating sunlight, a frame for holding the membrane member in plane and in tension, and a tensioning means for varying the tension of the membrane member. The tensioning means is disposed at the frame and is adapted to releasably attach the membrane member thereto. The tensioning means is also adapted to uniformly and symmetrically subject the membrane member to stretching forces such that membrane stresses produced thereby are distributed uniformly over a thickness of the membrane member and reciprocal twisting moments are substantially prevented from acting about said frame.

  16. Combined current collector and electrode separator

    DOEpatents

    Gerenser, R.J.; Littauer, E.L.

    1983-08-23

    This relates to reactive metal cells wherein there is a cathode and a consumable anode. It is necessary to separate the cathode from the anode so that an electrolyte may constantly flow over the face of the anode opposing the cathode. It has been found that this separator may also beneficially function as a current collector. The combined current collector and separator includes a peripheral supporting frame of which a portion may function as a bus-bar. A plurality of bars or ribs extend in parallel relation across the opening defined by the supporting frame and are electrically connected to the bus-bar portion. It is preferred that each bar or rib have a pointed or line edge which will engage and slightly bite into the associated anode to maintain the bar or rib in electrical contact with the anode. This abstract forms no part of the specification of this application and is not to be construed as limiting the claims of the application. 6 figs.

  17. Combined current collector and electrode separator

    DOEpatents

    Gerenser, Robert J.; Littauer, Ernest L.

    1983-01-01

    This relates to reactive metal cells wherein there is a cathode and a consumable anode. It is necessary to separate the cathode from the anode so that an electrolyte may constantly flow over the face of the anode opposing the cathode. It has been found that this separator may also beneficially function as a current collector. The combined current collector and separator includes a peripheral supporting frame of which a portion may function as a bus-bar. A plurality of bars or ribs extend in parallel relation across the opening defined by the supporting frame and are electrically connected to the bus-bar portion. It is preferred that each bar or rib have a pointed or line edge which will engage and slightly bite into the associated anode to maintain the bar or rib in electrical contact with the anode. This abstract forms no part of the specification of this application and is not to be construed as limiting the claims of the application.

  18. Theory of the geyser-pump solar collector. Final report

    SciTech Connect

    Haines, E.

    1985-01-01

    The geyser-pump solar collector is a self-controlling, self-pumping active collector having no moving or electronic parts, drawing its mechanical pump energy from boiling in the collector's risers. The only use of the geyser-pump principle reported in patents and the open literature is only for circulating the fluid in the collector plate. Computer simulations show that most design and algorithm parameters have only negligible impact on solar fraction, F. The only parameter which affects F is the length of the storage heat exchanger. Episodic cloud cover does not hamper the geyser-pump collector's ability to restart. Daylong simulations show that the energy cost of geyser-pumping is only about 3% of the absorbed insolation. The geyser-pump collector is found to be as efficient as an electrically pumped collector. Initial costs are estimated to be about the same for the geyser-pump and conventional collectors, but lifetime costs of the geyser-pump are substantially lower, perhaps only half, because of low maintenance.

  19. 21 CFR 874.4800 - Bone particle collector.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Bone particle collector. 874.4800 Section 874.4800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4800 Bone particle collector....

  20. 21 CFR 874.4800 - Bone particle collector.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bone particle collector. 874.4800 Section 874.4800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4800 Bone particle collector....

  1. 21 CFR 874.4800 - Bone particle collector.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Bone particle collector. 874.4800 Section 874.4800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4800 Bone particle collector....

  2. Yearly average performance of the principal solar collector types

    SciTech Connect

    Rabl, A.

    1981-01-01

    The results of hour-by-hour simulations for 26 meteorological stations are used to derive universal correlations for the yearly total energy that can be delivered by the principal solar collector types: flat plate, evacuated tubes, CPC, single- and dual-axis tracking collectors, and central receiver. The correlations are first- and second-order polynomials in yearly average insolation, latitude, and threshold (= heat loss/optical efficiency). With these correlations, the yearly collectible energy can be found by multiplying the coordinates of a single graph by the collector parameters, which reproduces the results of hour-by-hour simulations with an accuracy (rms error) of 2% for flat plates and 2% to 4% for concentrators. This method can be applied to collectors that operate year-around in such a way that no collected energy is discarded, including photovoltaic systems, solar-augmented industrial process heat systems, and solar thermal power systems. The method is also recommended for rating collectors of different type or manufacturer by yearly average performance, evaluating the effects of collector degradation, the benefits of collector cleaning, and the gains from collector improvements (due to enhanced optical efficiency or decreased heat loss per absorber surface). For most of these applications, the method is accurate enough to replace a system simulation.

  3. 167. VIEW OF DUST COLLECTOR AND CRUSHED OXIDIZED ORE BIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    167. VIEW OF DUST COLLECTOR AND CRUSHED OXIDIZED ORE BIN FROM EAST. THE DUCTWORK TO TOP OF COLLECTOR (OPEN END, MIDDLE LEFT) CONNECTED TO HOODS OVER SYMONS SCREEN, ROD MILL, AND BAKER COOLER DISCHARGE - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  4. 52. VIEW OF DUST COLLECTOR AND CRUSHED OXIDIZED ORE BIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. VIEW OF DUST COLLECTOR AND CRUSHED OXIDIZED ORE BIN FROM EAST. THE DUCTWORK TO TOP OF COLLECTOR (OPEN END, MIDDLE LEFT) CONNECTED TO HOODS OVER SYMONS SCREEN, ROD MILL, AND BAKER COOLER DISCHARGE. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  5. Preliminary design package for solar collector and solar pump

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A solar-operated pump using an existing solar collector, for use on solar heating and cooling and hot water systems is described. Preliminary design criteria of the collector and solar-powered pump is given including: design drawings, verification plans, and hazard analysis.

  6. 21 CFR 874.4800 - Bone particle collector.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4800 Bone particle collector. (a) Identification. A bone particle collector is a filtering device intended to be inserted into a suction tube.... Class I (general controls). The device is exempt from premarket notification procedures in subpart E...

  7. 21 CFR 874.4800 - Bone particle collector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4800 Bone particle collector. (a) Identification. A bone particle collector is a filtering device intended to be inserted into a suction tube.... Class I (general controls). The device is exempt from premarket notification procedures in subpart E...

  8. The establishment of radiation regimes in tubular collectors

    NASA Astrophysics Data System (ADS)

    Amanov, Ch. A.

    Methods of calculating the radiant flux density of tubular collectors are developed, showing that solutions are possible for a day, a month, or a season through computer algorithms. Also treated is the effective cross section of a collector in the absence of shading.

  9. Physically absorbable reagents-collectors in elementary flotation

    SciTech Connect

    S.A. Kondrat'ev; I.G. Bochkarev

    2007-09-15

    Based on the reviewed researches held at the Institute of Mining, Siberian Branch, Russian Academy of Sciences, the effect of physically absorbable reagents-collectors on formation of a flotation complex and its stability in turbulent pulp flows in flotation machines of basic types is considered. The basic requirements for physically absorbable reagents-collectors at different flotation stages are established.

  10. Test results, Industrial Solar Technology parabolic trough solar collector

    SciTech Connect

    Dudley, V.E.; Evans, L.R.; Matthews, C.W.

    1995-11-01

    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  11. Selective flotation of phosphate minerals with hydroxamate collectors

    DOEpatents

    Miller, Jan D.; Wang, Xuming; Li, Minhua

    2002-01-01

    A method is disclosed for separating phosphate minerals from a mineral mixture, particularly from high-dolomite containing phosphate ores. The method involves conditioning the mineral mixture by contacting in an aqueous in environment with a collector in an amount sufficient for promoting flotation of phosphate minerals. The collector is a hydroxamate compound of the formula; ##STR1## wherein R is generally hydrophobic and chosen such that the collector has solubility or dispersion properties it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms. M is a cation, typically hydrogen, an alkali metal or an alkaline earth metal. Preferably, the collector also comprises an alcohol of the formula, R'--OH wherein R' is generally hydrophobic and chosen such that the collector has solubility or dispersion properties so that it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms.

  12. Analysis of a solar collector field water flow network

    NASA Technical Reports Server (NTRS)

    Rohde, J. E.; Knoll, R. H.

    1976-01-01

    A number of methods are presented for minimizing the water flow variation in the solar collector field for the Solar Building Test Facility at the Langley Research Center. The solar collector field investigated consisted of collector panels connected in parallel between inlet and exit collector manifolds to form 12 rows. The rows were in turn connected in parallel between the main inlet and exit field manifolds to complete the field. The various solutions considered included various size manifolds, manifold area change, different locations for the inlets and exits to the manifolds, and orifices or flow control valves. Calculations showed that flow variations of less than 5 percent were obtainable both inside a row between solar collector panels and between various rows.

  13. Parabolic trough collector power plant performance simulation for an interactive solar energy Atlas of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Ibarra, Mercedes; Frasquet, Miguel; Al Rished, Abdulaziz; Tuomiranta, Arttu; Gasim, Sami; Ghedira, Hosni

    2016-05-01

    The collaboration between the Research Center for Renewable Energy Mapping and Assessment (ReCREMA) at Masdar Institute of Science and Technology and the King Abdullah City for Atomic & Renewable Energy (KACARE) aims to create an interactive web tool integrated in the Renewable Resource Atlas where different solar thermal electricity (STE) utility-scale technologies will be simulated. In this paper, a methodology is presented for sizing and performance simulation of the solar field of parabolic trough collector (PTC) plants. The model is used for a case study analysis of the potential of STE in three sites located in the central, western, and eastern parts of Saudi Arabia. The plant located in the north (Tayma) has the lowest number of collectors with the best production along the year.

  14. Comparison of Proportional and On/Off Solar Collector Loop Control Strategies Using a Dynamic Collector Model

    SciTech Connect

    Schiller, Steven R.; Warren, Mashuri L.; Auslander, David M.

    1980-11-01

    In this paper, common control strategies used to regulate the flow of liquid through flat-plate solar collectors are discussed and evaluated using a dynamic collector model. Performance of all strategies is compared using different set points, flow rates, insolation levels and patterns, and ambient temperature conditions. The unique characteristic of the dynamic collector model is that it includes the effect of collector capacitance. Short term temperature response and the energy-storage capability of collector capacitance are shown to play significant roles in comparing on/off and proportional controllers. Inclusion of these effects has produced considerably more realistic simulations than any generated by steady-state models. Finally, simulations indicate relative advantages and disadvantages of both types of controllers, conditions under which each performs better, and the importance of pump cycling and controller set points on total energy collection.

  15. Glass heat pipe evacuated tube solar collector

    DOEpatents

    McConnell, Robert D.; Vansant, James H.

    1984-01-01

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  16. Antireflection Pyrex envelopes for parabolic solar collectors

    NASA Astrophysics Data System (ADS)

    McCollister, H. L.; Pettit, R. B.

    1983-11-01

    Antireflective (AR) coatings, applied to the glass envelopes used in parabolic trough solar collectors around the receiver tube in order to reduce thermal losses, can increase solar transmittance by 7 percent. An AR surface has been formed on Pyrex by first heat treating the glass to cause a compositional phase separation, removing a surface layer after heat treatment through the use of a preetching solution, and finally etching in a solution that contains hydrofluorosilic and ammonium bifluoride acids. AR-coated samples with solar transmittance values of more than 0.97, by comparison to an untreated sample value of 0.91, have been obtained for the 560-630 C range of heat treatment temperatures. Optimum values have also been determined for the other processing parameters.

  17. Alignment method for solar collector arrays

    DOEpatents

    Driver, Jr., Richard B

    2012-10-23

    The present invention is directed to an improved method for establishing camera fixture location for aligning mirrors on a solar collector array (SCA) comprising multiple mirror modules. The method aligns the mirrors on a module by comparing the location of the receiver image in photographs with the predicted theoretical receiver image location. To accurately align an entire SCA, a common reference is used for all of the individual module images within the SCA. The improved method can use relative pixel location information in digital photographs along with alignment fixture inclinometer data to calculate relative locations of the fixture between modules. The absolute locations are determined by minimizing alignment asymmetry for the SCA. The method inherently aligns all of the mirrors in an SCA to the receiver, even with receiver position and module-to-module alignment errors.

  18. Use of membrane collectors in electrostatic precipitators.

    PubMed

    Bayless, D J; Pasic, H; Alam, M K; Shi, L; Haynes, B; Cochran, J; Khan, W

    2001-10-01

    Membrane collection surfaces, developed and patented by researchers at Ohio University, were used to replace steel plates in a dry electrostatic precipitator (ESP). Such replacement facilitates tension-based rapping, which shears the adhered particle layer from the collector surface more effectively than hammer-based rapping. Tests were performed to measure the collection efficiency of the membranes and to quantify the potential improvements of this novel cleaning technique with respect to re-entrainment. Results indicate that even semiconductor materials (e.g., carbon fibers) collect ash nearly as efficiently as steel plates, potentially indicating that collection surface resistivity is primarily dictated by the accumulated ash layer and not by the underlying plate conductivity. In addition, virtually all sheared particles separated from the collecting membranes fell within the boundary layer of the membrane, indicating extremely low potential for re-entrainment.

  19. Glass heat pipe evacuated tube solar collector

    SciTech Connect

    McConnell, R.D.; Vansant, J.H.

    1984-10-02

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  20. Genesis: Removing Contamination from Sample Collectors

    NASA Technical Reports Server (NTRS)

    Lauer, H. V.; McNamara, K. M.; Westphal, Andrew; Butterworth, A. L.; Burnett, D. S.; Jurewicz, A.; Woolum, D.; Allton, J. H.

    2005-01-01

    The Genesis mission returned to Earth on September 8, 2004, experiencing a non-nominal reentry. The parachutes which were supposed to slow and stabilize the capsule throughout the return failed to deploy, causing the capsule to impact the desert floor at a speed of nearly 200 MPH. Both the science canister and the major components of the SRC were returned before nightfall on September 8 to the prestaged cleanroom at UTTR , avoiding prolonged exposure or pending weather changes which might further contaminate the samples. The majority of the contaminants introduced as a result of the anomalous landing were in the form of particulates, including UTTR dust and soil, carbon-carbon heat shield material, and shattered collector dust (primarily silicon and germanium). Additional information is included in the original extended abstract.

  1. Genesis Solar Wind Array Collector Cataloging Status

    NASA Technical Reports Server (NTRS)

    Burkett, P.J.; Rodriguez, M.C.; Calaway, M.C.; Allton, J.H.

    2009-01-01

    Genesis solar wind array collectors were fractured upon landing hard in Utah in 2004. The fragments were retrieved from the damaged canister, imaged, repackaged and shipped to the Johnson Space Center curatorial facility [1]. As of January 2009, the collection consists of 3460 samples. Of these, 442 are comprised into "multiple" sample groupings, either affixed to adhesive paper (177) or collected in jars (17), culture trays (87), or sets of polystyrene vials (161). A focused characterization task was initiated in May 2008 to document the largest samples in the collection. The task consisted of two goals: to document sapphire based fragments greater than 2 cm in one dimension, and to document silicon based fragments greater than 1 cm in one direction.

  2. A high performance porous flat-plate solar collector

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.; Clarke, V.; Reynolds, R.

    1979-01-01

    A solar collector employing a porous matrix as a solar absorber and heat exchanger is presented and its application in solar air heaters is discussed. The collector is composed of a metallic matrix with a porous surface which acts as a large set of cavity radiators; cold air flows through the matrix plate and exchanges heat with the thermally stratified layers of the matrix. A steady-state thermal analysis of the collector is used to determine collector temperature distributions for the cases of an opaque surface matrix with total absorption of solar energy at the surface, and a diathermanous matrix with successive solar energy absorption at each depth. The theoretical performance of the porous flat plate collector is shown to exceed greatly that of a solid flat plate collector using air as the working medium for any given set of operational conditions. An experimental collector constructed using commercially available, low cost steel wool as the matrix has been found to have thermal efficiencies from 73 to 86%.

  3. Pathways toward a low cost evacuated collector system

    NASA Astrophysics Data System (ADS)

    Hull, J. R.; Schertz, W. W.; Allen, J. W.; Ogallagher, J. J.; Winston, R.

    The goal of widespread use of solar thermal collectors will only be achieved when they are proven to be economically superior to competing energy sources. Evacuated tubular collectors appear to have the potential to achieve this goal. An advanced evacuated collector using nonimaging concentration under development at the University of Chicago and Argonne can achieve a 50% seasonal efficiency at heat delivery temperatures in excess of 170C. The same collector has an optical efficiency so that low temperature performance is also excellent. In this advanced collector design all of the critical components are enclosed in the vacuum, and the collector has an inherently long lifetime. The current cost of evacuated systems is too high, mainly because the volume of production has been too low to realize economies of mass production. It appears that certain design features of evacuated collectors can be changed (e.g., use of heat pipe absorbers) so as to introduce new system design and market strategy options that can reduce the balance of system cost.

  4. Residential Photovoltaic/Thermal Energy System

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1987-01-01

    Proposed system supplies house with both heat and electricity. Pair of reports describes concept for self-sufficient heating, cooling, and power-generating system for house. Panels on walls of house provide hot water, space heating, and heat to charge heat-storage system, and generate electricity for circulation pumps and fans. Roof panels generate electricity for household, operate heat pump for summer cooling, and provide supplementary winter heating via heat pump, using solar-cell cooling-fluid loop. Wall and roof panels used independently.

  5. Analysis of a high-performance tubular solar collector

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.; Yung, C. S.

    1981-01-01

    This article analyzes the thermal performance of a new vacuum tube solar collector. The assumptions and mathematical modeling are presented. The problem is reduced to the formulation of two simultaneous linear differential equations characterizing the collector thermal behavior. After applying the boundary conditions, a general solution is obtained which is found similar to the general Hottel, Whillier and Bliss form, but with a complex flow factor. The details of the two-dimensional thermal model of the solar collector at steady state is also presented to include the computer simulation and the performance parameterization. Comparison of the simulated performance with the manufacturer's test data showed good agreement at wide ranges of operating conditions.

  6. Residential application of refrigerant-charged solar collectors

    NASA Astrophysics Data System (ADS)

    Schreyer, J. M.

    1981-01-01

    A fluorocarbon (trichlorofluoromethane) loaded solar collector system was installed and evaluated. It demonstrated 83 percent energy recovery at a low collector temperature difference of approximately 10 C. The maximum peak energy picked up by the collector surface was 2.8 MJ/sq m-hr (250 Btu/hr-sq ft). The heat-transfer medium is relatively nontoxic, noncorrosive and nonfreezing in cold climates. In this application it circulates by natural convection; therefore, the system requires no pump or electronic control in the primary loop.

  7. Theoretical and experimental investigation of heat pipe solar collector

    SciTech Connect

    Azad, E.

    2008-09-15

    Heat pipe solar collector was designed and constructed at IROST and its performance was measured on an outdoor test facility. The thermal behavior of a gravity assisted heat pipe solar collector was investigated theoretically and experimentally. A theoretical model based on effectiveness-NTU method was developed for evaluating the thermal efficiency of the collector, the inlet, outlet water temperatures and heat pipe temperature. Optimum value of evaporator length to condenser length ratio is also determined. The modelling predictions were validated using experimental data and it shows that there is a good concurrence between measured and predicted results. (author)

  8. Analytical model and performance data for a cylindrical parabolic collector

    SciTech Connect

    Ford, F.M.; Stewart, W.E. Jr.

    1980-01-01

    Concentrating solar collectors provide higher fluid temperatures than flat-plate, an important advantage in many applications. The parabolic cylinder is one of the most popular types of concentrating collectors because of its relatively simple construction and tracking configuration. A mathematical model was developed for one such collector in order to predict thermal efficiency as a function of solar insolation. An experiment was then devised in an attempt to verify this model. Discrepancies between predicted and observed values are discussed, and suggestions are made for improving the model and the experimental procedure.

  9. Electron beam collector for a microwave power tube

    DOEpatents

    Dandl, Raphael A.

    1980-01-01

    This invention relates to a cylindrical, electron beam collector that efficiently couples the microwave energy out of a high power microwave source while stopping the attendant electron beam. The interior end walls of the collector are a pair of facing parabolic mirrors and the microwave energy from an input horn is radiated between the two mirrors and reassembled at the entrance to the output waveguide where the transmitted mode is reconstructed. The mode transmission through the collector of the present invention has an efficiency of at least 94%.

  10. Ray tracing study for non-imaging daylight collectors

    SciTech Connect

    Wittkopf, Stephen; Oliver Grobe, Lars; Geisler-Moroder, David; Compagnon, Raphael; Kaempf, Jerome; Linhart, Friedrich; Scartezzini, Jean-Louis

    2010-06-15

    This paper presents a novel method to study how well non-imaging daylight collectors pipe diffuse daylight into long horizontal funnels for illuminating deep buildings. Forward ray tracing is used to derive luminous intensity distributions curves (LIDC) of such collectors centered in an arc-shaped light source representing daylight. New photometric characteristics such as 2D flux, angular spread and horizontal offset are introduced as a function of such LIDC. They are applied for quantifying and thus comparing different collector contours. (author)

  11. Conductivity fuel cell collector plate and method of fabrication

    DOEpatents

    Braun, James C.

    2002-01-01

    An improved method of manufacturing a PEM fuel cell collector plate is disclosed. During molding a highly conductive polymer composite is formed having a relatively high polymer concentration along its external surfaces. After molding the polymer rich layer is removed from the land areas by machining, grinding or similar process. This layer removal results in increased overall conductivity of the molded collector plate. The polymer rich surface remains in the collector plate channels, providing increased mechanical strength and other benefits to the channels. The improved method also permits greater mold cavity thickness providing a number of advantages during the molding process.

  12. Building-Integrated Solar Energy Devices based on Wavelength Selective Films

    NASA Astrophysics Data System (ADS)

    Ulavi, Tejas

    A potentially attractive option for building integrated solar is to employ hybrid solar collectors which serve dual purposes, combining solar thermal technology with either thin film photovoltaics or daylighting. In this study, two hybrid concepts, a hybrid photovoltaic/thermal (PV/T) collector and a hybrid 'solar window', are presented and analyzed to evaluate technical performance. In both concepts, a wavelength selective film is coupled with a compound parabolic concentrator (CPC) to reflect and concentrate the infrared portion of the solar spectrum onto a tubular absorber. The visible portion of the spectrum is transmitted through the concentrator to either a thin film Cadmium Telluride (CdTe) solar panel for electricity generation or into the interior space for daylighting. Special attention is given to the design of the hybrid devices for aesthetic building integration. An adaptive concentrator design based on asymmetrical truncation of CPCs is presented for the hybrid solar window concept. The energetic and spectral split between the solar thermal module and the PV or daylighting module are functions of the optical properties of the wavelength selective film and the concentrator geometry, and are determined using a Monte Carlo Ray-Tracing (MCRT) model. Results obtained from the MCRT can be used in conjugation with meteorological data for specific applications to study the impact of CPC design parameters including the half-acceptance angle thetac, absorber diameter D and truncation on the annual thermal and PV/daylighting efficiencies. The hybrid PV/T system is analyzed for a rooftop application in Phoenix, AZ. Compared to a system of the same area with independent solar thermal and PV modules, the hybrid PV/T provides 20% more energy, annually. However, the increase in total delivered energy is due solely to the addition of the thermal module and is achieved at an expense of a decrease in the annual electrical efficiency from 8.8% to 5.8% due to shading by

  13. SOLERAS - Solar-Powered Water Desalination Project at Yanbu: PKI collectors performance

    SciTech Connect

    Hamad, G.

    1987-04-01

    The seawater desalination pilot plant at Yanbu in Saudi Arabia is a unique experiment in which an indirect bulk freeze desalination process is integrated with a stand-alone solar cogeneration power plant. Thermal energy is stored in molten salt and is converted into shaft power required for primary refrigeration by a conventional steam engine. An absorption refrigeration unit is thermally driven by the exhaust steam of the engine to produce additional refrigeration. Crystallization of water molecules from the brine into essentially pure water ice is accomplished by the freeze desalination process, which employs indirect heat transfer technique. Solar energy concentrated by the dish collector is transferred to a silicone polymer low-viscosity liquid circulated through the receiver, which is a monotube cavity mounted at the concentrator focal area in a stainless steel encased housing. A flux trap mounted at the mouth of the cavity receiver deflects stray radiation into the cavity. This document concerns itself with the solar collector and the solar collector field subsystem and presents the results of scientific investigations during the past 18 months since the plant installation. 13 refs., 206 figs.

  14. Evaluating the Performance and Economics of Transpired Solar Collectors for Commercial Applications: Preprint

    SciTech Connect

    Kozubal, E.; Deru, M.; Slayzak, S.; Norton, P.; Barker, G.; McClendon, J,

    2008-07-01

    Using transpired solar collectors to preheat ventilation air has recently become recognized as an economic alternative for integrating renewable energy into commercial buildings in heating climates. The collectors have relatively low installed costs and operate on simple principles. Theory and performance testing have shown that solar collection efficiency can exceed 70% of incident solar. However, implementation and current absorber designs have adversely affected the efficiency and associated economics from this initial analysis. The National Renewable Energy Laboratory has actively studied this technology and monitored performance at several installations. A calibrated model that uses typical meteorological weather data to determine absorber plate efficiency resulted from this work. With this model, an economic analysis across heating climates was done to show the effects of collector size, tilt, azimuth, and absorptivity. The analysis relates the internal rate of return of a system based on the cost of the installed absorber area. In general, colder and higher latitude climates return a higher rate of return because the heating season extends into months with good solar resource.

  15. Development of a new flat stationary evacuated CPC-collector for process heat applications

    SciTech Connect

    Buttinger, Frank; Beikircher, Thomas; Proell, Markus; Schoelkopf, Wolfgang

    2010-07-15

    For the economical supply of solar process heat at temperatures between 120 and 150 C a new non-tracking, flat, low-concentrating collector has been developed. The new collector is an edge ray collector with a concentration of 1.8 and inert gas filling, existing of parallel mounted absorber-reflector units, aligned in east-west direction. The basic concept is the integration of an absorber tube and reflectors inside a low pressure enclosure. Asymmetrical reflectors below the headers with a concentration of 0.6X provide extra radiation and prevent longitudinal radiation losses. To suppress heat losses due to gas-convection inside, air or inert gas like krypton at a pressure below 10 mbar is used. A prototype, with an aperture area of 2.0 m{sup 2}, was tested in Munich and showed efficiencies of about 50% for krypton at 0.01 bar at a temperature of 150 C with a radiation of 1000 W/m{sup 2} (900 W/m{sup 2} direct, ambient temperature 20 C). (author)

  16. Owens-Illinois subsystem design package for the SEC-601 air-cooled solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The subsystem design of the SEC-601 solar collector was evaluated. The collector is of modular design and is approximately 12 feet three inches wide and eight feet seven inches tall. It contains 72 collector tube elements and weighs approximately 300 pounds. Included in this report are the subsystem performance specifications and the assembly and installation drawings of the solar collectors and manifold.

  17. Thermal comparison among several beverage can solar collectors. Forest Service general technical report

    SciTech Connect

    Chen, P.Y.S.

    1984-03-01

    Four air-heated solar collectors were built using four different configurations of aluminum beverage cans. The collectors were then tested for four seasons for their efficiency. One of the collectors was also evaluated for one season for the effect of air velocity on efficiency, temperature rise, and power consumption of the collector.

  18. Thermal Performance of an Annealed Pyrolytic Graphite Solar Collector

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Hornacek, Jennifer

    2002-01-01

    A solar collector having the combined properties of high solar absorptance, low infrared emittance, and high thermal conductivity is needed for applications where solar energy is to be absorbed and transported for use in minisatellites. Such a solar collector may be used with a low temperature differential heat engine to provide power or with a thermal bus for thermal switching applications. One concept being considered for the solar collector is an Al2O3 cermet coating applied to a thermal conductivity enhanced polished aluminum substrate. The cermet coating provides high solar absorptance and the polished aluminum provides low infrared emittance. Annealed pyrolytic graphite embedded in the aluminum substrate provides enhanced thermal conductivity. The as-measured thermal performance of an annealed pyrolytic graphite thermal conductivity enhanced polished aluminum solar collector, coated with a cermet coating, will be presented.

  19. The JPL parabolic dish project. [solar collectors technology development

    NASA Technical Reports Server (NTRS)

    Truscello, V. C.; Williams, A. N.

    1980-01-01

    The parabolic dish solar collector is a highly versatile concentrating collector system that can produce heat for many thermal processes and electricity by coupling the collector to a suitable heat engine. This paper discusses a project for the development of these collector systems and summarizes contracts with industry for developing the dish subsystems which include concentrator, receiver, and heat engine. An early market for dishes is the dispersed small community market which depends heavily on oil to operate diesel or steam turbine plants in order to generate electricity. The present contracts with industry for conducting engineering experiments using the developed dish hardware to demonstrate the technology in these early opportunity markets is also discussed.

  20. Weathering of a liquid-filled solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report describes procedures and results of tests for effects of weathering on flat-plate liquid solar collector. Thermal performance was measured before and after natural weathering for 15-1/2 months by using Marshall Space Flight solar simulator.

  1. Glycol/water evacuated-tube solar collector

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Report describes performance of 8 tube and 10 tube commercially produced solar collectors. Tests include thermal efficiency, time constant for temperature drop after solar flux is cut, change in efficiency with Sun angle, and temperature rise if circulation is stopped.

  2. Concentrating vanadium compounds with the aid of a perfluorinated collector

    SciTech Connect

    Berezyuk, V.G.; Dubrovina, O.B.; Evtyokhova, O.V.; Kasimov, A.M.; Petrova, N.A.

    1985-09-01

    The authors report the results of experiments on extraction of vanadium compounds from aqueous solutions. A cationic flourine-containing surfactant was used as the collector. Figures show the dependence of the degree of vanadium extraction on the solution pH, and the dependence of the composition of the vanadium-containing precipitate on the amount of collector C /SUB surf/ . It was shown that it is possible in principle to concentrate vanadium compounds from aqueous solutions with the aid of a cationic perflourinated collector. The optimal conditions of vanadium extraction lie in the pH range 2.5-4.5. Interaction of decavanadates with the surfactant may proceed by an ion-exchange mechanism under certain conditions. Maximum metal content in the precipitate corresponds to the stoichiometric consumption of the collector. The hydrophobic precipitate can be seperated from the solution equally effectively by flotation and by filtration.

  3. Positive-electrode current collector for liquid-metal cells

    DOEpatents

    Shimotake, H.; Bartholme, L.G.

    1982-09-27

    A current collector for the positive electrode of an electrochemical cell with a positive electrode including a sulfide. The cell also has a negative electrode and a molten salt electrolyte including halides of a metal selected from the alkali metals and the alkaline earth metals in contact with both the positive and negative electrodes. The current collector has a base metal of copper, silver, gold, aluminum or alloys thereof with a coating thereon of iron, nickel, chromium or alloys thereof. The current collector when subjected to cell voltage forms a sulfur-containing compound on the surface thereby substantially protecting the current collector from further attack by sulfur ions during cell operation. Both electroless and electrolytic processes may be used to deposit coatings.

  4. Positive electrode current collector for liquid metal cells

    DOEpatents

    Shimotake, Hiroshi; Bartholme, Louis G.

    1984-01-01

    A current collector for the positive electrode of an electrochemical cell with a positive electrode including a sulfide. The cell also has a negative electrode and a molten salt electrolyte including halides of a metal selected from the alkali metals and the alkaline earth metals in contact with both the positive and negative electrodes. The current collector has a base metal of copper, silver, gold, aluminum or alloys thereof with a coating thereon of iron, nickel, chromium or alloys thereof. The current collector when subjected to cell voltage forms a sulfur-containing compound on the surface thereby substantially protecting the current collector from further attack by sulfur ions during cell operation. Both electroless and electrolytic processes may be used to deposit coatings.

  5. Owens-Illinois liquid solar collector materials assessment

    NASA Technical Reports Server (NTRS)

    Nichols, R. L.

    1978-01-01

    From the beginning, it was noted that the baseline drawings for the liquid solar collector exhibited a distinct weakness concerning materials specification where elastomers, plastics, and foam insulation materials were utilized. A relatively small effort by a competent design organization would alleviate this deficiency. Based on results obtained from boilout and stagnation tests on the solar simulator, it was concluded that proof testing of the collector tubes prior to use helps to predict their performance for limited service life. Fracture mechanics data are desirable for predicting extended service life and establishing a minimum proof pressure level requirement. The temperature capability of this collector system was increased as the design matured and the coating efficiency improved. This higher temperature demands the use of higher temperature materials at critical locations in the collector.

  6. Preliminary design package for Sunair SEC-601 solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The preliminary design of the Owens-Illinois model Sunair SEC-601 tubular air solar collector is presented. Information in this package includes the subsystem design and development approaches, hazard analysis, and detailed drawings available as the preliminary design review.

  7. Outdoor tests of the concentric-tube collector

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Seventy two element, air-filled version of concentric-tube solar collector recently underwent 2 month performance evaluation at Marshall Space Flight Center solar house. Summary of results, along with other relevant data, is presented in 27 page report.

  8. Indoor tests of the concentric-tube solar collector

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Report describes performance tests on 12-tube, liquid-filled collector. Thermal efficiency, change in efficiency with sun position, and time constant for temperature drop after solar flux is cut are described.

  9. Shape Control of Solar Collectors Using Shape Memory Alloy Actuators

    NASA Technical Reports Server (NTRS)

    Lobitz, D. W.; Grossman, J. W.; Allen, J. J.; Rice, T. M.; Liang, C.; Davidson, F. M.

    1996-01-01

    Solar collectors that are focused on a central receiver are designed with a mechanism for defocusing the collector or disabling it by turning it out of the path of the sun's rays. This is required to avoid damaging the receiver during periods of inoperability. In either of these two cases a fail-safe operation is very desirable where during power outages the collector passively goes to its defocused or deactivated state. This paper is principally concerned with focusing and defocusing the collector in a fail-safe manner using shape memory alloy actuators. Shape memory alloys are well suited to this application in that once calibrated the actuators can be operated in an on/off mode using a minimal amount of electric power. Also, in contrast to other smart materials that were investigated for this application, shape memory alloys are capable of providing enough stroke at the appropriate force levels to focus the collector. Design and analysis details presented, along with comparisons to test data taken from an actual prototype, demonstrate that the collector can be repeatedly focused and defocused within accuracies required by typical solar energy systems. In this paper the design, analysis and testing of a solar collector which is deformed into its desired shape by shape memory alloy actuators is presented. Computations indicate collector shapes much closer to spherical and with smaller focal lengths can be achieved by moving the actuators inward to a radius of approximately 6 inches. This would require actuators with considerably more stroke and some alternate SMA actuators are currently under consideration. Whatever SMA actuator is finally chosen for this application, repeatability and fatigue tests will be required to investigate the long term performance of the actuator.

  10. Stereomicroscope Inspection of Polished Aluminum Collector 50684.0

    NASA Technical Reports Server (NTRS)

    Rodriquez, M. C.; Calaway, M. J.; Allton, J. H.

    2008-01-01

    The Genesis polished aluminum "kidney" collector was damaged during the hard landing of the capsule on September 8, 2004 in the Utah desert. The kidney was introduced into the Genesis (ISO class 4) cleanroom laboratory on November 4, 2004 and stored under nitrogen cover gas. The collector is currently fastened to a highly polished stainless steel plate for secure handling. Curatorial work at JSC has made successful subdivision and subsequent allocation of samples from the kidney.

  11. The transient thermal response of a tubular solar collector

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1976-01-01

    A special analytical solution is provided for the timewise response of the circulating fluid temperatures when a sudden step change of the input solar radiation is imposed and remains constant thereafter. An example which demonstrates the transient temperatures at the exit section of a single collector with two different flow patterns is presented. This study is used to supplement some numerical solutions to provide a fairly complete coverage for this type of solar collector.

  12. Means of increasing efficiency of CPC solar energy collector

    DOEpatents

    Chao, B.T.; Rabl, A.

    1975-06-27

    A device is provided for improving the thermal efficiency of a cylindrical radiant energy collector. A channel is placed next to and in close proximity to the nonreflective side of an energy reflective wall of a cylindrical collector. A coolant is piped through the channel and removes a portion of the nonreflective energy incident on the wall which is absorbed by the wall. The energy transferred to the coolant may be utilized in a useful manner.

  13. Means of increasing efficiency of CPC solar energy collector

    DOEpatents

    Chao, Bei Tse; Rabl, Ari

    1977-02-15

    A device is provided for improving the thermal efficiency of a cylindrical radiant energy collector. A channel is placed next to and in close proximity to the nonreflective side of an energy reflective wall of a cylindrical collector. A coolant is piped through the channel and removes a portion of the nonreflective energy incident on the wall which is absorbed by the wall. The energy transferred to the coolant may be utilized in a useful manner.

  14. Test and analysis of a Northrup collector controller

    NASA Technical Reports Server (NTRS)

    Scott, D. R.; Kissel, R. R.; Reid, H.

    1978-01-01

    The collector controller was examined as a functioning control system that drives the Northrup collector from east to west to follow the sun then back to the east at sundown in readiness for the next sunrise. The major components were examined separately with particular emphasis placed on an analysis of the electronic drive circuit. Results are presented from hardware testing and analysis with recommended changes to improve the system.

  15. Size Distribution of Genesis Solar Wind Array Collector Fragments Recovered

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Stansbery, E. K.; McNamara, K. M.

    2005-01-01

    Genesis launched in 2001 with 271 whole and 30 half hexagonally-shaped collectors mounted on 5 arrays, comprised of 9 materials described in [1]. The array collectors were damaged during re-entry impact in Utah in 2004 [2], breaking into many smaller pieces and dust. A compilation of the number and approximate size of the fragments recovered was compiled from notes made during the field packaging performed in the Class 10,000 cleanroom at Utah Test and Training Range [3].

  16. Conceptual design of an orbital debris collector

    NASA Technical Reports Server (NTRS)

    Odonoghue, Peter (Editor); Brenton, Brian; Chambers, Ernest; Schwind, Thomas; Swanhart, Christopher; Williams, Thomas

    1991-01-01

    The current Lower Earth Orbit (LEO) environment has become overly crowded with space debris. An evaluation of types of debris is presented in order to determine which debris poses the greatest threat to operation in space, and would therefore provide a feasible target for removal. A target meeting these functional requirements was found in the Cosmos C-1B Rocket Body. These launchers are spent space transporters which constitute a very grave risk of collision and fragmentation in LEO. The motion and physical characteristics of these rocket bodies have determined the most feasible method of removal. The proposed Orbital Debris Collector (ODC) device is designed to attach to the Orbital Maneuvering Vehicle (OMV), which provides all propulsion, tracking, and power systems. The OMV/ODC combination, the Rocket Body Retrieval Vehicle (RBRV), will match orbits with the rocket body, use a spin table to match the rotational motion of the debris, capture it, despin it, and remove it from orbit by allowing it to fall into the Earth's atmosphere. A disposal analysis is presented to show how the debris will be deorbited into the Earth's atmosphere. The conceptual means of operation of a sample mission is described.

  17. Dual curvature acoustically damped concentrating collector. Final technical report

    SciTech Connect

    Smith, G.A.; Rausch, R.A.

    1980-05-01

    A development program was conducted to investigate the design and performance parameters of a novel, dual curvature, concentrating solar collector. The reflector of the solar collector is achieved with a stretched-film reflective surface that approximates a hyperbolic paraboloid and is capable of line-focusing at concentration ratios ranging from 10 to 20X. A prototype collector was designed based on analytical and experimental component trade-off activities as well as economic analyses of solar thermal heating and cooling systems incorporating this type of collector. A prototype collector incorporating six 0.66 x 1.22 m (2 x 4 ft) was fabricated and subjected to a limited thermal efficiency test program. A peak efficiency of 36% at 121/sup 0/C (250/sup 0/F) was achieved based upon the gross aperture area. Commercialization activities were conducted, including estimated production costs of $134.44/m/sup 2/ ($12.49/ft/sup 2/) for the collector assembly (including a local suntracker and controls) and $24.33/m/sup 2/ ($2.26/ft/sup 2/) for the reflector subassembly.

  18. High air volume to low liquid volume aerosol collector

    DOEpatents

    Masquelier, Donald A.; Milanovich, Fred P.; Willeke, Klaus

    2003-01-01

    A high air volume to low liquid volume aerosol collector. A high volume flow of aerosol particles is drawn into an annular, centripetal slot in a collector which directs the aerosol flow into a small volume of liquid pool contained is a lower center section of the collector. The annular jet of air impinges into the liquid, imbedding initially airborne particles in the liquid. The liquid in the pool continuously circulates in the lower section of the collector by moving to the center line, then upwardly, and through assistance by a rotating deflector plate passes back into the liquid at the outer area adjacent the impinging air jet which passes upwardly through the liquid pool and through a hollow center of the collector, and is discharged via a side outlet opening. Any liquid droplets escaping with the effluent air are captured by a rotating mist eliminator and moved back toward the liquid pool. The collector includes a sensor assembly for determining, controlling, and maintaining the level of the liquid pool, and includes a lower centrally located valve assembly connected to a liquid reservoir and to an analyzer for analyzing the particles which are impinged into the liquid pool.

  19. Performance testing of the Acurex solar-collector Model 3001-03

    SciTech Connect

    Dudley, V.E.; Workhoven, R.M.

    1982-03-01

    Results are summarized of tests conducted at the Collector Module Test Facility on an Acurex Model 3001-03 Parabolic Trough Concentrating Solar Collector. Test temperaure range was 100/sup 0/C to 300/sup 0/C. Tests were conducted with the collector axis oriented east-west and again with the collector axis oriented north-south. Three collectors were tested: one using polished aluminum mirrors, one using glass mirrors, and another using an aluminized acrylic film mirror.

  20. The design of a vehicle-mounted test system for the thermal performance of solar collector

    NASA Astrophysics Data System (ADS)

    Wen, S. R.; Wu, X. H.; Zhou, L.; Zheng, W.; Liu, L.; Yan, J. C.

    2016-08-01

    To increase the test efficiency of thermal performance of solar collector, a vehicle- mounted test system with high automation, simple operation, good mobility and stability is proposed in this paper. By refitting a medium bus, design of mechanical system and test loop, and using PC control technology, we implemented the vehicle-mounted system and realized effective integration between vehicle and test equipment. A number of tests have been done, and the results show that the vehicle-mounted test system has good parameters and performance and can be widely used to provide door-to-door testing services in the field of solar thermal application.

  1. SEMICONDUCTOR DEVICES Effect of collector bias current on the linearity of common-emitter BJT amplifiers

    NASA Astrophysics Data System (ADS)

    Kun, Li; Jianfu, Teng; Xiuwei, Xuan

    2010-12-01

    Using a Volterra series, an explicit formula is derived for the connection between input 3rd-order intercept point and collector bias current (ICQ) in a common-emitter bipolar junction transistor amplifier. The analysis indicates that the larger ICQ is, the more linear the amplifier is. Furthermore, this has been verified by experiment. This study also integrates a method called dynamic bias current for expanding the dynamic range of an LNA (low noise amplifier) as an application of the analysis result obtained above. IMR3 (3rd-order intermodulation rate) is applied to evaluate the LNA's performance with and without adopting this method in this study.

  2. Standardized performance tests of collectors of solar thermal energy-a flat-plate collector with a single-tube serpentine flow distribution

    NASA Technical Reports Server (NTRS)

    Johnson, S.

    1976-01-01

    This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficienty is correlated in terms of inlet temperature and flux level.

  3. Sampling efficiency of the Moore egg collector

    USGS Publications Warehouse

    Worthington, Thomas A.; Brewer, Shannon K.; Grabowski, Timothy B.; Mueller, Julia

    2013-01-01

    Quantitative studies focusing on the collection of semibuoyant fish eggs, which are associated with a pelagic broadcast-spawning reproductive strategy, are often conducted to evaluate reproductive success. Many of the fishes in this reproductive guild have suffered significant reductions in range and abundance. However, the efficiency of the sampling gear used to evaluate reproduction is often unknown and renders interpretation of the data from these studies difficult. Our objective was to assess the efficiency of a modified Moore egg collector (MEC) using field and laboratory trials. Gear efficiency was assessed by releasing a known quantity of gellan beads with a specific gravity similar to that of eggs from representatives of this reproductive guild (e.g., the Arkansas River Shiner Notropis girardi) into an outdoor flume and recording recaptures. We also used field trials to determine how discharge and release location influenced gear efficiency given current methodological approaches. The flume trials indicated that gear efficiency ranged between 0.0% and 9.5% (n = 57) in a simple 1.83-m-wide channel and was positively related to discharge. Efficiency in the field trials was lower, ranging between 0.0% and 3.6%, and was negatively related to bead release distance from the MEC and discharge. The flume trials indicated that the gellan beads were not distributed uniformly across the channel, although aggregation was reduced at higher discharges. This clustering of passively drifting particles should be considered when selecting placement sites for an MEC; further, the use of multiple devices may be warranted in channels with multiple areas of concentrated flow.

  4. Advanced Hybrid Particulate Collector Project Management Plan

    SciTech Connect

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  5. Solar energy collector/storage system

    SciTech Connect

    Bettis, J.R.; Clearman, F.R.

    1983-05-24

    A solar energy collector/storage system which includes an insulated container having working fluid inlets and outlets and an opening, a light-transmitting member positioned over the opening, and a heat-absorbing member which is centrally situated, is supported in the container, and is made of a mixture of gypsum , lampblack, and water. A light-reflecting liner made of corrugated metal foil preferably is attached to the internal surface of the container. The opening of the container is positioned in optical alignment with a source of solar energy. A light-reflecting cover optionally can be hingedly attached to the container, and can be positioned such as to reflect solar energy rays into the container. The system is adaptable for use with a working gas (e.g., air) and/or a working liquid (e.g., water) in separated flows which absorb heat from the heat-absorbing member, and which are useable per se or in an associated storage and/or circulatory system that is not part of this invention. The heatabsorbing mixture can also contain glass fibers. The heatabsorbing member is of such great load-bearing strength that it can also be used simultaneously as a structural member, e.g., a wall or ceiling of a room; and, thereby, the system can be used to heat a room, if a window of the room is the light-transmitting member and is facing the sun, and if the heat-absorbing member is a wall and/or the ceiling of the room and receives solar energy through the window.

  6. Morphological and Molecular Characterization of Human Dermal Lymphatic Collectors

    PubMed Central

    Buttler, Kerstin; Ströbel, Philipp; Becker, Jürgen; Aung, Thiha; Felmerer, Gunther; Wilting, Jörg

    2016-01-01

    Millions of patients suffer from lymphedema worldwide. Supporting the contractility of lymphatic collectors is an attractive target for pharmacological therapy of lymphedema. However, lymphatics have mostly been studied in animals, while the cellular and molecular characteristics of human lymphatic collectors are largely unknown. We studied epifascial lymphatic collectors of the thigh, which were isolated for autologous transplantations. Our immunohistological studies identify additional markers for LECs (vimentin, CCBE1). We show and confirm differences between initial and collecting lymphatics concerning the markers ESAM1, D2-40 and LYVE-1. Our transmission electron microscopic studies reveal two types of smooth muscle cells (SMCs) in the media of the collectors with dark and light cytoplasm. We observed vasa vasorum in the media of the largest collectors, as well as interstitial Cajal-like cells, which are highly ramified cells with long processes, caveolae, and lacking a basal lamina. They are in close contact with SMCs, which possess multiple caveolae at the contact sites. Immunohistologically we identified such cells with antibodies against vimentin and PDGFRα, but not CD34 and cKIT. With Next Generation Sequencing we searched for highly expressed genes in the media of lymphatic collectors, and found therapeutic targets, suitable for acceleration of lymphatic contractility, such as neuropeptide Y receptors 1, and 5; tachykinin receptors 1, and 2; purinergic receptors P2RX1, and 6, P2RY12, 13, and 14; 5-hydroxytryptamine receptors HTR2B, and 3C; and adrenoceptors α2A,B,C. Our studies represent the first comprehensive characterization of human epifascial lymphatic collectors, as a prerequisite for diagnosis and therapy. PMID:27764183

  7. Collector optic cleaning by in-situ hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Elg, Daniel T.; Panici, Gianluca A.; Srivastava, Shailendra N.; Ruzic, D. N.

    2015-03-01

    Extreme ultraviolet (EUV) lithography sources produce EUV photons by means of a hot, dense, highly-ionized Sn plasma. This plasma expels high-energy Sn ions and neutrals, which deposit on the collector optic used to focus the EUV light. This Sn deposition lowers the reflectivity of the collector optic, necessitating downtime for collector cleaning and replacement. A method is being developed to clean the collector with an in-situ hydrogen plasma, which provides hydrogen radicals that etch the Sn by forming gaseous SnH4. This method has the potential to significantly reduce collector-related source downtime. EUV reflectivity restoration and Sn cleaning have been demonstrated on multilayer mirror samples attached to a Sn-coated 300mm-diameter steel dummy collector driven at 300W RF power with 500sccm H2 and a pressure of 260mTorr. Use of the in-situ cleaning method is also being studied at industriallyapplicable high pressure (1.3 Torr). Plasma creation across the dummy collector surface has been demonstrated at 1.3 Torr with 1000sccm H2 flow, and etch rates have been measured. Additionally, etching has been demonstrated at higher flow rates up to 3200sccm. A catalytic probe has been used to measure radical density at various pressures and flows. The results lend further credence to the hypothesis that Sn removal is limited not by radical creation but by the removal of SnH4 from the plasma. Additionally, further progress has been made in an attempt to model the physical processes behind Sn removal.

  8. Evaluation of flat-plate collector efficiency under controlled conditions in a solar simulator

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.; Simon, F. F.

    1976-01-01

    The measured thermal efficiencies of 35 collectors tested with a solar simulator, along with the correlation equations used to generalize the data, are presented. The single correlation used is shown to apply to all the different types of collectors tested, including one with black paint and one cover, one with a selective surface coating and two covers, and an evacuated-tube collector. The test and correlation technique is also modified by using a shield so that collectors larger than the simulator test area can also be tested. This technique was verified experimentally for a shielded collector for which the collector shielded area was 31% of the solar simulator radiation area. A table lists all the collectors tested, the collector areas, and the experimental constants used to correlate the data for each collector.

  9. Atmospheric Ionic Deposition in Tropical Sites of Central Sulawesi Determined by Ion Exchange Resin Collectors and Bulk Water Collector.

    PubMed

    Köhler, S; Jungkunst, H F; Gutzler, C; Herrera, R; Gerold, G

    2012-09-01

    In the light of global change, the necessity to monitor atmospheric depositions that have relevant effects on ecosystems is ever increasing particularly for tropical sites. For this study, atmospheric ionic depositions were measured on tropical Central Sulawesi at remote sites with both a conventional bulk water collector system (BWS collector) and with a passive ion exchange resin collector system (IER collector). The principle of IER collector to fix all ionic depositions, i.e. anions and cations, has certain advantages referring to (1) post-deposition transformation processes, (2) low ionic concentrations and (3) low rainfall and associated particulate inputs, e.g. dust or sand. The ionic concentrations to be measured for BWS collectors may easily fall below detection limits under low deposition conditions which are common for tropical sites of low land use intensity. Additionally, BWS collections are not as independent from the amount of rain fallen as are IER collections. For this study, the significant differences between both collectors found for nearly all measured elements were partly correlated to the rainfall pattern, i.e. for calcium, magnesium, potassium and sodium. However, the significant differences were, in most cases, not highly relevant. More relevant differences between the systems were found for aluminium and nitrate (434-484 %). Almost five times higher values for nitrate clarified the advantage of the IER system particularly for low deposition rate which is one particularity of atmospheric ionic deposition in tropical sites of extensive land use. The monthly resolution of the IER data offers new insights into the temporal distribution of annual ionic depositions. Here, it did not follow the tropical rain pattern of a drier season within generally wet conditions.

  10. Effect of the collector tube profile on Pitot pump performances

    NASA Astrophysics Data System (ADS)

    Komaki, K.; Kanemoto, T.; Sagara, K.; Umekage, T.

    2013-12-01

    The pitot pump is composed of the rotating casing with the impeller channel and the pitot tube type collector as the discharge line. The radial impeller feeds water to the rotating casing. The water rotating together with the casing is caught by the stationary pitot tube type collector, and then discharges to the outside. This type pump, as the extra high head pump, is provided mainly for boiler feed systems, and has been designed by trial and error. To optimize the pump profiles, it is desirable to investigate not only performances but also internal flow conditions. This paper discusses experimentally and numerically the relation between the pump performances and the flow conditions in the rotating casing. The moderately larger dimensions of the collector make the pump head and the discharge high with the higher hydraulic efficiency. The flow in the casing is almost the forced vortex type whose velocity is in proportion to the radius but the core velocity is affected with the drag force of the stationary collector. Based upon the above results, the profile of the pitot tube type collector was optimized with the numerical simulation.

  11. Solar internal lighting using optical collectors and fibers

    NASA Astrophysics Data System (ADS)

    Francini, F.; Fontani, D.; Jafrancesco, D.; Mercatelli, L.; Sansoni, P.

    2006-08-01

    A system exploiting solar energy, by means of optical collectors and fibres, has been applied for indoor illumination. The project has been called "The Sunflowers" for the property of solar collectors to track solar position during the day. Every "sunflower" contains several solar collectors, each of which is coupled to an optical fibre. The "Sunflower" is provided of mechanical systems and electric accessories for solar tracking. The light focused by the solar collector can be used in two possible ways: for internal illumination with direct solar light; otherwise it can be accumulated for lighting when the sun is not present. The first function is obtained coupling the optical collector to an optical fibre, which transports the solar light in selected points within the showcases. The second one consists in focusing solar light on a photovoltaic cell of the last generation type with high efficiency. In this configuration the photovoltaic cell converts the focused light into electric energy to be used for illumination in case of sun absence. A demonstrative installation has been realised applying this solar illumination system to museum lighting: a prototype has been tested in a prestigious museum in Florence.

  12. Wide acceptance angle, high concentration ratio, optical collector

    NASA Technical Reports Server (NTRS)

    Kruer, Mark Arthur (Inventor)

    1990-01-01

    The invention is directed to an optical collector requiring a wide acceptance angle, and a high concentration ratio. The invention is particularly adapted for use in solar collectors of cassegrain design. The optical collector system includes a parabolic circular concave primary mirror and a hyperbolic circular convex secondary mirror. The primary mirror includes a circular hole located at its center wherein a solar collector is located. The mirrored surface of the secondary mirror has three distinct zones: a center circle, an on-axis annulus, and an off-axis section. The parabolic shape of the primary mirror is chosen so that the primary mirror reflects light entering the system on-axis onto the on-axis annulus. A substantial amount of light entering the system off-axis is reflected by the primary mirror onto either the off-axis section or onto the center circle. Subsequently, the off-axis sections reflect the off-axis light toward the solar collector. Thus, off-axis light is captured which would otherwise be lost to the system. The novelty of the system appears to lie in the configuration of the primary mirror which focuses off-axis light onto an annular portion of the secondary mirror to enable capture thereof. This feature results in wide acceptance angle and a high concentration ratio, and also compensates for the effects of non-specular reflection, and enables a cassegrain configuration to be used where such characteristics are required.

  13. Wide acceptance angle, high concentration ratio, optical collector

    NASA Astrophysics Data System (ADS)

    Kruer, Mark Arthur

    1990-03-01

    The invention is directed to an optical collector requiring a wide acceptance angle, and a high concentration ratio. The invention is particularly adapted for use in solar collectors of cassegrain design. The optical collector system includes a parabolic circular concave primary mirror and a hyperbolic circular convex secondary mirror. The primary mirror includes a circular hole located at its center wherein a solar collector is located. The mirrored surface of the secondary mirror has three distinct zones: a center circle, an on-axis annulus, and an off-axis section. The parabolic shape of the primary mirror is chosen so that the primary mirror reflects light entering the system on-axis onto the on-axis annulus. A substantial amount of light entering the system off-axis is reflected by the primary mirror onto either the off-axis section or onto the center circle. Subsequently, the off-axis sections reflect the off-axis light toward the solar collector. Thus, off-axis light is captured which would otherwise be lost to the system. The novelty of the system appears to lie in the configuration of the primary mirror which focuses off-axis light onto an annular portion of the secondary mirror to enable capture thereof. This feature results in wide acceptance angle and a high concentration ratio, and also compensates for the effects of non-specular reflection, and enables a cassegrain configuration to be used where such characteristics are required.

  14. Optimization of the functional domain of flat plate collectors

    NASA Astrophysics Data System (ADS)

    Ritoux, G.; Irigaray, J.-L.

    1981-12-01

    The variations of the extracted heat flux as function of the temperature of the heat transfer fluid in black and selective surface solar collectors are examined. The heat flux is calculated based on the difference of the initial to the stage of thermal equilibrium of the fluid. A nonlinear system of equations is developed and solved by a fast, iterative method to obtain the equilibrium temperatures. It is found that more flux can be extracted from the solar heat by a collector with only one glass cover than with more than one cover. The captured flux is proportional to the coefficient of transmission of the glass coverings, to the coefficient of absorption of the collector, and to the incident flux. Black painted surfaces were more absorbent than selective surfaces, and highest collection efficiencies were displayed by low temperature collectors. Charts of effective uses of the respective types of collectors for heating swimming pools, hot water, home heat, and for refrigeration and air-conditioning are provided.

  15. Commissioning a Megawatt-class Gyrotron with Collector Potential Depression

    NASA Astrophysics Data System (ADS)

    Lohr, J.; Cengher, M.; Gorelov, Y. A.; Ponce, D.; Prater, R.

    2013-10-01

    A 110 GHz depressed collector gyrotron has been installed on the DIII-D tokamak. The commissioning process rapidly achieved operation at full parameters, 45 A and 94 kV total voltage, with 29 kV depression. Although short pulse, 2 ms, factory testing demonstrated 1.2 MW at 41% electrical efficiency, long pulse testing at DIII-D achieved only 33% efficiency at full power parameters, for pulse lengths up to 10 s. Maximum generated power was ~950 kW, considerably below the 1.2 MW target. During attempts to increase the power at 5 s pulse length, it was noted that the collector cooling water was boiling. This led to the discovery that 14 of the 160 cooling channels in the collector had been blocked by braze material during manufacture of the tube. The locations of blocked channels were identified using infrared imaging of the outside of the collector during rapid changes in the cooling water temperature. Despite these difficulties, the rf beam itself was of very high quality and the stray rf found calorimetrically in the Matching Optics Unit, which couples the Gaussian rf beam to the waveguide, was only 2% of the generated power, about half that of our previous best quality high power beam. Details of the power measurements and collector observations will be presented. Work supported by the US DOE under DE-FC02-04ER54698.

  16. MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Ye Zhuang; Stanley J. Miller

    2005-05-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control

  17. Optimization of solar air collector using genetic algorithm and artificial bee colony algorithm

    NASA Astrophysics Data System (ADS)

    Şencan Şahin, Arzu

    2012-11-01

    Thermal performance of solar air collector depends on many parameters as inlet air temperature, air velocity, collector slope and properties related to collector. In this study, the effect of the different parameters which affect the performance of the solar air collector are investigated. In order to maximize the thermal performance of a solar air collector genetic algorithm (GA) and artificial bee colony algorithm (ABC) have been used. The results obtained indicate that GA and ABC algorithms can be applied successfully for the optimization of the thermal performance of solar air collector.

  18. Evaluation of initial collector field performance at the Langley Solar Building Test Facility

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Jensen, R. N.; Knoll, R. H.

    1977-01-01

    The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. A 1,180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row were calculated and recorded along with sensor, insolation, and weather data every five minutes using a minicomputer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points.

  19. Evaluation of initial collector field performance at the Langley Solar Building Test Facility

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Knoll, R. H.; Jensen, R. N.

    1977-01-01

    The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. An 1180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row are calculated and recorded along with sensor, insolation, and weather data every 5 minutes using a mini-computer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points.

  20. Four Interstellar Dust Candidates from the Stardust Interstellar Dust Collector

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; Butterworth, A. L.; Cloetens, P.; Davis, A. M.; Floss, C.; Flynn, G. J.; Fougeray, P.; Frank, D.; Gainsforth, Z.; Grun, E.; Heck, P. R.; Jillier, J. K.; Hoppe, P.; Howard, L.; Hudson, B.; Huss, G. R.

    2011-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approx. 0.1 sq m in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 sq m/day. The Stardust Interstellar Preliminary Examination (ISPE) is a consortium-based project to characterize the collection using nondestructive techniques. The goals and restrictions of the ISPE are described . A summary of analytical techniques is described.

  1. Application of activated charcoal radon collectors in high humidity environments.

    PubMed

    Iimoto, Takeshi; Tokonami, Shinji; Morishita, Yasuaki; Kosako, Toshiso

    2005-01-01

    Most commercially based activated charcoal radon collectors were designed for use in indoor environments. However, at present, they are often used for research in radon surveys in unique environments, such as in the bathrooms, underground areas, mines, caves and tunnels. In these environments, the relative humidity would be around 100%, and a change in the sensitivity of cpm(Bq m(-3))(-1)(radon) would occur. For this study, the reduction in the sensitivity of activated charcoal radon collector due to environmental humidity was investigated, and the data correction was discussed. Here, ST-100 (Pico-Rad) was selected as an example of a familiar activated charcoal radon collector. According to our performance test, the humidity of 90% (20 degrees C) resulted in a 15% reduction of the sensitivity for 24 h collection. The ST-100 user should discuss the necessity of data correction by comparing the change of sensitivity with other levels of estimation errors.

  2. Analysis of Molecular Contamination on Genesis Collectors Through Spectroscopic Ellipsometry

    NASA Technical Reports Server (NTRS)

    McNamara, K. M.; Stansbery, Eileen K.

    2005-01-01

    Before the spacecraft returned to Earth in September, the Genesis mission had a preliminary assessment plan in place for the purpose of providing information on the condition and availability of collector materials to the science community as a basis for allocation requests. One important component of that plan was the evaluation of collector surfaces for molecular contamination. Sources of molecular contamination might be the on-orbit outgassing of spacecraft and science canister components, the condensation of thruster by-products during spacecraft maneuvers, or the condensation of volatile species associated with reentry. Although the non-nominal return of the Genesis spacecraft introduced particulate contamination to the collectors, such as dust and heatshield carbon-carbon, it is unlikely to have caused any molecular deposition. The contingency team's quick action in returning the damaged payload the UTTR cleanroom by 6 PM the evening of recovery help to ensure that exposure to weather conditions and the environment were kept to a minimum.

  3. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    SciTech Connect

    Stynes, J. K.; Ihas, B.

    2012-04-01

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  4. Wind effects in solar fields with various collector designs

    NASA Astrophysics Data System (ADS)

    Paetzold, Joachim; Cochard, Steve; Fletcher, David F.; Vassallo, Anthony

    2016-05-01

    Parabolic trough power plants are often located in areas that are subjected to high wind speeds, as an open terrain without any obstructions is beneficial for the plant performance. The wind impacts both the structural requirements and the performance of the plant. The aerodynamic loads from the wind impose strong requirements on the support structure of the reflectors, and they also impact the tracking accuracy. On a thermal level the airflow around the glass envelope of the receiver tube cools its outer surface through forced convection, thereby contributing to the heat loss. Based on previous studies at the level of an individual row of collectors, this study analyses the wind effects in a full-scale solar field of different continuous and staggered trough designs. The airflow around several rows of parabolic trough collectors (PTC) is simulated at full scale in steady state simulations in an atmospheric boundary layer flow using the commercial computational fluid dynamics software ANSYSO® CFX 15.0. The effect of the wake of a collector row on the following collectors is analysed, and the aerodynamic loads are compared between the different geometries. The outermost collectors of a solar field experience the highest wind forces, as the rows in the interior of the solar field are protected from high wind speeds. While the aerodynamic forces in the interior of the solar field are almost independent of the collector shape, the deeper troughs (with large rim angles) tested in this study show a lower heat loss due to forced convection on the outer surface of the receiver tube than the shallower ones (with small rim angles) in most of the solar field.

  5. Thermal performance evaluation of the Semco (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Procedures used and results obtained during the evaluation test program on a flat plate collector which uses water as the working fluid are discussed. The absorber plate is copper tube soldered to copper fin coated with flat black paint. The glazing consists of two plates of Lo-Iron glass; the insulation is polyurethane foam. The collector weight is 242.5 pounds with overall external dimensions of approximately 48.8 in. x 120.8 in. x 4.1 in. The test program was conducted to obtain thermal performance data before and after 34 days of weather exposure test.

  6. Two hundred passage three-way valve: Fraction collector

    NASA Technical Reports Server (NTRS)

    Keffer, J. L.

    1983-01-01

    This paper describes the design and operation of a fraction collector used to direct flow of separated biological materials from 197 capillary tubes to either a collection tray or to a waste tank. This mechanism uses a 28-volt dc gear motor driving twin cams to force 197 needles through a self-sealing silicone rubber septum, where they inject the material in 197 separate pockets in a collection tray. The position of the collector tray is sensed by two optical limit switches. The time sequences are controlled automatically by an electronics control monitoring module.

  7. IEA/SPS 500 kW distributed collector system

    NASA Technical Reports Server (NTRS)

    Neumann, T. W.; Hartman, C. D.

    1980-01-01

    Engineering studies for an International Energy Agency project for the design and construction of a 500 kW solar thermal electric power generation system of the distributed collector system (DCS) type are reviewed. The DCS system design consists of a mixed field of parabolic trough type solar collectors which are used to heat a thermal heat transfer oil. Heated oil is delivered to a thermocline storage tank from which heat is extracted and delivered to a boiler by a second heat transfer loop using the same heat transfer oil. Steam is generated in the boiler, expanded through a steam turbine, and recirculated through a condenser system cooled by a wet cooling tower.

  8. Fuel cell collector plate and method of fabrication

    DOEpatents

    Braun, James C.; Zabriskie, Jr., John E.; Neutzler, Jay K.; Fuchs, Michel; Gustafson, Robert C.

    2001-01-01

    An improved molding composition is provided for compression molding or injection molding a current collector plate for a polymer electrolyte membrane fuel cell. The molding composition is comprised of a polymer resin combined with a low surface area, highly-conductive carbon and/or graphite powder filler. The low viscosity of the thermoplastic resin combined with the reduced filler particle surface area provide a moldable composition which can be fabricated into a current collector plate having improved current collecting capacity vis-a-vis comparable fluoropolymer molding compositions.

  9. Performance evaluation of the solar kinetics T-700 line concentrating solar collector

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A performance evaluation of the solar kinetics T-700 line concentrating solar collector is reported. Collector descriptions, summary, test conditions, test equipment, test requirements and procedures, and an analysis of the various tests performed are described.

  10. Performance of the High Resolution, Multi-collector Helix MC Plus Noble Gas Mass Spectrometer at the Australian National University

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Honda, Masahiko; Hamilton, Doug

    2016-09-01

    Performance of the Helix MC Plus noble gas mass spectrometer installed at the Australian National University (ANU) is reported. Results for sensitivity, mass discrimination and their linearity against partial pressure of noble gases, and mass resolution of the mass spectrometer are presented, and the results are compared with those of conventional noble gas mass spectrometers. The application of the five detectors on the Helix MC Plus in measuring various noble gas isotopes in multi-collector modes and the integration of the software drivers of peripheral hardware devices into the controlling program Qtegra of the mass spectrometer are discussed. High mass resolution (>1800) and mass resolving power (>8000) make this mass spectrometer unique in noble gas cosmo-geochemistry. It provides the capability to measure isobaric interference-free noble gas isotopes in multi-collector mode, significantly improves the accuracy to determine isotopic ratios, and greatly increases the efficiency of data acquisition.

  11. An analytical comparison of the efficiency of solar thermal collector arrays with and without external manifolds

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An analytical comparison of the efficiency of solar thermal collector arrays with and without external manifolds is reported. A FORTRAN computer program was written for the computation of the thermal performance of solar thermal collector arrays with and without external manifolds. Arrays constructed from two example solar thermal collectors are computated. Typical external manifold sizes and thermal insulations are presented graphically and are compared with the thermal performance of the collector alone.

  12. Flat-plate collector performance evaluation. The case for a solar simulation approach

    NASA Technical Reports Server (NTRS)

    Simon, F. F.; Harlamert, P.

    1973-01-01

    A method is proposed for determining the performance of flat-plate solar collector using a simulated sun. Collector test variables that will help establish the basis for the indoor test facility at the Lewis Research Center are discussed. The use of the indoor testing should permit a standard test for the convenient and accurate determination of collector performance. Preliminary test results are reported as an example of the type of collector performance data to be expected from the simulation approach.

  13. Status of concentrator collector and high-efficiency concentrator cell development

    SciTech Connect

    Gee, J.M.

    1990-01-01

    Photovoltaic concentrator collectors are an attractive option for utility-scale photovoltaic power plants. This paper reviews the current status of photovoltaic concentrator collector and cell development. Included in the review is a discussion of the economic motivation for concentrators, a summary of recent concentrator collector and cell development, and a description of a major new program to accelerate development and commercial introduction of concentrator collectors. 21 refs., 1 fig., 3 tabs.

  14. 30 CFR 18.21 - Machines equipped with powered dust collectors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Machines equipped with powered dust collectors... Construction and Design Requirements § 18.21 Machines equipped with powered dust collectors. Powered dust collectors on machines submitted for approval shall meet the applicable requirements of Part 33 of...

  15. 30 CFR 18.21 - Machines equipped with powered dust collectors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Machines equipped with powered dust collectors... Construction and Design Requirements § 18.21 Machines equipped with powered dust collectors. Powered dust collectors on machines submitted for approval shall meet the applicable requirements of Part 33 of...

  16. 30 CFR 18.21 - Machines equipped with powered dust collectors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Machines equipped with powered dust collectors... Construction and Design Requirements § 18.21 Machines equipped with powered dust collectors. Powered dust collectors on machines submitted for approval shall meet the applicable requirements of Part 33 of...

  17. 30 CFR 18.21 - Machines equipped with powered dust collectors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Machines equipped with powered dust collectors... Construction and Design Requirements § 18.21 Machines equipped with powered dust collectors. Powered dust collectors on machines submitted for approval shall meet the applicable requirements of Part 33 of...

  18. 30 CFR 18.21 - Machines equipped with powered dust collectors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Machines equipped with powered dust collectors... Construction and Design Requirements § 18.21 Machines equipped with powered dust collectors. Powered dust collectors on machines submitted for approval shall meet the applicable requirements of Part 33 of...

  19. Check valve and spring to prevent forward and reverse thermosiphoning in solar collector systems

    SciTech Connect

    Bagshaw, D. P.; Kast, M. A.; Whitehouse, H. T.

    1985-09-17

    A freeze protection system allows the working fluid contained in the communicating tubes of the solar collector to drain from both the input and output tubes of the collector when a first predetermined temperature of the working fluid is detected and to fill the collector via both the input and output tubes when a second predetermined temperature is detected.

  20. 30 CFR 33.35 - Methods of drilling; dust-collector unit.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Methods of drilling; dust-collector unit. 33.35..., EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.35 Methods of drilling; dust-collector unit. (a) General. All...

  1. 30 CFR 33.35 - Methods of drilling; dust-collector unit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methods of drilling; dust-collector unit. 33.35..., EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.35 Methods of drilling; dust-collector unit. (a) General. All...

  2. 30 CFR 33.35 - Methods of drilling; dust-collector unit.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Methods of drilling; dust-collector unit. 33.35..., EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.35 Methods of drilling; dust-collector unit. (a) General. All...

  3. 30 CFR 33.35 - Methods of drilling; dust-collector unit.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Methods of drilling; dust-collector unit. 33.35..., EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.35 Methods of drilling; dust-collector unit. (a) General. All...

  4. 30 CFR 33.35 - Methods of drilling; dust-collector unit.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Methods of drilling; dust-collector unit. 33.35..., EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.35 Methods of drilling; dust-collector unit. (a) General. All...

  5. 27 CFR 478.93 - Authorized operations by a licensed collector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Authorized operations by a licensed collector. 478.93 Section 478.93 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL... the licensed collector in curios and relics. The collector's license is of no force or effect and...

  6. Design and installation package for the Sunmat Flat Plate solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The information used in evaluating the design of a liquid flat plate solar collector is reported. Included in this package are subsystem performance specification, installation, operation and maintenance manuals, collector sizing guides, and detailed drawings of the single-glazed collector.

  7. Development of nonmetallic solar collector and solar-powered pump

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1979-01-01

    Design and building of two unique components for solar heating (1. flatplate solar collector using no metal components, and 2. solar powered pump for heating and cooling systems are outlined in report. Report also discusses hardware, deliverable end items, problems encountered during fabrication and testing, and performance certification.

  8. Evaluation of solar collectors for heat pump applications. Final report

    SciTech Connect

    Skartvedt, Gary; Pedreyra, Donald; McMordle, Dr., Robert; Kidd, James; Anderson, Jerome; Jones, Richard

    1980-08-01

    The study was initiated to evaluate the potential utility of very low cost (possibly unglazed and uninsulated) solar collectors to serve as both heat collection and rejection devices for a liquid source heat pump. The approach consisted of exercising a detailed analytical simulation of the complete heat pump/solar collector/storage system against heating and cooling loads derived for typical single-family residences in eight US cities. The performance of each system was measured against that of a conventional air-to-air heat pump operating against the same loads. In addition to evaluation of solar collector options, the study included consideration of water tanks and buried pipe grids to provide thermal storage. As a supplement to the analytical tasks, the study included an experimental determination of night sky temperature and convective heat transfer coefficients for surfaces with dimensions typical of solar collectors. The experiments were conducted in situ by placing the test apparatus on the roofs of houses in the Denver, Colorado, area. (MHR)

  9. Solar-collector manufacturing activity, July through December, 1981

    SciTech Connect

    1982-03-01

    Solar thermal collector and solar cell manufacturing activity is both summarized and tabulated. Data are compared for three survey periods (July through December, 1981; January through June, 1981; and July through December, 1980). Annual totals are also provided for the years 1979 through 1981. Data include total producer shipments, end use, market sector, imports and exports. (LEW)

  10. Carrier signal technology applied to solar collector field control

    SciTech Connect

    Alvis, R.L.

    1981-01-01

    The development and operational performance are described of a control system designed specifically for solar distributed collector field systems. Carrier technology is employed to eliminate costly field constructed control wiring and allows the control system quality to be controlled at system suppliers' plants. Prototype hardware has been built and tested in the field with excellent operating results.

  11. The Stardust Interstellar Dust Collector and Stardust@home

    NASA Astrophysics Data System (ADS)

    Westphal, A. J.; Anderson, D.; Bastien, R.; Butterworth, A.; Frank, D.; Gainsforth, Z.; Kelley, N.; Lettieri, R.; Mendez, B.; Prasad, R.; Tsitrin, S.; von Korff, J.; Warren, J.; Wertheimer, D.; Zhang, A.; Zolensky, M.

    2006-12-01

    The Stardust sample return mission is effectively two missions in one. Stardust brought back to earth for analytical study the first solid samples from a known solar system body beyond the moon, comet Wild2. The first results of the analyses of these samples are reported elsewhere in this session. In a separate aerogel collector, Stardust also captured and has returned the first samples of contemporary interstellar dust. Landgraf et al. [1] has estimated that ~ 50 interstellar dust particles in the micron size range have been captured in the Stardust Interstellar Dust Collector. Their state after capture is unknown. Before analysis of these particles can begin, they must be located in the collector. Here we describe the current status of Stardust@home, the massively distributed public search for these tiny interstellar dust particles. So far more than 13,000 volunteers have collectively performed more than 10,000,000 searches in stacks of digital images of ~10% of the collector. We report new estimates of the flux of interplanetary dust at ~2 AU based on the results of this search, and will compare with extant models[2]. References: [1] Landgraf et al., (1999) Planet. Spac. Sci. 47, 1029. [2] Staubach et al. (2001) in Interplanetary Dust, E. Grün, ed., Astron. &Astro. Library, Springer, 2001.

  12. Silicon crystal as a low work function collector

    NASA Technical Reports Server (NTRS)

    Chang, K. H.; Shimada, K.

    1975-01-01

    A test vehicle with a low work function collector which can be incorporated in a thermionic converter was constructed from standard vacuum components including an ultrahigh vacuum ion pump. The collector assembly was fabricated by diffusion bonding a (100) oriented silicon single crystal to a molybdenum block. The silicon surface was treated with cesium and oxygen to produce an NEA-type condition and the results were tested by photoemission and work function measurements. An n-type silicon collector was successfully activated to a work function of 1.0 eV, which was verified by photoemission spectral yield measurements. The stability test of an activated surface at elevated temperatures was conducted in the range from room temperature to 619 K, which was slightly lower than the designed collector temperature of 700 K. The work function measurements clearly demonstrated that the behavior of cesium replenishment on the activated Si surface was similar in nature to that of a metallic surface; that is, the loss of cesium by thermal desorption could be compensated by maintaining an adequate vapor pressure of cesium.

  13. Carbon nanotube-based supercapacitors using low cost collectors

    NASA Astrophysics Data System (ADS)

    Amirhoseiny, Maryam; Zandi, Majid; Mosayyebi, Abolghasem; Khademian, Mehrzad

    2016-01-01

    In this work, electrochemical double layer supercapacitors were fabricated using multiwalled carbon nanotube (MWCNT) composite microfilm as electrode. To improve the electrochemical properties, MWCNTs were functionalized with -COOH by acid treatments. CNT/PVA films have been deposited on different current collectors by spin coating to drastically enhance the electrode performance. Electrode fabrication involved various stages preparing of the CNT composite, and coating of the CNT/PVA paste on different substrates which also served as current collector. Al, Ni and graphite were used and compared as current collectors. The surface morphology of the fabricated electrodes was investigated with scanning electrode microscopy (SEM). Overall cell performance was evaluated with a multi-channel potentiostat/galvanostat analyzer. Each supercapacitor cell was subjected to charge-discharge cycling study at different current rates from 0.2Ag-1 to 1Ag-1. The results showed that graphite-based electrodes offer advantages of significantly higher conductivity and superior capacitive behavior compared to thin film electrodes formed on Ni and Al current collectors. The specific capacitance of graphite based electrode is found to be 29Fg-1.

  14. Certification and verification for Calmac flat plate solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information used in the certification and verification of the Calmac Flat Plate Collector is presented. Contained are such items as test procedures and results, information on materials used, installation, operation, and maintenance manuals, and other information pertaining to the verification and certification.

  15. Analysis of gas heat conduction in evacuated tube solar collectors

    SciTech Connect

    Beikircher, T.; Spirkl, W.

    1996-12-31

    The authors investigated the gas heat conduction in two types of evacuated tubular solar collectors for a wide range of Knudsen numbers. For tube-in-tube collectors, they generalized a solution of the gas kinetic Boltzmann equation, which has been obtained by the 4-momentum method, to polyatomic gases. The resulting equation coincides with Sherman`s interpolation formula. For a plate-in-tube collector, they measured the stationary heat loss for gas pressures varying between 10{sup {minus}2} and 10{sup 4} Pa. The accuracy of an earlier experiment was improved. For analysis the authors applied the temperature jump method: a heat conduction equation with boundary conditions of the third kind involving the temperature gradient and the pressure was numerically solved. The results with the temperature jump method agree with the experimental values nearly within the error bands. They also applied Sherman`s interpolation formula and found, as expected, that the heat conduction as function of the pressure is too steep. For both types of collectors, the influence of geometric parameters was theoretically studied.

  16. Analysis of gas heat conduction in evacuated tube solar collectors

    SciTech Connect

    Beikircher, T.; Spirkl, W.

    1996-08-01

    The authors investigated the gas heat conduction in two types of evacuated tubular solar collectors for a wide range of Knudsen numbers. For tube-in-tube collectors, they generalized a solution of the gas kinetic Boltzmann equation, which has been obtained by the four-momentum method, to polyatomic gases. The resulting equation coincides with Sherman`s interpolation formula. For a plate-in-tube collector, they measured the stationary heat loss for gas pressures varying between 10{sup {minus}2} and 10{sup 4} Pa. The accuracy of an earlier experiment was improved. For analysis they applied the temperature jump method: a heat conduction equation with boundary conditions of the third kind involving the temperature gradient and the pressure was numerically solved. The results with the temperature jump method agree with the experimental values nearly within the error bands. They also applied Sherman`s interpolation formula and found, as expected, that the heat conduction as function of the pressure is too steep. For both types of collectors, the influence of geometric parameters was theoretically studied.

  17. 7 CFR 58.221 - Collectors and conveyors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Collectors and conveyors. 58.221 Section 58.221 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF...

  18. 49. VIEW FROM WEST OF DUST COLLECTOR BLOWER LOCATED AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. VIEW FROM WEST OF DUST COLLECTOR BLOWER LOCATED AT CRUSHED OXIDIZED ORE BIN FEED LEVEL. THE ROASTER IS BEYOND AND THE MACHINE SHOP IS ON THE TRAM TERRACE, UPPER RIGHT. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  19. Inverse Marx modulators for self-biasing klystron depressed collectors

    SciTech Connect

    Kemp, Mark A.

    2014-07-31

    A novel pulsed depressed collector biasing scheme is proposed. This topology feeds forward energy recovered during one RF pulse for use on the following RF pulse. The presented ''inverse'' Marx charges biasing capacitors in series, and discharges them in parallel. Simulations are shown along with experimental demonstration on a 62kW klystron.

  20. Extra focal convective suppressing solar collector. Final technical progress report

    SciTech Connect

    1996-05-01

    This progress report describes work done on the Extra Focal Convective Suppressing Solar Collector. The topics of the report include sensor refinement for the tracking electronics, tracking controller refinement, system optics evaluation, absorber system material evaluation and performance, tracking hardware evaluation and refinement, and full scale prototype construction and testing.

  1. 21 CFR 876.5250 - Urine collector and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Urine collector and accessories. 876.5250 Section 876.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5250 Urine...

  2. 21 CFR 876.5250 - Urine collector and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Urine collector and accessories. 876.5250 Section 876.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5250 Urine...

  3. 21 CFR 876.5250 - Urine collector and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Urine collector and accessories. 876.5250 Section 876.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5250 Urine...

  4. 21 CFR 876.5250 - Urine collector and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Urine collector and accessories. 876.5250 Section 876.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5250 Urine...

  5. 21 CFR 876.5250 - Urine collector and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Urine collector and accessories. 876.5250 Section 876.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5250 Urine...

  6. Genesis Solar Wind Collector Cleaning Assessment: 60366 Sample Case Study

    NASA Technical Reports Server (NTRS)

    Goreva, Y. S.; Gonzalez, C. P.; Kuhlman, K. R.; Burnett, D. S.; Woolum, D.; Jurewicz, A. J.; Allton, J. H.; Rodriguez, M. C.; Burkett, P. J.

    2014-01-01

    In order to recognize, localize, characterize and remove particle and thin film surface contamination, a small subset of Genesis mission collector fragments are being subjected to extensive study via various techniques [1-5]. Here we present preliminary results for sample 60336, a Czochralski silicon (Si-CZ) based wafer from the bulk array (B/C).

  7. Comparison under a simulated sun of two black-nickel-coated flat-plate solar collectors with a nonselective black-paint-coated collector

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1975-01-01

    A performance evaluation was made of two, black nickel coated, flat plate solar collectors. Collector performance was determined under a simulated sun for a wide range of inlet temperatures, including the temperature required for solar powered absorption air conditioning. For a basis of comparison a performance test was made on a traditional, two glass, nonselective, black paint coated, flat plate collector. Performance curves and performance parameters are presented to point out the importance of the design variables which determine an efficient collector. A black nickel coated collector was found to be a good performer at the conditions expected for solar powered absorption air conditioning. This collector attained a thermal efficiency of 50 percent at an inlet temperature of 366 K (200 F) and an incident flux of 946 watts/sq m (300 Btu/hr-sq ft).

  8. The CERN antiproton source: Controls aspects of the additional collector ring and fast sampling devices

    NASA Astrophysics Data System (ADS)

    Chohan, V.

    1990-08-01

    The upgrade of the CERN antiproton source, meant to gain an order of magnitude in antiproton flux, required the construction of an additional ring to complement the existing antiproton accumulator (AA) and an entire rebuild of the target zone. The AA also needed major modifications to handle the increased flux and perform purely as an accumulator, preceded by collection in the collector ring (AC). The upgrade, known as the ACOL (antiproton collector) project, was approved under strict time and budgetary constraints and the existing AA control system, based on the Proton Synchrotron (PS) Divisional norms of CAMAC and Norsk-Data computers, had to be extended in the light of this. The limited (9 months) installation period for the whole upgrade meant that substantial preparatory and planning activities had to be carried out during the normal running of the AA. Advantage was taken of the upgrade to improve and consolidate the AA. Some aspects of the control system related to this upgrade are discussed together with the integration of new applications and instrumentation. The overall machine installation and running-in was carried out within the defined milestones and the project has now achieved the physics design goals.

  9. Energy cost based design optimization method for medium temperature CPC collectors

    NASA Astrophysics Data System (ADS)

    Horta, Pedro; Osório, Tiago; Collares-Pereira, Manuel

    2016-05-01

    CPC collectors, approaching the ideal concentration limits established by non-imaging optics, can be designed to have such acceptance angles enabling fully stationary designs, useful for applications in the low temperature range (T < 100°C). Their use in the medium temperature range (100°C < T < 250°C) typically requires higher concentration factors in turn requiring seasonal tracking strategies. Considering the CPC design options in terms of effective concentration factor, truncation, concentrator height, mirror perimeter, seasonal tracking, trough spacing, etc., an energy cost function based design optimization method is presented in this article. Accounting for the impact of the design on its optical (optical efficiency, Incidence Angle Modifier, diffuse acceptance) and thermal performances (dependent on the concentration factor), the optimization function integrates design (e.g. mirror area, frame length, trough spacing/shading), concept (e.g. rotating/stationary components, materials) and operation (e.g. O&M, tilt shifts and tracking strategy) costs into a collector specific energy cost function, in €/(kWh.m2). The use of such function stands for a location and operating temperature dependent design optimization procedure, aiming at the lowest solar energy cost. Illustrating this approach, optimization results will be presented for a (tubular) evacuated absorber CPC design operating in Morocco.

  10. Development of a consensus standard for determining thermal performance of high-concentration-ratio solar collectors

    NASA Astrophysics Data System (ADS)

    Blackmon, J. B.; Linskens, M. C.; Reed, K. A.

    1982-12-01

    Consensus standard test method, for determining the thermal performance of concentrating solar collectors is described. The method applies to outdoor testing of one or two axis concentrating collectors with heat fluids for use in thermal systems and whose design is such that the effects of diffuse sky irradiance is negligible. The procedures determine the optical response of the collector for various angles of incidence of solar radiation, and the thermal performance of the collector at various operating temperatures for the condition of maximum optical response. The method requires quasi steady state conditions, measurement of enviromental parameters, and determination of the fluidmass flow rate specific heat product and temperature difference of the heat transfer fluid between the inlet and outlet of the collector. These quantities determine the rate of heat gain for the solar irradiance condition encountered. Thermal performance is determined as the rate of heat gain of the collector relative to the solar power incident on the plane of the collector aperture.

  11. Characterization of a direct methanol fuel cell using Hilbert curve fractal current collectors

    NASA Astrophysics Data System (ADS)

    Kuan, Yean-Der; Chang, Jing-Yi; Lee, Shi-Min; Lee, Shah-Rong

    The current collector or bi-polar plate is a key component in direct methanol fuel cells (DMFCs). Current collector geometric designs have significant influence on cell performance. This paper presents a continuous type fractal geometry using the Hilbert curve applied to current collector design in a direct methanol fuel cell. The Hilbert curve fractal geometry current collector is named HFCC (Hilbert curve fractal current collector). This research designs the current collector using a first, second and third order open carved HFCC shape. The cell performances of the different current collector geometries were measured and compared. Two important factors, the free open ratio and total perimeter length of the open carved design are discussed. The results show that both the larger free open ratio and longer carved open perimeter length present higher performance.

  12. Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating

    SciTech Connect

    Benli, Hueseyin; Durmus, Aydin

    2009-12-15

    The continuous increase in the level of greenhouse gas emissions and the rise in fuel prices are the main driving forces behind the efforts for more effectively utilize various sources of renewable energy. In many parts of the world, direct solar radiation is considered to be one of the most prospective sources of energy. In this study, the thermal performance of a phase change thermal storage unit is analyzed and discussed. The storage unit is a component of ten pieced solar air collectors heating system being developed for space heating of a greenhouse and charging of PCM. CaCl{sub 2}6H{sub 2}O was used as PCM in thermal energy storage with a melting temperature of 29 C. Hot air delivered by ten pieced solar air collector is passed through the PCM to charge the storage unit. The stored heat is utilized to heat ambient air before being admitted to a greenhouse. This study is based on experimental results of the PCM employed to analyze the transient thermal behavior of the storage unit during the charge and discharge periods. The proposed size of collectors integrated PCM provided about 18-23% of total daily thermal energy requirements of the greenhouse for 3-4 h, in comparison with the conventional heating device. (author)

  13. Investigation of Backside Textures for Genesis Solar Wind Silicon Collectors

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. P.; Burkett, P. J.; Rodriguez, M. C.; Allton, J. H.

    2014-01-01

    Genesis solar wind collectors were comprised of a suite of 15 types of ultrapure materials. The single crystal, pure silicon collectors were fabricated by two methods: float zone (FZ) and Czochralski (CZ). Because of slight differences in bulk purity and surface cleanliness among the fabrication processes and the specific vendor, it is desirable to know which variety of silicon and identity of vendor, so that appropriate reference materials can be used. The Czochralski method results in a bulk composition with slightly higher oxygen, for example. The CZ silicon array wafers that were Genesis-flown were purchased from MEMC Electronics. Most of the Genesis-flown FZ silicon was purchased from Unisil and cleaned by MEMC, although a few FZ wafers were acquired from International Wafer Service (IWS).

  14. Lightweight diaphragm mirror module system for solar collectors

    DOEpatents

    Butler, Barry L.

    1985-01-01

    A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.

  15. Lightweight diaphragm mirror module system for solar collectors

    DOEpatents

    Butler, B.L.

    1984-01-01

    A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.

  16. Oil/gas collector/separator for underwater oil leaks

    SciTech Connect

    Henning, C.D.

    1993-05-25

    An oil/gas collector/separator for underwater oil leaks is described comprising: a cylindrical tank; a hollow float member for supporting said tank in a substantially upright position; a skirt assembly secured to said hollow float member and extending in a direction away from said float member opposite said tank; means for removing oil from said tank; and means for removing gas from said tank.

  17. Thermal performance of evacuated tube heat pipe solar collector

    NASA Astrophysics Data System (ADS)

    Putra, Nandy; Kristian, M. R.; David, R.; Haliansyah, K.; Ariantara, Bambang

    2016-06-01

    The high fossil energy consumption not only causes the scarcity of energy but also raises problems of global warming. Increasing needs of fossil fuel could be reduced through the utilization of solar energy by using solar collectors. Indonesia has the abundant potential for solar energy, but non-renewable energy sources still dominate energy consumption. With heat pipe as passive heat transfer device, evacuated tube solar collector is expected to heat up water for industrial and home usage without external power supply needed to circulate water inside the solar collector. This research was conducted to determine the performance of heat pipe-based evacuated tube solar collector as solar water heater experimentally. The experiments were carried out using stainless steel screen mesh as a wick material, and water and Al2O3-water 0.1% nanofluid as working fluid, and applying inclination angles of 0°, 15°, 30°, and 45°. To analyze the heat absorbed and transferred by the prototype, water at 30°C was circulated through the condenser. A 150 Watt halogen lamp was used as sun simulator, and the prototype was covered by an insulation box to obtain a steady state condition with a minimum affection of ambient changes. Experimental results show that the usage of Al2O3-water 0.1% nanofluid at 30° inclination angle provides the highest thermal performance, which gives efficiency as high as 0.196 and thermal resistance as low as 5.32 °C/W. The use of nanofluid as working fluid enhances thermal performance due to high thermal conductivity of the working fluid. The increase of the inclination angle plays a role in the drainage of the condensate to the evaporator that leads to higher thermal performance until the optimal inclination angle is reached.

  18. Multi-stage depressed collector for small orbit gyrotrons

    DOEpatents

    Singh, Amarjit; Ives, R. Lawrence; Schumacher, Richard V.; Mizuhara, Yosuke M.

    1998-01-01

    A multi-stage depressed collector for receiving energy from a small orbit gyrating electron beam employs a plurality of electrodes at different potentials for sorting the individual electrons on the basis of their total energy level. Magnetic field generating coils, for producing magnetic fields and magnetic iron for magnetic field shaping produce adiabatic and controlled non-adiabatic transitions of the incident electron beam to further facilitate the sorting.

  19. High-intensity flux mapper for concentrating solar collectors

    SciTech Connect

    Cannon, T.W.; Gaul, H.W.

    1982-02-01

    The flux mapper consists of a ceramic scatter plate, video camera with silicon diode array image tube (vidicon), 75 mm focal-length lens with appropriate filters, video frame store, television monitors, disk drive, magnetic tape drive and minicomputer. The camera and scatter plate are installed on a parabolic solar collector at SERI's Advanced Component Research Facility. Calibration was made by focussing the sun directly onto the vidicon target. Light intensity calibration is estimated to be accurate to about 7%. (LEW)

  20. Multi-stage depressed collector for small orbit gyrotrons

    DOEpatents

    Singh, A.; Ives, R.L.; Schumacher, R.V.; Mizuhara, Y.M.

    1998-07-14

    A multi-stage depressed collector for receiving energy from a small orbit gyrating electron beam employs a plurality of electrodes at different potentials for sorting the individual electrons on the basis of their total energy level. Magnetic field generating coils, for producing magnetic fields and magnetic iron for magnetic field shaping produce adiabatic and controlled non-adiabatic transitions of the incident electron beam to further facilitate the sorting. 9 figs.

  1. A new approach for miniaturization of multiple faraday cup collectors.

    SciTech Connect

    Banar, J. C.; Chamberlin, E. P.; Poths, J.; Perrin, R. E.; Chastagner, P.

    2002-01-01

    The mass spectrometry section in CST-7 has been working for several years on a novel so0lution to overcome the size and placement restrictions of multiple Faraday cup collectors. Use of simultaneous collection of multiple isotopes both increases precision in the isotopic measurements and shortens the data collection time. Our application is for the measurement of the isotopic composition of Xe, ionized in a source that produces a large (10{sup -11} amp) but variable ion beam.

  2. Development of sheet molding compound solar collectors with molded-in silvered glass reflective surfaces

    SciTech Connect

    Champion, R. L.; Allred, R. E.

    1980-01-01

    An approach to the fabrication of a line-focusng parabolic trough reflector structure which offers the potential of high performance while utilizing mass production type technology with potential for low cost is discussed. The concept is one of a molded structure of fiber reinforced plastic with an integrally molded silvered glass reflective surface. Sheet molding compound (SMC), a mixture of glass fibers and inorganic fillers in polyester resin, has been selected for evaluation as representative of reinforced plastic molding materials. The purpose of the work was to establish the feasibility of molding glass mirrors into SMC structural trough panels. If the effort proved successful, the next stage of development would be demonstration of the structure in a trough collector which incorporates individual SMC reflector panels. The trough has a 2 x 6 m aperture with six individual SMC panels mounted on a torque tube as the main support structure. Results are described. (WHK)

  3. Grid Collector: Facilitating Efficient Selective Access from DataGrids

    SciTech Connect

    Wu, Kesheng; Gu, Junmin; Lauret, Jerome; Poskanzer, Arthur M.; Shoshani, Arie; Sim, Alexander; Zhang, Wei-Ming

    2005-05-17

    The Grid Collector is a system that facilitates the effective analysis and spontaneous exploration of scientific data. It combines an efficient indexing technology with a Grid file management technology to speed up common analysis jobs on high-energy physics data and to enable some previously impractical analysis jobs. To analyze a set of high-energy collision events, one typically specifies the files containing the events of interest, reads all the events in the files, and filters out unwanted ones. Since most analysis jobs filter out significant number of events, a considerable amount of time is wasted by reading the unwanted events. The Grid Collector removes this inefficiency by allowing users to specify more precisely what events are of interest and to read only the selected events. This speeds up most analysis jobs. In existing analysis frameworks, the responsibility of bringing files from tertiary storages or remote sites to local disks falls on the users. This forces most of analysis jobs to be performed at centralized computer facilities where commonly used files are kept on large shared file systems. The Grid Collector automates file management tasks and eliminates the labor-intensive manual file transfers. This makes it much easier to perform analyses that require data files on tertiary storages and remote sites. It also makes more computer resources available for analysis jobs since they are no longer bound to the centralized facilities.

  4. Macroscopic Subdivision of Silica Aerogel Collectors for Sample Return Missions

    SciTech Connect

    Ishii, H A; Bradley, J P

    2005-09-14

    Silica aerogel collector tiles have been employed for the collection of particles in low Earth orbit and, more recently, for the capture of cometary particles by NASA's Stardust mission. Reliable, reproducible methods for cutting these and future collector tiles from sample return missions are necessary to maximize the science output from the extremely valuable embedded particles. We present a means of macroscopic subdivision of collector tiles by generating large-scale cuts over several centimeters in silica aerogel with almost no material loss. The cut surfaces are smooth and optically clear allowing visual location of particles for analysis and extraction. This capability is complementary to the smaller-scale cutting capabilities previously described [Westphal (2004), Ishii (2005a, 2005b)] for removing individual impacts and particulate debris in tiny aerogel extractions. Macroscopic cuts enable division and storage or distribution of portions of aerogel tiles for immediate analysis of samples by certain techniques in situ or further extraction of samples suited for other methods of analysis.

  5. Assessment of existing studies of wind loading on solar collectors

    SciTech Connect

    Murphy, L. M.

    1981-02-01

    In developing solar collectors, wind loading is the major structural design consideration. Wind loading investigations have focused on establishing safe bounds for steady state loading and verifying rational but initial and conservative design approaches for the various solar collector concepts. As such, the effort has been very successful, and has contributed greatly to both the recognition and qualitative understanding of many of the physical phenomena involved. Loading coefficients corresponding to mean wind velocities have been derived in these prior studies to measure the expected structural loading on the various solar collectors. Current design and testing procedures for wind loading are discussed. The test results corresponding to numerous wind tests on heliostats, parabolic troughs, parabolic dishes, and field mounted photovoltaic arrays are discussed and the applicability of the findings across the various technologies is assessed. One of the most significant consistencies in the data from all the technologies is the apparent benefit provided by fences and field shielding. Taken in toto, these data show that load reductions of three or possibly more seem feasible, though a more thorough understanding of the phenomena involved must be attained before this benefit can be realized. It is recommended that the required understanding be developed to take advantage of this benefit and that field tests be conducted to correlate with both analyses and tests.

  6. Thin-film absorber for a solar collector

    SciTech Connect

    Wilhelm, W.G.

    1982-02-09

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  7. Review of state-of-the art of solar collector corrosion processes. Task 1 of solar collector studies for solar heating and cooling applications

    NASA Astrophysics Data System (ADS)

    Clifford, J. E.; Diegle, R. B.

    1980-04-01

    The state of the art of solar collector corrosion processes is reviewed, and Task 1 of a current research program on use of aqueous heat transfer fluids for solar heating and cooling is summarized. The review of available published literature indicated that lack of quantitative information exists relative to collector corrosion at the present time, particularly for the higher temperature applications of solar heating and cooling compared to domestic water heating. Solar collector systems are reviewed from the corrosion/service life viewpoint, with emphasis on various applications, collector design, heat transfer fluids, and freeze protection methods. Available information (mostly qualitative) on collector corrosion technology is reviewed to indicate potential corrosion problem areas and corrosion prevention practices.

  8. On the failure of upscaling the single-collector efficiency to the transport of colloids in an array of collectors

    NASA Astrophysics Data System (ADS)

    Messina, Francesca; Tosco, Tiziana; Sethi, Rajandrea

    2016-07-01

    Defining the removal efficiency of a filter is a key aspect for colloid transport in porous media. Several efforts were devoted to derive accurate correlations for the single-collector removal efficiency, but its upscaling to the entire porous medium is still a challenging topic. A common approach involves the assumption of deposition being independent of the history of transport, that is, the collector efficiency is uniform along the porous medium. However, this approach was shown inadequate under unfavorable deposition conditions. In this work, the authors demonstrate that it is not adequate even in the simplest case of favorable deposition. Computational Fluid Dynamics (CFD) simulations were run in a vertical array of 50 identical spherical collectors. Particle transport was numerically solved by analyzing a broad range of parameters. The results evidenced that when particle deposition is not controlled by Brownian diffusion, nonexponential concentration profiles are retrieved, in contrast with the assumption of uniform efficiency. If sedimentation and interception dominate, the efficiency of the first sphere is significantly higher compared to the others, and then declines along the array down to an asymptotic value. Finally, a correlation for the upscaled removal efficiency of the entire array was derived.

  9. Piping Effects on the Heat Transfer Characteristics of an Evacuated Tubular Solar Collector

    NASA Astrophysics Data System (ADS)

    Saito, Akio; Miyazawa, Nobuyuki

    Effects on the heat transfer characteristics of a vacuum type solar collector system by connecting piping sections were discussed experimentally and analytically. Experiments were carried out under various solar radiation intensities, water flow rates, inlet water temperatures, periods of the solar intensity fluctuations and the insulating specifications for the piping section. Simulations were also performed by the finite difference calculations which were proved to agree well with the experimental results. As the results, it was found that the slight water temperature decrease at the entrance of the collector, by connecting the piping section, did not affect the collector efficiency seriously, although the whole collector plate temperature was lowered. It was also found that the heat loss from the collector plate to the pipe was negligible, if the piping section was insulated properly, and the effects appeared only in the limited edge sections of the collector plate, lowering the plate temperature.

  10. Cleaning Surface Particle Contamination with Ultrapure Water (UPW) Megasonic Flow on Genesis Array Collectors

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Calaway, Michael J.; Hittle, J. D.; Rodriquez, M. C.; Stansbery, E. K.; McNamara, K. M.

    2006-01-01

    The hard landing experienced by the Genesis sample return capsule breached the science canister containing the solar wind collectors. This impact into the damp lakebed contaminated collector surfaces with pulverized collector and spacecraft materials and Utah sediment and brine residue. The gold foil, polished aluminum, and bulk metallic glass remained intact, but the solar wind bulk and regime-specific array collectors were jarred loose from their frames and fractured into greater than 10,000 specimens. After a year of investigation and cleaning experimentation, the Genesis Science Team determined that array collectors had 4 classes of contaminants: particles, molecular film, submicron inorganic particulate ("aerosol"), and pre-launch surface contamination. We discuss here use of megasonically energized ultrapure water (UPW) for removing particulate debris from array collector fragments.

  11. Indoor test for thermal performance of the Sunmaster evacuated tube (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The test procedures used to obtain the thermal performance data for a solar collector under simulated conditions are presented. Tests included a stagnation test, a time constant test, a thermal efficiency test, an incident angle modifier test, and a hot fill test. All tests were performed at ambient conditions and the transient effect and the incident angle effect on the collector were determined. The solar collector is a water working fluid type.

  12. Triple-path collector optics for grazing incident x-ray emission spectrometer

    NASA Astrophysics Data System (ADS)

    Tokushima, T.; Horikawa, Y.; Shin, S.

    2011-07-01

    A new type of collector optics was developed for grazing incident x-ray emission spectrometer. The collector optics used two cylindrical mirrors to add two extra light paths while keeping the center light path that directly illuminates the grating. The design and properties of the spectrometer using the triple-path collector optics were evaluated using ray-tracing simulations, and validity of this design in terms of throughput and energy resolution was confirmed by the experimentally obtained spectra.

  13. Triple-path collector optics for grazing incident x-ray emission spectrometer.

    PubMed

    Tokushima, T; Horikawa, Y; Shin, S

    2011-07-01

    A new type of collector optics was developed for grazing incident x-ray emission spectrometer. The collector optics used two cylindrical mirrors to add two extra light paths while keeping the center light path that directly illuminates the grating. The design and properties of the spectrometer using the triple-path collector optics were evaluated using ray-tracing simulations, and validity of this design in terms of throughput and energy resolution was confirmed by the experimentally obtained spectra. PMID:21806173

  14. Development of flat-plate solar collectors for the heating and cooling of buildings: Executive summary

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An efficient, low cost, flat-plate solar collector was developed. Computer aided mathematical models of the heat process in the collector were used in defining absorber panel configuration; determining insulation thickness; and in selecting the number, spacing, and material of the covers. Prototypes were built and performance tested. Data from simulated operation of the collector are compared with predicted loads from a number of locations to determine the degree of solar utilization.

  15. A Simulated Annealing Algorithm for the Optimization of Multistage Depressed Collector Efficiency

    NASA Technical Reports Server (NTRS)

    Vaden, Karl R.; Wilson, Jeffrey D.; Bulson, Brian A.

    2002-01-01

    The microwave traveling wave tube amplifier (TWTA) is widely used as a high-power transmitting source for space and airborne communications. One critical factor in designing a TWTA is the overall efficiency. However, overall efficiency is highly dependent upon collector efficiency; so collector design is critical to the performance of a TWTA. Therefore, NASA Glenn Research Center has developed an optimization algorithm based on Simulated Annealing to quickly design highly efficient multi-stage depressed collectors (MDC).

  16. The young solar collector: An evaluation of its multiple farm uses

    NASA Astrophysics Data System (ADS)

    Heid, W. G., Jr.

    1981-05-01

    The features of the Young collector and reports on its physical and economic performance were studied. The collector is portable and tiltable, with a flexible airflow system. It is found that it satisfactorily dries grain, provides home heating, and saves energy. The homemade, low cost Young flat plate solar collector for multiple uses on the farm was designed by a farm couple and the small farm energy project.

  17. Different collector types for sampling deposition of polycyclic aromatic hydrocarbons--comparison of measurement results and their uncertainty.

    PubMed

    Gladtke, Dieter; Bakker, Frits; Biaudet, Hugues; Brennfleck, Alexandra; Coleman, Peter; Creutznacher, Harald; Van Egmond, Ben F; Hafkenscheid, Theo; Hahne, Frank; Houtzager, Marc M; Leoz-Garziandia, Eva; Menichini, Edoardo; Olschewski, Anja; Remesch, Thomas

    2012-08-01

    Different collector types, sample workup procedures and analysis methods to measure the deposition of polycyclic aromatic hydrocarbons (PAH) were tested and compared. Whilst sample workup and analysis methods did not influence the results of PAH deposition measurements, using different collector types changed the measured deposition rates of PAH significantly. The results obtained with a funnel-bottle collector showed the highest deposition rates and a low measurement uncertainty. The deposition rates obtained with the wet-only collectors were the lowest at industrial sites and under dry weather conditions. For the open-jar collectors the measurement uncertainty was high. Only at an industrial site with extremely high PAH deposition rates the results of open-jar collectors were comparable to those obtained with funnel-bottle collectors. Thus, if bulk deposition of PAH has to be measured, funnel-bottle combinations are proved to be the collectors of choice. These collectors were the only ones always fulfilling the requirements of European legislation.

  18. Thermal performance evaluation of the Solargenics solar collector at outdoor conditions

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Test procedures used during the performance of an evaluation program are presented. The test program was conducted to obtain the following performance data and information on the solar collector. (1) thermal performance data under outdoor conditions; (2) structural behavior of collector under static conditions; (3) effects of long term exposure to material weathering elements. The solargenics is a liquid, single-glazed, flat plate collector. Approximate dimensions of each collector are 240 inches long, 36 inches wide, and 3.5 inches in depth.

  19. Higher Magnification Imaging of the Polished Aluminum Collector Returned from the Genesis Mission

    NASA Technical Reports Server (NTRS)

    Rodriquez, Melissa C.; Burkett, P. J.; Allton, J. H.

    2011-01-01

    The polished aluminum collector (previously referred to as the polished aluminum kidney) was intended for noble gas analysis for the Gene-sis mission. The aluminum collector, fabricated from alloy 6061T, was polished for flight with alumina, then diamond paste. Final cleaning was performed by soak-ing and rinsing with hexane, then isopropanol, and last-ly megasonically energized ultrapure water prior to installation. It was mounted inside the collector canister on the thermal shield at JSC in 2000. The polished aluminum collector was not surveyed microscopically prior to flight.

  20. Design, fabrication, testing, and delivery of a solar energy collector system for residential heating and cooling

    NASA Technical Reports Server (NTRS)

    Holland, T. H.; Borzoni, J. T.

    1976-01-01

    A low cost flat plate solar energy collector was designed for the heating and cooling of residential buildings. The system meets specified performance requirements, at the desired system operating levels, for a useful life of 15 to 20 years, at minimum cost and uses state-of-the-art materials and technology. The rationale for the design method was based on identifying possible material candidates for various collector components and then selecting the components which best meet the solar collector design requirements. The criteria used to eliminate certain materials were: performance and durability test results, cost analysis, and prior solar collector fabrication experience.

  1. A Phase-Adaptive Garbage Collector Using Dynamic Heap Partitioning and Opportunistic Collection

    NASA Astrophysics Data System (ADS)

    Roh, Yangwoo; Kim, Jaesub; Park, Kyu Ho

    Applications usually have their own phases in heap memory usage. The traditional garbage collector fails to match various application phases because the same heuristic on the object behavior is used throughout the entire execution. This paper introduces a phase-adaptive garbage collector which reorganizes the heap layout and adjusts the invocation time of the garbage collection according to the phases. The proposed collector identifies phases by detecting the application methods strongly related to the phase boundaries. The experimental results show that the proposed phase-adaptive collector successfully recognizes application phases and improves the garbage collection time by as much as 41%.

  2. Fabrication of a focusing soft X-ray collector payload

    NASA Technical Reports Server (NTRS)

    Davis, J. M.; Decaprio, A. R.; Manko, H.; Ting, J. W. S.

    1976-01-01

    A large area X-ray focusing collector with arc minute resolution and a position sensitive detector capable of operating in the soft X-ray region was developed for use on sounding rockets in studying stellar X-ray sources. The focusing payload consists of the following components, which are described: (1) a crossed paraboloid mirror assembly; (2) an aspect camera and star tracker; (3) a focal plane assembly containing an imaging proportional counter and its preamplifiers, high voltage power supplies and gas system; (4) a fiducial system; and (5) housekeeping, data handling, instrumentation and telemetry electronics. The design, tests, and operation are described.

  3. Key aspects of cost effective collector and solar field design

    NASA Astrophysics Data System (ADS)

    von Reeken, Finn; Nicodemo, Dario; Keck, Thomas; Weinrebe, Gerhard; Balz, Markus

    2016-05-01

    A study has been performed where different key parameters influencing solar field cost are varied. By using levelised cost of energy as figure of merit it is shown that parameters like GoToStow wind speed, heliostat stiffness or tower height should be adapted to respective site conditions from an economical point of view. The benchmark site Redstone (Northern Cape Province, South Africa) has been compared to an alternate site close to Phoenix (AZ, USA) regarding site conditions and their effect on cost-effective collector and solar field design.

  4. Microstructural and mechanical property evaluation of solar collectors. Final report

    SciTech Connect

    Inal, O.T.

    1985-06-01

    The overall contributions of the program can be divided into three major areas: (1) nucleation and growth studies of adatom layers through transmission electron microscopy, reflection electron diffraction, and field-ion microscopy techniques; (2) electrodeposition parameter optimization studies for the production of photothermal collector surfaces made in terms of the as plated as well as thermally degraded microstructures; and (3) the thermal degradation mechanisms that emanate from structural alterations were optically modelled for the coatings produced in (2). These three topics are individually summarized.

  5. An inventory of particles from stratospheric collectors - Extraterrestrial and otherwise

    NASA Technical Reports Server (NTRS)

    Fraundorf, P.; Mckeegan, K. D.; Sandford, S. A.; Swan, P.; Walker, R. M.

    1982-01-01

    Examination of 526 particles in the 2-50 micron size range obtained from stratospheric impaction collectors has shown that most of them fit into one of three groups on a simple plot of Mg/Si versus Al/Si energy dispersive X ray peak ratios. The particles within a given group exhibit strong correlations in composition and mineralogy to one another, and the groups appear to largely consist either of earth crustal, manmade, or extraterrestrial materials. The temporal variability and relatively flat size distribution of material in the earth crustal group, in particular, suggests an aircraft-related, as opposed to stratospheric, source for these particles.

  6. [Urban solid residues, garbage collectors and public health].

    PubMed

    Siqueira, Mônica Maria; Moraes, Maria Silvia de

    2009-01-01

    The article approaches the issues of environmental production and the generation of urban solid residues, in particular the environment and health concept while social representation. From a bibliographical revision it argues the incorporation of the themes of health and environment in the practical field of knowledge and of interconnection with the Public Health. In this context it associates the question of the social exclusion generated by the form of production and consumption of the after-modern society, introducing the garbage collectors as a vulnerable population group. PMID:20069179

  7. Fuel cell collector plates with improved mass transfer channels

    SciTech Connect

    Gurau, Vladimir; Barbir, Frano; Neutzler, Jay K.

    2003-04-22

    A fuel cell collector plate can be provided with one or more various channel constructions for the transport of reactants to the gas diffusion layer and the removal of water therefrom. The outlet channel can be arranged to have a reduced volume compared to the inlet channel, in both interdigitated and discontinuous spiral applications. The land width between an inlet channel and outlet channel can be reduced to improved mass flow rate in regions of deleted reactant concentrations. Additionally or alternatively, the depth of the inlet channel can be reduced in the direction of flow to reduce the diffusion path as the concentration of reactant is reduced.

  8. Experimental and analytical study of a boiling collector in thermal siphon operation

    SciTech Connect

    Silva, M. da; Eugenia, M.

    1992-01-01

    The purpose of this study is to analytically and experimentally evaluate the performance of a boiling solar collector in thermal siphon operation so that, in future work, solar collectors can be optimized for boiling operation. A new procedure, based on boiling heat transfer fundamentals, is developed to estimate the rate of energy gain in the collector. The temperature of the absorber plate is determined from the simultaneous solution of the rate of energy absorbed by the collector and the rate of energy used in boiling as a function of vapor bubble density, the energy required for bubble formation, and the volumetric flow rate through the collector. Since the volumetric flow rate could not be predicted theoretically, experimentally estimated values are used in the numerical calculation. This model is an improvement over previous models which assume that the total mass flow rate that flows through the collector boils, when in reality just a small percent of this mass flow boils and most of it is recirculated. To validate the analytical model, the thermal efficiency and the absorber plate temperature of two collector-condenser systems are experimentally determined. Measurements with both a conventional sheet with tube and a waffled flat plate collector indicate the importance of collector geometry. The two-phase thermal siphon system operates at practically the same thermal efficiency as the hydronic single-phase system, but it uses one less pump, the net rate of useful energy transfer in the two-phase system is higher than in the single-phase system. When boiling collectors are designed for two-phase operation, they may out-perform hydronic collectors.

  9. Optimization of Dish Solar Collectors with and without Secondary Concentrators

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1982-01-01

    Methods for optimizing parabolic dish solar collectors and the consequent effects of various optical, thermal, mechanical, and cost variables are examined. The most important performance optimization is adjusting the receiver aperture to maximize collector efficiency. Other parameters that can be adjusted to optimize efficiency include focal length, and, if a heat engine is used, the receiver temperature. The efficiency maxima associated with focal length and receiver temperature are relatively broad; it may, accordingly, be desirable to design somewhat away from the maxima. Performance optimization is sensitive to the slope and specularity errors of the concentrator. Other optical and thermal variables affecting optimization are the reflectance and blocking factor of the concentrator, the absorptance and losses of the receiver, and, if a heat engine is used, the shape of the engine efficiency versus temperature curve. Performance may sometimes be improved by use of an additional optical element (a secondary concentrator) or a receiver window if the errors of the primary concentrator are large or the receiver temperature is high.

  10. Biological templates for antireflective current collectors for photoelectrochemical cell applications.

    PubMed

    Chiang, Chia-Ying; Epstein, Jillian; Brown, Adam; Munday, Jeremy N; Culver, James N; Ehrman, Sheryl

    2012-11-14

    Three-dimensional (3D) structures such as nanowires, nanotubes, and nanorods have the potential to increase surface area, reduce light reflection, and shorten charge carrier transport distances. The assembly of such structures thus holds great promise for enhancing photoelectrochemical solar cell efficiency. In this study, genetically modified Tobacco mosaic virus (TMV1cys) was used to form self-assembling 3D nanorod current collectors and low light-reflecting surfaces. Photoactive CuO was subsequently deposited by sputtering onto these patterned nanostructures, and these structures were examined for photocurrent activity. CuO thicknesses of 520 nm on TMV1cys patterned current collectors produced the highest photocurrent density of 3.15 mA/cm(2) yet reported for a similar sized CuO system. Reflectivity measurements are in agreement with full-wave electromagnetic simulations, which can be used as a design tool for optimizing the CuO system. Thus the combined effects of reducing charge carrier transport distance, increasing surface area, and the suppression of light reflection make these virus-templated surfaces ideal for photoelectrochemical applications.

  11. Scaled centrifugal compressor, collector and running gear program

    NASA Technical Reports Server (NTRS)

    Kenehan, J. G.

    1983-01-01

    The Scaled Centrifugal Compressor, Collector and Running gear Program was conducted in support of an overall NASA strategy to improve small-compressor performance, durability, and reliability while reducing initial and life-cycle costs. Accordingly, Garrett designed and provided a test rig, gearbox coupling, and facility collector for a new NASA facility, and provided a scaled model of an existing, high-performance impeller for evaluation scaling effects on aerodynamic performance and for obtaining other performance data. Test-rig shafting was designed to operate smoothly throughout a speed range up to 60,000 rpm. Pressurized components were designed to operate at pressures up to 300 psia and at temperatures to 1000 F. Nonrotating components were designed to provide a margin-of-safety of 0.05 or greater; rotating components, for a margin-of-safety based on allowable yield and ultimate strengths. Design activities were supported by complete design analysis, and the finished hardware was subjected to check-runs to confirm proper operation. The test rig will support a wide range of compressor tests and evaluations.

  12. Solar assisted heat pump on air collectors: A simulation tool

    SciTech Connect

    Karagiorgas, Michalis; Galatis, Kostas; Tsagouri, Manolis; Tsoutsos, Theocharis; Botzios-Valaskakis, Aristotelis

    2010-01-15

    The heating system of the bioclimatic building of the Greek National Centre for Renewable Energy Sources (CRES) comprises two heating plants: the first one includes an air source heat pump, Solar Air Collectors (SACs) and a heat distribution system (comprising a fan coil unit network); the second one is, mainly, a geothermal heat pump unit to cover the ground floor thermal needs. The SAC configuration as well as the fraction of the building heating load covered by the heating plant are assessed in two operation modes; the direct (hot air from the collectors is supplied directly to the heated space) and the indirect mode (warm air from the SAC or its mixture with ambient air is not supplied directly to the heated space but indirectly into the evaporator of the air source heat pump). The technique of the indirect mode of heating aims at maximizing the efficiency of the SAC, saving electrical power consumed by the compressor of the heat pump, and therefore, at optimizing the coefficient of performance (COP) of the heat pump due to the increased intake of ambient thermal energy by means of the SAC. Results are given for three research objectives: assessment of the heat pump efficiency whether in direct or indirect heating mode; Assessment of the overall heating plant efficiency on a daily or hourly basis; Assessment of the credibility of the suggested simulation model TSAGAIR by comparing its results with the TRNSYS ones. (author)

  13. Functionalization of Magnetite Nanoparticles as Oil Spill Collector

    PubMed Central

    Atta, Ayman M.; Al-Lohedan, Hamad A.; Al-Hussain, Sami A.

    2015-01-01

    In the present study, a new magnetic powder based on magnetite can be used as a petroleum crude oil collector. Amidoximes based on rosin as a natural product can be prepared from a reaction between hydroxylamine and rosin/acrylonitrile adducts. The produced rosin amidoximes were used as capping agents for magnetite nanoparticles to prepare hydrophobic coated magnetic powders. A new class of monodisperse hydrophobic magnetite nanoparticles was prepared by a simple and inexpensive co-precipitation method. Iron ions and iodine were prepared by the reaction between ferric chloride and potassium iodide. The structure and morphology of magnetite capped with rosin amidoxime were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), zeta potential, thermogravimetric analysis (TGA) and dynamic light scattering (DLS). The magnetic properties were determined from vibrating sample magnetometer (VSM) analyses. These prepared magnetite nanoparticles were tested as bioactive nanosystems and their antimicrobial effects were investigated. The prepared nanomaterials were examined as a crude oil collector using magnetic fields. The results show promising data for the separation of the petroleum crude oil from aqueous solution in environmental pollution cleanup. PMID:25822876

  14. Functionalization of magnetite nanoparticles as oil spill collector.

    PubMed

    Atta, Ayman M; Al-Lohedan, Hamad A; Al-Hussain, Sami A

    2015-03-26

    In the present study, a new magnetic powder based on magnetite can be used as a petroleum crude oil collector. Amidoximes based on rosin as a natural product can be prepared from a reaction between hydroxylamine and rosin/acrylonitrile adducts. The produced rosin amidoximes were used as capping agents for magnetite nanoparticles to prepare hydrophobic coated magnetic powders. A new class of monodisperse hydrophobic magnetite nanoparticles was prepared by a simple and inexpensive co-precipitation method. Iron ions and iodine were prepared by the reaction between ferric chloride and potassium iodide. The structure and morphology of magnetite capped with rosin amidoxime were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), zeta potential, thermogravimetric analysis (TGA) and dynamic light scattering (DLS). The magnetic properties were determined from vibrating sample magnetometer (VSM) analyses. These prepared magnetite nanoparticles were tested as bioactive nanosystems and their antimicrobial effects were investigated. The prepared nanomaterials were examined as a crude oil collector using magnetic fields. The results show promising data for the separation of the petroleum crude oil from aqueous solution in environmental pollution cleanup.

  15. Cable tensioned membrane solar collector module with variable tension control

    DOEpatents

    Murphy, L.M.

    1984-01-09

    Disclosed is a solar collector comprising a membrane member for concentrating sunlight, a plurality of elongated structural members for suspending the membrane member thereon, and a plurality of control members for adjustably tensioning the membrane member, as well as for controlling a focus produced by the membrane members. Each control member is disposed at a different corresponding one of the plurality of structural members. The collector also comprises an elongated flexible tensioning member, which serves to stretch the membrane member and to thereafter hold it in tension, and a plurality of sleeve members which serve to provide the membrane member with a desired surface contour during tensioning of the membrane member. The tensioning member is coupled to the structural members such that the tensioning member is adjustably tensioned through the structural members. The tensioning member is also coupled to the membrane member through the sleeve members such that the sleeve members uniformly and symmetrically stretch the membrane member upon applying tension to the tensioning member with the control members.

  16. Cable tensioned membrane solar collector module with variable tension control

    DOEpatents

    Murphy, Lawrence M.

    1985-01-01

    Disclosed is a solar collector comprising a membrane for concentrating sunlight, a plurality of elongated structural members for suspending the membrane member thereon, and a plurality of control members for adjustably tensioning the membrane member, as well as for controlling a focus produced by the membrane members. Each control member is disposed at a different corresponding one of the plurality of structural members. The collector also comprises an elongated flexible tensioning member, which serves to stretch the membrane member and to thereafter hold it in tension, and a plurality of sleeve members, which serve to provide the membrane member with a desired surface contour during tensioning of the membrane member. The tensioning member is coupled to the structural members such that the tensioning member is adjustably tensioned through the structural members. The tensioning member is also coupled to the membrane member through the sleeve members such that the sleeve members uniformly and symmetrically stretch the membrane member upon applying tension to the tensioning member with the control members.

  17. Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    SciTech Connect

    Stynes, J. K.; Ihas, B.

    2012-04-01

    The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of the absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.

  18. Functionalization of magnetite nanoparticles as oil spill collector.

    PubMed

    Atta, Ayman M; Al-Lohedan, Hamad A; Al-Hussain, Sami A

    2015-01-01

    In the present study, a new magnetic powder based on magnetite can be used as a petroleum crude oil collector. Amidoximes based on rosin as a natural product can be prepared from a reaction between hydroxylamine and rosin/acrylonitrile adducts. The produced rosin amidoximes were used as capping agents for magnetite nanoparticles to prepare hydrophobic coated magnetic powders. A new class of monodisperse hydrophobic magnetite nanoparticles was prepared by a simple and inexpensive co-precipitation method. Iron ions and iodine were prepared by the reaction between ferric chloride and potassium iodide. The structure and morphology of magnetite capped with rosin amidoxime were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), zeta potential, thermogravimetric analysis (TGA) and dynamic light scattering (DLS). The magnetic properties were determined from vibrating sample magnetometer (VSM) analyses. These prepared magnetite nanoparticles were tested as bioactive nanosystems and their antimicrobial effects were investigated. The prepared nanomaterials were examined as a crude oil collector using magnetic fields. The results show promising data for the separation of the petroleum crude oil from aqueous solution in environmental pollution cleanup. PMID:25822876

  19. Dust collector venting: Don't take chances

    SciTech Connect

    Black, G.J.

    1994-02-01

    Fabric dust collectors, widely used throughout the process industries, pose risk of explosion because they handle large volumes of dust-laden gas. This risk is addressed by outfitting the collection vessels with vent devices that open when the internal pressure exceeds a preselected level. The most widely accepted basis for selecting, sizing and placing these vents is the National Fire Protection Assn. (Quincy, Mass) Standard 68, 1988 edition (NFPA-68). Any engineer who is or expects to become involved with dust collectors should have a clear understanding of its provisions. And because NFPA-68 is not a rigid code but instead a guideline with numerous portions open to interpretation, the engineer may also benefit from the insights of people (such as the author) experienced in applying it. Of special relevance in the chemical process industries is the portion of NFPA-68 that covers high-strength enclosures in which operating pressure is less than 80 in. w.c. (0.2 bar gage), air is the gas in which the potentially explosive dust is suspended, and the length-to-diameter ratio is less than 5. This article focuses on that portion of the standard.

  20. Evacuated tubular solar collector with internal reflector and heatpipe

    SciTech Connect

    Imani, K.; Ikeda, N.; Sumida, I.

    1983-12-01

    An evacuated tubular solar collector, was developed to provide 130/sup 0/C water for an industrial system. The collector consisted of 6 glass-tubes (100 mm O.D.), the internal silver ion-plated reflector, and copper heatpipes coated by the chrome-black selective absorber. The absorptance and the emittance of the absorber was measured to be 95% and 12%, respectively. The cross-section of reflector was composed of involute curve, straight line and envelope curve. The straight line was used to widen the aperture of reflector, and the envelope curve was designed to focus the 30/sup 0/ incident light on the heatpipe surface. The acceptance angle, concentration ratio and reflectivity was 60/sup 0/, 1.3, and 93%, respectively. The tip of heatpipe, which east side was horizontally 0.7/sup 0/ declined, was bent upwards to accommodate the freezing space to working fluid of 100 cm/sup 3/ water. The west side of heatpipe (22.22 mm O.D.) was connected to the coaxial heat exchanger with the internal fins. The effective colletor area was 1.43 m/sup 2/, while the total installation area was 1.92 m/sup 2/ (2.86m X 0.67m).

  1. Solar pumping installation for pumping liquid and solar collector construction

    SciTech Connect

    Seidel, A.; Wolf, D.

    1984-03-27

    A solar pumping system, comprises, a pumping housing which defines a pump chamber therein which is adapted to be positioned in the ground below ground water level. Displacer means in the form of, for example, a bladder, arranged within the pump chamber, is capable of displacing liquid out of the pump chamber in response to a pressurized medium acting thereon to expel the water out of the chamber and up to a level above the ground for use. A suction valve connected into the chamber permits the ground water to flow into the chamber and a discharge valve connected out of the chamber permits the outflow of the ground water during the action of the displacer means. The construction includes a solar collector having at least one hydride conduit which is adapted to be exposed to the sun for solar heating to act on the hydride to cause hydrogen to be formed, the pressure of which acts against the displacer means to displace the ground liquid out of the pump chamber. When the solar collector is shielded and the hydride is permitted to cool or is cooled rapidly by the circulation of water thereover, the pressure of the generated hydrogen decreases, permitting ground water to enter into the pumping chamber once again through the suction valves.

  2. Colloidal deposition and aggregation in the presence of charged collectors

    NASA Astrophysics Data System (ADS)

    Sadri, Behnam; Rajendran, Arvind; Bhattacharjee, Subir; Colloids; complex fluid laboratory Team

    2014-11-01

    The transport of colloidal particles in porous media is of great importance in sub-surface environments. These colloidal particles facilitate transport of contaminants, low-soluble compounds and metals in groundwater. Here, we have studied transport dynamics of colloids inside porous medium using a combination of column experiments and batch studies. Polystyrene latex beads (100 nm), as colloidal agents, and soda lime glass beads, as porous medium, are employed in this work. On the one hand, batch experiments are undertaken to better understand concurrent aggregation and deposition of particles. On the other hand, column experiments are performed to understand the flow induced deposition of colloidal particles in the interstitial voids. Effect of collector surface preparation, pH, colloidal suspension concentration and collector beads mass is studied. Chemical release and shear field are revealed as two significant factors lying behind the coagulation of colloidal particles. These findings help us to better distinguish mechanisms responsible for the transport of colloids inside porous medium. We are collaborators. Behnam Sadri is master of science student while two other professor are supervising his research work.

  3. Colloid deposition on non-ideal porous media: The influences of collector shape and roughness on the single-collector efficiency

    NASA Astrophysics Data System (ADS)

    Saiers, James E.; Ryan, J. N.

    2005-11-01

    The transport of groundwater colloids (e.g., bacteria, viruses, clay particles) is governed, in part, by the rate at which the colloids strike and adhere to aquifer mineral grains. We report results of coupled flow and transport simulations that reveal how changes in mineral-grain shape and surface roughness influence the single-collector contact efficiency (ηT) - a parameter of colloid-filtration theory that quantifies the frequency of colloid collisions with the surface of a mineral grain (collector). Our analyses indicate that the sensitivity of ηT to variations in collector shape and roughness depends on colloid size and suggests that quantitative descriptions of colloid transport through real aquifers will, in some cases, require nontraditional approaches that are not limited by the simplifying assumptions of smooth, spherical collectors.

  4. A Computer-Interfaced Drop Counter as an Inexpensive Fraction Collector for Column Chromatography

    ERIC Educational Resources Information Center

    Nash, Barbara T.

    2008-01-01

    A computer-interfaced drop counter is described that serves as an inexpensive alternative to a fraction collector for column chromatography experiments. Undergraduate biochemistry laboratories frequently do not have the budget to purchase fraction collectors. Protocols that call for the manual measurement of fraction volumes as well as the manual…

  5. A Didactic Experiment and Model of a Flat-Plate Solar Collector

    ERIC Educational Resources Information Center

    Gallitto, Aurelio Agliolo; Fiordilino, Emilio

    2011-01-01

    We report on an experiment performed with a home-made flat-plate solar collector, carried out together with high-school students. To explain the experimental results, we propose a model that describes the heating process of the solar collector. The model accounts quantitatively for the experimental data. We suggest that solar-energy topics should…

  6. Air-liquid solar collector for solar heating, combined heating and cooling, and hot water subsystems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A collection of quarterly reports consisting of the installation and layout design of the air collector system for commercial applications, completion of the preliminary design review, detailed design efforts, and preparation of the verification test plan are given. Performance specifications and performance testing of a prototype model of a two manifold, 144 tube air collector array is presented.

  7. Preliminary design review package on air flat plate collector for solar heating and cooling system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Guidelines to be used in the development and fabrication of a prototype air flat plate collector subsystem containing 320 square feet (10-4 ft x 8 ft panels) of collector area are presented. Topics discussed include: (1) verification plan; (2) thermal analysis; (3) safety hazard analysis; (4) drawing list; (5) special handling, installation and maintenance tools; (6) structural analysis; and (7) selected drawings.

  8. Theoretical and Experimental Investigations of Cylindrical Air-Heating Solar Collector

    NASA Astrophysics Data System (ADS)

    Pelece, I.; Shipkovs, P.

    2016-06-01

    Solar energy is used not only at low latitudes, where it is available at large amounts, but also at higher latitudes, where height of sun and irradiance are significantly lower. On the other hand, the length of day at higher latitudes is longer in summer than at low latitudes, and also the path of the sun is longer. The present research deals with seeking for new shapes of solar collectors capable of receiving more solar energy. For designing and evaluating new shapes of solar collectors, it is necessary to have new methods for simple calculations of energy received from the sun by surface of any shape and direction. Such a method is explained in the present paper. Based on calculations by the proposed method, a new form of solar collector - a cylindrical collector - has been worked out. This collector is intended for air heating, but main principles can also be used for water heating, and even for photovoltaics. A cylindrical collector receives more energy in the morning and evening than a flat one, but at midday power of both collectors is equal, if effective areas are equal. Daily energy sum of the cylindrical solar collector is 1.5 times greater than that of the flat one.

  9. 78 FR 38452 - Price for the 2013 Girl Scouts of the USA Young Collector Set

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY United States Mint Price for the 2013 Girl Scouts of the USA Young Collector Set AGENCY: United States... of $54.95 for the 2013 Girl Scouts of the USA Young Collector Set. FOR FURTHER INFORMATION...

  10. Dynamic modelling and verification of a flat-plate solar collector

    NASA Astrophysics Data System (ADS)

    de Ron, A. J.

    1980-01-01

    In the modelling of flat-plate solar collectors the dynamic effects have often been neglected. But because the solar collector is inherently exposed to variable weather conditions, its dynamics may be important to the design and control. It is demonstrated that it is not necessary to ignore the dependence of the various temperatures on the location in the direction of flow (which is often done to avoid complications) provided the model is developed in the frequency domain. The linearised model has been verified in the frequency domain by means of a least squares estimator. The verification was performed with a part of a full-size collector, as has been applied in some solar houses, and an artificial sun. It is concluded from the results of the verification that the developed model describes the collector dynamics quite satisfactorily. The differences between the theoretical and estimated heat resistances was about 10 per cent. The verification and estimation procedure proved to be a useful tool for comparing various collectors because the collector has to be fitted with only two temperature sensors. It is shown that the simple models discussed in the literature give responses which are not representative of the collector's dynamics. For well-designed collectors a simplified model is derived. Finally, some desirable sampling rates are given.

  11. Review of state-of-the-art of solar collector corrosion processes. Task 1 of solar collector studies for solar heating and cooling applications. Final technical progress report

    SciTech Connect

    Clifford, J E; Diegle, R B

    1980-04-11

    The state-of-the-art of solar collector corrosion processes is reviewed, and Task 1 of a current research program on use of aqueous heat transfer fluids for solar heating and cooling is summarized. The review of available published literature has indicated that lack of quantitative information exists relative to collector corrosion at the present time, particularly for the higher temperature applications of solar heating and cooling compared to domestic water heating. Solar collector systems are reviewed from the corrosion/service life viewpoint, with emphasis on various applications, collector design, heat transfer fluids, and freeze protection methods. Available information (mostly qualitative) on collector corrosion technology is reviewed to indicate potential corrosion problem areas and corrosion prevention practices. Sources of limited quantitative data that are reviewed are current solar applications, research programs on collector corrosion, and pertinent experience in related applications of automotive cooling and non-solar heating and cooling. A data bank was developed to catalog corrosion information. Appendix A of this report is a bibliography of the data bank, with abstracts reproduced from presently available literature accessions (about 220). This report is presented as a descriptive summary of information that is contained in the data bank.

  12. Results of thermal performance evaluation of the Owens-Illinois sunpack liquid solar collector at indoor conditions

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Test procedures and results of the thermal performance of a liquid, evacuated tube, solar collector under simulated conditions are presented. The collector tested was a module used on the early demonstration projects.

  13. Modeling Heat Flow In a Calorimeter Equipped With a Textured Solar Collector

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Allen, Bradley J.

    2001-01-01

    Heat engines are being considered for generating electric power for minisatellite applications, particularly for those missions in high radiation threat orbits. To achieve this objective, solar energy must be collected and transported to the hot side of the heat engine. A solar collector is needed having the combined properties of high solar absorptance, low infrared emittance, and high thermal conductivity. To test candidate solar collector concepts, a simple calorimeter was designed, manufactured, and installed in a bench top vacuum chamber to measure heat flow. In addition, a finite element analysis model of the collector/calorimeter combination was made to model this heat flow. The model was tuned based on observations from the as-manufactured collector/calorimeter combination. In addition, the model was exercised to examine other collector concepts, properties, and scale up issues.

  14. An analytical investigation of the performance of solar collectors as nighttime heat radiators in airconditioning cycles

    NASA Technical Reports Server (NTRS)

    Jones, C. B.; Smetana, F. O.

    1979-01-01

    It was found that if the upper and lower ends of a collector were opened, large free convention currents may be set up between the collector surface and the cover glass(es) which can result in appreciable heat rejection. If the collector is so designed that both plates surfaces are exposed to convection currents when the upper and lower ends of the collector enclosure are opened, the heat rejection rate is 300 watts sq m when the plate is 13 C above ambient. This is sufficient to permit a collector array designed to provide 100 percent of the heating needs of a home to reject the accumulated daily air conditioning load during the course of a summer night. This also permits the overall energy requirements for cooling to be reduced by at least 15 percent and shift the load on the utility entirely to the nighttime hours.

  15. Dead-space corrected GaInP/GaAs composite collector double heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Poh, Z. S.; Yow, H. K.; Ong, D. S.; Houston, P. A.; Krysa, A. B.

    2007-04-01

    GaInP/GaAs/GaInP double heterojunction bipolar transistors incorporating dead-space corrected composite collectors were investigated experimentally. The optimized DHBT with a 10-nm lowly doped GaAs spacer and a 5-nm highly doped GaInP spacer has extended the operating range of the collector-emitter voltage, VCE, by maximizing the collector-emitter voltage at the onset of the multiplication, VCE ,onset, to 20 V, while minimizing the saturation voltage, VCE ,sat (<1 V), and maintaining the nominal breakdown voltage, BVCEO, of the GaInP collector at 25 V. The design incorporating an Al0.11Ga0.89As spacer rather than a GaInP spacer within the lowly doped GaAs-GaInP composite collector demonstrated similar breakdown behavior.

  16. Test results and analysis of a convective loop solar air collector

    SciTech Connect

    Biehl, F.A.

    1981-01-01

    The test results and analysis methods employed in studying the general design parameters of an air convective loop solar collector are presented. The purpose of the test program is to validate a simulation model that can also be extended to other collector arrangements and to a variety of weather patterns. Details of the collector configurations, typical test results, simulation model, and comparison between test and analysis results are discussed. The good agreement between test and analysis suggests that the analytical model can be employed for sensitivity studies. Results (not presented here) show that the collector efficiency, mass flow rate, and air temperature gain are sensitive to the air passage depth behind the absorber plate. A range of desirable collector lengths, based upon efficiency considerations, is determined employing the analytical model.

  17. Method Of Making Solar Collectors By In-Situ Encapsulation Of Solar Cells

    DOEpatents

    Carrie, Peter J.; Chen, Kingsley D. D.

    2000-10-24

    A method of making solar collectors by encapsulating photovoltaic cells within a base of an elongated solar collector wherein heat and pressure are applied to the cells in-situ, after an encapsulating material has been applied. A tool is fashioned having a bladder expandable under gas pressure, filling a region of the collector where the cells are mounted. At the same time, negative pressure is applied outside of the bladder, enhancing its expansion. The bladder presses against a platen which contacts the encapsulated cells, causing outgassing of the encapsulant, while heat cures the encapsulant. After curing, the bladder is deflated and the tool may be removed from the collector and base and reflective panels put into place, if not already there, thereby allowing the solar collector to be ready for use.

  18. The use of bulk collectors in monitoring wet deposition at high-altitude sites in winter

    USGS Publications Warehouse

    Ranalli, A.J.; Turk, J.T.; Campbell, D.H.

    1997-01-01

    Concentrations of dissolved ions from samples collected by wet/dry collectors were compared to those collected by bulk collectors at Halfmoon Creek and Ned Wilson Lake in western Colorado to determine if bulk collectors can be used to monitor wet deposition chemistry in remote, high-altitude regions in winter. Hydrogen-ion concentration was significantly lower (p 0.05) at Halfmoon Creek. Wet deposition concentrations were predicated from bulk deposition concentrations through linear regression analysis. Results indicate that anions (chloride, nitrate and sulfate) can be predicted with a high degree of confidence. Lack of significant differences between seasonal (winter and summer) ratios of bulk to wet deposition concentrations indicates that at sites where operation of a wet/dry collector during the winter is not practical, wet deposition concentrations can be predicted from bulk collector samples through regression analysis of wet and bulk deposition data collected during the summer.

  19. Attaching solar collectors to a structural framework utilizing a flexible clip

    DOEpatents

    Kruse, John S

    2014-03-25

    Methods and apparatuses described herein provide for the attachment of solar collectors to a structural framework in a solar array assembly. A flexible clip is attached to either end of each solar collector and utilized to attach the solar collector to the structural framework. The solar collectors are positioned to allow a member of the framework to engage a pair of flexible clips attached to adjacent solar collectors during assembly of the solar array. Each flexible clip may have multiple frame-engaging portions, each with a flange on one end to cause the flexible clip to deflect inward when engaged by the framework member during assembly and to guide each of the frame-engaging portions into contact with a surface of the framework member for attachment.

  20. Analysis of heat-pipe absorbers in evacuated-tube solar collectors

    NASA Astrophysics Data System (ADS)

    Hull, J. R.; Schertz, W. W.; Allen, J. W.

    1986-02-01

    Heat transfer in evacuated-tube solar collectors with heat-pipe absorbers is compared with that for similar collectors with flow-through absorbers. In systems that produce hot water or other heated fluids, the heat-pipe absorber suffers a heat transfer penalty compared with the flow-through absorber, but in many cases the penalty can be minimized by proper design at the heat-pipe condenser and system manifold. The heat transfer penalty decreases with decreasing collector heat loss coefficient, suggesting that evacuated tubes with optical concentration are more appropriate for use with heat pipes than evacuated or nonevacuated flat-plate collectors. When the solar collector is used to drive an absorption chiller, the heat-pipe absorber has better heat transfer characteristics than the flow-through absorbers.

  1. Standard performance tests of collectors of solar thermal energy: A selectively coated, flat-plate copper collector with one transparent cover and a tube-to-tube spacing of 3-7/8 inches

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Basic test results are given of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes, and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.

  2. Standardized performance tests of collectors of solar thermal energy: A selectively coated, flat-plate copper collector with one transparent cover and a tube-to-tube spacing of 5 5/8 inches

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.

  3. Indoor test for the thermal performance evaluation of the DEC 8A large manifold sunmaster evacuated tube (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Sunmaster DEC 8A Large Manifold solar collector using simulated conditions was evaluated. The collector provided 17.17 square feet of gross collector area. Test conditions, test requirements, an analysis of results, and tables of test data are reported.

  4. 30 CFR 33.4 - Types of dust collectors for which certificates of approval may be granted.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Types of dust collectors for which certificates..., DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.4 Types of dust collectors for...

  5. Method of forming oxide coatings. [for solar collector heating panels

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E. (Inventor)

    1983-01-01

    This invention is concerned with an improved plating process for covering a substrate with a black metal oxide film. The invention is particularly directed to making a heating panel for a solar collector. A compound is electrodeposited from an aqueous solution containing cobalt metal salts onto a metal substrate. This compound is converted during plating into a black, highly absorbing oxide coating which contains hydrated oxides. This is achieved by the inclusion of an oxidizing agent in the plating bath. The inclusion of an oxidizing agent in the plating bath is contrary to standard electroplating practice. The hydrated oxides are converted to oxides by treatment in a hot bath, such as boiling water. An oxidizing agent may be added to the hot liquid treating bath.

  6. Lightweight performance data collectors 2.0 with Eiger support.

    SciTech Connect

    Allan, Benjamin A.

    2013-05-01

    We report on the use and design of a portable, extensible performance data collection tool motivated by modeling needs of the high performance computing systems co-design com- munity. The lightweight performance data collectors with Eiger support is intended to be a tailorable tool, not a shrink-wrapped library product, as pro ling needs vary widely. A single code markup scheme is reported which, based on compilation ags, can send perfor- mance data from parallel applications to CSV les, to an Eiger mysql database, or (in a non-database environment) to at les for later merging and loading on a host with mysql available. The tool supports C, C++, and Fortran applications.

  7. Isotropic graphite multistage depressed collectors - A progress report

    NASA Astrophysics Data System (ADS)

    Ramins, Peter; Ebihara, Ben T.

    1989-04-01

    A small isotropic-graphite-electrode multistage depressed collector (MDC) was designed, fabricated, and evaluated in conjunction with a 500-W CW 4.8-9.6-GHz TWT. The carbon electrode surfaces were used to improve the TWT overall efficiency by minimizing the secondary-electron emission losses in the MDC. The design and fabrication of the brazed graphite MDC assembly are described. The TWT and graphite-electrode MDC bakeout and processing (outgassing) characteristics were evaluated and found to be comparable to those for TWTs equipped with copper-electrode MDCs. The TWT and MDC performance was optimized for broadband CW operation at saturation. The average RF, overall, and MDC efficiencies were 14.9, 46.4, and 83.6 percent, respectively, across the octave operating band. A 1500-h CW test showed no gas buildup and excellent stability of the electrode surfaces.

  8. Wide acceptance angle, high concentration ratio, optical collector

    NASA Technical Reports Server (NTRS)

    Kruer, Mark A. (Inventor)

    1991-01-01

    A cassegrain optical system provides improved collection of off-axis light yet is still characterized by a high concentration ratio. The optical system includes a primary mirror for collecting incoming light and reflecting the light to a secondary mirror which, in turn, reflects the light to a solar cell or other radiation collection device. The primary mirror reflects incoming on-axis light onto an annular section of the secondary mirror and results in the reflection of a substantial amount of incoming off-axis light onto the remainder of the secondary mirror. Thus light which would otherwise be lost to the system will be captured by the collector. Furthermore, the off-axis sections of the secondary mirror may be of a different geometrical shape than the on-axis annular section so as to optimize the amount of off-axis light collected.

  9. Optical simulation for a fixed spherical solar collector.

    PubMed

    Authier, B; Hill, L; Duban, M; Trarieux, P; Sarazin, M; Nadeau, P

    1979-09-15

    To calculate the absorber dimensions for a fixed spherical solar collector, an optical simulation of the raytracing type is proposed. The physical quantities, which have an effect upon these dimensions, are described as well as the measurement methods. Once the dimensions are determined, the incident flux on the absorber surface can be calculated by the same program in terms of different zenith distances. These calculations can be checked by comparing the calculated flux on the surface of the absorber with the measured flux at different points along the absorber aimed at the full moon instead of at the sun. Through the data obtained from the measurements, fluctuating points of high flux and permanent zones which receive double and triple reflection rays have been studied. PMID:20212809

  10. Glass-heat-pipe evacuated-tube solar collector

    SciTech Connect

    McConnell, R.D.; VanSant, J.H.

    1981-08-06

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  11. Solar cell collector and method for producing same

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1978-01-01

    A transparent, conductive collector layer containing conductive metal channels is formed as a layer on a photovoltaic substrate by coating a photovoltaic substract with a conductive mixed metal layer. A heat sink having portions protruding from one of its surfaces is attached. These protruding portions define a continuous pattern in combination with recessed regions among them such that they are in contact with the conductive layer of the photovoltaic substrate. Heating the substrate while simultaneously oxidizing the portions of the conductive layer exposed to a gaseous oxidizing substance forced into the recessed regions of the heat sink, creates a transparent metal oxide layer on the substrate. A continous pattern of highly conductive metal channels is contained in the metal oxide layer.

  12. Oil/gas collector/separator for underwater oil leaks

    DOEpatents

    Henning, Carl D.

    1993-01-01

    An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

  13. [Henri Moissan: the man, the collector, the teacher].

    PubMed

    Viel, C

    2008-01-01

    On December 10 1906, Henri Moissan was in Stockholm to receive the Nobel Prize for chemistry for his isolation of fluorine in 1886 and for his electric arc furnace he described for the first time in 1892 then later improved and which opened the way to the new field of high-temperature chemistry. This was the first Nobel Prize for chemistry awarded to a Frenchman and Moissan was the only French pharmacist to have received this high distinction. He died suddenly at the age of 54 years, two months after receiving his Nobel Prize. In this presentation, we report the main elements of his biography, recalling the man, the teacher and the great collector of paintings and autographs, particularly from the period of the French revolution. We have used several unpublished or little known documents concerning this great scientist who with is broad culture and malicious humor always found the time, despite his many obligations, to satisfy his literary and artistic tastes.

  14. Sensitive spectrophotometric determination of phosphate using silica-gel collectors.

    PubMed

    Nagai, Masahiro; Sugiyama, Masahito; Hori, Toshitaka

    2004-02-01

    Phosphate, 3 - 10 nmol, in 1 dm3 of natural-water samples was quantitatively collected along with 10 micromol of Fe(III) ion onto a silica-gel collector in the pH range of 5.4 - 6.2. The amount of Fe(III) ion needed was limited to such a low level that the Pyrocatechol Violet method could be applied without removing the Fe(III) ion, providing a superior determination method for phosphate. Surface-water samples of the north basin of Lake Biwa and the Tanabe Bay in the Wakayama prefecture were selected as being representative of natural water with extremely low phosphate concentrations, and were found to have phosphate concentrations of 3.68 and 4.31 nmol dm(-3), respectively.

  15. Rim-drive cable-aligned heliostat collector system

    DOEpatents

    Dolan, James E.; Sands, Timothy D.

    1984-01-01

    Disclosed is a heliostat collector apparatus comprising at least one heliostat suspended from a plurality of longitudinally extending linkage means. An enclosure structure is disposed adjacent the heliostat and provides a means for allowing the heliostat to be substantially protected from weathering. A first drive means is operatively connected to the heliostat to effect steering thereof in at least one of first and second predetermined directions. Finally, a frame member is adapted for supporting the heliostat at an inner portion thereof. The frame includes a plurality of outer expandable portions. Each one of the expandable portions is adapted to slidably engage a corresponding one of the plurality of linkage means. The expandable portions are further adapted to allow the heliostat to be slidably moved along the linkage means in directions away from and towards the enclosure structure and to substantially reduce stress acting on the heliostat during steering.

  16. Rim-drive cable-aligned heliostat collector system

    DOEpatents

    Dolan, J.E.; Sands, T.D.

    1982-09-30

    Disclosed is a heliostat collector apparatus comprising at least one heliostat suspended from a plurality of longitudinally extending linkage means. An enclosure structure is disposed adjacent the heliostat and provides a means for allowing the heliostat to be substantially protected from weathering. A first drive means is operatively connected to the heliostat to effect steering thereof in at least one of first and second predetermined directions. Finally, a frame member is adapted for supporting the heliostat at an inner portion thereof. The frame includes a plurality of outer expandable portions. Each one of the expandable portions is adapted to slidably engage a corresponding one of the plurality of linkage means. The expandable portions are further adapted to allow the heliostat to be slidably moved along the linkage means in directions away from and towards the enclosure structure and to substantially reduce stress acting on the heliostat during steering.

  17. Preliminary Examination of the Interstellar Collector of Stardust

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Bastien, R.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Butterworth, A. L.; Floss, C.; Flynn, G.; Frank, D.; Gainsforth, Z.; Gruen, E.; Hoppe, P.; Kearsley, A.; Leroux, H.; Nittler, L. R.; Sandford, S. A.; Simionovici, A.; Stadermann, F.; Stroud, M.; Tsou, P.; Tyliczszak, T.; Warren, J.; Zolensky, M. E.

    2008-01-01

    The findings of the Stardust spacecraft mission returned to earth in January 2006 are discussed. The spacecraft returned two unprecedented and independent extraterrestrial samples: the first sample of a comet and the first samples of contemporary interstellar dust. An important lesson from the cometary Preliminary Examination (PE) was that the Stardust cometary samples in aerogel presented a technical challenge. Captured particles often separate into multiple fragments, intimately mix with aerogel and are typically buried hundreds of microns to millimeters deep in the aerogel collectors. The interstellar dust samples are likely much more challenging since they are expected to be orders of magnitudes smaller in mass, and their fluence is two orders of magnitude smaller than that of the cometary particles. The goal of the Stardust Interstellar Preliminary Examination (ISPE) is to answer several broad questions, including: which features in the interstellar collector aerogel were generated by hypervelocity impact and how much morphological and trajectory information may be gained?; how well resolved are the trajectories of probable interstellar particles from those of interplanetary origin?; and, by comparison to impacts by known particle dimensions in laboratory experiments, what was the mass distribution of the impacting particles? To answer these questions, and others, non-destructive, sequential, non-invasive analyses of interstellar dust candidates extracted from the Stardust interstellar tray will be performed. The total duration of the ISPE will be three years and will differ from the Stardust cometary PE in that data acquisition for the initial characterization stage will be prolonged and will continue simultaneously and parallel with data publications and release of the first samples for further investigation.

  18. ISS-based Development of Elements and Operations for Robotic Assembly of A Space Solar Power Collector

    NASA Technical Reports Server (NTRS)

    Valinia, Azita; Moe, Rud; Seery, Bernard D.; Mankins, John C.

    2013-01-01

    We present a concept for an ISS-based optical system assembly demonstration designed to advance technologies related to future large in-space optical facilities deployment, including space solar power collectors and large-aperture astronomy telescopes. The large solar power collector problem is not unlike the large astronomical telescope problem, but at least conceptually it should be easier in principle, given the tolerances involved. We strive in this application to leverage heavily the work done on the NASA Optical Testbed Integration on ISS Experiment (OpTIIX) effort to erect a 1.5 m imaging telescope on the International Space Station (ISS). Specifically, we examine a robotic assembly sequence for constructing a large (meter diameter) slightly aspheric or spherical primary reflector, comprised of hexagonal mirror segments affixed to a lightweight rigidizing backplane structure. This approach, together with a structured robot assembler, will be shown to be scalable to the area and areal densities required for large-scale solar concentrator arrays.

  19. Grid Collector: Using an event catalog to speed up user analysisin distributed environment

    SciTech Connect

    Wu, Kesheng; Shoshani, Arie; Zhang, Wei-Ming; Lauret, Jerome; Perevoztchikov, Victor

    2004-11-01

    Nuclear and High Energy Physics experiments such as STAR atBNL are generating millions of files with PetaBytes of data each year. Inmost cases, analysis programs have to read all events in a file in orderto find the interesting ones. Since the interesting events may be a smallfraction of events in the file, a significant portion of the computertime is wasted on reading the unwanted events. To address this issue, wedeveloped a software system called Grid Collector. The core of GridCollector is an Event Catalog. This catalog can be efficiently searchedwith compressed bitmap indices. Tests show that Grid Collector can indexand search STAR event data much faster than database systems. It is fullyintegrated with an existing analysis framework so that aminimal effort isrequired to use Grid Collector. In addition, by taking advantage ofexisting file catalogs, Storage Resource Managers (SRMs) and GridFTP,Grid Collector automatically downloads the needed files anywhere on theGrid without user intervention. Grid Collector can significantly improveuser productivity. For a user that typically performs computation on 50percent of the events, using Grid Collector could reduce the turn aroundtime by 30 percent. The improvement is more significant when searchingfor rare events, because only a small number of events with appropriateproperties are read into memory and the necessary files are automaticallylocated and down loaded through the best available route.

  20. Flat-plate solar-collector performance data base and user's manual

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, D. L.; Kolar, W. A.

    1983-07-01

    The reader is provided with a thorough understanding on the type of collector thermal performance information which is required in active system design and analysis. Thermal performance test data on 109 commercially available solar collectors which were evaluated in a single, uniform test program, the Interim Solar Collector Test (ISCT) Program are given. In addition to recounting the ISCT program and its results, the an introduction is given on the engineering and physics of a flat-plate solar collector operation. A step-by-step analysis of heat gains and losses is provided to help the reader understand both the source and applicability of the parameters used to describe collector thermal performance. A brief description of the engineering basis for the ASHRAE Standard 93-77 test procedure and the method are included. To demonstrate the sensitivity to variations of collector performance parameters of the annual output of representative solar heating systems, three sets of F-Chart (4.0) system performance predictions are given. Finally, a sensitivity analysis study is presented which considers the heat loss and optical gain parameters of flat-plate collectors, in terms of how they affect the overall solar heating system solar fraction.

  1. Development of a Solar Assisted Drying System Using Double-Pass Solar Collector with Finned Absorber

    NASA Astrophysics Data System (ADS)

    Azmi, M. S. M.; Othman, M. Y.; Sopian, K.; Ruslan, M. H.; Majid, Z. A. A.; Fudholi, A.; Yasin, J. M.

    2012-09-01

    The Solar Energy Research Group, Universiti Kebangsaan Malaysia, International Islamic University Malaysia and Yayasan FELDA has designed and constructed a solar assisted drying system at OPF FELDA Factory, Felda Bukit Sagu 2, Kuantan, Pahang. The drying system has a total of six double-pass solar collectors. Each collector has a length of 480 cm and a width of 120 cm. The first channel depth is 3.5 cm and the second channel depth is 7 cm. Longitudinal fins made of angle aluminium, 0.8 mm thickness were attached to the bottom surface of the absorber plate. The solar collectors are arranged as two banks of three collectors each in series. Internal manifold are used to connect the collectors. Air enters through the first channel and then through the second channel of the collector. An auxiliary heater source is installed to supply heat under unfavourable solar radiation condition. An on/off controller is used to control the startup and shutdown of the auxiliary heater. An outlet temperature of 70-75 °C can be achieved at solar radiation range of 800-900 W/m2 and flow rate of 0.12 kg/s. The average thermal efficiency of a solar collector is approximately 37%.

  2. Hydraulic analysis of a radial collector well for riverbank filtration near Nakdong River, South Korea

    NASA Astrophysics Data System (ADS)

    Lee, Eunhee; Hyun, Yunjung; Lee, Kang-Kun; Shin, Jiyoun

    2012-05-01

    A radial collector well is used for the extraction of a large amount of groundwater without causing a deep drawdown at the well's center, and it is appropriate for the supply of municipal water through riverbank filtration (RBF). Flow path changes caused by water extraction through a radial collector well were simulated to estimate the amount of river water induction at a RBF site associated with Nakdong River in South Korea. The structure of the screened horizontal arms of a radial collector well was examined with respect to effective riverbank filtration. The relative ratio of the river water induced to the radial collector well compared to the total groundwater extraction was estimated to be 27-52%. The amount of induced river water varies with the distance of a horizontal arm from the river, indicating that the location and structure of the collector well is significant for RBF. In all simulation cases, the maximum drawdown of the groundwater level near the collector well was 2.1 m, which is not significant considering the substantial pumping rate at the study site. It was concluded that RBF radial collector wells can be used at the study site for a sustainable water supply.

  3. Cosmic Dust Catalog. Volume 15; Particles from Collectors L2036 and L2021

    NASA Technical Reports Server (NTRS)

    Warren, J.; Watts, L.; Thomas-Keprta, K.; Wentworth , S.; Dodson , A.; Zolensky, Michael E.

    1997-01-01

    Since May 1981, the National Aeronautics and Space Administration (NASA) has used aircraft to collect cosmic dust (CD) particles from Earth's stratosphere. Specially designed dust collectors are prepared for flight and processed after flight in an ultraclean (Class-100) laboratory constructed for this purpose at the Lyndon B. Johnson Space Center (JSC) in Houston, Texas. Particles are individually retrieved from the collectors, examined and cataloged, and then made available to the scientific community for research. Cosmic dust thereby joins lunar samples and meteorites as an additional source of extraterrestrial materials for scientific study. This catalog summarizes preliminary observations on 468 particles retrieved from collection surfaces L2021 and L2036. These surfaces were flat plate Large Area Collectors (with a 300 cm2 surface area each) which was coated with silicone oil (dimethyl siloxane) and then flown aboard a NASA ER-2 aircraft during a series of flights that were made during January and February of 1994 (L2021) and June 7 through July 5 of 1994 (L2036). Collector L2021 was flown across the entire southern margin of the US (California to Florida), and collector L2036 was flown from California to Wallops Island, VA and on to New England. These collectors were installed in a specially constructed wing pylon which ensured that the necessary level of cleanliness was maintained between periods of active sampling. During successive periods of high altitude (20 km) cruise, the collectors were exposed in the stratosphere by barometric controls and then retracted into sealed storage container-s prior to descent. In this manner, a total of 35.8 hours of stratospheric exposure was accumulated for collector L2021, and 26 hours for collector L2036.

  4. Performance analysis of innovative collector fields for solar-electric plants, using air as heat transfer medium

    SciTech Connect

    De Marchi Desenzani, P.; Gaia, M.

    1984-08-01

    The production of electricity by thermodynamic conversion of the heat supplied by flat plate collectors has been tried many times. The use of air as heat transfer medium could allow a dramatic simplification of the collector field and a relevant reduction of thermal inertia. The paper discusses the characteristics of a system based on air collectors and ORC engine. Both multilayer inflated plastic sheet collectors and vacuum tubes collectors are proposed as suitable solutions. The field fan power consumption is optimized jointly with the power cycle evaporator design. Both the envisaged solutions are investigated on the point of view of overall cost/performance ratio.

  5. Recent Optical and SEM Characterization of Genesis Solar Wind Concentrator Diamond on Silicon Collector

    NASA Technical Reports Server (NTRS)

    Allton, Judith H.; Rodriquez, M. C.; Burkett, P. J.; Ross, D. K.; Gonzalez, C. P.; McNamara, K. M.

    2013-01-01

    One of the 4 Genesis solar wind concentrator collectors was a silicon substrate coated with diamond-like carbon (DLC) in which to capture solar wind. This material was designed for analysis of solar nitrogen and noble gases [1, 2]. This particular collector fractured during landing, but about 80% of the surface was recovered, including a large piece which was subdivided in 2012 [3, 4, 5]. The optical and SEM imaging and analysis described below supports the subdivision and allocation of the diamond-on-silicon (DOS) concentrator collector.

  6. Solar collector parameter identification from unsteady data by a discrete-gradient optimization algorithm

    NASA Technical Reports Server (NTRS)

    Hotchkiss, G. B.; Burmeister, L. C.; Bishop, K. A.

    1980-01-01

    A discrete-gradient optimization algorithm is used to identify the parameters in a one-node and a two-node capacitance model of a flat-plate collector. Collector parameters are first obtained by a linear-least-squares fit to steady state data. These parameters, together with the collector heat capacitances, are then determined from unsteady data by use of the discrete-gradient optimization algorithm with less than 10 percent deviation from the steady state determination. All data were obtained in the indoor solar simulator at the NASA Lewis Research Center.

  7. Method of making a current collector for a sodium/sulfur battery

    DOEpatents

    Tischer, R.P.; Winterbottom, W.L.; Wroblowa, H.S.

    1987-03-10

    This specification is directed to a method of making a current collector for a sodium/sulfur battery. The current collector so-made is electronically conductive and resistant to corrosive attack by sulfur/polysulfide melts. The method includes the step of forming the current collector for the sodium/sulfur battery from a composite material formed of aluminum filled with electronically conductive fibers selected from the group of fibers consisting essentially of graphite fibers having a diameter up to 10 microns and silicon carbide fibers having a diameter in a range of 500--1,000 angstroms. 2 figs.

  8. High concentration solar collector of the stepped spherical type: optical design characteristics

    SciTech Connect

    Authier, B.; Hill, L.

    1980-10-15

    An analysis of the optical design characteristics of a new high concentration solar collector is presented. This type of collector consists of spherical segments that are sections of a spherical cap by planes perpendicular to its axis. These ring-shaped spherical segments are so arranged along their common axis that the planes of their circles of least confusion are superposed. The optical characteristics and simulation of this system are developed to provide information for the engineering design of this type of solar energy collector system. The calculations are checked by a laser scanning onto a breadboard mock-up.

  9. Transient collector modulation of 4H-SiC BJTs during switch-on process

    NASA Astrophysics Data System (ADS)

    Yuferev, Valentin S.; Levinshtein, Michael E.; Ivanov, Pavel A.; Zhang, Jon Q.; Palmour, John W.

    2016-09-01

    Main physical features of the collector resistance modulation processes have been studied via a one-dimensional simulation for n+-p-n0-n+ 4H-SiC bipolar junction transistor. The motion dynamics of minority carriers (holes) across the n0 collector layer during the switch-on process is traced. It is demonstrated that the effective modulation of the collector resistance is only possible in the case of a rather fast transistor switch-on. A necessary condition for the fast switch-on is the large amplitude and short leading edge of the base current pulse.

  10. Thermal performance evaluation of Solar Energy Products Company (SEPCO) 'Soloron' collector tested outdoors

    NASA Technical Reports Server (NTRS)

    Chiou, J., Sr.

    1977-01-01

    The test article, Model EF-212, Serial Nr. 002, is a single glazed collector with a nonselective absorber plate, using flowing air as the heat transfer medium. The absorber plate and box frame are aluminum and the insulation is one inch isocyanurate foam board with thermal conductivity of 0.11 (BTU/sq ft Hr0/ft.) The tests included the following. (1) time constant test, (2) collector efficiency test, (3) collector stagnation test, (4) incident angle modifier test, (5) load test, (6) weathering test, and (7) absorber plate optical properties test. The results of these tests are tabulated, graphed, or otherwise recorded.

  11. Electrochemical reaction of sulfur cathodes with Ni foam current collector in Li-S batteries

    NASA Astrophysics Data System (ADS)

    Liu, Li-Jun; Chen, Yang; Zhang, Zhi-Feng; You, Xiao-Long; Walle, Maru Dessie; Li, Ya-Juan; Liu, You-Nian

    2016-09-01

    The electrochemical properties of sulfur cathode with Ni foam current collector are investigated in detail. Different from sulfur cathode with stain steel current collector, it is interesting found that novel redox peaks at 1.95 V/1.35 V are observed for sulfur cathode with Ni foam. The electrochemical behavior is further verified by ex-situ XRD, SEM and XPS analyses. The results indicate that Ni foam current collector is involved in the redox reaction in Li/S rechargeable battery, and NiS forms at the surface of the Ni foam. These results demonstrate that the sulfur electrode is transformed into NiS.

  12. Indoor test for thermal performance evaluation on life sciences engineering (air) solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The test procedure used and the results obtained from an evaluation test program conducted to obtain thermal performance data on a life sciences double-glazed air solar collector under simulated conditions is discussed. These tests were made using the Marshall Space Flight Center's solar simulator. A time constant test and incident angle modifier test were also conducted to determine the transient effect and the incident angle effect on the collector. These results and the results of the collector load test are also discussed.

  13. Method of making a current collector for a sodium/sulfur battery

    DOEpatents

    Tischer, Ragnar P.; Winterbottom, Walter L.; Wroblowa, Halina S.

    1987-01-01

    This specification is directed to a method of making a current collector (14) for a sodium/sulfur battery (10). The current collector so-made is electronically conductive and resistant to corrosive attack by sulfur/polysulfide melts. The method includes the step of forming the current collector for the sodium/sulfur battery from a composite material (16) formed of aluminum filled with electronically conductive fibers selected from the group of fibers consisting essentially of graphite fibers having a diameter up to 10 microns and silicon carbide fibers having a diameter in a range of 500-1000 angstroms.

  14. Indoor test for thermal performance evaluation of Sunworks (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    Shih, K.

    1977-01-01

    Test procedures used and test results obtained from an evaluation test program conducted on a single covered liquid solar collector under simulated conditions are presented. The test article was a flat plate solar collector using water as the heat transfer medium. The absorber plate was copper with copper tubes bonded by soft solder. The plate was coated with Enthone selective black with an absorptivity factor of .87 approximately .92 and an emissivity factor of .10 approximately .20. A time constant test and incident angle modifier test were conducted to determine the transient effect and the incident angle effect on the collector.

  15. Flat-Plate Solar-Collector Performance Evaluation with a Solar Simulator as a Basis for Collector Selection and Performance Prediction

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1975-01-01

    The use of a solar simulator for performance determination permits collector testing under standard conditions of wind, ambient temperature, flow rate and sun. The performance results determined with the simulator have been found to be in good agreement with outdoor performance results. The measured thermal efficiency and evaluation of 23 collectors are reported which differ according to absorber material (copper, aluminum, steel), absorber coating (nonselective black paint, selective copper oxide, selective black nickel, selective black chrome), type of glazing material (glass, Tedlar, Lexan, antireflection glass), the use of honeycomb material and the use of vacuum to prevent thermal convection losses. The collectors were given performance rankings based on noon-hour solar conditions and all-day solar conditions. The determination with the simulator of an all-day collector performance was made possible by tests at different incident angles. The solar performance rankings were made based on whether the collector is to be used for pool heating, hot water, absorption air conditioning, heating, or for a solar Rankine machine.

  16. Electrolytic/fuel cell bundles and systems including a current collector in communication with an electrode thereof

    SciTech Connect

    Hawkes, Grant L.; Herring, James S.; Stoots, Carl M.; O'Brien, James E.

    2013-03-05

    Electrolytic/fuel cell bundles and systems including such bundles include an electrically conductive current collector in communication with an anode or a cathode of each of a plurality of cells. A cross-sectional area of the current collector may vary in a direction generally parallel to a general direction of current flow through the current collector. The current collector may include a porous monolithic structure. At least one cell of the plurality of cells may include a current collector that surrounds an outer electrode of the cell and has at least six substantially planar exterior surfaces. The planar surfaces may extend along a length of the cell, and may abut against a substantially planar surface of a current collector of an adjacent cell. Methods for generating electricity and for performing electrolysis include flowing current through a conductive current collector having a varying cross-sectional area.

  17. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Merrill, Matthew D.; Tokash, Justin C.; Saito, Tomonori; Cheng, Shaoan; Hickner, Michael A.; Logan, Bruce E.

    Mesh current collectors made of stainless steel (SS) can be integrated into microbial fuel cell (MFC) cathodes constructed of a reactive carbon black and Pt catalyst mixture and a poly(dimethylsiloxane) (PDMS) diffusion layer. It is shown here that the mesh properties of these cathodes can significantly affect performance. Cathodes made from the coarsest mesh (30-mesh) achieved the highest maximum power of 1616 ± 25 mW m -2 (normalized to cathode projected surface area; 47.1 ± 0.7 W m -3 based on liquid volume), while the finest mesh (120-mesh) had the lowest power density (599 ± 57 mW m -2). Electrochemical impedance spectroscopy showed that charge transfer and diffusion resistances decreased with increasing mesh opening size. In MFC tests, the cathode performance was primarily limited by reaction kinetics, and not mass transfer. Oxygen permeability increased with mesh opening size, accounting for the decreased diffusion resistance. At higher current densities, diffusion became a limiting factor, especially for fine mesh with low oxygen transfer coefficients. These results demonstrate the critical nature of the mesh size used for constructing MFC cathodes.

  18. CPV semi-dense array design for dish and tower collectors

    NASA Astrophysics Data System (ADS)

    Hayden, Herb; Thomas, Paul; Fette, Nicholas; Farkas, Zoltan; Bading, Michael; Stone, Bradley; Miner, Mark; Stickroth, Oliver; Bagewadi, Nakul; Romero, Memo; Sonuparlak, Birol; Eichholz, Rainer; Ziegler, Michael; Pawlowski, Edgar

    2012-10-01

    SST is developing a new Dish CPV dense array system that overcomes the flux uniformity requirement of previous designs. The ability to operate without flux uniformity relaxes the precision requirements of primary collector optics and eliminates homogenizing optics previously required for dense array CPV. Array design can be configured for dish and tower/heliostat systems developed for thermal CSP applications. The design uses industry standard CPV cells and manufacturing materials and methods for minimum cost and high reliability. Nominal input flux to the array for full power is about 250 suns. Internal array optics increase flux to the cells to about 1200 suns. Linear optics provide additional concentration, permit novel use of commercial glass production methods and facilitate power collection design that is integrated with dynamic power conversion and maximum power point tracking (MPPT). Efficient power hybrid packaging methods are used along with advanced liquid cooling "cold-plate" thermal management. Byproduct "waste heat" can be provided for on-site CHP use. We report on the design approach and status of development with the beginning of on-sun alpha testing of the first of 50 kW of CPV modules being produced.

  19. Multiscale computational modeling of a radiantly driven solar thermal collector

    NASA Astrophysics Data System (ADS)

    Ponnuru, Koushik

    The objectives of the master's thesis are to present, discuss and apply sequential multiscale modeling that combines analytical, numerical (finite element-based) and computational fluid dynamic (CFD) analysis to assist in the development of a radiantly driven macroscale solar thermal collector for energy harvesting. The solar thermal collector is a novel green energy system that converts solar energy to heat and utilizes dry air as a working heat transfer fluid (HTF). This energy system has important advantages over competitive technologies: it is self-contained (no energy sources are needed), there are no moving parts, no oil or supplementary fluids are needed and it is environmentally friendly since it is powered by solar radiation. This work focuses on the development of multi-physics and multiscale models for predicting the performance of the solar thermal collector. Model construction and validation is organized around three distinct and complementary levels. The first level involves an analytical analysis of the thermal transpiration phenomenon and models for predicting the associated mass flow pumping that occurs in an aerogel membrane in the presence of a large thermal gradient. Within the aerogel, a combination of convection, conduction and radiation occurs simultaneously in a domain where the pore size is comparable to the mean free path of the gas molecules. CFD modeling of thermal transpiration is not possible because all the available commercial CFD codes solve the Navier Stokes equations only for continuum flow, which is based on the assumption that the net molecular mass diffusion is zero. However, thermal transpiration occurs in a flow regime where a non-zero net molecular mass diffusion exists. Thus these effects are modeled by using Sharipov's [2] analytical expression for gas flow characterized by high Knudsen number. The second level uses a detailed CFD model solving Navier Stokes equations for momentum, heat and mass transfer in the various

  20. Phase 1 of the First Solar Small Power System Experiment (experimental System No. 1). Volume 1: Technical Studies for Solar Point-focusing, Distributed Collector System, with Energy Conversion at the Collector, Category C

    NASA Technical Reports Server (NTRS)

    Clark, T. B. (Editor)

    1979-01-01

    The technical and economic feasibility of a solar electric power plant for a small community is evaluated and specific system designs for development and demonstration are selected. All systems investigated are defined as point focusing, distributed receiver concepts, with energy conversion at the collector. The preferred system is comprised of multiple parabolic dish concentrators employing Stirling cycle engines for power conversion. The engine, AC generator, cavity receiver, and integral sodium pool boiler/heat transport system are combined in a single package and mounted at the focus of each concentrator. The output of each concentrator is collected by a conventional electrical distribution system which permits grid-connected or stand-alone operation, depending on the storage system selected.

  1. Certification and verification for Northrup model NSC-01-0732 fresnel lens concentrating solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Structural analysis and certification of the collector system is presented. System verification against the interim performance criteria is presented and indicated by matrices. The verification discussion, analysis, and test results are also given.

  2. Long term weathering effects on the thermal performance of the sunworks (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The test procedures used and the results obtained during the evaluation test program of the Sunworks single-covered liquid solar collector are presented. The tests were performed under simulated conditions, following long-term exposure to natural weathering conditions. The sunworks collector is a flat-plate solar collector. The absorber plate is copper with copper tubes bonded by soft solder, and is coated with Enthon selective black with an absorptivity factor of .87 similar to .92 and an emissivity factor of .10 similar to .20. It has a single glass cover of 3/16 inches tempered glass and weighs about 115 pounds. The overall dimensions of the collector are 36 x 84 x 4 inches.

  3. Ray tracing optical analysis of offset solar collector for Space Station solar dynamic system

    NASA Technical Reports Server (NTRS)

    Jefferies, Kent S.

    1988-01-01

    OFFSET, a detailed ray tracing computer code, was developed at NASA Lewis Research Center to model the offset solar collector for the Space Station solar dynamic electric power system. This model traces rays from 50 points on the face of the sun to 10 points on each of the 456 collector facets. The triangular facets are modeled with spherical, parabolic, or toroidal reflective surface contour and surface slope errors. The rays are then traced through the receiver aperture to the walls of the receiver. Images of the collector and of the sun within the receiver produced by this code provide insight into the collector receiver interface. Flux distribution on the receiver walls, plotted by this code, is improved by a combination of changes to aperture location and receiver tilt angle. Power loss by spillage at the receiver aperture is computed and is considerably reduced by using toroidal facets.

  4. Thermal performance evaluation of the Suncatcher SH-11 (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The procedures used and the results obtained during the evaluation test program on the Solar Unlimited, Inc., Suncatcher SH-11 (liquid) solar collector are presented. The flat-plate collector case assembly is made of .08 inch aluminum 3003 H14 riveted with fiberglass board insulation. The absorber consists of collared aluminum fins mechanically bonded to 3/8 inch copper tubing and coated with 3M Nextel black. Water is used as the working fluid. The glazing is made of a single glass, 1/8 inch water white, tempered and antireflective. The collector weight is 85 pounds with overall external dimensions of about 35.4 in x 82.0 in x 4.0 in. Thermal performance data on the Solar Unlimited Suncatcher SH-11 solar collector under simulated conditions were conducted using the MSFC Solar Simulator.

  5. Ray tracing optical analysis of offset solar collector for space station solar dynamic system

    NASA Technical Reports Server (NTRS)

    Jefferies, Kent S.

    1988-01-01

    OFFSET, a detailed ray tracing computer code, was developed at NASA Lewis Research Center to model the offset solar collector for the Space Station solar dynamic electric power system. This model traces rays from 50 points on the face of the Sun to 10 points on each of the 456 collector facets. The triangular facets are modeled with spherical, parabolic, or toroidal reflective surface contour and surface slope errors. The rays are then traced through the receiver aperture to the walls of the receiver. Images of the collector and of the Sun within the receiver produced by this code provide insight into the collector receiver interface. Flux distribution on the receiver walls, plotted by this code, is improved by a combination of changes to aperture location and receiver tilt angle. Power loss by spillage at the receiver aperture is computed and is considerably reduced by using toroidal facets.

  6. Development, testing, and certification of Calmac Mfg. Corp. solar collector and solar operated pump

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1979-01-01

    Development of a rubber tube solar collector and solar operated pump for use with solar heating and cooling systems is discussed. The development hardware, problems encountered during fabrication and testing, and certification statements of performance are included.

  7. Comparative performance of twenty-three types of flat plate solar energy collectors

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1975-01-01

    Report compares efficiencies of 23 solar collectors for four different purposes: operating a Rankine-cycle engine, heating or absorption air conditioning, heating hot water, and heating a swimming pool.

  8. Design of a multistage depressed collector for the F-16 radar dual mode transmitter tube

    NASA Technical Reports Server (NTRS)

    Dayton, J. A., Jr.

    1982-01-01

    The design of a multistage depressed collector (MDC) for use with the F-16 radar dual mode transmitter tube is described. The methods employed and the rationale on which the design is based are presented.

  9. Development of flat-plate solar collectors for the heating and cooling of buildings

    NASA Technical Reports Server (NTRS)

    Ramsey, J. W.; Borzoni, J. T.; Holland, T. H.

    1975-01-01

    The relevant design parameters in the fabrication of a solar collector for heating liquids were examined. The objective was to design, fabricate, and test a low-cost, flat-plate solar collector with high collection efficiency, high durability, and requiring little maintenance. Computer-aided math models of the heat transfer processes in the collector assisted in the design. The preferred physical design parameters were determined from a heat transfer standpoint and the absorber panel configuration, the surface treatment of the absorber panel, the type and thickness of insulation, and the number, spacing and material of the covers were defined. Variations of this configuration were identified, prototypes built, and performance tests performed using a solar simulator. Simulated operation of the baseline collector configuration was combined with insolation data for a number of locations and compared with a predicted load to determine the degree of solar utilization.

  10. Qualification test procedures and results for Honeywell solar collector subsystem, single-family residence

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The test procedures and results in qualifying the Honeywell single family residence solar collector subsystem are presented. Testing was done in the following areas: pressure, service loads, hail, solar degradation, pollutants, thermal degradation, and outgassing.

  11. Solar collector studies for solar heating and cooling applications. Final technical report

    SciTech Connect

    Anderson, J. H.; Jensen, S. O.; Kovacic, J. E.

    1980-01-01

    A summary of the literature, especially patent teachings pertaining to black fluid solar collectors is given. Laboratory tests to determine the suspension stability of various carbon types in water/Propylene glycol are reported. The suspensions were aged at 160/sup 0/F for 3600 hours and at -15/sup 0/F for 1100 hours. It is suggested that the suspending agent interacts with electrical charges on the carbon particles to prevent agglomeration. The liquid was tested for its operating characteristics with several collector design variables using glass tubes as the containment system. The collectors were installed in a house previously operated on a black liquid system, and observed for a six month period with the weather ranging from -12/sup 0/F to 94/sup 0/F with no major problems occurring with either the liquid or the collectors.

  12. Potential of size reduction of flat-plate solar collectors when applying MWCNT nanofluid

    NASA Astrophysics Data System (ADS)

    Faizal, M.; Saidur, R.; Mekhilef, S.

    2013-06-01

    Flat-plate solar collector is the most popular type of collector for hot water system to replace gas or electric heater. Solar thermal energy source is clean and infinite to replace fossil fuel source that is declining and harmful to the environment. However, current solar technology is still expensive, low in efficiency and takes up a lot of space. One effective way to increase the efficiency is by applying high conductivity fluid as nanofluid. This paper analyzes the potential of size reduction of solar collector when MWCNT nanofluid is used as absorbing medium. The analysis is based on different mass flow rate, nanoparticles mass fraction, and presence of surfactant in the fluid. For the same output temperature, it can be observed that the collector's size can be reduced up to 37% of its original size when applying MWCNT nanofluid as the working fluid and thus can reduce the overall cost of the system.

  13. Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001--August 2003

    SciTech Connect

    Hosoya, N.; Peterka, J. A.; Gee, R. C.; Kearney, D.

    2008-05-01

    Conducted extensive wind-tunnel tests on parabolic trough solar collectors to determine practical wind loads applicable to structural design for stress and deformation, and local component design for concentrator reflectors.

  14. Identification With a Violent and Sadistic Aggressor: A Rorschach Study of Criminal Debt Collectors.

    PubMed

    Nørbech, Peder Chr Bryhn; Grønnerød, Cato; Hartmann, Ellen

    2016-01-01

    This study examined personality functioning in a group of 27 incarcerated criminal debt collectors as assessed by the Rorschach Inkblot Method (RIM; Rorschach, 1921/1942) and the Psychopathy Checklist-Revised (PCL-R; Hare, 2003 ). To explore whether these individuals represent a distinct subgroup within the violent offender population, we compared them to a group of incarcerated homicide offenders (n = 23) without a previous history of significant violence and a group who had committed less serious violent crimes (n = 21). Results revealed significantly more Rorschach indicators of past trauma (Trauma Content Index), aggressive urges (Aggressive Potential) and identification (Aggressive Content) among the debt collectors than the 2 other groups. In addition, debt collectors displayed significantly more interpersonal interest (Sum Human content), and significantly higher scores on the PCL-R. Our findings suggest that the debt collector might be viewed as a hostile variant of psychopathy. PMID:26226052

  15. Big hitting collectors make massive and disproportionate contribution to the discovery of plant species

    PubMed Central

    Bebber, Daniel P.; Carine, Mark A.; Davidse, Gerrit; Harris, David J.; Haston, Elspeth M.; Penn, Malcolm G.; Cafferty, Steve; Wood, John R. I.; Scotland, Robert W.

    2012-01-01

    Discovering biological diversity is a fundamental goal—made urgent by the alarmingly high rate of extinction. We have compiled information from more than 100 000 type specimens to quantify the role of collectors in the discovery of plant diversity. Our results show that more than half of all type specimens were collected by less than 2 per cent of collectors. This highly skewed pattern has persisted through time. We demonstrate that a number of attributes are associated with prolific plant collectors: a long career with increasing productivity and experience in several countries and plant families. These results imply that funding a small number of expert plant collectors in the right geographical locations should be an important element in any effective strategy to find undiscovered plant species and complete the inventory of the world flora. PMID:22298844

  16. DEVELOPMENT OF A STREAM BENTHIC MACROINVERTEBRATE INTEGRITY INDEX (SBMII) FOR WADEABLE STREAMS IN THE MID-ATLANTIC HIGHLANDS REGION

    EPA Science Inventory

    The Stream Benthic Macroinvertebrate Integrity Index (SBMII), a multimetric biotic index for assessing biological conditions of wadeable streams, was developed using seven macroinvertebrate metrics (Ephemeroptera richness, Plecoptera richness, Trichoptera richness, Collector-Filt...

  17. Labile trace metal contribution of the runoff collector to a semi-urban river.

    PubMed

    Villanueva, J D; Granger, D; Binet, G; Litrico, X; Huneau, F; Peyraube, N; Le Coustumer, P

    2016-06-01

    In this study, the distribution of labile trace metals (LTMs; Cd, Co, Cr, Cu, Ni, Pb, and Zn) in a semi-urban runoff collector was examined to assess its influence to a natural aqueous system (Jalle River, Bordeaux, France). This river is of high importance as it is part of a natural reserve dedicated to conserving aquatic flora and fauna. Two sampling campaigns with a differing precipitation condition (period 1, spring season; and period 2, summer season associated with storms) were considered. Precipitation and water flow were monitored. The collector is active as it is receptive to precipitation changes. It influences the river through discharging water, contributing LTMs, and channeling the mass fluxes. During period 2 where precipitation rate is higher, 25 % of the total water volume of the river was supplied by the collector. LTMs were detected at the collector. Measurements were done by using diffusive gradient in thin films (DGT) probes deployed during 1, 7, and 14 days in each period. The results showed that in an instantaneous period (day 1 or D1), most of these trace metals are above the environmental quality standards (Cd, Co, Cr, and Zn). The coefficient of determination (r (2) > 0.50) employed confirmed that the LTM concentrations in the downstream can be explained by the collector. While Co and Cr are from the upstream and the collector, Cd, Cu, and Zn are mostly provided by the collector. Ni, however, is mostly delivered by the upstream. Using the concentrations observed, the river can be affected by the collector in varying ways: (1) adding effect, resulting from the mix of the upstream and the collector (if upstream ˂ downstream); (2) diluted (if upstream ˃ downstream); and (3) conservative or unaffected (upstream ~ downstream). The range of LTM mass fluxes that the collector holds are as follows: (1) limited range or ˂10 g/day, Cd (0.04-1.75 g/day), Co (0.08-05.42 g/day), Ni (0.06-1.45 g/day), and Pb (0.08-9.89 g/day); (2) moderate

  18. ELECTRONIC INTEGRATING CIRCUIT

    DOEpatents

    Englemann, R.H.

    1963-08-20

    An electronic integrating circuit using a transistor with a capacitor connected between the emitter and collector through which the capacitor discharges at a rate proportional to the input current at the base is described. Means are provided for biasing the base with an operating bias and for applying a voltage pulse to the capacitor for charging to an initial voltage. A current dividing diode is connected between the base and emitter of the transistor, and signal input terminal means are coupled to the juncture of the capacitor and emitter and to the base of the transistor. At the end of the integration period, the residual voltage on said capacitor is less by an amount proportional to the integral of the input signal. Either continuous or intermittent periods of integration are provided. (AEC)

  19. A two-dimensional thermal analysis of a new high-performance tubular solar collector

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.; Yung, C. S.

    1979-01-01

    The first of two articles are presented which describe and analyze the thermal performance of a vacuum tube solar collector. The assumptions and mathematical modeling are presented. The problem is reduced to the formulation of two simultaneous linear differential equations characterizing the collector thermal behavior. After applying the boundary conditions, a general solution is obtained which is found similar to the general Hottel, Whillier and Bliss form but with a complex flow factor.

  20. Thermal analysis of five unglazed solar collector systems for the heating of outdoor swimming pools

    SciTech Connect

    Molineaux, B.; Lachal, B.; Guisan, O. )

    1994-07-01

    The performance and behavior of five unglazed solar collector installations, devoted to the heating of five outdoor swimming pools located in Switzerland, is studied on the basis of experimental data collected in 1988. Due to the low temperatures involved, hourly efficiencies often exceed 80%. The mean daily collector efficiency is of the order of 60% in optimal conditions and is in good agreement with the G3 simulation program.

  1. Thermal performance evaluation of MSFC hot air collectors with various flow channel depth

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The test procedures used and the results obtained during the evaluation test program on the MSFC air collector with flow channel depth of 3 in., 2 in., and 1 in., under simulated conditions are presented. The MSFC hot air collector consists of a single glass cover with a nonselective coating absorber plate and uses air as the heat transfer medium. The absorber panel consists of a thin flat sheet of aluminum.

  2. Performance analysis of wick-assisted heat pipe solar collector and comparison with experimental results

    NASA Astrophysics Data System (ADS)

    Azad, E.

    2009-03-01

    The performance of heat pipe solar collector is investigated theoretically and experimentally. The system employs wick-assisted heat pipe for the heat transfer from the absorber (evaporator) to a heat exchanger (condenser). The heat pipe is made with a copper tube and the evaporator section is finned with aluminium plate. Theoretical model predicts the outlet water from heat exchanger, heat pipe temperature and also the thermal efficiency of solar collector. The results are compared with experimental data.

  3. Proceedings of the distributed solar collector summary conference: technology and applications

    SciTech Connect

    Alvis, R.L.

    1983-03-01

    This report is the Proceedings for a meeting on distributed solar collector system technology held at Albuquerque, NM in March 1983. The meeting covered research on development of components and subsystems, systems engineering and analysis, the results of the Modular Industrial Solar Retrofit (MISR) project, including system design descriptions and test results, and finally, operating experiences and performance data from distributed collector experimental field projects. Papers included in this Proceedings are abstracted individually for EDB.

  4. Design of optimal and ideal 2-D concentrators with the collector immersed in a dielectric tube

    SciTech Connect

    Min-barano, J.C.; Ruiz, J.M.; Luque, A.

    1983-12-15

    In this paper we present a method for designing ideal and optimal 2-D concentrators when the collector is placed inside a dielectric tube for the particular case of a bifacial collector. The method, based on the extreme ray principle of design, avoids the use of differential equations by means of a proper application of Fermat's principle. One advantage of these concentrators is that they allow the size to be small compared with classical CPCs.

  5. Use of the Marshall Space Flight Center solar simulator in collector performance evaluation

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.

    1978-01-01

    Actual measured values from simulator checkout tests are detailed. Problems encountered during initial startup are discussed and solutions described. Techniques utilized to evaluate collector performance from simulator test data are given. Performance data generated in the simulator are compared to equivalent data generated during natural outdoor testing. Finally, a summary of collector performance parameters generated to date as a result of simulator testing are given.

  6. Nanofluid optical property characterization: towards efficient direct absorption solar collectors.

    PubMed

    Taylor, Robert A; Phelan, Patrick E; Otanicar, Todd P; Adrian, Ronald; Prasher, Ravi

    2011-03-15

    Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase.

  7. Solar swimming pool heating -- A copper collector after 26 years

    SciTech Connect

    Winter, F. de

    1999-07-01

    This paper is a progress report and a technology overview for a do-it-yourself solar swimming pool heater built by the author. Since March 1973 the heater has operated successfully day in day out for over 26 years, as a simple component in the pool circulation system, for three successive homeowners. The heater project was sponsored by the Copper Development Association (CDA), and used a copper flat plate collector design mounted on a small building, which provided both the roofing and the solar collection function. The heater was built in Pasadena, California, at 34.2 degrees north latitude and 118.2 degrees west longitude. A do-it-yourself manual was written so others could build such heaters, and about 100,000 copies of this manual have been distributed. The manual has helped many to get a better understanding of solar energy, has allowed many around the world to build similar swimming pool heater, and caused this author to get into the solar energy field.

  8. Low-cost evacuated-tube solar collector. Final report

    SciTech Connect

    Beecher, D. T.

    1981-02-10

    A prototype design for an evacuated tube air cooled solar collector module has been completed. A product cost study, based on the production of 60,000 of the prototype modules per year (approx. 1,000,000 square feet annually), estimates that the module as shipped would have a cost at inventory of $7.09 to $7.40 per square foot of aperture. Computer programs were developed to predict the optical and thermal performance of the module. Antireflective coatings (porous aluminum oxide) which could be formed by spraying or dipping were demonstrated but degraded more rapidly when exposed to a high humidity ambient than acid etched films. A selective black chromium oxide multi-layered graded film was vapor deposited which had an absorptivity of about 0.9 and an emissivity of 0.03. When the film was heated to temperatures of 400/sup 0/C in a gettered vacuum for as little as 24 hours, however, irreversible changes took place both between and within coating layers which resulted in ..cap alpha.. decreasing to about 0.73 and epsilon increasing to 0.14. The product cost studies indicate that module design changes are warranted to reduce product cost prior to tooling for production.

  9. Violence against metropolitan bus drivers and fare collectors in Brazil.

    PubMed

    Assunção, Ada Ávila; Medeiros, Adriane Mesquita de

    2015-01-01

    OBJECTIVE To analyze the correlation between sociodemographic factors and working conditions of bus workers in a metropolitan area and violence against them. METHODS This cross-sectional study used a nonprobabilistic sample estimated according to the number of workers employed in bus companies located in three cities in the Belo Horizonte metropolitan region in 2012 (N = 17,470). Face-to-face interviews were conducted using a digital questionnaire. The factors associated with violence were analyzed in two stages using Poisson regression, according to each level. The magnitude of the association was evaluated using prevalence ratios with robust variance and a statistical significance of 5%, and 95% confidence intervals were obtained. RESULTS The study sample comprised 782 drivers and 691 fare collectors; 45.0% participants reported at least one act of violence in the workplace in the last 12 months, with passengers being predominantly responsible. The age of the bus workers was inversely associated with violence. Chronic diseases, sickness absenteeism, and working conditions were also associated with violence. CONCLUSIONS The findings on the correlation between violence and working conditions are essential for implementing prevention strategies by transportation service managers.

  10. Nanoparticle flotation collectors--the influence of particle softness.

    PubMed

    Yang, Songtao; Razavizadeh, Bi Bi Marzieh; Pelton, Robert; Bruin, Gerard

    2013-06-12

    The ability of polymeric nanoparticles to promote glass bead and pentlandite (Pn, nickel sulfide mineral) attachment to air bubbles in flotation was measured as a function of the nanoparticle glass transition temperature using six types of nanoparticles based on styrene/N-butylacrylate copolymers. Nanoparticle size, surface charge density, and hydrophobicity were approximately constant over the series. The ability of the nanoparticles to promote air bubble attachment and perform as flotation collectors was significantly greater for softer nanoparticles. We propose that softer nanoparticles were more firmly attached to the glass beads or mineral surface because the softer particles had a greater glass/polymer contact areas and thus stronger overall adhesion. The diameters of the contact areas between polymeric nanoparticles and glass surfaces were estimated with the Young-Laplace equation for soft, liquidlike particles, whereas JKR adhesion theory was applied to the harder polystyrene particles. The diameters of the contact areas were estimated to be more than an order of magnitude greater for the soft particles compared to harder polystyrene particles.

  11. Violence against metropolitan bus drivers and fare collectors in Brazil

    PubMed Central

    Assunção, Ada Ávila; de Medeiros, Adriane Mesquita

    2015-01-01

    OBJECTIVE To analyze the correlation between sociodemographic factors and working conditions of bus workers in a metropolitan area and violence against them. METHODS This cross-sectional study used a nonprobabilistic sample estimated according to the number of workers employed in bus companies located in three cities in the Belo Horizonte metropolitan region in 2012 (N = 17,470). Face-to-face interviews were conducted using a digital questionnaire. The factors associated with violence were analyzed in two stages using Poisson regression, according to each level. The magnitude of the association was evaluated using prevalence ratios with robust variance and a statistical significance of 5%, and 95% confidence intervals were obtained. RESULTS The study sample comprised 782 drivers and 691 fare collectors; 45.0% participants reported at least one act of violence in the workplace in the last 12 months, with passengers being predominantly responsible. The age of the bus workers was inversely associated with violence. Chronic diseases, sickness absenteeism, and working conditions were also associated with violence. CONCLUSIONS The findings on the correlation between violence and working conditions are essential for implementing prevention strategies by transportation service managers. PMID:25741657

  12. Collector probe measurements of ohmic conditioning discharges in TFTR

    SciTech Connect

    Kilpatrick, S.J.; Dylla, H.F.; Manos, D.M.; Cohen, S.A.; Wampler, W.R.; Bastasz, R.

    1989-03-01

    Special limiter conditioning techniques using low density deuterium or helium discharges have produced enhanced plasma confinement in TFTR. Measurements with a rotatable collector probe have been made to increase our understanding of the boundary layer during these conditioning sequences. A set of silicon films behind slits facing in the ion and electron drift directions was exposed to four different D/sup +/ and He/sup 2 +/ discharge sequences. The amounts of deuterium and impurities trapped in the surface regions of the samples have been measured by different analytical techniques, including nuclear reaction analysis for retained deuterium, Rutherford backscattering spectroscopy for carbon and metals, and Auger electron spectroscopy for carbon, oxygen, and metals. Up to 1.9 /times/ 10/sup 17/ cm/sup /minus/2/ of deuterium was detected in codeposited carbon layers with D/C generally in the range of the bulk saturation limit. Radial profiles and ion drift/electron drift asymmetries are discussed. 21 refs., 3 figs., 1 tab.

  13. Nanoparticle flotation collectors--the influence of particle softness.

    PubMed

    Yang, Songtao; Razavizadeh, Bi Bi Marzieh; Pelton, Robert; Bruin, Gerard

    2013-06-12

    The ability of polymeric nanoparticles to promote glass bead and pentlandite (Pn, nickel sulfide mineral) attachment to air bubbles in flotation was measured as a function of the nanoparticle glass transition temperature using six types of nanoparticles based on styrene/N-butylacrylate copolymers. Nanoparticle size, surface charge density, and hydrophobicity were approximately constant over the series. The ability of the nanoparticles to promote air bubble attachment and perform as flotation collectors was significantly greater for softer nanoparticles. We propose that softer nanoparticles were more firmly attached to the glass beads or mineral surface because the softer particles had a greater glass/polymer contact areas and thus stronger overall adhesion. The diameters of the contact areas between polymeric nanoparticles and glass surfaces were estimated with the Young-Laplace equation for soft, liquidlike particles, whereas JKR adhesion theory was applied to the harder polystyrene particles. The diameters of the contact areas were estimated to be more than an order of magnitude greater for the soft particles compared to harder polystyrene particles. PMID:23692163

  14. Animal or plant: which is the better fog water collector?

    PubMed

    Nørgaard, Thomas; Ebner, Martin; Dacke, Marie

    2012-01-01

    Occasional fog is a critical water source utilised by plants and animals in the Namib Desert. Fog basking beetles (Onymacris unguicularis, Tenebrionidae) and Namib dune bushman grass (Stipagrostris sabulicola, Poaceae) collect water directly from the fog. While the beetles position themselves optimally for fog water collection on dune ridges, the grass occurs predominantly at the dune base where less fog water is available. Differences in the fog-water collecting abilities in animals and plants have never been addressed. Here we place beetles and grass side-by-side in a fog chamber and measure the amount of water they collect over time. Based on the accumulated amount of water over a two hour period, grass is the better fog collector. However, in contrast to the episodic cascading water run-off from the grass, the beetles obtain water in a steady flow from their elytra. This steady trickle from the beetles' elytra to their mouth could ensure that even short periods of fog basking--while exposed to predators--will yield water. Up to now there is no indication of specialised surface properties on the grass leafs, but the steady run-off from the beetles could point to specific property adaptations of their elytra surface.

  15. Kilometer scale telescope collector deployable in a shuttle payload

    NASA Astrophysics Data System (ADS)

    Ditto, Thomas D.

    2004-10-01

    We propose a space telescope that has a diffraction grating as its primary objective element. A membrane grating in the shape of a ribbon could enjoy aperture length above a kilometer. This novel configuration would be particularly useful for very high resolution spectrographic astronomy as required in Doppler shift searches for extra-solar planets due to its very wide aperture in the one dimension used for dispersion and its unprecedented spectral resolving power. Rolls can be stowed in the payload bay for Shuttle delivery into orbit, then unfurled and kept flat using inertial guidance from gyroscopes and centrifugal forces. The large primary collector would not require formation flying since the membrane would provide a mechanical tether. We suggest experiments to establish feasibility of the deployment. We also suggest studies for the tensile mechanics and environmental stresses on the device. Our analysis investigates the parameters of surface flatness, membrane thickness, metallic coating conductivity, grating period, groove blaze and depth. We analyze options for fabrication such as roll embossing of multiple-kilometer length membrane substrates. We also consider an evanescent mode grating in a transmission medium which can be formed using methods now commonplace in telecommunication fiber optics.

  16. Nanofluid optical property characterization: towards efficient direct absorption solar collectors

    PubMed Central

    2011-01-01

    Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase. PMID:21711750

  17. Genesis Solar Wind Science Canister Components Curated as Potential Solar Wind Collectors and Reference Contamination Sources

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Gonzalez, C. P.; Allums, K. K.

    2016-01-01

    The Genesis mission collected solar wind for 27 months at Earth-Sun L1 on both passive and active collectors carried inside of a Science Canister, which was cleaned and assembled in an ISO Class 4 cleanroom prior to launch. The primary passive collectors, 271 individual hexagons and 30 half-hexagons of semiconductor materials, are described in. Since the hard landing reduced the 301 passive collectors to many thousand smaller fragments, characterization and posting in the online catalog remains a work in progress, with about 19% of the total area characterized to date. Other passive collectors, surfaces of opportunity, have been added to the online catalog. For species needing to be concentrated for precise measurement (e.g. oxygen and nitrogen isotopes) an energy-independent parabolic ion mirror focused ions onto a 6.2 cm diameter target. The target materials, as recovered after landing, are described in. The online catalog of these solar wind collectors, a work in progress, can be found at: http://curator.jsc.nasa.gov/gencatalog/index.cfm This paper describes the next step, the cataloging of pieces of the Science Canister, which were surfaces exposed to the solar wind or component materials adjacent to solar wind collectors which may have contributed contamination.

  18. Investigation of the flow field inside flat-plate collector tube using PIV technique

    SciTech Connect

    Sookdeo, Steven; Siddiqui, Kamran

    2010-06-15

    The thermofluid process inside the tube of flat-plate collectors is complex because the non-uniform heating of the tube results in the formation of stably and unstably stratified layers of fluid that interact with each other. The measurement and investigation of the flow behaviour inside the collector tube is very challenging. We report on a novel application of the particle image velocimetry (PIV) technique to remotely measure the velocity field inside the collector tube. The two-dimensional velocity fields were measured in the midplane of a collector tube for the Reynolds number range of 150-900 at unheated and four different heating conditions. We have presented and discussed in detail the technique implementation and the associated challenges. The results have shown that the collector heating significantly alters the structure and magnitude of the mean velocity field and influences the heat transfer to the fluid. It is observed that the collector heating causes a significant asymmetry in the mean velocity profiles over the given range of Reynolds numbers and heating conditions. (author)

  19. Incidence of Malaria among Mosquito Collectors Conducting Human Landing Catches in Western Kenya

    PubMed Central

    Gimnig, John E.; Walker, Edward D.; Otieno, Peter; Kosgei, Jackline; Olang, George; Ombok, Maurice; Williamson, John; Marwanga, Doris; Abong'o, Daisy; Desai, Meghna; Kariuki, Simon; Hamel, Mary J.; Lobo, Neil F.; Vulule, John; Bayoh, M. Nabie

    2013-01-01

    The human landing catch (HLC) has long been the gold standard for estimating malaria transmission by mosquitoes, but has come under scrutiny because of ethical concerns of exposing collectors to infectious bites. We estimated the incidence of Plasmodium falciparum malaria infection in a cohort of 152 persons conducting HLCs and compared it with that of 147 non-collectors in western Kenya. Participants were presumptively cleared of malaria with Coartem™ (artemether-lumefantrine) and tested for malaria every 2 weeks for 12 weeks. The HLC collections were conducted four nights per week for six weeks. Collectors were provided chemoprophylaxis with Malarone™ (atovaquone-proguanil) during the six weeks of HLC activities and one week after HLC activities were completed. The incidence of malaria was 96.6% lower in collectors than in non-collectors (hazard ratio = 0.034, P < 0.0001). Therefore, with proper prophylaxis, concern about increased risk of malaria among collectors should not be an impediment to conducting HLC studies. PMID:23249685

  20. Experimental investigation of a nanofluid absorber employed in a low-profile, concentrated solar thermal collector

    NASA Astrophysics Data System (ADS)

    Li, Qiyuan; Zheng, Cheng; Mesgari, Sara; Hewakuruppu, Yasitha L.; Hjerrild, Natasha; Crisostomo, Felipe; Morrison, Karl; Woffenden, Albert; Rosengarten, Gary; Scott, Jason A.; Taylor, Robert A.

    2015-12-01

    Recent studies [1-3] have demonstrated that nanotechnology, in the form of nanoparticles suspended in water and organic liquids, can be employed to enhance solar collection via direct volumetric absorbers. However, current nanofluid solar collector experimental studies are either relevant to low-temperature flat plate solar collectors (<100 °C) [4] or higher temperature (>100 °C) indoor laboratory-scale concentrating solar collectors [1, 5]. Moreover, many of these studies involve in thermal properties of nanofluid (such as thermal conductivity) enhancement in solar collectors by using conventional selective coated steel/copper tube receivers [6], and no full-scale concentrating collector has been tested at outdoor condition by employing nanofluid absorber [2, 6]. Thus, there is a need of experimental researches to evaluate the exact performance of full-scale concentrating solar collector by employing nanofluids absorber at outdoor condition. As reported previously [7-9], a low profile (<10 cm height) solar thermal concentrating collector was designed and analysed which can potentially supply thermal energy in the 100-250 °C range (an application currently met by gas and electricity). The present study focuses on the design and experimental investigation of a nanofluid absorber employed in this newly designed collector. The nanofluid absorber consists of glass tubes used to contain chemically functionalized multi-walled carbon nanotubes (MWCNTs) dispersed in DI water. MWCNTs (average diameter of 6-13 nm and average length of 2.5-20 μm) were functionalized by potassium persulfate as an oxidant. The nanofluids were prepared with a MCWNT concentration of 50 +/- 0.1 mg/L to form a balance between solar absorption depth and viscosity (e.g. pumping power). Moreover, experimentally comparison of the thermal efficiency between two receivers (a black chrome-coated copper tube versus a MWCNT nanofluid contained within a glass tubetube) is investigated. Thermal