Sample records for integrated physiological response

  1. Physiological integration enhanced the tolerance of Cynodon dactylon to flooding.

    PubMed

    Li, Z J; Fan, D Y; Chen, F Q; Yuan, Q Y; Chow, W S; Xie, Z Q

    2015-03-01

    Many flooding-tolerant species are clonal plants; however, the effects of physiological integration on plant responses to flooding have received limited attention. We hypothesise that flooding can trigger changes in metabolism of carbohydrates and ROS (reactive oxygen species) in clonal plants, and that physiological integration can ameliorate the adverse effects of stress, subsequently restoring the growth of flooded ramets. In the present study, we conducted a factorial experiment combining flooding to apical ramets and stolon severing (preventing physiological integration) between apical and basal ramets of Cynodon dactylon, which is a stoloniferous perennial grass with considerable flooding tolerance. Flooding-induced responses including decreased root biomass, accumulation of soluble sugar and starch, as well as increased activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in apical ramets. Physiological integration relieved growth inhibition, carbohydrate accumulation and induction of antioxidant enzyme activity in stressed ramets, as expected, without any observable cost in unstressed ramets. We speculate that relief of flooding stress in clonal plants may rely on oxidising power and electron acceptors transferred between ramets through physiological integration. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Using Stimulation of the Diving Reflex in Humans to Teach Integrative Physiology

    ERIC Educational Resources Information Center

    Choate, Julia K.; Denton, Kate M.; Evans, Roger G.; Hodgson, Yvonne

    2014-01-01

    During underwater submersion, the body responds by conserving O[subscript 2] and prioritizing blood flow to the brain and heart. These physiological adjustments, which involve the nervous, cardiovascular, and respiratory systems, are known as the diving response and provide an ideal example of integrative physiology. The diving reflex can be…

  3. The Power of Physiology in Changing Landscapes: Considerations for the Continued Integration of Conservation and Physiology.

    PubMed

    Madliger, Christine L; Love, Oliver P

    2015-10-01

    The growing field of conservation physiology applies a diversity of physiological traits (e.g., immunological, metabolic, endocrine, and nutritional traits) to understand and predict organismal, population, and ecosystem responses to environmental change and stressors. Although the discipline of conservation physiology is gaining momentum, there is still a pressing need to better translate knowledge from physiology into real-world tools. The goal of this symposium, ‘‘Physiology in Changing Landscapes: An Integrative Perspective for Conservation Biology’’, was to highlight that many current investigations in ecological, evolutionary, and comparative physiology are necessary for understanding the applicability of physiological measures for conservation goals, particularly in the context of monitoring and predicting the health, condition, persistence, and distribution of populations in the face of environmental change. Here, we outline five major investigations common to environmental and ecological physiology that can contribute directly to the progression of the field of conservation physiology: (1) combining multiple measures of physiology and behavior; (2) employing studies of dose–responses and gradients; (3) combining a within-individual and population-level approach; (4) taking into account the context-dependency of physiological traits; and (5) linking physiological variables with fitness metrics. Overall, integrative physiologists have detailed knowledge of the physiological systems that they study; however, communicating theoretical and empirical knowledge to conservation biologists and practitioners in an approachable and applicable way is paramount to the practical development of physiological tools that will have a tangible impact for conservation.

  4. Integration of the response to a dietary potassium load: a paleolithic perspective.

    PubMed

    Kamel, Kamel S; Schreiber, Martin; Halperin, Mitchell L

    2014-05-01

    Our purpose is to integrate new insights in potassium (K(+)) physiology to understand K(+) homeostasis and illustrate some of their clinical implications. Since control mechanisms that are essential for survival were likely developed in Paleolithic times, we think the physiology of K(+) homeostasis can be better revealed when viewed from what was required to avoid threats and achieve balance in Paleolithic times. Three issues will be highlighted. First, we shall consider the integrative physiology of the gastrointestinal tract and the role of lactic acid released from enterocytes following absorption of sugars (fruit and berries) to cause a shift of this K(+) load into the liver. Second, we shall discuss the integrative physiology of WNK kinases and modulation of delivery of bicarbonate to the distal nephron to switch the aldosterone response from sodium chloride retention to K(+) secretion when faced with a K(+) load. Third, we shall emphasize the role of intra-renal recycling of urea in achieving K(+) homeostasis when the diet contains protein and K(+).

  5. Does Environmental Enrichment Reduce Stress? An Integrated Measure of Corticosterone from Feathers Provides a Novel Perspective

    PubMed Central

    Fairhurst, Graham D.; Frey, Matthew D.; Reichert, James F.; Szelest, Izabela; Kelly, Debbie M.; Bortolotti, Gary R.

    2011-01-01

    Enrichment is widely used as tool for managing fearfulness, undesirable behaviors, and stress in captive animals, and for studying exploration and personality. Inconsistencies in previous studies of physiological and behavioral responses to enrichment led us to hypothesize that enrichment and its removal are stressful environmental changes to which the hormone corticosterone and fearfulness, activity, and exploration behaviors ought to be sensitive. We conducted two experiments with a captive population of wild-caught Clark's nutcrackers (Nucifraga columbiana) to assess responses to short- (10-d) and long-term (3-mo) enrichment, their removal, and the influence of novelty, within the same animal. Variation in an integrated measure of corticosterone from feathers, combined with video recordings of behaviors, suggests that how individuals perceive enrichment and its removal depends on the duration of exposure. Short- and long-term enrichment elicited different physiological responses, with the former acting as a stressor and birds exhibiting acclimation to the latter. Non-novel enrichment evoked the strongest corticosterone responses of all the treatments, suggesting that the second exposure to the same objects acted as a physiological cue, and that acclimation was overridden by negative past experience. Birds showed weak behavioral responses that were not related to corticosterone. By demonstrating that an integrated measure of glucocorticoid physiology varies significantly with changes to enrichment in the absence of agonistic interactions, our study sheds light on potential mechanisms driving physiological and behavioral responses to environmental change. PMID:21412426

  6. Measuring Physiological Stress Responses in Children: Lessons from a Novice

    ERIC Educational Resources Information Center

    Quas, Jodi A.

    2011-01-01

    In this article the author describes challenges associated with integrating physiological measures of stress into developmental research, especially in the domains of memory and cognition. An initial critical challenge concerns how to define stress, which can refer to one or a series of events, a response, the consequence of that response, an…

  7. What can an ecophysiological approach tell us about the physiological responses of marine invertebrates to hypoxia?

    PubMed

    Spicer, John I

    2014-01-01

    Hypoxia (low O2) is a common and natural feature of many marine environments. However, human-induced hypoxia has been on the rise over the past half century and is now recognised as a major problem in the world's seas and oceans. Whilst we have information on how marine invertebrates respond physiologically to hypoxia in the laboratory, we still lack understanding of how they respond to such stress in the wild (now and in the future). Consequently, here the question 'what can an ecophysiological approach tell us about physiological responses of marine invertebrates to hypoxia' is addressed. How marine invertebrates work in the wild when challenged with hypoxia is explored using four case studies centred on different hypoxic environments. The recent integration of the various -omics into ecophysiology is discussed, and a number of advantages of, and challenges to, successful integration are suggested. The case studies and -omic/physiology integration data are used to inform the concluding part of the review, where it is suggested that physiological responses to hypoxia in the wild are not always the same as those predicted from laboratory experiments. This is due to behaviour in the wild modifying responses, and therefore more than one type of 'experimental' approach is essential to reliably determine the actual response. It is also suggested that assuming it is known what a measured response is 'for' can be misleading and that taking parodies of ecophysiology seriously may impede research progress. This review finishes with the suggestion that an -omics approach is, and is becoming, a powerful method of understanding the response of marine invertebrates to environmental hypoxia and may be an ideal way of studying hypoxic responses in the wild. Despite centring on physiological responses to hypoxia, the review hopefully serves as a contribution to the discussion of what (animal) ecophysiology looks like (or should look like) in the 21st century.

  8. DigitalHuman (DH): An Integrative Mathematical Model ofHuman Physiology

    NASA Technical Reports Server (NTRS)

    Hester, Robert L.; Summers, Richard L.; lIescu, Radu; Esters, Joyee; Coleman, Thomas G.

    2010-01-01

    Mathematical models and simulation are important tools in discovering the key causal relationships governing physiological processes and improving medical intervention when physiological complexity is a central issue. We have developed a model of integrative human physiology called DigitalHuman (DH) consisting of -5000 variables modeling human physiology describing cardiovascular, renal, respiratory, endocrine, neural and metabolic physiology. Users can view time-dependent solutions and interactively introduce perturbations by altering numerical parameters to investigate new hypotheses. The variables, parameters and quantitative relationships as well as all other model details are described in XML text files. All aspects of the model, including the mathematical equations describing the physiological processes are written in XML open source, text-readable files. Model structure is based upon empirical data of physiological responses documented within the peer-reviewed literature. The model can be used to understand proposed physiological mechanisms and physiological interactions that may not be otherwise intUitively evident. Some of the current uses of this model include the analyses of renal control of blood pressure, the central role of the liver in creating and maintaining insulin resistance, and the mechanisms causing orthostatic hypotension in astronauts. Additionally the open source aspect of the modeling environment allows any investigator to add detailed descriptions of human physiology to test new concepts. The model accurately predicts both qualitative and more importantly quantitative changes in clinically and experimentally observed responses. DigitalHuman provides scientists a modeling environment to understand the complex interactions of integrative physiology. This research was supported by.NIH HL 51971, NSF EPSCoR, and NASA

  9. Evaluation of exercise-respiratory system modifications and integration schemes for physiological systems

    NASA Technical Reports Server (NTRS)

    Gallagher, R. R.

    1974-01-01

    Exercise subroutine modifications are implemented in an exercise-respiratory system model yielding improvement of system response to exercise forcings. A more physiologically desirable respiratory ventilation rate in addition to an improved regulation of arterial gas tensions and cerebral blood flow is observed. A respiratory frequency expression is proposed which would be appropriate as an interfacing element of the respiratory-pulsatile cardiovascular system. Presentation of a circulatory-respiratory system integration scheme along with its computer program listing is given. The integrated system responds to exercise stimulation for both nonstressed and stressed physiological states. Other integration possibilities are discussed with respect to the respiratory, pulsatile cardiovascular, thermoregulatory, and the long-term circulatory systems.

  10. Microbial stress-response physiology and its implications for ecosystem function.

    PubMed

    Schimel, Joshua; Balser, Teri C; Wallenstein, Matthew

    2007-06-01

    Microorganisms have a variety of evolutionary adaptations and physiological acclimation mechanisms that allow them to survive and remain active in the face of environmental stress. Physiological responses to stress have costs at the organismal level that can result in altered ecosystem-level C, energy, and nutrient flows. These large-scale impacts result from direct effects on active microbes' physiology and by controlling the composition of the active microbial community. We first consider some general aspects of how microbes experience environmental stresses and how they respond to them. We then discuss the impacts of two important ecosystem-level stressors, drought and freezing, on microbial physiology and community composition. Even when microbial community response to stress is limited, the physiological costs imposed on soil microbes are large enough that they may cause large shifts in the allocation and fate of C and N. For example, for microbes to synthesize the osmolytes they need to survive a single drought episode they may consume up to 5% of total annual net primary production in grassland ecosystems, while acclimating to freezing conditions switches Arctic tundra soils from immobilizing N during the growing season to mineralizing it during the winter. We suggest that more effectively integrating microbial ecology into ecosystem ecology will require a more complete integration of microbial physiological ecology, population biology, and process ecology.

  11. Cellular and molecular specificity of pituitary gland physiology.

    PubMed

    Perez-Castro, Carolina; Renner, Ulrich; Haedo, Mariana R; Stalla, Gunter K; Arzt, Eduardo

    2012-01-01

    The anterior pituitary gland has the ability to respond to complex signals derived from central and peripheral systems. Perception of these signals and their integration are mediated by cell interactions and cross-talk of multiple signaling transduction pathways and transcriptional regulatory networks that cooperate for hormone secretion, cell plasticity, and ultimately specific pituitary responses that are essential for an appropriate physiological response. We discuss the physiopathological and molecular mechanisms related to this integrative regulatory system of the anterior pituitary gland and how it contributes to modulate the gland functions and impacts on body homeostasis.

  12. Integrating physiological regulation with stem cell and tissue homeostasis

    PubMed Central

    Nakada, Daisuke; Levi, Boaz P.; Morrison, Sean J.

    2015-01-01

    Summary Stem cells are uniquely able to self-renew, to undergo multilineage differentiation, and to persist throughout life in a number of tissues. Stem cells are regulated by a combination of shared and tissue-specific mechanisms and are distinguished from restricted progenitors by differences in transcriptional and epigenetic regulation. Emerging evidence suggests that other aspects of cellular physiology, including mitosis, signal transduction, and metabolic regulation also differ between stem cells and their progeny. These differences may allow stem cells to be regulated independently of differentiated cells in response to circadian rhythms, changes in metabolism, diet, exercise, mating, aging, infection, and disease. This allows stem cells to sustain homeostasis or to remodel relevant tissues in response to physiological change. Stem cells are therefore not only regulated by short-range signals that maintain homeostasis within their tissue of origin, but also by long-range signals that integrate stem cell function with systemic physiology. PMID:21609826

  13. Facilitating the transition from physiology to hospital wards through an interdisciplinary case study of septic shock.

    PubMed

    Li, Albert S; Berger, Kenneth I; Schwartz, David R; Slater, William R; Goldfarb, David S

    2014-04-12

    In order to develop clinical reasoning, medical students must be able to integrate knowledge across traditional subject boundaries and multiple disciplines. At least two dimensions of integration have been identified: horizontal integration, bringing together different disciplines in considering a topic; and vertical integration, bridging basic science and clinical practice. Much attention has been focused on curriculum overhauls, but our approach is to facilitate horizontal and vertical integration on a smaller scale through an interdisciplinary case study discussion and then to assess its utility. An interdisciplinary case study discussion about a critically ill patient was implemented at the end of an organ system-based, basic sciences module at New York University School of Medicine. Three clinical specialists-a cardiologist, a pulmonologist, and a nephrologist-jointly led a discussion about a complex patient in the intensive care unit with multiple medical problems secondary to septic shock. The discussion emphasized the physiologic underpinnings behind the patient's presentation and the physiologic considerations across the various systems in determining proper treatment. The discussion also highlighted the interdependence between the cardiovascular, respiratory, and renal systems, which were initially presented in separate units. After the session students were given a brief, anonymous three-question free-response questionnaire in which they were asked to evaluate and freely comment on the exercise. Students not only took away physiological principles but also gained an appreciation for various thematic lessons for bringing basic science to the bedside, especially horizontal and vertical integration. The response of the participants was overwhelmingly positive with many indicating that the exercise integrated the material across organ systems, and strengthened their appreciation of the role of physiology in understanding disease presentations and guiding appropriate therapy. Horizontal and vertical integration can be presented effectively through a single-session case study, with complex patient cases involving multiple organ systems providing students opportunities to integrate their knowledge across organ systems while emphasizing the importance of physiology in clinical reasoning. Furthermore, having several clinicians from different specialties discuss the case together can reinforce the matter of integration across multiple organ systems and disciplines in students' minds.

  14. Facilitating the transition from physiology to hospital wards through an interdisciplinary case study of septic shock

    PubMed Central

    2014-01-01

    Background In order to develop clinical reasoning, medical students must be able to integrate knowledge across traditional subject boundaries and multiple disciplines. At least two dimensions of integration have been identified: horizontal integration, bringing together different disciplines in considering a topic; and vertical integration, bridging basic science and clinical practice. Much attention has been focused on curriculum overhauls, but our approach is to facilitate horizontal and vertical integration on a smaller scale through an interdisciplinary case study discussion and then to assess its utility. Methods An interdisciplinary case study discussion about a critically ill patient was implemented at the end of an organ system-based, basic sciences module at New York University School of Medicine. Three clinical specialists—a cardiologist, a pulmonologist, and a nephrologist—jointly led a discussion about a complex patient in the intensive care unit with multiple medical problems secondary to septic shock. The discussion emphasized the physiologic underpinnings behind the patient’s presentation and the physiologic considerations across the various systems in determining proper treatment. The discussion also highlighted the interdependence between the cardiovascular, respiratory, and renal systems, which were initially presented in separate units. After the session students were given a brief, anonymous three-question free-response questionnaire in which they were asked to evaluate and freely comment on the exercise. Results Students not only took away physiological principles but also gained an appreciation for various thematic lessons for bringing basic science to the bedside, especially horizontal and vertical integration. The response of the participants was overwhelmingly positive with many indicating that the exercise integrated the material across organ systems, and strengthened their appreciation of the role of physiology in understanding disease presentations and guiding appropriate therapy. Conclusions Horizontal and vertical integration can be presented effectively through a single-session case study, with complex patient cases involving multiple organ systems providing students opportunities to integrate their knowledge across organ systems while emphasizing the importance of physiology in clinical reasoning. Furthermore, having several clinicians from different specialties discuss the case together can reinforce the matter of integration across multiple organ systems and disciplines in students’ minds. PMID:24725336

  15. Match and mismatch: conservation physiology, nutritional ecology and the timescales of biological adaptation

    PubMed Central

    Raubenheimer, David; Simpson, Stephen J.; Tait, Alice H.

    2012-01-01

    Conservation physiology (CP) and nutritional ecology (NE) are both integrative sciences that share the fundamental aim of understanding the patterns, mechanisms and consequences of animal responses to changing environments. Here, we explore the high-level similarities and differences between CP and NE, identifying as central themes to both fields the multiple timescales over which animals adapt (and fail to adapt) to their environments, and the need for integrative models to study these processes. At one extreme are the short-term regulatory responses that modulate the state of animals in relation to the environment, which are variously considered under the concepts of homeostasis, homeorhesis, enantiostasis, heterostasis and allostasis. In the longer term are developmental responses, including phenotypic plasticity and transgenerational effects mediated by non-genomic influences such as parental physiology, epigenetic effects and cultural learning. Over a longer timescale still are the cumulative genetic changes that take place in Darwinian evolution. We present examples showing how the adaptive responses of animals across these timescales have been represented in an integrative framework from NE, the geometric framework (GF) for nutrition, and close with an illustration of how GF can be applied to the central issue in CP, animal conservation. PMID:22566672

  16. Match and mismatch: conservation physiology, nutritional ecology and the timescales of biological adaptation.

    PubMed

    Raubenheimer, David; Simpson, Stephen J; Tait, Alice H

    2012-06-19

    Conservation physiology (CP) and nutritional ecology (NE) are both integrative sciences that share the fundamental aim of understanding the patterns, mechanisms and consequences of animal responses to changing environments. Here, we explore the high-level similarities and differences between CP and NE, identifying as central themes to both fields the multiple timescales over which animals adapt (and fail to adapt) to their environments, and the need for integrative models to study these processes. At one extreme are the short-term regulatory responses that modulate the state of animals in relation to the environment, which are variously considered under the concepts of homeostasis, homeorhesis, enantiostasis, heterostasis and allostasis. In the longer term are developmental responses, including phenotypic plasticity and transgenerational effects mediated by non-genomic influences such as parental physiology, epigenetic effects and cultural learning. Over a longer timescale still are the cumulative genetic changes that take place in Darwinian evolution. We present examples showing how the adaptive responses of animals across these timescales have been represented in an integrative framework from NE, the geometric framework (GF) for nutrition, and close with an illustration of how GF can be applied to the central issue in CP, animal conservation.

  17. Renal potassium physiology: integration of the renal response to dietary potassium depletion.

    PubMed

    Kamel, Kamel S; Schreiber, Martin; Halperin, Mitchell L

    2018-01-01

    We summarize the current understanding of the physiology of the renal handling of potassium (K + ), and present an integrative view of the renal response to K + depletion caused by dietary K + restriction. This renal response involves contributions from different nephron segments, and aims to diminish the rate of excretion of K + as a result of: decreasing the rate of electrogenic (and increasing the rate of electroneutral) reabsorption of sodium in the aldosterone-sensitive distal nephron (ASDN), decreasing the abundance of renal outer medullary K + channels in the luminal membrane of principal cells in the ASDN, decreasing the flow rate in the ASDN, and increasing the reabsorption of K + in the cortical and medullary collecting ducts. The implications of this physiology for the association between K + depletion and hypertension, and K + depletion and formation of calcium kidney stones are discussed. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  18. Status of physiology education in US Doctor of Pharmacy programs.

    PubMed

    Islam, Mohammed A; Khan, Seher A; Talukder, Rahmat M

    2016-12-01

    The purpose of the present study was to assess the current status of physiology education in US Doctor of Pharmacy (PharmD) programs. A survey instrument was developed and distributed through SurveyMonkey to American Association of Colleges of Pharmacy (AACP) Biological Sciences section members of 132 PharmD programs. Survey items focused on soliciting qualitative and quantitative information on the delivery of physiology curricular contents and faculty perceptions of physiology education. A total of 114 programs responded to the survey, resulting in a response rate of 86%. Out of 114 schools/colleges, 61 programs (54%) offered standalone physiology courses, and 53 programs (46%) offered physiology integrated with other courses. When integrated, the average contact hours for physiology contents were significantly reduced compared with standalone courses (30 vs. 84 h, P < 0.0001). Survey respondents identified diverse strategies in the delivery and assessment of physiology contents. Eighty percent of the responding faculty (n = 204) agree/strongly agree that physiology is underemphasized in PharmD curriculum. Moreover, 67% of the respondents agree/strongly agree that physiology should be taught as a standalone foundational course. A wide variation in the depth and breadth of physiology course offerings in US PharmD programs remains. The reduction of physiology contents is evident when physiology is taught as a component of integrated courses. Given current trends that favor integrated curricula, these data suggest that additional collaboration among basic and clinical science faculty is required to ensure that physiology contents are balanced and not underemphasized in a PharmD curriculum. Copyright © 2016 the American Physiological Society.

  19. Conservation Physiology and Conservation Pathogens: White-Nose Syndrome and Integrative Biology for Host-Pathogen Systems.

    PubMed

    Willis, Craig K R

    2015-10-01

    Conservation physiology aims to apply an understanding of physiological mechanisms to management of imperiled species, populations, or ecosystems. One challenge for physiologists hoping to apply their expertise to conservation is connecting the mechanisms we study, often in the laboratory, with the vital rates of populations in the wild. There is growing appreciation that infectious pathogens can threaten populations and species, and represent an important issue for conservation. Conservation physiology has much to offer in terms of addressing the threat posed to some host species by infectious pathogens. At the same time, the well-developed theoretical framework of disease ecology could provide a model to help advance the application of physiology to a range of other conservation issues. Here, I use white-nose syndrome (WNS) in hibernating North American bats as an example of a conservation problem for which integrative physiological research has been a critical part of research and management. The response to WNS highlights the importance of a well-developed theoretical framework for the application of conservation physiology to a particular threat. I review what is known about physiological mechanisms associated with mortality from WNS and emphasize the value of combining a strong theoretical background with integrative physiological studies in order to connect physiological mechanisms with population processes and thereby maximize the potential benefits of conservation physiology. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  20. RNA-Seq Reveals an Integrated Immune Response in Nucleated Erythrocytes

    PubMed Central

    Morera, Davinia; Roher, Nerea; Ribas, Laia; Balasch, Joan Carles; Doñate, Carmen; Callol, Agnes; Boltaña, Sebastian; Roberts, Steven; Goetz, Giles; Goetz, Frederick W.; MacKenzie, Simon A.

    2011-01-01

    Background Throughout the primary literature and within textbooks, the erythrocyte has been tacitly accepted to have maintained a unique physiological role; namely gas transport and exchange. In non-mammalian vertebrates, nucleated erythrocytes are present in circulation throughout the life cycle and a fragmented series of observations in mammals support a potential role in non-respiratory biological processes. We hypothesised that nucleated erythrocytes could actively participate via ligand-induced transcriptional re-programming in the immune response. Methodology/Principal Findings Nucleated erythrocytes from both fish and birds express and regulate specific pattern recognition receptor (PRR) mRNAs and, thus, are capable of specific pathogen associated molecular pattern (PAMP) detection that is central to the innate immune response. In vitro challenge with diverse PAMPs led to de novo specific mRNA synthesis of both receptors and response factors including interferon-alpha (IFNα) that exhibit a stimulus-specific polysomal shift supporting active translation. RNA-Seq analysis of the PAMP (Poly (I∶C), polyinosinic∶polycytidylic acid)-erythrocyte response uncovered diverse cohorts of differentially expressed mRNA transcripts related to multiple physiological systems including the endocrine, reproductive and immune. Moreover, erythrocyte-derived conditioned mediums induced a type-1 interferon response in macrophages thus supporting an integrative role for the erythrocytes in the immune response. Conclusions/Significance We demonstrate that nucleated erythrocytes in non-mammalian vertebrates spanning significant phylogenetic distance participate in the immune response. RNA-Seq studies highlight a mRNA repertoire that suggests a previously unrecognized integrative role for the erythrocytes in other physiological systems. PMID:22046430

  1. Maximizing information from space data resources: a case for expanding integration across research disciplines.

    PubMed

    Goswami, Nandu; Batzel, Jerry J; Clément, Gilles; Stein, T Peter; Hargens, Alan R; Sharp, M Keith; Blaber, Andrew P; Roma, Peter G; Hinghofer-Szalkay, Helmut G

    2013-07-01

    Regulatory systems are affected in space by exposure to weightlessness, high-energy radiation or other spaceflight-induced changes. The impact of spaceflight occurs across multiple scales and systems. Exploring such interactions and interdependencies via an integrative approach provides new opportunities for elucidating these complex responses. This paper argues the case for increased emphasis on integration, systematically archiving, and the coordination of past, present and future space and ground-based analogue experiments. We also discuss possible mechanisms for such integration across disciplines and missions. This article then introduces several discipline-specific reviews that show how such integration can be implemented. Areas explored include: adaptation of the central nervous system to space; cerebral autoregulation and weightlessness; modelling of the cardiovascular system in space exploration; human metabolic response to spaceflight; and exercise, artificial gravity, and physiologic countermeasures for spaceflight. In summary, spaceflight physiology research needs a conceptual framework that extends problem solving beyond disciplinary barriers. Administrative commitment and a high degree of cooperation among investigators are needed to further such a process. Well-designed interdisciplinary research can expand opportunities for broad interpretation of results across multiple physiological systems, which may have applications on Earth.

  2. Using stimulation of the diving reflex in humans to teach integrative physiology.

    PubMed

    Choate, Julia K; Denton, Kate M; Evans, Roger G; Hodgson, Yvonne

    2014-12-01

    During underwater submersion, the body responds by conserving O2 and prioritizing blood flow to the brain and heart. These physiological adjustments, which involve the nervous, cardiovascular, and respiratory systems, are known as the diving response and provide an ideal example of integrative physiology. The diving reflex can be stimulated in the practical laboratory setting using breath holding and facial immersion in water. Our undergraduate physiology students complete a laboratory class in which they investigate the effects of stimulating the diving reflex on cardiovascular variables, which are recorded and calculated with a Finapres finger cuff. These variables include heart rate, cardiac output, stroke volume, total peripheral resistance, and arterial pressures (mean, diastolic, and systolic). Components of the diving reflex are stimulated by 1) facial immersion in cold water (15°C), 2) breathing with a snorkel in cold water (15°C), 3) facial immersion in warm water (30°C), and 4) breath holding in air. Statistical analysis of the data generated for each of these four maneuvers allows the students to consider the factors that contribute to the diving response, such as the temperature of the water and the location of the sensory receptors that initiate the response. In addition to providing specific details about the equipment, protocols, and learning outcomes, this report describes how we assess this practical exercise and summarizes some common student misunderstandings of the essential physiological concepts underlying the diving response. Copyright © 2014 The American Physiological Society.

  3. The use of multiple indices of physiological activity to access viability in chlorine disinfected Escherichia coli O157:H7

    NASA Technical Reports Server (NTRS)

    Lisle, J. T.; Pyle, B. H.; McFeters, G. A.

    1999-01-01

    A suite of fluorescent intracellular stains and probes was used, in conjunction with viable plate counts, to assess the effect of chlorine disinfection on membrane potential (rhodamine 123; Rh123 and bis-(1,3-dibutylbarbituric acid) trimethine oxonol; DiBAC4(3)), membrane integrity (LIVE/DEAD BacLight kit), respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride; CTC) and substrate responsiveness (direct viable counts; DVC) in the commensal pathogen Escherichia coli O157:H7. After a 5 min exposure to the disinfectant, physiological indices were affected in the following order: viable plate counts > substrate responsiveness > membrane potential > respiratory activity > membrane integrity. In situ assessment of physiological activity by examining multiple targets, as demonstrated in this study, permits a more comprehensive determination of the site and extent of injury in bacterial cells following sublethal disinfection with chlorine. This approach to assessing altered bacterial physiology has application in various fields where detection of stressed bacteria is of interest.

  4. The question of simultaneity in multisensory integration

    NASA Astrophysics Data System (ADS)

    Leone, Lynnette; McCourt, Mark E.

    2012-03-01

    Early reports of audiovisual (AV) multisensory integration (MI) indicated that unisensory stimuli must evoke simultaneous physiological responses to produce decreases in reaction time (RT) such that for unisensory stimuli with unequal RTs the stimulus eliciting the faster RT had to be delayed relative to the stimulus eliciting the slower RT. The "temporal rule" states that MI depends on the temporal proximity of unisensory stimuli, the neural responses to which must fall within a window of integration. Ecological validity demands that MI should occur only for simultaneous events (which may give rise to non-simultaneous neural activations). However, spurious neural response simultaneities which are unrelated to singular environmental multisensory occurrences must somehow be rejected. Using an RT/race model paradigm we measured AV MI as a function of stimulus onset asynchrony (SOA: +/-200 ms, 50 ms intervals) under fully dark adapted conditions for visual (V) stimuli that were either weak (scotopic 525 nm flashes; 511 ms mean RT) or strong (photopic 630 nm flashes; 356 ms mean RT). Auditory (A) stimulus (1000 Hz pure tone) intensity was constant. Despite the 155 ms slower mean RT to the scotopic versus photopic stimulus, facilitative AV MI in both conditions nevertheless occurred exclusively at an SOA of 0 ms. Thus, facilitative MI demands both physical and physiological simultaneity. We consider the mechanisms by which the nervous system may take account of variations in response latency arising from changes in stimulus intensity in order to selectively integrate only those physiological simultaneities that arise from physical simultaneities.

  5. Integration of drug dosing data with physiological data streams using a cloud computing paradigm.

    PubMed

    Bressan, Nadja; James, Andrew; McGregor, Carolyn

    2013-01-01

    Many drugs are used during the provision of intensive care for the preterm newborn infant. Recommendations for drug dosing in newborns depend upon data from population based pharmacokinetic research. There is a need to be able to modify drug dosing in response to the preterm infant's response to the standard dosing recommendations. The real-time integration of physiological data with drug dosing data would facilitate individualised drug dosing for these immature infants. This paper proposes the use of a novel computational framework that employs real-time, temporal data analysis for this task. Deployment of the framework within the cloud computing paradigm will enable widespread distribution of individualized drug dosing for newborn infants.

  6. Proceedings of the 2006 Toxicology and Risk Assessment Conference: Applying Mode of Action in Risk Assessment

    DTIC Science & Technology

    2006-07-01

    physiologically-based pharmacokinetic modeling of interactions and multiple route exposure assessment; and integrating relative potency factors with response...defaults, while at the other end is the use of extensive chemical-specific data in physiologically based pharmacokinetic (PBPK) modeling or even...for internal dosimetry as well as an in depth prospective on the use and limitations of physiologically based pharmacokinetic (PBPK) models in

  7. Using Infrared Thermography to Assess Emotional Responses to Infants.

    PubMed

    Esposito, Gianluca; Nakazawa, Jun; Ogawa, Shota; Stival, Rita; Putnick, Diane L; Bornstein, Marc H

    2015-01-01

    Adult-infant interactions operate simultaneously across multiple domains and at multiple levels - from physiology to behavior. Unpackaging and understanding them, therefore, involves analysis of multiple data streams. In this study, we tested physiological responses and cognitive preferences for infant and adult faces in adult females and males. Infrared thermography was used to assess facial temperature changes as a measure of emotional valence, and we used a behavioral rating system to assess adults' expressed preferences. We found greater physiological activation in response to infant stimuli in females than males. As for cognitive preferences, we found greater responses to adult stimuli than to infant stimuli, both in males and females. The results are discuss in light of the Life History Theory. Finally, we discuss the importance of integrating the two data streams on our conclusions.

  8. Methods of estimating the effect of integral motorcycle helmets on physiological and psychological performance.

    PubMed

    Bogdan, Anna; Sudoł-Szopińska, Iwona; Luczak, Anna; Konarska, Maria; Pietrowski, Piotr

    2012-01-01

    This article proposes a method for a comprehensive assessment of the effect of integral motorcycle helmets on physiological and cognitive responses of motorcyclists. To verify the reliability of commonly used tests, we conducted experiments with 5 motorcyclists. We recorded changes in physiological parameters (heart rate, local skin temperature, core temperature, air temperature, relative humidity in the space between the helmet and the surface of the head, and the concentration of O(2) and CO(2) under the helmet) and in psychological parameters (motorcyclists' reflexes, fatigue, perceptiveness and mood). We also studied changes in the motorcyclists' subjective sensation of thermal comfort. The results made it possible to identify reliable parameters for assessing the effect of integral helmets on performance, i.e., physiological factors (head skin temperature, internal temperature and concentration of O(2) and CO(2) under the helmet) and on psychomotor factors (reaction time, attention and vigilance, work performance, concentration and a subjective feeling of mood and fatigue).

  9. [Clinical exercise testing and the Fick equation: strategic thinking for optimizing diagnosis].

    PubMed

    Perrault, H; Richard, R

    2012-04-01

    This article examines the expected exercise-induced changes in the components of the oxygen transport system as described by the Fick equation with a view to enable a critical analysis of a standard incremental exercise test to identify normal and abnormal patterns of responses and generate hypotheses as to potential physiological and/or pathophysiological causes. The text reviews basic physiological principals and provides useful reminders of standard equations that serve to integrate circulatory, respiratory and skeletal muscle functions. More specifically, the article provides a conceptual and quantitative framework linking the exercise-induced increase in whole body oxygen uptake to central circulatory and peripheral circulatory factors with the view to establish the normalcy of response. Thus, the article reviews the exercise response to cardiac output determinants and provides qualitative and quantitative perspective bases for making assumptions on the peripheral circulatory factors and oxygen use. Finally, the article demonstrates the usefulness of exercise testing as an effective integrative physiological approach to develop clinical reasoning or verify pathophysiological outcomes. Copyright © 2012 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  10. Concepts of scientific integrative medicine applied to the physiology and pathophysiology of catecholamine systems.

    PubMed

    Goldstein, David S

    2013-10-01

    This review presents concepts of scientific integrative medicine and relates them to the physiology of catecholamine systems and to the pathophysiology of catecholamine-related disorders. The applications to catecholamine systems exemplify how scientific integrative medicine links systems biology with integrative physiology. Concepts of scientific integrative medicine include (i) negative feedback regulation, maintaining stability of the body's monitored variables; (ii) homeostats, which compare information about monitored variables with algorithms for responding; (iii) multiple effectors, enabling compensatory activation of alternative effectors and primitive specificity of stress response patterns; (iv) effector sharing, accounting for interactions among homeostats and phenomena such as hyperglycemia attending gastrointestinal bleeding and hyponatremia attending congestive heart failure; (v) stress, applying a definition as a state rather than as an environmental stimulus or stereotyped response; (vi) distress, using a noncircular definition that does not presume pathology; (vii) allostasis, corresponding to adaptive plasticity of feedback-regulated systems; and (viii) allostatic load, explaining chronic degenerative diseases in terms of effects of cumulative wear and tear. From computer models one can predict mathematically the effects of stress and allostatic load on the transition from wellness to symptomatic disease. The review describes acute and chronic clinical disorders involving catecholamine systems-especially Parkinson disease-and how these concepts relate to pathophysiology, early detection, and treatment and prevention strategies in the post-genome era. Published 2013. Compr Physiol 3:1569-1610, 2013.

  11. Concepts of Scientific Integrative Medicine Applied to the Physiology and Pathophysiology of Catecholamine Systems

    PubMed Central

    Goldstein, David S.

    2016-01-01

    This review presents concepts of scientific integrative medicine and relates them to the physiology of catecholamine systems and to the pathophysiology of catecholamine-related disorders. The applications to catecholamine systems exemplify how scientific integrative medicine links systems biology with integrative physiology. Concepts of scientific integrative medicine include (i) negative feedback regulation, maintaining stability of the body’s monitored variables; (ii) homeostats, which compare information about monitored variables with algorithms for responding; (iii) multiple effectors, enabling compensatory activation of alternative effectors and primitive specificity of stress response patterns; (iv) effector sharing, accounting for interactions among homeostats and phenomena such as hyperglycemia attending gastrointestinal bleeding and hyponatremia attending congestive heart failure; (v) stress, applying a definition as a state rather than as an environmental stimulus or stereotyped response; (vi) distress, using a noncircular definition that does not presume pathology; (vii) allostasis, corresponding to adaptive plasticity of feedback-regulated systems; and (viii) allostatic load, explaining chronic degenerative diseases in terms of effects of cumulative wear and tear. From computer models one can predict mathematically the effects of stress and allostatic load on the transition from wellness to symptomatic disease. The review describes acute and chronic clinical disorders involving catecholamine systems—especially Parkinson disease—and how these concepts relate to pathophysiology, early detection, and treatment and prevention strategies in the post-genome era. PMID:24265239

  12. Modeling the Intra- and Extracellular Cytokine Signaling Pathway under Heat Stroke in the Liver

    DTIC Science & Technology

    2013-09-05

    inflammatory and pro-inflammatory responses. Asea et al. [60] introduced the term chaperokine, to describe the dual role of most HSPs as chaperones...Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology 146: 621–631. 60. Asea A, Kraeft S, Kurt-Jones E, Stevenson M, Chen L, et al. (2000

  13. The Graphical Representation of the Digital Astronaut Physiology Backbone

    NASA Technical Reports Server (NTRS)

    Briers, Demarcus

    2010-01-01

    This report summarizes my internship project with the NASA Digital Astronaut Project to analyze the Digital Astronaut (DA) physiology backbone model. The Digital Astronaut Project (DAP) applies integrated physiology models to support space biomedical operations, and to assist NASA researchers in closing knowledge gaps related to human physiologic responses to space flight. The DA physiology backbone is a set of integrated physiological equations and functions that model the interacting systems of the human body. The current release of the model is HumMod (Human Model) version 1.5 and was developed over forty years at the University of Mississippi Medical Center (UMMC). The physiology equations and functions are scripted in an XML schema specifically designed for physiology modeling by Dr. Thomas G. Coleman at UMMC. Currently it is difficult to examine the physiology backbone without being knowledgeable of the XML schema. While investigating and documenting the tags and algorithms used in the XML schema, I proposed a standard methodology for a graphical representation. This standard methodology may be used to transcribe graphical representations from the DA physiology backbone. In turn, the graphical representations can allow examination of the physiological functions and equations without the need to be familiar with the computer programming languages or markup languages used by DA modeling software.

  14. A systems approach to integrative biology: an overview of statistical methods to elucidate association and architecture.

    PubMed

    Ciaccio, Mark F; Finkle, Justin D; Xue, Albert Y; Bagheri, Neda

    2014-07-01

    An organism's ability to maintain a desired physiological response relies extensively on how cellular and molecular signaling networks interpret and react to environmental cues. The capacity to quantitatively predict how networks respond to a changing environment by modifying signaling regulation and phenotypic responses will help inform and predict the impact of a changing global enivronment on organisms and ecosystems. Many computational strategies have been developed to resolve cue-signal-response networks. However, selecting a strategy that answers a specific biological question requires knowledge both of the type of data being collected, and of the strengths and weaknesses of different computational regimes. We broadly explore several computational approaches, and we evaluate their accuracy in predicting a given response. Specifically, we describe how statistical algorithms can be used in the context of integrative and comparative biology to elucidate the genomic, proteomic, and/or cellular networks responsible for robust physiological response. As a case study, we apply this strategy to a dataset of quantitative levels of protein abundance from the mussel, Mytilus galloprovincialis, to uncover the temperature-dependent signaling network. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  15. Genetic and physiological bases for phenological responses to current and predicted climates

    PubMed Central

    Wilczek, A. M.; Burghardt, L. T.; Cobb, A. R.; Cooper, M. D.; Welch, S. M.; Schmitt, J.

    2010-01-01

    We are now reaching the stage at which specific genetic factors with known physiological effects can be tied directly and quantitatively to variation in phenology. With such a mechanistic understanding, scientists can better predict phenological responses to novel seasonal climates. Using the widespread model species Arabidopsis thaliana, we explore how variation in different genetic pathways can be linked to phenology and life-history variation across geographical regions and seasons. We show that the expression of phenological traits including flowering depends critically on the growth season, and we outline an integrated life-history approach to phenology in which the timing of later life-history events can be contingent on the environmental cues regulating earlier life stages. As flowering time in many plants is determined by the integration of multiple environmentally sensitive gene pathways, the novel combinations of important seasonal cues in projected future climates will alter how phenology responds to variation in the flowering time gene network with important consequences for plant life history. We discuss how phenology models in other systems—both natural and agricultural—could employ a similar framework to explore the potential contribution of genetic variation to the physiological integration of cues determining phenology. PMID:20819808

  16. Biochemistry of the Envenomation Response--A Generator Theme for Interdisciplinary Integration

    ERIC Educational Resources Information Center

    Montagna, Erik; Guerreiro, Juliano R.; Torres, Bayardo B.

    2010-01-01

    The understanding of complex physiological processes requires information from many different areas of knowledge. To meet this interdisciplinary scenario, the ability of integrating and articulating information is demanded. The difficulty of such approach arises because, more often than not, information is fragmented through under graduation…

  17. Physiology education in North American dental schools: the basic science survey series.

    PubMed

    Gautam, Medha; Shaw, David H; Pate, Ted D; Lambert, H Wayne

    2014-06-01

    As part of the Basic Science Survey Series for Dentistry, members of the American Dental Education Association (ADEA) Physiology, Pharmacology, and Therapeutics Section surveyed directors of physiology courses in North American dental schools. The survey was designed to assess, among other things, faculty affiliation and experience of course directors, teaching methods, general course content and emphasis, extent of interdisciplinary (shared) instruction, and impact of recent curricular changes. Responses were received from forty-four of sixty-seven (65.7 percent) U.S. and Canadian dental schools. The findings suggest the following: substantial variation exists in instructional hours, faculty affiliation, class size, and interdisciplinary nature of physiology courses; physiology course content emphasis is similar between schools; student contact hours in physiology, which have remained relatively stable in the past fifteen years, are starting to be reduced; recent curricular changes have often been directed towards enhancing the integrative and clinically relevant aspects of physiology instruction; and a trend toward innovative content delivery, such as use of computer-assisted instruction, is evident. Data from this study may be useful to physiology course directors, curriculum committees, and other dental educators with an interest in integrative and interprofessional education.

  18. Environmental and biological context modulates the physiological stress response of bats to human disturbance.

    PubMed

    Phelps, Kendra L; Kingston, Tigga

    2018-06-01

    Environmental and biological context play significant roles in modulating physiological stress responses of individuals in wildlife populations yet are often overlooked when evaluating consequences of human disturbance on individual health and fitness. Furthermore, most studies gauge individual stress responses based on a single physiological biomarker, typically circulating glucocorticoid concentrations, which limits interpretation of the complex, multifaceted responses of individuals to stressors. We selected four physiological biomarkers to capture short-term and prolonged stress responses in a widespread cave-roosting bat, Hipposideros diadema, across multiple gradients of human disturbance in and around caves in the Philippines. We used conditional inference trees and random forest analysis to determine the role of environmental quality (cave complexity, available roosting area), assemblage composition (intra- and interspecific associations and species richness), and intrinsic characteristics of individuals (sex and reproductive status) in modulating responses to disturbance. Direct cave disturbance (hunting pressure and human visitation) was the primary driver of neutrophil-to-lymphocyte ratios, with lower ratios associated with increased disturbance, while context-specific factors were more important in explaining total leukocyte count, body condition, and ectoparasite load. Moreover, conditional inference trees revealed complex interactions among human disturbance and modulating factors. Cave complexity often ameliorated individual responses to human disturbance, whereas conspecific abundance often compounded responses. Our study demonstrates the importance of an integrated approach that incorporates environmental and biological context when identifying drivers of physiological responses, and that assesses responses to gradients of direct and indirect disturbance using multiple complementary biomarkers.

  19. Central respiratory chemosensitivity and cerebrovascular CO2 reactivity: a rebreathing demonstration illustrating integrative human physiology.

    PubMed

    MacKay, Christina M; Skow, Rachel J; Tymko, Michael M; Boulet, Lindsey M; Davenport, Margie H; Steinback, Craig D; Ainslie, Philip N; Lemieux, Chantelle C M; Day, Trevor A

    2016-03-01

    One of the most effective ways of engaging students of physiology and medicine is through laboratory demonstrations and case studies that combine 1) the use of equipment, 2) problem solving, 3) visual representations, and 4) manipulation and interpretation of data. Depending on the measurements made and the type of test, laboratory demonstrations have the added benefit of being able to show multiple organ system integration. Many research techniques can also serve as effective demonstrations of integrative human physiology. The "Duffin" hyperoxic rebreathing test is often used in research settings as a test of central respiratory chemosensitivity and cerebrovascular reactivity to CO2. We aimed to demonstrate the utility of the hyperoxic rebreathing test for both respiratory and cerebrovascular responses to increases in CO2 and illustrate the integration of the respiratory and cerebrovascular systems. In the present article, methods such as spirometry, respiratory gas analysis, and transcranial Doppler ultrasound are described, and raw data traces can be adopted for discussion in a tutorial setting. If educators have these instruments available, instructions on how to carry out the test are provided so students can collect their own data. In either case, data analysis and quantification are discussed, including principles of linear regression, calculation of slope, the coefficient of determination (R(2)), and differences between plotting absolute versus normalized data. Using the hyperoxic rebreathing test as a demonstration of the complex interaction and integration between the respiratory and cerebrovascular systems provides senior undergraduate, graduate, and medical students with an advanced understanding of the integrative nature of human physiology. Copyright © 2016 The American Physiological Society.

  20. The impact of an emotional self-management skills course on psychosocial functioning and autonomic recovery to stress in middle school children.

    PubMed

    McCraty, R; Atkinson, M; Tomasino, D; Goelitz, J; Mayrovitz, H N

    1999-01-01

    Unmanaged emotional reactions to stress not only lead to behavior problems in young people but also create physiological conditions that inhibit learning and potentially increase the risk of disease later in life. For these reasons, the integration of emotional self-management skills training programs has become an increased priority in some schools. In this study, middle school students enrolled in a course in emotional competence skills learned techniques designed to intercept stressful responses during emotionally challenging situations. Behavioral outcomes were assessed using the Achievement Inventory Measure and autonomic function was measured by heart rate variability (HRV) analysis during and after a stressful interview. Following the program, students exhibited significant improvements in areas including stress and anger management, risky behavior, work management and focus, and relationships with family, peers and teachers. These improvements were sustained over the following six months. Students using the skills taught in the course to recover from acute emotional stress were also able to positively modulate their physiological stress responses. As compared to a control group, trained students demonstrated significantly increased HRV and more rhythmic, sine wave-like heart rhythm patterns during recovery. This response pattern reflects increased parasympathetic activity, heart rhythm coherence, and entrainment of other biological oscillatory systems to the primary heart rhythm frequency. Increased physiological coherence is associated with improved cognitive performance, emotional balance, mental clarity and health outcomes. These physiological shifts could promote the sustained psychological and behavioral improvements associated with the use of emotional management skills. It is suggested that learning emotional competence skills in childhood establishes healthier physiological response patterns which can benefit learning and long-term health. Results provide support for the integration in school curricula of courses designed to teach effective self-management skills to children.

  1. Traumatogenic Processes and Pathways to Mental Health Outcomes for Sexual Minorities Exposed to Bias Crime Information.

    PubMed

    Lannert, Brittany K

    2015-07-01

    Vicarious traumatization of nonvictim members of communities targeted by bias crimes has been suggested by previous qualitative studies and often dominates public discussion following bias events, but proximal and distal responses of community members have yet to be comprehensively modeled, and quantitative research on vicarious responses is scarce. This comprehensive review integrates theoretical and empirical literatures in social, clinical, and physiological psychology in the development of a model of affective, cognitive, and physiological responses of lesbian, gay, and bisexual individuals upon exposure to information about bias crimes. Extant qualitative research in vicarious response to bias crimes is reviewed in light of theoretical implications and methodological limitations. Potential pathways to mental health outcomes are outlined, including accumulative effects of anticipatory defensive responding, multiplicative effects of minority stress, and putative traumatogenic physiological and cognitive processes of threat. Methodological considerations, future research directions, and clinical implications are also discussed. © The Author(s) 2014.

  2. Complexity and network dynamics in physiological adaptation: an integrated view.

    PubMed

    Baffy, György; Loscalzo, Joseph

    2014-05-28

    Living organisms constantly interact with their surroundings and sustain internal stability against perturbations. This dynamic process follows three fundamental strategies (restore, explore, and abandon) articulated in historical concepts of physiological adaptation such as homeostasis, allostasis, and the general adaptation syndrome. These strategies correspond to elementary forms of behavior (ordered, chaotic, and static) in complex adaptive systems and invite a network-based analysis of the operational characteristics, allowing us to propose an integrated framework of physiological adaptation from a complex network perspective. Applicability of this concept is illustrated by analyzing molecular and cellular mechanisms of adaptation in response to the pervasive challenge of obesity, a chronic condition resulting from sustained nutrient excess that prompts chaotic exploration for system stability associated with tradeoffs and a risk of adverse outcomes such as diabetes, cardiovascular disease, and cancer. Deconstruction of this complexity holds the promise of gaining novel insights into physiological adaptation in health and disease. Published by Elsevier Inc.

  3. Impacts of environmental variability on desiccation rate, plastic responses and population dynamics of Glossina pallidipes.

    PubMed

    Kleynhans, E; Clusella-Trullas, S; Terblanche, J S

    2014-02-01

    Physiological responses to transient conditions may result in costly responses with little fitness benefits, and therefore, a trade-off must exist between the speed of response and the duration of exposure to new conditions. Here, using the puparia of an important insect disease vector, Glossina pallidipes, we examine this potential trade-off using a novel combination of an experimental approach and a population dynamics model. Specifically, we explore and dissect the interactions between plastic physiological responses, treatment-duration and -intensity using an experimental approach. We then integrate these experimental results from organismal water-balance data and their plastic responses into a population dynamics model to examine the potential relative fitness effects of simulated transient weather conditions on population growth rates. The results show evidence for the predicted trade-off for plasticity of water loss rate (WLR) and the duration of new environmental conditions. When altered environmental conditions lasted for longer durations, physiological responses could match the new environmental conditions, and this resulted in a lower WLR and lower rates of population decline. At shorter time-scales however, a mismatch between acclimation duration and physiological responses was reflected by reduced overall population growth rates. This may indicate a potential fitness cost due to insufficient time for physiological adjustments to take place. The outcomes of this work therefore suggest plastic water balance responses have both costs and benefits, and these depend on the time-scale and magnitude of variation in environmental conditions. These results are significant for understanding the evolution of plastic physiological responses and changes in population abundance in the context of environmental variability. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  4. A Systems Approach to the Physiology of Weightlessness

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Leonard, Joel I.; Rummel, John A.; Leach, Carolyn S.

    1991-01-01

    A systems approach to the unraveling of the complex response pattern of the human subjected to weightlessness is presented. The major goal of this research is to obtain an understanding of the role that each of the major components of the human system plays following the transition to and from space. The cornerstone of this approach is the utilization of a variety of mathematical models in order to pose and test alternative hypotheses concerned with the adaptation process. An integrated hypothesis for the human physiological response to weightlessness is developed.

  5. C. elegans Body Cavity Neurons Are Homeostatic Sensors that Integrate Fluctuations in Oxygen Availability and Internal Nutrient Reserves.

    PubMed

    Witham, Emily; Comunian, Claudio; Ratanpal, Harkaranveer; Skora, Susanne; Zimmer, Manuel; Srinivasan, Supriya

    2016-02-23

    It is known that internal physiological state, or interoception, influences CNS function and behavior. However, the neurons and mechanisms that integrate sensory information with internal physiological state remain largely unknown. Here, we identify C. elegans body cavity neurons called URX(L/R) as central homeostatic sensors that integrate fluctuations in oxygen availability with internal metabolic state. We show that depletion of internal body fat reserves increases the tonic activity of URX neurons, which influences the magnitude of the evoked sensory response to oxygen. These responses are integrated via intracellular cGMP and Ca(2+). The extent of neuronal activity thus reflects the balance between the perception of oxygen and available fat reserves. The URX homeostatic sensor ensures that neural signals that stimulate fat loss are only deployed when there are sufficient fat reserves to do so. Our results uncover an interoceptive neuroendocrine axis that relays internal state information to the nervous system. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. 'Multimorbidity' as the manifestation of network disturbances.

    PubMed

    Sturmberg, Joachim P; Bennett, Jeanette M; Martin, Carmel M; Picard, Martin

    2017-02-01

    We argue that 'multimorbidity' is the manifestation of interconnected physiological network processes within an individual in his or her socio-cultural environment. Networks include genomic, metabolomic, proteomic, neuroendocrine, immune and mitochondrial bioenergetic elements, as well as social, environmental and health care networks. Stress systems and other physiological mechanisms create feedback loops that integrate and regulate internal networks within the individual. Minor (e.g. daily hassles) and major (e.g. trauma) stressful life experiences perturb internal and social networks resulting in physiological instability with changes ranging from improved resilience to unhealthy adaptation and 'clinical disease'. Understanding 'multimorbidity' as a complex adaptive systems response to biobehavioural and socio-environmental networks is essential. Thus, designing integrative care delivery approaches that more adequately address the underlying disease processes as the manifestation of a state of physiological dysregulation is essential. This framework can shape care delivery approaches to meet the individual's care needs in the context of his or her underlying illness experience. It recognizes 'multimorbidity' and its symptoms as the end product of complex physiological processes, namely, stress activation and mitochondrial energetics, and suggests new opportunities for treatment and prevention. The future of 'multimorbidity' management might become much more discerning by combining the balancing of physiological dysregulation with targeted personalized biotechnology interventions such as small molecule therapeutics targeting specific cellular components of the stress response, with community-embedded interventions that involve addressing psycho-socio-cultural impediments that would aim to strengthen personal/social resilience and enhance social capital. © 2016 John Wiley & Sons, Ltd.

  7. The esophagiome: integrated anatomical, mechanical, and physiological analysis of the esophago-gastric segment.

    PubMed

    Zhao, Jingbo; McMahon, Barry; Fox, Mark; Gregersen, Hans

    2018-06-10

    Esophageal diseases are highly prevalent and carry significant socioeconomic burden. Despite the apparently simple function of the esophagus, we still struggle to better understand its physiology and pathophysiology. The assessment of large data sets and application of multiscale mathematical organ models have gained attention as part of the Physiome Project. This has long been recognized in cardiology but has only recently gained attention for the gastrointestinal(GI) tract. The term "esophagiome" implies a holistic assessment of esophageal function, from cellular and muscle physiology to the mechanical responses that transport and mix fluid contents. These anatomical, mechanical, and physiological models underlie the development of a "virtual esophagus" modeling framework to characterize and analyze function and disease. Functional models incorporate anatomical details with sensory-motor responses, especially related to biomechanical functions such as bolus transport. Our review builds on previous reviews and focuses on assessment of detailed anatomical and geometric data using advanced imaging technology for evaluation of gastro-esophageal reflux disease (GERD), and on esophageal mechanophysiology assessed using technologies that distend the esophagus. Integration of mechanics- and physiology-based analysis is a useful characteristic of the esophagiome. Experimental data on pressures and geometric characteristics are useful for the validation of mathematical and computer models of the esophagus that may provide predictions of novel endoscopic, surgical, and pharmaceutical treatment options. © 2018 New York Academy of Sciences.

  8. Multilevel functional genomics data integration as a tool for understanding physiology: a network biology perspective.

    PubMed

    Davidsen, Peter K; Turan, Nil; Egginton, Stuart; Falciani, Francesco

    2016-02-01

    The overall aim of physiological research is to understand how living systems function in an integrative manner. Consequently, the discipline of physiology has since its infancy attempted to link multiple levels of biological organization. Increasingly this has involved mathematical and computational approaches, typically to model a small number of components spanning several levels of biological organization. With the advent of "omics" technologies, which can characterize the molecular state of a cell or tissue (intended as the level of expression and/or activity of its molecular components), the number of molecular components we can quantify has increased exponentially. Paradoxically, the unprecedented amount of experimental data has made it more difficult to derive conceptual models underlying essential mechanisms regulating mammalian physiology. We present an overview of state-of-the-art methods currently used to identifying biological networks underlying genomewide responses. These are based on a data-driven approach that relies on advanced computational methods designed to "learn" biology from observational data. In this review, we illustrate an application of these computational methodologies using a case study integrating an in vivo model representing the transcriptional state of hypoxic skeletal muscle with a clinical study representing muscle wasting in chronic obstructive pulmonary disease patients. The broader application of these approaches to modeling multiple levels of biological data in the context of modern physiology is discussed. Copyright © 2016 the American Physiological Society.

  9. Towards a psycho-physiological model of thermal perception

    NASA Astrophysics Data System (ADS)

    Auliciems, A.

    1981-06-01

    Recommendations for indoor thermal requirements have been based upon verbalized responses on traditional assumptions that (1) minimal thermoregulatory activity may be equated to maximum subjective acceptability (2) sensations and levels of discomfort are synonymous and (3) perception of warmth is exclusively the function of thermal stimulus — physiological response. These concepts are reviewed in the light of recent researches which indicate the inadequacy of the existing physiological models and methods of research. In particular, recognition is made of higher levels of mental integration of information flows which, it is argued, must include parameters of past cultural and climatic experiences and expectations. The aim is to initiate a more holistic approach to research into human thermal environments, and, a clearer definition of concepts significant to practical application.

  10. The Emergence of Physiology and Form: Natural Selection Revisited

    PubMed Central

    Torday, John S.

    2016-01-01

    Natural Selection describes how species have evolved differentially, but it is descriptive, non-mechanistic. What mechanisms does Nature use to accomplish this feat? One known way in which ancient natural forces affect development, phylogeny and physiology is through gravitational effects that have evolved as mechanotransduction, seen in the lung, kidney and bone, linking as molecular homologies to skin and brain. Tracing the ontogenetic and phylogenetic changes that have facilitated mechanotransduction identifies specific homologous cell-types and functional molecular markers for lung homeostasis that reveal how and why complex physiologic traits have evolved from the unicellular to the multicellular state. Such data are reinforced by their reverse-evolutionary patterns in chronic degenerative diseases. The physiologic responses of model organisms like Dictyostelium and yeast to gravity provide deep comparative molecular phenotypic homologies, revealing mammalian Target of Rapamycin (mTOR) as the final common pathway for vertical integration of vertebrate physiologic evolution; mTOR integrates calcium/lipid epistatic balance as both the proximate and ultimate positive selection pressure for vertebrate physiologic evolution. The commonality of all vertebrate structure-function relationships can be reduced to calcium/lipid homeostatic regulation as the fractal unit of vertebrate physiology, demonstrating the primacy of the unicellular state as the fundament of physiologic evolution. PMID:27534726

  11. Physiological integration modifies δ15N in the clonal plant Fragaria vesca, suggesting preferential transport of nitrogen to water-stressed offspring.

    PubMed

    Roiloa, S R; Antelo, B; Retuerto, R

    2014-08-01

    One of the most striking attributes of clonal plants is their capacity for physiological integration, which enables movement of essential resources between connected ramets. This study investigated the capacity of physiological integration to buffer differences in resource availability experienced by ramets of the clonal wild strawberry plant, Fragaria vesca. Specifically, a study was made of the responses of connected and severed offspring ramets growing in environments with different water availability conditions (well watered or water stressed) and nitrogen forms (nitrate or ammonium). The experimental design consisted of three factors, 'integration' (connected, severed) 'water status' (well watered, water stressed) and 'nitrogen form' (nitrate, ammonium), applied in a pot experiment. The effects of physiological integration were studied by analysing photochemical efficiency, leaf spectral reflectance, photosynthesis and carbon and nitrogen isotope discrimination, the last of which has been neglected in previous studies. Physiological integration buffered the stress caused by water deprivation. As a consequence, survival was improved in water-stressed offspring ramets that remained connected to their parent plants. The nitrogen isotope composition (δ(15)N) values in the connected water-stressed ramets were similar to those in ramets in the ammonium treatment; however, δ(15)N values in connected well-watered ramets were similar to those in the nitrate treatment. The results also demonstrated the benefit of integration for offspring ramets in terms of photochemical activity and photosynthesis. This is the first study in which carbon and nitrogen isotopic discrimination has been used to detect physiological integration in clonal plants. The results for nitrogen isotope composition represent the first evidence of preferential transport of a specific form of nitrogen to compensate for stressful conditions experienced by a member clone. Water consumption was lower in plants supplied with ammonium than in plants supplied with nitrate, and therefore preferential transport of ammonium from parents to water-stressed offspring could potentially optimize the water use of the whole clone. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Impaired tRNA nuclear export links DNA damage and cell-cycle checkpoint.

    PubMed

    Ghavidel, Ata; Kislinger, Thomas; Pogoutse, Oxana; Sopko, Richelle; Jurisica, Igor; Emili, Andrew

    2007-11-30

    In response to genotoxic stress, cells evoke a plethora of physiological responses collectively aimed at enhancing viability and maintaining the integrity of the genome. Here, we report that unspliced tRNA rapidly accumulates in the nuclei of yeast Saccharomyces cerevisiae after DNA damage. This response requires an intact MEC1- and RAD53-dependent signaling pathway that impedes the nuclear export of intron-containing tRNA via differential relocalization of the karyopherin Los1 to the cytoplasm. The accumulation of unspliced tRNA in the nucleus signals the activation of Gcn4 transcription factor, which, in turn, contributes to cell-cycle arrest in G1 in part by delaying accumulation of the cyclin Cln2. The regulated nucleocytoplasmic tRNA trafficking thus constitutes an integral physiological adaptation to DNA damage. These data further illustrate how signal-mediated crosstalk between distinct functional modules, namely, tRNA nucleocytoplasmic trafficking, protein synthesis, and checkpoint execution, allows for functional coupling of tRNA biogenesis and cell-cycle progression.

  13. Multivariate analysis of the cotton seed ionome reveals integrated genetic signatures of abiotic stress-response

    USDA-ARS?s Scientific Manuscript database

    To mitigate the effects of heat and drought stress, an understanding of the genetic control of physiological responses to these environmental conditions is needed. To this end, we evaluated an upland cotton (Gossypium hirsutum L.) mapping population under water-limited and well-watered conditions in...

  14. Microbial Response to Microgravity and Other Low Shear Environments

    NASA Technical Reports Server (NTRS)

    Nickerson, C.; Ott, C. Mark; Wilson, James W.; Ramamurthy, Rajee; Pierson, Duane L.

    2004-01-01

    Microbial existence and survival requires the ability to sense and respond to environmental changes, including changes in physical forces. This is because microbes inhabit an amazingly diverse range of ecological niches and therefore must constantly adapt to a wide variety of changing environmental conditions, including alterations in temperature, pH, nutrient availability, oxygen levels, and osmotic pressure gradients. Microbes sense their environment through a variety of sensors and receptors which serve to integrate the different signals into the appropriate cellular response(s) that is optimal for survival. While numerous environmental stimuli have been examined for their effect on microorganisms, effects due to changes in mechanical and/or physical forces are also becoming increasingly apparent. Recently, several important studies have demonstrated a key role for microgravity and the low fluid shear dynamics associated with microgravity in the regulation of microbial gene expression, physiology and pathogenesis. The mechanosensory response of microorganisms to these environmental signals, which are relevant to those encountered during microbial life cycles on Earth, may provide insight into their adaptations to physiologically relevant conditions and may ultimately lead to eludicidation of the mechanisms important for mechanosensory transduction in living cells. This review summarizes the recent and potential future research trends aimed at understanding the effect of changes in mechanical forces that occur in microgravity and other low shear environments on different microbial parameters. The results of these studies provide an important step towards understanding how microbes integrate information from multiple mechanical stimuli to an appropriate physiological response.

  15. Linking Landscape-Scale Disturbances to Stress and Condition of Fish: Implications for Restoration and Conservation.

    PubMed

    Jeffrey, Jennifer D; Hasler, Caleb T; Chapman, Jacqueline M; Cooke, Steven J; Suski, Cory D

    2015-10-01

    Humans have dramatically altered landscapes as a result of urban and agricultural development, which has led to decreases in the quality and quantity of habitats for animals. This is particularly the case for freshwater fish that reside in fluvial systems, given that changes to adjacent lands have direct impacts on the structure and function of watersheds. Because choices of habitat have physiological consequences for organisms, animals that occupy sub-optimal habitats may experience increased expenditure of energy or homeostatic overload that can cause negative outcomes for individuals and populations. With the imperiled and threatened status of many freshwater fish, there is a critical need to define relationships between land use, quality of the habitat, and physiological performance for resident fish as an aid to restoration and management. Here, we synthesize existing literature to relate variation in land use at the scale of watersheds to the physiological status of resident fish. This examination revealed that landscape-level disturbances can influence a host of physiological properties of resident fishes, ranging from cellular and genomic levels to the hormonal and whole-animal levels. More importantly, these physiological responses have been integrated into traditional field-based monitoring protocols to provide a mechanistic understanding of how organisms interact with their environment, and to enhance restoration. We also generated a conceptual model that provides a basis for relating landscape-level changes to physiological responses in fish. We conclude that physiological sampling of resident fish has the potential to assess the effects of landscape-scale disturbances on freshwater fish and to enhance restoration and conservation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  16. Linking physiological and cellular responses to thermal stress: β-adrenergic blockade reduces the heat shock response in fish.

    PubMed

    Templeman, Nicole M; LeBlanc, Sacha; Perry, Steve F; Currie, Suzanne

    2014-08-01

    When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.

  17. An overview of the endocrine and metabolic changes in manned space flight

    NASA Astrophysics Data System (ADS)

    Leach, Carolyns.

    In the years since the Skylab Program, endocrinology and metabolism have gone through stages of development that can be characterized as descriptive, both physiological and biochemical. At the present time, this area demonstrates a significant increase in knowledge of endocrine and metabolic function in physiology and pathology at the biochemical level. The development of sensitive techniques for the measurement of hormones, their precursors and metabolites and the increasing amount of information on integrated endocrine responses in various physiologic processes make it valuable for us to retrospectively consider our space flight findings especially in considering future work.

  18. Identification and Evaluation of Integration and Cross Cutting Issues Across HRP Risks

    NASA Technical Reports Server (NTRS)

    Steinberg, S. L.; Shelhamer, Mark

    2015-01-01

    The HRP Integrated Research Plan contains the research plans for the 32 risks requiring research to characterize and mitigate. These risks to human health and performance in spaceflight are identified by evidence and each one focuses on a single aspect of human physiology or performance. They are further categorized by aspects of the spaceflight environment, such as altered gravity or space radiation, that that play a major role in their likelihood and consequence. From its inception the "integrate" in the Research Plan has denoted the integrated nature of risks to human health and performance, the connectedness of physiological systems within the human body regardless of the spaceflight environment, and the integrated response of the human body to the spaceflight environment. Common characteristics of the spaceflight environment include altered gravity, atmospheres and light/dark cycles, space radiation, isolation, noise, and periods of high or low workload. Long term exposure to this unique environment produces a suite of physiological effects such as stress; vision, neurocognitive and anthropometric changes; circadian misalignment; fluid shifts, deconditioning; immune dysregulation; and altered nutritional requirements. Matrix diagraming was used to systematically identify, analyze and rate the many-to-many relationships between environmental characteristics and the suite of physiological effects. It was also to identify patterns in the relationships of common physiological effects to each other. Analyses of patterns or relationships in these diagrams help to identify issues that cut across multiple risks. Cross cutting issues benefit from a multidisciplinary approach that synthesizes concepts or data from two or more disciplines to identify and characterize risk factors or develop countermeasures relevant to multiple risks. They also help to illuminate possible problem areas that may arise when a countermeasure impacts risks other than those which it was developed to mitigate, or identify groupings of physiological changes that are likely to occur that may impact the overall risk posture.

  19. Allocation, morphology, physiology, architecture: the multiple facets of plant above- and below-ground responses to resource stress.

    PubMed

    Freschet, Grégoire T; Violle, Cyrille; Bourget, Malo Y; Scherer-Lorenzen, Michael; Fort, Florian

    2018-06-01

    Plants respond to resource stress by changing multiple aspects of their biomass allocation, morphology, physiology and architecture. To date, we lack an integrated view of the relative importance of these plastic responses in alleviating resource stress and of the consistency/variability of these responses among species. We subjected nine species (legumes, forbs and graminoids) to nitrogen and/or light shortages and measured 11 above-ground and below-ground trait adjustments critical in the alleviation of these stresses (plus several underlying traits). Nine traits out of 11 showed adjustments that improved plants' potential capacity to acquire the limiting resource at a given time. Above ground, aspects of plasticity in allocation, morphology, physiology and architecture all appeared important in improving light capture, whereas below ground, plasticity in allocation and physiology were most critical to improving nitrogen acquisition. Six traits out of 11 showed substantial heterogeneity in species plasticity, with little structuration of these differences within trait covariation syndromes. Such comprehensive assessment of the complex nature of phenotypic responses of plants to multiple stress factors, and the comparison of plant responses across multiple species, makes a clear case for the high (but largely overlooked) diversity of potential plastic responses of plants, and for the need to explore the potential rules structuring them. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  20. Assessing formal teaching of ethics in physiology: an empirical survey, patterns, and recommendations.

    PubMed

    Goswami, Nandu; Batzel, Jerry Joseph; Hinghofer-Szalkay, Helmut

    2012-09-01

    Ethics should be an important component of physiological education. In this report, we examined to what extent teaching of ethics is formally being incorporated into the physiology curriculum. We carried out an e-mail survey in which we asked the e-mail recipients whether their institution offered a course or lecture on ethics as part of the physiology teaching process at their institution, using the following query: "We are now doing an online survey in which we would like to know whether you offer a course or a lecture on ethics as part of your physiology teaching curriculum." The response rate was 53.3%: we received 104 responses of a total of 195 sent out. Our responses came from 45 countries. While all of our responders confirmed that there was a need for ethics during medical education and scientific training, the degree of inclusion of formal ethics in the physiology curriculum varied widely. Our survey showed that, in most cases (69%), including at our Medical University of Graz, ethics in physiology is not incorporated into the physiology curriculum. Given this result, we suggest specific topics related to ethics and ethical considerations that could be integrated into the physiology curriculum. We present here a template example of a lecture "Teaching Ethics in Physiology" (structure, content, examples, and references), which was based on guidelines and case reports provided by experts in this area (e.g., Benos DJ. Ethics revisited. Adv Physiol Educ 25: 189-190, 2001). This lecture, which we are presently using in Graz, could be used as a base that could lead to greater awareness of important ethical issues in students at an early point in the educational process.

  1. Cold pressor test in spinal cord injury-revisited.

    PubMed

    Hubli, Michèle; Bolt, Doris; Krassioukov, Andrei V

    2018-06-01

    Systematic review. A spinal cord injury (SCI) commonly results in alterations of cardiovascular physiology. In order to investigate such alterations, the cold pressor test (CPT) has been used as an established challenge test. This review summarizes the basic physiology underlying a CPT, discusses potential mechanisms responsible for abnormal pressor responses following SCI, and highlights the utility of CPT in the SCI population. Canada and Switzerland. We have completed a comprehensive review of studies that have investigated the effect of foot or hand CPT on hemodynamic indices in individuals with SCI. Depending on the level of spinal cord lesion and the location of cold application, i.e., above or below the lesion, mean arterial pressure typically increases (ranging between 4 and 23 mmHg), while heart rate responses demonstrated either a decrease or an increase (ranging between -4 and 24 bpm) during CPT. The increase in blood pressure during foot CPT in high-level lesions might not necessarily be attributed to a physiological CPT response as seen in able-bodied individuals, but rather due to a reflexic sympathetic discharge below the level of lesion, known as autonomic dysreflexia. Further investigations in a wider range of individuals with SCI including incomplete injuries might be helpful to examine the ability of CPT assessing the integrity of the autonomic nervous system following SCI. Furthermore, additional autonomic tests are needed to emphasize the integrity of autonomic pathways and to account for the complexity of the autonomic nervous system.

  2. Design of a framework for modeling, integration and simulation of physiological models.

    PubMed

    Erson, E Zeynep; Cavuşoğlu, M Cenk

    2012-09-01

    Multiscale modeling and integration of physiological models carry challenges due to the complex nature of physiological processes. High coupling within and among scales present a significant challenge in constructing and integrating multiscale physiological models. In order to deal with such challenges in a systematic way, there is a significant need for an information technology framework together with related analytical and computational tools that will facilitate integration of models and simulations of complex biological systems. Physiological Model Simulation, Integration and Modeling Framework (Phy-SIM) is an information technology framework providing the tools to facilitate development, integration and simulation of integrated models of human physiology. Phy-SIM brings software level solutions to the challenges raised by the complex nature of physiological systems. The aim of Phy-SIM, and this paper is to lay some foundation with the new approaches such as information flow and modular representation of the physiological models. The ultimate goal is to enhance the development of both the models and the integration approaches of multiscale physiological processes and thus this paper focuses on the design approaches that would achieve such a goal. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Subjective, behavioral, and physiological responses to the rubber hand illusion do not vary with age in the adult phase.

    PubMed

    Palomo, Priscila; Borrego, Adrián; Cebolla, Ausiàs; Llorens, Roberto; Demarzo, Marcelo; Baños, Rosa M

    2018-02-01

    The Rubber Hand Illusion (RHI) is a perceptual illusion that enables integration of artificial limbs into the body representation through combined multisensory integration. Most previous studies investigating the RHI have involved young healthy adults within a very narrow age range (typically 20-30 years old). The purpose of this paper was to determine the influence of age on the RHI. The RHI was performed on 93 healthy adults classified into three groups of age (20-35 years old, N = 41; 36-60 years old, N = 28; and 61-80 years old, N = 24), and its effects were measured with subjective (Embodiment of Rubber Hand Questionnaire), behavioral (proprioceptive drift), and physiological (changes in skin temperature and conductance) measures. There were neither significant differences among groups in any response, nor significant covariability or correlation between age and other measures (but for skin temperature), which suggests that the RHI elicits similar responses across different age groups in the adult phase. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The physiology of meditation: a review. A wakeful hypometabolic integrated response.

    PubMed

    Jevning, R; Wallace, R K; Beidebach, M

    1992-01-01

    While for centuries a wakeful and tranquil state or experience variously called "samadhi," "pure awareness," or "enlightenment" had been said to be a normal experience and the goal of meditation in Vedic, Buddhist, and Taoist traditions, there was little known about this behavior until recently, when the practice of "transcendental meditation" (TM) became available for study in Western scientific laboratories. Derived from the Vedic tradition, TM is unique because it requires no special circumstances or effort for practice. Based upon a wide spectrum of physiological data on TM, we hypothesize that meditation is an integrated response with peripheral circulatory and metabolic changes subserving increased central nervous activity. Consistent with the subjective description of meditation as a very relaxed but, at the same time, a very alert state, it is likely that such findings during meditation as increased cardiac output, probable increased cerebral blood flow, and findings reminiscent of the "extraordinary" character of classical reports: apparent cessation of CO2 generation by muscle, fivefold plasma AVP elevation, and EEG synchrony play critical roles in this putative response.

  5. Exploring physiological plasticity and local thermal adaptation in an intertidal crab along a latitudinal cline.

    PubMed

    Gaitán-Espitia, Juan Diego; Bacigalupe, Leonardo D; Opitz, Tania; Lagos, Nelson A; Osores, Sebastián; Lardies, Marco A

    2017-08-01

    Intertidal organisms have evolved physiological mechanisms that enable them to maintain performance and survive during periods of severe environmental stress with temperatures close to their tolerance limits. The level of these adaptive responses in thermal physiology can vary among populations of broadly distributed species depending on their particular environmental context and genetic backgrounds. Here we examined thermal performances and reaction norms for metabolic rate (MR) and heart rate (HR) of seven populations of the porcelanid crab Petrolisthes violaceus from markedly different thermal environments across the latitudinal gradient of ~3000km. Physiological responses of this intertidal crab under common-garden conditions suggest the absence of local thermal adaptation along the geographic gradient (i.e., lack of latitudinal compensation). Moreover, thermal physiological sensitivities and performances in response to increased temperatures evidenced the existence of some level of: i) metabolic rate control or depression during warm temperature exposures; and ii) homeostasis/canalization (i.e., absence or low levels of plasticity) in physiological traits that may reflect some sort of buffering mechanism in most of the populations. Nevertheless, our results indicate that elevated temperatures can reduce cardiac function but not metabolic rate in high latitude crabs. The lack of congruence between HR and MR supports the idea that energy metabolism in marine invertebrates cannot be inferred from HR and different conclusions regarding geographic differentiation in energy metabolism can be obtained from both physiological traits. Integrating thermal physiology and species range extent can contribute to a better understanding of the likely effects of climate change on natural populations of marine ectotherms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Theoretical analysis of insulin-dependent glucose uptake heterogeneity in 3D bioreactor cell culture.

    PubMed

    Magrofuoco, Enrico; Elvassore, Nicola; Doyle, Francis J

    2012-01-01

    Three-dimensional (3D) cell cultures in bioreactors are becoming relevant as models for biological and physiological in vitro studies. In such systems, mathematical models can assist the experiment design that links the macroscopic properties to single-cell responses. We investigated the relationship between biochemical stimuli and cell response within a 3D cell culture in scaffold with heterogeneous porosity. Specifically, we studied the effect of insulin on the local glucose metabolism as a function of 3D pore size distribution. The multiscale mathematical model combines the mass transport within a 3D scaffold and a signaling pathways model. It considers the scaffold heterogeneity, and it describes spatiotemporal concentration of metabolites, biochemical stimuli, and cell density. The signaling model was integrated into this model, linking the local insulin concentration at cell membrane to the glucose uptake rate through glucose transporter type 4 (GLUT4) translocation from the cytosol to the cell membrane. The integrated model determines the cell response heterogeneities in a single channel, hence the biological response distribution in a 3D system. It also provides macroscopic outcomes to evaluate the feasibility of an experimental measurement of the system response. From our analysis, it became apparent that the flow rate is the most important operative variable, and that an optimum value ensures a fast and detectable cell response. This model on insulin-dependent glucose consumption rate offers insight into the cell metabolism physiology, which is a fundamental requirement for the study metabolic disorder such as Type 2 diabetes mellitus, in which the physiological insulin-dependent glucose metabolism is impaired. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  7. Glycemic state regulates melanocortin, but not nesfatin-1, responsiveness of glucose-sensing neurons in the nucleus of the solitary tract.

    PubMed

    Mimee, Andrea; Ferguson, Alastair V

    2015-04-15

    The nucleus of the solitary tract (NTS) is a medullary integrative center with critical roles in the coordinated control of energy homeostasis. Here, we used whole cell current-clamp recordings on rat NTS neurons in slice preparation to identify the presence of physiologically relevant glucose-sensing neurons. The majority of NTS neurons (n = 81) were found to be glucose-responsive, with 35% exhibiting a glucose-excited (GE) phenotype (mean absolute change in membrane potential: 9.5 ± 1.1 mV), and 21% exhibiting a glucose-inhibited (GI) response (mean: 6.3 ± 0.7 mV). Furthermore, we found glucose-responsive cells are preferentially influenced by the anorexigenic peptide α-melanocyte-stimulating hormone (α-MSH), but not nesfatin-1. Accordingly, alterations in glycemic state have profound effects on the responsiveness of NTS neurons to α-MSH, but not to nesfatin-1. Indeed, NTS neurons showed increasing responsiveness to α-MSH as extracellular glucose concentrations were decreased, and in hypoglycemic conditions, all NTS neurons were depolarized by α-MSH (mean 10.6 ± 3.2 mV; n = 8). Finally, decreasing levels of extracellular glucose correlated with a significant hyperpolarization of the baseline membrane potential of NTS neurons, highlighting the modulatory effect of glucose on the baseline excitability of cells in this region. Our findings reveal individual NTS cells are capable of integrating multiple sources of metabolically relevant inputs, highlight the rapid capacity for plasticity in medullary melanocortin circuits, and emphasize the critical importance of physiological recording conditions for electrophysiological studies pertaining to the central control of energy homeostasis. Copyright © 2015 the American Physiological Society.

  8. Plasticity of brain wave network interactions and evolution across physiologic states

    PubMed Central

    Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of network connectivity and link strength, while at the same time each frequency-specific network is characterized by a different signature pattern of sleep-stage stratification, reflecting a remarkable flexibility in response to change in physiologic state. These new aspects of neural plasticity demonstrate that in addition to dominant brain waves, the network of brain wave interactions is a previously unrecognized hallmark of physiologic state and function. PMID:26578891

  9. Personalized physiological medicine.

    PubMed

    Ince, Can

    2017-12-28

    This paper introduces the concept of personalized physiological medicine that is specifically directed at the needs of the critically ill patient. This differs from the conventional view of personalized medicine, characterized by biomarkers and gene profiling, instead focusing on time-variant changes in the pathophysiology and regulation of various organ systems and their cellular and subcellular constituents. I propose that personalized physiological medicine is composed of four pillars relevant to the critically ill patient. Pillar 1 is defined by the frailty and fitness of the patient and their physiological reserve to cope with the stress of critical illness and therapy. Pillar 2 involves monitoring of the key physiological variables of the different organ systems and their response to disease and therapy. Pillar 3 concerns the evaluation of the success of resuscitation by assessment of the hemodynamic coherence between the systemic and microcirculation and parenchyma of the organ systems. Finally, pillar 4 is defined by the integration of the physiological and clinical data into a time-learning adaptive model of the patient to provide feedback about the function of organ systems and to guide and assess the response to disease and therapy. I discuss each pillar and describe the challenges to research and development that will allow the realization of personalized physiological medicine to be practiced at the bedside for critically ill patients.

  10. Biochemical factors modulating female genital sexual arousal physiology.

    PubMed

    Traish, Abdulmaged M; Botchevar, Ella; Kim, Noel N

    2010-09-01

    Female genital sexual arousal responses are complex neurophysiological processes consisting of central and peripheral components that occur following sexual stimulation. The peripheral responses in sexual arousal include genital vasocongestion, engorgement and lubrication resulting from a surge of vaginal and clitoral blood flow. These hemodynamic events are mediated by a host of neurotransmitters and vasoactive agents. To discuss the role of various biochemical factors modulating female genital sexual arousal responses. A comprehensive literature review was conducted using the PubMed database and citations were selected, based on topical relevance, and examined for study methodology and major findings. Data from peer-reviewed publications. Adrenergic as well as non-adrenergic non-cholinergic neurotransmitters play an important role in regulating genital physiological responses by mediating vascular and non-vascular smooth muscle contractility. Vasoactive peptides and neuropeptides also modulate genital sexual responses by regulating vascular and non-vascular smooth muscle cells and epithelial function. The endocrine milieu, particularly sex steroid hormones, is critical in the maintenance of tissue structure and function. Reduced levels of estrogens and androgen are associated with dramatic alterations in genital tissue structure, including the nerve network, as well as the response to physiological modulators. Furthermore, estrogen and androgen deficiency is associated with reduced expression of sex steroid receptors and most importantly with attenuated genital blood flow and lubrication in response to pelvic nerve stimulation. This article provides an integrated framework describing the physiological and molecular basis of various pathophysiological conditions associated with female genital sexual arousal dysfunction. © 2010 International Society for Sexual Medicine.

  11. Use of concept mapping in an undergraduate introductory exercise physiology course.

    PubMed

    Henige, Kim

    2012-09-01

    Physiology is often considered a challenging course for students. It is up to teachers to structure courses and create learning opportunities that will increase the chance of student success. In an undergraduate exercise physiology course, concept maps are assigned to help students actively process and organize information into manageable and meaningful chunks and to teach them to recognize the patterns and regularities of physiology. Students are first introduced to concept mapping with a commonly relatable nonphysiology concept and are then assigned a series of maps that become more and more complex. Students map the acute response to a drop in blood pressure, the causes of the acute increase in stroke volume during cardiorespiratory exercise, and the factors contributing to an increase in maximal O(2) consumption with cardiorespiratory endurance training. In the process, students draw the integrative nature of physiology, identify causal relationships, and learn about general models and core principles of physiology.

  12. The stress response and exploratory behaviour in Yucatan minipigs (Sus scrofa): Relations to sex and social rank.

    PubMed

    Adcock, Sarah J J; Martin, Gerard M; Walsh, Carolyn J

    2015-12-01

    According to the coping styles hypothesis, an individual demonstrates an integrated behavioural and physiological response to environmental challenge that is consistent over time and across situations. Individual consistency in behavioural responses to challenge has been documented across the animal kingdom. Comparatively few studies, however, have examined inter-individual variation in the physiological response, namely glucocorticoid and catecholamine levels, the stress hormones secreted by the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system, respectively. Variation in coping styles between individuals may be explained in part by differences in social rank and sex. Using 20 Yucatan minipigs (Sus scrofa) we: (1) investigated the existence of consistent inter-individual variation in exploratory behaviour and the hormonal stress response, and tested for correlations as predicted by the coping styles hypothesis; and (2) evaluated whether inter-individual behavioural and hormonal variation is related to social rank and sex. Salivary stress biomarkers (cortisol, alpha-amylase, chromogranin A) were assessed in the presence and absence of a stressor consisting of social isolation in a crate for 10 min. Principal components analysis on a set of behavioural variables revealed two traits, which we labelled exploratory tendency and neophobia. Neither exploratory tendency nor neophobia predicted the physiological stress response. Subordinate pigs exhibited higher catecholamine levels compared to dominant conspecifics. We observed sex differences in the repeatability of salivary stress markers and reactivity of the stress systems. The results do not provide support for the existence of behavioural-physiological coping styles in pigs. Sex is an important determinant of the physiological stress response and warrants consideration in research addressing behavioural and hormonal variation. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. The water economy of South American desert rodents: from integrative to molecular physiological ecology.

    PubMed

    Bozinovic, Francisco; Gallardo, Pedro

    2006-01-01

    Rodents from arid and semi-arid habitats live under conditions where the spatial and temporal availability of free water is limited, or scarce, thus forcing these rodents to deal with the problem of water conservation. The response of rodents to unproductive desert environments and water deficits has been intensively investigated in many deserts of the world. However, current understanding of the cellular, systemic and organismal physiology of water economy relies heavily on short-term, laboratory-oriented experiments, which usually focus on responses at isolated levels of biological organization. In addition, studies in small South American mammals are scarce. Indeed xeric habitats have existed in South America for a long time and it is intriguing why present day South American desert rodents do not show the wide array of adaptive traits to desert life observed for rodents on other continents. Several authors have pointed out that South American desert rodents lack physiological and energetic specialization for energy and water conservation, hypothesizing that their success is based more on behavioral and ecological strategies. We review phenotypic flexibility and physiological diversity in water flux rate, urine osmolality, and expression of water channels in South American desert-dwelling rodents. As far as we know, this is the first review of integrative studies at cellular, systemic and organismal levels. Our main conclusion is that South American desert rodents possess structural as well as physiological systems for water conservation, which are as remarkable as those found in "classical" rodents inhabiting other desert areas of the world.

  14. Clinical Physiologic Research Instrumentation: An Approach Using Modular Elements and Distributed Processing

    PubMed Central

    Hagen, R. W.; Ambos, H. D.; Browder, M. W.; Roloff, W. R.; Thomas, L. J.

    1979-01-01

    The Clinical Physiologic Research System (CPRS) developed from our experience in applying computers to medical instrumentation problems. This experience revealed a set of applications with a commonality in data acquisition, analysis, input/output, and control needs that could be met by a portable system. The CPRS demonstrates a practical methodology for integrating commercial instruments with distributed modular elements of local design in order to make facile responses to changing instrumentation needs in clinical environments. ImagesFigure 3

  15. Integrating Individual-Based Indices of Contaminant Effects

    DOE PAGES

    Rowe, Christopher L.; Hopkins, William A.; Congdon, Justin D.

    2001-01-01

    Habitat contamination can alter numerous biological processes in individual organisms. Examining multiple individual-level responses in an integrative fashion is necessary to understand how individual health or fitness reflects environmental contamination. Here we provide an example of such an integrated perspective based upon recent studies of an amphibian (the bullfrog, Rana catesbeiana) that experiences several, disparate changes when larval development occurs in a trace element�contaminated habitat. First, we present an overview of studies focused on specific responses of individuals collected from, or transplanted into, a habitat contaminated by coal combustion residues (CCR). These studies have reported morphological, behavioral, and physiological modificationsmore » to individuals chronically interacting with sediments in the CCR-contaminated site. Morphological abnormalities in the oral and tail regions in contaminant-exposed individuals influenced other properties such as grazing, growth, and swimming performance. Behavioral changes in swimming activities and responses to stimuli appear to influence predation risk in the contaminant-exposed population. Significant changes in bioenergetics in the contaminated habitat, evident as abnormally high energetic expenditures for survival (maintenance) costs, may ultimately influence production pathways (growth, energy storage) in individuals. We then present a conceptual model to examine how interactions among the affected systems (morphological, behavioral, physiological) may ultimately bring about more severe effects than would be predicted if the responses were considered in isolation. A complex interplay among simultaneously occurring biological changes emerges in which multiple, sublethal effects ultimately can translate into reductions in larval or juvenile survival, and thus reduced recruitment of juveniles into the population. In systems where individuals are exposed to low concentrations of contaminants for long periods of time, research focused on one or few sublethal responses could substantially underestimate overall effects on individuals. We suggest that investigators adopt a more integrated perspective on contaminant-induced biological changes so that studies of individual-based effects can be better integrated into analyses of mechanisms of population change.« less

  16. Listening to Another Sense: Somatosensory Integration in the Auditory System

    PubMed Central

    Wu, Calvin; Stefanescu, Roxana A.; Martel, David T.

    2014-01-01

    Conventionally, sensory systems are viewed as separate entities, each with its own physiological process serving a different purpose. However, many functions require integrative inputs from multiple sensory systems, and sensory intersection and convergence occur throughout the central nervous system. The neural processes for hearing perception undergo significant modulation by the two other major sensory systems, vision and somatosensation. This synthesis occurs at every level of the ascending auditory pathway: the cochlear nucleus, inferior colliculus, medial geniculate body, and the auditory cortex. In this review, we explore the process of multisensory integration from 1) anatomical (inputs and connections), 2) physiological (cellular responses), 3) functional, and 4) pathological aspects. We focus on the convergence between auditory and somatosensory inputs in each ascending auditory station. This review highlights the intricacy of sensory processing, and offers a multisensory perspective regarding the understanding of sensory disorders. PMID:25526698

  17. Physiological and molecular mechanisms of methionine restriction

    USDA-ARS?s Scientific Manuscript database

    The activation of miRNAs during methionine restriction (MR) provides a potential link between changes in methylation and the integrated stress responses in cells. Studies utilizing rainbow trout myosatellite cells in vitro and in vivo, have shown that methionine can regulate the level of expression ...

  18. Mechanisms of Cardiopulmonary Adaptation to Microgravity. Part 1

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session TA1 includes short reports covering: (1) Indices of Baroreceptor Reflex Sensitivity: The Use in Rehabilitation Medicine and Space Cardiology; (2) +Gz and +Gx Tolerance of Healthy Persons of Non-Flying Trades at Primary Selection of the Centrifuge; (3) Effect of Dry Immersion on Calf Blood Supply During Sustained Contraction and Upright Exercise in Man; (4) Cardiovascular and Valsalva Responses during Parabolic flight; (5) An Analysis of the Cardiovascular Responses under Hyper- and Hypo-Gravity Environments using a Mathematical model; (6) Effect of Very Gradual Onset Rate +Gz Exposures on the Cardiovascular System; and (7) NASA Specialized Center of Research and Training (NSCORT) in Integrated Physiology: Mechanisms of Physiological Adaptations to Microgravity.

  19. Smart Vest: wearable multi-parameter remote physiological monitoring system.

    PubMed

    Pandian, P S; Mohanavelu, K; Safeer, K P; Kotresh, T M; Shakunthala, D T; Gopal, Parvati; Padaki, V C

    2008-05-01

    The wearable physiological monitoring system is a washable shirt, which uses an array of sensors connected to a central processing unit with firmware for continuously monitoring physiological signals. The data collected can be correlated to produce an overall picture of the wearer's health. In this paper, we discuss the wearable physiological monitoring system called 'Smart Vest'. The Smart Vest consists of a comfortable to wear vest with sensors integrated for monitoring physiological parameters, wearable data acquisition and processing hardware and remote monitoring station. The wearable data acquisition system is designed using microcontroller and interfaced with wireless communication and global positioning system (GPS) modules. The physiological signals monitored are electrocardiogram (ECG), photoplethysmogram (PPG), body temperature, blood pressure, galvanic skin response (GSR) and heart rate. The acquired physiological signals are sampled at 250samples/s, digitized at 12-bit resolution and transmitted wireless to a remote physiological monitoring station along with the geo-location of the wearer. The paper describes a prototype Smart Vest system used for remote monitoring of physiological parameters and the clinical validation of the data are also presented.

  20. Linking Inflammation, Cardiorespiratory Variability, and Neural Control in Acute Inflammation via Computational Modeling

    PubMed Central

    Dick, Thomas E.; Molkov, Yaroslav I.; Nieman, Gary; Hsieh, Yee-Hsee; Jacono, Frank J.; Doyle, John; Scheff, Jeremy D.; Calvano, Steve E.; Androulakis, Ioannis P.; An, Gary; Vodovotz, Yoram

    2012-01-01

    Acute inflammation leads to organ failure by engaging catastrophic feedback loops in which stressed tissue evokes an inflammatory response and, in turn, inflammation damages tissue. Manifestations of this maladaptive inflammatory response include cardio-respiratory dysfunction that may be reflected in reduced heart rate and ventilatory pattern variabilities. We have developed signal-processing algorithms that quantify non-linear deterministic characteristics of variability in biologic signals. Now, coalescing under the aegis of the NIH Computational Biology Program and the Society for Complexity in Acute Illness, two research teams performed iterative experiments and computational modeling on inflammation and cardio-pulmonary dysfunction in sepsis as well as on neural control of respiration and ventilatory pattern variability. These teams, with additional collaborators, have recently formed a multi-institutional, interdisciplinary consortium, whose goal is to delineate the fundamental interrelationship between the inflammatory response and physiologic variability. Multi-scale mathematical modeling and complementary physiological experiments will provide insight into autonomic neural mechanisms that may modulate the inflammatory response to sepsis and simultaneously reduce heart rate and ventilatory pattern variabilities associated with sepsis. This approach integrates computational models of neural control of breathing and cardio-respiratory coupling with models that combine inflammation, cardiovascular function, and heart rate variability. The resulting integrated model will provide mechanistic explanations for the phenomena of respiratory sinus-arrhythmia and cardio-ventilatory coupling observed under normal conditions, and the loss of these properties during sepsis. This approach holds the potential of modeling cross-scale physiological interactions to improve both basic knowledge and clinical management of acute inflammatory diseases such as sepsis and trauma. PMID:22783197

  1. Linking Inflammation, Cardiorespiratory Variability, and Neural Control in Acute Inflammation via Computational Modeling.

    PubMed

    Dick, Thomas E; Molkov, Yaroslav I; Nieman, Gary; Hsieh, Yee-Hsee; Jacono, Frank J; Doyle, John; Scheff, Jeremy D; Calvano, Steve E; Androulakis, Ioannis P; An, Gary; Vodovotz, Yoram

    2012-01-01

    Acute inflammation leads to organ failure by engaging catastrophic feedback loops in which stressed tissue evokes an inflammatory response and, in turn, inflammation damages tissue. Manifestations of this maladaptive inflammatory response include cardio-respiratory dysfunction that may be reflected in reduced heart rate and ventilatory pattern variabilities. We have developed signal-processing algorithms that quantify non-linear deterministic characteristics of variability in biologic signals. Now, coalescing under the aegis of the NIH Computational Biology Program and the Society for Complexity in Acute Illness, two research teams performed iterative experiments and computational modeling on inflammation and cardio-pulmonary dysfunction in sepsis as well as on neural control of respiration and ventilatory pattern variability. These teams, with additional collaborators, have recently formed a multi-institutional, interdisciplinary consortium, whose goal is to delineate the fundamental interrelationship between the inflammatory response and physiologic variability. Multi-scale mathematical modeling and complementary physiological experiments will provide insight into autonomic neural mechanisms that may modulate the inflammatory response to sepsis and simultaneously reduce heart rate and ventilatory pattern variabilities associated with sepsis. This approach integrates computational models of neural control of breathing and cardio-respiratory coupling with models that combine inflammation, cardiovascular function, and heart rate variability. The resulting integrated model will provide mechanistic explanations for the phenomena of respiratory sinus-arrhythmia and cardio-ventilatory coupling observed under normal conditions, and the loss of these properties during sepsis. This approach holds the potential of modeling cross-scale physiological interactions to improve both basic knowledge and clinical management of acute inflammatory diseases such as sepsis and trauma.

  2. Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis

    PubMed Central

    Zubo, Yan O.; Blakley, Ivory Clabaugh; Yamburenko, Maria V.; Worthen, Jennifer M.; Street, Ian H.; Franco-Zorrilla, José M.; Zhang, Wenjing; Raines, Tracy; Kieber, Joseph J.; Loraine, Ann E.

    2017-01-01

    The plant hormone cytokinin affects a diverse array of growth and development processes and responses to the environment. How a signaling molecule mediates such a diverse array of outputs and how these response pathways are integrated with other inputs remain fundamental questions in plant biology. To this end, we characterized the transcriptional network initiated by the type-B ARABIDOPSIS RESPONSE REGULATORs (ARRs) that mediate the cytokinin primary response, making use of chromatin immunoprecipitation sequencing (ChIP-seq), protein-binding microarrays, and transcriptomic approaches. By ectopic overexpression of ARR10, Arabidopsis lines hypersensitive to cytokinin were generated and used to clarify the role of cytokinin in regulation of various physiological responses. ChIP-seq was used to identify the cytokinin-dependent targets for ARR10, thereby defining a crucial link between the cytokinin primary-response pathway and the transcriptional changes that mediate physiological responses to this phytohormone. Binding of ARR10 was induced by cytokinin with binding sites enriched toward the transcriptional start sites for both induced and repressed genes. Three type-B ARR DNA-binding motifs, determined by use of protein-binding microarrays, were enriched at ARR10 binding sites, confirming their physiological relevance. WUSCHEL was identified as a direct target of ARR10, with its cytokinin-enhanced expression resulting in enhanced shooting in tissue culture. Results from our analyses shed light on the physiological role of the type-B ARRs in regulating the cytokinin response, mechanism of type-B ARR activation, and basis by which cytokinin regulates diverse aspects of growth and development as well as responses to biotic and abiotic factors. PMID:28673986

  3. An integrated physiology model to study regional lung damage effects and the physiologic response

    PubMed Central

    2014-01-01

    Background This work expands upon a previously developed exercise dynamic physiology model (DPM) with the addition of an anatomic pulmonary system in order to quantify the impact of lung damage on oxygen transport and physical performance decrement. Methods A pulmonary model is derived with an anatomic structure based on morphometric measurements, accounting for heterogeneous ventilation and perfusion observed experimentally. The model is incorporated into an existing exercise physiology model; the combined system is validated using human exercise data. Pulmonary damage from blast, blunt trauma, and chemical injury is quantified in the model based on lung fluid infiltration (edema) which reduces oxygen delivery to the blood. The pulmonary damage component is derived and calibrated based on published animal experiments; scaling laws are used to predict the human response to lung injury in terms of physical performance decrement. Results The augmented dynamic physiology model (DPM) accurately predicted the human response to hypoxia, altitude, and exercise observed experimentally. The pulmonary damage parameters (shunt and diffusing capacity reduction) were fit to experimental animal data obtained in blast, blunt trauma, and chemical damage studies which link lung damage to lung weight change; the model is able to predict the reduced oxygen delivery in damage conditions. The model accurately estimates physical performance reduction with pulmonary damage. Conclusions We have developed a physiologically-based mathematical model to predict performance decrement endpoints in the presence of thoracic damage; simulations can be extended to estimate human performance and escape in extreme situations. PMID:25044032

  4. Neurons with two sites of synaptic integration learn invariant representations.

    PubMed

    Körding, K P; König, P

    2001-12-01

    Neurons in mammalian cerebral cortex combine specific responses with respect to some stimulus features with invariant responses to other stimulus features. For example, in primary visual cortex, complex cells code for orientation of a contour but ignore its position to a certain degree. In higher areas, such as the inferotemporal cortex, translation-invariant, rotation-invariant, and even view point-invariant responses can be observed. Such properties are of obvious interest to artificial systems performing tasks like pattern recognition. It remains to be resolved how such response properties develop in biological systems. Here we present an unsupervised learning rule that addresses this problem. It is based on a neuron model with two sites of synaptic integration, allowing qualitatively different effects of input to basal and apical dendritic trees, respectively. Without supervision, the system learns to extract invariance properties using temporal or spatial continuity of stimuli. Furthermore, top-down information can be smoothly integrated in the same framework. Thus, this model lends a physiological implementation to approaches of unsupervised learning of invariant-response properties.

  5. The development of a fully-integrated immune response model (FIRM) simulator of the immune response through integration of multiple subset models

    PubMed Central

    2013-01-01

    Background The complexity and multiscale nature of the mammalian immune response provides an excellent test bed for the potential of mathematical modeling and simulation to facilitate mechanistic understanding. Historically, mathematical models of the immune response focused on subsets of the immune system and/or specific aspects of the response. Mathematical models have been developed for the humoral side of the immune response, or for the cellular side, or for cytokine kinetics, but rarely have they been proposed to encompass the overall system complexity. We propose here a framework for integration of subset models, based on a system biology approach. Results A dynamic simulator, the Fully-integrated Immune Response Model (FIRM), was built in a stepwise fashion by integrating published subset models and adding novel features. The approach used to build the model includes the formulation of the network of interacting species and the subsequent introduction of rate laws to describe each biological process. The resulting model represents a multi-organ structure, comprised of the target organ where the immune response takes place, circulating blood, lymphoid T, and lymphoid B tissue. The cell types accounted for include macrophages, a few T-cell lineages (cytotoxic, regulatory, helper 1, and helper 2), and B-cell activation to plasma cells. Four different cytokines were accounted for: IFN-γ, IL-4, IL-10 and IL-12. In addition, generic inflammatory signals are used to represent the kinetics of IL-1, IL-2, and TGF-β. Cell recruitment, differentiation, replication, apoptosis and migration are described as appropriate for the different cell types. The model is a hybrid structure containing information from several mammalian species. The structure of the network was built to be physiologically and biochemically consistent. Rate laws for all the cellular fate processes, growth factor production rates and half-lives, together with antibody production rates and half-lives, are provided. The results demonstrate how this framework can be used to integrate mathematical models of the immune response from several published sources and describe qualitative predictions of global immune system response arising from the integrated, hybrid model. In addition, we show how the model can be expanded to include novel biological findings. Case studies were carried out to simulate TB infection, tumor rejection, response to a blood borne pathogen and the consequences of accounting for regulatory T-cells. Conclusions The final result of this work is a postulated and increasingly comprehensive representation of the mammalian immune system, based on physiological knowledge and susceptible to further experimental testing and validation. We believe that the integrated nature of FIRM has the potential to simulate a range of responses under a variety of conditions, from modeling of immune responses after tuberculosis (TB) infection to tumor formation in tissues. FIRM also has the flexibility to be expanded to include both complex and novel immunological response features as our knowledge of the immune system advances. PMID:24074340

  6. Functional Groups Based on Leaf Physiology: Are they Spatially and Temporally Robust?

    NASA Technical Reports Server (NTRS)

    Foster, Tammy E.; Brooks, J. Renee; Quincy, Charles (Technical Monitor)

    2002-01-01

    The functional grouping hypothesis, which suggests that complexity in function can be simplified by grouping species with similar responses, was tested in the Florida scrub habitat. Functional groups were identified based on how species in fire maintained FL scrub function in terms of carbon, water and nitrogen dynamics. The suite of physiologic parameters measured to determine function included both instantaneous gas exchange measurements obtained from photosynthetic light response curves and integrated measures of function. Using cluster analysis, five distinct physiologically-based functional groups were identified. Using non-parametric multivariate analyses, it was determined that these five groupings were not altered by plot differences or by the three different management regimes; prescribed burn, mechanically treated and burn, and fire-suppressed. The physiological groupings also remained robust between the two years 1999 and 2000. In order for these groupings to be of use for scaling ecosystem processes, there needs to be an easy-to-measure morphological indicator of function. Life form classifications were able to depict the physiological groupings more adequately than either specific leaf area or leaf thickness. THe ability of life forms to depict the groupings was improved by separating the parasitic Ximenia americana from the shrub category.

  7. Physiological and Transcriptional Responses of Different Industrial Microbes at Near-Zero Specific Growth Rates.

    PubMed

    Ercan, Onur; Bisschops, Markus M M; Overkamp, Wout; Jørgensen, Thomas R; Ram, Arthur F; Smid, Eddy J; Pronk, Jack T; Kuipers, Oscar P; Daran-Lapujade, Pascale; Kleerebezem, Michiel

    2015-09-01

    The current knowledge of the physiology and gene expression of industrially relevant microorganisms is largely based on laboratory studies under conditions of rapid growth and high metabolic activity. However, in natural ecosystems and industrial processes, microbes frequently encounter severe calorie restriction. As a consequence, microbial growth rates in such settings can be extremely slow and even approach zero. Furthermore, uncoupling microbial growth from product formation, while cellular integrity and activity are maintained, offers perspectives that are economically highly interesting. Retentostat cultures have been employed to investigate microbial physiology at (near-)zero growth rates. This minireview compares information from recent physiological and gene expression studies on retentostat cultures of the industrially relevant microorganisms Lactobacillus plantarum, Lactococcus lactis, Bacillus subtilis, Saccharomyces cerevisiae, and Aspergillus niger. Shared responses of these organisms to (near-)zero growth rates include increased stress tolerance and a downregulation of genes involved in protein synthesis. Other adaptations, such as changes in morphology and (secondary) metabolite production, were species specific. This comparison underlines the industrial and scientific significance of further research on microbial (near-)zero growth physiology. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. A systems approach to physiologic evolution: From micelles to consciousness.

    PubMed

    Torday, John S; Miller, William B

    2018-01-01

    A systems approach to evolutionary biology offers the promise of an improved understanding of the fundamental principles of life through the effective integration of many biologic disciplines. It is presented that any critical integrative approach to evolutionary development involves a paradigmatic shift in perspective, more than just the engagement of a large number of disciplines. Critical to this differing viewpoint is the recognition that all biological processes originate from the unicellular state and remain permanently anchored to that phase throughout evolutionary development despite their macroscopic appearances. Multicellular eukaryotic development can, therefore, be viewed as a series of connected responses to epiphenomena that proceeds from that base in continuous iterative maintenance of collective cellular homeostatic equipoise juxtaposed against an ever-changing and challenging environment. By following this trajectory of multicellular eukaryotic evolution from within unicellular First Principles of Physiology forward, the mechanistic nature of complex physiology can be identified through a step-wise analysis of a continuous arc of vertebrate evolution based upon serial exaptations. © 2017 Wiley Periodicals, Inc.

  9. Virtual reality adaptive stimulation of limbic networks in the mental readiness training.

    PubMed

    Cosić, Kresimir; Popović, Sinisa; Kostović, Ivica; Judas, Milos

    2010-01-01

    A significant proportion of severe psychological problems in recent large-scale peacekeeping operations underscores the importance of effective methods for strengthening the stress resilience. Virtual reality (VR) adaptive stimulation, based on the estimation of the participant's emotional state from physiological signals, may enhance the mental readiness training (MRT). Understanding neurobiological mechanisms by which the MRT based on VR adaptive stimulation can affect the resilience to stress is important for practical application in the stress resilience management. After the delivery of a traumatic audio-visual stimulus in the VR, the cascade of events occurs in the brain, which evokes various physiological manifestations. In addition to the "limbic" emotional and visceral brain circuitry, other large-scale sensory, cognitive, and memory brain networks participate with less known impact in this physiological response. The MRT based on VR adaptive stimulation may strengthen the stress resilience through targeted brain-body interactions. Integrated interdisciplinary efforts, which would integrate the brain imaging and the proposed approach, may contribute to clarifying the neurobiological foundation of the resilience to stress.

  10. Computational analysis of integrated biosensing and shear flow in a microfluidic vascular model

    NASA Astrophysics Data System (ADS)

    Wong, Jeremy F.; Young, Edmond W. K.; Simmons, Craig A.

    2017-11-01

    Fluid flow and flow-induced shear stress are critical components of the vascular microenvironment commonly studied using microfluidic cell culture models. Microfluidic vascular models mimicking the physiological microenvironment also offer great potential for incorporating on-chip biomolecular detection. In spite of this potential, however, there are few examples of such functionality. Detection of biomolecules released by cells under flow-induced shear stress is a significant challenge due to severe sample dilution caused by the fluid flow used to generate the shear stress, frequently to the extent where the analyte is no longer detectable. In this work, we developed a computational model of a vascular microfluidic cell culture model that integrates physiological shear flow and on-chip monitoring of cell-secreted factors. Applicable to multilayer device configurations, the computational model was applied to a bilayer configuration, which has been used in numerous cell culture applications including vascular models. Guidelines were established that allow cells to be subjected to a wide range of physiological shear stress while ensuring optimal rapid transport of analyte to the biosensor surface and minimized biosensor response times. These guidelines therefore enable the development of microfluidic vascular models that integrate cell-secreted factor detection while addressing flow constraints imposed by physiological shear stress. Ultimately, this work will result in the addition of valuable functionality to microfluidic cell culture models that further fulfill their potential as labs-on-chips.

  11. CO2 and temperature effects on morphological and physiological traits affecting risk of drought-induced mortality.

    PubMed

    Duan, Honglang; Chaszar, Brian; Lewis, James D; Smith, Renee A; Huxman, Travis E; Tissue, David T

    2018-04-26

    Despite a wealth of eco-physiological assessments of plant response to extreme drought, few studies have addressed the interactive effects of global change factors on traits driving mortality. To understand the interaction between hydraulic and carbon metabolic traits influencing tree mortality, which may be independently influenced by atmospheric [CO2] and temperature, we grew Eucalyptus sideroxylon A. Cunn. ex Woolls from seed in a full-factorial [CO2] (280, 400 and 640 μmol mol-1, Cp, Ca and Ce, respectively) and temperature (ambient and ambient +4 °C, Ta and Te, respectively) experiment. Prior to drought, growth across treatment combinations resulted in significant variation in physiological and morphological traits, including photosynthesis (Asat), respiration (Rd), stomatal conductance, carbohydrate storage, biomass and leaf area (LA). Ce increased Asat, LA and leaf carbohydrate concentration compared with Ca, while Cp generated the opposite response; Te reduced Rd. However, upon imposition of drought, Te hastened mortality (9 days sooner compared with Ta), while Ce significantly exacerbated drought stress when combined with Te. Across treatments, earlier time-to-mortality was mainly associated with lower (more negative) leaf water potential (Ψl) during the initial drought phase, along with higher water loss across the first 3 weeks of water limitation. Among many variables, Ψl was more important than carbon status in predicting time-to-mortality across treatments, yet leaf starch was associated with residual variation within treatments. These results highlight the need to carefully consider the integration, interaction and hierarchy of traits contributing to mortality, along with their responses to environmental drivers. Both morphological traits, which influence soil resource extraction, and physiological traits, which affect water-for-carbon exchange to the atmosphere, must be considered to adequately predict plant response to drought. Researchers have struggled with assessing the relative importance of hydraulic and carbon metabolic traits in determining mortality, yet an integrated trait, time-dependent framework provides considerable insight into the risk of death from drought for trees.

  12. Future Targets for Female Sexual Dysfunction.

    PubMed

    Farmer, Melissa; Yoon, Hana; Goldstein, Irwin

    2016-08-01

    Female sexual function reflects a dynamic interplay of central and peripheral nervous, vascular, and endocrine systems. The primary challenge in the development of novel treatments for female sexual dysfunction is the identification and targeted modulation of excitatory sexual circuits using pharmacologic treatments that facilitate the synthesis, release, and/or receptor binding of neurochemicals, peptides, and hormones that promote female sexual function. To develop an evidence-based state-of-the-art consensus report that critically integrates current knowledge of the therapeutic potential for known molecular and cellular targets to facilitate the physiologic processes underlying female sexual function. State-of-the-art review representing the opinions of international experts developed in a consensus process during a 1-year period. Expert opinion was established by grading the evidence-based medical literature, intensive internal committee discussion, public presentation, and debate. Scientific investigation is urgently needed to expand knowledge and foster development of future treatments that maintain genital tissue integrity, enhance genital physiologic responsiveness, and optimize positive subjective appraisal of internal and external sexual cues. This article critically condenses the current knowledge of therapeutic manipulation of molecular and cellular targets within biological systems responsible for female sexual physiologic function. Future treatment targets include pharmacologic modulation of emotional learning circuits, restoration of normal tactile sensation, growth factor therapy, gene therapy, stem cell-based therapies, and regenerative medicine. Concurrent use of centrally and peripherally acting therapies could optimize treatment response. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  13. A Microbial Perspective on the Grand Challenges in Comparative Animal Physiology

    PubMed Central

    2018-01-01

    ABSTRACT Interactions with microbial communities can have profound influences on animal physiology, thereby impacting animal performance and fitness. Therefore, it is important to understand the diversity and nature of host-microbe interactions in various animal groups (invertebrates, fish, amphibians, reptiles, birds, and mammals). In this perspective, I discuss how the field of host-microbe interactions can be used to address topics that have been identified as grand challenges in comparative animal physiology: (i) horizontal integration of physiological processes across organisms, (ii) vertical integration of physiological processes across organizational levels within organisms, and (iii) temporal integration of physiological processes during evolutionary change. Addressing these challenges will require the use of a variety of animal models and the development of systems approaches that can integrate large, multiomic data sets from both microbial communities and animal hosts. Integrating host-microbe interactions into the established field of comparative physiology represents an exciting frontier for both fields. PMID:29556549

  14. Integration of non-invasive biometrics with sensory analysis techniques to assess acceptability of beer by consumers.

    PubMed

    Gonzalez Viejo, Claudia; Fuentes, Sigfredo; Howell, Kate; Torrico, Damir D; Dunshea, Frank R

    2018-03-05

    Traditional sensory tests rely on conscious and self-reported responses from participants. The integration of non-invasive biometric techniques, such as heart rate, body temperature, brainwaves and facial expressions can gather more information from consumers while tasting a product. The main objectives of this study were i) to assess significant differences between beers for all conscious and unconscious responses, ii) to find significant correlations among the different variables from the conscious and unconscious responses and iii) to develop a model to classify beers according to liking using only the unconscious responses. For this study, an integrated camera system with video and infrared thermal imagery (IRTI), coupled with a novel computer application was used. Videos and IRTI were automatically obtained while tasting nine beers to extract biometrics (heart rate, temperature and facial expressions) using computer vision analysis. Additionally, an EEG mobile headset was used to obtain brainwave signals during beer consumption. Consumers assessed foam, color, aroma, mouthfeel, taste, flavor and overall acceptability of beers using a 9-point hedonic scale with results showing a higher acceptability for beers with higher foamability and lower bitterness. i) There were non-significant differences among beers for the emotional and physiological responses, however, significant differences were found for the cognitive and self-reported responses. ii) Results from principal component analysis explained 65% of total data variability and, along with the covariance matrix (p < 0.05), showed that there are correlations between the sensory responses of participants and the biometric data obtained. There was a negative correlation between body temperature and liking of foam height and stability, and a positive correlation between theta signals and bitterness. iii) Artificial neural networks were used to develop three models with high accuracy to classify beers according to level of liking (low and high) of three sensory descriptors: carbonation mouthfeel (82%), flavor (82%) and overall liking (81%). The integration of both sensory and biometric responses for consumer acceptance tests showed to be a reliable tool to be applied to beer tasting to obtain more information from consumers physiology, behavior and cognitive responses. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Leaves to landscapes: using high performance computing to assess patch-scale forest response to regional temperature and trace gas gradients

    Treesearch

    George E. Host; Harlan W. Stech; Kathryn E. Lenz; Kyle Roskoski; Richard Mather; Michael Donahue

    2007-01-01

    ECOPHYS is one of the early FSTM's that integrated plant physiological and tree architectural models to assess the relative importance of genetic traits in tree growth, and explore the growth response to interacting environmental stresses (Host et al 1999, Isebrands et al 1999, Martin et al 2001). This paper will describe extensions of the ECOPHYS individual tree...

  16. Cell–cell signaling drives the evolution of complex traits: introduction—lung evo-devo

    PubMed Central

    Torday, John S.; Rehan, V. K.

    2009-01-01

    Physiology integrates biology with the environment through cell–cell interactions at multiple levels. The evolution of the respiratory system has been “deconvoluted” (Torday and Rehan in Am J Respir Cell Mol Biol 31:8–12, 2004) through Gene Regulatory Networks (GRNs) applied to cell–cell communication for all aspects of lung biology development, homeostasis, regeneration, and aging. Using this approach, we have predicted the phenotypic consequences of failed signaling for lung development, homeostasis, and regeneration based on evolutionary principles. This cell–cell communication model predicts other aspects of vertebrate physiology as adaptational responses. For example, the oxygen-induced differentiation of alveolar myocytes into alveolar adipocytes was critical for the evolution of the lung in land dwelling animals adapting to fluctuating Phanarezoic oxygen levels over the past 500 million years. Adipocytes prevent lung injury due to oxygen radicals and facilitate the rise of endothermy. In addition, they produce the class I cytokine leptin, which augments pulmonary surfactant activity and alveolar surface area, increasing selection pressure for both respiratory oxygenation and metabolic demand initially constrained by high-systemic vascular pressure, but subsequently compensated by the evolution of the adrenomedullary beta-adrenergic receptor mechanism. Conserted positive selection for the lung and adrenals created further selection pressure for the heart, which becomes progressively more complex phylogenetically in tandem with the lung. Developmentally, increasing heart complexity and size impinges precociously on the gut mesoderm to induce the liver. That evolutionary-developmental interaction is significant because the liver provides regulated sources of glucose and glycogen to the evolving physiologic system, which is necessary for the evolution of the neocortex. Evolution of neocortical control furthers integration of physiologic systems. Such an evolutionary vertical integration of cell-to-tissue-to-organ-to-physiology of intrinsic cell–cell signaling and extrinsic factors is the reverse of the “top-down” conventional way in which physiologic systems are usually regarded. This novel mechanistic approach, incorporating a “middle-out” cell–cell signaling component, will lead to a readily available algorithm for integrating genes and phenotypes. This symposium surveyed the phylogenetic origins of such vertically integrated mechanisms for the evolution of cell–cell communication as the basis for complex physiologic traits, from sponges to man. PMID:20607136

  17. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis.

    PubMed

    Gao, Wei; Emaminejad, Sam; Nyein, Hnin Yin Yin; Challa, Samyuktha; Chen, Kevin; Peck, Austin; Fahad, Hossain M; Ota, Hiroki; Shiraki, Hiroshi; Kiriya, Daisuke; Lien, Der-Hsien; Brooks, George A; Davis, Ronald W; Javey, Ali

    2016-01-28

    Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual's state of health. Sampling human sweat, which is rich in physiological information, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications.

  18. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Emaminejad, Sam; Nyein, Hnin Yin Yin; Challa, Samyuktha; Chen, Kevin; Peck, Austin; Fahad, Hossain M.; Ota, Hiroki; Shiraki, Hiroshi; Kiriya, Daisuke; Lien, Der-Hsien; Brooks, George A.; Davis, Ronald W.; Javey, Ali

    2016-01-01

    Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual’s state of health. Sampling human sweat, which is rich in physiological information, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications.

  19. Considerations on pharmacodynamics and pharmacokinetics: can everything be explained by the extent of drug binding to its receptor?

    PubMed

    Castañeda-Hernández, G; Granados-Soto, V

    2000-03-01

    It is frequently assumed that pharmacological responses depend solely on the extent of drug binding to its receptor according to the occupational theory. It is therefore presumed that the intensity of the effect is determined by drug concentration at its receptor site, yielding a unique concentration-effect relationship. However, when dependence, abstinence, and tolerance phenomena occur, as well as for pharmacological responses in vivo that are modulated by homeostatic mechanisms, the rate of drug input shifts the concentration-effect relationship. Hence, such responses cannot be explained on the sole basis of the extent of drug binding to its receptor. Information on the cellular and molecular processes involved in the generation of abstinence, dependence, and tolerance will undoubtedly result in the development of pharmacodynamic models allowing a satisfactory explanation of drug effects modulated by these phenomena. Notwithstanding, integrative physiology concepts are required to develop pharmacokinetic-pharmacodynamic models allowing the description of drug effects in an intact organism. It is therefore important to emphasize that integrative physiology cannot be neglected in pharmacology teaching and research, but should be considered as an equally valuable tool as molecular biology and other biomedical disciplines for the understanding of pharmacological effects.

  20. Child Development in the Context of Adversity: Experiential Canalization of Brain and Behavior

    ERIC Educational Resources Information Center

    Blair, Clancy; Raver, C. Cybele

    2012-01-01

    The authors examine the effects of poverty-related adversity on child development, drawing upon psychobiological principles of experiential canalization and the biological embedding of experience. They integrate findings from research on stress physiology, neurocognitive function, and self-regulation to consider adaptive processes in response to…

  1. Regulation of Iron Acquisition Responses in Plant Roots by a Transcription Factor

    ERIC Educational Resources Information Center

    Bauer, Petra

    2016-01-01

    The presented research hypothesis-driven laboratory exercise teaches advanced undergraduate students state of the art methods and thinking in an integrated molecular physiology context. Students understand the theoretical background of iron acquisition in the model plant "Arabidopsis thaliana." They design a flowchart summarizing the key…

  2. Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway

    PubMed Central

    Levin, David E.

    2011-01-01

    The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to the Rho1 GTPase, which mobilizes a physiologic response through a variety of effectors. Activation of CWI signaling regulates the production of various carbohydrate polymers of the cell wall, as well as their polarized delivery to the site of cell wall remodeling. This review article centers on CWI signaling in Saccharomyces cerevisiae through the cell cycle and in response to cell wall stress. The interface of this signaling pathway with other pathways that contribute to the maintenance of cell wall integrity is also discussed. PMID:22174182

  3. Environmental Perturbations, Behavioral Change, and Population Response in a Long-Term Northern Elephant Seal Study

    DTIC Science & Technology

    2013-09-30

    and Physiology a-Molecular & Integrative Physiology 161:388-394. Goldstein, T ., I . Mena, S. J. Anthony, R. Medina, P. W. Robinson, D. J. Greig, D. P...behaviour and foraging success in the northern elephant seal. Functional Ecology 27:1055-1063. Lyons, E. T ., T . A. Kuzmina , T . R. Spraker, N. Jaggi...Klanjšček, T ., Lusseau, D., Kraus, S., McMahon, C.R., Robinson, P. W., Schick, R., Schwarz, L.K., Simmons, S. E., Thomas, L., Tyack, P. and Harwood

  4. DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds

    PubMed Central

    Waterworth, Wanda M.; Footitt, Steven; Bray, Clifford M.; Finch-Savage, William E.; West, Christopher E.

    2016-01-01

    Genome integrity is crucial for cellular survival and the faithful transmission of genetic information. The eukaryotic cellular response to DNA damage is orchestrated by the DNA damage checkpoint kinases ATAXIA TELANGIECTASIA MUTATED (ATM) and ATM AND RAD3-RELATED (ATR). Here we identify important physiological roles for these sensor kinases in control of seed germination. We demonstrate that double-strand breaks (DSBs) are rate-limiting for germination. We identify that desiccation tolerant seeds exhibit a striking transcriptional DSB damage response during germination, indicative of high levels of genotoxic stress, which is induced following maturation drying and quiescence. Mutant atr and atm seeds are highly resistant to aging, establishing ATM and ATR as determinants of seed viability. In response to aging, ATM delays germination, whereas atm mutant seeds germinate with extensive chromosomal abnormalities. This identifies ATM as a major factor that controls germination in aged seeds, integrating progression through germination with surveillance of genome integrity. Mechanistically, ATM functions through control of DNA replication in imbibing seeds. ATM signaling is mediated by transcriptional control of the cell cycle inhibitor SIAMESE-RELATED 5, an essential factor required for the aging-induced delay to germination. In the soil seed bank, seeds exhibit increased transcript levels of ATM and ATR, with changes in dormancy and germination potential modulated by environmental signals, including temperature and soil moisture. Collectively, our findings reveal physiological functions for these sensor kinases in linking genome integrity to germination, thereby influencing seed quality, crucial for plant survival in the natural environment and sustainable crop production. PMID:27503884

  5. DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds.

    PubMed

    Waterworth, Wanda M; Footitt, Steven; Bray, Clifford M; Finch-Savage, William E; West, Christopher E

    2016-08-23

    Genome integrity is crucial for cellular survival and the faithful transmission of genetic information. The eukaryotic cellular response to DNA damage is orchestrated by the DNA damage checkpoint kinases ATAXIA TELANGIECTASIA MUTATED (ATM) and ATM AND RAD3-RELATED (ATR). Here we identify important physiological roles for these sensor kinases in control of seed germination. We demonstrate that double-strand breaks (DSBs) are rate-limiting for germination. We identify that desiccation tolerant seeds exhibit a striking transcriptional DSB damage response during germination, indicative of high levels of genotoxic stress, which is induced following maturation drying and quiescence. Mutant atr and atm seeds are highly resistant to aging, establishing ATM and ATR as determinants of seed viability. In response to aging, ATM delays germination, whereas atm mutant seeds germinate with extensive chromosomal abnormalities. This identifies ATM as a major factor that controls germination in aged seeds, integrating progression through germination with surveillance of genome integrity. Mechanistically, ATM functions through control of DNA replication in imbibing seeds. ATM signaling is mediated by transcriptional control of the cell cycle inhibitor SIAMESE-RELATED 5, an essential factor required for the aging-induced delay to germination. In the soil seed bank, seeds exhibit increased transcript levels of ATM and ATR, with changes in dormancy and germination potential modulated by environmental signals, including temperature and soil moisture. Collectively, our findings reveal physiological functions for these sensor kinases in linking genome integrity to germination, thereby influencing seed quality, crucial for plant survival in the natural environment and sustainable crop production.

  6. Mathematical Modeling of Physical and Cognitive Performance Decrement from Mechanical and Inhalation Insults

    DTIC Science & Technology

    2009-12-01

    INHALATION TOXICOLOGY RESEARCH 2.1.1 Development of a Fatigue Model & Blood Oxygen-based Parameter Corre- lates Liu et al. (2002) introduced a muscle ...and Stuhmiller, J.H. “Generalization of a ‘phenomenological’ muscle fatigue model.” Technical report J0287-10-382 (in preparation). Product 3. Sih...physiologic response to exercise and a model of muscle fatigue which have been developed and validated separately are integrated. Integration occurs through

  7. Trampling, defoliation and physiological integration affect growth, morphological and mechanical properties of a root-suckering clonal tree.

    PubMed

    Xu, Liang; Yu, Fei-Hai; van Drunen, Elles; Schieving, Feike; Dong, Ming; Anten, Niels P R

    2012-04-01

    Grazing is a complex process involving the simultaneous occurrence of both trampling and defoliation. Clonal plants are a common feature of heavily grazed ecosystems where large herbivores inflict the simultaneous pressures of trampling and defoliation on the vegetation. We test the hypothesis that physiological integration (resource sharing between interconnected ramets) may help plants to deal with the interactive effects of trampling and defoliation. In a field study, small and large ramets of the root-suckering clonal tree Populus simonii were subjected to two levels of trampling and defoliation, while connected or disconnected to other ramets. Plant responses were quantified via survival, growth, morphological and stem mechanical traits. Disconnection and trampling increased mortality, especially in small ramets. Trampling increased stem length, basal diameter, fibrous root mass, stem stiffness and resistance to deflection in connected ramets, but decreased them in disconnected ones. Trampling decreased vertical height more in disconnected than in connected ramets, and reduced stem mass in disconnected ramets but not in connected ramets. Defoliation reduced basal diameter, leaf mass, stem mass and leaf area ratio, but did not interact with trampling or disconnection. Although clonal integration did not influence defoliation response, it did alleviate the effects of trampling. We suggest that by facilitating resource transport between ramets, clonal integration compensates for trampling-induced damage to fine roots.

  8. Estrogen receptors in neuropeptide Y neurons: at the crossroads of feeding and reproduction.

    PubMed

    Acosta-Martinez, Maricedes; Horton, Teresa; Levine, Jon E

    2007-03-01

    Hypothalamic neuropeptide Y (NPY) neurons function as physiological integrators in at least two different neuroendocrine systems - one governing feeding and the other controlling reproduction. Estrogen might modulate both systems by regulating NPY gene expression; it might reduce food intake by suppressing NPY expression, and evoke reproductive hormone surges by stimulating it. How can estrogen exert opposing effects in an ostensibly homogeneous NPY neuronal population? Recent work with immortalized NPY-producing cells suggests that the ratio of estrogen receptor alpha:estrogen receptor beta can determine the direction and temporal pattern of transcriptional responses to estrogen. Because this ratio might itself be physiologically regulated, these findings provide one explanation for multiple neuropeptidergic responses to a single steroid hormone.

  9. Successful Implantation of Bioengineered, Intrinsically Innervated, Human Internal Anal Sphincter

    PubMed Central

    Raghavan, Shreya; Gilmont, Robert R.; Miyasaka, Eiichi A.; Somara, Sita; Srinivasan, Shanthi; Teitelbaum, Daniel H; Bitar, Khalil N.

    2011-01-01

    Background & Aims To restore fecal continence, the weakened pressure of the internal anal sphincter (IAS) must be increased. We bioengineered intrinsically innervated human IAS, to emulate sphincteric physiology, in vitro. Methods We co-cultured human IAS circular smooth muscle with immortomouse fetal enteric neurons. We investigated the ability of bioengineered innervated human IAS, implanted in RAG1−/− mice, to undergo neovascularization and preserve the physiology of the constituent myogenic and neuronal components. Results The implanted IAS was neovascularized in vivo; numerous blood vessels were observed with no signs of inflammation or infection. Real-time force acquisition from implanted and pre-implant IAS showed distinct characteristics of IAS physiology. Features included the development of spontaneous myogenic basal tone; relaxation of 100% of basal tone in response to inhibitory neurotransmitter vasoactive intestinal peptide (VIP) and direct electrical field stimulation of the intrinsic innervation; inhibition of nitrergic and VIPergic EFS-induced relaxation (by antagonizing nitric oxide synthesis or receptor interaction); contraction in response to cholinergic stimulation with acetylcholine; and intact electromechanical coupling (evidenced by direct response to potassium chloride). Implanted, intrinsically innervated bioengineered human IAS tissue preserved the integrity and physiology of myogenic and neuronal components. Conclusion Intrinsically innervated human IAS bioengineered tissue can be successfully implanted in mice. This approach might be used to treat patients with fecal incontinence. PMID:21463628

  10. Integrated regulation of PIKK-mediated stress responses by AAA+ proteins RUVBL1 and RUVBL2

    PubMed Central

    Izumi, Natsuko; Yamashita, Akio; Ohno, Shigeo

    2012-01-01

    Proteins of the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family are activated by various cellular stresses, including DNA damage, premature termination codon and nutritional status, and induce appropriate cellular responses. The importance of PIKK functions in the maintenance of genome integrity, accurate gene expression and the proper control of cell growth/proliferation is established. Recently, ATPase associated diverse cellular activities (AAA+) proteins RUVBL1 and RUVBL2 (RUVBL1/2) have been shown to be common regulators of PIKKs. The RUVBL1/2 complex regulates PIKK-mediated stress responses through physical interactions with PIKKs and by controlling PIKK mRNA levels. In this review, the functions of PIKKs in stress responses are outlined and the physiological significance of the integrated regulation of PIKKs by the RUVBL1/2 complex is presented. We also discuss a putative “PIKK regulatory chaperone complex” including other PIKK regulators, Hsp90 and the Tel2 complex. PMID:22540023

  11. Stunning fish with CO2 or electricity: contradictory results on behavioural and physiological stress responses.

    PubMed

    Gräns, A; Niklasson, L; Sandblom, E; Sundell, K; Algers, B; Berg, C; Lundh, T; Axelsson, M; Sundh, H; Kiessling, A

    2016-02-01

    Studies that address fish welfare before slaughter have concluded that many of the traditional systems used to stun fish including CO2 narcosis are unacceptable as they cause avoidable stress before death. One system recommended as a better alternative is electrical stunning, however, the welfare aspects of this method are not yet fully understood. To assess welfare in aquaculture both behavioural and physiological measurements have been used, but few studies have examined the relationship between these variables. In an on-site study aversive behaviours and several physiological stress indicators, including plasma levels of cortisol and ions as well as blood physiological variables, were compared in Arctic char (Salvelinus alpinus) stunned with CO2 or electricity. Exposure to water saturated with CO2 triggered aversive struggling and escape responses for several minutes before immobilization, whereas in fish exposed to an electric current immobilization was close to instant. On average, it took 5 min for the fish to recover from electrical stunning, whereas fish stunned with CO2 did not recover. Despite this, the electrically stunned fish had more than double the plasma levels of cortisol compared with fish stunned with CO2. This result is surprising considering that the behavioural reactions were much more pronounced following CO2 exposure. These contradictory results are discussed with regard to animal welfare and stress physiological responses. The present results emphasise the importance of using an integrative and interdisciplinary approach and to include both behavioural and physiological stress indicators in order to make accurate welfare assessments of fish in aquaculture.

  12. An Integrative Model of Physiological Traits Can be Used to Predict Obstructive Sleep Apnea and Response to Non Positive Airway Pressure Therapy.

    PubMed

    Owens, Robert L; Edwards, Bradley A; Eckert, Danny J; Jordan, Amy S; Sands, Scott A; Malhotra, Atul; White, David P; Loring, Stephen H; Butler, James P; Wellman, Andrew

    2015-06-01

    Both anatomical and nonanatomical traits are important in obstructive sleep apnea (OSA) pathogenesis. We have previously described a model combining these traits, but have not determined its diagnostic accuracy to predict OSA. A valid model, and knowledge of the published effect sizes of trait manipulation, would also allow us to predict the number of patients with OSA who might be effectively treated without using positive airway pressure (PAP). Fifty-seven subjects with and without OSA underwent standard clinical and research sleep studies to measure OSA severity and the physiological traits important for OSA pathogenesis, respectively. The traits were incorporated into a physiological model to predict OSA. The model validity was determined by comparing the model prediction of OSA to the clinical diagnosis of OSA. The effect of various trait manipulations was then simulated to predict the proportion of patients treated by each intervention. The model had good sensitivity (80%) and specificity (100%) for predicting OSA. A single intervention on one trait would be predicted to treat OSA in approximately one quarter of all patients. Combination therapy with two interventions was predicted to treat OSA in ∼50% of patients. An integrative model of physiological traits can be used to predict population-wide and individual responses to non-PAP therapy. Many patients with OSA would be expected to be treated based on known trait manipulations, making a strong case for the importance of non-anatomical traits in OSA pathogenesis and the effectiveness of non-PAP therapies. © 2015 Associated Professional Sleep Societies, LLC.

  13. The interaction of psychological and physiological homeostatic drives and role of general control principles in the regulation of physiological systems, exercise and the fatigue process - The Integrative Governor theory.

    PubMed

    St Clair Gibson, A; Swart, J; Tucker, R

    2018-02-01

    Either central (brain) or peripheral (body physiological system) control mechanisms, or a combination of these, have been championed in the last few decades in the field of Exercise Sciences as how physiological activity and fatigue processes are regulated. In this review, we suggest that the concept of 'central' or 'peripheral' mechanisms are both artificial constructs that have 'straight-jacketed' research in the field, and rather that competition between psychological and physiological homeostatic drives is central to the regulation of both, and that governing principles, rather than distinct physical processes, underpin all physical system and exercise regulation. As part of the Integrative Governor theory we develop in this review, we suggest that both psychological and physiological drives and requirements are underpinned by homeostatic principles, and that regulation of the relative activity of each is by dynamic negative feedback activity, as the fundamental general operational controller. Because of this competitive, dynamic interplay, we propose that the activity in all systems will oscillate, that these oscillations create information, and comparison of this oscillatory information with either prior information, current activity, or activity templates create efferent responses that change the activity in the different systems in a similarly dynamic manner. Changes in a particular system are always the result of perturbations occurring outside the system itself, the behavioural causative 'history' of this external activity will be evident in the pattern of the oscillations, and awareness of change occurs as a result of unexpected rather than planned change in physiological activity or psychological state.

  14. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming.

    PubMed

    Magozzi, Sarah; Calosi, Piero

    2015-01-01

    Predicting species vulnerability to global warming requires a comprehensive, mechanistic understanding of sublethal and lethal thermal tolerances. To date, however, most studies investigating species physiological responses to increasing temperature have focused on the underlying physiological traits of either acute or chronic tolerance in isolation. Here we propose an integrative, synthetic approach including the investigation of multiple physiological traits (metabolic performance and thermal tolerance), and their plasticity, to provide more accurate and balanced predictions on species and assemblage vulnerability to both acute and chronic effects of global warming. We applied this approach to more accurately elucidate relative species vulnerability to warming within an assemblage of six caridean prawns occurring in the same geographic, hence macroclimatic, region, but living in different thermal habitats. Prawns were exposed to four incubation temperatures (10, 15, 20 and 25 °C) for 7 days, their metabolic rates and upper thermal limits were measured, and plasticity was calculated according to the concept of Reaction Norms, as well as Q10 for metabolism. Compared to species occupying narrower/more stable thermal niches, species inhabiting broader/more variable thermal environments (including the invasive Palaemon macrodactylus) are likely to be less vulnerable to extreme acute thermal events as a result of their higher upper thermal limits. Nevertheless, they may be at greater risk from chronic exposure to warming due to the greater metabolic costs they incur. Indeed, a trade-off between acute and chronic tolerance was apparent in the assemblage investigated. However, the invasive species P. macrodactylus represents an exception to this pattern, showing elevated thermal limits and plasticity of these limits, as well as a high metabolic control. In general, integrating multiple proxies for species physiological acute and chronic responses to increasing temperature helps providing more accurate predictions on species vulnerability to warming. © 2014 John Wiley & Sons Ltd.

  15. Study of physiological responses to acute carbon monoxide exposure with a human patient simulator.

    PubMed

    Cesari, Whitney A; Caruso, Dominique M; Zyka, Enela L; Schroff, Stuart T; Evans, Charles H; Hyatt, Jon-Philippe K

    2006-12-01

    Human patient simulators are widely used to train health professionals and students in a clinical setting, but they also can be used to enhance physiology education in a laboratory setting. Our course incorporates the human patient simulator for experiential learning in which undergraduate university juniors and seniors are instructed to design, conduct, and present (orally and in written form) their project testing physiological adaptation to an extreme environment. This article is a student report on the physiological response to acute carbon monoxide exposure in a simulated healthy adult male and a coal miner and represents how 1) human patient simulators can be used in a nonclinical way for experiential hypothesis testing; 2) students can transition from traditional textbook learning to practical application of their knowledge; and 3) student-initiated group investigation drives critical thought. While the course instructors remain available for consultation throughout the project, the relatively unstructured framework of the assignment drives the students to create an experiment independently, troubleshoot problems, and interpret the results. The only stipulation of the project is that the students must generate an experiment that is physiologically realistic and that requires them to search out and incorporate appropriate data from primary scientific literature. In this context, the human patient simulator is a viable educational tool for teaching integrative physiology in a laboratory environment by bridging textual information with experiential investigation.

  16. Sensitivity of Physiological Emotional Measures to Odors Depends on the Product and the Pleasantness Ranges Used

    PubMed Central

    Pichon, Aline M.; Coppin, Géraldine; Cayeux, Isabelle; Porcherot, Christelle; Sander, David; Delplanque, Sylvain

    2015-01-01

    Emotions are characterized by synchronized changes in several components of an organism. Among them, physiological variations provide energy support for the expression of approach/avoid action tendencies induced by relevant stimuli, while self-reported subjective pleasantness feelings integrate all other emotional components and are plastic. Consequently, emotional responses evoked by odors should be highly differentiated when they are linked to different functions of olfaction (e.g., avoiding environmental hazards). As this differentiation has been observed for contrasted odors (very pleasant or unpleasant), we questioned whether subjective and physiological emotional response indicators could still disentangle subtle affective variations when no clear functional distinction is made (mildly pleasant or unpleasant fragrances). Here, we compared the sensitivity of behavioral and physiological [respiration, skin conductance, facial electromyography (EMG), and heart rate] indicators in differentiating odor-elicited emotions in two situations: when a wide range of odor families was presented (e.g., fruity, animal), covering different functional meanings; or in response to a restricted range of products in one particular family (fragrances). Results show clear differences in physiological indicators to odors that display a wide range of reported pleasantness, but these differences almost entirely vanish when fragrances are used even though their subjective pleasantness still differed. Taken together, these results provide valuable information concerning the ability of classic verbal and psychophysiological measures to investigate subtle differences in emotional reactions to a restricted range of similar olfactory stimuli. PMID:26648888

  17. Habituation as a Determinant of Human Food Intake

    ERIC Educational Resources Information Center

    Epstein, Leonard H.; Temple, Jennifer L.; Roemmich, James N.; Bouton, Mark E.

    2009-01-01

    Research has shown that animals and humans habituate on a variety of behavioral and physiological responses to repeated presentations of food cues, and habituation is related to amount of food consumed and cessation of eating. The purpose of this article is to provide an overview of experimental paradigms used to study habituation, integrate a…

  18. It's Difficult to Change the Way We Teach: Lessons from the Integrative Themes in Physiology Curriculum Module Project

    ERIC Educational Resources Information Center

    Silverthorn, Dee U.; Thorn, Patti M.; Svinicki, Marilla D.

    2006-01-01

    The Integrative Themes in Physiology (ITIP) project was a National Science Foundation-funded collaboration between the American Physiological Society (APS) and the Human Anatomy and Physiology Society (HAPS). The project goal was to create instructional resources that emphasized active learning in undergraduate anatomy and physiology classrooms.…

  19. Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: potential involvement of PHOSPHATE STARVATION RESPONSE 1 (PHR1)

    PubMed Central

    Briat, Jean-François; Rouached, Hatem; Tissot, Nicolas; Gaymard, Frédéric; Dubos, Christian

    2015-01-01

    Phosphate and sulfate are essential macro-elements for plant growth and development, and deficiencies in these mineral elements alter many metabolic functions. Nutritional constraints are not restricted to macro-elements. Essential metals such as zinc and iron have their homeostasis strictly genetically controlled, and deficiency or excess of these micro-elements can generate major physiological disorders, also impacting plant growth and development. Phosphate and sulfate on one hand, and zinc and iron on the other hand, are known to interact. These interactions have been partly described at the molecular and physiological levels, and are reviewed here. Furthermore the two macro-elements phosphate and sulfate not only interact between themselves but also influence zinc and iron nutrition. These intricated nutritional cross-talks are presented. The responses of plants to phosphorus, sulfur, zinc, or iron deficiencies have been widely studied considering each element separately, and some molecular actors of these regulations have been characterized in detail. Although some scarce reports have started to examine the interaction of these mineral elements two by two, a more complex analysis of the interactions and cross-talks between the signaling pathways integrating the homeostasis of these various elements is still lacking. However, a MYB-like transcription factor, PHOSPHATE STARVATION RESPONSE 1, emerges as a common regulator of phosphate, sulfate, zinc, and iron homeostasis, and its role as a potential general integrator for the control of mineral nutrition is discussed. PMID:25972885

  20. Muscle intracellular oxygenation during exercise: optimization for oxygen transport, metabolism, and adaptive change.

    PubMed

    Wagner, Peter D

    2012-01-01

    Exercise is the example par excellence of the body functioning as a physiological system. Conventionally we think of the O(2) transport process as a major manifestation of that system linking and integrating pulmonary, cardiovascular, hematological and skeletal muscular contributions to the task of getting O(2) from the air to the mitochondria, and this process has been well described. However, exercise invokes system responses at levels additional to those of macroscopic O(2) transport. One such set of responses appears to center on muscle intracellular PO(2), which falls dramatically from rest to exercise. At rest, it approximates 4 kPa, but during heavy endurance exercise it falls to about 0.4-0.5 kPa, an amazingly low value for a tissue absolutely dependent on the continual supply of O(2) to meet very high energy demands. One wonders why intracellular PO(2) is allowed to fall to such levels. The proposed answer, to be presented in the review, is that a low intramyocyte PO(2) is pivotal in: (a) optimizing oxygen's own physiological transport, and (b) stimulating adaptive gene expression that, after translation, enables greater exercise capacity-all the while maintaining PO(2) at levels sufficient to allow oxidative phosphorylation to operate sufficiently fast enough to support intense muscle contraction. Thus, during exercise, reductions of intracellular PO(2) to less than 1% of that in the atmosphere enables an integrated response that fundamentally and simultaneously optimizes physiological, biochemical and molecular events that support not only the exercise as it happens but the adaptive changes to increase exercise capacity over the longer term.

  1. Climate Change, Nutrition, and Bottom-Up and Top-Down Food Web Processes.

    PubMed

    Rosenblatt, Adam E; Schmitz, Oswald J

    2016-12-01

    Climate change ecology has focused on climate effects on trophic interactions through the lenses of temperature effects on organismal physiology and phenological asynchronies. Trophic interactions are also affected by the nutrient content of resources, but this topic has received less attention. Using concepts from nutritional ecology, we propose a conceptual framework for understanding how climate affects food webs through top-down and bottom-up processes impacted by co-occurring environmental drivers. The framework integrates climate effects on consumer physiology and feeding behavior with effects on resource nutrient content. It illustrates how studying responses of simplified food webs to simplified climate change might produce erroneous predictions. We encourage greater integrative complexity of climate change research on trophic interactions to resolve patterns and enhance predictive capacities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. What is conservation physiology? Perspectives on an increasingly integrated and essential science†

    PubMed Central

    Cooke, Steven J.; Sack, Lawren; Franklin, Craig E.; Farrell, Anthony P.; Beardall, John; Wikelski, Martin; Chown, Steven L.

    2013-01-01

    Globally, ecosystems and their constituent flora and fauna face the localized and broad-scale influence of human activities. Conservation practitioners and environmental managers struggle to identify and mitigate threats, reverse species declines, restore degraded ecosystems, and manage natural resources sustainably. Scientific research and evidence are increasingly regarded as the foundation for new regulations, conservation actions, and management interventions. Conservation biologists and managers have traditionally focused on the characteristics (e.g. abundance, structure, trends) of populations, species, communities, and ecosystems, and simple indicators of the responses to environmental perturbations and other human activities. However, an understanding of the specific mechanisms underlying conservation problems is becoming increasingly important for decision-making, in part because physiological tools and knowledge are especially useful for developing cause-and-effect relationships, and for identifying the optimal range of habitats and stressor thresholds for different organisms. When physiological knowledge is incorporated into ecological models, it can improve predictions of organism responses to environmental change and provide tools to support management decisions. Without such knowledge, we may be left with simple associations. ‘Conservation physiology’ has been defined previously with a focus on vertebrates, but here we redefine the concept universally, for application to the diversity of taxa from microbes to plants, to animals, and to natural resources. We also consider ‘physiology’ in the broadest possible terms; i.e. how an organism functions, and any associated mechanisms, from development to bioenergetics, to environmental interactions, through to fitness. Moreover, we consider conservation physiology to include a wide range of applications beyond assisting imperiled populations, and include, for example, the eradication of invasive species, refinement of resource management strategies to minimize impacts, and evaluation of restoration plans. This concept of conservation physiology emphasizes the basis, importance, and ecological relevance of physiological diversity at a variety of scales. Real advances in conservation and resource management require integration and inter-disciplinarity. Conservation physiology and its suite of tools and concepts is a key part of the evidence base needed to address pressing environmental challenges. PMID:27293585

  3. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis

    PubMed Central

    Nyein, Hnin Yin Yin; Challa, Samyuktha; Chen, Kevin; Peck, Austin; Fahad, Hossain M.; Ota, Hiroki; Shiraki, Hiroshi; Kiriya, Daisuke; Lien, Der-Hsien; Brooks, George A.; Davis, Ronald W.; Javey, Ali

    2016-01-01

    Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual's state of health1–12. Sampling human sweat, which is rich in physiological information13, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state14–18. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications. PMID:26819044

  4. iGAS: A framework for using electronic intraoperative medical records for genomic discovery.

    PubMed

    Levin, Matthew A; Joseph, Thomas T; Jeff, Janina M; Nadukuru, Rajiv; Ellis, Stephen B; Bottinger, Erwin P; Kenny, Eimear E

    2017-03-01

    Design and implement a HIPAA and Integrating the Healthcare Enterprise (IHE) profile compliant automated pipeline, the integrated Genomics Anesthesia System (iGAS), linking genomic data from the Mount Sinai Health System (MSHS) BioMe biobank to electronic anesthesia records, including physiological data collected during the perioperative period. The resulting repository of multi-dimensional data can be used for precision medicine analysis of physiological readouts, acute medical conditions, and adverse events that can occur during surgery. A structured pipeline was developed atop our existing anesthesia data warehouse using open-source tools. The pipeline is automated using scheduled tasks. The pipeline runs weekly, and finds and identifies all new and existing anesthetic records for BioMe participants. The pipeline went live in June 2015 with 49.2% (n=15,673) of BioMe participants linked to 40,947 anesthetics. The pipeline runs weekly in minimal time. After eighteen months, an additional 3671 participants were enrolled in BioMe and the number of matched anesthetic records grew 21% to 49,545. Overall percentage of BioMe patients with anesthetics remained similar at 51.1% (n=18,128). Seven patients opted out during this time. The median number of anesthetics per participant was 2 (range 1-144). Collectively, there were over 35 million physiologic data points and 480,000 medication administrations linked to genomic data. To date, two projects are using the pipeline at MSHS. Automated integration of biobank and anesthetic data sources is feasible and practical. This integration enables large-scale genomic analyses that might inform variable physiological response to anesthetic and surgical stress, and examine genetic factors underlying adverse outcomes during and after surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Mycobacterium tuberculosis Transcription Machinery: Ready To Respond to Host Attacks

    PubMed Central

    Flentie, Kelly; Garner, Ashley L.

    2016-01-01

    Regulating responses to stress is critical for all bacteria, whether they are environmental, commensal, or pathogenic species. For pathogenic bacteria, successful colonization and survival in the host are dependent on adaptation to diverse conditions imposed by the host tissue architecture and the immune response. Once the bacterium senses a hostile environment, it must enact a change in physiology that contributes to the organism's survival strategy. Inappropriate responses have consequences; hence, the execution of the appropriate response is essential for survival of the bacterium in its niche. Stress responses are most often regulated at the level of gene expression and, more specifically, transcription. This minireview focuses on mechanisms of regulating transcription initiation that are required by Mycobacterium tuberculosis to respond to the arsenal of defenses imposed by the host during infection. In particular, we highlight how certain features of M. tuberculosis physiology allow this pathogen to respond swiftly and effectively to host defenses. By enacting highly integrated and coordinated gene expression changes in response to stress, M. tuberculosis is prepared for battle against the host defense and able to persist within the human population. PMID:26883824

  6. Evaluation of chest ultrasound integrated teaching of respiratory system physiology to medical students.

    PubMed

    Paganini, Matteo; Bondì, Michela; Rubini, Alessandro

    2017-12-01

    Ultrasound imaging is a widely used diagnostic technique, whose integration in medical education is constantly growing. The aim of this study was to evaluate chest ultrasound usefulness in teaching respiratory system physiology, students' perception of chest ultrasound integration into a traditional lecture in human physiology, and short-term concept retention. A lecture about respiratory physiology was integrated with ultrasound and delivered to third-year medical students. It included basic concepts of ultrasound imaging and the physiology of four anatomic sectors of the body of a male volunteer, shown with a portable ultrasound device (pleural sliding, diaphragmatic movement, inferior vena cava diameter variations, cardiac movements). Students' perceptions of the integrated lecture were assessed, and attendance recorded. After 4 mo, four multiple-choice questions about respiratory physiology were administered during the normal human physiology examinations, and the results of students who attended the lesson and those of who did not were compared. One hundred thirty-four students attended the lecture. Most of them showed encouragement for the study of the subject and considered the ultrasound integrated lecture more interesting than a traditional one and pertinent to the syllabus. Exposed students achieved a better score at the examination and committed less errors than did nonexposed students. The chest ultrasound integrated lecture was appreciated by students. A possible association between the exposure to the lecture and short-term concept retention is shown by better performances of the exposed cohort at the examination. A systematic introduction of ultrasound into physiology traditional teaching will be promoted by the Ultrasound-Based Medical Education movement. Copyright © 2017 the American Physiological Society.

  7. Importance of integrating nanotechnology with pharmacology and physiology for innovative drug delivery and therapy - an illustration with firsthand examples.

    PubMed

    Zhang, Rui Xue; Li, Jason; Zhang, Tian; Amini, Mohammad A; He, Chunsheng; Lu, Brian; Ahmed, Taksim; Lip, HoYin; Rauth, Andrew M; Wu, Xiao Yu

    2018-05-01

    Nanotechnology has been applied extensively in drug delivery to improve the therapeutic outcomes of various diseases. Tremendous efforts have been focused on the development of novel nanoparticles and delineation of the physicochemical properties of nanoparticles in relation to their biological fate and functions. However, in the design and evaluation of these nanotechnology-based drug delivery systems, the pharmacology of delivered drugs and the (patho-)physiology of the host have received less attention. In this review, we discuss important pharmacological mechanisms, physiological characteristics, and pathological factors that have been integrated into the design of nanotechnology-enabled drug delivery systems and therapies. Firsthand examples are presented to illustrate the principles and advantages of such integrative design strategies for cancer treatment by exploiting 1) intracellular synergistic interactions of drug-drug and drug-nanomaterial combinations to overcome multidrug-resistant cancer, 2) the blood flow direction of the circulatory system to maximize drug delivery to the tumor neovasculature and cells overexpressing integrin receptors for lung metastases, 3) endogenous lipoproteins to decorate nanocarriers and transport them across the blood-brain barrier for brain metastases, and 4) distinct pathological factors in the tumor microenvironment to develop pH- and oxidative stress-responsive hybrid manganese dioxide nanoparticles for enhanced radiotherapy. Regarding the application in diabetes management, a nanotechnology-enabled closed-loop insulin delivery system was devised to provide dynamic insulin release at a physiologically relevant time scale and glucose levels. These examples, together with other research results, suggest that utilization of the interplay of pharmacology, (patho-)physiology and nanotechnology is a facile approach to develop innovative drug delivery systems and therapies with high efficiency and translational potential.

  8. Chewing Over Physiology Integration

    ERIC Educational Resources Information Center

    Abdulkader, Fernando; Azevedo-Martins, Anna Karenina; de Arcisio Miranda, Manoel; Brunaldi, Kellen

    2005-01-01

    An important challenge for both students and teachers of physiology is to integrate the differentareas in which physiological knowledge is didactically divided. In developing countries, such an issue is even more demanding, because budget restrictions often affect the physiology program with laboratory classes being the first on the list when it…

  9. Integration of faces and vocalizations in ventral prefrontal cortex: Implications for the evolution of audiovisual speech

    PubMed Central

    Romanski, Lizabeth M.

    2012-01-01

    The integration of facial gestures and vocal signals is an essential process in human communication and relies on an interconnected circuit of brain regions, including language regions in the inferior frontal gyrus (IFG). Studies have determined that ventral prefrontal cortical regions in macaques [e.g., the ventrolateral prefrontal cortex (VLPFC)] share similar cytoarchitectonic features as cortical areas in the human IFG, suggesting structural homology. Anterograde and retrograde tracing studies show that macaque VLPFC receives afferents from the superior and inferior temporal gyrus, which provide complex auditory and visual information, respectively. Moreover, physiological studies have shown that single neurons in VLPFC integrate species-specific face and vocal stimuli. Although bimodal responses may be found across a wide region of prefrontal cortex, vocalization responsive cells, which also respond to faces, are mainly found in anterior VLPFC. This suggests that VLPFC may be specialized to process and integrate social communication information, just as the IFG is specialized to process and integrate speech and gestures in the human brain. PMID:22723356

  10. Effects of septum and pericardium on heart-lung interactions in a cardiopulmonary simulation model.

    PubMed

    Karamolegkos, Nikolaos; Albanese, Antonio; Chbat, Nicolas W

    2017-07-01

    Mechanical heart-lung interactions are often overlooked in clinical settings. However, their impact on cardiac function can be quite significant. Mechanistic physiology-based models can provide invaluable insights into such cardiorespiratory interactions, which occur not only under external mechanical ventilatory support but in normal physiology as well. In this work, we focus on the cardiac component of a previously developed mathematical model of the human cardiopulmonary system, aiming to improve the model's response to the intrathoracic pressure variations that are associated with the respiratory cycle. Interventricular septum and pericardial membrane are integrated into the existing model. Their effect on the overall cardiac response is explained by means of comparison against simulation results from the original model as well as experimental data from literature.

  11. Evaluation of Chest Ultrasound Integrated Teaching of Respiratory System Physiology to Medical Students

    ERIC Educational Resources Information Center

    Paganini, Matteo; Bondì, Michela; Rubini, Alessandro

    2017-01-01

    Ultrasound imaging is a widely used diagnostic technique, whose integration in medical education is constantly growing. The aim of this study was to evaluate chest ultrasound usefulness in teaching respiratory system physiology, students' perception of chest ultrasound integration into a traditional lecture in human physiology, and short-term…

  12. Stress--where are we now? Does immunity play an intrinsic role?

    PubMed

    Jedryka-Góral, Anna; Maślinski, Włodzimierz; Ziółkowska, Maria; Konarska, Maria; Zołnierczyk-Zreda, Dorota

    2002-11-01

    The whole world experiences progress and development, however it is the human being who pays the price in stress--an inevitable part of modern life. When encountering stress, an individual reacts at the level of both the micro- and macroenvironment. Nowadays, stress is defined as a real or interpreted threat to the physiological or psychological integrity of an individual, which results in a physiological and/or behavioral response. In the article a review of the stress conceptualization, health consequences of stress (its neurophysiology and relation to autoimmune disease) as well as ways of management (exercises and psychotherapeutic intervention) is given.

  13. Automated system for integration and display of physiological response data

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The system analysis approach was applied in a study of physiological systems in both 1-g and weightlessness, for short and long term experiments. A whole body, algorithm developed as the first step in the construction of a total body simulation system is described and an advanced biomedical computer system concept including interactive display/command consoles is discussed. The documentation of the design specifications, design and development studies, and user's instructions (which include program listings) for these delivered end-terms; the reports on the results of many research and feasibility studies; and many subcontract reports are cited in the bibliography.

  14. Attachment and physiological reactivity to infant crying in young adulthood: dissociation between experiential and physiological arousal in insecure adoptees.

    PubMed

    Schoenmaker, Christie; Huffmeijer, Renske; van IJzendoorn, Marinus H; Bakermans-Kranenburg, Marian J; van den Dries, Linda; Linting, Mariëlle; van der Voort, Anja; Juffer, Femmie

    2015-02-01

    The associations between attachment representations of adopted young adults and their experiential and physiological arousal to infant crying were examined. Attachment representations were assessed with the Attachment Script Assessment (ASA), and the young adults listened to infant cries, during which ratings of cry perception were collected and physiological reactivity was measured. Secure adoptees showed a well-integrated response to infant distress: heart-rate increases and respiratory sinus arrhythmia (RSA) withdrawal were coupled with heightened perception of urgency in these individuals. In insecure adoptees RSA withdrawal was absent, and a combination of lowered perceived urgency and heightened sympathetic arousal was found, reflecting a deactivating style of emotional reactivity. Overall, our findings support the idea that internal working models of attachment explain individual differences in the way attachment-related information is processed. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. "Thinking ethics": a novel, pilot, proof-of-concept program of integrating ethics into the Physiology curriculum in South India.

    PubMed

    D, Savitha; Vaz, Manjulika; Vaz, Mario

    2017-06-01

    Integrating medical ethics into the physiology teaching-learning program has been largely unexplored in India. The objective of this exercise was to introduce an interactive and integrated ethics program into the Physiology course of first-year medical students and to evaluate their perceptions. Sixty medical students (30 men, 30 women) underwent 11 sessions over a 7-mo period. Two of the Physiology faculty conducted these sessions (20-30 min each) during the routine physiology (theory/practicals) classes that were of shorter duration and could, therefore, accommodate the discussion of related ethical issues. This exercise was in addition to the separate ethics classes conducted by the Medical Ethics department. The sessions were open ended, student centered, and designed to stimulate critical thinking. The students' perceptions were obtained through a semistructured questionnaire and focused group discussions. The students found the program unique, thought provoking, fully integrated, and relevant. It seldom interfered with the physiology teaching. They felt that the program sensitized them about ethical issues and prepared them for their clinical years, to be "ethical doctors." Neutral observers who evaluated each session felt that the integrated program was relevant to the preclinical year and that the program was appropriate in its content, delivery, and student involvement. An ethics course taught in integration with Physiology curriculum was found to be beneficial, feasible, and compatible with Physiology by students as well as neutral observers. Copyright © 2017 the American Physiological Society.

  16. Morpho-Physiological and Proteome Level Responses to Cadmium Stress in Sorghum

    PubMed Central

    Kamal, Abu Hena Mostafa; Kim, Sang-Woo; Oh, Myeong-Won; Lee, Moon-Soon; Chung, Keun-Yook; Xin, Zhanguo; Woo, Sun-Hee

    2016-01-01

    Cadmium (Cd) stress may cause serious morphological and physiological abnormalities in addition to altering the proteome in plants. The present study was performed to explore Cd-induced morpho-physiological alterations and their potential associated mechanisms in Sorghum bicolor leaves at the protein level. Ten-day-old sorghum seedlings were exposed to different concentrations (0, 100, and 150 μM) of CdCl2, and different morpho-physiological responses were recorded. The effects of Cd exposure on protein expression patterns in S. bicolor were investigated using two-dimensional gel electrophoresis (2-DE) in samples derived from the leaves of both control and Cd-treated seedlings. The observed morphological changes revealed that the plants treated with Cd displayed dramatically altered shoot lengths, fresh weights and relative water content. In addition, the concentration of Cd was markedly increased by treatment with Cd, and the amount of Cd taken up by the shoots was significantly and directly correlated with the applied concentration of Cd. Using the 2-DE method, a total of 33 differentially expressed protein spots were analyzed using MALDI-TOF/TOF MS. Of these, treatment with Cd resulted in significant increases in 15 proteins and decreases in 18 proteins. Major changes were absorbed in the levels of proteins known to be involved in carbohydrate metabolism, transcriptional regulation, translation and stress responses. Proteomic results revealed that Cd stress had an inhibitory effect on carbon fixation, ATP production and the regulation of protein synthesis. Our study provides insights into the integrated molecular mechanisms involved in responses to Cd and the effects of Cd on the growth and physiological characteristics of sorghum seedlings. We have aimed to provide a reference describing the mechanisms involved in heavy metal damage to plants. PMID:26919231

  17. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants

    PubMed Central

    Xu, Zhenzhu; Jiang, Yanling; Zhou, Guangsheng

    2015-01-01

    It is well known that plant photosynthesis and respiration are two fundamental and crucial physiological processes, while the critical role of the antioxidant system in response to abiotic factors is still a focus point for investigating physiological stress. Although one key metabolic process and its response to climatic change have already been reported and reviewed, an integrative review, including several biological processes at multiple scales, has not been well reported. The current review will present a synthesis focusing on the underlying mechanisms in the responses to elevated CO2 at multiple scales, including molecular, cellular, biochemical, physiological, and individual aspects, particularly, for these biological processes under elevated CO2 with other key abiotic stresses, such as heat, drought, and ozone pollution, as well as nitrogen limitation. The present comprehensive review may add timely and substantial information about the topic in recent studies, while it presents what has been well established in previous reviews. First, an outline of the critical biological processes, and an overview of their roles in environmental regulation, is presented. Second, the research advances with regard to the individual subtopics are reviewed, including the response and adaptation of the photosynthetic capacity, respiration, and antioxidant system to CO2 enrichment alone, and its combination with other climatic change factors. Finally, the potential applications for plant responses at various levels to climate change are discussed. The above issue is currently of crucial concern worldwide, and this review may help in a better understanding of how plants deal with elevated CO2 using other mainstream abiotic factors, including molecular, cellular, biochemical, physiological, and whole individual processes, and the better management of the ecological environment, climate change, and sustainable development. PMID:26442017

  18. Lateralization of spatial information processing in response monitoring

    PubMed Central

    Stock, Ann-Kathrin; Beste, Christian

    2014-01-01

    The current study aims at identifying how lateralized multisensory spatial information processing affects response monitoring and action control. In a previous study, we investigated multimodal sensory integration in response monitoring processes using a Simon task. Behavioral and neurophysiologic results suggested that different aspects of response monitoring are asymmetrically and independently allocated to the hemispheres: while efference-copy-based information on the motor execution of the task is further processed in the hemisphere that originally generated the motor command, proprioception-based spatial information is processed in the hemisphere contralateral to the effector. Hence, crossing hands (entering a “foreign” spatial hemifield) yielded an augmented bilateral activation during response monitoring since these two kinds of information were processed in opposing hemispheres. Because the traditional Simon task does not provide the possibility to investigate which aspect of the spatial configuration leads to the observed hemispheric allocation, we introduced a new “double crossed” condition that allows for the dissociation of internal/physiological and external/physical influences on response monitoring processes. Comparing behavioral and neurophysiologic measures of this new condition to those of the traditional Simon task setup, we could demonstrate that the egocentric representation of the physiological effector's spatial location accounts for the observed lateralization of spatial information in action control. The finding that the location of the physical effector had a very small influence on response monitoring measures suggests that this aspect is either less important and/or processed in different brain areas than egocentric physiological information. PMID:24550855

  19. Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs

    PubMed Central

    McFarland, James M.; Cui, Yuwei; Butts, Daniel A.

    2013-01-01

    The computation represented by a sensory neuron's response to stimuli is constructed from an array of physiological processes both belonging to that neuron and inherited from its inputs. Although many of these physiological processes are known to be nonlinear, linear approximations are commonly used to describe the stimulus selectivity of sensory neurons (i.e., linear receptive fields). Here we present an approach for modeling sensory processing, termed the Nonlinear Input Model (NIM), which is based on the hypothesis that the dominant nonlinearities imposed by physiological mechanisms arise from rectification of a neuron's inputs. Incorporating such ‘upstream nonlinearities’ within the standard linear-nonlinear (LN) cascade modeling structure implicitly allows for the identification of multiple stimulus features driving a neuron's response, which become directly interpretable as either excitatory or inhibitory. Because its form is analogous to an integrate-and-fire neuron receiving excitatory and inhibitory inputs, model fitting can be guided by prior knowledge about the inputs to a given neuron, and elements of the resulting model can often result in specific physiological predictions. Furthermore, by providing an explicit probabilistic model with a relatively simple nonlinear structure, its parameters can be efficiently optimized and appropriately regularized. Parameter estimation is robust and efficient even with large numbers of model components and in the context of high-dimensional stimuli with complex statistical structure (e.g. natural stimuli). We describe detailed methods for estimating the model parameters, and illustrate the advantages of the NIM using a range of example sensory neurons in the visual and auditory systems. We thus present a modeling framework that can capture a broad range of nonlinear response functions while providing physiologically interpretable descriptions of neural computation. PMID:23874185

  20. Meta-analysis of digital game and study characteristics eliciting physiological stress responses.

    PubMed

    van der Vijgh, Benny; Beun, Robbert-Jan; Van Rood, Maarten; Werkhoven, Peter

    2015-08-01

    Digital games have been used as stressors in a range of disciplines for decades. Nonetheless, the underlying characteristics of these stressors and the study in which the stressor was applied are generally not recognized for their moderating effect on the measured physiological stress responses. We have therefore conducted a meta-analysis that analyzes the effects of characteristics of digital game stressors and study design on heart rate, systolic and diastolic blood pressure, in studies carried out from 1976 to 2012. In order to assess the differing quality between study designs, a new scale is developed and presented, coined reliability of effect size. The results show specific and consistent moderating functions of both game and study characteristics, on average accounting for around 43%, and in certain cases up to 57% of the variance found in physiological stress responses. Possible cognitive and physiological processes underlying these moderating functions are discussed, and a new model integrating these processes with the moderating functions is presented. These findings indicate that a digital game stressor does not act as a stressor by virtue of being a game, but rather derives its stressor function from its characteristics and the methodology in which it is used. This finding, together with the size of the associated moderations, indicates the need for a standardization of digital game stressors. © 2015 Society for Psychophysiological Research.

  1. Light and the laboratory mouse.

    PubMed

    Peirson, Stuart N; Brown, Laurence A; Pothecary, Carina A; Benson, Lindsay A; Fisk, Angus S

    2018-04-15

    Light exerts widespread effects on physiology and behaviour. As well as the widely-appreciated role of light in vision, light also plays a critical role in many non-visual responses, including regulating circadian rhythms, sleep, pupil constriction, heart rate, hormone release and learning and memory. In mammals, responses to light are all mediated via retinal photoreceptors, including the classical rods and cones involved in vision as well as the recently identified melanopsin-expressing photoreceptive retinal ganglion cells (pRGCs). Understanding the effects of light on the laboratory mouse therefore depends upon an appreciation of the physiology of these retinal photoreceptors, including their differing sens itivities to absolute light levels and wavelengths. The signals from these photoreceptors are often integrated, with different responses involving distinct retinal projections, making generalisations challenging. Furthermore, many commonly used laboratory mouse strains carry mutations that affect visual or non-visual physiology, ranging from inherited retinal degeneration to genetic differences in sleep and circadian rhythms. Here we provide an overview of the visual and non-visual systems before discussing practical considerations for the use of light for researchers and animal facility staff working with laboratory mice. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  2. Adaptation of exercise-induced stress in well-trained healthy young men.

    PubMed

    JanssenDuijghuijsen, Lonneke M; Keijer, Jaap; Mensink, Marco; Lenaerts, Kaatje; Ridder, Lars; Nierkens, Stefan; Kartaram, Shirley W; Verschuren, Martie C M; Pieters, Raymond H H; Bas, Richard; Witkamp, Renger F; Wichers, Harry J; van Norren, Klaske

    2017-01-01

    What is the central question of this study? Exercise is known to induce stress-related physiological responses, such as changes in intestinal barrier function. Our aim was to determine the test-retest repeatability of these responses in well-trained individuals. What is the main finding and its importance? Responses to strenuous exercise, as indicated by stress-related markers such as intestinal integrity markers and myokines, showed high test-retest variation. Even in well-trained young men an adapted response is seen after a single repetition after 1 week. This finding has implications for the design of studies aimed at evaluating physiological responses to exercise. Strenuous exercise induces different stress-related physiological changes, potentially including changes in intestinal barrier function. In the Protégé Study (ISRCTN14236739; www.isrctn.com), we determined the test-retest repeatability in responses to exercise in well-trained individuals. Eleven well-trained men (27 ± 4 years old) completed an exercise protocol that consisted of intensive cycling intervals, followed by an overnight fast and an additional 90 min cycling phase at 50% of maximal workload the next morning. The day before (rest), and immediately after the exercise protocol (exercise) a lactulose and rhamnose solution was ingested. Markers of energy metabolism, lactulose-to-rhamnose ratio, several cytokines and potential stress-related markers were measured at rest and during exercise. In addition, untargeted urine metabolite profiles were obtained. The complete procedure (Test) was repeated 1 week later (Retest) to assess repeatability. Metabolic effect parameters with regard to energy metabolism and urine metabolomics were similar for both the Test and Retest period, underlining comparable exercise load. Following exercise, intestinal permeability (1 h plasma lactulose-to-rhamnose ratio) and the serum interleukin-6, interleukin-10, fibroblast growth factor-21 and muscle creatine kinase concentrations were significantly increased compared with rest only during the first test and not when the test was repeated. Responses to strenuous exercise in well-trained young men, as indicated by intestinal markers and myokines, show adaptation in Test-Retest outcome. This might be attributable to a carry-over effect of the defense mechanisms triggered during the Test. This finding has implications for the design of studies aimed at evaluating physiological responses to exercise. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  3. The spatial structure of a nonlinear receptive field.

    PubMed

    Schwartz, Gregory W; Okawa, Haruhisa; Dunn, Felice A; Morgan, Josh L; Kerschensteiner, Daniel; Wong, Rachel O; Rieke, Fred

    2012-11-01

    Understanding a sensory system implies the ability to predict responses to a variety of inputs from a common model. In the retina, this includes predicting how the integration of signals across visual space shapes the outputs of retinal ganglion cells. Existing models of this process generalize poorly to predict responses to new stimuli. This failure arises in part from properties of the ganglion cell response that are not well captured by standard receptive-field mapping techniques: nonlinear spatial integration and fine-scale heterogeneities in spatial sampling. Here we characterize a ganglion cell's spatial receptive field using a mechanistic model based on measurements of the physiological properties and connectivity of only the primary excitatory circuitry of the retina. The resulting simplified circuit model successfully predicts ganglion-cell responses to a variety of spatial patterns and thus provides a direct correspondence between circuit connectivity and retinal output.

  4. Adaptations for vision in dim light: impulse responses and bumps in nocturnal spider photoreceptor cells (Cupiennius salei Keys).

    PubMed

    Pirhofer-Walzl, Karin; Warrant, Eric; Barth, Friedrich G

    2007-10-01

    The photoreceptor cells of the nocturnal spider Cupiennius salei were investigated by intracellular electrophysiology. (1) The responses of photoreceptor cells of posterior median (PM) and anterior median (AM) eyes to short (2 ms) light pulses showed long integration times in the dark-adapted and shorter integration times in the light-adapted state. (2) At very low light intensities, the photoreceptors responded to single photons with discrete potentials, called bumps, of high amplitude (2-20 mV). When measured in profoundly dark-adapted photoreceptor cells of the PM eyes these bumps showed an integration time of 128 +/- 35 ms (n = 7) whereas in dark-adapted photoreceptor cells of AM eyes the integration time was 84 +/- 13 ms (n = 8), indicating that the AM eyes are intrinsically faster than the PM eyes. (3) Long integration times, which improve visual reliability in dim light, and large responses to single photons in the dark-adapted state, contribute to a high visual sensitivity in Cupiennius at night. This conclusion is underlined by a calculation of sensitivity that accounts for both anatomical and physiological characteristics of the eye.

  5. 2014 SRP Integration Transcript

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2014-01-01

    HRP's mission is to reduce the risks to human health and performance during long-duration spaceflight. The HRP Integrated Research Plan (IRP) contains the research plans for the 32 risks that require research to characterize and mitigate. From its inception the "integrate" aspect of the IRP has denoted the integrated nature of risks to human health and performance. Even though each risk in the IRP has its own research plan and is tracked separately, the interrelated nature of health and performance requires that they be addressed in an integrative or holistic fashion so that the connectedness of physiological systems within the human body and the integrated response to spaceflight can be addressed. Common characteristics of the spaceflight environment include altered gravity, atmospheres, and light/dark cycles; space radiation; isolation; noise; and periods of high or low workload. Long-term exposure to this unique environment produces a suite of physiological effects such as stress; vision, neurocognitive, and anthropometric changes; circadian misalignment; fluid shifts; cardiovascular deconditioning; immune dysregulation; and altered nutritional requirements. Expanding cross-disciplinary integrative approaches that synthesize concepts or data from two or more disciplines would improve the identification and characterization risk factors, and enable the development of countermeasures relevant to multiple risks. Cross-disciplinary approaches might also help to illuminate problem areas that may arise when a countermeasure adversely impacts risks other than those which it was developed to mitigate, or to identify groupings of physiological changes that are likely to occur that may impact the overall risk posture. In 2014 HRP embarked on a pilot study that combined four SRPs (and 12 HRP risks) - Behavioral Health, Sensorimotor, Cardiovascular, and Bone/Muscle - specifically to discuss cross-disciplinary integration. The points outlined below were suggested to seed the discussion, within the bounding constraint that research plans must be feasible and relevant to the HRP mission. While these were suggested starting points, the overall guiding principle was to allow free discussion from panel members on any aspect of integrated research that they felt was important, Existing cross-disciplinary integration as documented in the IRP (HRR), Existing or needed integration already identified by HRP, but not yet well defined within the IRP, Areas of integration that are missing.

  6. The Library of Integrated Network-Based Cellular Signatures NIH Program: System-Level Cataloging of Human Cells Response to Perturbations.

    PubMed

    Keenan, Alexandra B; Jenkins, Sherry L; Jagodnik, Kathleen M; Koplev, Simon; He, Edward; Torre, Denis; Wang, Zichen; Dohlman, Anders B; Silverstein, Moshe C; Lachmann, Alexander; Kuleshov, Maxim V; Ma'ayan, Avi; Stathias, Vasileios; Terryn, Raymond; Cooper, Daniel; Forlin, Michele; Koleti, Amar; Vidovic, Dusica; Chung, Caty; Schürer, Stephan C; Vasiliauskas, Jouzas; Pilarczyk, Marcin; Shamsaei, Behrouz; Fazel, Mehdi; Ren, Yan; Niu, Wen; Clark, Nicholas A; White, Shana; Mahi, Naim; Zhang, Lixia; Kouril, Michal; Reichard, John F; Sivaganesan, Siva; Medvedovic, Mario; Meller, Jaroslaw; Koch, Rick J; Birtwistle, Marc R; Iyengar, Ravi; Sobie, Eric A; Azeloglu, Evren U; Kaye, Julia; Osterloh, Jeannette; Haston, Kelly; Kalra, Jaslin; Finkbiener, Steve; Li, Jonathan; Milani, Pamela; Adam, Miriam; Escalante-Chong, Renan; Sachs, Karen; Lenail, Alex; Ramamoorthy, Divya; Fraenkel, Ernest; Daigle, Gavin; Hussain, Uzma; Coye, Alyssa; Rothstein, Jeffrey; Sareen, Dhruv; Ornelas, Loren; Banuelos, Maria; Mandefro, Berhan; Ho, Ritchie; Svendsen, Clive N; Lim, Ryan G; Stocksdale, Jennifer; Casale, Malcolm S; Thompson, Terri G; Wu, Jie; Thompson, Leslie M; Dardov, Victoria; Venkatraman, Vidya; Matlock, Andrea; Van Eyk, Jennifer E; Jaffe, Jacob D; Papanastasiou, Malvina; Subramanian, Aravind; Golub, Todd R; Erickson, Sean D; Fallahi-Sichani, Mohammad; Hafner, Marc; Gray, Nathanael S; Lin, Jia-Ren; Mills, Caitlin E; Muhlich, Jeremy L; Niepel, Mario; Shamu, Caroline E; Williams, Elizabeth H; Wrobel, David; Sorger, Peter K; Heiser, Laura M; Gray, Joe W; Korkola, James E; Mills, Gordon B; LaBarge, Mark; Feiler, Heidi S; Dane, Mark A; Bucher, Elmar; Nederlof, Michel; Sudar, Damir; Gross, Sean; Kilburn, David F; Smith, Rebecca; Devlin, Kaylyn; Margolis, Ron; Derr, Leslie; Lee, Albert; Pillai, Ajay

    2018-01-24

    The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program that catalogs how human cells globally respond to chemical, genetic, and disease perturbations. Resources generated by LINCS include experimental and computational methods, visualization tools, molecular and imaging data, and signatures. By assembling an integrated picture of the range of responses of human cells exposed to many perturbations, the LINCS program aims to better understand human disease and to advance the development of new therapies. Perturbations under study include drugs, genetic perturbations, tissue micro-environments, antibodies, and disease-causing mutations. Responses to perturbations are measured by transcript profiling, mass spectrometry, cell imaging, and biochemical methods, among other assays. The LINCS program focuses on cellular physiology shared among tissues and cell types relevant to an array of diseases, including cancer, heart disease, and neurodegenerative disorders. This Perspective describes LINCS technologies, datasets, tools, and approaches to data accessibility and reusability. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Information Integration and Communication in Plant Growth Regulation.

    PubMed

    Chaiwanon, Juthamas; Wang, Wenfei; Zhu, Jia-Ying; Oh, Eunkyoo; Wang, Zhi-Yong

    2016-03-10

    Plants are equipped with the capacity to respond to a large number of diverse signals, both internal ones and those emanating from the environment, that are critical to their survival and adaption as sessile organisms. These signals need to be integrated through highly structured intracellular networks to ensure coherent cellular responses, and in addition, spatiotemporal actions of hormones and peptides both orchestrate local cell differentiation and coordinate growth and physiology over long distances. Further, signal interactions and signaling outputs vary significantly with developmental context. This review discusses our current understanding of the integrated intracellular and intercellular signaling networks that control plant growth. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Information Integration and Communication in Plant Growth Regulation

    PubMed Central

    Chaiwanon, Juthamas; Wang, Wenfei; Zhu, Jia-Ying; Oh, Eunkyoo; Wang, Zhi-Yong

    2016-01-01

    Plants are equipped with the capacity to respond to a large number of diverse signals, both internal ones and those emanating from the environment, that are critical to their survival and adaption as sessile organisms. These signals need to be integrated through highly structured intracellular networks to ensure coherent cellular responses, and in addition, spatiotemporal actions of hormones and peptides both orchestrate local cell differentiation and coordinate growth and physiology over long distances. Further, signal interactions and signaling outputs vary significantly with developmental context. This review discusses our current understanding of the integrated intracellular and intercellular signaling networks that control plant growth. PMID:26967291

  9. Physiologically relevant organs on chips

    PubMed Central

    Yum, Kyungsuk; Hong, Soon Gweon; Lee, Luke P.

    2015-01-01

    Recent advances in integrating microengineering and tissue engineering have generated promising microengineered physiological models for experimental medicine and pharmaceutical research. Here we review the recent development of microengineered physiological systems, or organs on chips, that reconstitute the physiologically critical features of specific human tissues and organs and their interactions. This technology uses microengineering approaches to construct organ-specific microenvironments, reconstituting tissue structures, tissue–tissue interactions and interfaces, and dynamic mechanical and biochemical stimuli found in specific organs, to direct cells to assemble into functional tissues. We first discuss microengineering approaches to reproduce the key elements of physiologically important, dynamic mechanical microenvironments, biochemical microenvironments, and microarchitectures of specific tissues and organs in microfluidic cell culture systems. This is followed by examples of microengineered individual organ models that incorporate the key elements of physiological microenvironments into single microfluidic cell culture systems to reproduce organ-level functions. Finally, microengineered multiple organ systems that simulate multiple organ interactions to better represent human physiology, including human responses to drugs, is covered in this review. This emerging organs-on-chips technology has the potential to become an alternative to 2D and 3D cell culture and animal models for experimental medicine, human disease modeling, drug development, and toxicology. PMID:24357624

  10. Integrating physiological threshold experiments with climate modeling to project mangrove range limits

    NASA Astrophysics Data System (ADS)

    Cavanaugh, K. C.; Kellner, J.; Cook-Patton, S.; Williams, P.; Feller, I. C.; Parker, J.

    2014-12-01

    Due to limitations of purely correlative species distribution models, there is a need for more integration of experimental approaches when studying impacts of climate change on species distributions. Here we used controlled experiments to identify physiological thresholds that control poleward range limits of three species of mangroves found in North America. We found that all three species exhibited a threshold response to extreme cold, but freeze tolerance thresholds varied among species. From these experiments we developed a climate metric, freeze degree days (FDD), which incorporates both the intensity and frequency of freezes. When included in distribution models, FDD was a better predictor of mangrove presence/absence than other temperature-based metrics. Using 27 years of satellite imagery, we linked FDD to past changes in mangrove abundance in Florida, further supporting the relevance of FDD. We then used downscaled climate projections of FDD to project poleward migration of these range limits over the next 50 years.

  11. High throughput gene expression profiling: a molecular approach to integrative physiology

    PubMed Central

    Liang, Mingyu; Cowley, Allen W; Greene, Andrew S

    2004-01-01

    Integrative physiology emphasizes the importance of understanding multiple pathways with overlapping, complementary, or opposing effects and their interactions in the context of intact organisms. The DNA microarray technology, the most commonly used method for high-throughput gene expression profiling, has been touted as an integrative tool that provides insights into regulatory pathways. However, the physiology community has been slow in acceptance of these techniques because of early failure in generating useful data and the lack of a cohesive theoretical framework in which experiments can be analysed. With recent advances in both technology and analysis, we propose a concept of multidimensional integration of physiology that incorporates data generated by DNA microarray and other functional, genomic, and proteomic approaches to achieve a truly integrative understanding of physiology. Analysis of several studies performed in simpler organisms or in mammalian model animals supports the feasibility of such multidimensional integration and demonstrates the power of DNA microarray as an indispensable molecular tool for such integration. Evaluation of DNA microarray techniques indicates that these techniques, despite limitations, have advanced to a point where the question-driven profiling research has become a feasible complement to the conventional, hypothesis-driven research. With a keen sense of homeostasis, global regulation, and quantitative analysis, integrative physiologists are uniquely positioned to apply these techniques to enhance the understanding of complex physiological functions. PMID:14678487

  12. Integrated imaging of cardiac anatomy, physiology, and viability.

    PubMed

    Arrighi, James A

    2009-03-01

    Technologic developments in imaging will have a significant impact on cardiac imaging over the next decade. These advances will permit more detailed assessment of cardiac anatomy, complex assessment of cardiac physiology, and integration of anatomic and physiologic data. The distinction between anatomic and physiologic imaging is important. For assessing patients with known or suspected coronary artery disease, physiologic and anatomic imaging data are complementary. The strength of anatomic imaging rests in its ability to detect the presence of disease, whereas physiologic imaging techniques assess the impact of disease, such as whether a coronary atherosclerotic lesion limits myocardial blood flow. Research indicates that physiologic data are more prognostically important than anatomic data, but both may be important in patient management decisions. Integrated cardiac imaging is an evolving field, with many potential indications. These include assessment of coronary stenosis, myocardial viability, anatomic and physiologic characterization of atherosclerotic plaque, and advanced molecular imaging.

  13. Cellular Decision Making by Non-Integrative Processing of TLR Inputs.

    PubMed

    Kellogg, Ryan A; Tian, Chengzhe; Etzrodt, Martin; Tay, Savaş

    2017-04-04

    Cells receive a multitude of signals from the environment, but how they process simultaneous signaling inputs is not well understood. Response to infection, for example, involves parallel activation of multiple Toll-like receptors (TLRs) that converge on the nuclear factor κB (NF-κB) pathway. Although we increasingly understand inflammatory responses for isolated signals, it is not clear how cells process multiple signals that co-occur in physiological settings. We therefore examined a bacterial infection scenario involving co-stimulation of TLR4 and TLR2. Independent stimulation of these receptors induced distinct NF-κB dynamic profiles, although surprisingly, under co-stimulation, single cells continued to show ligand-specific dynamic responses characteristic of TLR2 or TLR4 signaling rather than a mixed response, comprising a cellular decision that we term "non-integrative" processing. Iterating modeling and microfluidic experiments revealed that non-integrative processing occurred through interaction of switch-like NF-κB activation, receptor-specific processing timescales, cell-to-cell variability, and TLR cross-tolerance mediated by multilayer negative feedback. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Synaptic physiology of the flow of information in the cat's visual cortex in vivo

    PubMed Central

    Hirsch, Judith A; Martinez, Luis M; Alonso, José-Manuel; Desai, Komal; Pillai, Cinthi; Pierre, Carhine

    2002-01-01

    Each stage of the striate cortical circuit extracts novel information about the visual environment. We asked if this analytic process reflected laminar variations in synaptic physiology by making whole-cell recording with dye-filled electrodes from the cat's visual cortex and thalamus; the stimuli were flashed spots. Thalamic afferents terminate in layer 4, which contains two types of cell, simple and complex, distinguished by the spatial structure of the receptive field. Previously, we had found that the postsynaptic and spike responses of simple cells reliably followed the time course of flash-evoked thalamic activity. Here we report that complex cells in layer 4 (or cells intermediate between simple and complex) similarly reprised thalamic activity (response/trial, 99 ± 1.9 %; response duration 159 ± 57 ms; latency 25 ± 4 ms; average ± standard deviation; n = 7). Thus, all cells in layer 4 share a common synaptic physiology that allows secure integration of thalamic input. By contrast, at the second cortical stage (layer 2+3), where layer 4 directs its output, postsynaptic responses did not track simple patterns of antecedent activity. Typical responses to the static stimulus were intermittent and brief (response/trial, 31 ± 40 %; response duration 72 ± 60 ms, latency 39 ± 7 ms; n = 11). Only richer stimuli like those including motion evoked reliable responses. All told, the second level of cortical processing differs markedly from the first. At that later stage, ascending information seems strongly gated by connections between cortical neurons. Inputs must be combined in newly specified patterns to influence intracortical stages of processing. PMID:11927691

  15. Distinctive receptive field and physiological properties of a wide-field amacrine cell in the macaque monkey retina

    PubMed Central

    Puller, Christian; Rieke, Fred; Neitz, Jay; Neitz, Maureen

    2015-01-01

    At early stages of visual processing, receptive fields are typically described as subtending local regions of space and thus performing computations on a narrow spatial scale. Nevertheless, stimulation well outside of the classical receptive field can exert clear and significant effects on visual processing. Given the distances over which they occur, the retinal mechanisms responsible for these long-range effects would certainly require signal propagation via active membrane properties. Here the physiology of a wide-field amacrine cell—the wiry cell—in macaque monkey retina is explored, revealing receptive fields that represent a striking departure from the classic structure. A single wiry cell integrates signals over wide regions of retina, 5–10 times larger than the classic receptive fields of most retinal ganglion cells. Wiry cells integrate signals over space much more effectively than predicted from passive signal propagation, and spatial integration is strongly attenuated during blockade of NMDA spikes but integration is insensitive to blockade of NaV channels with TTX. Thus these cells appear well suited for contributing to the long-range interactions of visual signals that characterize many aspects of visual perception. PMID:26133804

  16. What Makes the Learning of Physiology in a PBL Medical Curriculum Challenging? Student Perceptions

    ERIC Educational Resources Information Center

    Tufts, Mark A.; Higgins-Opitz, Susan B.

    2009-01-01

    Physiology is an integral component of any medical curriculum. Traditionally, the learning of physiology has relied heavily on systems-based didactic lectures. In 2001, the Nelson R. Mandela School of Medicine (NRMSM; Durban, South Africa) embarked on a problem-based curriculum in which the learning of physiology was integrated with relevant…

  17. Employee subjective well-being and physiological functioning: An integrative model

    PubMed Central

    Tay, Louis

    2015-01-01

    Research shows that worker subjective well-being influences physiological functioning—an early signal of poor health outcomes. While several theoretical perspectives provide insights on this relationship, the literature lacks an integrative framework explaining the relationship. We develop a conceptual model explaining the link between subjective well-being and physiological functioning in the context of work. Integrating positive psychology and occupational stress perspectives, our model explains the relationship between subjective well-being and physiological functioning as a result of the direct influence of subjective well-being on physiological functioning and of their common relationships with work stress and personal resources, both of which are influenced by job conditions. PMID:28070359

  18. Employee subjective well-being and physiological functioning: An integrative model.

    PubMed

    Kuykendall, Lauren; Tay, Louis

    2015-01-01

    Research shows that worker subjective well-being influences physiological functioning-an early signal of poor health outcomes. While several theoretical perspectives provide insights on this relationship, the literature lacks an integrative framework explaining the relationship. We develop a conceptual model explaining the link between subjective well-being and physiological functioning in the context of work. Integrating positive psychology and occupational stress perspectives, our model explains the relationship between subjective well-being and physiological functioning as a result of the direct influence of subjective well-being on physiological functioning and of their common relationships with work stress and personal resources, both of which are influenced by job conditions.

  19. Baroreflex and neurovascular responses to skeletal muscle mechanoreflex activation in humans: an exercise in integrative physiology.

    PubMed

    Drew, Rachel C

    2017-12-01

    Cardiovascular adjustments to exercise resulting in increased blood pressure (BP) and heart rate (HR) occur in response to activation of several neural mechanisms: the exercise pressor reflex, central command, and the arterial baroreflex. Neural inputs from these feedback and feedforward mechanisms integrate in the cardiovascular control centers in the brain stem and modulate sympathetic and parasympathetic neural outflow, resulting in the increased BP and HR observed during exercise. Another specific consequence of the central neural integration of these inputs during exercise is increased sympathetic neural outflow directed to the kidneys, causing renal vasoconstriction, a key reflex mechanism involved in blood flow redistribution during increased skeletal muscle work. Studies in humans have shown that muscle mechanoreflex activation inhibits cardiac vagal outflow, decreasing the sensitivity of baroreflex control of HR. Metabolite sensitization of muscle mechanoreceptors can lead to reduced sensitivity of baroreflex control of HR, with thromboxane being one of the metabolites involved, via greater inhibition of cardiac vagal outflow without affecting baroreflex control of BP or baroreflex resetting. Muscle mechanoreflex activation appears to play a predominant role in causing renal vasoconstriction, both in isolation and in the presence of local metabolites. Limited investigations in older adults and patients with cardiovascular-related disease have provided some insight into how the influence of muscle mechanoreflex activation on baroreflex function and renal vasoconstriction is altered in these populations. However, future research is warranted to better elucidate the specific effect of muscle mechanoreflex activation on baroreflex and neurovascular responses with aging and cardiovascular-related disease. Copyright © 2017 the American Physiological Society.

  20. Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation (ROHHAD): Response to ventilatory challenges.

    PubMed

    Carroll, Michael S; Patwari, Pallavi P; Kenny, Anna S; Brogadir, Cindy D; Stewart, Tracey M; Weese-Mayer, Debra E

    2015-12-01

    Hypoventilation is a defining feature of Rapid-onset Obesity with Hypothalamic dysfunction, Hypoventilation and Autonomic Dysregulation (ROHHAD), a rare respiratory and autonomic disorder. This chronic hypoventilation has been explained as the result of dysfunctional chemosensory control circuits, possibly affecting peripheral afferent input, central integration, or efferent motor control. However, chemosensory function has never been quantified in a cohort of ROHHAD patients. Therefore, the purpose of this study was to assess the response to awake ventilatory challenge testing in children and adolescents with ROHHAD. The ventilatory, cardiovascular and cerebrovascular responses in 25 distinct comprehensive physiological recordings from seven unique ROHHAD patients to three different gas mixtures were analyzed at breath-to-breath and beat-to-beat resolution as absolute measures, as change from baseline, or with derived metrics. Physiologic measures were recorded during a 3-min baseline period of room air, a 3-min gas exposure (of 100% O2; 95% O2, 5% CO2; or 14% O2, 7% CO2 balanced with N2), and a 3-min recovery period. An additional hypoxic challenge was conducted which consisted of either five or seven tidal breaths of 100% N2. While ROHHAD cases showed a diminished VT and inspiratory drive response to hypoxic hypercapnia and absent behavioral awareness of the physiologic compromise, most ventilatory, cardiovascular, and cerebrovascular measures were similar to those of previously published controls using an identical protocol, suggesting a mild chemosensory deficit. Nonetheless, the high mortality rate, comorbidity and physiological fragility of patients with ROHHAD demand continued clinical vigilance. © 2015 Wiley Periodicals, Inc.

  1. The transcriptomic responses of the eastern oyster, Crassostrea virginica, to environmental conditions.

    PubMed

    Chapman, Robert W; Mancia, Annalaura; Beal, Marion; Veloso, Artur; Rathburn, Charles; Blair, Anne; Holland, A F; Warr, G W; Didinato, Guy; Sokolova, Inna M; Wirth, Edward F; Duffy, Edward; Sanger, Denise

    2011-04-01

    Understanding the mechanisms by which organisms adapt to environmental conditions is a fundamental question for ecology and evolution. In this study, we evaluate changes in gene expression of a marine mollusc, the eastern oyster Crassostrea virginica, associated with the physico-chemical conditions and the levels of metals and other contaminants in their environment. The results indicate that transcript signatures can effectively disentangle the complex interactive gene expression responses to the environment and are also capable of disentangling the complex dynamic effects of environmental factors on gene expression. In this context, the mapping of environment to gene and gene to environment is reciprocal and mutually reinforcing. In general, the response of transcripts to the environment is driven by major factors known to affect oyster physiology such as temperature, pH, salinity, and dissolved oxygen, with pollutant levels playing a relatively small role, at least within the range of concentrations found in the studied oyster habitats. Further, the two environmental factors that dominate these effects (temperature and pH) interact in a dynamic and nonlinear fashion to impact gene expression. Transcriptomic data obtained in our study provide insights into the mechanisms of physiological responses to temperature and pH in oysters that are consistent with the known effects of these factors on physiological functions of ectotherms and indicate important linkages between transcriptomics and physiological outcomes. Should these linkages hold in further studies and in other organisms, they may provide a novel integrated approach for assessing the impacts of climate change, ocean acidification and anthropogenic contaminants on aquatic organisms via relatively inexpensive microarray platforms. © 2011 Blackwell Publishing Ltd.

  2. LRP1 integrates murine macrophage cholesterol homeostasis and inflammatory responses in atherosclerosis

    PubMed Central

    Zhou, Li; Plattner, Florian; Liu, Mingxia; Parks, John S; Hammer, Robert E; Boucher, Philippe; Tsai, Shirling

    2017-01-01

    Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional cell surface receptor with diverse physiological roles, ranging from cellular uptake of lipoproteins and other cargo by endocytosis to sensor of the extracellular environment and integrator of a wide range of signaling mechanisms. As a chylomicron remnant receptor, LRP1 controls systemic lipid metabolism in concert with the LDL receptor in the liver, whereas in smooth muscle cells (SMC) LRP1 functions as a co-receptor for TGFβ and PDGFRβ in reverse cholesterol transport and the maintenance of vascular wall integrity. Here we used a knockin mouse model to uncover a novel atheroprotective role for LRP1 in macrophages where tyrosine phosphorylation of an NPxY motif in its intracellular domain initiates a signaling cascade along an LRP1/SHC1/PI3K/AKT/PPARγ/LXR axis to regulate and integrate cellular cholesterol homeostasis through the expression of the major cholesterol exporter ABCA1 with apoptotic cell removal and inflammatory responses. PMID:29144234

  3. Integrated responses of hydraulic architecture, water and carbon relations of western hemlock to dwarf mistletoe infection.

    Treesearch

    E.C. Meinzer; D.R. Woodruff; D.C. Shaw

    2004-01-01

    Dwarf mistletoe (Arceuthohium spp.) is a hemiparasite that is said to be the single-most destructive pathogen of commercially valuable coniferous trees in many regions of the world. Although its destructive nature is well documented in many respects, its effects on the physiology of its host are poorly understood. In the present study, water and...

  4. Spacelab Life Sciences 1 - The stepping stone

    NASA Technical Reports Server (NTRS)

    Dalton, B. P.; Leon, H.; Hogan, R.; Clarke, B.; Tollinger, D.

    1988-01-01

    The Spacelab Life Sciences (SLS-1) mission scheduled for launch in March 1990 will study the effects of microgravity on physiological parameters of humans and animals. The data obtained will guide equipment design, performance of activities involving the use of animals, and prediction of human physiological responses during long-term microgravity exposure. The experiments planned for the SLS-1 mission include a particulate-containment demonstration test, integrated rodent experiments, jellyfish experiments, and validation of the small-mass measuring instrument. The design and operation of the Research Animal Holding Facility, General-Purpose Work Station, General-Purpose Transfer Unit, and Animal Enclosure Module are discussed and illustrated with drawings and diagrams.

  5. Proteomic and metabolomic responses of Pacific oyster Crassostrea gigas to elevated pCO2 exposure.

    PubMed

    Wei, Lei; Wang, Qing; Wu, Huifeng; Ji, Chenglong; Zhao, Jianmin

    2015-01-01

    The gradually increased atmospheric CO2 partial pressure (pCO2) has thrown the carbonate chemistry off balance and resulted in decreased seawater pH in marine ecosystem, termed ocean acidification (OA). Anthropogenic OA is postulated to affect the physiology of many marine calcifying organisms. However, the susceptibility and metabolic pathways of change in most calcifying animals are still far from being well understood. In this work, the effects of exposure to elevated pCO2 were characterized in gills and hepatopancreas of Crassostrea gigas using integrated proteomic and metabolomic approaches. Metabolic responses indicated that high CO2 exposure mainly caused disturbances in energy metabolism and osmotic regulation marked by differentially altered ATP, glucose, glycogen, amino acids and organic osmolytes in oysters, and the depletions of ATP in gills and the accumulations of ATP, glucose and glycogen in hepatopancreas accounted for the difference in energy distribution between these two tissues. Proteomic responses suggested that OA could not only affect energy and primary metabolisms, stress responses and calcium homeostasis in both tissues, but also influence the nucleotide metabolism in gills and cytoskeleton structure in hepatopancreas. This study demonstrated that the combination of proteomics and metabolomics could provide an insightful view into the effects of OA on oyster C. gigas. The gradually increased atmospheric CO2 partial pressure (pCO2) has thrown the carbonate chemistry off balance and resulted in decreased seawater pH in marine ecosystem, termed ocean acidification (OA). Anthropogenic OA is postulated to affect the physiology of many marine calcifying organisms. However, the susceptibility and metabolic pathways of change in most calcifying animals are still far from being understood. To our knowledge, few studies have focused on the responses induced by pCO2 at both protein and metabolite levels. The pacific oyster C. gigas, widely distributed throughout most of the world's oceans, is a model organism for marine environmental science. In the present study, an integrated metabolomic and proteomic approach was used to elucidate the effects of ocean acidification on Pacific oyster C. gigas, hopefully shedding light on the physiological responses of marine mollusk to the OA stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Bioenergetics and synaptic plasticity as potential targets for individualizing treatment for depression.

    PubMed

    Price, J Blair; Bronars, Carrie; Erhardt, Sophie; Cullen, Kathyrn R; Schwieler, Lilly; Berk, Michael; Walder, Ken; McGee, Sean L; Frye, Mark A; Tye, Susannah J

    2018-04-12

    Disruptions of bioenergetic signaling and neurogenesis are hallmarks of depression physiology and are often the product of dysregulation of the inflammatory, stress-response, and metabolic systems. These systems are extensively interrelated at the physiological level, yet the bulk of the literature to date addresses pathophysiological mechanisms in isolation. A more integrated understanding of the etiology, progression, and treatment response profiles of depression is possible through wider consideration of relevant preclinical and clinical studies that examine the result of disruptions in these systems. Here, we review recent data demonstrating the critical effects of bioenergetic disruption on neuroplasticity and the development and progression of depressive illness. We further highlight the interactive and dynamic nature of the inflammatory and stress response systems and how disruption of these systems influences bioenergetic signaling pathways critical to treatment outcomes. In so doing, we underscore the pressing need to reconsider the implications of treatment resistance and present a framework for developing novel, personalized treatment approaches for depression. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Physiological responses of the CAM epiphyte Tillandsia usneoides L. (Bromeliaceae) to variations in light and water supply.

    PubMed

    Haslam, Richard; Borland, Anne; Maxwell, Kate; Griffiths, Howard

    2003-06-01

    In an effort to understand the mechanisms that sustain rootless atmospheric plants, the modulation of Crassulacean acid metabolism (CAM) in response to variations in irradiance and water supply was investigated in the epiphyte Tillandsia usneoides. Plants were acclimated to three light regimes, i.e. high, intermediate and low, with integrated photon flux densities (PFD) of 14.40, 8.64 and 4.32 mol m-2 d-1 equivalent to an instantaneous PFD of 200, 100, and 50 mumol m-2 s-1, respectively. Daily watering was then withdrawn from half of the plants at each PFD for 7 d prior to sampling. In response to the three PFD treatments, chlorophyll content increased in plants acclimated to lower irradiances. Light response curves using non-invasive measurements of chlorophyll fluorescence demonstrated that photosystem II efficiency (phi PSII) was maintained in high PFD acclimated plants, as they exhibited a larger capacity for non-photochemical dissipation (NPQ) of excess light energy than low PFD acclimated plants. Net CO2 uptake increased in response to higher PFD, reflecting enhanced carboxylation capacity in terms of phosphoenolpyruvate carboxylase (PEPc) and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) activities. After water was withdrawn, nocturnal net CO2 uptake and accumulated levels of acidity declined in all PFD treatments, concomitant with increased respiratory recycling of malate. Examining the strategies employed by epiphytes such as T. usneodies to tolerate extreme light and water regimes has demonstrated the importance of physiological mechanisms that allow flexible carboxylation capacity and continued carbon cycling to maintain photosynthetic integrity.

  8. Functional modeling of the human auditory brainstem response to broadband stimulationa)

    PubMed Central

    Verhulst, Sarah; Bharadwaj, Hari M.; Mehraei, Golbarg; Shera, Christopher A.; Shinn-Cunningham, Barbara G.

    2015-01-01

    Population responses such as the auditory brainstem response (ABR) are commonly used for hearing screening, but the relationship between single-unit physiology and scalp-recorded population responses are not well understood. Computational models that integrate physiologically realistic models of single-unit auditory-nerve (AN), cochlear nucleus (CN) and inferior colliculus (IC) cells with models of broadband peripheral excitation can be used to simulate ABRs and thereby link detailed knowledge of animal physiology to human applications. Existing functional ABR models fail to capture the empirically observed 1.2–2 ms ABR wave-V latency-vs-intensity decrease that is thought to arise from level-dependent changes in cochlear excitation and firing synchrony across different tonotopic sections. This paper proposes an approach where level-dependent cochlear excitation patterns, which reflect human cochlear filter tuning parameters, drive AN fibers to yield realistic level-dependent properties of the ABR wave-V. The number of free model parameters is minimal, producing a model in which various sources of hearing-impairment can easily be simulated on an individualized and frequency-dependent basis. The model fits latency-vs-intensity functions observed in human ABRs and otoacoustic emissions while maintaining rate-level and threshold characteristics of single-unit AN fibers. The simulations help to reveal which tonotopic regions dominate ABR waveform peaks at different stimulus intensities. PMID:26428802

  9. Effect of Wearing a Telemetry Jacket on Behavioral and Physiologic Parameters of Dogs in the Open‑Field Test

    PubMed Central

    Fish, Richard E; Foster, Melanie L; Gruen, Margaret E; Sherman, Barbara L; Dorman, David C

    2017-01-01

    Safety pharmacology studies in dogs often integrate behavioral assessments made using video recording with physiologic measurements collected by telemetry. However, whether merely wearing the telemetry vest affects canine behavior and other parameters has not been evaluated. This pilot study assessed the effect of a telemetry vest on behavioral and physiologic responses to an environmental stressor, the sounds of a thunderstorm, in Labrador retrievers. Dogs were assigned to one of 2 experimental groups (Vest and No-Vest, n = 8 dogs per group) by using a matched pairs design, with a previously determined, sound-associated anxiety score as the blocking variable. Dogs were individually retested with the same standardized sound stimulus (thunderstorm) in an open-field arena, and their behavioral responses were video recorded. Video analysis of locomotor activity and anxiety-related behavior and manual determination of heart rate and body temperature were performed; results were compared between groups. Vest wearing did not affect total locomotor activity or rectal body temperature but significantly decreased heart rate by 8% and overall mean anxiety score by 34% during open-field test sessions. Our results suggest that the use of telemetry vests in dogs influences the measurement of physiologic parameters and behaviors that are assessed in safety pharmacology studies. PMID:28724487

  10. Physiological Role of Gap-Junctional Hemichannels

    PubMed Central

    Quist, Arjan Pieter; Rhee, Seung Keun; Lin, Hai; Lal, Ratneshwar

    2000-01-01

    Hemichannels in the overlapping regions of apposing cells plasma membranes join to form gap junctions and provide an intercellular communication pathway. Hemichannels are also present in the nonjunctional regions of individual cells and their activity is gated by several agents, including calcium. However, their physiological roles are unknown. Using techniques of atomic force microscopy (AFM), fluorescent dye uptake assay, and laser confocal immunofluorescence imaging, we have examined the extracellular calcium-dependent modulation of cell volume. In response to a change in the extracellular physiological calcium concentration (1.8 to ≤1.6 mM) in an otherwise isosmotic condition, real-time AFM imaging revealed a significant and reversible increase in the volume of cells expressing gap-junctional proteins (connexins). Volume change did not occur in cells that were not expressing connexins. However, after the transient or stable transfection of connexin43, volume change did occur. The volume increase was accompanied by cytochalasin D-sensitive higher cell stiffness, which helped maintain cell integrity. These cellular physical changes were prevented by gap-junctional blockers, oleamide and β-glycyrrhetinic acid, or were reversed by returning extracellular calcium to the normal level. We conclude that nongap-junctional hemichannels regulate cell volume in response to the change in extracellular physiological calcium in an otherwise isosmotic situation. PMID:10704454

  11. Use of automated monitoring to assess behavioral toxicology in fish: Linking behavior and physiology

    USGS Publications Warehouse

    Brewer, S.K.; DeLonay, A.J.; Beauvais, S.L.; Little, E.E.; Jones, S.B.

    1999-01-01

    We measured locomotory behaviors (distance traveled, speed, tortuosity of path, and rate of change in direction) with computer-assisted analysis in 30 day posthatch rainbow trout (Oncorhynchus mykiss) exposed to pesticides. We also examined cholinesterase inhibition as a potential endpoint linking physiology and behavior. Sublethal exposure to chemicals often causes changes in swimming behavior, reflecting alterations in sensory and motor systems. Swimming behavior also integrates functions of the nervous system. Rarely are the connections between physiology and behavior made. Although behavior is often suggested as a sensitive, early indicator of toxicity, behavioral toxicology has not been used to its full potential because conventional methods of behavioral assessment have relied on manual techniques, which are often time-consuming and difficult to quantify. This has severely limited the application and utility of behavioral procedures. Swimming behavior is particularly amenable to computerized assessment and automated monitoring. Locomotory responses are sensitive to toxicants and can be easily measured. We briefly discuss the use of behavior in toxicology and automated techniques used in behavioral toxicology. We also describe the system we used to determine locomotory behaviors of fish, and present data demonstrating the system's effectiveness in measuring alterations in response to chemical challenges. Lastly, we correlate behavioral and physiological endpoints.

  12. The Behavior-Physiology Nexus: Behavioral and Physiological Compensation Are Relied on to Different Extents between Seasons.

    PubMed

    Basson, Christine H; Clusella-Trullas, Susana

    2015-01-01

    Environmental variability occurring at different timescales can significantly reduce performance, resulting in evolutionary fitness costs. Shifts in thermoregulatory behavior, metabolism, and water loss via phenotypic plasticity can compensate for thermal variation, but the relative contribution of each mechanism and how they may influence each other are largely unknown. Here, we take an ecologically relevant experimental approach to dissect these potential responses at two temporal scales: weather transients and seasons. Using acclimation to cold, average, or warm conditions in summer and winter, we measure the direction and magnitude of plasticity of resting metabolic rate (RMR), water loss rate (WLR), and preferred body temperature (Tpref) in the lizard Cordylus oelofseni within and between seasons. In summer, lizards selected lower Tpref when acclimated to warm versus cold but had no plasticity of either RMR or WLR. By contrast, winter lizards showed partial compensation of RMR but no behavioral compensation. Between seasons, both behavioral and physiological shifts took place. By integrating ecological reality into laboratory assays, we demonstrate that behavioral and physiological responses of C. oelofseni can be contrasting, depending on the timescale investigated. Incorporating ecologically relevant scenarios and the plasticity of multiple traits is thus essential when attempting to forecast extinction risk to climate change.

  13. Effect of Wearing a Telemetry Jacket on Behavioral and Physiologic Parameters of Dogs in the Open-Field Test.

    PubMed

    Fish, Richard E; Foster, Melanie L; Gruen, Margaret E; Sherman, Barbara L; Dorman, Davidc C

    2017-07-01

    Safety pharmacology studies in dogs often integrate behavioral assessments made using video recording with physiologic measurements collected by telemetry. However, whether merely wearing the telemetry vest affects canine behavior and other parameters has not been evaluated. This pilot study assessed the effect of a telemetry vest on behavioral and physiologic responses to an environmental stressor, the sounds of a thunderstorm, in Labrador retrievers. Dogs were assigned to one of 2 experimental groups (Vest and No-Vest, n = 8 dogs per group) by using a matched pairs design, with a previously determined, sound-associated anxiety score as the blocking variable. Dogs were individually retested with the same standardized sound stimulus (thunderstorm) in an open-field arena, and their behavioral responses were video recorded. Video analysis of locomotor activity and anxiety-related behavior and manual determination of heart rate and body temperature were performed; results were compared between groups. Vest wearing did not affect total locomotor activity or rectal body temperature but significantly decreased heart rate by 8% and overall mean anxiety score by 34% during open-field test sessions. Our results suggest that the use of telemetry vests in dogs influences the measurement of physiologic parameters and behaviors that are assessed in safety pharmacology studies.

  14. Physiological and behavioral responses to an exposure of pitch illusion in the simulator.

    PubMed

    Cheung, Bob; Hofer, Kevin; Heskin, Raquel; Smith, Andrew

    2004-08-01

    It has been suggested that a pilot's physiological and behavioral responses during disorientation can provide a real-time model of pilot state in order to optimize performance. We investigated whether there were consistent behavioral or physiological "markers" that can be monitored during a single episode of disorientation. An Integrated Physiological Trainer with a closed loop interactive aircraft control and point of gaze/eye-tracking device was employed. There were 16 subjects proficient in maintaining straight and level flight and with procedures in changing attitude who were exposed to yaw rotation and a brief head roll to 35 +/- 2 degrees. On return to upright head position, subjects were required to initiate either an ascent or descent to a prescribed attitude. BP, HR, skin conductance, eye movements, and point of gaze were monitored throughout the onset, duration, and immediately after the disorientation insult. Simultaneously, airspeed and power settings were recorded. Compared with the control condition, a significant increase (p < 0.01) in HR, HR variability, and mean arterial BP was observed during the disorientation. Flight performance decrement was reflected by a significant delay in setting power for attitude change and deviation in maintaining airspeed (p < 0.01). Changes in cardiovascular responses appear to be correlated with the onset of disorientation. The correlation of changing eye-tracking behavior and flight performance decrement is consistent with our previous findings. Further study is required to determine whether these findings can be extrapolated to repeated exposures and to other disorientation scenarios.

  15. Teaching Integrative Physiology Using the Quantitative Circulatory Physiology Model and Case Discussion Method: Evaluation of the Learning Experience

    ERIC Educational Resources Information Center

    Rodriguez-Barbero, A.; Lopez-Novoa, J. M.

    2008-01-01

    One of the problems that we have found when teaching human physiology in a Spanish medical school is that the degree of understanding by the students of the integration between organs and systems is rather poor. We attempted to remedy this problem by using a case discussion method together with the Quantitative Circulatory Physiology (QCP)…

  16. Wireless body sensor networks for health-monitoring applications.

    PubMed

    Hao, Yang; Foster, Robert

    2008-11-01

    Current wireless technologies, such as wireless body area networks and wireless personal area networks, provide promising applications in medical monitoring systems to measure specified physiological data and also provide location-based information, if required. With the increasing sophistication of wearable and implantable medical devices and their integration with wireless sensors, an ever-expanding range of therapeutic and diagnostic applications is being pursued by research and commercial organizations. This paper aims to provide a comprehensive review of recent developments in wireless sensor technology for monitoring behaviour related to human physiological responses. It presents background information on the use of wireless technology and sensors to develop a wireless physiological measurement system. A generic miniature platform and other available technologies for wireless sensors have been studied in terms of hardware and software structural requirements for a low-cost, low-power, non-invasive and unobtrusive system.

  17. Self-esteem moderates neuroendocrine and psychological responses to interpersonal rejection.

    PubMed

    Ford, Máire B; Collins, Nancy L

    2010-03-01

    In this study, the authors investigated self-esteem as a moderator of psychological and physiological responses to interpersonal rejection and tested an integrative model detailing the mechanisms by which self-esteem may influence cognitive, affective, and physiological responses. Seventy-eight participants experienced an ambiguous interpersonal rejection (or no rejection) from an opposite sex partner in the context of an online dating interaction. Salivary cortisol was assessed at 5 times, and self-reported cognitive and affective responses were assessed. Compared with those with high self-esteem, individuals with low self-esteem responded to rejection by appraising themselves more negatively, making more self-blaming attributions, exhibiting greater cortisol reactivity, and derogating the rejector. Path analysis indicated that the link between low self-esteem and increased cortisol reactivity was mediated by self-blame attributions; cortisol reactivity, in turn, mediated the link between low self-esteem and increased partner derogation. Discussion centers on the role of self-esteem as part of a broader psychobiological system for regulating and responding to social threat and on implications for health outcomes.

  18. Escherichia coli under Ionic Silver Stress: An Integrative Approach to Explore Transcriptional, Physiological and Biochemical Responses

    PubMed Central

    Saulou-Bérion, Claire; Gonzalez, Ignacio; Enjalbert, Brice; Audinot, Jean-Nicolas; Fourquaux, Isabelle; Jamme, Frédéric; Cocaign-Bousquet, Muriel; Mercier-Bonin, Muriel; Girbal, Laurence

    2015-01-01

    For a better understanding of the systemic effect of sub-lethal micromolar concentrations of ionic silver on Escherichia coli, we performed a multi-level characterization of cells under Ag+-mediated stress using an integrative biology approach combining physiological, biochemical and transcriptomic data. Physiological parameters, namely bacterial growth and survival after Ag+ exposure, were first quantified and related to the accumulation of intracellular silver, probed for the first time by nano secondary ion mass spectroscopy at sub-micrometer lateral resolution. Modifications in E. coli biochemical composition were evaluated under Ag+-mediated stress by in situ synchrotron Fourier-transform infrared microspectroscopy and a comprehensive transcriptome response was also determined. Using multivariate statistics, correlations between the physiological parameters, the extracellular concentration of AgNO3 and the intracellular silver content, gene expression profiles and micro-spectroscopic data were investigated. We identified Ag+-dependent regulation of gene expression required for growth (e.g. transporter genes, transcriptional regulators, ribosomal proteins), for ionic silver transport and detoxification (e.g. copA, cueO, mgtA, nhaR) and for coping with various types of stress (dnaK, pspA, metA,R, oxidoreductase genes). The silver-induced shortening of the acyl chain of fatty acids, mostly encountered in cell membrane, was highlighted by microspectroscopy and correlated with the down-regulated expression of genes involved in fatty acid transport (fadL) and synthesis/modification of lipid A (lpxA and arnA). The increase in the disordered secondary structure of proteins in the presence of Ag+ was assessed through the conformational shift shown for amides I and II, and further correlated with the up-regulated expression of peptidase (hfq) and chaperone (dnaJ), and regulation of transpeptidase expression (ycfS and ycbB). Interestingly, as these transpeptidases act on the structural integrity of the cell wall, regulation of their expression may explain the morphological damage reported under Ag+-mediated stress. This result clearly demonstrates that the cell membrane is a key target of ionic silver. PMID:26696268

  19. In situ impact assessment of wastewater effluents by integrating multi-level biomarker responses in the pale chub (Zacco platypus).

    PubMed

    Kim, Woo-Keun; Jung, Jinho

    2016-06-01

    The integration of biomarker responses ranging from the molecular to the individual level is of great interest for measuring the toxic effects of hazardous chemicals or effluent mixtures on aquatic organisms. This study evaluated the effects of wastewater treatment plant (WWTP) effluents on the freshwater pale chub Zacco platypus by using multi-level biomarker responses at molecular [mRNA expression of catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), and metallothionein (MT)], biochemical (enzyme activities of CAT, SOD, GST, and concentration of MT), and physiological [condition factor (CF) and liver somatic index (LSI)] levels. The mRNA expression levels of GST and MT in Z. platypus from a site downstream of a WWTP significantly increased by 2.2- and 4.5-fold (p<0.05) when compared with those from an upstream site. However, the enzyme activities of CAT, SOD, and GST in fish from the downstream site significantly decreased by 43%, 98%, and 13%, respectively (p<0.05), except for an increase in MT concentration (41%). In addition, a significant increase in LSI (46%) was observed in Z. platypus from the downstream site (p<0.05). Concentrations of Cu, Zn, Cd, and Pb in the liver of Z. platypus were higher (530%, 353%, 800%, and 2,200%, respectively) in fish from a downstream site than in fish from an upstream location, and several multi-level biomarker responses were significantly correlated with the accumulated metals in Z. platypus (p<0.05). Integrated biomarker responses at molecular, biochemical, and physiological levels (multi-level IBR) were much higher (about 4-fold) at the downstream site than at the upstream site. This study suggests that the multi-level IBR approach is very useful for quantifying in situ adverse effects of WWTP effluents. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Integrative medical therapy: examination of meditation's therapeutic and global medicinal outcomes via nitric oxide (review).

    PubMed

    Stefano, George B; Esch, Tobias

    2005-10-01

    Relaxation techniques are part of the integrative medicine movement that is of growing importance for mainstream medicine. Complementary medical therapies have the potential to affect many physiological systems. Repeatedly studies show the benefits of the placebo response and relaxation techniques in the treatment of hypertension, cardiac arrhythmias, chronic pain, insomnia, anxiety and mild and moderate depression, premenstrual syndrome, and infertility. In itself, relaxation is characterized by a decreased metabolism, heart rate, blood pressure, and rate of breathing as well as an increase in skin temperature. Relaxation approaches, such as progressive muscle relaxation, autogenic training, meditation and biofeedback, are effective in lowering systolic and diastolic blood pressure in hypertensive patients by a significant margin. Given this association with changes in vascular tone, we have hypothesized that nitric oxide, a demonstrated vasodilator substance, contribute to physiological activity of relaxation approaches. We examined the scientific literature concerning the disorders noted earlier for their nitric oxide involvement in an attempt to provide a molecular rationale for the positive effects of relaxation approaches, which are physiological and cognitive process. We conclude that constitutive nitric oxide may crucially contribute to potentially beneficial outcomes and effects in diverse pathologies, exerting a global healing effect.

  1. The Central Endocrine Glands: Intertwining Physiology and Pharmacy

    PubMed Central

    2007-01-01

    The initial courses in didactic pharmacy curriculum are designed to provide core scientific knowledge and develop learning skills that are the basis for highly competent application and practice of pharmacy. Commonly, students interpret this scientific base as ancillary to the practice of pharmacy. Physiology courses present a natural opportunity for the instructor to introduce basic pharmaceutical principles that form the foundation of pharmacological application early in the professional curriculum. Human Physiology I is the first of a 2-course physiology sequence that pharmacy students take upon matriculating into Midwestern University College of Pharmacy-Glendale. The endocrine physiology section of this course is designed to emphasize the regulatory and compensatory nature of this system in maintaining homeostasis, but also includes aspects of basic pharmaceutical principles. In this way the dependency of physiology and pharmacy upon one another is accentuated. The lecture format and content described in this manuscript focus on the central endocrine glands and illustrates their vital role in normal body function, compensatory responses to disease states, and their components as pharmacotherapy targets. The integration of these pharmaceutical principles at the introductory level supports an environment that can alleviate any perceived disparity between science foundation and practical application in the profession of pharmacy. PMID:17998993

  2. Is There a Relationship Between Tic Frequency and Physiological Arousal? Examination in a Sample of Children with Co-Occurring Tic and Anxiety Disorders

    PubMed Central

    Conelea, Christine A.; Ramanujam, Krishnapriya; Walther, Michael R.; Freeman, Jennifer B.; Garcia, Abbe M.

    2014-01-01

    Stress is the contextual variable most commonly implicated in tic exacerbations. However, research examining associations between tics, stressors, and the biological stress response has yielded mixed results. This study examined whether tics occur at a greater frequency during discrete periods of heightened physiological arousal. Children with co-occurring tic and anxiety disorders (n = 8) completed two stress induction tasks (discussion of family conflict, public speech). Observational (tic frequencies) and physiological (heart rate) data were synchronized using The Observer XT, and tic frequencies were compared across periods of high and low heart rate. Tic frequencies across the entire experiment did not increase during periods of higher heart rate. During the speech task, tic frequencies were significantly lower during periods of higher heart rate. Results suggest that tic exacerbations may not be associated with heightened physiological arousal and highlight the need for further tic research using integrated measurement of behavioral and biological processes. PMID:24662238

  3. Is There a Relationship Between Tic Frequency and Physiological Arousal? Examination in a Sample of Children With Co-Occurring Tic and Anxiety Disorders.

    PubMed

    Conelea, Christine A; Ramanujam, Krishnapriya; Walther, Michael R; Freeman, Jennifer B; Garcia, Abbe M

    2014-03-01

    Stress is the contextual variable most commonly implicated in tic exacerbations. However, research examining associations between tics, stressors, and the biological stress response has yielded mixed results. This study examined whether tics occur at a greater frequency during discrete periods of heightened physiological arousal. Children with co-occurring tic and anxiety disorders (n = 8) completed two stress-induction tasks (discussion of family conflict, public speech). Observational (tic frequencies) and physiological (heart rate [HR]) data were synchronized using The Observer XT, and tic frequencies were compared across periods of high and low HR. Tic frequencies across the entire experiment did not increase during periods of higher HR. During the speech task, tic frequencies were significantly lower during periods of higher HR. Results suggest that tic exacerbations may not be associated with heightened physiological arousal and highlight the need for further tic research using integrated measurement of behavioral and biological processes. © The Author(s) 2014.

  4. Integrative Evaluation of Automated Massage Combined with Thermotherapy: Physical, Physiological, and Psychological Viewpoints.

    PubMed

    Kim, Do-Won; Lee, Dae Woon; Schreiber, Joergen; Im, Chang-Hwan; Kim, Hansung

    2016-01-01

    Various types of massages are reported to relieve stress, pain, and anxiety which are beneficial for rehabilitation; however, more comprehensive studies are needed to understand the mechanism of massage therapy. In this study, we investigated the effect of massage therapy, alone or in combination with infrared heating, on 3 different aspects: physical, physiological, and psychological. Twenty-eight healthy university students were subjected to 3 different treatment conditions on separate days, one condition per day: control, massage only, or massage with infrared heating. Physical (trunk extension [TE]; maximum power of erector spinae), physiological (heart-rate variability [HRV]; electroencephalogram [EEG]), and psychological (state-trait anxiety inventory [STAI]; visual analogue scale [VAS]) measurements were evaluated and recorded before and after each treatment condition. The results showed that massage therapy, especially when combined with infrared heating, significantly improved physical functioning, increased parasympathetic response, and decreased psychological stress and anxiety. In the current study, we observed that massage therapy contributes to various physical, physiological, and psychological changes, where the effect increases with thermotherapy.

  5. Integrative Evaluation of Automated Massage Combined with Thermotherapy: Physical, Physiological, and Psychological Viewpoints

    PubMed Central

    Schreiber, Joergen

    2016-01-01

    Various types of massages are reported to relieve stress, pain, and anxiety which are beneficial for rehabilitation; however, more comprehensive studies are needed to understand the mechanism of massage therapy. In this study, we investigated the effect of massage therapy, alone or in combination with infrared heating, on 3 different aspects: physical, physiological, and psychological. Twenty-eight healthy university students were subjected to 3 different treatment conditions on separate days, one condition per day: control, massage only, or massage with infrared heating. Physical (trunk extension [TE]; maximum power of erector spinae), physiological (heart-rate variability [HRV]; electroencephalogram [EEG]), and psychological (state-trait anxiety inventory [STAI]; visual analogue scale [VAS]) measurements were evaluated and recorded before and after each treatment condition. The results showed that massage therapy, especially when combined with infrared heating, significantly improved physical functioning, increased parasympathetic response, and decreased psychological stress and anxiety. In the current study, we observed that massage therapy contributes to various physical, physiological, and psychological changes, where the effect increases with thermotherapy. PMID:28074179

  6. Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change.

    PubMed

    McCoy, Sophie J; Kamenos, Nicholas A

    2015-02-01

    Coralline algae are globally distributed benthic primary producers that secrete calcium carbonate skeletons. In the context of ocean acidification, they have received much recent attention due to the potential vulnerability of their high-Mg calcite skeletons and their many important ecological roles. Herein, we summarize what is known about coralline algal ecology and physiology, providing context to understand their responses to global climate change. We review the impacts of these changes, including ocean acidification, rising temperatures, and pollution, on coralline algal growth and calcification. We also assess the ongoing use of coralline algae as marine climate proxies via calibration of skeletal morphology and geochemistry to environmental conditions. Finally, we indicate critical gaps in our understanding of coralline algal calcification and physiology and highlight key areas for future research. These include analytical areas that recently have become more accessible, such as resolving phylogenetic relationships at all taxonomic ranks, elucidating the genes regulating algal photosynthesis and calcification, and calibrating skeletal geochemical metrics, as well as research directions that are broadly applicable to global change ecology, such as the importance of community-scale and long-term experiments in stress response. © 2015 The Authors. Journal of Phycology published by Wiley Periodicals, Inc. on behalf of Phycological Society of America.

  7. Progress in the development of a transcutaneously powered axial flow blood pump ventricular assist system.

    PubMed

    Parnis, S M; Conger, J L; Fuqua, J M; Jarvik, R K; Inman, R W; Tamez, D; Macris, M P; Moore, S; Jacobs, G; Sweeney, M J; Frazier, O H

    1997-01-01

    Development of the Jarvik 2000 intraventricular assist system for long-term support is ongoing. The system integrates the Jarvik 2000 axial flow blood pump with a microprocessor based automatic motor controller to provide response to physiologic demands. Nine devices have been evaluated in vivo (six completed, three ongoing) with durations in excess of 26 weeks. Instrumented experiments include implanted transit-time ultrasonic flow probes and dual micromanometer LV/AoP catheters. Treadmill exercise and heart pacing studies are performed to evaluate control system response to increased heart rates. Pharmacologically induced cardiac dysfunction studies are performed in awake and anesthetized calves to demonstrate control response to simulated heart failure conditions. No deleterious effects or events were encountered during any physiologic studies. No hematologic, renal, hepatic, or pulmonary complications have been encountered in any study. Plasma free hemoglobin levels of 7.0 +/- 5.1 mg/dl demonstrate no device related hemolysis throughout the duration of all studies. Pathologic analysis at explant showed no evidence of thromboembolic events. All pump surfaces were free of thrombus except for a minimal ring of fibrin, (approximately 1 mm) on the inflow bearing. Future developments for permanent implantation will include implanted physiologic control systems, implanted batteries, and transcutaneous energy and data transmission systems.

  8. Organ-specific physiological responses to acute physical exercise and long-term training in humans.

    PubMed

    Heinonen, Ilkka; Kalliokoski, Kari K; Hannukainen, Jarna C; Duncker, Dirk J; Nuutila, Pirjo; Knuuti, Juhani

    2014-11-01

    Virtually all tissues in the human body rely on aerobic metabolism for energy production and are therefore critically dependent on continuous supply of oxygen. Oxygen is provided by blood flow, and, in essence, changes in organ perfusion are also closely associated with alterations in tissue metabolism. In response to acute exercise, blood flow is markedly increased in contracting skeletal muscles and myocardium, but perfusion in other organs (brain and bone) is only slightly enhanced or is even reduced (visceral organs). Despite largely unchanged metabolism and perfusion, repeated exposures to altered hemodynamics and hormonal milieu produced by acute exercise, long-term exercise training appears to be capable of inducing effects also in tissues other than muscles that may yield health benefits. However, the physiological adaptations and driving-force mechanisms in organs such as brain, liver, pancreas, gut, bone, and adipose tissue, remain largely obscure in humans. Along these lines, this review integrates current information on physiological responses to acute exercise and to long-term physical training in major metabolically active human organs. Knowledge is mostly provided based on the state-of-the-art, noninvasive human imaging studies, and directions for future novel research are proposed throughout the review. ©2014 Int. Union Physiol. Sci./Am. Physiol. Soc.

  9. Transcriptional integration of mitogenic and mechanical signals by Myc and YAP

    PubMed Central

    Croci, Ottavio; De Fazio, Serena; Biagioni, Francesca; Donato, Elisa; Caganova, Marieta; Curti, Laura; Doni, Mirko; Sberna, Silvia; Aldeghi, Deborah; Biancotto, Chiara; Verrecchia, Alessandro; Olivero, Daniela; Amati, Bruno

    2017-01-01

    Mammalian cells must integrate environmental cues to determine coherent physiological responses. The transcription factors Myc and YAP–TEAD act downstream from mitogenic signals, with the latter responding also to mechanical cues. Here, we show that these factors coordinately regulate genes required for cell proliferation. Activation of Myc led to extensive association with its genomic targets, most of which were prebound by TEAD. At these loci, recruitment of YAP was Myc-dependent and led to full transcriptional activation. This cooperation was critical for cell cycle entry, organ growth, and tumorigenesis. Thus, Myc and YAP–TEAD integrate mitogenic and mechanical cues at the transcriptional level to provide multifactorial control of cell proliferation. PMID:29141911

  10. Metabolome Integrated Analysis of High-Temperature Response in Pinus radiata.

    PubMed

    Escandón, Mónica; Meijón, Mónica; Valledor, Luis; Pascual, Jesús; Pinto, Gloria; Cañal, María Jesús

    2018-01-01

    The integrative omics approach is crucial to identify the molecular mechanisms underlying high-temperature response in non-model species. Based on future scenarios of heat increase, Pinus radiata plants were exposed to a temperature of 40°C for a period of 5 days, including recovered plants (30 days after last exposure to 40°C) in the analysis. The analysis of the metabolome using complementary mass spectrometry techniques (GC-MS and LC-Orbitrap-MS) allowed the reliable quantification of 2,287 metabolites. The analysis of identified metabolites and highlighter metabolic pathways across heat time exposure reveal the dynamism of the metabolome in relation to high-temperature response in P. radiata , identifying the existence of a turning point (on day 3) at which P. radiata plants changed from an initial stress response program (shorter-term response) to an acclimation one (longer-term response). Furthermore, the integration of metabolome and physiological measurements, which cover from the photosynthetic state to hormonal profile, suggests a complex metabolic pathway interaction network related to heat-stress response. Cytokinins (CKs), fatty acid metabolism and flavonoid and terpenoid biosynthesis were revealed as the most important pathways involved in heat-stress response in P. radiata , with zeatin riboside (ZR) and isopentenyl adenosine (iPA) as the key hormones coordinating these multiple and complex interactions. On the other hand, the integrative approach allowed elucidation of crucial metabolic mechanisms involved in heat response in P. radiata , as well as the identification of thermotolerance metabolic biomarkers (L-phenylalanine, hexadecanoic acid, and dihydromyricetin), crucial metabolites which can reschedule the metabolic strategy to adapt to high temperature.

  11. Metabolome Integrated Analysis of High-Temperature Response in Pinus radiata

    PubMed Central

    Escandón, Mónica; Meijón, Mónica; Valledor, Luis; Pascual, Jesús; Pinto, Gloria; Cañal, María Jesús

    2018-01-01

    The integrative omics approach is crucial to identify the molecular mechanisms underlying high-temperature response in non-model species. Based on future scenarios of heat increase, Pinus radiata plants were exposed to a temperature of 40°C for a period of 5 days, including recovered plants (30 days after last exposure to 40°C) in the analysis. The analysis of the metabolome using complementary mass spectrometry techniques (GC-MS and LC-Orbitrap-MS) allowed the reliable quantification of 2,287 metabolites. The analysis of identified metabolites and highlighter metabolic pathways across heat time exposure reveal the dynamism of the metabolome in relation to high-temperature response in P. radiata, identifying the existence of a turning point (on day 3) at which P. radiata plants changed from an initial stress response program (shorter-term response) to an acclimation one (longer-term response). Furthermore, the integration of metabolome and physiological measurements, which cover from the photosynthetic state to hormonal profile, suggests a complex metabolic pathway interaction network related to heat-stress response. Cytokinins (CKs), fatty acid metabolism and flavonoid and terpenoid biosynthesis were revealed as the most important pathways involved in heat-stress response in P. radiata, with zeatin riboside (ZR) and isopentenyl adenosine (iPA) as the key hormones coordinating these multiple and complex interactions. On the other hand, the integrative approach allowed elucidation of crucial metabolic mechanisms involved in heat response in P. radiata, as well as the identification of thermotolerance metabolic biomarkers (L-phenylalanine, hexadecanoic acid, and dihydromyricetin), crucial metabolites which can reschedule the metabolic strategy to adapt to high temperature. PMID:29719546

  12. The CRF Family of Neuropeptides and their Receptors - Mediators of the Central Stress Response

    PubMed Central

    Dedic, Nina; Chen, Alon; Deussing, Jan M.

    2018-01-01

    Background: Dysregulated stress neurocircuits, caused by genetic and/or environmental changes, underlie the development of many neuropsychiatric disorders. Corticotropin-releasing factor (CRF) is the major physiological activator of the hypothalamic-pituitary-adrenal (HPA) axis and conse-quently a primary regulator of the mammalian stress response. Together with its three family members, urocortins (UCNs) 1, 2, and 3, CRF integrates the neuroendocrine, autonomic, metabolic and behavioral responses to stress by activating its cognate receptors CRFR1 and CRFR2. Objective: Here we review the past and current state of the CRF/CRFR field, ranging from pharmacologi-cal studies to genetic mouse models and virus-mediated manipulations. Results: Although it is well established that CRF/CRFR1 signaling mediates aversive responses, includ-ing anxiety and depression-like behaviors, a number of recent studies have challenged this viewpoint by revealing anxiolytic and appetitive properties of specific CRF/CRFR1 circuits. In contrast, the UCN/CRFR2 system is less well understood and may possibly also exert divergent functions on physiol-ogy and behavior depending on the brain region, underlying circuit, and/or experienced stress conditions. Conclusion: A plethora of available genetic tools, including conventional and conditional mouse mutants targeting CRF system components, has greatly advanced our understanding about the endogenous mecha-nisms underlying HPA system regulation and CRF/UCN-related neuronal circuits involved in stress-related behaviors. Yet, the detailed pathways and molecular mechanisms by which the CRF/UCN-system translates negative or positive stimuli into the final, integrated biological response are not completely un-derstood. The utilization of future complementary methodologies, such as cell-type specific Cre-driver lines, viral and optogenetic tools will help to further dissect the function of genetically defined CRF/UCN neurocircuits in the context of adaptive and maladaptive stress responses. PMID:28260504

  13. Glycemic state regulates melanocortin, but not nesfatin-1, responsiveness of glucose-sensing neurons in the nucleus of the solitary tract

    PubMed Central

    Mimee, Andrea

    2015-01-01

    The nucleus of the solitary tract (NTS) is a medullary integrative center with critical roles in the coordinated control of energy homeostasis. Here, we used whole cell current-clamp recordings on rat NTS neurons in slice preparation to identify the presence of physiologically relevant glucose-sensing neurons. The majority of NTS neurons (n = 81) were found to be glucose-responsive, with 35% exhibiting a glucose-excited (GE) phenotype (mean absolute change in membrane potential: 9.5 ± 1.1 mV), and 21% exhibiting a glucose-inhibited (GI) response (mean: 6.3 ± 0.7 mV). Furthermore, we found glucose-responsive cells are preferentially influenced by the anorexigenic peptide α-melanocyte-stimulating hormone (α-MSH), but not nesfatin-1. Accordingly, alterations in glycemic state have profound effects on the responsiveness of NTS neurons to α-MSH, but not to nesfatin-1. Indeed, NTS neurons showed increasing responsiveness to α-MSH as extracellular glucose concentrations were decreased, and in hypoglycemic conditions, all NTS neurons were depolarized by α-MSH (mean 10.6 ± 3.2 mV; n = 8). Finally, decreasing levels of extracellular glucose correlated with a significant hyperpolarization of the baseline membrane potential of NTS neurons, highlighting the modulatory effect of glucose on the baseline excitability of cells in this region. Our findings reveal individual NTS cells are capable of integrating multiple sources of metabolically relevant inputs, highlight the rapid capacity for plasticity in medullary melanocortin circuits, and emphasize the critical importance of physiological recording conditions for electrophysiological studies pertaining to the central control of energy homeostasis. PMID:25695291

  14. Real-time in vivo uric acid biosensor system for biophysical monitoring of birds.

    PubMed

    Gumus, A; Lee, S; Karlsson, K; Gabrielson, R; Winkler, D W; Erickson, D

    2014-02-21

    Research on birds has long played an important role in ecological investigations, as birds are relatively easily observed, and their high metabolic rates and diurnal habits make them quite evidently responsive to changes in their environments. A mechanistic understanding of such avian responses requires a better understanding of how variation in physiological state conditions avian behavior and integrates the effects of recent environmental changes. There is a great need for sensor systems that will allow free-flying birds to interact with their environment and make unconstrained decisions about their spatial location at the same time that their physiological state is being monitored in real time. We have developed a miniature needle-based enzymatic sensor system suitable for continuous real-time amperometric monitoring of uric acid levels in unconstrained live birds. The sensor system was constructed with Pt/Ir wire and Ag/AgCl paste. Uricase enzyme was immobilized on a 0.7 mm sensing cavity of Nafion/cellulose inner membrane to minimize the influences of background interferents. The sensor response was linear from 0.05 to 0.6 mM uric acid, which spans the normal physiological range for most avian species. We developed a two-electrode potentiostat system that drives the biosensor, reads the output current, and wirelessly transmits the data. In addition to extensive characterization of the sensor and system, we also demonstrate autonomous operation of the system by collecting in vivo extracellular uric acid measurements on a domestic chicken. The results confirm our needle-type sensor system's potential for real-time monitoring of birds' physiological state. Successful application of the sensor in migratory birds could open up a new era of studying both the physiological preparation for migration and the consequences of sustained avian flight.

  15. The job analysis of Korean nurses as a strategy to improve the Korean Nursing Licensing Examination.

    PubMed

    Park, In Sook; Suh, Yeon Ok; Park, Hae Sook; Ahn, Soo Yeon; Kang, So Young; Ko, Il Sun

    2016-01-01

    This study aimed at characterizing Korean nurses' occupational responsibilities to apply the results for improvement of the Korean Nursing Licensing Examination. First, the contents of nursing job were defined based on a focus group interview of 15 nurses. Developing a Curriculum (DACOM) method was used to examine those results and produce the questionnaire by 13 experts. After that, the questionnaire survey to 5,065 hospital nurses was done. The occupational responsibilities of nurses were characterized as involving 8 duties, 49 tasks, and 303 task elements. Those 8 duties are nursing management and professional development, safety and infection control, the management of potential risk factors, basic nursing and caring, the maintenance of physiological integrity, medication and parenteral treatments, socio-psychological integrity, and the maintenance and improvement of health. The content of Korean Nursing Licensing Examination should be improved based on 8 duties and 49 tasks of the occupational responsibilities of Korean nurses.

  16. Dynamics of Lung Defense in Pneumonia: Resistance, Resilience, and Remodeling

    PubMed Central

    Quinton, Lee J.; Mizgerd, Joseph P.

    2015-01-01

    Pneumonia is initiated by microbes in the lung, but physiological processes integrating responses across diverse cell types and organ systems dictate the outcome of respiratory infection. Resistance, or actions of the host to eradicate living microbes, in the lungs involves a combination of innate and adaptive immune responses triggered by air-space infection. Resilience, or the ability of the host tissues to withstand the physiologically damaging effects of microbial and immune activities, is equally complex, precisely regulated, and determinative. Both immune resistance and tissue resilience are dynamic and change throughout the lifetime, but we are only beginning to understand such remodeling and how it contributes to the incidence of severe pneumonias, which diminishes as childhood progresses and then increases again among the elderly. Here, we review the concepts of resistance, resilience, and remodeling as they apply to pneumonia, highlighting recent advances and current significant knowledge gaps. PMID:25148693

  17. Disease prevention--should we target obesity or sedentary lifestyle?

    PubMed

    Charansonney, Olivier L; Després, Jean-Pierre

    2010-08-01

    Obesity is a major health challenge facing the modern world. Some evidence points to obesity itself as the main driver of premature mortality. We propose that this view is oversimplified. For example, high levels of physical activity and cardiorespiratory fitness are associated with lower mortality, even in those who are overweight or obese. To address this issue, we combine epidemiological and physiological evidence in a new paradigm that integrates excess calorie intake, sedentary behavior, and a maladaptive response to stress. Human physiology is optimized to allow large distances to be covered on foot every day in order to find enough food to sustain brain metabolism. Furthermore, when the body is immobilized by an injury, it triggers efficient life-saving metabolic and inflammatory responses. Both these critical adaptations are, however, confounded by a sedentary lifestyle. The implications of these issues for clinical trial design and epidemiologic data analysis are discussed in this article.

  18. Detection of cooling-induced membrane changes in the response of boar sperm to capacitating conditions.

    PubMed

    Petrunkina, Anna M; Volker, Gabriele; Weitze, Karl-Fritz; Beyerbach, Martin; Töpfer-Petersen, Edda; Waberski, Dagmar

    2005-05-01

    There is a need for methods of rapid and sensitive sperm function assessment. As spermatozoa are not able to fertilize an oocyte before having undergone a series of complex physiological changes collectively called capacitation, it is logical to assess sperm function under fertilizing conditions in vitro. In this study, the responsiveness of sperm to capacitating conditions in vitro was monitored by changes in sperm response to ionophore and by changes in the amount of intracellular calcium ions in stored boar semen. Boar semen was diluted at 32 and 20 degrees C and stored for 24 and 72 h at 16 and 10 degrees C. Ionophore-induced changes and increased intracellular calcium ion content in boar spermatozoa were recorded by flow cytometry and found to progress as a function of time during incubation under capacitating conditions. All responsiveness parameters (increases in proportions of membrane-defective spermatozoa, acrosome-reacted spermatozoa, and cells with high intracellular calcium levels) were shown to be sensitive to subtle physiological changes occurring at low storage temperatures. The initial levels of sperm with a high calcium content were higher in semen stored at 10 degrees C, but the accumulation of internal calcium was lower than in semen stored at 16 degrees C. The loss of membrane integrity and increase in the proportion of acrosome-reacted cells were higher in semen stored at 10 degrees C. Dilution at 20 degrees C had no negative effect on membrane integrity or responsiveness to capacitating conditions. There was no significant difference between semen stored for 24 and 72 h in terms of membrane integrity, acrosome reaction, and intracellular calcium after capacitation treatment. However, dynamics of cell death and acrosome reaction in response to capacitating conditions were somewhat accelerated after 72 h storage, especially in semen stored at 10 degrees C. It can be concluded that the simultaneous use of the sperm membrane responsiveness and kinetic parameters is a sensitive tool for the detection of storage-related membrane changes in boar semen.

  19. Physiologically relevant organs on chips.

    PubMed

    Yum, Kyungsuk; Hong, Soon Gweon; Healy, Kevin E; Lee, Luke P

    2014-01-01

    Recent advances in integrating microengineering and tissue engineering have generated promising microengineered physiological models for experimental medicine and pharmaceutical research. Here we review the recent development of microengineered physiological systems, or also known as "ogans-on-chips", that reconstitute the physiologically critical features of specific human tissues and organs and their interactions. This technology uses microengineering approaches to construct organ-specific microenvironments, reconstituting tissue structures, tissue-tissue interactions and interfaces, and dynamic mechanical and biochemical stimuli found in specific organs, to direct cells to assemble into functional tissues. We first discuss microengineering approaches to reproduce the key elements of physiologically important, dynamic mechanical microenvironments, biochemical microenvironments, and microarchitectures of specific tissues and organs in microfluidic cell culture systems. This is followed by examples of microengineered individual organ models that incorporate the key elements of physiological microenvironments into single microfluidic cell culture systems to reproduce organ-level functions. Finally, microengineered multiple organ systems that simulate multiple organ interactions to better represent human physiology, including human responses to drugs, is covered in this review. This emerging organs-on-chips technology has the potential to become an alternative to 2D and 3D cell culture and animal models for experimental medicine, human disease modeling, drug development, and toxicology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. An Approximation to the Adaptive Exponential Integrate-and-Fire Neuron Model Allows Fast and Predictive Fitting to Physiological Data.

    PubMed

    Hertäg, Loreen; Hass, Joachim; Golovko, Tatiana; Durstewitz, Daniel

    2012-01-01

    For large-scale network simulations, it is often desirable to have computationally tractable, yet in a defined sense still physiologically valid neuron models. In particular, these models should be able to reproduce physiological measurements, ideally in a predictive sense, and under different input regimes in which neurons may operate in vivo. Here we present an approach to parameter estimation for a simple spiking neuron model mainly based on standard f-I curves obtained from in vitro recordings. Such recordings are routinely obtained in standard protocols and assess a neuron's response under a wide range of mean-input currents. Our fitting procedure makes use of closed-form expressions for the firing rate derived from an approximation to the adaptive exponential integrate-and-fire (AdEx) model. The resulting fitting process is simple and about two orders of magnitude faster compared to methods based on numerical integration of the differential equations. We probe this method on different cell types recorded from rodent prefrontal cortex. After fitting to the f-I current-clamp data, the model cells are tested on completely different sets of recordings obtained by fluctuating ("in vivo-like") input currents. For a wide range of different input regimes, cell types, and cortical layers, the model could predict spike times on these test traces quite accurately within the bounds of physiological reliability, although no information from these distinct test sets was used for model fitting. Further analyses delineated some of the empirical factors constraining model fitting and the model's generalization performance. An even simpler adaptive LIF neuron was also examined in this context. Hence, we have developed a "high-throughput" model fitting procedure which is simple and fast, with good prediction performance, and which relies only on firing rate information and standard physiological data widely and easily available.

  1. Pedophile types and treatment perspectives.

    PubMed

    Travin, S; Bluestone, H; Coleman, E; Cullen, K; Melella, J

    1986-04-01

    Pedophiles constitute a heterogeneous group of sex offenders. Direct physiological assessment of sexual arousal has significantly increased our diagnostic skill and capability of monitoring treatment response. Erectile response studies have indicated that the majority of pedophiles and incest offenders show arousal to other paraphilias and frequently to appropriate adult sexual stimuli. Many sexual offenders deny or minimize their problem during initial interviews, but when confronted with laboratory results indicating deviant sexual arousal, they often acknowledge and elaborate on the paraphilia(s). Complete data and diagnoses are crucial in integrating treatment in the cognitive-behavioral paradigm.

  2. Sublethal salinity stress contributes to habitat limitation in an endangered estuarine fish.

    PubMed

    Komoroske, Lisa M; Jeffries, Ken M; Connon, Richard E; Dexter, Jason; Hasenbein, Matthias; Verhille, Christine; Fangue, Nann A

    2016-09-01

    As global change alters multiple environmental conditions, predicting species' responses can be challenging without understanding how each environmental factor influences organismal performance. Approaches quantifying mechanistic relationships can greatly complement correlative field data, strengthening our abilities to forecast global change impacts. Substantial salinity increases are projected in the San Francisco Estuary, California, due to anthropogenic water diversion and climatic changes, where the critically endangered delta smelt (Hypomesus transpacificus) largely occurs in a low-salinity zone (LSZ), despite their ability to tolerate a much broader salinity range. In this study, we combined molecular and organismal measures to quantify the physiological mechanisms and sublethal responses involved in coping with salinity changes. Delta smelt utilize a suite of conserved molecular mechanisms to rapidly adjust their osmoregulatory physiology in response to salinity changes in estuarine environments. However, these responses can be energetically expensive, and delta smelt body condition was reduced at high salinities. Thus, acclimating to salinities outside the LSZ could impose energetic costs that constrain delta smelt's ability to exploit these habitats. By integrating data across biological levels, we provide key insight into the mechanistic relationships contributing to phenotypic plasticity and distribution limitations and advance the understanding of the molecular osmoregulatory responses in nonmodel estuarine fishes.

  3. Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy.

    PubMed

    Xu, Lizhi; Gutbrod, Sarah R; Ma, Yinji; Petrossians, Artin; Liu, Yuhao; Webb, R Chad; Fan, Jonathan A; Yang, Zijian; Xu, Renxiao; Whalen, John J; Weiland, James D; Huang, Yonggang; Efimov, Igor R; Rogers, John A

    2015-03-11

    Advanced materials and fractal design concepts form the basis of a 3D conformal electronic platform with unique capabilities in cardiac electrotherapies. Fractal geometries, advanced electrode materials, and thin, elastomeric membranes yield a class of device capable of integration with the entire 3D surface of the heart, with unique operational capabilities in low power defibrillation. Co-integrated collections of sensors allow simultaneous monitoring of physiological responses. Animal experiments on Langendorff-perfused rabbit hearts demonstrate the key features of these systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. ‘Integrative Physiology 2.0’: integration of systems biology into physiology and its application to cardiovascular homeostasis

    PubMed Central

    Kuster, Diederik W D; Merkus, Daphne; van der Velden, Jolanda; Verhoeven, Adrie J M; Duncker, Dirk J

    2011-01-01

    Since the completion of the Human Genome Project and the advent of the large scaled unbiased ‘-omics’ techniques, the field of systems biology has emerged. Systems biology aims to move away from the traditional reductionist molecular approach, which focused on understanding the role of single genes or proteins, towards a more holistic approach by studying networks and interactions between individual components of networks. From a conceptual standpoint, systems biology elicits a ‘back to the future’ experience for any integrative physiologist. However, many of the new techniques and modalities employed by systems biologists yield tremendous potential for integrative physiologists to expand their tool arsenal to (quantitatively) study complex biological processes, such as cardiac remodelling and heart failure, in a truly holistic fashion. We therefore advocate that systems biology should not become/stay a separate discipline with ‘-omics’ as its playing field, but should be integrated into physiology to create ‘Integrative Physiology 2.0’. PMID:21224228

  5. All or nothing: Survival, reproduction and oxidative balance in Spotted Wing Drosophila (Drosophila suzukii) in response to cold.

    PubMed

    Plantamp, Christophe; Salort, Katleen; Gibert, Patricia; Dumet, Adeline; Mialdea, Gladys; Mondy, Nathalie; Voituron, Yann

    2016-06-01

    Winter severity and overwintering capacity are key ecological factors in successful invasions, especially in ectotherms. The integration of physiological approaches into the study of invasion processes is emerging and promising. Physiological information describes the mechanisms underlying observed survival and reproductive capacities, and it can be used to predict an organism's response to environmental perturbations such as cold temperatures. We investigated the effects of various cold treatments on life history and physiological traits of an invasive pest species, Drosophila suzukii, such as survival, fertility and oxidative balance. This species, a native of temperate Asian areas, is known to survive where cold temperatures are particularly harsh and has been recently introduced into Europe and North America. We found that cold treatments had a strong impact on adult survival but no effect on female's fertility. Although only minor changes were observed after cold treatment on studied physiological traits, a strong sex-based difference was observed in both survival and physiological markers (antioxidant defences and oxidative markers). Females exhibited higher survival, reduced oxidative defences, less damage to nucleic acids, and more damage to lipids. These results suggest that D. suzukii relies on a pathway other than oxidative balance to resist cold injury. Altogether, our results provide information concerning the mechanisms of successful invasion by D. suzukii. These findings may assist in the development of population models that predict the current and future geographic ranges of this species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Physiologically-based pharmacokinetic models: approaches for enabling personalized medicine.

    PubMed

    Hartmanshenn, Clara; Scherholz, Megerle; Androulakis, Ioannis P

    2016-10-01

    Personalized medicine strives to deliver the 'right drug at the right dose' by considering inter-person variability, one of the causes for therapeutic failure in specialized populations of patients. Physiologically-based pharmacokinetic (PBPK) modeling is a key tool in the advancement of personalized medicine to evaluate complex clinical scenarios, making use of physiological information as well as physicochemical data to simulate various physiological states to predict the distribution of pharmacokinetic responses. The increased dependency on PBPK models to address regulatory questions is aligned with the ability of PBPK models to minimize ethical and technical difficulties associated with pharmacokinetic and toxicology experiments for special patient populations. Subpopulation modeling can be achieved through an iterative and integrative approach using an adopt, adapt, develop, assess, amend, and deliver methodology. PBPK modeling has two valuable applications in personalized medicine: (1) determining the importance of certain subpopulations within a distribution of pharmacokinetic responses for a given drug formulation and (2) establishing the formulation design space needed to attain a targeted drug plasma concentration profile. This review article focuses on model development for physiological differences associated with sex (male vs. female), age (pediatric vs. young adults vs. elderly), disease state (healthy vs. unhealthy), and temporal variation (influence of biological rhythms), connecting them to drug product formulation development within the quality by design framework. Although PBPK modeling has come a long way, there is still a lengthy road before it can be fully accepted by pharmacologists, clinicians, and the broader industry.

  7. "I Was Told That My First Duty Was to Forget Physiology, Which Had No Relation to Medicine"

    ERIC Educational Resources Information Center

    Walsh, Kieran

    2016-01-01

    There has been much recent commentary on integration in health care professional education. This commentary is of importance to physiology education as integration often touches on integration between preclinical and clinical sciences. There are different forms of integration, from horizontal to vertical to spiral, and different theories underpin…

  8. Subfornical organ neurons integrate cardiovascular and metabolic signals.

    PubMed

    Cancelliere, Nicole M; Ferguson, Alastair V

    2017-02-01

    The subfornical organ (SFO) is a critical circumventricular organ involved in the control of cardiovascular and metabolic homeostasis. Despite the plethora of circulating signals continuously sensed by the SFO, studies investigating how these signals are integrated are lacking. In this study, we use patch-clamp techniques to investigate how the traditionally classified "cardiovascular" hormone ANG II, "metabolic" hormone CCK and "metabolic" signal glucose interact and are integrated in the SFO. Sequential bath application of CCK (10 nM) and ANG (10 nM) onto dissociated SFO neurons revealed that 63% of responsive SFO neurons depolarized to both CCK and ANG; 25% depolarized to ANG only; and 12% hyperpolarized to CCK only. We next investigated the effects of glucose by incubating and recording neurons in either hypoglycemic, normoglycemic, or hyperglycemic conditions and comparing the proportions of responses to ANG ( n = 55) or CCK ( n = 83) application in each condition. A hyperglycemic environment was associated with a larger proportion of depolarizing responses to ANG ( χ 2 , P < 0.05), and a smaller proportion of depolarizing responses along with a larger proportion of hyperpolarizing responses to CCK ( χ 2 , P < 0.01). Our data demonstrate that SFO neurons excited by CCK are also excited by ANG and that glucose environment affects the responsiveness of neurons to both of these hormones, highlighting the ability of SFO neurons to integrate multiple metabolic and cardiovascular signals. These findings have important implications for this structure's role in the control of various autonomic functions during hyperglycemia. Copyright © 2017 the American Physiological Society.

  9. Parasite-altered feeding behavior in insects: integrating functional and mechanistic research frontiers.

    PubMed

    Bernardo, Melissa A; Singer, Michael S

    2017-08-15

    Research on parasite-altered feeding behavior in insects is contributing to an emerging literature that considers possible adaptive consequences of altered feeding behavior for the host or the parasite. Several recent ecoimmunological studies show that insects can adaptively alter their foraging behavior in response to parasitism. Another body of recent work shows that infection by parasites can change the behavior of insect hosts to benefit the parasite; manipulations of host feeding behavior may be part of this phenomenon. Here, we address both the functional and the underlying physiological frontiers of parasite-altered feeding behavior in order to spur research that better integrates the two. Functional categories of parasite-altered behavior that are adaptive for the host include prophylaxis, therapy and compensation, while host manipulation is adaptive for the parasite. To better understand and distinguish prophylaxis, therapy and compensation, further study of physiological feedbacks affecting host sensory systems is especially needed. For host manipulation in particular, research on mechanisms by which parasites control host feedbacks will be important to integrate with functional approaches. We see this integration as critical to advancing the field of parasite-altered feeding behavior, which may be common in insects and consequential for human and environmental health. © 2017. Published by The Company of Biologists Ltd.

  10. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis

    DOE PAGES

    Gao, Wei; Emaminejad, Sam; Nyein, Hnin Yin Yin; ...

    2016-01-27

    We report that wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual’s state of health. Sampling human sweat, which is rich in physiological information13, could enable non-invasive monitoring. Previously reported sweat-based and other noninvasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state14–18. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanicallymore » flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Lastly, our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plasticbased sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing.« less

  11. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Wei; Emaminejad, Sam; Nyein, Hnin Yin Yin

    We report that wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual’s state of health. Sampling human sweat, which is rich in physiological information13, could enable non-invasive monitoring. Previously reported sweat-based and other noninvasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state14–18. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanicallymore » flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Lastly, our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plasticbased sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing.« less

  12. Comprehensive evaluation of poly(I:C) induced inflammatory response in an airway epithelial model

    PubMed Central

    Lever, Amanda R; Park, Hyoungshin; Mulhern, Thomas J; Jackson, George R; Comolli, James C; Borenstein, Jeffrey T; Hayden, Patrick J; Prantil-Baun, Rachelle

    2015-01-01

    Respiratory viruses invade the upper airway of the lung, triggering a potent immune response that often exacerbates preexisting conditions such as asthma and COPD. Poly(I:C) is a synthetic analog of viral dsRNA that induces the characteristic inflammatory response associated with viral infection, such as loss of epithelial integrity, and increased production of mucus and inflammatory cytokines. Here, we explore the mechanistic responses to poly(I:C) in a well-defined primary normal human bronchial epithelial (NHBE) model that recapitulates in vivo functions and responses. We developed functional and quantifiable methods to evaluate the physiology of our model in both healthy and inflamed states. Through gene and protein expression, we validated the differentiation state and population of essential cell subtypes (i.e., ciliated, goblet, club, and basal cells) as compared to the human lung. Assays for total mucus production, cytokine secretion, and barrier function were used to evaluate in vitro physiology and response to viral insult. Cells were treated apically with poly(I:C) and evaluated 48 h after induction. Results revealed a dose-dependent increase in goblet cell differentiation, as well as, an increase in mucus production relative to controls. There was also a dose-dependent increase in secretion of IL-6, IL-8, TNF-α, and RANTES. Epithelial barrier function, as measured by TEER, was maintained at 1501 ± 355 Ω*cm² postdifferentiation, but dropped significantly when challenged with poly(I:C). This study provides first steps toward a well-characterized model with defined functional methods for understanding dsRNA stimulated inflammatory responses in a physiologically relevant manner. PMID:25847914

  13. Impact of Leishmania Infection on Host Macrophage Nuclear Physiology and Nucleopore Complex Integrity

    PubMed Central

    Isnard, Amandine; Christian, Jan G.; Kodiha, Mohamed; Stochaj, Ursula; McMaster, W. Robert; Olivier, Martin

    2015-01-01

    The protease GP63 is an important virulence factor of Leishmania parasites. We previously showed that GP63 reaches the perinuclear area of host macrophages and that it directly modifies nuclear translocation of the transcription factors NF-κB and AP-1. Here we describe for the first time, using molecular biology and in-depth proteomic analyses, that GP63 alters the host macrophage nuclear envelope, and impacts on nuclear processes. Our results suggest that GP63 does not appear to use a classical nuclear localization signal common between Leishmania species for import, but degrades nucleoporins, and is responsible for nuclear transport alterations. In the nucleoplasm, GP63 activity accounts for the degradation and mislocalization of proteins involved amongst others in gene expression and in translation. Collectively, our data indicates that Leishmania infection strongly affects nuclear physiology, suggesting that targeting of nuclear physiology may be a strategy beneficial for virulent Leishmania parasites. PMID:25826301

  14. SLS-1 flight experiments preliminary significant results

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Spacelab Life Sciences-1 (SLS-1) is the first of a series of dedicated life sciences Spacelab missions designed to investigate the mechanisms involved in the physiological adaptation to weightlessness and the subsequent readaptation to 1 gravity (1 G). Hypotheses generated from the physiological effects observed during earlier missions led to the formulation of several integrated experiments to determine the underlying mechanisms responsible for the observed phenomena. The 18 experiments selected for flight on SLS-1 investigated the cardiovascular, cardiopulmonary, regulatory physiology, musculoskeletal, and neuroscience disciplines in both human and rodent subjects. The SLS-1 preliminary results gave insight to the mechanisms involved in the adaptation to the microgravity environment and readaptation when returning to Earth. The experimental results will be used to promote health and safety for future long duration space flights and, as in the past, will be applied to many biomedical problems encountered here on Earth.

  15. Progress in Integrative Biomaterial Systems to Approach Three-Dimensional Cell Mechanotransduction

    PubMed Central

    Zhang, Ying; Liao, Kin; Li, Chuan; Lai, Alvin C.K.; Foo, Ji-Jinn

    2017-01-01

    Mechanotransduction between cells and the extracellular matrix regulates major cellular functions in physiological and pathological situations. The effect of mechanical cues on biochemical signaling triggered by cell–matrix and cell–cell interactions on model biomimetic surfaces has been extensively investigated by a combination of fabrication, biophysical, and biological methods. To simulate the in vivo physiological microenvironment in vitro, three dimensional (3D) microstructures with tailored bio-functionality have been fabricated on substrates of various materials. However, less attention has been paid to the design of 3D biomaterial systems with geometric variances, such as the possession of precise micro-features and/or bio-sensing elements for probing the mechanical responses of cells to the external microenvironment. Such precisely engineered 3D model experimental platforms pave the way for studying the mechanotransduction of multicellular aggregates under controlled geometric and mechanical parameters. Concurrently with the progress in 3D biomaterial fabrication, cell traction force microscopy (CTFM) developed in the field of cell biophysics has emerged as a highly sensitive technique for probing the mechanical stresses exerted by cells onto the opposing deformable surface. In the current work, we first review the recent advances in the fabrication of 3D micropatterned biomaterials which enable the seamless integration with experimental cell mechanics in a controlled 3D microenvironment. Then, we discuss the role of collective cell–cell interactions in the mechanotransduction of engineered tissue equivalents determined by such integrative biomaterial systems under simulated physiological conditions. PMID:28952551

  16. Sleep, consciousness and the spontaneous and evoked electrical activity of the brain. Is there a cortical integrating mechanism?

    PubMed

    Evans, B M

    2003-02-01

    The physiological mechanisms that underlie consciousness and unconsciousness are the sleep/wake mechanisms. Deep sleep is a state of physiological reversible unconsciousness. The change from that state to wakefulness is mediated by the reticular activating mechanism. The reverse change from wakefulness to sleep is also an active process effected by an arousal inhibitory mechanism based on a partial blockade of the thalamus and upper brain stem, associated with thalamic sleep spindles and also with cortical sub-delta activity (<1 Hz). The deactivation of the thalamus has been demonstrated both electrically and by positron emission tomography during deep sleep. Normally, wakefulness is associated with instant awareness (defined as the ability to integrate all sensory information from the external environment and the internal environment of the body). Awareness may be a function of the thalamo-cortical network in the cerebral hemispheres, which forms the final path of the sleep/wake mechanism. Anatomical and physiological studies suggest that there may be a double thalamo-cortical network; one relating to cortical and thalamic areas with specific functions and the other global, involving all cortical areas and so-called 'non-specific' thalamic nuclei. The global system might function as a cortical integrating mechanism permitting the spread of information between the specific cortical areas and thus underlying awareness. The global system may also be responsible for much of the spontaneous and evoked electrical activity of the brain. The cognitive change between sleep and wakefulness is accompanied by changes in the autonomic system, the cerebral blood flow and cerebral metabolism. Awareness is an essential component of total consciousness (defined as continuous awareness of the external and internal environment, both past and present, together with the emotions arising from it). In addition to awareness, full consciousness requires short-term and explicit memory and intact emotional responses.

  17. Physiological response to etho-ecological stressors in male Alpine chamois: timescale matters!

    PubMed

    Corlatti, Luca; Palme, Rupert; Lovari, Sandro

    2014-07-01

    From a life history perspective, glucocorticoids secreted by the neuroendocrine system, integrating different sources of stress through an adaptive feedback mechanism, may have important consequences on individual fitness. Although stress responses have been the object of several investigations, few studies have explored the role of proximate mechanisms responsible for the potential trade-offs between physiological stress and life history traits integrating social and environmental stressors. In 2011 and 2012, we collected data on faecal cortisol metabolites (FCM) in a marked male population of Alpine chamois, within the Gran Paradiso National Park (Italy). Using a model selection approach we analysed the effect of potential etho-ecological stressors such as age, social status (territorial vs. non-territorial males), minimum temperature, snow depth and precipitation on FCM variation. To correctly interpret environmentally and socially induced stress responses, we conducted model selections over multiple temporal scales defined a priori: year, cold months, spring, warm months, mating season. Over the year, FCM levels showed a negative relationship with minimum temperature, but altogether, climatic stressors had negligible effects on glucocorticoid secretion, possibly owing to good adaptations of chamois to severe weather conditions. Age was negatively related to FCM during the rut, possibly due to greater experience of older males in agonistic contests. Social status was an important determinant of FCM excretion: while both the 'stress of subordination' and the 'stress of domination' hypotheses received some support in spring and during the mating season, respectively, previous data suggest that only the latter may have detrimental fitness consequences on male chamois.

  18. Physiological response to etho-ecological stressors in male Alpine chamois: timescale matters!

    NASA Astrophysics Data System (ADS)

    Corlatti, Luca; Palme, Rupert; Lovari, Sandro

    2014-07-01

    From a life history perspective, glucocorticoids secreted by the neuroendocrine system, integrating different sources of stress through an adaptive feedback mechanism, may have important consequences on individual fitness. Although stress responses have been the object of several investigations, few studies have explored the role of proximate mechanisms responsible for the potential trade-offs between physiological stress and life history traits integrating social and environmental stressors. In 2011 and 2012, we collected data on faecal cortisol metabolites (FCM) in a marked male population of Alpine chamois, within the Gran Paradiso National Park (Italy). Using a model selection approach we analysed the effect of potential etho-ecological stressors such as age, social status (territorial vs. non-territorial males), minimum temperature, snow depth and precipitation on FCM variation. To correctly interpret environmentally and socially induced stress responses, we conducted model selections over multiple temporal scales defined a priori: year, cold months, spring, warm months, mating season. Over the year, FCM levels showed a negative relationship with minimum temperature, but altogether, climatic stressors had negligible effects on glucocorticoid secretion, possibly owing to good adaptations of chamois to severe weather conditions. Age was negatively related to FCM during the rut, possibly due to greater experience of older males in agonistic contests. Social status was an important determinant of FCM excretion: while both the `stress of subordination' and the `stress of domination' hypotheses received some support in spring and during the mating season, respectively, previous data suggest that only the latter may have detrimental fitness consequences on male chamois.

  19. Functional architecture of Escherichia coli: new insights provided by a natural decomposition approach.

    PubMed

    Freyre-González, Julio A; Alonso-Pavón, José A; Treviño-Quintanilla, Luis G; Collado-Vides, Julio

    2008-10-27

    Previous studies have used different methods in an effort to extract the modular organization of transcriptional regulatory networks. However, these approaches are not natural, as they try to cluster strongly connected genes into a module or locate known pleiotropic transcription factors in lower hierarchical layers. Here, we unravel the transcriptional regulatory network of Escherichia coli by separating it into its key elements, thus revealing its natural organization. We also present a mathematical criterion, based on the topological features of the transcriptional regulatory network, to classify the network elements into one of two possible classes: hierarchical or modular genes. We found that modular genes are clustered into physiologically correlated groups validated by a statistical analysis of the enrichment of the functional classes. Hierarchical genes encode transcription factors responsible for coordinating module responses based on general interest signals. Hierarchical elements correlate highly with the previously studied global regulators, suggesting that this could be the first mathematical method to identify global regulators. We identified a new element in transcriptional regulatory networks never described before: intermodular genes. These are structural genes that integrate, at the promoter level, signals coming from different modules, and therefore from different physiological responses. Using the concept of pleiotropy, we have reconstructed the hierarchy of the network and discuss the role of feedforward motifs in shaping the hierarchical backbone of the transcriptional regulatory network. This study sheds new light on the design principles underpinning the organization of transcriptional regulatory networks, showing a novel nonpyramidal architecture composed of independent modules globally governed by hierarchical transcription factors, whose responses are integrated by intermodular genes.

  20. Central Metabolic Responses to Ozone and Herbivory Affect Photosynthesis and Stomatal Closure1[OPEN

    PubMed Central

    Khaling, Eliezer; Lassueur, Steve

    2016-01-01

    Plants have evolved adaptive mechanisms that allow them to tolerate a continuous range of abiotic and biotic stressors. Tropospheric ozone (O3), a global anthropogenic pollutant, directly affects living organisms and ecosystems, including plant-herbivore interactions. In this study, we investigate the stress responses of Brassica nigra (wild black mustard) exposed consecutively to O3 and the specialist herbivore Pieris brassicae. Transcriptomics and metabolomics data were evaluated using multivariate, correlation, and network analyses for the O3 and herbivory responses. O3 stress symptoms resembled those of senescence and phosphate starvation, while a sequential shift from O3 to herbivory induced characteristic plant defense responses, including a decrease in central metabolism, induction of the jasmonic acid/ethylene pathways, and emission of volatiles. Omics network and pathway analyses predicted a link between glycerol and central energy metabolism that influences the osmotic stress response and stomatal closure. Further physiological measurements confirmed that while O3 stress inhibited photosynthesis and carbon assimilation, sequential herbivory counteracted the initial responses induced by O3, resulting in a phenotype similar to that observed after herbivory alone. This study clarifies the consequences of multiple stress interactions on a plant metabolic system and also illustrates how omics data can be integrated to generate new hypotheses in ecology and plant physiology. PMID:27758847

  1. Anxiety and psychosomatic symptoms in palliative care: from neuro-psychobiological response to stress, to symptoms' management with clinical hypnosis and meditative states.

    PubMed

    Satsangi, Anirudh Kumar; Brugnoli, Maria Paola

    2018-01-01

    Psychosomatic disorder is a condition in which psychological stresses adversely affect physiological (somatic) functioning to the point of distress. It is a condition of dysfunction or structural damage in physical organs through inappropriate activation of the involuntary nervous system and the biochemical response. In this framework, this review will consider anxiety disorders, from the perspective of the psychobiological mechanisms of vulnerability to extreme stress in severe chronic illnesses. Psychosomatic medicine is a field of behavioral medicine and a part of the practice of consultation-liaison psychiatry. Psychosomatic medicine in palliative care, integrates interdisciplinary evaluation and management involving diverse clinical specialties including psychiatry, psychology, neurology, internal medicine, allergy, dermatology, psychoneuroimmunology, psychosocial oncology and spiritual care. Clinical conditions where psychological processes act as a major factor affecting medical outcomes are areas where psychosomatic medicine has competence. Thus, the psychosomatic symptom develops as a physiological connected of an emotional state. In a state of rage or fear, for example, the stressed person's blood pressure is likely to be elevated and his pulse and respiratory rate to be increased. When the fear passes, the heightened physiologic processes usually subside. If the person has a persistent fear (chronic anxiety), however, which he is unable to express overtly, the emotional state remains unchanged, though unexpressed in the overt behavior, and the physiological symptoms associated with the anxiety state persist. This paper wants highlight how clinical hypnosis and meditative states can be important psychosocial and spiritual care, for the symptom management on neuro-psychobiological response to stress.

  2. Intense flight and endotoxin injection elicit similar effects on leukocyte distributions but dissimilar effects on plasma-based immunological indices in pigeons.

    PubMed

    Matson, Kevin D; Horrocks, Nicholas P C; Tieleman, B Irene; Haase, Eberhard

    2012-11-01

    Most birds rely on flight for survival. Yet as an energetically taxing and physiologically integrative process, flight has many repercussions. Studying pigeons (Columba livia) and employing physiological and immunological indices that are relevant to ecologists working with wild birds, we determined what, if any, acute immune-like responses result from bouts of intense, non-migratory flight. We compared the effects of flight with the effects of a simulated bacterial infection. We also investigated indices in terms of their post-flight changes within individuals and their relationship with flight speed among individuals. Compared to un-flown controls, flown birds exhibited significant elevations in numbers of heterophils relative to numbers of lymphocytes and significant reductions in numbers of eosinophils and monocytes. Furthermore, within-individual changes in concentrations of an acute phase protein were greater in flown birds than in controls. However, none of the flight-affected indices showed any evidence of being related to flight speed. While some of the effects of flight were comparable to the effects of the simulated bacterial infection, other effects were observed only after one of these two physiological challenges. Our study suggests that flight by pigeons yields immune-like responses, and these responses have the potential to complicate the conclusions drawn by ecologists regarding immune function in free-living birds. Still, a better understanding of the repercussions of flight can help clarify the ties between the physiology of exercise and the disease ecology of migration and will ultimately assist in the broader goal of accounting for immunological variation within and among species.

  3. Breath-Hold Diving.

    PubMed

    Fitz-Clarke, John R

    2018-03-25

    Breath-hold diving is practiced by recreational divers, seafood divers, military divers, and competitive athletes. It involves highly integrated physiology and extreme responses. This article reviews human breath-hold diving physiology beginning with an historical overview followed by a summary of foundational research and a survey of some contemporary issues. Immersion and cardiovascular adjustments promote a blood shift into the heart and chest vasculature. Autonomic responses include diving bradycardia, peripheral vasoconstriction, and splenic contraction, which help conserve oxygen. Competitive divers use a technique of lung hyperinflation that raises initial volume and airway pressure to facilitate longer apnea times and greater depths. Gas compression at depth leads to sequential alveolar collapse. Airway pressure decreases with depth and becomes negative relative to ambient due to limited chest compliance at low lung volumes, raising the risk of pulmonary injury called "squeeze," characterized by postdive coughing, wheezing, and hemoptysis. Hypoxia and hypercapnia influence the terminal breakpoint beyond which voluntary apnea cannot be sustained. Ascent blackout due to hypoxia is a danger during long breath-holds, and has become common amongst high-level competitors who can suppress their urge to breathe. Decompression sickness due to nitrogen accumulation causing bubble formation can occur after multiple repetitive dives, or after single deep dives during depth record attempts. Humans experience responses similar to those seen in diving mammals, but to a lesser degree. The deepest sled-assisted breath-hold dive was to 214 m. Factors that might determine ultimate human depth capabilities are discussed. © 2018 American Physiological Society. Compr Physiol 8:585-630, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  4. Bodily illusions in health and disease: physiological and clinical perspectives and the concept of a cortical 'body matrix'.

    PubMed

    Moseley, G Lorimer; Gallace, Alberto; Spence, Charles

    2012-01-01

    Illusions that induce a feeling of ownership over an artificial body or body-part have been used to explore the complex relationships that exist between the brain's representation of the body and the integrity of the body itself. Here we discuss recent findings in both healthy volunteers and clinical populations that highlight the robust relationship that exists between a person's sense of ownership over a body part, cortical processing of tactile input from that body part, and its physiological regulation. We propose that a network of multisensory and homeostatic brain areas may be responsible for maintaining a 'body-matrix'. That is, a dynamic neural representation that not only extends beyond the body surface to integrate both somatotopic and peripersonal sensory data, but also integrates body-centred spatial sensory data. The existence of such a 'body-matrix' allows our brain to adapt to even profound anatomical and configurational changes to our body. It also plays an important role in maintaining homeostatic control over the body. Its alteration can be seen to have both deleterious and beneficial effects in various clinical populations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. An Exercise Health Simulation Method Based on Integrated Human Thermophysiological Model

    PubMed Central

    Chen, Xiaohui; Yu, Liang; Yang, Kaixing

    2017-01-01

    Research of healthy exercise has garnered a keen research for the past few years. It is known that participation in a regular exercise program can help improve various aspects of cardiovascular function and reduce the risk of suffering from illness. But some exercise accidents like dehydration, exertional heatstroke, and even sudden death need to be brought to attention. If these exercise accidents can be analyzed and predicted before they happened, it will be beneficial to alleviate or avoid disease or mortality. To achieve this objective, an exercise health simulation approach is proposed, in which an integrated human thermophysiological model consisting of human thermal regulation model and a nonlinear heart rate regulation model is reported. The human thermoregulatory mechanism as well as the heart rate response mechanism during exercise can be simulated. On the basis of the simulated physiological indicators, a fuzzy finite state machine is constructed to obtain the possible health transition sequence and predict the exercise health status. The experiment results show that our integrated exercise thermophysiological model can numerically simulate the thermal and physiological processes of the human body during exercise and the predicted exercise health transition sequence from finite state machine can be used in healthcare. PMID:28702074

  6. Psychophysiological correlates of aggression and violence: an integrative review.

    PubMed

    Patrick, Christopher J

    2008-08-12

    This paper reviews existing psychophysiological studies of aggression and violent behaviour including research employing autonomic, electrocortical and neuroimaging measures. Robust physiological correlates of persistent aggressive behaviour evident in this literature include low baseline heart rate, enhanced autonomic reactivity to stressful or aversive stimuli, enhanced EEG slow wave activity, reduced P300 brain potential response and indications from structural and functional neuroimaging studies of dysfunction in frontocortical and limbic brain regions that mediate emotional processing and regulation. The findings are interpreted within a conceptual framework that draws on two integrative models in the literature. The first is a recently developed hierarchical model of impulse control (externalizing) problems, in which various disinhibitory syndromes including aggressive and addictive behaviours of different kinds are seen as arising from common as well as distinctive aetiologic factors. This model represents an approach to organizing these various interrelated phenotypes and investigating their common and distinctive aetiologic substrates. The other is a neurobiological model that posits impairments in affective regulatory circuits in the brain as a key mechanism for impulsive aggressive behaviour. This model provides a perspective for integrating findings from studies employing different measures that have implicated varying brain structures and physiological systems in violent and aggressive behaviour.

  7. Social information changes stress hormone receptor expression in the songbird brain.

    PubMed

    Cornelius, Jamie M; Perreau, Gillian; Bishop, Valerie R; Krause, Jesse S; Smith, Rachael; Hahn, Thomas P; Meddle, Simone L

    2018-01-01

    Social information is used by many vertebrate taxa to inform decision-making, including resource-mediated movements, yet the mechanisms whereby social information is integrated physiologically to affect such decisions remain unknown. Social information is known to influence the physiological response to food reduction in captive songbirds. Red crossbills (Loxia curvirostra) that were food reduced for several days showed significant elevations in circulating corticosterone (a "stress" hormone often responsive to food limitation) only if their neighbors were similarly food restricted. Physiological responses to glucocorticoid hormones are enacted through two receptors that may be expressed differentially in target tissues. Therefore, we investigated the influence of social information on the expression of the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) mRNA in captive red crossbill brains. Although the role of MR and GR in the response to social information may be highly complex, we specifically predicted social information from food-restricted individuals would reduce MR and GR expression in two brain regions known to regulate hypothalamic-pituitary-adrenal (HPA) activity - given that reduced receptor expression may lessen the efficacy of negative feedback and release inhibitory tone on the HPA. Our results support these predictions - offering one potential mechanism whereby social cues could increase or sustain HPA-activity during stress. The data further suggest different mechanisms by which metabolic stress versus social information influence HPA activity and behavioral outcomes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Manipulating glucocorticoids in wild animals: basic and applied perspectives

    PubMed Central

    Sopinka, Natalie M.; Patterson, Lucy D.; Redfern, Julia C.; Pleizier, Naomi K.; Belanger, Cassia B.; Midwood, Jon D.; Crossin, Glenn T.; Cooke, Steven J.

    2015-01-01

    One of the most comprehensively studied responses to stressors in vertebrates is the endogenous production and regulation of glucocorticoids (GCs). Extensive laboratory research using experimental elevation of GCs in model species is instrumental in learning about stressor-induced physiological and behavioural mechanisms; however, such studies fail to inform our understanding of ecological and evolutionary processes in the wild. We reviewed emerging research that has used GC manipulations in wild vertebrates to assess GC-mediated effects on survival, physiology, behaviour, reproduction and offspring quality. Within and across taxa, exogenous manipulation of GCs increased, decreased or had no effect on traits examined in the reviewed studies. The notable diversity in responses to GC manipulation could be associated with variation in experimental methods, inherent differences among species, morphs, sexes and age classes, and the ecological conditions in which responses were measured. In their current form, results from experimental studies may be applied to animal conservation on a case-by-case basis in contexts such as threshold-based management. We discuss ways to integrate mechanistic explanations for changes in animal abundance in altered environments with functional applications that inform conservation practitioners of which species and traits may be most responsive to environmental change or human disturbance. Experimental GC manipulation holds promise for determining mechanisms underlying fitness impairment and population declines. Future work in this area should examine multiple life-history traits, with consideration of individual variation and, most importantly, validation of GC manipulations within naturally occurring and physiologically relevant ranges. PMID:27293716

  9. Interstitial Glucose and Physical Exercise in Type 1 Diabetes: Integrative Physiology, Technology, and the Gap In-Between

    PubMed Central

    Moser, Othmar; Yardley, Jane E.; Bracken, Richard M.

    2018-01-01

    Continuous and flash glucose monitoring systems measure interstitial fluid glucose concentrations within a body compartment that is dramatically altered by posture and is responsive to the physiological and metabolic changes that enable exercise performance in individuals with type 1 diabetes. Body fluid redistribution within the interstitial compartment, alterations in interstitial fluid volume, changes in rate and direction of fluid flow between the vasculature, interstitium and lymphatics, as well as alterations in the rate of glucose production and uptake by exercising tissues, make for caution when interpreting device read-outs in a rapidly changing internal environment during acute exercise. We present an understanding of the physiological and metabolic changes taking place with acute exercise and detail the blood and interstitial glucose responses with different forms of exercise, namely sustained endurance, high-intensity, and strength exercises in individuals with type 1 diabetes. Further, we detail novel technical information on currently available patient devices. As more health services and insurance companies advocate their use, understanding continuous and flash glucose monitoring for its strengths and limitations may offer more confidence for patients aiming to manage glycemia around exercise. PMID:29342932

  10. Physiological and morphological characterization of ganglion cells in the salamander retina

    PubMed Central

    Wang, Jing; Jacoby, Roy; Wu, Samuel M.

    2016-01-01

    Retinal ganglion cells (RGCs) integrate visual information from the retina and transmit collective signals to the brain. A systematic investigation of functional and morphological characteristics of various types of RGCs is important to comprehensively understand how the visual system encodes and transmits information via various RGC pathways. This study evaluated both physiological and morphological properties of 67 RGCs in dark-adapted flat-mounted salamander retina by examining light-evoked cation and chloride current responses via voltage-clamp recordings and visualizing morphology by Lucifer yellow fluorescence with a confocal microscope. Six groups of RGCs were described: asymmetrical ON–OFF RGCs, symmetrical ON RGCs, OFF RGCs, and narrow-, medium- and wide-field ON–OFF RGCs. Dendritic field diameters of RGCs ranged 102–490 µm: narrow field (<200 µm, 31% of RGCs), medium field (200–300 µm, 45%) and wide field (>300 µm, 24%). Dendritic ramification patterns of RGCs agree with the sub-lamina A/B rule. 34% of RGCs were monostratified, 24% bistratified and 42% diffusely stratified. 70% of ON RGCs and OFF RGCs were monostratified. Wide-field RGCs were diffusely stratified. 82% of RGCs generated light-evoked ON–OFF responses, while 11% generated ON responses and 7% OFF responses. Response sensitivity analysis suggested that some RGCs obtained separated rod/cone bipolar cell inputs whereas others obtained mixed bipolar cell inputs. 25% of neurons in the RGC layer were displaced amacrine cells. Although more types may be defined by more refined classification criteria, this report is to incorporate more physiological properties into RGC classification. PMID:26731645

  11. Transcriptional integration of mitogenic and mechanical signals by Myc and YAP.

    PubMed

    Croci, Ottavio; De Fazio, Serena; Biagioni, Francesca; Donato, Elisa; Caganova, Marieta; Curti, Laura; Doni, Mirko; Sberna, Silvia; Aldeghi, Deborah; Biancotto, Chiara; Verrecchia, Alessandro; Olivero, Daniela; Amati, Bruno; Campaner, Stefano

    2017-10-15

    Mammalian cells must integrate environmental cues to determine coherent physiological responses. The transcription factors Myc and YAP-TEAD act downstream from mitogenic signals, with the latter responding also to mechanical cues. Here, we show that these factors coordinately regulate genes required for cell proliferation. Activation of Myc led to extensive association with its genomic targets, most of which were prebound by TEAD. At these loci, recruitment of YAP was Myc-dependent and led to full transcriptional activation. This cooperation was critical for cell cycle entry, organ growth, and tumorigenesis. Thus, Myc and YAP-TEAD integrate mitogenic and mechanical cues at the transcriptional level to provide multifactorial control of cell proliferation. © 2017 Croci et al.; Published by Cold Spring Harbor Laboratory Press.

  12. In search of integrated specificity: comment on Denson, Spanovic, and Miller (2009).

    PubMed

    Miller, Gregory E

    2009-11-01

    Psychologists have long been interested in the integrated specificity hypothesis, which maintains that stressors elicit fairly distinct behavioral, emotional, and biological responses that are molded by selective pressures to meet specific demands from the environment. This issue of Psychological Bulletin features a meta-analytic review of the evidence for this proposition by T. F. Denson, M. Spanovic, and N. Miller. Their review concluded that the meta-analytic findings support the "core concept behind the integrated specificity model" (p. 845) and reveal that "within the context of a stressful event, organisms produce an integrated and coordinated response at multiple levels (i.e., cognitive, emotional, physiological)" (p. 845). I argue that conclusions such as this are unwarranted, given the data. Aside from some effects for cortisol, little evidence of specificity was presented, and most of the significant findings reported would be expected by chance alone. I also contend that Denson et al. failed to consider some important sources of evidence bearing on the specificity hypothesis, particularly how appraisals and emotions couple with autonomic nervous system endpoints and functional indices of immune response. If selective pressures did give rise to an integrated stress response, such pathways almost certainly would have been involved. By omitting such outcomes from the meta-analysis, Denson et al. overlooked what are probably the most definitive tests of the specificity hypothesis. As a result, the field is back where it started: with a lot of affection for the concept of integrated specificity but little in the way of definitive evidence to refute or accept it.

  13. Integrating Image-Based Phenomics and Association Analysis to Dissect the Genetic Architecture of Temporal Salinity Responses in Rice1[OPEN

    PubMed Central

    Knecht, Avi C.; Wang, Dong

    2015-01-01

    Salinity affects a significant portion of arable land and is particularly detrimental for irrigated agriculture, which provides one-third of the global food supply. Rice (Oryza sativa), the most important food crop, is salt sensitive. The genetic resources for salt tolerance in rice germplasm exist but are underutilized due to the difficulty in capturing the dynamic nature of physiological responses to salt stress. The genetic basis of these physiological responses is predicted to be polygenic. In an effort to address this challenge, we generated temporal imaging data from 378 diverse rice genotypes across 14 d of 90 mm NaCl stress and developed a statistical model to assess the genetic architecture of dynamic salinity-induced growth responses in rice germplasm. A genomic region on chromosome 3 was strongly associated with the early growth response and was captured using visible range imaging. Fluorescence imaging identified four genomic regions linked to salinity-induced fluorescence responses. A region on chromosome 1 regulates both the fluorescence shift indicative of the longer term ionic stress and the early growth rate decline during salinity stress. We present, to our knowledge, a new approach to capture the dynamic plant responses to its environment and elucidate the genetic basis of these responses using a longitudinal genome-wide association model. PMID:26111541

  14. Pathway connectivity and signaling coordination in the yeast stress-activated signaling network

    PubMed Central

    Chasman, Deborah; Ho, Yi-Hsuan; Berry, David B; Nemec, Corey M; MacGilvray, Matthew E; Hose, James; Merrill, Anna E; Lee, M Violet; Will, Jessica L; Coon, Joshua J; Ansari, Aseem Z; Craven, Mark; Gasch, Audrey P

    2014-01-01

    Stressed cells coordinate a multi-faceted response spanning many levels of physiology. Yet knowledge of the complete stress-activated regulatory network as well as design principles for signal integration remains incomplete. We developed an experimental and computational approach to integrate available protein interaction data with gene fitness contributions, mutant transcriptome profiles, and phospho-proteome changes in cells responding to salt stress, to infer the salt-responsive signaling network in yeast. The inferred subnetwork presented many novel predictions by implicating new regulators, uncovering unrecognized crosstalk between known pathways, and pointing to previously unknown ‘hubs’ of signal integration. We exploited these predictions to show that Cdc14 phosphatase is a central hub in the network and that modification of RNA polymerase II coordinates induction of stress-defense genes with reduction of growth-related transcripts. We find that the orthologous human network is enriched for cancer-causing genes, underscoring the importance of the subnetwork's predictions in understanding stress biology. PMID:25411400

  15. Physiological Changes to the Cardiovascular System at High Altitude and Its Effects on Cardiovascular Disease.

    PubMed

    Riley, Callum James; Gavin, Matthew

    2017-06-01

    Riley, Callum James, and Matthew Gavin. Physiological changes to the cardiovascular system at high altitude and its effects on cardiovascular disease. High Alt Med Biol. 18:102-113, 2017.-The physiological changes to the cardiovascular system in response to the high altitude environment are well understood. More recently, we have begun to understand how these changes may affect and cause detriment to cardiovascular disease. In addition to this, the increasing availability of altitude simulation has dramatically improved our understanding of the physiology of high altitude. This has allowed further study on the effect of altitude in those with cardiovascular disease in a safe and controlled environment as well as in healthy individuals. Using a thorough PubMed search, this review aims to integrate recent advances in cardiovascular physiology at altitude with previous understanding, as well as its potential implications on cardiovascular disease. Altogether, it was found that the changes at altitude to cardiovascular physiology are profound enough to have a noteworthy effect on many forms of cardiovascular disease. While often asymptomatic, there is some risk in high altitude exposure for individuals with certain cardiovascular diseases. Although controlled research in patients with cardiovascular disease was largely lacking, meaning firm conclusions cannot be drawn, these risks should be a consideration to both the individual and their physician.

  16. Reproductive physiology

    USGS Publications Warehouse

    Gee, G.F.; Russman, S.E.; Ellis, David H.; Gee, George F.; Mirande, Claire M.

    1996-01-01

    Conclusions: Although the general pattern of avian physiology applies to cranes, we have identified many physiological mechanisms (e.g., effects of disturbance) that need further study. Studies with cranes are expensive compared to those done with domestic fowl because of the crane's larger size, low reproductive rate, and delayed sexual maturity. To summarize, the crane reproductive system is composed of physiological and anatomical elements whose function is controlled by an integrated neural-endocrine system. Males generally produce semen at a younger age than when females lay eggs. Eggs are laid in clutches of two (1 to 3), and females will lay additional clutches if the preceding clutches are removed. Both sexes build nests and incubate the eggs. Molt begins during incubation and body molt may be completed annually in breeding pairs. However, remiges are replaced sequentially over 2 to 3 years, or abruptly every 2 to 3 years in other species. Most immature birds replace their juvenal remiges over a 2 to 3 year period. Stress interferes with reproduction in cranes by reducing egg production or terminating the reproductive effort. In other birds, stress elevates corticosterone levels and decreases LHRH release. We know little about the physiological response of cranes to stress.

  17. A Study of the Effectiveness of Sensory Integration Therapy on Neuro-Physiological Development

    ERIC Educational Resources Information Center

    Reynolds, Christopher; Reynolds, Kathleen Sheena

    2010-01-01

    Background: Sensory integration theory proposes that because there is plasticity within the central nervous system (the brain is moldable) and because the brain consists of systems that are hierarchically organised, it is possible to stimulate and improve neuro-physiological processing and integration and thereby increase learning capacity.…

  18. Integrated compensatory network is activated in the absence of NCC phosphorylation.

    PubMed

    Grimm, P Richard; Lazo-Fernandez, Yoskaly; Delpire, Eric; Wall, Susan M; Dorsey, Susan G; Weinman, Edward J; Coleman, Richard; Wade, James B; Welling, Paul A

    2015-05-01

    Thiazide diuretics are used to treat hypertension; however, compensatory processes in the kidney can limit antihypertensive responses to this class of drugs. Here, we evaluated compensatory pathways in SPAK kinase-deficient mice, which are unable to activate the thiazide-sensitive sodium chloride cotransporter NCC (encoded by Slc12a3). Global transcriptional profiling, combined with biochemical, cell biological, and physiological phenotyping, identified the gene expression signature of the response and revealed how it establishes an adaptive physiology. Salt reabsorption pathways were created by the coordinate induction of a multigene transport system, involving solute carriers (encoded by Slc26a4, Slc4a8, and Slc4a9), carbonic anhydrase isoforms, and V-type H⁺-ATPase subunits in pendrin-positive intercalated cells (PP-ICs) and ENaC subunits in principal cells (PCs). A distal nephron remodeling process and induction of jagged 1/NOTCH signaling, which expands the cortical connecting tubule with PCs and replaces acid-secreting α-ICs with PP-ICs, were partly responsible for the compensation. Salt reabsorption was also activated by induction of an α-ketoglutarate (α-KG) paracrine signaling system. Coordinate regulation of a multigene α-KG synthesis and transport pathway resulted in α-KG secretion into pro-urine, as the α-KG-activated GPCR (Oxgr1) increased on the PP-IC apical surface, allowing paracrine delivery of α-KG to stimulate salt transport. Identification of the integrated compensatory NaCl reabsorption mechanisms provides insight into thiazide diuretic efficacy.

  19. Integrated compensatory network is activated in the absence of NCC phosphorylation

    PubMed Central

    Grimm, P. Richard; Lazo-Fernandez, Yoskaly; Delpire, Eric; Wall, Susan M.; Dorsey, Susan G.; Weinman, Edward J.; Coleman, Richard; Wade, James B.; Welling, Paul A.

    2015-01-01

    Thiazide diuretics are used to treat hypertension; however, compensatory processes in the kidney can limit antihypertensive responses to this class of drugs. Here, we evaluated compensatory pathways in SPAK kinase–deficient mice, which are unable to activate the thiazide-sensitive sodium chloride cotransporter NCC (encoded by Slc12a3). Global transcriptional profiling, combined with biochemical, cell biological, and physiological phenotyping, identified the gene expression signature of the response and revealed how it establishes an adaptive physiology. Salt reabsorption pathways were created by the coordinate induction of a multigene transport system, involving solute carriers (encoded by Slc26a4, Slc4a8, and Slc4a9), carbonic anhydrase isoforms, and V-type H+-ATPase subunits in pendrin-positive intercalated cells (PP-ICs) and ENaC subunits in principal cells (PCs). A distal nephron remodeling process and induction of jagged 1/NOTCH signaling, which expands the cortical connecting tubule with PCs and replaces acid-secreting α-ICs with PP-ICs, were partly responsible for the compensation. Salt reabsorption was also activated by induction of an α-ketoglutarate (α-KG) paracrine signaling system. Coordinate regulation of a multigene α-KG synthesis and transport pathway resulted in α-KG secretion into pro-urine, as the α-KG–activated GPCR (Oxgr1) increased on the PP-IC apical surface, allowing paracrine delivery of α-KG to stimulate salt transport. Identification of the integrated compensatory NaCl reabsorption mechanisms provides insight into thiazide diuretic efficacy. PMID:25893600

  20. Information theory and the neuropeptidergic regulation of seasonal reproduction in mammals and birds

    PubMed Central

    Stevenson, Tyler J.; Ball, Gregory F.

    2011-01-01

    Seasonal breeding in the temperate zone is a dramatic example of a naturally occurring change in physiology and behaviour. Cues that predict periods of environmental amelioration favourable for breeding must be processed by the brain so that the appropriate responses in reproductive physiology can be implemented. The neural integration of several environmental cues converges on discrete hypothalamic neurons in order to regulate reproductive physiology. Gonadotrophin-releasing hormone-1 (GnRH1) and Kisspeptin (Kiss1) neurons in avian and mammalian species, respectively, show marked variation in expression that is positively associated with breeding state. We applied the constancy/contingency model of predictability to investigate how GnRH1 and Kiss1 integrate different environmental cues to regulate reproduction. We show that variation in GnRH1 from a highly seasonal avian species exhibits a predictive change that is primarily based on contingency information. Opportunistic species have low measures of predictability and exhibit a greater contribution of constancy information that is sex-dependent. In hamsters, Kiss1 exhibited a predictive change in expression that was predominantly contingency information and is anatomically localized. The model applied here provides a framework for studies geared towards determining the impact of variation in climate patterns to reproductive success in vertebrate species. PMID:21208957

  1. Disease-responsive drug delivery: the next generation of smart delivery devices.

    PubMed

    Wanakule, Prinda; Roy, Krishnendu

    2012-01-01

    With the advent of highly potent and cytotoxic drugs, it is increasingly critical that they be targeted and released only in cells of diseased tissues, while sparing physiologically normal neighbors. Simple ligand-based targeting of drug carriers, although promising, cannot always provide the required specificity to achieve this since often normal cells also express significant levels of the targeted receptors. Therefore, stimuli-responsive delivery systems are being explored to allow drug release from nano- and microcarriers and implantable devices, primarily in the presence of physiological or disease-specific pathophysiological signals. Designing smart biomaterials that respond to temperature or pH changes, protein and ligand binding, disease-specific degradation, e.g. enzymatic cleavage, has become an integral part of this approach. These strategies are used in combination with nano- and microparticle systems to improve delivery efficiency through several routes of administration, and with injectable or implantable systems for long term controlled release. This review focuses on recent developments in stimuli-responsive systems, their physicochemical properties, release profiles, efficacy, safety and biocompatibility, as well as future perspectives.

  2. Shotgun proteomics reveals physiological response to ocean acidification in Crassostrea gigas.

    PubMed

    Timmins-Schiffman, Emma; Coffey, William D; Hua, Wilber; Nunn, Brook L; Dickinson, Gary H; Roberts, Steven B

    2014-11-03

    Ocean acidification as a result of increased anthropogenic CO2 emissions is occurring in marine and estuarine environments worldwide. The coastal ocean experiences additional daily and seasonal fluctuations in pH that can be lower than projected end-of-century open ocean pH reductions. In order to assess the impact of ocean acidification on marine invertebrates, Pacific oysters (Crassostrea gigas) were exposed to one of four different p CO2 levels for four weeks: 400 μatm (pH 8.0), 800 μatm (pH 7.7), 1000 μatm (pH 7.6), or 2800 μatm (pH 7.3). At the end of the four week exposure period, oysters in all four p CO2 environments deposited new shell, but growth rate was not different among the treatments. However, micromechanical properties of the new shell were compromised by elevated p CO2. Elevated p CO2 affected neither whole body fatty acid composition, nor glycogen content, nor mortality rate associated with acute heat shock. Shotgun proteomics revealed that several physiological pathways were significantly affected by ocean acidification, including antioxidant response, carbohydrate metabolism, and transcription and translation. Additionally, the proteomic response to a second stress differed with p CO2, with numerous processes significantly affected by mechanical stimulation at high versus low p CO2 (all proteomics data are available in the ProteomeXchange under the identifier PXD000835). Oyster physiology is significantly altered by exposure to elevated p CO2, indicating changes in energy resource use. This is especially apparent in the assessment of the effects of p CO2 on the proteomic response to a second stress. The altered stress response illustrates that ocean acidification may impact how oysters respond to other changes in their environment. These data contribute to an integrative view of the effects of ocean acidification on oysters as well as physiological trade-offs during environmental stress.

  3. Performance in physiology evaluation: possible improvement by active learning strategies.

    PubMed

    Montrezor, Luís H

    2016-12-01

    The evaluation process is complex and extremely important in the teaching/learning process. Evaluations are constantly employed in the classroom to assist students in the learning process and to help teachers improve the teaching process. The use of active methodologies encourages students to participate in the learning process, encourages interaction with their peers, and stimulates thinking about physiological mechanisms. This study examined the performance of medical students on physiology over four semesters with and without active engagement methodologies. Four activities were used: a puzzle, a board game, a debate, and a video. The results show that engaging in activities with active methodologies before a physiology cognitive monitoring test significantly improved student performance compared with not performing the activities. We integrate the use of these methodologies with classic lectures, and this integration appears to improve the teaching/learning process in the discipline of physiology and improves the integration of physiology with cardiology and neurology. In addition, students enjoy the activities and perform better on their evaluations when they use them. Copyright © 2016 The American Physiological Society.

  4. Physiology, behavior, and conservation.

    PubMed

    Cooke, Steven J; Blumstein, Daniel T; Buchholz, Richard; Caro, Tim; Fernández-Juricic, Esteban; Franklin, Craig E; Metcalfe, Julian; O'Connor, Constance M; St Clair, Colleen Cassady; Sutherland, William J; Wikelski, Martin

    2014-01-01

    Many animal populations are in decline as a result of human activity. Conservation practitioners are attempting to prevent further declines and loss of biodiversity as well as to facilitate recovery of endangered species, and they often rely on interdisciplinary approaches to generate conservation solutions. Two recent interfaces in conservation science involve animal behavior (i.e., conservation behavior) and physiology (i.e., conservation physiology). To date, these interfaces have been considered separate entities, but from both pragmatic and biological perspectives, there is merit in better integrating behavior and physiology to address applied conservation problems and to inform resource management. Although there are some institutional, conceptual, methodological, and communication-oriented challenges to integrating behavior and physiology to inform conservation actions, most of these barriers can be overcome. Through outlining several successful examples that integrate these disciplines, we conclude that physiology and behavior can together generate meaningful data to support animal conservation and management actions. Tangentially, applied conservation and management problems can, in turn, also help advance and reinvigorate the fundamental disciplines of animal physiology and behavior by providing advanced natural experiments that challenge traditional frameworks.

  5. Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway

    PubMed Central

    López-Ráez, Juan A.; Verhage, Adriaan; Fernández, Iván; García, Juan M.; Azcón-Aguilar, Concepción; Flors, Victor; Pozo, María J.

    2010-01-01

    Arbuscular mycorrhizal (AM) symbioses are mutualistic associations between soil fungi and most vascular plants. The symbiosis significantly affects the host physiology in terms of nutrition and stress resistance. Despite the lack of host range specificity of the interaction, functional diversity between AM fungal species exists. The interaction is finely regulated according to plant and fungal characters, and plant hormones are believed to orchestrate the modifications in the host plant. Using tomato as a model, an integrative analysis of the host response to different mycorrhizal fungi was performed combining multiple hormone determination and transcriptional profiling. Analysis of ethylene-, abscisic acid-, salicylic acid-, and jasmonate-related compounds evidenced common and divergent responses of tomato roots to Glomus mosseae and Glomus intraradices, two fungi differing in their colonization abilities and impact on the host. Both hormonal and transcriptional analyses revealed, among others, regulation of the oxylipin pathway during the AM symbiosis and point to a key regulatory role for jasmonates. In addition, the results suggest that specific responses to particular fungi underlie the differential impact of individual AM fungi on plant physiology, and particularly on its ability to cope with biotic stresses. PMID:20378666

  6. Salicaceae Endophytes Modulate Stomatal Behavior and Increase Water Use Efficiency in Rice

    PubMed Central

    Rho, Hyungmin; Van Epps, Victor; Wegley, Nicholas; Doty, Sharon L.; Kim, Soo-Hyung

    2018-01-01

    Bacterial and yeast endophytes isolated from the Salicaceae family have been shown to promote growth and alleviate stress in plants from different taxa. To determine the physiological pathways through which endophytes affect plant water relations, we investigated leaf water potential, whole-plant water use, and stomatal responses of rice plants to Salicaceae endophyte inoculation under CO2 enrichment and water deficit. Daytime stomatal conductance and stomatal density were lower in inoculated plants compared to controls. Leaf ABA concentrations increased with endophyte inoculation. As a result, transpirational water use decreased significantly with endophyte inoculation while biomass did not change or slightly increased. This response led to a significant increase in cumulative water use efficiency at harvest. Different endophyte strains produced the same results in host plant water relations and stomatal responses. These stomatal responses were also observed under elevated CO2 conditions, and the increase in water use efficiency was more pronounced under water deficit conditions. The effect on water use efficiency was positively correlated with daily light integrals across different experiments. Our results provide insights on the physiological mechanisms of plant-endophyte interactions involving plant water relations and stomatal functions. PMID:29552021

  7. Integrated Physiological, Proteomic, and Metabolomic Analysis of Ultra Violet (UV) Stress Responses and Adaptation Mechanisms in Pinus radiata*

    PubMed Central

    Pascual, Jesús; Cañal, María Jesús; Escandón, Mónica; Meijón, Mónica; Weckwerth, Wolfram

    2017-01-01

    Globally expected changes in environmental conditions, especially the increase of UV irradiation, necessitate extending our knowledge of the mechanisms mediating tree species adaptation to this stress. This is crucial for designing new strategies to maintain future forest productivity. Studies focused on environmentally realistic dosages of UV irradiation in forest species are scarce. Pinus spp. are commercially relevant trees and not much is known about their adaptation to UV. In this work, UV treatment and recovery of Pinus radiata plants with dosages mimicking future scenarios, based on current models of UV radiation, were performed in a time-dependent manner. The combined metabolome and proteome analysis were complemented with measurements of + physiological parameters and gene expression. Sparse PLS analysis revealed complex molecular interaction networks of molecular and physiological data. Early responses prevented phototoxicity by reducing photosystem activity and the electron transfer chain together with the accumulation of photoprotectors and photorespiration. Apart from the reduction in photosynthesis as consequence of the direct UV damage on the photosystems, the primary metabolism was rearranged to deal with the oxidative stress while minimizing ROS production. New protein kinases and proteases related to signaling, coordination, and regulation of UV stress responses were revealed. All these processes demonstrate a complex molecular interaction network extending the current knowledge on UV-stress adaptation in pine. PMID:28096192

  8. Dynamic Plant-Plant-Herbivore Interactions Govern Plant Growth-Defence Integration.

    PubMed

    de Vries, Jorad; Evers, Jochem B; Poelman, Erik H

    2017-04-01

    Plants downregulate their defences against insect herbivores upon impending competition for light. This has long been considered a resource trade-off, but recent advances in plant physiology and ecology suggest this mechanism is more complex. Here we propose that to understand why plants regulate and balance growth and defence, the complex dynamics in plant-plant competition and plant-herbivore interactions needs to be considered. Induced growth-defence responses affect plant competition and herbivore colonisation in space and time, which has consequences for the adaptive value of these responses. Assessing these complex interactions strongly benefits from advanced modelling tools that can model multitrophic interactions in space and time. Such an exercise will allow a critical re-evaluation why and how plants integrate defence and competition for light. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Role of recoverin in rod photoreceptor light adaptation.

    PubMed

    Morshedian, Ala; Woodruff, Michael L; Fain, Gordon L

    2018-04-15

    Recoverin is a small molecular-weight, calcium-binding protein in rod outer segments that can modulate the rate of rhodopsin phosphorylation. We describe two additional and perhaps more important functions during photoreceptor light adaptation. Recoverin influences the rate of change of adaptation. In wild-type rods, sensitivity and response integration time adapt with similar time constants of 150-200 ms. In Rv-/- rods lacking recoverin, sensitivity declines faster and integration time is already shorter and not significantly altered. During steady light exposure, rod circulating current slowly increases during a time course of tens of seconds, gradually extending the operating range of the rod. In Rv-/- rods, this mechanism is deleted, steady-state currents are already larger and rods saturate at brighter intensities. We propose that recoverin modulates spontaneous and light-activated phophodiesterase-6, the phototransduction effector enzyme, to increase sensitivity in dim light but improve responsiveness to change in brighter illumination. Recoverin is a small molecular-weight, calcium-binding protein in rod outer segments that binds to G-protein receptor kinase 1 and can alter the rate of rhodopsin phosphorylation. A change in phosphorylation should change the lifetime of light-activated rhodopsin and the gain of phototransduction, but deletion of recoverin has little effect on the sensitivity of rods either in the dark or in dim-to-moderate background light. We describe two additional functions perhaps of greater physiological significance. (i) When the ambient intensity increases, sensitivity and integration time decrease in wild-type (WT) rods with similar time constants of 150-200 ms. Recoverin is part of the mechanism controlling this process because, in Rv-/- rods lacking recoverin, sensitivity declines more rapidly and integration time is already shorter and not further altered. (ii) During steady light exposure, WT rod circulating current slowly increases during a time course of tens of seconds, gradually extending the operating range of the rod. In Rv-/- rods, this mechanism is also deleted, steady-state currents are already larger and rods saturate at brighter intensities. We argue that neither (i) nor (ii) can be caused by modulation of rhodopsin phosphorylation but may instead be produced by direct modulation of phophodiesterase-6 (PDE6), the phototransduction effector enzyme. We propose that recoverin in dark-adapted rods keeps the integration time long and the spontaneous PDE6 rate relatively high to improve sensitivity. In background light, the integration time is decreased to facilitate detection of change and motion and the spontaneous PDE6 rate decreases to augment the rod working range. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  10. A model of interval timing by neural integration.

    PubMed

    Simen, Patrick; Balci, Fuat; de Souza, Laura; Cohen, Jonathan D; Holmes, Philip

    2011-06-22

    We show that simple assumptions about neural processing lead to a model of interval timing as a temporal integration process, in which a noisy firing-rate representation of time rises linearly on average toward a response threshold over the course of an interval. Our assumptions include: that neural spike trains are approximately independent Poisson processes, that correlations among them can be largely cancelled by balancing excitation and inhibition, that neural populations can act as integrators, and that the objective of timed behavior is maximal accuracy and minimal variance. The model accounts for a variety of physiological and behavioral findings in rodents, monkeys, and humans, including ramping firing rates between the onset of reward-predicting cues and the receipt of delayed rewards, and universally scale-invariant response time distributions in interval timing tasks. It furthermore makes specific, well-supported predictions about the skewness of these distributions, a feature of timing data that is usually ignored. The model also incorporates a rapid (potentially one-shot) duration-learning procedure. Human behavioral data support the learning rule's predictions regarding learning speed in sequences of timed responses. These results suggest that simple, integration-based models should play as prominent a role in interval timing theory as they do in theories of perceptual decision making, and that a common neural mechanism may underlie both types of behavior.

  11. Clinical reasoning and critical thinking.

    PubMed

    da Silva Bastos Cerullo, Josinete Aparecida; de Almeida Lopes Monteiro da Cruz, Diná

    2010-01-01

    This study identifies and analyzes nursing literature on clinical reasoning and critical thinking. A bibliographical search was performed in LILACS, SCIELO, PUBMED and CINAHL databases, followed by selection of abstracts and the reading of full texts. Through the review we verified that clinical reasoning develops from scientific and professional knowledge, is permeated by ethical decisions and nurses values and also that there are different personal and institutional strategies that might improve the critical thinking and clinical reasoning of nurses. Further research and evaluation of educational programs on clinical reasoning that integrate psychosocial responses to physiological responses of people cared by nurses is needed.

  12. Ocean warming and acidification: Unifying physiological principles linking organism response to ecosystem change?

    NASA Astrophysics Data System (ADS)

    Pörtner, H. O.; Bock, C.; Lannig, G.; Lucassen, M.; Mark, F. C.; Stark, A.; Walther, K.; Wittmann, A.

    2011-12-01

    The effects of ocean warming and acidification on individual species of marine ectothermic animals may be based on some common denominators, i.e. physiological responses that can be assumed to reflect unifying principles, common to all marine animal phyla. Identification of these principles requires studies, which reach beyond the species-specific response, and consider multiple stressors, for example temperature, CO2 or extreme hypoxia. Analyses of response and acclimation include functional traits of physiological performance on various levels of biological organisation, from changes in the transcriptome to patterns of acid-base regulation and whole animal thermal tolerance. Conclusions are substantiated by comparisons of species and phyla from temperate, Arctic and Antarctic ecosystems and also benefit from the interpretation of paleo-patterns based on the use of a unifying physiological concept, suitable to integrate relevant environmental factors into a more comprehensive picture. Studying the differential specialization of animals on climate regimes and their sensitivity to climate leads to improved understanding of ongoing and past ecosystem change and should then support more reliable projections of future scenarios. For example, accumulating CO2 causes disturbances in acid-base status. Resilience to ocean acidification may be reflected in the capacity to compensate for these disturbances or their secondary effects. Ion and pH regulation comprise thermally sensitive active and passive transfer processes across membranes. Specific responses of ion transporter genes and their products to temperature and CO2 were found in fish, crustaceans and bivalves. However, compensation may cause unfavourable shifts in energy budget and beyond that hamper cellular and mitochondrial metabolism, which are directly linked to the animal's aerobic performance window. In crabs, oysters and, possibly, fishes, a narrowing of the thermal window is caused by moderate increases in CO2 levels. Furthermore, a decrease in the efficiency of energy production may occur and affect growth and fitness as well as larval development. Different sensitivities of life history stages indicate physiologically sensitive bottlenecks during the life cycle of marine organisms. Available evidence suggests that the concept of oxygen and capacity limited thermal tolerance (OCLTT) provides access to the physiological mechanisms closely defining the sensitivities and responses of species to various stressors. It provides causality and quantifies the levels and changes of performance and resistance, and supports more realistic estimates of species and ecosystem sensitivities to environmental change. The emerging picture of differential sensitivities across animal phyla is in line with existing categorizations of sensitivities from palaeo-observations during the Permian-Triassic mass extinctions (A.H. Knoll et al., Earth and Planetary Science Letters 256, 295-313, 2007).

  13. A quantitative systems physiology model of renal function and blood pressure regulation: Model description.

    PubMed

    Hallow, K M; Gebremichael, Y

    2017-06-01

    Renal function plays a central role in cardiovascular, kidney, and multiple other diseases, and many existing and novel therapies act through renal mechanisms. Even with decades of accumulated knowledge of renal physiology, pathophysiology, and pharmacology, the dynamics of renal function remain difficult to understand and predict, often resulting in unexpected or counterintuitive therapy responses. Quantitative systems pharmacology modeling of renal function integrates this accumulated knowledge into a quantitative framework, allowing evaluation of competing hypotheses, identification of knowledge gaps, and generation of new experimentally testable hypotheses. Here we present a model of renal physiology and control mechanisms involved in maintaining sodium and water homeostasis. This model represents the core renal physiological processes involved in many research questions in drug development. The model runs in R and the code is made available. In a companion article, we present a case study using the model to explore mechanisms and pharmacology of salt-sensitive hypertension. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  14. Redefining the gut as the motor of critical illness

    PubMed Central

    Mittal, Rohit; Coopersmith, Craig M.

    2013-01-01

    The gut is hypothesized to play a central role in the progression of sepsis and multiple organ dysfunction syndrome. Critical illness alters gut integrity by increasing epithelial apoptosis and permeability and by decreasing epithelial proliferation and mucus integrity. Additionally, toxic gut-derived lymph induces distant organ injury. Although the endogenous microflora ordinarily exist in a symbiotic relationship with the gut epithelium, severe physiologic insults alter this relationship, leading to induction of virulence factors in the microbiome, which, in turn, can perpetuate or worsen critical illness. This review highlights newly discovered ways in which the gut acts as the motor that perpetuates the systemic inflammatory response in critical illness. PMID:24055446

  15. Real-time physiological monitoring with distributed networks of sensors and object-oriented programming techniques

    NASA Astrophysics Data System (ADS)

    Wiesmann, William P.; Pranger, L. Alex; Bogucki, Mary S.

    1998-05-01

    Remote monitoring of physiologic data from individual high- risk workers distributed over time and space is a considerable challenge. This is often due to an inadequate capability to accurately integrate large amounts of data into usable information in real time. In this report, we have used the vertical and horizontal organization of the 'fireground' as a framework to design a distributed network of sensors. In this system, sensor output is linked through a hierarchical object oriented programing process to accurately interpret physiological data, incorporate these data into a synchronous model and relay processed data, trends and predictions to members of the fire incident command structure. There are several unique aspects to this approach. The first includes a process to account for variability in vital parameter values for each individual's normal physiologic response by including an adaptive network in each data process. This information is used by the model in an iterative process to baseline a 'normal' physiologic response to a given stress for each individual and to detect deviations that indicate dysfunction or a significant insult. The second unique capability of the system orders the information for each user including the subject, local company officers, medical personnel and the incident commanders. Information can be retrieved and used for training exercises and after action analysis. Finally this system can easily be adapted to existing communication and processing links along with incorporating the best parts of current models through the use of object oriented programming techniques. These modern software techniques are well suited to handling multiple data processes independently over time in a distributed network.

  16. An integrative approach to space-flight physiology using systems analysis and mathematical simulation

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.; White, R. J.; Rummel, J. A.

    1980-01-01

    An approach was developed to aid in the integration of many of the biomedical findings of space flight, using systems analysis. The mathematical tools used in accomplishing this task include an automated data base, a biostatistical and data analysis system, and a wide variety of mathematical simulation models of physiological systems. A keystone of this effort was the evaluation of physiological hypotheses using the simulation models and the prediction of the consequences of these hypotheses on many physiological quantities, some of which were not amenable to direct measurement. This approach led to improvements in the model, refinements of the hypotheses, a tentative integrated hypothesis for adaptation to weightlessness, and specific recommendations for new flight experiments.

  17. Living and working in space; IAA Man in Space Symposium, 9th, Cologne, Federal Republic of Germany, June 17-21, 1991, Selection of Papers

    NASA Technical Reports Server (NTRS)

    Klein, Karl E. (Editor); Contant, Jean-Michel (Editor)

    1992-01-01

    The present symposium on living and working in space encompasses the physiological responses of humans in space and biomedical support for the conditions associated with space travel. Specific physiological issues addressed include cerebral and sensorimotor functions, effects on the cardiovascular and respiratory system, musculoskeletal system, body fluid, hormones and electrolytes, and some orthostatic hypotension mechanisms as countermeasures. The biomedical support techniques examined include selection training, and care, teleoperation and artificial intelligence, robotic automation, bioregenerative life support, and toxic hazard risks in space habitats. Also addressed are determinants of orientation in microgravity, the hormonal control of body fluid metabolism, integrated human-machine intelligence in space machines, and material flow estimation in CELSS.

  18. Two-photon microscope for multisite microphotolysis of caged neurotransmitters in acute brain slices

    PubMed Central

    Losavio, Bradley E.; Iyer, Vijay; Saggau, Peter

    2009-01-01

    We developed a two-photon microscope optimized for physiologically manipulating single neurons through their postsynaptic receptors. The optical layout fulfills the stringent design criteria required for high-speed, high-resolution imaging in scattering brain tissue with minimal photodamage. We detail the practical compensation of spectral and temporal dispersion inherent in fast laser beam scanning with acousto-optic deflectors, as well as a set of biological protocols for visualizing nearly diffraction-limited structures and delivering physiological synaptic stimuli. The microscope clearly resolves dendritic spines and evokes electrophysiological transients in single neurons that are similar to endogenous responses. This system enables the study of multisynaptic integration and will assist our understanding of single neuron function and dendritic computation. PMID:20059271

  19. [Improving industrial microbial stress resistance by metabolic engineering: a review].

    PubMed

    Fu, Ruiyan; Li, Yin

    2010-09-01

    Metabolic engineering is a technologic platform for industrial strain improvement and aims not only at modifying microbial metabolic fluxes, but also improving the physiological performance of industrial microbes. Microbes will meet multiple stresses in industrial processes. Consequently, elicited gene responses might result in a decrease in overall cell fitness and the efficiency of biotransformation. Thus, it is crucial to develop robust and productive microbial strains that can be integrated into industrial-scale bioprocesses. In this review, we focus on the progress of these novel methods and strategies for engineering stress-tolerance phenotypes referring to rational metabolic engineering and inverse metabolic engineering in recent years. In addition, we also address problems existing in this area and future research needs of microbial physiological functionality engineering.

  20. Modelling the spatio-temporal modulation response of ganglion cells with difference-of-Gaussians receptive fields: relation to photoreceptor response kinetics.

    PubMed

    Donner, K; Hemilä, S

    1996-01-01

    Difference-of-Gaussians (DOG) models for the receptive fields of retinal ganglion cells accurately predict linear responses to both periodic stimuli (typically moving sinusoidal gratings) and aperiodic stimuli (typically circular fields presented as square-wave pulses). While the relation of spatial organization to retinal anatomy has received considerable attention, temporal characteristics have been only loosely connected to retinal physiology. Here we integrate realistic photoreceptor response waveforms into the DOG model to clarify how far a single set of physiological parameters predict temporal aspects of linear responses to both periodic and aperiodic stimuli. Traditional filter-cascade models provide a useful first-order approximation of the single-photon response in photoreceptors. The absolute time scale of these, plus a time for retinal transmission, here construed as a fixed delay, are obtained from flash/step data. Using these values, we find that the DOG model predicts the main features of both the amplitude and phase response of linear cat ganglion cells to sinusoidal flicker. Where the simplest model formulation fails, it serves to reveal additional mechanisms. Unforeseen facts are the attenuation of low temporal frequencies even in pure center-type responses, and the phase advance of the response relative to the stimulus at low frequencies. Neither can be explained by any experimentally documented cone response waveform, but both would be explained by signal differentiation, e.g. in the retinal transmission pathway, as demonstrated at least in turtle retina.

  1. The Act of Answering Questions Elicited Differentiated Responses in a Concealed Information Test.

    PubMed

    Otsuka, Takuro; Mizutani, Mitsuyoshi; Yagi, Akihiro; Katayama, Jun'ichi

    2018-04-17

    The concealed information test (CIT), a psychophysiological detection of deception test, compares physiological responses between crime-related and crime-unrelated items. In previous studies, whether the act of answering questions affected physiological responses was unclear. This study examined effects of both question-related and answer-related processes on physiological responses. Twenty participants received a modified CIT, in which the interval between presentation of questions and answering them was 27 s. Differentiated respiratory movements and cardiovascular responses between items were observed for both questions (items) and answers, while differentiated skin conductance response was observed only for questions. These results suggest that physiological responses to questions reflected orientation to a crime-related item, while physiological responses during answering reflected inhibition of psychological arousal caused by orienting. Regarding the CIT's accuracy, participants' perception of the questions themselves more strongly influenced physiological responses than answering them. © 2018 American Academy of Forensic Sciences.

  2. The Unfolded Protein Response: At the Intersection between Endoplasmic Reticulum Function and Mitochondrial Bioenergetics.

    PubMed

    Carreras-Sureda, Amado; Pihán, Philippe; Hetz, Claudio

    2017-01-01

    Endoplasmic reticulum (ER) to mitochondria communication has emerged in recent years as a signaling hub regulating cellular physiology with a relevant contribution to diseases including cancer and neurodegeneration. This functional integration is exerted through discrete interorganelle structures known as mitochondria-associated membranes (MAMs). At these domains, ER/mitochondria physically associate to dynamically adjust metabolic demands and the response to stress stimuli. Here, we provide a focused overview of how the ER shapes the function of the mitochondria, giving a special emphasis to the significance of local signaling of the unfolded protein response at MAMs. The implications to cell fate control and the progression of cancer are also discussed.

  3. Q&A: How do gene regulatory networks control environmental responses in plants?

    PubMed

    Sun, Ying; Dinneny, José R

    2018-04-11

    A gene regulatory network (GRN) describes the hierarchical relationship between transcription factors, associated proteins, and their target genes. Studying GRNs allows us to understand how a plant's genotype and environment are integrated to regulate downstream physiological responses. Current efforts in plants have focused on defining the GRNs that regulate functions such as development and stress response and have been performed primarily in genetically tractable model plant species such as Arabidopsis thaliana. Future studies will likely focus on how GRNs function in non-model plants and change over evolutionary time to allow for adaptation to extreme environments. This broader understanding will inform efforts to engineer GRNs to create tailored crop traits.

  4. Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure.

    PubMed

    Castellani, John W; Young, Andrew J

    2016-04-01

    Cold exposure in humans causes specific acute and chronic physiological responses. This paper will review both the acute and long-term physiological responses and external factors that impact these physiological responses. Acute physiological responses to cold exposure include cutaneous vasoconstriction and shivering thermogenesis which, respectively, decrease heat loss and increase metabolic heat production. Vasoconstriction is elicited through reflex and local cooling. In combination, vasoconstriction and shivering operate to maintain thermal balance when the body is losing heat. Factors (anthropometry, sex, race, fitness, thermoregulatory fatigue) that influence the acute physiological responses to cold exposure are also reviewed. The physiological responses to chronic cold exposure, also known as cold acclimation/acclimatization, are also presented. Three primary patterns of cold acclimatization have been observed, a) habituation, b) metabolic adjustment, and c) insulative adjustment. Habituation is characterized by physiological adjustments in which the response is attenuated compared to an unacclimatized state. Metabolic acclimatization is characterized by an increased thermogenesis, whereas insulative acclimatization is characterized by enhancing the mechanisms that conserve body heat. The pattern of acclimatization is dependent on changes in skin and core temperature and the exposure duration. Published by Elsevier B.V.

  5. Psychological and physiological responses during an exam and their relation to personality characteristics.

    PubMed

    Spangler, G

    1997-08-01

    The aim of the study was to compare emotional and physiological responses to real and control examinations and to assess their relation to personality characteristics. Emotional responses were assessed by state anxiety and perceived stress. The assessment of physiological responses included the activity of the cardiac system (heart periods, vagal tone), the adrenocortical system (cortisol) and the immune system (immune globulin A, sIgA). Emotional and physiological responses of 23 students (12 males, 11 females) were assessed during an oral exam at the end of a basic course in psychology which was a prerequisite for the students' final exams. For the control condition physiological responses were assessed one week before the examination during a memory test. The findings of the study demonstrate different emotional and physiological response patterns to examinations as compared to the control condition. Heightened anxiety was observed only before the exam. Whereas within-situation physiological responses (higher heart periods, cortisol, and sIgA; lower vagal tone) were observed both under the exam and control condition, responses to exam condition indicated pre-exam anticipatory activation and post-exam restricted recovery responses. With regard to personality characteristics subjects with high ego-resiliency showed more flexible adaptation than subjects with low ego-resiliency both on the emotional level (anxiety down-regulation after exam) and on the physiological level (situation-specific responses, quick recovery). Subjects with high ego-control exhibited a lower physiological reactivity under both conditions, i.e. they seemed to maintain longer their control also on a physiological level independent of the type of situation.

  6. Developing rods transplanted into the degenerating retina of Crx-knockout mice exhibit neural activity similar to native photoreceptors

    PubMed Central

    Homma, Kohei; Okamoto, Satoshi; Mandai, Michiko; Gotoh, Norimoto; Rajasimha, Harsha K.; Chang, Yi-Sheng; Chen, Shan; Li, Wei; Cogliati, Tiziana; Swaroop, Anand; Takahashi, Masayo

    2013-01-01

    Replacement of dysfunctional or dying photoreceptors offers a promising approach for retinal neurodegenerative diseases, including age-related macular degeneration and retinitis pigmentosa. Several studies have demonstrated the integration and differentiation of developing rod photoreceptors when transplanted in wild type or degenerating retina; however, the physiology and function of the donor cells are not adequately defined. Here, we describe the physiological properties of developing rod photoreceptors that are tagged with GFP driven by the promoter of rod differentiation factor, Nrl. GFP-tagged developing rods show Ca2+ responses and rectifier outward currents that are smaller than those observed in fully developed photoreceptors, suggesting their immature developmental state. These immature rods also exhibit hyperpolarization-activated current (Ih) induced by the activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. When transplanted into the subretinal space of wild type or retinal degeneration mice, GFP-tagged developing rods can integrate into the photoreceptor outer nuclear layer in wild-type mouse retina, and exhibit Ca2+ responses and membrane current comparable to native rod photoreceptors. A proportion of grafted rods develop rhodopsin-positive outer segment-like structures within two weeks after transplantation into the retina of Crx-knockout mice, and produce rectifier outward current and Ih upon membrane depolarization and hyperpolarization. GFP-positive rods derived from induced pluripotent stem (iPS) cells also display similar membrane current Ih as native developing rod photoreceptors, express rod-specific phototransduction genes, and HCN-1 channels. We conclude that Nrl-promoter driven GFP-tagged donor photoreceptors exhibit physiological characteristics of rods and that iPS cell-derived rods in vitro may provide a renewable source for cell replacement therapy. PMID:23495178

  7. Metabolite profiling and integrative modeling reveal metabolic constraints for carbon partitioning under nitrogen starvation in the green algae Haematococcus pluvialis.

    PubMed

    Recht, Lee; Töpfer, Nadine; Batushansky, Albert; Sikron, Noga; Gibon, Yves; Fait, Aaron; Nikoloski, Zoran; Boussiba, Sammy; Zarka, Aliza

    2014-10-31

    The green alga Hematococcus pluvialis accumulates large amounts of the antioxidant astaxanthin under inductive stress conditions, such as nitrogen starvation. The response to nitrogen starvation and high light leads to the accumulation of carbohydrates and fatty acids as well as increased activity of the tricarboxylic acid cycle. Although the behavior of individual pathways has been well investigated, little is known about the systemic effects of the stress response mechanism. Here we present time-resolved metabolite, enzyme activity, and physiological data that capture the metabolic response of H. pluvialis under nitrogen starvation and high light. The data were integrated into a putative genome-scale model of the green alga to in silico test hypotheses of underlying carbon partitioning. The model-based hypothesis testing reinforces the involvement of starch degradation to support fatty acid synthesis in the later stages of the stress response. In addition, our findings support a possible mechanism for the involvement of the increased activity of the tricarboxylic acid cycle in carbon repartitioning. Finally, the in vitro experiments and the in silico modeling presented here emphasize the predictive power of large scale integrative approaches to pinpoint metabolic adjustment to changing environments. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Systems identification and application systems development for monitoring the physiological and health status of crewmen in space

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.; Furukawa, S.; Vannordstrand, P. C.

    1975-01-01

    The use of automated, analytical techniques to aid medical support teams is suggested. Recommendations are presented for characterizing crew health in terms of: (1) wholebody function including physiological, psychological and performance factors; (2) a combination of critical performance indexes which consist of multiple factors of measurable parameters; (3) specific responses to low noise level stress tests; and (4) probabilities of future performance based on present and periodic examination of past performance. A concept is proposed for a computerized real time biomedical monitoring and health care system that would have the capability to integrate monitored data, detect off-nominal conditions based on current knowledge of spaceflight responses, predict future health status, and assist in diagnosis and alternative therapies. Mathematical models could play an important role in this approach, especially when operating in a real time mode. Recommendations are presented to update the present health monitoring systems in terms of recent advances in computer technology and biomedical monitoring systems.

  9. Calcium regulation of oxidative phosphorylation in rat skeletal muscle mitochondria.

    PubMed

    Kavanagh, N I; Ainscow, E K; Brand, M D

    2000-02-24

    Activation of oxidative phosphorylation by physiological levels of calcium in mitochondria from rat skeletal muscle was analysed using top-down elasticity and regulation analysis. Oxidative phosphorylation was conceptually divided into three subsystems (substrate oxidation, proton leak and phosphorylation) connected by the membrane potential or the protonmotive force. Calcium directly activated the phosphorylation subsystem and (with sub-saturating 2-oxoglutarate) the substrate oxidation subsystem but had no effect on the proton leak kinetics. The response of mitochondria respiring on 2-oxoglutarate at two physiological concentrations of free calcium was quantified using control and regulation analysis. The partial integrated response coefficients showed that direct stimulation of substrate oxidation contributed 86% of the effect of calcium on state 3 oxygen consumption, and direct activation of the phosphorylation reactions caused 37% of the increase in phosphorylation flux. Calcium directly activated phosphorylation more strongly than substrate oxidation (78% compared to 45%) to achieve homeostasis of mitochondrial membrane potential during large increases in flux.

  10. The interaction and integration of auxin signaling components.

    PubMed

    Hayashi, Ken-ichiro

    2012-06-01

    IAA, a naturally occurring auxin, is a simple signaling molecule that regulates many diverse steps of plant development. Auxin essentially coordinates plant development through transcriptional regulation. Auxin binds to TIR1/AFB nuclear receptors, which are F-box subunits of the SCF ubiquitin ligase complex. The auxin signal is then modulated by the quantitative and qualitative responses of the Aux/IAA repressors and the auxin response factor (ARF) transcription factors. The specificity of the auxin-regulated gene expression profile is defined by several factors, such as the expression of these regulatory proteins, their post-transcriptional regulation, their stability and the affinity between these regulatory proteins. Auxin-binding protein 1 (ABP1) is a candidate protein for an auxin receptor that is implicated in non-transcriptional auxin signaling. ABP1 also affects TIR1/AFB-mediated auxin-responsive gene expression, implying that both the ABP1 and TIR1/AFB signaling machineries coordinately control auxin-mediated physiological events. Systematic approaches using the comprehensive mapping of the expression and interaction of signaling modules and computational modeling would be valuable for integrating our knowledge of auxin signals and responses.

  11. An Empirical Review of the Neural Underpinnings of Receiving and Giving Social Support: Implications for Health

    PubMed Central

    Eisenberger, Naomi I.

    2013-01-01

    Decades of research have demonstrated strong links between social ties and health. Although considerable evidence has shown that social support can attenuate downstream physiological stress responses that are relevant to health, the neurocognitive mechanisms that translate perceptions of social ties into altered physiological responses are still not fully understood. This review integrates research from social and affective neuroscience to illuminate some of the neural mechanisms involved in social support processes, which may further our understanding of the ways in which social support influence health. This review focuses on two types of social support that have been shown to relate to health: receiving and giving social support. As the neural basis of receiving support, this article reviews the hypothesis that receiving support may benefit health through the activation of neural regions that respond to safety and inhibit threat-related neural and physiological responding. This article will then review neuroimaging studies in which subjects were primed with or received support during a negative experience as well as studies in which self-reports of perceived support were correlated with neural responses to a negative experience. As the neural basis of giving support, this article reviews the hypothesis that neural regions involved in maternal caregiving behavior may be critical for the health benefits of support-giving through the inhibition of threat-related neural and physiological responding. Neuroimaging studies in which subjects provided support to others or engaged in other related forms of prosocial behavior will then be reviewed. Implications of these findings for furthering our understanding of the relationships between social support and health are discussed. PMID:23804014

  12. Short- and long-term behavioural, physiological and stoichiometric responses to predation risk indicate chronic stress and compensatory mechanisms.

    PubMed

    Van Dievel, Marie; Janssens, Lizanne; Stoks, Robby

    2016-06-01

    Prey organisms are expected to use different short- and long-term responses to predation risk to avoid excessive costs. Contrasting both types of responses is important to identify chronic stress responses and possible compensatory mechanisms in order to better understand the full impact of predators on prey life history and population dynamics. Using larvae of the damselfly Enallagma cyathigerum, we contrasted the effects of short- and long-term predation risk, with special focus on consequences for body stoichiometry. Under short-term predation risk, larvae reduced growth rate, which was associated with a reduced food intake, increased metabolic rate and reduced glucose content. Under long-term predation risk, larvae showed chronic predator stress as indicated by persistent increases in metabolic rate and reduced food intake. Despite this, larvae were able to compensate for the short-term growth reduction under long-term predation risk by relying on physiological compensatory mechanisms, including reduced energy storage. Only under long-term predation risk did we observe an increase in body C:N ratio, as predicted under the general stress paradigm (GSP). Although this was caused by a predator-induced decrease in N content, there was no associated increase in C content. These stoichiometric changes could not be explained by GSP responses because, under chronic predation risk, there was no decrease in N-rich proteins or increase in C-rich fat and sugars; instead glycogen decreased. Our results highlight the importance of compensatory mechanisms and the value of explicitly integrating physiological mechanisms to obtain insights into the temporal dynamics of non-consumptive effects, including effects on body stoichiometry.

  13. Use of technology to facilitate physical activity in children with autism spectrum disorders: A pilot study.

    PubMed

    Bittner, Melissa D; Rigby, B Rhett; Silliman-French, Lisa; Nichols, David L; Dillon, Suzanna R

    2017-08-01

    Deficits in social behavior and communication skills are correlated with reduced gross motor skills in children with autism spectrum disorders (ASD). The ExerciseBuddy application (EB app) was designed to communicate these motor skills to those with ASD and integrates evidence-based practices such as visual support and video modeling supported by The National Professional Development Center on Autism Spectrum Disorders. The purpose of this study was to determine the effectiveness of the EB app in facilitating increased physiologic responses to physical activity via a continuous measurement of energy expenditure and heart rate versus practice-style teaching methods in children with ASD. Six children, ages 5 to 10years, diagnosed with ASD were recruited. Each participant performed a variety of locomotor or object control skills as defined by the Test of Gross Motor Development-2 once per week for 4weeks. Motor skills were communicated and demonstrated using either practice-style teaching methods or the instructional section of the EB app. Energy expenditure and heart rate were measured continuously during each 12-minute session. A Wilcoxon signed-rank test was performed to assess any differences between the use of the app and practice-style teaching methods. The use of the EB app elicited greater values for peak energy expenditure (p=0.043) and peak heart rate response (p=0.028) while performing locomotor skills but no differences were observed while performing object control skills. Similarities were observed with average physiologic responses between the use of the EB app and practice-style teaching methods. The use of the EB app may allow for a greater peak physiologic response during more dynamic movements and a similar average cardiovascular and metabolic response when compared to practice-style teaching methods in children with ASD. Published by Elsevier Inc.

  14. Physiological responses of spring rapeseed (Brassica napus) to red/far-red ratios and irradiance during pre- and post-flowering stages.

    PubMed

    Rondanini, Deborah P; del Pilar Vilariño, Maria; Roberts, Marcos E; Polosa, Marina A; Botto, Javier F

    2014-12-01

    Early shade signals promote the shade avoidance syndrome (SAS) which causes, among others, petiole and shoot elongation and upward leaf position. In spite of its relevance, these photomorphogenic responses have not been deeply studied in rapeseed (Brassica napus). In contrast to other crops like maize and wheat, rapeseed has a complex developmental phenotypic pattern as it evolves from an initial rosette to the main stem elongation and an indeterminate growth of floral raceme. In this work, we analyzed (1) morphological and physiological responses at individual level due to low red/far-red (R/FR) ratio during plant development, and (2) changes in biomass allocation, grain yield and composition at crop level in response to high R/FR ratio and low irradiance in two modern spring rapeseed genotypes. We carried out pot and field experiments modifying R/FR ratios and irradiance at vegetative or reproductive stages. In pot experiments, low R/FR ratio increased the petiole and lamina length, upward leaf position and also accelerated leaf senescence. Furthermore, low R/FR ratio reduced main floral raceme and increased floral branching with higher remobilization of soluble carbohydrates from the stems. In field experiments, low irradiance during post-flowering reduced grain yield, harvest index and grain oil content, and high R/FR ratio reaching the crop partially alleviated such effects. We conclude that photomorphogenic signals are integrated early during the vegetative growth, and irradiance has stronger effects than R/FR signals at rapeseed crop level. © 2014 Scandinavian Plant Physiology Society.

  15. Autonomic nervous system correlates in movement observation and motor imagery

    PubMed Central

    Collet, C.; Di Rienzo, F.; El Hoyek, N.; Guillot, A.

    2013-01-01

    The purpose of the current article is to provide a comprehensive overview of the literature offering a better understanding of the autonomic nervous system (ANS) correlates in motor imagery (MI) and movement observation. These are two high brain functions involving sensori-motor coupling, mediated by memory systems. How observing or mentally rehearsing a movement affect ANS activity has not been extensively investigated. The links between cognitive functions and ANS responses are not so obvious. We will first describe the organization of the ANS whose main purposes are controlling vital functions by maintaining the homeostasis of the organism and providing adaptive responses when changes occur either in the external or internal milieu. We will then review how scientific knowledge evolved, thus integrating recent findings related to ANS functioning, and show how these are linked to mental functions. In turn, we will describe how movement observation or MI may elicit physiological responses at the peripheral level of the autonomic effectors, thus eliciting autonomic correlates to cognitive activity. Key features of this paper are to draw a step-by step progression from the understanding of ANS physiology to its relationships with high mental processes such as movement observation or MI. We will further provide evidence that mental processes are co-programmed both at the somatic and autonomic levels of the central nervous system (CNS). We will thus detail how peripheral physiological responses may be analyzed to provide objective evidence that MI is actually performed. The main perspective is thus to consider that, during movement observation and MI, ANS activity is an objective witness of mental processes. PMID:23908623

  16. A neurophysiologically plausible population code model for feature integration explains visual crowding.

    PubMed

    van den Berg, Ronald; Roerdink, Jos B T M; Cornelissen, Frans W

    2010-01-22

    An object in the peripheral visual field is more difficult to recognize when surrounded by other objects. This phenomenon is called "crowding". Crowding places a fundamental constraint on human vision that limits performance on numerous tasks. It has been suggested that crowding results from spatial feature integration necessary for object recognition. However, in the absence of convincing models, this theory has remained controversial. Here, we present a quantitative and physiologically plausible model for spatial integration of orientation signals, based on the principles of population coding. Using simulations, we demonstrate that this model coherently accounts for fundamental properties of crowding, including critical spacing, "compulsory averaging", and a foveal-peripheral anisotropy. Moreover, we show that the model predicts increased responses to correlated visual stimuli. Altogether, these results suggest that crowding has little immediate bearing on object recognition but is a by-product of a general, elementary integration mechanism in early vision aimed at improving signal quality.

  17. Back to the future! Revisiting the physiological cost of negative work as a team-based activity for exercise physiology students.

    PubMed

    Kilgas, Matthew A; Elmer, Steven J

    2017-03-01

    We implemented a team-based activity in our exercise physiology teaching laboratory that was inspired from Abbott et al.'s classic 1952 Journal of Physiology paper titled "The physiological cost of negative work." Abbott et al. connected two bicycles via one chain. One person cycled forward (muscle shortening contractions, positive work) while the other resisted the reverse moving pedals (muscle lengthening contractions, negative work), and the cost of work was compared. This study was the first to link human whole body energetics with isolated muscle force-velocity characteristics. The laboratory activity for our students ( n = 35) was designed to reenact Abbott et al.'s experiment, integrate previously learned techniques, and illustrate differences in physiological responses to muscle shortening and lengthening contractions. Students (11-12 students/laboratory section) were split into two teams (positive work vs. negative work). One student from each team volunteered to cycle against the other for ~10 min. The remaining students in each team were tasked with measuring: 1 ) O 2 consumption, 2 ) heart rate, 3 ) blood lactate, and 4 ) perceived exertion. Students discovered that O 2 consumption during negative work was about one-half that of positive work and all other physiological parameters were also substantially lower. Muscle lengthening contractions were discussed and applied to rehabilitation and sport training. The majority of students (>90%) agreed or strongly agreed that they stayed engaged during the activity and it improved their understanding of exercise physiology. All students recommended the activity be performed again. This activity was engaging, emphasized teamwork, yielded clear results, was well received, and preserved the history of classic physiological experiments. Copyright © 2017 the American Physiological Society.

  18. Common functional targets of adaptive micro- and macro-evolutionary divergence in killifish.

    PubMed

    Whitehead, Andrew; Zhang, Shujun; Roach, Jennifer L; Galvez, Fernando

    2013-07-01

    Environmental salinity presents a key barrier to dispersal for most aquatic organisms, and adaptation to alternate osmotic environments likely enables species diversification. Little is known of the functional basis for derived tolerance to environmental salinity. We integrate comparative physiology and functional genomics to explore the mechanistic underpinnings of evolved variation in osmotic plasticity within and among two species of killifish; Fundulus majalis harbours the ancestral mainly salt-tolerant phenotype, whereas Fundulus heteroclitus harbours a derived physiology that retains extreme salt tolerance but with expanded osmotic plasticity towards the freshwater end of the osmotic continuum. Common-garden comparative hypo-osmotic challenge experiments show that F. heteroclitus is capable of remodelling gill epithelia more quickly and at more extreme osmotic challenge than F. majalis. We detect an unusual pattern of baseline transcriptome divergence, where neutral evolutionary processes appear to govern expression divergence within species, but patterns of divergence for these genes between species do not follow neutral expectations. During acclimation, genome expression profiling identifies mechanisms of acclimation-associated response that are conserved within the genus including regulation of paracellular permeability. In contrast, several responses vary among species including those putatively associated with cell volume regulation, and these same mechanisms are targets for adaptive physiological divergence along osmotic gradients within F. heteroclitus. As such, the genomic and physiological mechanisms that are associated with adaptive fine-tuning within species also contribute to macro-evolutionary divergence as species diversify across osmotic niches. © 2013 John Wiley & Sons Ltd.

  19. Recent advancement in biosensors technology for animal and livestock health management.

    PubMed

    Neethirajan, Suresh; Tuteja, Satish K; Huang, Sheng-Tung; Kelton, David

    2017-12-15

    The term biosensors encompasses devices that have the potential to quantify physiological, immunological and behavioural responses of livestock and multiple animal species. Novel biosensing methodologies offer highly specialised monitoring devices for the specific measurement of individual and multiple parameters covering an animal's physiology as well as monitoring of an animal's environment. These devices are not only highly specific and sensitive for the parameters being analysed, but they are also reliable and easy to use, and can accelerate the monitoring process. Novel biosensors in livestock management provide significant benefits and applications in disease detection and isolation, health monitoring and detection of reproductive cycles, as well as monitoring physiological wellbeing of the animal via analysis of the animal's environment. With the development of integrated systems and the Internet of Things, the continuously monitoring devices are expected to become affordable. The data generated from integrated livestock monitoring is anticipated to assist farmers and the agricultural industry to improve animal productivity in the future. The data is expected to reduce the impact of the livestock industry on the environment, while at the same time driving the new wave towards the improvements of viable farming techniques. This review focusses on the emerging technological advancements in monitoring of livestock health for detailed, precise information on productivity, as well as physiology and well-being. Biosensors will contribute to the 4th revolution in agriculture by incorporating innovative technologies into cost-effective diagnostic methods that can mitigate the potentially catastrophic effects of infectious outbreaks in farmed animals. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Automated Real-Time Behavioral and Physiological Data Acquisition and Display Integrated with Stimulus Presentation for fMRI

    PubMed Central

    Voyvodic, James T.; Glover, Gary H.; Greve, Douglas; Gadde, Syam

    2011-01-01

    Functional magnetic resonance imaging (fMRI) is based on correlating blood oxygen-level dependent (BOLD) signal fluctuations in the brain with other time-varying signals. Although the most common reference for correlation is the timing of a behavioral task performed during the scan, many other behavioral and physiological variables can also influence fMRI signals. Variations in cardiac and respiratory functions in particular are known to contribute significant BOLD signal fluctuations. Variables such as skin conduction, eye movements, and other measures that may be relevant to task performance can also be correlated with BOLD signals and can therefore be used in image analysis to differentiate multiple components in complex brain activity signals. Combining real-time recording and data management of multiple behavioral and physiological signals in a way that can be routinely used with any task stimulus paradigm is a non-trivial software design problem. Here we discuss software methods that allow users control of paradigm-specific audio–visual or other task stimuli combined with automated simultaneous recording of multi-channel behavioral and physiological response variables, all synchronized with sub-millisecond temporal accuracy. We also discuss the implementation and importance of real-time display feedback to ensure data quality of all recorded variables. Finally, we discuss standards and formats for storage of temporal covariate data and its integration into fMRI image analysis. These neuroinformatics methods have been adopted for behavioral task control at all sites in the Functional Biomedical Informatics Research Network (FBIRN) multi-center fMRI study. PMID:22232596

  1. Understanding synergy.

    PubMed

    Geary, Nori

    2013-02-01

    Analysis of the interactive effects of combinations of hormones or other manipulations with qualitatively similar individual effects is an important topic in basic and clinical endocrinology as well as other branches of basic and clinical research related to integrative physiology. Functional, as opposed to mechanistic, analyses of interactions rely on the concept of synergy, which can be defined qualitatively as a cooperative action or quantitatively as a supra-additive effect according to some metric for the addition of different dose-effect curves. Unfortunately, dose-effect curve addition is far from straightforward; rather, it requires the development of an axiomatic mathematical theory. I review the mathematical soundness, face validity, and utility of the most frequently used approaches to supra-additive synergy. These criteria highlight serious problems in the two most common synergy approaches, response additivity and Loewe additivity, which is the basis of the isobole and related response surface approaches. I conclude that there is no adequate, generally applicable, supra-additive synergy metric appropriate for endocrinology or any other field of basic and clinical integrative physiology. I recommend that these metrics be abandoned in favor of the simpler definition of synergy as a cooperative, i.e., nonantagonistic, effect. This simple definition avoids mathematical difficulties, is easily applicable, meets regulatory requirements for combination therapy development, and suffices to advance phenomenological basic research to mechanistic studies of interactions and clinical combination therapy research.

  2. Endoplasmic reticulum stress in the pathogenesis of hypertension.

    PubMed

    Young, Colin N

    2017-08-01

    What is the topic of this review? This review highlights the emerging role of disruptions in endoplasmic reticulum (ER) function, namely ER stress, as a contributor to hypertension. What advances does it highlight? This review presents an integrative view of ER stress in cardiovascular control systems, including systems within the brain, kidney and peripheral vasculature, as related to development of hypertension. The endoplasmic reticulum (ER) is a cellular organelle specialized in the synthesis, folding, assembly and modification of proteins. In situations of increased protein demand, complex signalling pathways, termed the unfolded protein response, influence a series of cellular feedback loops to control ER function strictly. Although this is initially a compensatory attempt to maintain cellular homeostasis, chronic activation of the unfolded protein response, known as ER stress, leads to sustained changes in cellular function. A growing body of literature points to ER stress in diverse cardioregulatory systems, including the brain, kidney and vasculature, as central to the development of hypertension. Here, these recent findings from essential and obesity-related forms of hypertension are highlighted in an integrative manner, with discussion of the potential upstream causes and downstream consequences of ER stress. Given that hypertension is a leading medical and socio-economic global challenge, emerging findings suggest that targeting ER stress might represent a viable strategy for the treatment of hypertensive disease. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  3. Integrative response of plant mitochondrial electron transport chain to nitrogen source.

    PubMed

    Hachiya, Takushi; Noguchi, Ko

    2011-02-01

    Nitrogen (N) availability is widely known as a determinant of plant growth and respiration rate. However, less attention has been paid to the effect of the type of N source (nitrate, nitrite or ammonium) on the respiratory system. This review summarizes the latest findings on this topic, with an emphasis on the effect of ammonium and nitric oxide (NO) on the respiratory system, and the physiological role of alternative oxidase (AOX). First, concentrated ammonium has been found to increase plant respiration rate (ammonium-dependent respiratory increase, ARI). We will introduce two hypotheses to explain ARI, futile ammonium cycling and excess reducing equivalents, and verify the validity of each hypothesis. We suggest that these two hypotheses are not necessarily mutually exclusive. Second, gene expression of AOX is suppressed when N is predominately available as nitrate instead of ammonium. We will discuss possible signaling pathways leading to this expression pattern. Third, while AOX expression is induced by NO, AOX activity itself is insensitive to NO. In contrast, activity of cytochrome c oxidase (COX) is sensitive to NO. We outline the NO production pathway, focusing on nitrite-dependent NO production, and discuss the physiological significance of the fact that AOX activity is insensitive to NO. Finally, this review aims to build an integrated scheme of the respiratory response to the type of N source, considering leaves in high light conditions or hypoxic roots.

  4. Sex differences in physiological reactivity to acute psychosocial stress in adolescence.

    PubMed

    Ordaz, Sarah; Luna, Beatriz

    2012-08-01

    Females begin to demonstrate greater negative affective responses to stress than males in adolescence. This may reflect the concurrent emergence of underlying differences in physiological response systems, including corticolimbic circuitries, the hypothalamic-pituitary-adrenal axis (HPAA), and the autonomic nervous system (ANS). This review examines when sex differences in physiological reactivity to acute psychosocial stress emerge and the directionality of these differences over development. Indeed, the literature indicates that sex differences emerge during adolescence and persist into adulthood for all three physiological response systems. However, the directionality of the differences varies by system. The emerging corticolimbic reactivity literature suggests greater female reactivity, particularly in limbic regions densely innervated by gonadal hormone receptors. In contrast, males generally show higher levels of HPAA and ANS reactivity. We argue that the contrasting directionality of corticolimbic and peripheral physiological responses may reflect specific effects of gonadal hormones on distinct systems and also sex differences in evolved behavioral responses that demand different levels of peripheral physiological activation. Studies that examine both subjective reports of negative affect and physiological responses indicate that beginning in adolescence, females respond to acute stressors with more intense negative affect than males despite their comparatively lower peripheral physiological responses. This dissociation is not clearly explained by sex differences in the strength of the relationship between physiological and subjective responses. We suggest that females' greater subjective responsivity may instead arise from a greater activity in brain regions that translate stress responses to subjective awareness in adolescence. Future research directions include investigations of the role of pubertal hormones in physiological reactivity across all systems, examining the relationship of corticolimbic reactivity and negative affect, and sex differences in emotion regulation processes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Sex differences in physiological reactivity to acute psychosocial stress in adolescence

    PubMed Central

    Ordaz, Sarah; Luna, Beatriz

    2012-01-01

    Summary Females begin to demonstrate greater negative affective responses to stress than males in adolescence. This may reflect the concurrent emergence of underlying differences in physiological response systems, including corticolimbic circuitries, the hypothalamic—pituitary— adrenal axis (HPAA), and the autonomic nervous system (ANS). This review examines when sex differences in physiological reactivity to acute psychosocial stress emerge and the directionality of these differences over development. Indeed, the literature indicates that sex differences emerge during adolescence and persist into adulthood for all three physiological response systems. However, the directionality of the differences varies by system. The emerging corti-colimbic reactivity literature suggests greater female reactivity, particularly in limbic regions densely innervated by gonadal hormone receptors. In contrast, males generally show higher levels of HPAA and ANS reactivity. We argue that the contrasting directionality of corticolimbic and peripheral physiological responses may reflect specific effects of gonadal hormones on distinct systems and also sex differences in evolved behavioral responses that demand different levels of peripheral physiological activation. Studies that examine both subjective reports of negative affect and physiological responses indicate that beginning in adolescence, females respond to acute stressors with more intense negative affect than males despite their comparatively lower peripheral physiological responses. This dissociation is not clearly explained by sex differences in the strength of the relationship between physiological and subjective responses. We suggest that females' greater subjective responsivity may instead arise from a greater activity in brain regions that translate stress responses to subjective awareness in adolescence. Future research directions include investigations of the role of pubertal hormones in physiological reactivity across all systems, examining the relationship of corticolimbic reactivity and negative affect, and sex differences in emotion regulation processes. PMID:22281210

  6. Supporting Placement Supervision in Clinical Exercise Physiology

    ERIC Educational Resources Information Center

    Sealey, Rebecca M.; Raymond, Jacqueline; Groeller, Herb; Rooney, Kieron; Crabb, Meagan; Watt, Kerrianne

    2015-01-01

    The continued engagement of the professional workforce as supervisors is critical for the sustainability and growth of work-integrated learning activities in university degrees. This study investigated factors that influence the willingness and ability of clinicians to continue to supervise clinical exercise physiology work-integrated learning…

  7. Effects of anthropogenic noise on endocrine and reproductive function in White's treefrog, Litoria caerulea

    PubMed Central

    Kaiser, Kristine; Devito, Julia; Jones, Caitlin G.; Marentes, Adam; Perez, Rachel; Umeh, Lisa; Weickum, Regina M.; McGovern, Kathryn E.; Wilson, Emma H.; Saltzman, Wendy

    2015-01-01

    Urbanization is a major driver of ecological change and comes with a suite of habitat modifications, including alterations to the local temperature, precipitation, light and noise regimes. Although many recent studies have investigated the behavioural and ecological ramifications of urbanization, physiological work in this area has lagged. We tested the hypothesis that anthropogenic noise is a stressor for amphibians and that chronic exposure to such noise leads to reproductive suppression. In the laboratory, we exposed male White's treefrogs, Litoria caerulea, to conspecific chorus noise either alone or coupled with pre-recorded traffic noise nightly for 1 week. Frogs presented with anthropogenic noise had significantly higher circulating concentrations of corticosterone and significantly decreased sperm count and sperm viability than did control frogs. These results suggest that in addition to having behavioural and ecological effects, anthropogenic change might alter physiology and Darwinian fitness. Future work should integrate disparate fields such as behaviour, ecology and physiology to elucidate fully organisms’ responses to habitat change. PMID:27293682

  8. Integrating physiological threshold experiments with climate modeling to project mangrove species' range expansion.

    PubMed

    Cavanaugh, Kyle C; Parker, John D; Cook-Patton, Susan C; Feller, Ilka C; Williams, A Park; Kellner, James R

    2015-05-01

    Predictions of climate-related shifts in species ranges have largely been based on correlative models. Due to limitations of these models, there is a need for more integration of experimental approaches when studying impacts of climate change on species distributions. Here, we used controlled experiments to identify physiological thresholds that control poleward range limits of three species of mangroves found in North America. We found that all three species exhibited a threshold response to extreme cold, but freeze tolerance thresholds varied among species. From these experiments, we developed a climate metric, freeze degree days (FDD), which incorporates both the intensity and the frequency of freezes. When included in distribution models, FDD accurately predicted mangrove presence/absence. Using 28 years of satellite imagery, we linked FDD to observed changes in mangrove abundance in Florida, further exemplifying the importance of extreme cold. We then used downscaled climate projections of FDD to project that these range limits will move northward by 2.2-3.2 km yr(-1) over the next 50 years. © 2014 John Wiley & Sons Ltd.

  9. Engineering challenges for instrumenting and controlling integrated organ-on-chip systems.

    PubMed

    Wikswo, John P; Block, Frank E; Cliffel, David E; Goodwin, Cody R; Marasco, Christina C; Markov, Dmitry A; McLean, David L; McLean, John A; McKenzie, Jennifer R; Reiserer, Ronald S; Samson, Philip C; Schaffer, David K; Seale, Kevin T; Sherrod, Stacy D

    2013-03-01

    The sophistication and success of recently reported microfabricated organs-on-chips and human organ constructs have made it possible to design scaled and interconnected organ systems that may significantly augment the current drug development pipeline and lead to advances in systems biology. Physiologically realistic live microHuman (μHu) and milliHuman (mHu) systems operating for weeks to months present exciting and important engineering challenges such as determining the appropriate size for each organ to ensure appropriate relative organ functional activity, achieving appropriate cell density, providing the requisite universal perfusion media, sensing the breadth of physiological responses, and maintaining stable control of the entire system, while maintaining fluid scaling that consists of ~5 mL for the mHu and ~5 μL for the μHu. We believe that successful mHu and μHu systems for drug development and systems biology will require low-volume microdevices that support chemical signaling, microfabricated pumps, valves and microformulators, automated optical microscopy, electrochemical sensors for rapid metabolic assessment, ion mobility-mass spectrometry for real-time molecular analysis, advanced bioinformatics, and machine learning algorithms for automated model inference and integrated electronic control. Toward this goal, we are building functional prototype components and are working toward top-down system integration.

  10. Parent Cortisol and Family Relatedness Predict Anxious Behavior in Emerging Adults

    PubMed Central

    Johnson, Vanessa Kahen; Gans, Susan E.

    2016-01-01

    Emerging adult cortisol response during family interaction predicts change in EA anxious behavior during the transition to college (Gans & Johnson, in press). In the present study, we take an additional step toward integrating family systems research and physiology by including assessment of parent physiology. We collect salivary cortisol from parents and emerging-adults during triadic family interaction. Emerging adults (N = 101) between the ages of 17 and 19 were assessed at three time points across their first college year: the summer before college, fall and spring semesters. Two parents accompanied the emerging adult child to the summer assessment; all family members provided four saliva samples each at 20-minute intervals. Later assessments of emerging adults included measures of internalizing behaviors. Parents’ cortisol secretion patterns during family interaction predict their emerging adult child’s cortisol secretion pattern, parent perceptions of the family environment, and emerging adult children’s internalizing behavior during the college transition. Different patterns of results emerged for mothers’ and fathers’ cortisol response to family interaction, and for families with sons or with daughters. The approach taken by this study provides a first step toward understanding how interrelationships among elements of physiology and family functioning contribute to adjustment during major life transitions. PMID:27536860

  11. Parent cortisol and family relatedness predict anxious behavior in emerging adults.

    PubMed

    Johnson, Vanessa Kahen; Gans, Susan E

    2016-10-01

    Emerging-adult cortisol response during family interaction predicts change in emerging-adult anxious behavior during the transition to college (Gans & Johnson, in press). In the present study, we take an additional step toward integrating family systems research and physiology by including assessment of parent physiology. We collect salivary cortisol from parents and emerging adults during triadic family interaction. Emerging adults (N = 101) between the ages of 17 and 19 years were assessed at 3 time points across their first college year: the summer before college and the Fall and Spring semesters. Two parents accompanied the emerging-adult child to the summer assessment; all family members provided 4 saliva samples each at 20-min intervals. Later assessments of emerging adults included measures of internalizing behaviors. Parents' cortisol secretion patterns during family interaction predict their emerging-adult children's cortisol secretion pattern, parent perceptions of the family environment, and emerging-adult children's internalizing behavior during the college transition. Different patterns of results emerged for mothers' and fathers' cortisol response to family interaction and for families with sons or with daughters. The approach taken by this study provides a first step toward understanding how interrelationships among elements of physiology and family functioning contribute to adjustment during major life transitions. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  12. Recapitulating physiological and pathological shear stress and oxygen to model vasculature in health and disease

    NASA Astrophysics Data System (ADS)

    Abaci, Hasan Erbil; Shen, Yu-I.; Tan, Scott; Gerecht, Sharon

    2014-05-01

    Studying human vascular disease in conventional cell cultures and in animal models does not effectively mimic the complex vascular microenvironment and may not accurately predict vascular responses in humans. We utilized a microfluidic device to recapitulate both shear stress and O2 levels in health and disease, establishing a microfluidic vascular model (μVM). Maintaining human endothelial cells (ECs) in healthy-mimicking conditions resulted in conversion to a physiological phenotype namely cell elongation, reduced proliferation, lowered angiogenic gene expression and formation of actin cortical rim and continuous barrier. We next examined the responses of the healthy μVM to a vasotoxic cancer drug, 5-Fluorouracil (5-FU), in comparison with an in vivo mouse model. We found that 5-FU does not induce apoptosis rather vascular hyperpermeability, which can be alleviated by Resveratrol treatment. This effect was confirmed by in vivo findings identifying a vasoprotecting strategy by the adjunct therapy of 5-FU with Resveratrol. The μVM of ischemic disease demonstrated the transition of ECs from a quiescent to an activated state, with higher proliferation rate, upregulation of angiogenic genes, and impaired barrier integrity. The μVM offers opportunities to study and predict human ECs with physiologically relevant phenotypes in healthy, pathological and drug-treated environments.

  13. Declining body size: a third universal response to warming?

    PubMed

    Gardner, Janet L; Peters, Anne; Kearney, Michael R; Joseph, Leo; Heinsohn, Robert

    2011-06-01

    A recently documented correlate of anthropogenic climate change involves reductions in body size, the nature and scale of the pattern leading to suggestions of a third universal response to climate warming. Because body size affects thermoregulation and energetics, changing body size has implications for resilience in the face of climate change. A review of recent studies shows heterogeneity in the magnitude and direction of size responses, exposing a need for large-scale phylogenetically controlled comparative analyses of temporal size change. Integrative analyses of museum data combined with new theoretical models of size-dependent thermoregulatory and metabolic responses will increase both understanding of the underlying mechanisms and physiological consequences of size shifts and, therefore, the ability to predict the sensitivities of species to climate change. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Physiological Informatics: Collection and Analyses of Data from Wearable Sensors and Smartphone for Healthcare.

    PubMed

    Bai, Jinwei; Shen, Li; Sun, Huimin; Shen, Bairong

    2017-01-01

    Physiological data from wearable sensors and smartphone are accumulating rapidly, and this provides us the chance to collect dynamic and personalized information as phenotype to be integrated to genotype for the holistic understanding of complex diseases. This integration can be applied to early prediction and prevention of disease, therefore promoting the shifting of disease care tradition to the healthcare paradigm. In this chapter, we summarize the physiological signals which can be detected by wearable sensors, the sharing of the physiological big data, and the mining methods for the discovery of disease-associated patterns for personalized diagnosis and treatment. We discuss the challenges of physiological informatics about the storage, the standardization, the analyses, and the applications of the physiological data from the wearable sensors and smartphone. At last, we present our perspectives on the models for disentangling the complex relationship between early disease prediction and the mining of physiological phenotype data.

  15. Real-time monitoring of immune responses under pathogen invasion and drug interference by integrated microfluidic device coupled with worm-based biosensor.

    PubMed

    Hu, Liang; Ge, Anle; Wang, Xixian; Wang, Shanshan; Yue, Xinpei; Wang, Jie; Feng, Xiaojun; Du, Wei; Liu, Bi-Feng

    2018-07-01

    Immune response to environmental pathogen invasion is a complex process to prevent host from further damage. For quantitatively understanding immune responses and revealing the pathogenic environmental information, real-time monitoring of such a whole dynamic process with single-animal resolution in well-defined environments is highly desired. In this work, an integrated microfluidic device coupled with worm-based biosensor was proposed for in vivo studies of dynamic immune responses and antibiotics interference in infected C. elegans. Individual worms housed in chambers were exposed to the various pathogens and discontinuously manipulated for imaging with limited influence on physiological activities. The expression of immune responses gene (irg-1) was time-lapse measured in intact worms during pathogen infection. Results demonstrated that irg-1 gene could be induced in the presence of P. aeruginosa strain PA14 in a dose-dependent manner, and the survival of infected worm could be rescued under gentamicin or erythromycin treatments. We expect it to be a versatile platform to facilitate future studies on pathogenesis researches and rapid drug screen using C. elegans disease model. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Signal percolation through plants and the shape of the calcium signature.

    PubMed

    Plieth, Christoph

    2010-04-01

    Plants respond to almost any kind of external stimulus with transients in their cytoplasmic free calcium concentration ([Ca(2+)](c)). A huge variety of kinetics recorded by optical techniques has been reported in the past. This variety has been credited the specificity needed to explain how information about incoming stimuli is evaluated by the organism and turned into the right physiological responses which provide advantages for survival and reproduction. A physiological response often takes place away from the site of stimulation. This requires cell-to-cell communication. Hence, responding cells are not necessarily directly stimulated but rather receive an indirect stimulus via cell-to-cell communication. It appears unlikely that the '[Ca(2+)](c) signature' in the primarily stimulated cell is conveyed over long distances via cell-to-cell communication from the 'receptor cells' to the 'effector cells'. Here, a novel aspect is highlighted to explain the variety of [Ca(2+)] kinetics seen by integrating methods of [Ca(2+)](c) recording. Plants can generally be seen as cellular automata with specific morphology and capable for cell-to-cell communication. Just a few rules are needed to demonstrate how waves of [Ca(2+)](c)-increases percolate through the organism and thereby deliver a broad variety of 'signatures'. Modelling intercellular signalling may be a possible way to find explanations for different kinds of signal transmission, signal amplification, wave formation, oscillations and stimulus-response coupling. The basic examples presented here show that care has to be taken when interpreting cellular '[Ca(2+)](c) signatures' recorded by optical techniques which integrate over a big number of cells or even whole plants.

  17. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System.

    PubMed

    Wehrwein, Erica A; Orer, Hakan S; Barman, Susan M

    2016-06-13

    Comprised of the sympathetic nervous system, parasympathetic nervous system, and enteric nervous system, the autonomic nervous system (ANS) provides the neural control of all parts of the body except for skeletal muscles. The ANS has the major responsibility to ensure that the physiological integrity of cells, tissues, and organs throughout the entire body is maintained (homeostasis) in the face of perturbations exerted by both the external and internal environments. Many commonly prescribed drugs, over-the-counter drugs, toxins, and toxicants function by altering transmission within the ANS. Autonomic dysfunction is a signature of many neurological diseases or disorders. Despite the physiological relevance of the ANS, most neuroscience textbooks offer very limited coverage of this portion of the nervous system. This review article provides both historical and current information about the anatomy, physiology, and pharmacology of the sympathetic and parasympathetic divisions of the ANS. The ultimate aim is for this article to be a valuable resource for those interested in learning the basics of these two components of the ANS and to appreciate its importance in both health and disease. Other resources should be consulted for a thorough understanding of the third division of the ANS, the enteric nervous system. © 2016 American Physiological Society. Compr Physiol 6:1239-1278, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  18. The Value of Biomedical Simulation Environments to Future Human Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Mulugeta, Lealem; Myers, Jerry G.; Skytland, Nicholas G.; Platts, Steven H.

    2010-01-01

    With the ambitious goals to send manned missions to asteroids and onto Mars, substantial work will be required to ensure the well being of the men and women who will undertake these difficult missions. Unlike current International Space Station or Shuttle missions, astronauts will be required to endure long-term exposure to higher levels of radiation, isolation and reduced gravity. These new operation conditions will pose health risks that are currently not well understood and perhaps unanticipated. Therefore, it is essential to develop and apply advanced tools to predict, assess and mitigate potential hazards to astronaut health. NASA s Digital Astronaut Project (DAP) is working to develop and apply computational models of physiologic response to space flight operation conditions over various time periods and environmental circumstances. The collective application and integration of well vetted models assessing the physiology, biomechanics and anatomy is referred to as the Digital Astronaut. The Digital Astronaut simulation environment will serve as a practical working tool for use by NASA in operational activities such as the prediction of biomedical risks and functional capabilities of astronauts. In additional to space flight operation conditions, DAP s work has direct applicability to terrestrial biomedical research by providing virtual environments for hypothesis testing, experiment design, and to reduce animal/human testing. A practical application of the DA to assess pre and post flight responses to exercise is illustrated and the difficulty in matching true physiological responses is discussed.

  19. The influence of dissolved oxygen on winter habitat selection by largemouth bass: an integration of field biotelemetry studies and laboratory experiments.

    PubMed

    Hasler, C T; Suski, C D; Hanson, K C; Cooke, S J; Tufts, B L

    2009-01-01

    In this study, field biotelemetry and laboratory physiology approaches were coupled to allow understanding of the behavioral and physiological responses of fish to winter hypoxia. The biotelemetry study compared dissolved oxygen levels measured throughout the winter period with continually tracked locations of nine adult largemouth bass obtained from a whole-lake submerged telemetry array. Fish habitat usage was compared with habitat availability to assess whether fish were selecting for specific dissolved oxygen concentrations. The laboratory study examined behavioral and physiological responses to progressive hypoxia in juvenile largemouth bass acclimated to winter temperatures. Results from the dissolved oxygen measurements made during the biotelemetry study showed high variance in under-ice dissolved oxygen levels. Avoidance of water with dissolved oxygen <2.0 mg/L by telemetered fish was demonstrated, but significant use of water with intermediate dissolved oxygen levels was also found. Results from the lab experiments showed marked changes in behavior (i.e., yawning and vertical movement) at <2.0 mg/L of dissolved oxygen but no change in tissue lactate, an indicator of anaerobic metabolism. Combined results of the biotelemetry and laboratory studies demonstrate that a dissolved oxygen content of 2.0 mg/L may be a critical threshold that induces behavioral responses by largemouth bass during the winter. In addition, the use by fish of areas with intermediate levels of dissolved oxygen suggests that there are multiple environmental factors influencing winter behavior.

  20. Early caregiving and physiological stress responses.

    PubMed

    Luecken, Linda J; Lemery, Kathryn S

    2004-05-01

    Inadequate early caregiving has been associated with risks of stress-related psychological and physical illness over the life span. Dysregulated physiological stress responses may represent a mechanism linking early caregiving to health outcomes. This paper reviews evidence linking early caregiving to physiological responses that can increase vulnerability to stress-related illness. A number of high-risk family characteristics, including high conflict, divorce, abuse, and parental psychopathology, are considered in the development of stress vulnerability. Three theoretical pathways linking caregiving to physiological stress responses are outlined: genetic, psychosocial, and cognitive-affective. Exciting preliminary evidence suggests that early caregiving can impact long-term physiological stress responses. Directions for future research in this area are suggested.

  1. Social relationships and physiological determinants of longevity across the human life span.

    PubMed

    Yang, Yang Claire; Boen, Courtney; Gerken, Karen; Li, Ting; Schorpp, Kristen; Harris, Kathleen Mullan

    2016-01-19

    Two decades of research indicate causal associations between social relationships and mortality, but important questions remain as to how social relationships affect health, when effects emerge, and how long they last. Drawing on data from four nationally representative longitudinal samples of the US population, we implemented an innovative life course design to assess the prospective association of both structural and functional dimensions of social relationships (social integration, social support, and social strain) with objectively measured biomarkers of physical health (C-reactive protein, systolic and diastolic blood pressure, waist circumference, and body mass index) within each life stage, including adolescence and young, middle, and late adulthood, and compare such associations across life stages. We found that a higher degree of social integration was associated with lower risk of physiological dysregulation in a dose-response manner in both early and later life. Conversely, lack of social connections was associated with vastly elevated risk in specific life stages. For example, social isolation increased the risk of inflammation by the same magnitude as physical inactivity in adolescence, and the effect of social isolation on hypertension exceeded that of clinical risk factors such as diabetes in old age. Analyses of multiple dimensions of social relationships within multiple samples across the life course produced consistent and robust associations with health. Physiological impacts of structural and functional dimensions of social relationships emerge uniquely in adolescence and midlife and persist into old age.

  2. Physiological Effects of Free Fatty Acid Production in Genetically Engineered Synechococcus elongatus PCC 7942

    PubMed Central

    Ruffing, Anne M.; Jones, Howland D.T.

    2012-01-01

    The direct conversion of carbon dioxide into biofuels by photosynthetic microorganisms is a promising alternative energy solution. In this study, a model cyanobacterium, Synechococcus elongatus PCC 7942, is engineered to produce free fatty acids (FFA), potential biodiesel precursors, via gene knockout of the FFA-recycling acyl-ACP synthetase and expression of a thioesterase for release of the FFA. Similar to previous efforts, the engineered strains produce and excrete FFA, but the yields are too low for large-scale production. While other efforts have applied additional metabolic engineering strategies in an attempt to boost FFA production, we focus on characterizing the engineered strains to identify the physiological effects that limit cell growth and FFA synthesis. The strains engineered for FFA-production show reduced photosynthetic yields, chlorophyll-a degradation, and changes in the cellular localization of the light-harvesting pigments, phycocyanin and allophycocyanin. Possible causes of these physiological effects are also identified. The addition of exogenous linolenic acid, a polyunsaturated FFA, to cultures of S. elongatus 7942 yielded a physiological response similar to that observed in the FFA-producing strains with only one notable difference. In addition, the lipid constituents of the cell and thylakoid membranes in the FFA-producing strains show changes in both the relative amounts of lipid components and the degree of saturation of the fatty acid side chains. These changes in lipid composition may affect membrane integrity and structure, the binding and diffusion of phycobilisomes, and the activity of membrane-bound enzymes including those involved in photosynthesis. Thus, the toxicity of unsaturated FFA and changes in membrane composition may be responsible for the physiological effects observed in FFA-producing S. elongatus 7942. These issues must be addressed to enable the high yields of FFA synthesis necessary for large-scale biofuel production. PMID:22473793

  3. Sensorimotor Adaptations Following Exposure to Ambiguous Inertial Motion Cues

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Harm, D. L.; Reschke, M. F.; Rupert, A. H.; Clement, G. R.

    2009-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. We hypothesize that multi-sensory integration will be adaptively optimized in altered gravity environments based on the dynamics of other sensory information available, with greater changes in otolith-mediated responses in the mid-frequency range where there is a crossover of tilt and translation responses. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of tilt-translation disturbances during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation.

  4. Teaching Cardiovascular Integrations with Computer Laboratories.

    ERIC Educational Resources Information Center

    Peterson, Nils S.; Campbell, Kenneth B.

    1985-01-01

    Describes a computer-based instructional unit in cardiovascular physiology. The program (which employs simulated laboratory experimental techniques with a problem-solving format is designed to supplement an animal laboratory and to offer students an integrative approach to physiology through use of microcomputers. Also presents an overview of the…

  5. Neuronal Circuitry Mechanisms Regulating Adult Mammalian Neurogenesis

    PubMed Central

    Song, Juan; Olsen, Reid H.J.; Sun, Jiaqi; Ming, Guo-li; Song, Hongjun

    2017-01-01

    The adult mammalian brain is a dynamic structure, capable of remodeling in response to various physiological and pathological stimuli. One dramatic example of brain plasticity is the birth and subsequent integration of newborn neurons into the existing circuitry. This process, termed adult neurogenesis, recapitulates neural developmental events in two specialized adult brain regions: the lateral ventricles of the forebrain. Recent studies have begun to delineate how the existing neuronal circuits influence the dynamic process of adult neurogenesis, from activation of quiescent neural stem cells (NSCs) to the integration and survival of newborn neurons. Here, we review recent progress toward understanding the circuit-based regulation of adult neurogenesis in the hippocampus and olfactory bulb. PMID:27143698

  6. Redefining the gut as the motor of critical illness.

    PubMed

    Mittal, Rohit; Coopersmith, Craig M

    2014-04-01

    The gut is hypothesized to play a central role in the progression of sepsis and multiple organ dysfunction syndrome. Critical illness alters gut integrity by increasing epithelial apoptosis and permeability and by decreasing epithelial proliferation and mucus integrity. Additionally, toxic gut-derived lymph induces distant organ injury. Although the endogenous microflora ordinarily exist in a symbiotic relationship with the gut epithelium, severe physiological insults alter this relationship, leading to induction of virulence factors in the microbiome, which, in turn, can perpetuate or worsen critical illness. This review highlights newly discovered ways in which the gut acts as the motor that perpetuates the systemic inflammatory response in critical illness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. 3D engineered cardiac tissue models of human heart disease: learning more from our mice.

    PubMed

    Ralphe, J Carter; de Lange, Willem J

    2013-02-01

    Mouse engineered cardiac tissue constructs (mECTs) are a new tool available to study human forms of genetic heart disease within the laboratory. The cultured strips of cardiac cells generate physiologic calcium transients and twitch force, and respond to electrical pacing and adrenergic stimulation. The mECT can be made using cells from existing mouse models of cardiac disease, providing a robust readout of contractile performance and allowing a rapid assessment of genotype-phenotype correlations and responses to therapies. mECT represents an efficient and economical extension to the existing tools for studying cardiac physiology. Human ECTs generated from iPSCMs represent the next logical step for this technology and offer significant promise of an integrated, fully human, cardiac tissue model. Copyright © 2013. Published by Elsevier Inc.

  8. 2015 Meeting of the National Directors of Graduate Studies in Pharmacology and Physiology

    PubMed Central

    McFalls, Ashley J.; Barnett, Joey V.

    2016-01-01

    Researchers trained in pharmacology and physiology must possess not only a comprehensive knowledge of chemistry and the nature of compounds but also a deep understanding of physiology and predict how these compounds function in a system or organism. However, graduate programs in pharmacology and physiology have increasingly begun to focus on more reductionist approaches to basic science, neglecting training in integrative/systems physiology. In response to a decline in the competency of recent pharmacology and physiology graduates, a biennial meeting, National Directors of Graduate Studies (NDOGS) in pharmacology and physiology, was conceived to address these concerns and improve the quality of graduate education. NDOGS functions as a forum for directors of pharmacology and physiology programs to exchange ideas and tackle the challenges facing graduate education. The 2015 meeting was held on the campus of the University of Cincinnati, and each day of the meeting was allocated for discussion of a broad topic. On Friday, talks were aimed at “enhancing the professional pipeline.” On Saturday, the theme of “fitting training to emerging needs” tackled ways that universities can respond to the emerging needs of a changing society. Sunday morning updated graduate program directors about changes to National Institutes of Health T32 Training Grant applications and provided a forum for program directors to share their experiences and concerns. Throughout the meeting, presentations and discussions highlighted challenges and opportunities that apply broadly to PhD training in the biomedical sciences and revealed best practices to improve training and career preparation of PhD trainees.

  9. 21 CFR 882.1845 - Physiological signal conditioner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Physiological signal conditioner. 882.1845 Section... signal conditioner. (a) Identification. A physiological signal conditioner is a device such as an integrator or differentiator used to modify physiological signals for recording and processing. (b...

  10. 21 CFR 882.1845 - Physiological signal conditioner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Physiological signal conditioner. 882.1845 Section... signal conditioner. (a) Identification. A physiological signal conditioner is a device such as an integrator or differentiator used to modify physiological signals for recording and processing. (b...

  11. Physiological Perturbation Reveals Modularity of Eyespot Development in the Painted Lady Butterfly, Vanessa cardui

    PubMed Central

    Rhen, Turk; Simmons, Rebecca B.

    2016-01-01

    Butterfly eyespots are complex morphological traits that can vary in size, shape and color composition even on the same wing surface. Homology among eyespots suggests they share a common developmental basis and function as an integrated unit in response to selection. Despite strong evidence of genetic integration, eyespots can also exhibit modularity or plasticity, indicating an underlying flexibility in pattern development. The extent to which particular eyespots or eyespot color elements exhibit modularity or integration is poorly understood, particularly following exposure to novel conditions. We used perturbation experiments to explore phenotypic correlations among different eyespots and their color elements on the ventral hindwing of V. cardui. Specifically, we identified which eyespots and eyespot features are most sensitive to perturbation by heat shock and injection of heparin—a cold shock mimic. For both treatments, the two central eyespots (3 + 4) were most affected by the experimental perturbations, whereas the outer eyespot border was more resistant to modification than the interior color elements. Overall, the individual color elements displayed a similar response to heat shock across all eyespots, but varied in their response to each other. Graphical modeling also revealed that although eyespots differ morphologically, regulation of eyespot size and colored elements appear to be largely integrated across the wing. Patterns of integration, however, were disrupted following heat shock, revealing that the strength of integration varies across the wing and is strongest between the two central eyespots. These findings support previous observations that document coupling between eyespots 3 + 4 in other nymphalid butterflies. PMID:27560365

  12. Physiological Perturbation Reveals Modularity of Eyespot Development in the Painted Lady Butterfly, Vanessa cardui.

    PubMed

    Connahs, Heidi; Rhen, Turk; Simmons, Rebecca B

    2016-01-01

    Butterfly eyespots are complex morphological traits that can vary in size, shape and color composition even on the same wing surface. Homology among eyespots suggests they share a common developmental basis and function as an integrated unit in response to selection. Despite strong evidence of genetic integration, eyespots can also exhibit modularity or plasticity, indicating an underlying flexibility in pattern development. The extent to which particular eyespots or eyespot color elements exhibit modularity or integration is poorly understood, particularly following exposure to novel conditions. We used perturbation experiments to explore phenotypic correlations among different eyespots and their color elements on the ventral hindwing of V. cardui. Specifically, we identified which eyespots and eyespot features are most sensitive to perturbation by heat shock and injection of heparin-a cold shock mimic. For both treatments, the two central eyespots (3 + 4) were most affected by the experimental perturbations, whereas the outer eyespot border was more resistant to modification than the interior color elements. Overall, the individual color elements displayed a similar response to heat shock across all eyespots, but varied in their response to each other. Graphical modeling also revealed that although eyespots differ morphologically, regulation of eyespot size and colored elements appear to be largely integrated across the wing. Patterns of integration, however, were disrupted following heat shock, revealing that the strength of integration varies across the wing and is strongest between the two central eyespots. These findings support previous observations that document coupling between eyespots 3 + 4 in other nymphalid butterflies.

  13. The medial prefrontal cortex: coordinator of autonomic, neuroendocrine and behavioural responses to stress.

    PubMed

    McKlveen, J M; Myers, B; Herman, J P

    2015-06-01

    Responding to real or potential threats in the environment requires the coordination of autonomic, neuroendocrine and behavioural processes to promote adaptation and survival. These diverging systems necessitate input from the limbic forebrain to integrate and modulate functional output in accordance with contextual demand. In the present review, we discuss the potential role of the medial prefrontal cortex (mPFC) as a coordinator of behavioural and physiological stress responses across multiple temporal and contextual domains. Furthermore, we highlight converging evidence from rodent and human research indicating the necessity of the mPFC for modulating physiological energetic systems to mobilise or limit energetic resources as needed to ultimately promote behavioural adaptation in the face of stress. We review the literature indicating that glucocorticoids act as one of the primary messengers in the reallocation of energetic resources having profound effects locally within the mPFC, as well as shaping how the mPFC acts within a network of brain structures to modulate responses to stress. Finally, we discuss how both rodent and human studies point toward a critical role of the mPFC in the coordination of anticipatory responses to stress and why this distinction is an important one to make in stress neurobiology. © 2015 British Society for Neuroendocrinology.

  14. The developing framework of marine ecotoxicology: Pollutants as a variable in marine ecosystems?

    USGS Publications Warehouse

    Luoma, Samuel N.

    1996-01-01

    Marine ecosystems include a subset in which at least some interrelated geochemical, biochemical, physiological, population and community characteristics are changed by pollutants. Moderate contamination is relatively widespread in coastal and estuarine ecosystems, so the subset of ecosystems with at least some processes affected could be relatively large. Pollutant influences have changed and will probably continue to change on time scales of decades. Biological exposures and dose in such ecosystems are species-specific and determined by how the species is exposed to different environmental media and the geochemistry of individual pollutants within those media. Bioaccumulation models offer significant promise for interpreting such exposures. Biological responses to pollutants need to be more directly linked to exposure and dose. At the level of the individual this might be improved by better understanding relationships between tissue concentrations of pollutants and responses to pollutants. Multi-discipline field and laboratory studies combined with advanced understanding of some basic processes have reduced the ambiguities in interpreting a few physiological/organismic responses to pollutants in nature. Recognition of pollutant-induced patterns in population responses could lead to similar advances. A rational framework for ecotoxicology is developing, but its further advance is dependent upon better integration of ecotoxicology with basic marine ecology and biology.

  15. Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.).

    PubMed

    Moschen, Sebastián; Di Rienzo, Julio A; Higgins, Janet; Tohge, Takayuki; Watanabe, Mutsumi; González, Sergio; Rivarola, Máximo; García-García, Francisco; Dopazo, Joaquin; Hopp, H Esteban; Hoefgen, Rainer; Fernie, Alisdair R; Paniego, Norma; Fernández, Paula; Heinz, Ruth A

    2017-07-01

    By integration of transcriptional and metabolic profiles we identified pathways and hubs transcription factors regulated during drought conditions in sunflower, useful for applications in molecular and/or biotechnological breeding. Drought is one of the most important environmental stresses that effects crop productivity in many agricultural regions. Sunflower is tolerant to drought conditions but the mechanisms involved in this tolerance remain unclear at the molecular level. The aim of this study was to characterize and integrate transcriptional and metabolic pathways related to drought stress in sunflower plants, by using a system biology approach. Our results showed a delay in plant senescence with an increase in the expression level of photosynthesis related genes as well as higher levels of sugars, osmoprotectant amino acids and ionic nutrients under drought conditions. In addition, we identified transcription factors that were upregulated during drought conditions and that may act as hubs in the transcriptional network. Many of these transcription factors belong to families implicated in the drought response in model species. The integration of transcriptomic and metabolomic data in this study, together with physiological measurements, has improved our understanding of the biological responses during droughts and contributes to elucidate the molecular mechanisms involved under this environmental condition. These findings will provide useful biotechnological tools to improve stress tolerance while maintaining crop yield under restricted water availability.

  16. A model of interval timing by neural integration

    PubMed Central

    Simen, Patrick; Balci, Fuat; deSouza, Laura; Cohen, Jonathan D.; Holmes, Philip

    2011-01-01

    We show that simple assumptions about neural processing lead to a model of interval timing as a temporal integration process, in which a noisy firing-rate representation of time rises linearly on average toward a response threshold over the course of an interval. Our assumptions include: that neural spike trains are approximately independent Poisson processes; that correlations among them can be largely cancelled by balancing excitation and inhibition; that neural populations can act as integrators; and that the objective of timed behavior is maximal accuracy and minimal variance. The model accounts for a variety of physiological and behavioral findings in rodents, monkeys and humans, including ramping firing rates between the onset of reward-predicting cues and the receipt of delayed rewards, and universally scale-invariant response time distributions in interval timing tasks. It furthermore makes specific, well-supported predictions about the skewness of these distributions, a feature of timing data that is usually ignored. The model also incorporates a rapid (potentially one-shot) duration-learning procedure. Human behavioral data support the learning rule’s predictions regarding learning speed in sequences of timed responses. These results suggest that simple, integration-based models should play as prominent a role in interval timing theory as they do in theories of perceptual decision making, and that a common neural mechanism may underlie both types of behavior. PMID:21697374

  17. Assessment of Psychophysiological Response and Specific Fine Motor Skills in Combat Units.

    PubMed

    Sánchez-Molina, Joaquín; Robles-Pérez, José J; Clemente-Suárez, Vicente J

    2018-03-02

    Soldiers´ training and experience can influence the outcome of the missions, as well as their own physical integrity. The objective of this research was to analyze the psycho-physiological response and specific motor skills in an urban combat simulation with two units of infantry with different training and experience. psychophysiological parameters -Heart Rate, blood oxygen saturation, glucose and blood lactate, cortical activation, anxiety and heart rate variability-, as well as fine motor skills were analyzed in 31 male soldiers of the Spanish Army, 19 belonging to the Light Infantry Brigade, and 12 to the Heavy Forces Infantry Brigade, before and after an urban combat simulation. A combat simulation provokes an alteration of the psycho-physiological basal state in soldiers and a great unbalance in the sympathetic-vagal interaction. The specific training of Light Infantry unit involves lower metabolic, cardiovascular, and anxiogenic response not only previous, but mainly after a combat maneuver, than Heavy Infantry unit's. No differences were found in relation with fine motor skills, improving in both cases after the maneuver. This fact should be taken into account for betterment units´ deployment preparation in current theaters of operations.

  18. Polycaprolactone nanowire surfaces as interfaces for cardiovascular applications

    NASA Astrophysics Data System (ADS)

    Leszczak, Victoria

    Cardiovascular disease is the leading killer of people worldwide. Current treatments include organ transplants, surgery, metabolic products and mechanical/synthetic implants. Of these, mechanical and synthetic implants are the most promising. However, rejection of cardiovascular implants continues to be a problem, eliciting a need for understanding the mechanisms behind tissue-material interaction. Recently, bioartificial implants, consisting of synthetic tissue engineering scaffolds and cells, have shown great promise for cardiovascular repair. An ideal cardiovascular implant surface must be capable of adhering cells and providing appropriate physiological responses while the native tissue integrates with the scaffold. However, the success of these implants is not only dependent on tissue integration but also hemocompatibility (interaction of material with blood components), a property that depends on the surface of the material. A thorough understanding of the interaction of cardiovascular cells and whole blood and its components with the material surface is essential in order to have a successful application which promotes healing as well as native tissue integration and regeneration. The purpose of this research is to study polymeric nanowire surfaces as potential interfaces for cardiovascular applications by investigating cellular response as well as hemocompatibility.

  19. 78 FR 28230 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ..., Metabolism, Nutrition and Reproductive Sciences Integrated Review Group; Integrative Physiology of Obesity...; Skeletal Muscle and Exercise Physiology Study Section. Date: June 13-14, 2013. Time: 8:00 a.m. to 5:00 p.m... Group; Neurological, Aging and Musculoskeletal Epidemiology Study Section. Date: June 13-14, 2013. Time...

  20. Physiological responses to dyadic interactions are influenced by neurotypical adults' levels of autistic and empathy traits.

    PubMed

    Truzzi, Anna; Setoh, Peipei; Shinohara, Kazuyuki; Esposito, Gianluca

    2016-10-15

    Autistic traits are distributed on a continuum that ranges from non-clinical to clinical condition. Atypical responses to social situations represent a core feature of the Autism Spectrum Disorders phenotype. Here, we hypothesize that atypical physiological responses to social stimuli may predict non-clinical autistic and empathy traits levels. We measured physiological responses (heart rate, facial temperature) of 40 adults (20F) while showing them 24 movies representing dyadic interactions. Autistic traits were assessed through Autism Quotient questionnaire (AQ), while empathy traits were measured using the Empathy Quotient questionnaire (EQ). Opposite correlations between AQ and EQ scores and physiological responses were found. Analysis of physiological responses revealed that individuals with better social abilities, low AQ and high EQ, show opposite activation patterns compared to people with high AQ and low EQ. Findings show that physiological responses could be biomarkers for people's autistic traits and social abilities. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. CO2/HCO3−- and Calcium-regulated Soluble Adenylyl Cyclase as a Physiological ATP Sensor*

    PubMed Central

    Zippin, Jonathan H.; Chen, Yanqiu; Straub, Susanne G.; Hess, Kenneth C.; Diaz, Ana; Lee, Dana; Tso, Patrick; Holz, George G.; Sharp, Geoffrey W. G.; Levin, Lonny R.; Buck, Jochen

    2013-01-01

    The second messenger molecule cAMP is integral for many physiological processes. In mammalian cells, cAMP can be generated from hormone- and G protein-regulated transmembrane adenylyl cyclases or via the widely expressed and structurally and biochemically distinct enzyme soluble adenylyl cyclase (sAC). sAC activity is uniquely stimulated by bicarbonate ions, and in cells, sAC functions as a physiological carbon dioxide, bicarbonate, and pH sensor. sAC activity is also stimulated by calcium, and its affinity for its substrate ATP suggests that it may be sensitive to physiologically relevant fluctuations in intracellular ATP. We demonstrate here that sAC can function as a cellular ATP sensor. In cells, sAC-generated cAMP reflects alterations in intracellular ATP that do not affect transmembrane AC-generated cAMP. In β cells of the pancreas, glucose metabolism generates ATP, which corresponds to an increase in cAMP, and we show here that sAC is responsible for an ATP-dependent cAMP increase. Glucose metabolism also elicits insulin secretion, and we further show that sAC is necessary for normal glucose-stimulated insulin secretion in vitro and in vivo. PMID:24100033

  2. Under a neighbour's influence: public information affects stress hormones and behaviour of a songbird

    PubMed Central

    Cornelius, Jamie M.; Breuner, Creagh W.; Hahn, Thomas P.

    2010-01-01

    Socially acquired information improves the accuracy and efficiency of environmental assessments and can increase fitness. Public information may be especially useful during unpredictable food conditions, or for species that depend on resources made less predictable by human disturbance. However, the physiological mechanisms by which direct foraging assessments and public information are integrated to affect behaviour remain largely unknown. We tested for potential effects of public information on the behavioural and hormonal response to food reduction by manipulating the social environment of captive red crossbills (Loxia curvirostra). Red crossbills are irruptive migrants that are considered sensitive to changes in food availability and use public information in decision making. Here, we show that public information can attenuate or intensify the release of glucocorticoids (i.e. stress hormones) during food shortage in red crossbills. The observed modulation of corticosterone may therefore be a physiological mechanism linking public information, direct environmental assessments and behavioural change. This mechanism would not only allow for public information to affect individual behaviour, but might also facilitate group decision making by bringing group members into more similar physiological states. The results further suggest that stressors affecting entire populations may be magnified in individual physiology through social interactions. PMID:20356895

  3. From molecules to behavior and the clinic: Integration in chronobiology.

    PubMed

    Bechtel, William

    2013-12-01

    Chronobiology, especially the study of circadian rhythms, provides a model scientific field in which philosophers can study how investigators from a variety of disciplines working at different levels of organization are each contributing to a multi-level account of the responsible mechanism. I focus on how the framework of mechanistic explanation integrates research designed to decompose the mechanism with efforts directed at recomposition that relies especially on computation models. I also examine how recently the integration has extended beyond basic research to the processes through which the disruption of circadian rhythms contributes to disease, including various forms of cancer. Understanding these linkages has been facilitated by discoveries about how circadian mechanisms interact with mechanisms involved in other physiological processes, including the cell cycle and the immune system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Electronic plants

    PubMed Central

    Stavrinidou, Eleni; Gabrielsson, Roger; Gomez, Eliot; Crispin, Xavier; Nilsson, Ove; Simon, Daniel T.; Berggren, Magnus

    2015-01-01

    The roots, stems, leaves, and vascular circuitry of higher plants are responsible for conveying the chemical signals that regulate growth and functions. From a certain perspective, these features are analogous to the contacts, interconnections, devices, and wires of discrete and integrated electronic circuits. Although many attempts have been made to augment plant function with electroactive materials, plants’ “circuitry” has never been directly merged with electronics. We report analog and digital organic electronic circuits and devices manufactured in living plants. The four key components of a circuit have been achieved using the xylem, leaves, veins, and signals of the plant as the template and integral part of the circuit elements and functions. With integrated and distributed electronics in plants, one can envisage a range of applications including precision recording and regulation of physiology, energy harvesting from photosynthesis, and alternatives to genetic modification for plant optimization. PMID:26702448

  5. A physiologically based nonhomogeneous Poisson counter model of visual identification.

    PubMed

    Christensen, Jeppe H; Markussen, Bo; Bundesen, Claus; Kyllingsbæk, Søren

    2018-04-30

    A physiologically based nonhomogeneous Poisson counter model of visual identification is presented. The model was developed in the framework of a Theory of Visual Attention (Bundesen, 1990; Kyllingsbæk, Markussen, & Bundesen, 2012) and meant for modeling visual identification of objects that are mutually confusable and hard to see. The model assumes that the visual system's initial sensory response consists in tentative visual categorizations, which are accumulated by leaky integration of both transient and sustained components comparable with those found in spike density patterns of early sensory neurons. The sensory response (tentative categorizations) feeds independent Poisson counters, each of which accumulates tentative object categorizations of a particular type to guide overt identification performance. We tested the model's ability to predict the effect of stimulus duration on observed distributions of responses in a nonspeeded (pure accuracy) identification task with eight response alternatives. The time courses of correct and erroneous categorizations were well accounted for when the event-rates of competing Poisson counters were allowed to vary independently over time in a way that mimicked the dynamics of receptive field selectivity as found in neurophysiological studies. Furthermore, the initial sensory response yielded theoretical hazard rate functions that closely resembled empirically estimated ones. Finally, supplied with a Naka-Rushton type contrast gain control, the model provided an explanation for Bloch's law. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. Review of cellular mechanotransduction

    NASA Astrophysics Data System (ADS)

    Wang, Ning

    2017-06-01

    Living cells and tissues experience physical forces and chemical stimuli in the human body. The process of converting mechanical forces into biochemical activities and gene expression is mechanochemical transduction or mechanotransduction. Significant advances have been made in understanding mechanotransduction at the cellular and molecular levels over the last two decades. However, major challenges remain in elucidating how a living cell integrates signals from mechanotransduction with chemical signals to regulate gene expression and to generate coherent biological responses in living tissues in physiological conditions and diseases.

  7. Planning for Crew Exercise for Deep Space Mission Scenarios

    NASA Technical Reports Server (NTRS)

    Moore, E. Cherice; Ryder, Jeff

    2015-01-01

    Exercise which is necessary for maintaining crew health on-orbit and preparing the crew for return to 1G can be challenging to incorporate into spaceflight vehicles. Deep space missions will require further understanding of the physiological response to microgravity, understanding appropriate mitigations, and designing the exercise systems to effectively provide mitigations, and integrating effectively into vehicle design with a focus to support planned mission scenarios. Recognizing and addressing the constraints and challenges can facilitate improved vehicle design and exercise system incorporation.

  8. The Power of Comparative Physiology: Evolution, Integration and Applied

    DTIC Science & Technology

    2003-03-01

    A.G. Ramirez , A. Cordero, R. Anguilla rostrata, a system to study the Bloise and S. Priori. Univ. of Guadalajara- response to environmental changes...Oliveira’, Carlos Artusro Navas’: ’Biouciences Institute. University of Sio Lane, Huntington Beach, CA 92647-3524 Paulo, Rua do Matao, Ic 14, 321, Sia...Mai3o. Tray. 14, no.321. Sin Paulo, So Paulo 05508-900 Brazil Institute, Univ of Sao Paulo, Rua do Matio, Or 14, N321, Sao Paulo, Sao Paulo 05011-001

  9. An integrative pharmacological approach to radio telemetry and blood sampling in pharmaceutical drug discovery and safety assessment.

    PubMed

    Litwin, Dennis C; Lengel, David J; Kamendi, Harriet W; Bialecki, Russell A

    2011-01-18

    A successful integration of the automated blood sampling (ABS) and telemetry (ABST) system is described. The new ABST system facilitates concomitant collection of physiological variables with blood and urine samples for determination of drug concentrations and other biochemical measures in the same rat without handling artifact. Integration was achieved by designing a 13 inch circular receiving antenna that operates as a plug-in replacement for the existing pair of DSI's orthogonal antennas which is compatible with the rotating cage and open floor design of the BASi Culex® ABS system. The circular receiving antenna's electrical configuration consists of a pair of electrically orthogonal half-toroids that reinforce reception of a dipole transmitter operating within the coil's interior while reducing both external noise pickup and interference from other adjacent dipole transmitters. For validation, measured baclofen concentration (ABST vs. satellite (μM): 69.6 ± 23.8 vs. 76.6 ± 19.5, p = NS) and mean arterial pressure (ABST vs. traditional DSI telemetry (mm Hg): 150 ± 5 vs.147 ± 4, p = NS) variables were quantitatively and qualitatively similar between rats housed in the ABST system and traditional home cage approaches. The ABST system offers unique advantages over traditional between-group study paradigms that include improved data quality and significantly reduced animal use. The superior within-group model facilitates assessment of multiple physiological and biochemical responses to test compounds in the same animal. The ABST also provides opportunities to evaluate temporal relations between parameters and to investigate anomalous outlier events because drug concentrations, physiological and biochemical measures for each animal are available for comparisons.

  10. Physiological responses to wearing a prototype firefighter ensemble compared with a standard ensemble.

    PubMed

    Williams, W Jon; Coca, Aitor; Roberge, Raymond; Shepherd, Angie; Powell, Jeffrey; Shaffer, Ronald E

    2011-01-01

    This study investigated the physiological responses to wearing a standard firefighter ensemble (SE) and a prototype ensemble (PE) modified from the SE that contained additional features, such as magnetic ring enclosures at the glove-sleeve interface, integrated boot-pant interface, integrated hood-SCBA facepiece interface, and a novel hose arrangement that rerouted self-contained breathing apparatus (SCBA) exhaust gases back into the upper portion of the jacket. Although the features of the PE increased the level of encapsulation of the wearer that could lead to increased physiological stress compared with the SE, it was hypothesized that the rerouted exhaust gases provided by the PE hose assembly would (1) provide convective cooling to the upper torso, (2) reduce the thermal stress experienced by the wearer, and (3) reduce the overall physiological stress imposed by the PE such that it would be either less or not significantly different from the SE. Ten subjects (seven male, three female) performed treadmill exercise in an environmental chamber (22°C, 50% RH) at 50% [image omitted]O(2max) while wearing either the SE with an SCBA or the PE with an SCBA either with or without the hose attached (designated PEWH and PENH, respectively). Heart rate (HR), rectal and intestinal temperatures (T(re), T(in)), sweat loss, and endurance time were measured. All subjects completed at least 20 min of treadmill exercise during the testing. At the end of exercise, there was no difference in T(re) (p = 0.45) or T(in) (p = 0.42), HR, or total sweat loss between the SE and either PEWH or PENH (p = 0.59). However, T(sk) was greater in PEWH and PENH compared with SE (p < 0.05). Total endurance time in SE was greater than in either PEWH or PENH (p < 0.05). Thus, it was concluded that the rerouting of exhaust gases to the jacket did not provide significant convective cooling or reduce thermal stress compared with the SE under the mild conditions selected, and the data did not support the hypotheses of the present study.

  11. Effects of air pollution on cell membrane integrity, spectral reflectance and metal and sulfur concentrations in lichens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garty, J.; Cohen, Y.; Kloog, N.

    1997-07-01

    The fruticose lichen Ramalina duriaei is generally considered to be sensitive to air pollution. In the present study the authors sought to determine whether thalli of this lichen collected in a remote unpolluted site (the HaZorea Forest, northeast Israel) and transplanted to the Ashdod region (southwest Israel) could provide information on the quality of the air in this area. For this purpose, the concentrations of Pb, Cu, Cd, Ni, Mn, Fe, S, Ca, Mg, Na, and K were determined in in situ thalli collected in the HaZorea Forest in March 1993 and in in situ and transplanted thalli retrieved inmore » June 1993. The concentration of these elements in R. duriaei thalli was analyzed in comparison with physiological parameters such as the integrity of cell membranes, chlorophyll content, and alterations in reflectance responses from lichen thalli. Thalli transplanted to several industrial sites in the town of Ashdod for a period of 100 d accumulated high concentrations of Pb, Cd, Ni, Fe, S, Mg, Na, Ca, and K. The concentration of S in thalli transplanted to the Ashdod region was found to correlate with damage caused to cell membranes and showed and inverse correlation with the chlorophyll content and with the reflectance response of the lichen. The electrical conductivity values corresponding to membrane integrity in the lichen thallus showed an inverse correlation with the ratio of chlorophyll a to pheophytin a, indicating the integrity of the photobiontic chlorophyll and with normalized-difference vegetation index values corresponding to the reflectance response of the thallus. The chlorophyll integrity correlated with the reflectance response. Magnesium accumulated in the lichen thalli in dusty sites and was found to correlate with damage caused to membranes.« less

  12. Effects of work-related sleep restriction on acute physiological and psychological stress responses and their interactions: A review among emergency service personnel.

    PubMed

    Wolkow, Alexander; Ferguson, Sally; Aisbett, Brad; Main, Luana

    2015-01-01

    Emergency work can expose personnel to sleep restriction. Inadequate amounts of sleep can negatively affect physiological and psychological stress responses. This review critiqued the emergency service literature (e.g., firefighting, police/law enforcement, defense forces, ambulance/paramedic personnel) that has investigated the effect of sleep restriction on hormonal, inflammatory and psychological responses. Furthermore, it investigated if a psycho-physiological approach can help contextualize the significance of such responses to assist emergency service agencies monitor the health of their personnel. The available literature suggests that sleep restriction across multiple work days can disrupt cytokine and cortisol levels, deteriorate mood and elicit simultaneous physiological and psychological responses. However, research concerning the interaction between such responses is limited and inconclusive. Therefore, it is unknown if a psycho-physiological relationship exists and as a result, it is currently not feasible for agencies to monitor sleep restriction related stress based on psycho- physiological interactions. Sleep restriction does however, appear to be a major stressor contributing to physiological and psychological responses and thus, warrants further investigation. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  13. Investigation of the Physiological Responses of Belugas to Stressors to Aid in Assessing the Impact of Environmental and Anthropogenic Challenges on Health

    DTIC Science & Technology

    2013-12-19

    Physiological Responses of Belugas to "Stressors" to Aid in Assessing the Impact of Environmental and Anthropogenic Challenges on Health 5a. CONTRACT...ANSI Std.Z39.18 " DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited. Investigation of the Physiological Responses... physiological i.e. neuroimmunoendocrino logical responses of beluga whales to "Stressors". "Stressor events" will allow for a better understanding and

  14. Distinct transcriptome responses to water limitation in isohydric and anisohydric grapevine cultivars.

    PubMed

    Dal Santo, Silvia; Palliotti, Alberto; Zenoni, Sara; Tornielli, Giovanni Battista; Fasoli, Marianna; Paci, Paola; Tombesi, Sergio; Frioni, Tommaso; Silvestroni, Oriana; Bellincontro, Andrea; d'Onofrio, Claudio; Matarese, Fabiola; Gatti, Matteo; Poni, Stefano; Pezzotti, Mario

    2016-10-20

    Grapevine (Vitis vinifera L.) is an economically important crop with a wide geographical distribution, reflecting its ability to grow successfully in a range of climates. However, many vineyards are located in regions with seasonal drought, and these are often predicted to be global climate change hotspots. Climate change affects the entire physiology of grapevine, with strong effects on yield, wine quality and typicity, making it difficult to produce berries of optimal enological quality and consistent stability over the forthcoming decades. Here we investigated the reactions of two grapevine cultivars to water stress, the isohydric variety Montepulciano and the anisohydric variety Sangiovese, by examining physiological and molecular perturbations in the leaf and berry. A multidisciplinary approach was used to characterize the distinct stomatal behavior of the two cultivars and its impact on leaf and berry gene expression. Positive associations were found among the photosynthetic, physiological and transcriptional modifications, and candidate genes encoding master regulators of the water stress response were identified using an integrated approach based on the analysis of topological co-expression network properties. In particular, the genome-wide transcriptional study indicated that the isohydric behavior relies upon the following responses: i) faster transcriptome response after stress imposition; ii) faster abscisic acid-related gene modulation; iii) more rapid expression of heat shock protein (HSP) genes and iv) reversion of gene-expression profile at rewatering. Conversely, that reactive oxygen species (ROS)-scavenging enzymes, molecular chaperones and abiotic stress-related genes were induced earlier and more strongly in the anisohydric cultivar. Overall, the present work found original evidence of a molecular basis for the proposed classification between isohydric and anisohydric grapevine genotypes.

  15. Positive Impact of Integrating Histology and Physiology Teaching at a Medical School in China

    ERIC Educational Resources Information Center

    Sherer, Renslow; Wan, Yu; Dong, Hongmei; Cooper, Brian; Morgan, Ivy; Peng, Biwen; Liu, Jun; Wang, Lin; Xu, David

    2014-01-01

    To modernize its stagnant, traditional curriculum and pedagogy, the Medical School of Wuhan University in China adopted (with modifications) the University of Chicago's medical curriculum model. The reform effort in basic sciences was integrating histology and physiology into one course, increasing the two subjects' connection to clinical…

  16. Integrative Metabolism: An Interactive Learning Tool for Nutrition, Biochemistry, and Physiology

    ERIC Educational Resources Information Center

    Carey, Gale

    2010-01-01

    Metabolism is a dynamic, simultaneous, and integrative science that cuts across nutrition, biochemistry, and physiology. Teaching this science can be a challenge. The use of a scenario-based, visually appealing, interactive, computer-animated CD may overcome the limitations of learning "one pathway at a time" and engage two- and…

  17. Integrating Cellular Metabolism into a Multiscale Whole-Body Model

    PubMed Central

    Krauss, Markus; Schaller, Stephan; Borchers, Steffen; Findeisen, Rolf; Lippert, Jörg; Kuepfer, Lars

    2012-01-01

    Cellular metabolism continuously processes an enormous range of external compounds into endogenous metabolites and is as such a key element in human physiology. The multifaceted physiological role of the metabolic network fulfilling the catalytic conversions can only be fully understood from a whole-body perspective where the causal interplay of the metabolic states of individual cells, the surrounding tissue and the whole organism are simultaneously considered. We here present an approach relying on dynamic flux balance analysis that allows the integration of metabolic networks at the cellular scale into standardized physiologically-based pharmacokinetic models at the whole-body level. To evaluate our approach we integrated a genome-scale network reconstruction of a human hepatocyte into the liver tissue of a physiologically-based pharmacokinetic model of a human adult. The resulting multiscale model was used to investigate hyperuricemia therapy, ammonia detoxification and paracetamol-induced toxication at a systems level. The specific models simultaneously integrate multiple layers of biological organization and offer mechanistic insights into pathology and medication. The approach presented may in future support a mechanistic understanding in diagnostics and drug development. PMID:23133351

  18. Physiological Characterization of Vestibular Efferent Brainstem Neurons Using a Transgenic Mouse Model

    PubMed Central

    Leijon, Sara; Magnusson, Anna K.

    2014-01-01

    The functional role of efferent innervation of the vestibular end-organs in the inner ear remains elusive. This study provides the first physiological characterization of the cholinergic vestibular efferent (VE) neurons in the brainstem by utilizing a transgenic mouse model, expressing eGFP under a choline-acetyltransferase (ChAT)-locus spanning promoter in combination with targeted patch clamp recordings. The intrinsic electrical properties of the eGFP-positive VE neurons were compared to the properties of the lateral olivocochlear (LOC) brainstem neurons, which gives rise to efferent innervation of the cochlea. Both VE and the LOC neurons were marked by their negative resting membrane potential <−75 mV and their passive responses in the hyperpolarizing range. In contrast, the response properties of VE and LOC neurons differed significantly in the depolarizing range. When injected with positive currents, VE neurons fired action potentials faithfully to the onset of depolarization followed by sparse firing with long inter-spike intervals. This response gave rise to a low response gain. The LOC neurons, conversely, responded with a characteristic delayed tonic firing upon depolarizing stimuli, giving rise to higher response gain than the VE neurons. Depolarization triggered large TEA insensitive outward currents with fast inactivation kinetics, indicating A-type potassium currents, in both the inner ear-projecting neuronal types. Immunohistochemistry confirmed expression of Kv4.3 and 4.2 ion channel subunits in both the VE and LOC neurons. The difference in spiking responses to depolarization is related to a two-fold impact of these transient outward currents on somatic integration in the LOC neurons compared to in VE neurons. It is speculated that the physiological properties of the VE neurons might be compatible with a wide-spread control over motion and gravity sensation in the inner ear, providing likewise feed-back amplification of abrupt and strong phasic signals from the semi-circular canals and of tonic signals from the gravito-sensitive macular organs. PMID:24867596

  19. Inflammatory Responses and Barrier Function of Endothelial Cells Derived from Human Induced Pluripotent Stem Cells.

    PubMed

    Halaidych, Oleh V; Freund, Christian; van den Hil, Francijna; Salvatori, Daniela C F; Riminucci, Mara; Mummery, Christine L; Orlova, Valeria V

    2018-05-08

    Several studies have reported endothelial cell (EC) derivation from human induced pluripotent stem cells (hiPSCs). However, few have explored their functional properties in depth with respect to line-to-line and batch-to-batch variability and how they relate to primary ECs. We therefore carried out accurate characterization of hiPSC-derived ECs (hiPSC-ECs) from multiple (non-integrating) hiPSC lines and compared them with primary ECs in various functional assays, which included barrier function using real-time impedance spectroscopy with an integrated assay of electric wound healing, endothelia-leukocyte interaction under physiological flow to mimic inflammation and angiogenic responses in in vitro and in vivo assays. Overall, we found many similarities but also some important differences between hiPSC-derived and primary ECs. Assessment of vasculogenic responses in vivo showed little difference between primary ECs and hiPSC-ECs with regard to functional blood vessel formation, which may be important in future regenerative medicine applications requiring vascularization. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. PCH1 integrates circadian and light-signaling pathways to control photoperiod-responsive growth in Arabidopsis

    PubMed Central

    Huang, He; Yoo, Chan Yul; Bindbeutel, Rebecca; Goldsworthy, Jessica; Tielking, Allison; Alvarez, Sophie; Naldrett, Michael J; Evans, Bradley S; Chen, Meng; Nusinow, Dmitri A

    2016-01-01

    Plants react to seasonal change in day length through altering physiology and development. Factors that function to harmonize growth with photoperiod are poorly understood. Here we characterize a new protein that associates with both circadian clock and photoreceptor components, named PHOTOPERIODIC CONTROL OF HYPOCOTYL1 (PCH1). pch1 seedlings have overly elongated hypocotyls specifically under short days while constitutive expression of PCH1 shortens hypocotyls independent of day length. PCH1 peaks at dusk, binds phytochrome B (phyB) in a red light-dependent manner, and co-localizes with phyB into photobodies. PCH1 is necessary and sufficient to promote the biogenesis of large photobodies to maintain an active phyB pool after light exposure, potentiating red-light signaling and prolonging memory of prior illumination. Manipulating PCH1 alters PHYTOCHROME INTERACTING FACTOR 4 levels and regulates light-responsive gene expression. Thus, PCH1 is a new factor that regulates photoperiod-responsive growth by integrating the clock with light perception pathways through modulating daily phyB-signaling. DOI: http://dx.doi.org/10.7554/eLife.13292.001 PMID:26839287

  1. Natural variation reveals relationships between pre-stress carbohydrate nutritional status and subsequent responses to xenobiotic and oxidative stress in Arabidopsis thaliana.

    PubMed

    Ramel, Fanny; Sulmon, Cécile; Gouesbet, Gwenola; Couée, Ivan

    2009-12-01

    Soluble sugars are involved in responses to stress, and act as signalling molecules that activate specific or hormone cross-talk transduction pathways. Thus, exogenous sucrose treatment efficiently induces tolerance to the herbicide atrazine in Arabidopsis thaliana plantlets, at least partially through large-scale modifications of expression of stress-related genes. Availability of sugars in planta for stress responses is likely to depend on complex dynamics of soluble sugar accumulation, sucrose-starch partition and organ allocation. The question of potential relationships between endogenous sugar levels and stress responses to atrazine treatment was investigated through analysis of natural genetic accessions of A. thaliana. Parallel quantitative and statistical analysis of biochemical parameters and of stress-sensitive physiological traits was carried out on a set of 11 accessions. Important natural variation was found between accessions of A. thaliana in pre-stress shoot endogenous sugar levels and responses of plantlets to subsequent atrazine stress. Moreover, consistent trends and statistically significant correlations were detected between specific endogenous sugar parameters, such as the pre-stress end of day sucrose level in shoots, and physiological markers of atrazine tolerance. These significant relationships between endogenous carbohydrate metabolism and stress response therefore point to an important integration of carbon nutritional status and induction of stress tolerance in plants. The specific correlation between pre-stress sucrose level and greater atrazine tolerance may reflect adaptive mechanisms that link sucrose accumulation, photosynthesis-related stress and sucrose induction of stress defences.

  2. Calcium impacts carbon and nitrogen balance in the filamentous cyanobacterium Anabaena sp. PCC 7120

    PubMed Central

    Walter, Julia; Lynch, Fiona; Battchikova, Natalia; Aro, Eva-Mari

    2016-01-01

    Calcium is integral to the perception, communication and adjustment of cellular responses to environmental changes. However, the role of Ca2+ in fine-tuning cellular responses of wild-type cyanobacteria under favourable growth conditions has not been examined. In this study, extracellular Ca2+ has been altered, and changes in the whole transcriptome of Anabaena sp. PCC 7120 have been evaluated under conditions replete of carbon and combined nitrogen. Ca2+ induced differential expression of many genes driving primary cellular metabolism, with transcriptional regulation of carbon- and nitrogen-related processes responding with opposing trends. However, physiological effects of these transcriptional responses on biomass accumulation, biomass composition, and photosynthetic activity over the 24h period following Ca2+ adjustment were found to be minor. It is well known that intracellular carbon:nitrogen balance is integral to optimal cell growth and that Ca2+ plays an important role in the response of heterocystous cyanobacteria to combined-nitrogen deprivation. This work adds to the current knowledge by demonstrating a signalling role of Ca2+ for making sensitive transcriptional adjustments required for optimal growth under non-limiting conditions. PMID:27012282

  3. Calcium impacts carbon and nitrogen balance in the filamentous cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Walter, Julia; Lynch, Fiona; Battchikova, Natalia; Aro, Eva-Mari; Gollan, Peter J

    2016-06-01

    Calcium is integral to the perception, communication and adjustment of cellular responses to environmental changes. However, the role of Ca(2+) in fine-tuning cellular responses of wild-type cyanobacteria under favourable growth conditions has not been examined. In this study, extracellular Ca(2+) has been altered, and changes in the whole transcriptome of Anabaena sp. PCC 7120 have been evaluated under conditions replete of carbon and combined nitrogen. Ca(2+) induced differential expression of many genes driving primary cellular metabolism, with transcriptional regulation of carbon- and nitrogen-related processes responding with opposing trends. However, physiological effects of these transcriptional responses on biomass accumulation, biomass composition, and photosynthetic activity over the 24h period following Ca(2+) adjustment were found to be minor. It is well known that intracellular carbon:nitrogen balance is integral to optimal cell growth and that Ca(2+) plays an important role in the response of heterocystous cyanobacteria to combined-nitrogen deprivation. This work adds to the current knowledge by demonstrating a signalling role of Ca(2+) for making sensitive transcriptional adjustments required for optimal growth under non-limiting conditions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Behavioral, metabolic, and immune consequences of chronic alcohol or cannabinoids on HIV/AIDs: Studies in the Non-Human Primate SIV model

    PubMed Central

    Molina, Patricia E.; Amedee, Angela M.; Winsauer, Peter; Nelson, Steve; Bagby, Gregory; Simon, Liz

    2015-01-01

    HIV-associated mortality has been significantly reduced with antiretroviral therapy (ART), and HIV infection has become a chronic disease that frequently coexists with many disorders, including substance abuse (Azar et al. 2010; Phillips et al. 2001). Alcohol and drugs of abuse may modify host-pathogen interactions at various levels including behavioral, metabolic, and immune consequences of HIV infection, as well as the ability of the virus to integrate into the genome and replicate in host cells. Identifying mechanisms responsible for these interactions is complicated by many factors, such as the tissue specific responses to viral infection, multiple cellular mechanisms involved in inflammatory responses, neuroendocrine and localized responses to infection, and kinetics of viral replication. An integrated physiological analysis of the biomedical consequences of chronic alcohol and drug use or abuse on disease progression is possible using rhesus macaques infected with simian immunodeficiency virus (SIV), a relevant model of HIV infection. This review will provide an overview of the data gathered using this model to show that chronic administration of two of the most commonly abused substances, alcohol and cannabinoids (Δ9-Tetrahydrocannabinol; THC), affect host-pathogen interactions. PMID:25795088

  5. Gender-related traits in the dioecious shrub Empetrum rubrum in two plant communities in the Magellanic steppe

    NASA Astrophysics Data System (ADS)

    Díaz-Barradas, Mari Cruz; Zunzunegui, María; Collantes, Marta; Álvarez-Cansino, Leonor; García Novo, Francisco

    2014-10-01

    Following the theory on costs of reproduction, sexually dimorphic plants may exhibit several trade-offs in energy and resources that can determine gender dimorphism in morphological or physiological traits, especially during the reproductive period. In this study we assess whether the sexes of the dioecious species Empetrum rubrum differ in morphological and ecophysiological traits related to water economy and photochemical efficiency and whether these differences change in nearby populations with contrasting plant communities. We conducted physiological, morphological, sex ratio, and cover measurements in E. rubrum plants in the Magellanic steppe, North-Eastern part of Tierra del Fuego (Argentina), from two types of heathlands with differing community composition. We found differences between sites in soil pH and wind speed at the canopy level. E. rubrum plants exhibited lower photosynthetic height and higher LAI (leaf area index), lower RWC (relative water content) and higher water-use efficiency (lower Δ13C) in the heathland with harsher environmental conditions. Gender dimorphism in the physiological response was patent for photochemical efficiency and water use (RWC and Δ13C discrimination), with males showing a more conservative strategy in relation to females. Accordingly, male-biased sex ratio in the stress-prone community suggested a better performance of male plants under stressful environmental conditions. The integrated analysis of all variables (photochemical efficiency, RWC, leaf dry matter content (LDMC), pigments, and Δ13C) indicated an interaction between gender and heathland community effects in the physiological response. We suggest that female plants may exhibit compensatory mechanisms to face their higher reproductive costs.

  6. Does nebulized fentanyl relieve dyspnea during exercise in healthy man?

    PubMed Central

    Kotrach, Houssam G.; Bourbeau, Jean

    2015-01-01

    Few therapies exist for the relief of dyspnea in restrictive lung disorders. Accumulating evidence suggests that nebulized opioids selective for the mu-receptor subtype may relieve dyspnea by modulating intrapulmonary opioid receptor activity. Our respective primary and secondary objectives were to test the hypothesis that nebulized fentanyl (a mu-opioid receptor agonist) relieves dyspnea during exercise in the presence of abnormal restrictive ventilatory constraints and to identify the physiological mechanisms of this improvement. In a randomized, double-blind, placebo-controlled crossover study, we examined the effect of 250 μg nebulized fentanyl, chest wall strapping (CWS), and their interaction on detailed physiological and perceptual responses to constant work rate cycle exercise (85% of maximum incremental work rate) in 14 healthy, fit young men. By design, CWS decreased vital capacity by ∼20% and mimicked the negative consequences of a mild restrictive lung disorder on exercise endurance time and on dyspnea, breathing pattern, dynamic operating lung volumes, and diaphragmatic electromyographic and respiratory muscle function during exercise. Compared with placebo under both unrestricted control and CWS conditions, nebulized fentanyl had no effect on exercise endurance time, integrated physiological response to exercise, sensory intensity, unpleasantness ratings of exertional dyspnea. Our results do not support a role for intrapulmonary opioids in the neuromodulation of exertional dyspnea in health nor do they provide a physiological rationale for the use of nebulized fentanyl in the management of dyspnea due to mild restrictive lung disorders, specifically those arising from abnormalities of the chest wall and not affiliated with airway inflammation. PMID:26031762

  7. Mutation of von Hippel–Lindau Tumour Suppressor and Human Cardiopulmonary Physiology

    PubMed Central

    Smith, Thomas G; Brooks, Jerome T; Balanos, George M; Lappin, Terence R; Layton, D. Mark; Leedham, Dawn L; Liu, Chun; Maxwell, Patrick H; McMullin, Mary F; McNamara, Christopher J; Percy, Melanie J; Pugh, Christopher W; Ratcliffe, Peter J; Talbot, Nick P; Treacy, Marilyn; Robbins, Peter A

    2006-01-01

    Background The von Hippel–Lindau tumour suppressor protein–hypoxia-inducible factor (VHL–HIF) pathway has attracted widespread medical interest as a transcriptional system controlling cellular responses to hypoxia, yet insights into its role in systemic human physiology remain limited. Chuvash polycythaemia has recently been defined as a new form of VHL-associated disease, distinct from the classical VHL-associated inherited cancer syndrome, in which germline homozygosity for a hypomorphic VHL allele causes a generalised abnormality in VHL–HIF signalling. Affected individuals thus provide a unique opportunity to explore the integrative physiology of this signalling pathway. This study investigated patients with Chuvash polycythaemia in order to analyse the role of the VHL–HIF pathway in systemic human cardiopulmonary physiology. Methods and Findings Twelve participants, three with Chuvash polycythaemia and nine controls, were studied at baseline and during hypoxia. Participants breathed through a mouthpiece, and pulmonary ventilation was measured while pulmonary vascular tone was assessed echocardiographically. Individuals with Chuvash polycythaemia were found to have striking abnormalities in respiratory and pulmonary vascular regulation. Basal ventilation and pulmonary vascular tone were elevated, and ventilatory, pulmonary vasoconstrictive, and heart rate responses to acute hypoxia were greatly increased. Conclusions The features observed in this small group of patients with Chuvash polycythaemia are highly characteristic of those associated with acclimatisation to the hypoxia of high altitude. More generally, the phenotype associated with Chuvash polycythaemia demonstrates that VHL plays a major role in the underlying calibration and homeostasis of the respiratory and cardiovascular systems, most likely through its central role in the regulation of HIF. PMID:16768548

  8. Control of the annual cycle in birds: endocrine constraints and plasticity in response to ecological variability.

    PubMed

    Dawson, Alistair

    2008-05-12

    This paper reviews information from ecological and physiological studies to assess how extrinsic factors can modulate intrinsic physiological processes. The annual cycle of birds is made up of a sequence of life-history stages: breeding, moult and migration. Each stage has evolved to occur at the optimum time and to last for the whole duration of time available. Some species have predictable breeding seasons, others are more flexible and some breed opportunistically in response to unpredictable food availability. Photoperiod is the principal environmental cue used to time each stage, allowing birds to adapt their physiology in advance of predictable environmental changes. Physiological (neuroendocrine and endocrine) plasticity allows non-photoperiodic cues to modulate timing to enable individuals to cope with, and benefit from, short-term environmental variability. Although the timing and duration of the period of full gonadal maturation is principally controlled by photoperiod, non-photoperiodic cues, such as temperature, rainfall or food availability, could potentially modulate the exact time of breeding either by fine-tuning the time of egg-laying within the period of full gonadal maturity or, more fundamentally, by modulating gonadal maturation and/or regression. The timing of gonadal regression affects the time of the start of moult, which in turn may affect the duration of the moult. There are many areas of uncertainty. Future integrated studies are required to assess the scope for flexibility in life-history strategies as this will have a critical bearing on whether birds can adapt sufficiently rapidly to anthropogenic environmental changes, in particular climate change.

  9. Physiological reactivity to phobic stimuli in people with fear of flying.

    PubMed

    Busscher, Bert; van Gerwen, Lucas J; Spinhoven, Philip; de Geus, Eco J C

    2010-09-01

    The nature of the relationship between physiological and subjective responses in phobic subjects remains unclear. Phobics have been thought to be characterized by a heightened physiological response (physiological perspective) or by a heightened perception of a normal physiological response (psychological perspective). In this study, we examined subjective measures of anxiety, heart rate (HR), and cardiac autonomic responses to flight-related stimuli in 127 people who applied for fear-of-flying therapy at a specialized treatment center and in 36 controls without aviophobia. In keeping with the psychological perspective, we found a large increase in subjective distress (eta(2)=.43) during exposure to flight-related stimuli in the phobics and no change in subjective distress in the controls, whereas the physiological responses of both groups were indiscriminate. However, in keeping with the physiological perspective, we found that, within the group of phobics, increases in subjective fear during exposure were moderately strong coupled to HR (r =.208, P=.022) and cardiac vagal (r =.199, P=.028) reactivity. In contrast to predictions by the psychological perspective, anxiety sensitivity did not modulate this coupling. We conclude that subjective fear responses and autonomic responses are only loosely coupled during mildly threatening exposure to flight-related stimuli. More ecologically valid exposure to phobic stimuli may be needed to test the predictions from the physiological and psychological perspectives. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  10. Biofield Physiology: A Framework for an Emerging Discipline

    PubMed Central

    Levin, Michael; McCraty, Rollin; Bat, Namuun; Ives, John A.; Lutgendorf, Susan K.; Oschman, James L.

    2015-01-01

    Biofield physiology is proposed as an overarching descriptor for the electromagnetic, biophotonic, and other types of spatially-distributed fields that living systems generate and respond to as integral aspects of cellular, tissue, and whole organism self-regulation and organization. Medical physiology, cell biology, and biophysics provide the framework within which evidence for biofields, their proposed receptors, and functions is presented. As such, biofields can be viewed as affecting physiological regulatory systems in a manner that complements the more familiar molecular-based mechanisms. Examples of clinically relevant biofields are the electrical and magnetic fields generated by arrays of heart cells and neurons that are detected, respectively, as electrocardiograms (ECGs) or magnetocardiograms (MCGs) and electroencephalograms (EEGs) or magnetoencephalograms (MEGs). At a basic physiology level, electromagnetic activity of neural assemblies appears to modulate neuronal synchronization and circadian rhythmicity. Numerous nonneural electrical fields have been detected and analyzed, including those arising from patterns of resting membrane potentials that guide development and regeneration, and from slowly-varying transepithelial direct current fields that initiate cellular responses to tissue damage. Another biofield phenomenon is the coherent, ultraweak photon emissions (UPE), detected from cell cultures and from the body surface. A physiological role for biophotons is consistent with observations that fluctuations in UPE correlate with cerebral blood flow, cerebral energy metabolism, and EEG activity. Biofield receptors are reviewed in 3 categories: molecular-level receptors, charge flux sites, and endogenously generated electric or electromagnetic fields. In summary, sufficient evidence has accrued to consider biofield physiology as a viable scientific discipline. Directions for future research are proposed. PMID:26665040

  11. Biofield Physiology: A Framework for an Emerging Discipline.

    PubMed

    Hammerschlag, Richard; Levin, Michael; McCraty, Rollin; Bat, Namuun; Ives, John A; Lutgendorf, Susan K; Oschman, James L

    2015-11-01

    Biofield physiology is proposed as an overarching descriptor for the electromagnetic, biophotonic, and other types of spatially-distributed fields that living systems generate and respond to as integral aspects of cellular, tissue, and whole organism self-regulation and organization. Medical physiology, cell biology, and biophysics provide the framework within which evidence for biofields, their proposed receptors, and functions is presented. As such, biofields can be viewed as affecting physiological regulatory systems in a manner that complements the more familiar molecular-based mechanisms. Examples of clinically relevant biofields are the electrical and magnetic fields generated by arrays of heart cells and neurons that are detected, respectively, as electrocardiograms (ECGs) or magnetocardiograms (MCGs) and electroencephalograms (EEGs) or magnetoencephalograms (MEGs). At a basic physiology level, electromagnetic activity of neural assemblies appears to modulate neuronal synchronization and circadian rhythmicity. Numerous nonneural electrical fields have been detected and analyzed, including those arising from patterns of resting membrane potentials that guide development and regeneration, and from slowly-varying transepithelial direct current fields that initiate cellular responses to tissue damage. Another biofield phenomenon is the coherent, ultraweak photon emissions (UPE), detected from cell cultures and from the body surface. A physiological role for biophotons is consistent with observations that fluctuations in UPE correlate with cerebral blood flow, cerebral energy metabolism, and EEG activity. Biofield receptors are reviewed in 3 categories: molecular-level receptors, charge flux sites, and endogenously generated electric or electromagnetic fields. In summary, sufficient evidence has accrued to consider biofield physiology as a viable scientific discipline. Directions for future research are proposed.

  12. HUMAN--A Comprehensive Physiological Model.

    ERIC Educational Resources Information Center

    Coleman, Thomas G.; Randall, James E.

    1983-01-01

    Describes computer program (HUMAN) used to simulate physiological experiments on patient pathology. Program (available from authors, including versions for microcomputers) consists of dynamic interactions of over 150 physiological variables and integrating approximations of cardiovascular, renal, lung, temperature regulation, and some hormone…

  13. Principles for integrating reactive species into in vivo biological processes: Examples from exercise physiology.

    PubMed

    Margaritelis, Nikos V; Cobley, James N; Paschalis, Vassilis; Veskoukis, Aristidis S; Theodorou, Anastasios A; Kyparos, Antonios; Nikolaidis, Michalis G

    2016-04-01

    The equivocal role of reactive species and redox signaling in exercise responses and adaptations is an example clearly showing the inadequacy of current redox biology research to shed light on fundamental biological processes in vivo. Part of the answer probably relies on the extreme complexity of the in vivo redox biology and the limitations of the currently applied methodological and experimental tools. We propose six fundamental principles that should be considered in future studies to mechanistically link reactive species production to exercise responses or adaptations: 1) identify and quantify the reactive species, 2) determine the potential signaling properties of the reactive species, 3) detect the sources of reactive species, 4) locate the domain modified and verify the (ir)reversibility of post-translational modifications, 5) establish causality between redox and physiological measurements, 6) use selective and targeted antioxidants. Fulfilling these principles requires an idealized human experimental setting, which is certainly a utopia. Thus, researchers should choose to satisfy those principles, which, based on scientific evidence, are most critical for their specific research question. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?

    PubMed

    Sinclair, Brent J; Marshall, Katie E; Sewell, Mary A; Levesque, Danielle L; Willett, Christopher S; Slotsbo, Stine; Dong, Yunwei; Harley, Christopher D G; Marshall, David J; Helmuth, Brian S; Huey, Raymond B

    2016-11-01

    Thermal performance curves (TPCs), which quantify how an ectotherm's body temperature (T b ) affects its performance or fitness, are often used in an attempt to predict organismal responses to climate change. Here, we examine the key - but often biologically unreasonable - assumptions underlying this approach; for example, that physiology and thermal regimes are invariant over ontogeny, space and time, and also that TPCs are independent of previously experienced T b. We show how a critical consideration of these assumptions can lead to biologically useful hypotheses and experimental designs. For example, rather than assuming that TPCs are fixed during ontogeny, one can measure TPCs for each major life stage and incorporate these into stage-specific ecological models to reveal the life stage most likely to be vulnerable to climate change. Our overall goal is to explicitly examine the assumptions underlying the integration of TPCs with T b , to develop a framework within which empiricists can place their work within these limitations, and to facilitate the application of thermal physiology to understanding the biological implications of climate change. © 2016 John Wiley & Sons Ltd/CNRS.

  15. Focus on the emerging new fields of network physiology and network medicine

    NASA Astrophysics Data System (ADS)

    Ivanov, Plamen Ch; Liu, Kang K. L.; Bartsch, Ronny P.

    2016-10-01

    Despite the vast progress and achievements in systems biology and integrative physiology in the last decades, there is still a significant gap in understanding the mechanisms through which (i) genomic, proteomic and metabolic factors and signaling pathways impact vertical processes across cells, tissues and organs leading to the expression of different disease phenotypes and influence the functional and clinical associations between diseases, and (ii) how diverse physiological systems and organs coordinate their functions over a broad range of space and time scales and horizontally integrate to generate distinct physiologic states at the organism level. Two emerging fields, network medicine and network physiology, aim to address these fundamental questions. Novel concepts and approaches derived from recent advances in network theory, coupled dynamical systems, statistical and computational physics show promise to provide new insights into the complexity of physiological structure and function in health and disease, bridging the genetic and sub-cellular level with inter-cellular interactions and communications among integrated organ systems and sub-systems. These advances form first building blocks in the methodological formalism and theoretical framework necessary to address fundamental problems and challenges in physiology and medicine. This ‘focus on’ issue contains 26 articles representing state-of-the-art contributions covering diverse systems from the sub-cellular to the organism level where physicists have key role in laying the foundations of these new fields.

  16. Asthma in the community: Designing instruction to help students explore scientific dilemmas that impact their lives

    NASA Astrophysics Data System (ADS)

    Tate, Erika Dawn

    School science instruction that connects to students' diverse home, cultural, or linguistic experiences can encourage lifelong participation in the scientific dilemmas that impact students' lives. This dissertation seeks effective ways to support high school students as they learn complex science topics and use their knowledge to transform their personal and community environments. Applying the knowledge integration perspective, I collaborated with education, science, and community partners to design a technology enhanced science module, Improving Your Community's Asthma Problem. This exemplar community science curriculum afforded students the opportunity to (a) investigate a local community health issue, (b) interact with relevant evidence related to physiology, clinical management, and environmental risks, and (c) construct an integrated understanding of the asthma problem in their community. To identify effective instructional scaffolds that engage students in the knowledge integration process and prepare them to participate in community science, I conducted 2 years of research that included 5 schools, 10 teachers, and over 500 students. This dissertation reports on four studies that analyzed student responses on pre-, post-, and embedded assessments. Researching across four design stages, the iterative design study investigated how to best embed the visualizations of the physiological processes breathing, asthma attack, and the allergic immune response in an inquiry activity and informed evidence-based revisions to the module. The evaluation study investigated the impact of this revised Asthma module across multiple classrooms and differences in students' prior knowledge. Combining evidence of student learning from the iterative and evaluation studies with classroom observations and teacher interviews, the longitudinal study explored the impact of teacher practices on student learning in years 1 and 2. In the final chapter, I studied how the Asthma module and students' local community influenced students as they integrated their ideas related to perspectives, evidence use, the consideration of tradeoffs, and localization to construct explanations and decision justifications regarding their community's asthma problem. In the end, this dissertation offers evidence that informs the future design of community science instruction that successfully engages students in the knowledge integration process and has implications for creating multiple opportunities for students to meaningfully participate in community science.

  17. Impacts of precipitation variability on plant species and community water stress in a temperate deciduous forest in the central US

    DOE PAGES

    Gu, Lianhong; Pallardy, Stephen G.; Hosman, Kevin P.; ...

    2015-12-11

    Variations in precipitation regimes can shift ecosystem structure and function by altering frequency, severity and timing of plant water stress. There is a need for predictively understanding impacts of precipitation regimes on plant water stress in relation to species water use strategies. Here we first formulated two complementary, physiologically-linked measures of precipitation variability (PV) - Precipitation Variability Index (PVI) and Average Recurrence Interval of Effective Precipitation (ARIEP). We then used nine-year continuous measurements of Predawn Leaf Water Potential Integral (PLWPI) in a central US forest to relate PVI and ARIEP to actual plant water availability and comparative water stress responsesmore » of six species with different capacities to regulate their internal water status. We found that PVI and ARIEP explained nearly all inter-annual variations in PLWPI for all species as well as for the community scaled from species measurements. The six species investigated showed differential sensitivities to variations in precipitation regimes. Their sensitivities were reflected more in the responses to PVI and ARIEP than to the mean precipitation rate. Further, they exhibited tradeoffs between responses to low and high PV. Finally, PVI and ARIEP were closely correlated with temporal integrals of positive temperature anomalies and vapor pressure deficit. We suggest that the comparative responses of plant species to PV are part of species-specific water use strategies in a plant community facing the uncertainty of fluctuating precipitation regimes. In conclusion, PVI and ARIEP should be adopted as key indices to quantify physiological drought and the ecological impacts of precipitation regimes in a changing climate.« less

  18. Specific dynamic action: a review of the postprandial metabolic response.

    PubMed

    Secor, Stephen M

    2009-01-01

    For more than 200 years, the metabolic response that accompanies meal digestion has been characterized, theorized, and experimentally studied. Historically labeled "specific dynamic action" or "SDA", this physiological phenomenon represents the energy expended on all activities of the body incidental to the ingestion, digestion, absorption, and assimilation of a meal. Specific dynamic action or a component of postprandial metabolism has been quantified for more than 250 invertebrate and vertebrate species. Characteristic among all of these species is a rapid postprandial increase in metabolic rate that upon peaking returns more slowly to prefeeding levels. The average maximum increase in metabolic rate stemming from digestion ranges from a modest 25% for humans to 136% for fishes, and to an impressive 687% for snakes. The type, size, composition, and temperature of the meal, as well as body size, body composition, and several environmental factors (e.g., ambient temperature and gas concentration) can each significantly impact the magnitude and duration of the SDA response. Meals that are large, intact or possess a tough exoskeleton require more digestive effort and thus generate a larger SDA than small, fragmented, or soft-bodied meals. Differences in the individual effort of preabsorptive (e.g., swallowing, gastric breakdown, and intestinal transport) and postabsorptive (e.g., catabolism and synthesis) events underlie much of the variation in SDA. Specific dynamic action is an integral part of an organism's energy budget, exemplified by accounting for 19-43% of the daily energy expenditure of free-ranging snakes. There are innumerable opportunities for research in SDA including coverage of unexplored taxa, investigating the underlying sources, determinants, and the central control of postprandial metabolism, and examining the integration of SDA across other physiological systems.

  19. Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia: Lessons from AltitudeOmics.

    PubMed

    Chicco, Adam J; Le, Catherine H; Gnaiger, Erich; Dreyer, Hans C; Muyskens, Jonathan B; D'Alessandro, Angelo; Nemkov, Travis; Hocker, Austin D; Prenni, Jessica E; Wolfe, Lisa M; Sindt, Nathan M; Lovering, Andrew T; Subudhi, Andrew W; Roach, Robert C

    2018-05-04

    Metabolic responses to hypoxia play important roles in cell survival strategies and disease pathogenesis in humans. However, the homeostatic adjustments that balance changes in energy supply and demand to maintain organismal function under chronic low oxygen conditions remain incompletely understood, making it difficult to distinguish adaptive from maladaptive responses in hypoxia-related pathologies. We integrated metabolomic and proteomic profiling with mitochondrial respirometry and blood gas analyses to comprehensively define the physiological responses of skeletal muscle energy metabolism to 16 days of high-altitude hypoxia (5260 m) in healthy volunteers from the AltitudeOmics project. In contrast to the view that hypoxia down-regulates aerobic metabolism, results show that mitochondria play a central role in muscle hypoxia adaptation by supporting higher resting phosphorylation potential and enhancing the efficiency of long-chain acylcarnitine oxidation. This directs increases in muscle glucose toward pentose phosphate and one-carbon metabolism pathways that support cytosolic redox balance and help mitigate the effects of increased protein and purine nucleotide catabolism in hypoxia. Muscle accumulation of free amino acids favor these adjustments by coordinating cytosolic and mitochondrial pathways to rid the cell of excess nitrogen, but might ultimately limit muscle oxidative capacity in vivo Collectively, these studies illustrate how an integration of aerobic and anaerobic metabolism is required for physiological hypoxia adaptation in skeletal muscle, and highlight protein catabolism and allosteric regulation as unexpected orchestrators of metabolic remodeling in this context. These findings have important implications for the management of hypoxia-related diseases and other conditions associated with chronic catabolic stress. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Signal percolation through plants and the shape of the calcium signature

    PubMed Central

    2010-01-01

    Plants respond to almost any kind of external stimulus with transients in their cytoplasmic free calcium concentration ([Ca2+]c). A huge variety of kinetics recorded by optical techniques has been reported in the past. This variety has been credited the specificity needed to explain how information about incoming stimuli is evaluated by the organism and turned into the right physiological responses which provide advantages for survival and reproduction. A physiological response often takes place away from the site of stimulation. This requires cell-to-cell communication. Hence, responding cells are not necessarily directly stimulated but rather receive an indirect stimulus via cell-to-cell communication. It appears unlikely that the ‘[Ca2+]c signature’ in the primarily stimulated cell is conveyed over long distances via cell-to-cell communication from the ‘receptor cells’ to the ‘effector cells’. Here, a novel aspect is highlighted to explain the variety of [Ca2+] kinetics seen by integrating methods of [Ca2+]c recording. Plants can generally be seen as cellular automata with specific morphology and capable for cell-to-cell communication. Just a few rules are needed to demonstrate how waves of [Ca2+]c-increases percolate through the organism and thereby deliver a broad variety of ‘signatures’. Modelling intercellular signalling may be a possible way to find explanations for different kinds of signal transmission, signal amplification, wave formation, oscillations and stimulus-response coupling. The basic examples presented here show that care has to be taken when interpreting cellular ‘[Ca2+]c signatures’ recorded by optical techniques which integrate over a big number of cells or even whole plants. PMID:20139732

  1. Physiology-Based Modeling May Predict Surgical Treatment Outcome for Obstructive Sleep Apnea

    PubMed Central

    Li, Yanru; Ye, Jingying; Han, Demin; Cao, Xin; Ding, Xiu; Zhang, Yuhuan; Xu, Wen; Orr, Jeremy; Jen, Rachel; Sands, Scott; Malhotra, Atul; Owens, Robert

    2017-01-01

    Study Objectives: To test whether the integration of both anatomical and nonanatomical parameters (ventilatory control, arousal threshold, muscle responsiveness) in a physiology-based model will improve the ability to predict outcomes after upper airway surgery for obstructive sleep apnea (OSA). Methods: In 31 patients who underwent upper airway surgery for OSA, loop gain and arousal threshold were calculated from preoperative polysomnography (PSG). Three models were compared: (1) a multiple regression based on an extensive list of PSG parameters alone; (2) a multivariate regression using PSG parameters plus PSG-derived estimates of loop gain, arousal threshold, and other trait surrogates; (3) a physiological model incorporating selected variables as surrogates of anatomical and nonanatomical traits important for OSA pathogenesis. Results: Although preoperative loop gain was positively correlated with postoperative apnea-hypopnea index (AHI) (P = .008) and arousal threshold was negatively correlated (P = .011), in both model 1 and 2, the only significant variable was preoperative AHI, which explained 42% of the variance in postoperative AHI. In contrast, the physiological model (model 3), which included AHIREM (anatomy term), fraction of events that were hypopnea (arousal term), the ratio of AHIREM and AHINREM (muscle responsiveness term), loop gain, and central/mixed apnea index (control of breathing terms), was able to explain 61% of the variance in postoperative AHI. Conclusions: Although loop gain and arousal threshold are associated with residual AHI after surgery, only preoperative AHI was predictive using multivariate regression modeling. Instead, incorporating selected surrogates of physiological traits on the basis of OSA pathophysiology created a model that has more association with actual residual AHI. Commentary: A commentary on this article appears in this issue on page 1023. Clinical Trial Registration: ClinicalTrials.Gov; Title: The Impact of Sleep Apnea Treatment on Physiology Traits in Chinese Patients With Obstructive Sleep Apnea; Identifier: NCT02696629; URL: https://clinicaltrials.gov/show/NCT02696629 Citation: Li Y, Ye J, Han D, Cao X, Ding X, Zhang Y, Xu W, Orr J, Jen R, Sands S, Malhotra A, Owens R. Physiology-based modeling may predict surgical treatment outcome for obstructive sleep apnea. J Clin Sleep Med. 2017;13(9):1029–1037. PMID:28818154

  2. Development of an anaesthetized-rat model of exercise hyperpnoea: an integrative model of respiratory control using an equilibrium diagram.

    PubMed

    Miyamoto, Tadayoshi; Manabe, Kou; Ueda, Shinya; Nakahara, Hidehiro

    2018-05-01

    What is the central question of this study? The lack of useful small-animal models for studying exercise hyperpnoea makes it difficult to investigate the underlying mechanisms of exercise-induced ventilatory abnormalities in various disease states. What is the main finding and its importance? We developed an anaesthetized-rat model for studying exercise hyperpnoea, using a respiratory equilibrium diagram for quantitative characterization of the respiratory chemoreflex feedback system. This experimental model will provide an opportunity to clarify the major determinant mechanisms of exercise hyperpnoea, and will be useful for understanding the mechanisms responsible for abnormal ventilatory responses to exercise in disease models. Exercise-induced ventilatory abnormalities in various disease states seem to arise from pathological changes of respiratory regulation. Although experimental studies in small animals are essential to investigate the pathophysiological basis of various disease models, the lack of an integrated framework for quantitatively characterizing respiratory regulation during exercise prevents us from resolving these problems. The purpose of this study was to develop an anaesthetized-rat model for studying exercise hyperpnoea for quantitative characterization of the respiratory chemoreflex feedback system. In 24 anaesthetized rats, we induced muscle contraction by stimulating bilateral distal sciatic nerves at low and high voltage to mimic exercise. We recorded breath-by-breath respiratory gas analysis data and cardiorespiratory responses while running two protocols to characterize the controller and plant of the respiratory chemoreflex. The controller was characterized by determining the linear relationship between end-tidal CO 2 pressure (P ETC O2) and minute ventilation (V̇E), and the plant by the hyperbolic relationship between V̇E and P ETC O2. During exercise, the controller curve shifted upward without change in controller gain, accompanying increased oxygen uptake. The hyperbolic plant curve shifted rightward and downward depending on exercise intensity as predicted by increased metabolism. Exercise intensity-dependent changes in operating points (V̇E and P ETC O2) were estimated by integrating the controller and plant curves in a respiratory equilibrium diagram. In conclusion, we developed an anaesthetized-rat model for studying exercise hyperpnoea, using systems analysis for quantitative characterization of the respiratory system. This novel experimental model will be useful for understanding the mechanisms responsible for abnormal ventilatory responses to exercise in disease models. © 2018 Morinomiya University of Medical Sciences. Experimental Physiology © 2018 The Physiological Society.

  3. An Integrated Approach for the Monitoring of Brain and Autonomic Response of Children with Autism Spectrum Disorders during Treatment by Wearable Technologies

    PubMed Central

    Billeci, Lucia; Tonacci, Alessandro; Tartarisco, Gennaro; Narzisi, Antonio; Di Palma, Simone; Corda, Daniele; Baldus, Giovanni; Cruciani, Federico; Anzalone, Salvatore M.; Calderoni, Sara; Pioggia, Giovanni; Muratori, Filippo

    2016-01-01

    Autism Spectrum Disorders (ASD) are associated with physiological abnormalities, which are likely to contribute to the core symptoms of the condition. Wearable technologies can provide data in a semi-naturalistic setting, overcoming the limitations given by the constrained situations in which physiological signals are usually acquired. In this study an integrated system based on wearable technologies for the acquisition and analysis of neurophysiological and autonomic parameters during treatment is proposed and an application on five children with ASD is presented. Signals were acquired during a therapeutic session based on an imitation protocol in ASD children. Data were analyzed with the aim of extracting quantitative EEG (QEEG) features from EEG signals as well as heart rate and heart rate variability (HRV) from ECG. The system allowed evidencing changes in neurophysiological and autonomic response from the state of disengagement to the state of engagement of the children, evidencing a cognitive involvement in the children in the tasks proposed. The high grade of acceptability of the monitoring platform is promising for further development and implementation of the tool. In particular if the results of this feasibility study would be confirmed in a larger sample of subjects, the system proposed could be adopted in more naturalistic paradigms that allow real world stimuli to be incorporated into EEG/psychophysiological studies for the monitoring of the effect of the treatment and for the implementation of more individualized therapeutic programs. PMID:27445652

  4. A new integrated instrumental approach to autonomic nervous system assessment.

    PubMed

    Corazza, I; Barletta, G; Guaraldi, P; Cecere, A; Calandra-Buonaura, G; Altini, E; Zannoli, R; Cortelli, P

    2014-11-01

    The autonomic nervous system (ANS) regulates involuntary body functions and is commonly evaluated by measuring reflex responses of systolic and diastolic blood pressure (BP) and heart rate (HR) to physiological and pharmacological stimuli. However, BP and HR values may not sufficient be to explain specific ANS events and other parameters like the electrocardiogram (ECG), BP waves, the respiratory rate and the electroencephalogram (EEG) are mandatory. Although ANS behaviour and its response to stimuli are well-known, their clinical evaluation is often based on individual medical training and experience. As a result, ANS laboratories have been customized, making it impossible to standardize procedures and share results with colleagues. The aim of our study was to build a powerful versatile instrument easy-to-use in clinical practice to standardize procedures and allow a cross-analysis of all the parameters of interest for ANS evaluation. The new ANScovery System developed by neurologists and technicians is a two-step device: (1) integrating physiological information from different already existing commercial modules, making it possible to cross-analyse, store and share data; (2) standardizing procedures by an innovative tutor monitor able to guide the patient throughout ANS testing. The daily use of the new ANScovery System in clinical practice has proved it is a versatile easy to use instrument. Standardization of the manoeuvres and step-by-step guidance throughout the procedure avoid repetitions and allow intra and inter-patient data comparison. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Fever and the thermal regulation of immunity: the immune system feels the heat

    PubMed Central

    Evans, Sharon S.; Repasky, Elizabeth A.; Fisher, Daniel T.

    2016-01-01

    Fever is a cardinal response to infection that has been conserved in warm and cold-blooded vertebrates for over 600 million years of evolution. The fever response is executed by integrated physiological and neuronal circuitry and confers a survival benefit during infection. Here, we review our current understanding of how the inflammatory cues delivered by the thermal element of fever stimulate innate and adaptive immune responses. We further highlight the unexpected multiplicity of roles of the pyrogenic cytokine interleukin-6 (IL-6), both during fever induction as well as during the mobilization of lymphocytes to the lymphoid organs that are the staging ground for immune defence. Finally, we discuss the emerging evidence that suggests the adrenergic signalling pathways associated with thermogenesis shape immune cell function. PMID:25976513

  6. Facilitation of amphibious habit by physiological integration in the clonal, perennial, climbing herb Ipomoea aquatica.

    PubMed

    Lin, Hui-Feng; Alpert, Peter; Zhang, Qian; Yu, Fei-Hai

    2018-03-15

    Physiological integration of connected ramets of clonal plants can increase clonal performance when ramets grow in contrasting microenvironments within a habitat. In amphibious clonal species, integration of ramets in different habitats, terrestrial and aquatic, is possible. This may increase performance of amphibious clones, especially under eutrophic conditions. To test this, clonal fragments consisting of two ramets of the amphibious, perennial, climbing herb Ipomoea aquatica connected by a stem were placed such that the proximal ramet was rooted in a simulated riparian community of four other species, while the distal ramet extended into a simulated aquatic habitat with open water and sediment. The connection between ramets was either left intact or severed, and 0, 5, or 25mg N L -1 was added to the aquatic habitat to simulate different degrees of eutrophication. Without added N, fragments in which the original ramets were left connected accumulated two times more total mass than fragments in which the ramets were disconnected from one another. The positive effect of connection increased two-fold with increasing N. These results were consistent with the hypotheses that physiological integration between connected terrestrial and aquatic ramets can increase clonal performance in plants and that this effect can be greater when the aquatic ramet is richer in nutrients. Connection reduced root to shoot ratio in terrestrial ramets, but increased it in aquatic ones, suggesting that physiological integration induced a division of labor in which terrestrial ramets specialized for light acquisition and aquatic ramets specialized for acquisition of nutrients. This provides the first report of increase in clonal performance and induction of division of labor due to physiological integration between ramets in different habitats. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Artificial hair cell integrated with an artificial neuron: Interplay between criticality and excitability

    NASA Astrophysics Data System (ADS)

    Lee, Woo Seok; Jeong, Wonhee; Ahn, Kang-Hun

    2014-12-01

    We provide a simple dynamical model of a hair cell with an afferent neuron where the spectral and the temporal responses are controlled by the hair bundle's criticality and the neuron's excitability. To demonstrate that these parameters, indeed, specify the resolution of the sound encoding, we fabricate a neuromorphic device that models the hair cell bundle and its afferent neuron. Then, we show that the neural response of the biomimetic system encodes sounds with either high temporal or spectral resolution or with a combination of both resolutions. Our results suggest that the hair cells may easily specialize to fulfil various roles in spite of their similar physiological structures.

  8. Should I fight or should I grow now? The role of cytokinins in plant growth and immunity and in the growth–defence trade-off

    PubMed Central

    Albrecht, Tessa

    2017-01-01

    Background Perception and activation of plant immunity require a remarkable level of signalling plasticity and control. In Arabidopsis and other plant species, constitutive defence activation leads to resistance to a broad spectrum of biotrophic pathogens, but also frequently to stunted growth and reduced seed set. Plant hormones are important integrators of the physiological responses that influence the outcome of plant–pathogen interactions. Scope We review the mechanisms by which the plant hormone cytokinin regulates both plant growth and response to pathogens, and how cytokinins may connect these two processes, ultimately affecting the growth trade-offs observed in plant immunity. PMID:27864225

  9. Bifurcation analysis of nephron pressure and flow regulation

    NASA Astrophysics Data System (ADS)

    Barfred, Mikael; Mosekilde, Erik; Holstein-Rathlou, Niels-Henrik

    1996-09-01

    One- and two-dimensional continuation techniques are applied to study the bifurcation structure of a model of renal flow and pressure control. Integrating the main physiological mechanisms by which the individual nephron regulates the incoming blood flow, the model describes the interaction between the tubuloglomerular feedback and the response of the afferent arteriole. It is shown how a Hopf bifurcation leads the system to perform self-sustained oscillations if the feedback gain becomes sufficiently strong, and how a further increase of this parameter produces a folded structure of overlapping period-doubling cascades. Similar phenomena arise in response to increasing blood pressure. The numerical analyses are supported by existing experimental results on anesthetized rats.

  10. Examining the Attitudes and Physiological Responses Preservice Learners Have towards Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Gouvousis, Aphroditi; Heilmann, John; Golden, Jeanne; Kalinowski, Joseph; Hudson, Suzanne; Hough, Monica Strauss

    2010-01-01

    This study investigated attitudes and physiological responses demonstrated by preservice learners towards young children with autism spectrum disorders (ASD). The Self-Assessment Manikin (SAM) and two physiological measures (skin conductance and heart rate responses) were obtained. Four behaviors (two control and two problematic) depicting…

  11. Quantification of the Effects of Salt Stress and Physiological State on Thermotolerance of Bacillus cereus ATCC 10987 and ATCC 14579

    PubMed Central

    den Besten, Heidy M. W.; Mataragas, Marios; Moezelaar, Roy; Abee, Tjakko; Zwietering, Marcel H.

    2006-01-01

    The food-borne pathogen Bacillus cereus can acquire enhanced thermal resistance through multiple mechanisms. Two Bacillus cereus strains, ATCC 10987 and ATCC 14579, were used to quantify the effects of salt stress and physiological state on thermotolerance. Cultures were exposed to increasing concentrations of sodium chloride for 30 min, after which their thermotolerance was assessed at 50°C. Linear and nonlinear microbial survival models, which cover a wide range of known inactivation curvatures for vegetative cells, were fitted to the inactivation data and evaluated. Based on statistical indices and model characteristics, biphasic models with a shoulder were selected and used for quantification. Each model parameter reflected a survival characteristic, and both models were flexible, allowing a reduction of parameters when certain phenomena were not present. Both strains showed enhanced thermotolerance after preexposure to (non)lethal salt stress conditions in the exponential phase. The maximum adaptive stress response due to salt preexposure demonstrated for exponential-phase cells was comparable to the effect of physiological state on thermotolerance in both strains. However, the adaptive salt stress response was less pronounced for transition- and stationary-phase cells. The distinct tailing of strain ATCC 10987 was attributed to the presence of a subpopulation of spores. The existence of a stable heat-resistant subpopulation of vegetative cells could not be demonstrated for either of the strains. Quantification of the adaptive stress response might be instrumental in understanding adaptation mechanisms and will allow the food industry to develop more accurate and reliable stress-integrated predictive modeling to optimize minimal processing conditions. PMID:16957208

  12. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security

    PubMed Central

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J.

    2015-01-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant’s growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. PMID:25873664

  13. A human life-stage physiologically based pharmacokinetic and pharmacodynamic model for chlorpyrifos: development and validation.

    PubMed

    Smith, Jordan Ned; Hinderliter, Paul M; Timchalk, Charles; Bartels, Michael J; Poet, Torka S

    2014-08-01

    Sensitivity to some chemicals in animals and humans are known to vary with age. Age-related changes in sensitivity to chlorpyrifos have been reported in animal models. A life-stage physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed to predict disposition of chlorpyrifos and its metabolites, chlorpyrifos-oxon (the ultimate toxicant) and 3,5,6-trichloro-2-pyridinol (TCPy), as well as B-esterase inhibition by chlorpyrifos-oxon in humans. In this model, previously measured age-dependent metabolism of chlorpyrifos and chlorpyrifos-oxon were integrated into age-related descriptions of human anatomy and physiology. The life-stage PBPK/PD model was calibrated and tested against controlled adult human exposure studies. Simulations suggest age-dependent pharmacokinetics and response may exist. At oral doses ⩾0.6mg/kg of chlorpyrifos (100- to 1000-fold higher than environmental exposure levels), 6months old children are predicted to have higher levels of chlorpyrifos-oxon in blood and higher levels of red blood cell cholinesterase inhibition compared to adults from equivalent doses. At lower doses more relevant to environmental exposures, simulations predict that adults will have slightly higher levels of chlorpyrifos-oxon in blood and greater cholinesterase inhibition. This model provides a computational framework for age-comparative simulations that can be utilized to predict chlorpyrifos disposition and biological response over various postnatal life stages. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Response mechanisms of conifers to air pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyssek, R.; Reich, P.; Oren, R.

    1995-07-01

    Conifers are known to respond to SO{sub 2}, O{sub 3}, NO{sub x} and acid deposition. Of these pollutants, O{sub 3} is likely the most widespread and phytotoxic compound, and therefore of great interest to individuals concerned with forest resources Direct biological responses have a toxicological effects on metabolism which can then scale to effects on tree growth and forest ecology, including processes of competition and succession. Air pollution can cause reductions in photosynthesis and stomatal conductance, which are the physiological parameters most rigorously studied for conifers. Some effects air pollutants can have on plants are influenced by the presence ofmore » co-occurring environmental stresses. For example, drought usually reduces vulnerability of plants to air pollution. In addition, air pollution sensitivity may differ among species and with plant/leaf age. Plants may make short-term physiological adjustments to compensate for air pollution or may evolve resistance to air pollution through the processes of selection. Models are necessary to understand how physiological processes, growth processes, and ecological processes are affected by air pollutants. The process of defining the ecological risk that air pollutants pose for coniferous forests requires approaches that exploit existing databases, environmental monitoring of air pollutants and forest resources, experiments with well-defined air pollution treatments and environmental control/monitoring, modeling, predicting air pollution-caused changes in productivity and ecological processes over time and space, and integration of social values.« less

  15. A wearable device for emotional recognition using facial expression and physiological response.

    PubMed

    Jangho Kwon; Da-Hye Kim; Wanjoo Park; Laehyun Kim

    2016-08-01

    This paper introduces a glasses-typed wearable system to detect user's emotions using facial expression and physiological responses. The system is designed to acquire facial expression through a built-in camera and physiological responses such as photoplethysmogram (PPG) and electrodermal activity (EDA) in unobtrusive way. We used video clips for induced emotions to test the system suitability in the experiment. The results showed a few meaningful properties that associate emotions with facial expressions and physiological responses captured by the developed wearable device. We expect that this wearable system with a built-in camera and physiological sensors may be a good solution to monitor user's emotional state in daily life.

  16. Comprehensive Modeling and Visualization of Cardiac Anatomy and Physiology from CT Imaging and Computer Simulations

    PubMed Central

    Sun, Peng; Zhou, Haoyin; Ha, Seongmin; Hartaigh, Bríain ó; Truong, Quynh A.; Min, James K.

    2016-01-01

    In clinical cardiology, both anatomy and physiology are needed to diagnose cardiac pathologies. CT imaging and computer simulations provide valuable and complementary data for this purpose. However, it remains challenging to gain useful information from the large amount of high-dimensional diverse data. The current tools are not adequately integrated to visualize anatomic and physiologic data from a complete yet focused perspective. We introduce a new computer-aided diagnosis framework, which allows for comprehensive modeling and visualization of cardiac anatomy and physiology from CT imaging data and computer simulations, with a primary focus on ischemic heart disease. The following visual information is presented: (1) Anatomy from CT imaging: geometric modeling and visualization of cardiac anatomy, including four heart chambers, left and right ventricular outflow tracts, and coronary arteries; (2) Function from CT imaging: motion modeling, strain calculation, and visualization of four heart chambers; (3) Physiology from CT imaging: quantification and visualization of myocardial perfusion and contextual integration with coronary artery anatomy; (4) Physiology from computer simulation: computation and visualization of hemodynamics (e.g., coronary blood velocity, pressure, shear stress, and fluid forces on the vessel wall). Substantially, feedback from cardiologists have confirmed the practical utility of integrating these features for the purpose of computer-aided diagnosis of ischemic heart disease. PMID:26863663

  17. Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health.

    PubMed

    Leulier, François; MacNeil, Lesley T; Lee, Won-Jae; Rawls, John F; Cani, Patrice D; Schwarzer, Martin; Zhao, Liping; Simpson, Stephen J

    2017-03-07

    Nutrition is paramount in shaping all aspects of animal biology. In addition, the influence of the intestinal microbiota on physiology is now widely recognized. Given that diet also shapes the intestinal microbiota, this raises the question of how the nutritional environment and microbial assemblages together influence animal physiology. This research field constitutes a new frontier in the field of organismal biology that needs to be addressed. Here we review recent studies using animal models and humans and propose an integrative framework within which to define the study of the diet-physiology-microbiota systems and ultimately link it to human health. Nutritional Geometry sits centrally in the proposed framework and offers means to define diet compositions that are optimal for individuals and populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. A wearable physiological sensor suite for unobtrusive monitoring of physiological and cognitive state.

    PubMed

    Matthews, Robert; McDonald, Neil J; Hervieux, Paul; Turner, Peter J; Steindorf, Martin A

    2007-01-01

    This paper describes an integrated Physiological Sensor Suite (PSS) based upon QUASAR's innovative non-invasive bioelectric sensor technologies that will provide, for the first time, a fully integrated, noninvasive methodology for physiological sensing. The PSS currently under development at QUASAR is a state-of-the-art multimodal array of sensors that, along with an ultra-low power personal area wireless network, form a comprehensive body-worn system for real-time monitoring of subject physiology and cognitive status. Applications of the PSS extend from monitoring of military personnel to long-term monitoring of patients diagnosed with cardiac or neurological conditions. Results for side-by-side comparisons between QUASAR's biosensor technology and conventional wet electrodes are presented. The signal fidelity for bioelectric measurements using QUASAR's biosensors is comparable to that for wet electrodes.

  19. Social relationships and physiological determinants of longevity across the human life span

    PubMed Central

    Yang, Yang Claire; Boen, Courtney; Gerken, Karen; Li, Ting; Schorpp, Kristen; Harris, Kathleen Mullan

    2016-01-01

    Two decades of research indicate causal associations between social relationships and mortality, but important questions remain as to how social relationships affect health, when effects emerge, and how long they last. Drawing on data from four nationally representative longitudinal samples of the US population, we implemented an innovative life course design to assess the prospective association of both structural and functional dimensions of social relationships (social integration, social support, and social strain) with objectively measured biomarkers of physical health (C-reactive protein, systolic and diastolic blood pressure, waist circumference, and body mass index) within each life stage, including adolescence and young, middle, and late adulthood, and compare such associations across life stages. We found that a higher degree of social integration was associated with lower risk of physiological dysregulation in a dose–response manner in both early and later life. Conversely, lack of social connections was associated with vastly elevated risk in specific life stages. For example, social isolation increased the risk of inflammation by the same magnitude as physical inactivity in adolescence, and the effect of social isolation on hypertension exceeded that of clinical risk factors such as diabetes in old age. Analyses of multiple dimensions of social relationships within multiple samples across the life course produced consistent and robust associations with health. Physiological impacts of structural and functional dimensions of social relationships emerge uniquely in adolescence and midlife and persist into old age. PMID:26729882

  20. The Relationship between Rumination and Affective, Cognitive, and Physiological Responses to Stress in Adolescents.

    PubMed

    Aldao, Amelia; McLaughlin, Katie A; Hatzenbuehler, Mark L; Sheridan, Margaret A

    Although previous studies have established that rumination influences responses to stressful life events, the mechanisms underlying this relationship remain inadequately understood. The current study examines the relationship between trait rumination and affective, cognitive, and physiological responses to a standardized laboratory-based stressor in adolescents. A community-based sample of adolescents (N = 157) aged 13-17 completed the Trier Social Stress Test (TSST). Affective, cognitive, and physiological responses were obtained before, during, and after the TSST. Adolescents who engaged in habitual rumination experienced greater negative affect and more negative cognitive appraisals in response to the TSST than adolescents with lower levels of rumination. Rumination was unrelated to heart rate reactivity, but predicted slower heart rate recovery from the TSST, indicating that rumination might be specifically associated with physiological recovery from stress. Rumination is associated with negative affective, cognitive, and physiological responses following stressors, suggesting potential mechanisms through which it might increase risk for psychopathology.

  1. A Neurophysiologically Plausible Population Code Model for Feature Integration Explains Visual Crowding

    PubMed Central

    van den Berg, Ronald; Roerdink, Jos B. T. M.; Cornelissen, Frans W.

    2010-01-01

    An object in the peripheral visual field is more difficult to recognize when surrounded by other objects. This phenomenon is called “crowding”. Crowding places a fundamental constraint on human vision that limits performance on numerous tasks. It has been suggested that crowding results from spatial feature integration necessary for object recognition. However, in the absence of convincing models, this theory has remained controversial. Here, we present a quantitative and physiologically plausible model for spatial integration of orientation signals, based on the principles of population coding. Using simulations, we demonstrate that this model coherently accounts for fundamental properties of crowding, including critical spacing, “compulsory averaging”, and a foveal-peripheral anisotropy. Moreover, we show that the model predicts increased responses to correlated visual stimuli. Altogether, these results suggest that crowding has little immediate bearing on object recognition but is a by-product of a general, elementary integration mechanism in early vision aimed at improving signal quality. PMID:20098499

  2. The 34th Annual Fall Meeting of the American Physiological Society and the International Conference on Hydrogen Ion Transport in Epithelia.

    ERIC Educational Resources Information Center

    Physiologist, 1983

    1983-01-01

    Provided are abstracts of papers presented at the annual American Physiological Society meeting and International Conference on Hydrogen Ion Transport in Epithelia. Papers are grouped by such topic areas as lung fluid balance, renal cardiovascular integration, smooth muscle physiology, neuroendocrines (pituitary), exercise physiology, mechanics of…

  3. Vegetation Function and Physiology: Photosynthesis, Fluorescence and Non-photochemical Quenching (NPQ)

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Yao, T.

    2017-12-01

    Photosynthesis is a basic physiological function of vegetation that relies on PAR provided through photosynthetic pigments (mainly chlorophyll) for plant growth and biomass accumulation. Vegetation chlorophyll (chl) content and non-chlorophyll (non-chl) components vary with plant functional types (PFTs) and growing stages. The PAR absorbed by canopy chlorophyll (APARchl) is associated with photosynthesis (i.e., gross primary production, GPP) while the PAR absorbed by canopy non-chl components (APARnon-chl) is not associated with photosynthesis. Under non-optimal environmental conditions, vegetation is "stressed" and both photosynthesis (GPP) and light use efficiency are reduced, therefore, excess portions of APARchl are discarded as fluorescence or non-photochemical quenching (NPQ). The photochemical reflectance index (PRI) is a measurement related to NPQ. Both PRI and yield of solar induced chlorophyll fluorescence (SIFyield = SIF/APARchl) have been proposed as possible bio-indicators of LUEchl. We have successfully developed an algorithm to distinguish between chlorophyll and non-chl components of vegetation, and to retrieve fractional absorptions of PAR by chlorophyll (fAPARchl) and by non-chl components (fAPARnon-chl) with surface reflectance of MODIS bands 1 - 7. A method originally pioneered by Hanan et al. (2002) has been used to retrieve fAPAR for vegetation photosynthesis (fAPARPSN) at flux tower sites based on the light response curve of tower net ecosystem exchange (NEE) and incident PAR at low light intensity. We have also retrieved the PRI from MODIS data (bands 11 and 1) and have derived SIFyield with the Global Ozone Monitoring Experiment - 2 (GOME-2) SIF data. We find that fAPARPSN at flux tower sites matches well with site fAPARchl, and ratio fAPARnon-chl/fAPARchl varies largely. APARchl can explain >=78% variation in seasonal GPP . We disentangle the possible impact of fAPARchl on PRI from physiological stress response, disentangle the possible impact of APARchl on SIFyield from physiological stress response, and find that integrating three bio-parameters fAPARchl, PRI and SIFyield can explain >=87% variation in seasonal GPP . Therefore, quantifying fAPARchl, PRI and SIF has the best potential to monitor vegetation function and physiology.

  4. Physiological responses to cold (10° C) in men after six months' practice of yoga exercises

    NASA Astrophysics Data System (ADS)

    Selvamurthy, W.; Ray, U. S.; Hegde, K. S.; Sharma, R. P.

    1988-09-01

    A study was conducted on 30 healthy soldiers (age: 40 46 years) to assess the effect of selected yogic exercises (asanas) on some physiological responses to cold exposure. They were randomly divided into two groups of 15 each. One group performed regular physical exercises of physical training (PT), while the other group practised yogic exercises. At the end of 6 months of training, both the groups were exposed together to cold stress at 10°C for 2 h, and the following parameters were periodically monitored during cold exposure: heart rate ( fH), blood pressure ( BP), cardiac output(dot Q_c ), oral temperature (Tor), skin temperature ( T sk), respiratory rate ( fR), minute ventilation(dot V_E ), oxygen consumption(dot V_{O_2 } ), and shivering response by integrated electromyogram (EMG). There were progressive increases in BP, fR,dot V_E ,dot V_{O_2 } , anddot Q_c and decreases in fH, T or and T sk during cold exposure in both the groups. However, the decrease in T or and the increases indot V_{O_2 } anddot V_E were relatively lower ( P<0.01) in the yoga group as compared to the PT group. The shivering response appeared much earlier and was more intense in the PT group. These findings suggest that practice of yoga exercises may improve cold tolerance.

  5. The utility of transcriptomics in fish conservation.

    PubMed

    Connon, Richard E; Jeffries, Ken M; Komoroske, Lisa M; Todgham, Anne E; Fangue, Nann A

    2018-01-29

    There is growing recognition of the need to understand the mechanisms underlying organismal resilience (i.e. tolerance, acclimatization) to environmental change to support the conservation management of sensitive and economically important species. Here, we discuss how functional genomics can be used in conservation biology to provide a cellular-level understanding of organismal responses to environmental conditions. In particular, the integration of transcriptomics with physiological and ecological research is increasingly playing an important role in identifying functional physiological thresholds predictive of compensatory responses and detrimental outcomes, transforming the way we can study issues in conservation biology. Notably, with technological advances in RNA sequencing, transcriptome-wide approaches can now be applied to species where no prior genomic sequence information is available to develop species-specific tools and investigate sublethal impacts that can contribute to population declines over generations and undermine prospects for long-term conservation success. Here, we examine the use of transcriptomics as a means of determining organismal responses to environmental stressors and use key study examples of conservation concern in fishes to highlight the added value of transcriptome-wide data to the identification of functional response pathways. Finally, we discuss the gaps between the core science and policy frameworks and how thresholds identified through transcriptomic evaluations provide evidence that can be more readily used by resource managers. © 2018. Published by The Company of Biologists Ltd.

  6. Acute exposure to PBDEs at an environmentally realistic concentration causes abrupt changes in the gut microbiota and host health of zebrafish.

    PubMed

    Chen, Lianguo; Hu, Chenyan; Lok-Shun Lai, Nelson; Zhang, Weipeng; Hua, Jianghuan; Lam, Paul K S; Lam, James C W; Zhou, Bingsheng

    2018-05-02

    Contamination from lower brominated PBDEs is ubiquitous in the environments. However, their effects on gut microbiota and intestinal health have not yet been investigated. This study exposed adult zebrafish to an environmentally realistic concentration of pentaBDE mixture (DE-71) at 5.0 ng/L for 7 days, after which metagenomic sequencing of the intestinal microbiome was conducted and host physiological activities in the intestine and liver were also examined. The results showed that acute exposure to DE-71 significantly shifted the gut microbial community in a sex-specific manner. Certain genera (e.g., Mycoplasma, Ruminiclostridium, unclassified Firmicutes sensu stricto, and Fusobacterium) disappeared from the DE-71-exposed intestines, resulting in decreased bacterial diversity. Bacterial metabolic functions in guts were also affected by DE-71, namely those covering energy metabolism, virulence, respiration, cell division, cell signaling, and stress response. In addition, measurement of diverse sensitive biomarkers showed that the health of male intestines was remarkably compromised by the DE-71 exposure, as indicated by the disruption to its neural signaling (serotonin), epithelial barrier integrity (tight junction protein 2), inflammatory response (interleukin 1β), oxidative stress and antioxidant capacity, as well as detoxifying potential (ethoxyresorufin-O-deethylase activity). However, female intestines maintained intact physiological activities. Compared to the direct impact on intestines, a latent effect of DE-71 was observed in livers. Co-occurrence network analysis demonstrated that the gut bacteria vigorously interacted to establish the fittest community under DE-71 stress by promoting the reproduction of favorable genera, while diminishing the survival of unfavorable ones. Significant correlations between the zebrafish gut microbiota and physiological activities (e.g., oxidative stress, detoxification, neurotransmission, and epithelial integrity) were also observed. Overall, this study has demonstrated, for the first time, the high susceptibility of gut microbiota and intestinal health of zebrafish to DE-71, thus warranting more work to reveal its mode of toxicity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. A perspective on physiological studies supporting the provision of scientific advice for the management of Fraser River sockeye salmon (Oncorhynchus nerka)

    PubMed Central

    Patterson, David A.; Cooke, Steven J.; Hinch, Scott G.; Robinson, Kendra A.; Young, Nathan; Farrell, Anthony P.; Miller, Kristina M.

    2016-01-01

    The inability of physiologists to effect change in fisheries management has been the source of frustration for many decades. Close collaboration between fisheries managers and researchers has afforded our interdisciplinary team an unusual opportunity to evaluate the emerging impact that physiology can have in providing relevant and credible scientific advice to assist in management decisions. We categorize the quality of scientific advice given to management into five levels based on the type of scientific activity and resulting advice (notions, observations, descriptions, predictions and prescriptions). We argue that, ideally, both managers and researchers have concomitant but separate responsibilities for increasing the level of scientific advice provided. The responsibility of managers involves clear communication of management objectives to researchers, including exact descriptions of knowledge needs and researchable problems. The role of the researcher is to provide scientific advice based on the current state of scientific information and the level of integration with management. The examples of scientific advice discussed herein relate to physiological research on the impact of high discharge and water temperature, pathogens, sex and fisheries interactions on in-river migration success of adult Fraser River sockeye salmon (Oncorhynchus nerka) and the increased understanding and quality of scientific advice that emerges. We submit that success in increasing the quality of scientific advice is a function of political motivation linked to funding, legal clarity in management objectives, collaborative structures in government and academia, personal relationships, access to interdisciplinary experts and scientific peer acceptance. The major challenges with advancing scientific advice include uncertainty in results, lack of integration with management needs and institutional caution in adopting new research. We hope that conservation physiologists can learn from our experiences of providing scientific advice to management to increase the potential for this growing field of research to have a positive influence on resource management. PMID:27928508

  8. Plant physiological models of heat, water and photoinhibition stress for climate change modelling and agricultural prediction

    NASA Astrophysics Data System (ADS)

    Nicolas, B.; Gilbert, M. E.; Paw U, K. T.

    2015-12-01

    Soil-Vegetation-Atmosphere Transfer (SVAT) models are based upon well understood steady state photosynthetic physiology - the Farquhar-von Caemmerer-Berry model (FvCB). However, representations of physiological stress and damage have not been successfully integrated into SVAT models. Generally, it has been assumed that plants will strive to conserve water at higher temperatures by reducing stomatal conductance or adjusting osmotic balance, until potentially damaging temperatures and the need for evaporative cooling become more important than water conservation. A key point is that damage is the result of combined stresses: drought leads to stomatal closure, less evaporative cooling, high leaf temperature, less photosynthetic dissipation of absorbed energy, all coupled with high light (photosynthetic photon flux density; PPFD). This leads to excess absorbed energy by Photosystem II (PSII) and results in photoinhibition and damage, neither are included in SVAT models. Current representations of photoinhibition are treated as a function of PPFD, not as a function of constrained photosynthesis under heat or water. Thus, it seems unlikely that current models can predict responses of vegetation to climate variability and change. We propose a dynamic model of damage to Rubisco and RuBP-regeneration that accounts, mechanistically, for the interactions between high temperature, light, and constrained photosynthesis under drought. Further, these predictions are illustrated by key experiments allowing model validation. We also integrated this new framework within the Advanced Canopy-Atmosphere-Soil Algorithm (ACASA). Preliminary results show that our approach can be used to predict reasonable photosynthetic dynamics. For instances, a leaf undergoing one day of drought stress will quickly decrease its maximum quantum yield of PSII (Fv/Fm), but it won't recover to unstressed levels for several days. Consequently, cumulative effect of photoinhibition on photosynthesis can cause a decrease of about 35% of CO2 uptake. As a result, the incorporation of stress and damage into SVAT models could considerably improve our ability to predict global responses to climate change.

  9. A perspective on physiological studies supporting the provision of scientific advice for the management of Fraser River sockeye salmon (Oncorhynchus nerka).

    PubMed

    Patterson, David A; Cooke, Steven J; Hinch, Scott G; Robinson, Kendra A; Young, Nathan; Farrell, Anthony P; Miller, Kristina M

    2016-01-01

    The inability of physiologists to effect change in fisheries management has been the source of frustration for many decades. Close collaboration between fisheries managers and researchers has afforded our interdisciplinary team an unusual opportunity to evaluate the emerging impact that physiology can have in providing relevant and credible scientific advice to assist in management decisions. We categorize the quality of scientific advice given to management into five levels based on the type of scientific activity and resulting advice (notions, observations, descriptions, predictions and prescriptions). We argue that, ideally, both managers and researchers have concomitant but separate responsibilities for increasing the level of scientific advice provided. The responsibility of managers involves clear communication of management objectives to researchers, including exact descriptions of knowledge needs and researchable problems. The role of the researcher is to provide scientific advice based on the current state of scientific information and the level of integration with management. The examples of scientific advice discussed herein relate to physiological research on the impact of high discharge and water temperature, pathogens, sex and fisheries interactions on in-river migration success of adult Fraser River sockeye salmon ( Oncorhynchus nerka ) and the increased understanding and quality of scientific advice that emerges. We submit that success in increasing the quality of scientific advice is a function of political motivation linked to funding, legal clarity in management objectives, collaborative structures in government and academia, personal relationships, access to interdisciplinary experts and scientific peer acceptance. The major challenges with advancing scientific advice include uncertainty in results, lack of integration with management needs and institutional caution in adopting new research. We hope that conservation physiologists can learn from our experiences of providing scientific advice to management to increase the potential for this growing field of research to have a positive influence on resource management.

  10. Double-stranded RNA-activated protein kinase is a key modulator of insulin sensitivity in physiological conditions and in obesity in mice.

    PubMed

    Carvalho-Filho, M A; Carvalho, B M; Oliveira, A G; Guadagnini, D; Ueno, M; Dias, M M; Tsukumo, D M; Hirabara, S M; Reis, L F; Curi, R; Carvalheira, J B C; Saad, Mario J A

    2012-11-01

    The molecular integration of nutrient- and pathogen-sensing pathways has become of great interest in understanding the mechanisms of insulin resistance in obesity. The double-stranded RNA-dependent protein kinase (PKR) is one candidate molecule that may provide cross talk between inflammatory and metabolic signaling. The present study was performed to determine, first, the role of PKR in modulating insulin action and glucose metabolism in physiological situations, and second, the role of PKR in insulin resistance in obese mice. We used Pkr(-/-) and Pkr(+/+) mice to investigate the role of PKR in modulating insulin sensitivity, glucose metabolism, and insulin signaling in liver, muscle, and adipose tissue in response to a high-fat diet. Our data show that in lean Pkr(-/-) mice, there is an improvement in insulin sensitivity, and in glucose tolerance, and a reduction in fasting blood glucose, probably related to a decrease in protein phosphatase 2A activity and a parallel increase in insulin-induced thymoma viral oncogene-1 (Akt) phosphorylation. PKR is activated in tissues of obese mice and can induce insulin resistance by directly binding to and inducing insulin receptor substrate (IRS)-1 serine307 phosphorylation or indirectly through modulation of c-Jun N-terminal kinase and inhibitor of κB kinase β. Pkr(-/-) mice were protected from high-fat diet-induced insulin resistance and glucose intolerance and showed improved insulin signaling associated with a reduction in c-Jun N-terminal kinase and inhibitor of κB kinase β phosphorylation in insulin-sensitive tissues. PKR may have a role in insulin sensitivity under normal physiological conditions, probably by modulating protein phosphatase 2A activity and serine-threonine kinase phosphorylation, and certainly, this kinase may represent a central mechanism for the integration of pathogen response and innate immunity with insulin action and metabolic pathways that are critical in obesity.

  11. Plasmodesmata in integrated cell signalling: insights from development and environmental signals and stresses

    PubMed Central

    Sager, Ross; Lee, Jung-Youn

    2014-01-01

    To survive as sedentary organisms built of immobile cells, plants require an effective intercellular communication system, both locally between neighbouring cells within each tissue and systemically across distantly located organs. Such a system enables cells to coordinate their intracellular activities and produce concerted responses to internal and external stimuli. Plasmodesmata, membrane-lined intercellular channels, are essential for direct cell-to-cell communication involving exchange of diffusible factors, including signalling and information molecules. Recent advances corroborate that plasmodesmata are not passive but rather highly dynamic channels, in that their density in the cell walls and gating activities are tightly linked to developmental and physiological processes. Moreover, it is becoming clear that specific hormonal signalling pathways play crucial roles in relaying primary cellular signals to plasmodesmata. In this review, we examine a number of studies in which plasmodesmal structure, occurrence, and/or permeability responses are found to be altered upon given cellular or environmental signals, and discuss common themes illustrating how plasmodesmal regulation is integrated into specific cellular signalling pathways. PMID:25262225

  12. Unimpaired postprandial pancreatic polypeptide secretion in Parkinson's disease and REM sleep behavior disorder.

    PubMed

    Unger, Marcus M; Ekman, Rolf; Björklund, Anna-Karin; Karlsson, Gösta; Andersson, Chatarina; Mankel, Katharina; Bohne, Katharina; Tebbe, Johannes J; Stiasny-Kolster, Karin; Möller, Jens C; Mayer, Geert; Kann, Peter H; Oertel, Wolfgang H

    2013-04-01

    Pancreatic polypeptide is released immediately after food ingestion. The release is operated by vagal-abdominal projections and has therefore been suggested as a test for vagal nerve integrity. Pathoanatomical and clinical studies indicate vagal dysfunction in early Parkinson's disease (PD). We assessed the postprandial secretion of pancreatic polypeptide and motilin in healthy controls (n = 18) and patients with idiopathic rapid-eye-movement sleep behavior disorder (iRBD, n = 10), a potential premotor stage of PD, as well as in drug-naive (n = 19) and treated (n = 19) PD patients. The postprandial pancreatic polypeptide secretion showed a physiological pattern in all groups and even an enhanced response in drug-naive PD and iRBD. Motilin concentrations correlated with pancreatic polypeptide concentrations. Postprandial pancreatic polypeptide secretion is not a suitable test for vagal nerve integrity in PD. The unimpaired pancreatic polypeptide response in iRBD and PD might be explained by partially intact vagal-abdominal projections or compensatory mechanisms substituting a defective neuronal brain-gut axis. Copyright © 2012 Movement Disorders Society.

  13. Three Types of Cortical L5 Neurons that Differ in Brain-Wide Connectivity and Function

    PubMed Central

    Kim, Euiseok J.; Juavinett, Ashley L.; Kyubwa, Espoir M.; Jacobs, Matthew W.; Callaway, Edward M.

    2015-01-01

    SUMMARY Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception. PMID:26671462

  14. Three Types of Cortical Layer 5 Neurons That Differ in Brain-wide Connectivity and Function.

    PubMed

    Kim, Euiseok J; Juavinett, Ashley L; Kyubwa, Espoir M; Jacobs, Matthew W; Callaway, Edward M

    2015-12-16

    Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology, and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Behavioral and Physiological Responses of Horses to Simulated Aircraft Noise

    DTIC Science & Technology

    1991-01-01

    AL-TR-1991-0123 A R M BEHAVIORAL AND PHYSIOLOGICAL S RESPONSES OF HORSES TO SIMULATED T AIRCRAFT NOISE R 0 N G Michelle M. LeBlanc Christoph Lombard...COVERED • 10 January 1991 IFinal Report Dec 89 to Jan 91 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Behavioral and Physiological Responses of Horses to...NUMBER OF PAGES Aircraft, Noise, Domestic Animals, Horses , 70 Disturbance, Physiological Effects 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY

  16. Physiological responses to environmental factors related to space flight. [hemodynamic and metabolic responses to weightlessness

    NASA Technical Reports Server (NTRS)

    Pace, N.

    1973-01-01

    Physiological base line data are established, and physiological procedures and instrumentation necessary for the automatic measurement of hemodynamic and metabolic parameters during prolonged periods of weightlessness are developed.

  17. Physiological Response to Reward and Extinction Predicts Alcohol, Marijuana, and Cigarette Use Two Years Later

    PubMed Central

    Derefinko, Karen J.; Eisenlohr-Moul, Tory A.; Peters, Jessica R.; Roberts, Walter; Walsh, Erin C.; Milich, Richard; Lynam, Donald R.

    2017-01-01

    Background Physiological responses to reward and extinction are believed to represent the Behavioral Activation System (BAS) and Behavioral Inhibition System (BIS) constructs of Reinforcement Sensitivity Theory and underlie externalizing behaviors, including substance use. However, little research has examined these relations directly. Methods We assessed individuals’ cardiac pre-ejection periods (PEP) and electrodermal responses (EDR) during reward and extinction trials through the “Number Elimination Game” paradigm. Responses represented BAS and BIS, respectively. We then examined whether these responses provided incremental utility in the prediction of future alcohol, marijuana, and cigarette use. Results Zero-inflated Poisson (ZIP) regression models were used to examine the predictive utility of physiological BAS and BIS responses above and beyond previous substance use. Physiological responses accounted for incremental variance over previous use. Low BAS responses during reward predicted frequency of alcohol use at year 3. Low BAS responses during reward and extinction and high BIS responses during extinction predicted frequency of marijuana use at year 3. For cigarette use, low BAS response during extinction predicted use at year 3. Conclusions These findings suggest that the constructs of Reinforcement Sensitivity Theory, as assessed through physiology, contribute to the longitudinal maintenance of substance use. PMID:27306728

  18. Distinct physiological and molecular responses in Arabidopsis thaliana exposed to aluminum oxide nanoparticles and ionic aluminum.

    PubMed

    Jin, Yujian; Fan, Xiaoji; Li, Xingxing; Zhang, Zhenyan; Sun, Liwei; Fu, Zhengwei; Lavoie, Michel; Pan, Xiangliang; Qian, Haifeng

    2017-09-01

    Nano-aluminium oxide (nAl 2 O 3 ) is one of the most widely used nanomaterials. However, nAl 2 O 3 toxicity mechanisms and potential beneficial effects on terrestrial plant physiology remain poorly understood. Such knowledge is essential for the development of robust nAl 2 O 3 risk assessment. In this study, we studied the influence of a 10-d exposure to a total selected concentration of 98 μM nAl 2 O 3 or to the equivalent molar concentration of ionic Al (AlCl 3 ) (196 μM) on the model plant Arabidopsis thaliana on the physiology (e.g., growth and photosynthesis, membrane damage) and the transcriptome using a high throughput state-of-the-art technology, RNA-seq. We found no evidence of nAl 2 O 3 toxicity on photosynthesis, growth and lipid peroxidation. Rather the nAl 2 O 3 treatment stimulated root weight and length by 48% and 39%, respectively as well as photosynthesis opening up the door to the use of nAl 2 O 3 in biotechnology and nano agriculture. Transcriptomic analyses indicate that the beneficial effect of nAl 2 O 3 was related to an increase in the transcription of several genes involved in root growth as well as in root nutrient uptake (e.g., up-regulation of the root hair-specific gene family and root development genes, POLARIS protein). By contrast, the ionic Al treatment decreased shoot and root weight of Arabidopsis thaliana by 57.01% and 45.15%, respectively. This toxic effect was coupled to a range of response at the gene transcription level including increase transcription of antioxidant-related genes and transcription of genes involved in plant defense response to pathogens. This work provides an integrated understanding at the molecular and physiological level of the effects of nAl 2 O 3 and ionic Al in Arabidopsis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Developing an Objective Structured Clinical Examination to Assess Work-Integrated Learning in Exercise Physiology

    ERIC Educational Resources Information Center

    Naumann, Fiona; Moore, Keri; Mildon, Sally; Jones, Philip

    2014-01-01

    This paper aims to develop a valid method to assess the key competencies of the exercise physiology profession acquired through work-integrated learning (WIL). In order to develop a competency-based assessment, the key professional tasks needed to be identified and the test designed so students' competency in different tasks and settings could be…

  20. Physiological Integration Affects Expansion of an Amphibious Clonal Plant from Terrestrial to Cu-Polluted Aquatic Environments.

    PubMed

    Xu, Liang; Zhou, Zhen-Feng

    2017-03-08

    The effects of physiological integration on clonal plants growing in aquatic and terrestrial habitats have been extensively studied, but little is known about the role in the extension of amphibious clonal plants in the heterogeneous aquatic-terrestrial ecotones, especially when the water environments are polluted by heavy metals. Ramets of the amphibious clonal herb Alternanthera philoxeroides were rooted in unpolluted soil and polluted water at three concentrations of Cu. The extension of populations from unpolluted terrestrial to polluted aqueous environments mainly relied on stem elongation rather than production of new ramets. The absorbed Cu in the ramets growing in polluted water could be spread horizontally to other ramets in unpolluted soil via physiological integration and redistributed in different organs. The performances of ramets in both terrestrial and aquatic habitats were negatively correlated with Cu intensities in different organs of plants. It is concluded that physiological integration might lessen the fitness of connected ramets in heterogeneously polluted environments. The mechanical strength of the stems decreased with increasing Cu levels, especially in polluted water. We suggest that, except for direct toxicity to growth and expansion, heavy metal pollution might also increase the mechanical risk in breaking failure of plants.

  1. Physiological Integration Affects Expansion of an Amphibious Clonal Plant from Terrestrial to Cu-Polluted Aquatic Environments

    PubMed Central

    Xu, Liang; Zhou, Zhen-Feng

    2017-01-01

    The effects of physiological integration on clonal plants growing in aquatic and terrestrial habitats have been extensively studied, but little is known about the role in the extension of amphibious clonal plants in the heterogeneous aquatic-terrestrial ecotones, especially when the water environments are polluted by heavy metals. Ramets of the amphibious clonal herb Alternanthera philoxeroides were rooted in unpolluted soil and polluted water at three concentrations of Cu. The extension of populations from unpolluted terrestrial to polluted aqueous environments mainly relied on stem elongation rather than production of new ramets. The absorbed Cu in the ramets growing in polluted water could be spread horizontally to other ramets in unpolluted soil via physiological integration and redistributed in different organs. The performances of ramets in both terrestrial and aquatic habitats were negatively correlated with Cu intensities in different organs of plants. It is concluded that physiological integration might lessen the fitness of connected ramets in heterogeneously polluted environments. The mechanical strength of the stems decreased with increasing Cu levels, especially in polluted water. We suggest that, except for direct toxicity to growth and expansion, heavy metal pollution might also increase the mechanical risk in breaking failure of plants. PMID:28272515

  2. Physiological Integration Affects Expansion of an Amphibious Clonal Plant from Terrestrial to Cu-Polluted Aquatic Environments

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Zhou, Zhen-Feng

    2017-03-01

    The effects of physiological integration on clonal plants growing in aquatic and terrestrial habitats have been extensively studied, but little is known about the role in the extension of amphibious clonal plants in the heterogeneous aquatic-terrestrial ecotones, especially when the water environments are polluted by heavy metals. Ramets of the amphibious clonal herb Alternanthera philoxeroides were rooted in unpolluted soil and polluted water at three concentrations of Cu. The extension of populations from unpolluted terrestrial to polluted aqueous environments mainly relied on stem elongation rather than production of new ramets. The absorbed Cu in the ramets growing in polluted water could be spread horizontally to other ramets in unpolluted soil via physiological integration and redistributed in different organs. The performances of ramets in both terrestrial and aquatic habitats were negatively correlated with Cu intensities in different organs of plants. It is concluded that physiological integration might lessen the fitness of connected ramets in heterogeneously polluted environments. The mechanical strength of the stems decreased with increasing Cu levels, especially in polluted water. We suggest that, except for direct toxicity to growth and expansion, heavy metal pollution might also increase the mechanical risk in breaking failure of plants.

  3. Oscillators entrained by food and the emergence of anticipatory timing behaviors

    PubMed Central

    SILVER, Rae; BALSAM, Peter

    2011-01-01

    Circadian rhythms are adjusted to the external environment by the light–dark cycle via the suprachiasmatic nucleus, and to the internal environment of the body by multiple cues that derive from feeding/fasting. These cues determine the timing of sleep/wake cycles and all the activities associated with these states. We suggest that numerous sources of temporal information, including hormonal cues such as corticoids, insulin, and ghrelin, as well as conditioned learned responses determined by the temporal relationships between photic and feeding/fasting signals, can determine the timing of regularly recurring circadian responses. We further propose that these temporal signals can act additively to modulate the pattern of daily activity. Based on such reasoning, we describe the rationale and methodology for separating the influences of these diverse sources of temporal information. The evidence indicates that there are individual differences in sensitivity to internal and external signals that vary over circadian time, time since the previous meal, time until the next meal, or with duration of food deprivation. All of these cues are integrated in sites and circuits modulating physiology and behavior. Individuals detect changes in internal and external signals, interpret those changes as “hunger,” and adjust their physiological responses and activity levels accordingly. PMID:21544255

  4. Cortisol response to family interaction as a predictor for adjustment.

    PubMed

    Gans, Susan E; Johnson, Vanessa Kahen

    2016-10-01

    Emerging adult (EA) cortisol response during family interaction predicts change in EA anxious behavior during the transition to college (Johnson & Gans, in press). In the present study, we take an initial step toward integrating family systems research and physiology by including assessment of EA salivary cortisol collected during a triadic (mother-father-EA offspring) family interaction task. Emerging adults (N = 101) between the ages of 17 and 19 were assessed at 3 time points across their first college year: the summer before college, Fall and Spring semesters. Two parents accompanied the emerging adult child to the summer assessment; all family members provided 4 saliva samples each at 20-min intervals. Later assessments of emerging adults included measures of internalizing behaviors. EA's cortisol secretion patterns during family interaction predict observed and self-reported family relatedness, as well as patterns of internalizing behavior during the college transition. Observed family functioning appeared to moderate the relationship between EA cortisol response during family interaction and anxious behavior when adapting to college. Different patterns of results emerged, however, for EA men and women. The approach taken by this study provides a first step toward understanding how interrelationships among elements of physiology and family functioning contribute to later adjustment. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. Interrenal dysfunction in fish from contaminated sites: In vivo and in vitro assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hontela, A.

    1998-01-01

    Cortisol, synthesized in the interrenal cells of teleost head kidney, has a major role in the physiologic response to physical and chemical stressors. Plasma levels of cortisol increase in physiologically competent fish acutely exposed to stressors such as cadmium or mercury. The effects of chronic low level exposures are less well understood. The author has diagnosed an endocrine impairment characterized by a reduced capacity to elevate plasma cortisol levels in response to an acute standardized capture stress in yellow perch (Perca flavescens) and in northern pike (Esox lucius) sampled at sites contaminated by mixtures of pollutants (heavy metals, polycyclic aromaticmore » hydrocarbons, and polychlorinated biphenyls), by heavy metals, or by bleached kraft mill effluent. The studies with fish, as well as with amphibians at contaminated sites, demonstrated that low level chronic exposures impair secretion of corticosteroids. The author has developed new tests for assessment of the functional integrity of teleost and amphibian interrenal tissue using an adrenocorticotropic hormone (ACTH) challenge, in vivo and in vitro. The reduced ability to respond to ACTH indicates that the normal neuroendocrine response to stressors may be disrupted and that the ability to cope with biotic and abiotic stressors in the environment may be significantly reduced in the impaired animals.« less

  6. Singularity now: using the ventricular assist device as a model for future human-robotic physiology.

    PubMed

    Martin, Archer K

    2016-04-01

    In our 21 st century world, human-robotic interactions are far more complicated than Asimov predicted in 1942. The future of human-robotic interactions includes human-robotic machine hybrids with an integrated physiology, working together to achieve an enhanced level of baseline human physiological performance. This achievement can be described as a biological Singularity. I argue that this time of Singularity cannot be met by current biological technologies, and that human-robotic physiology must be integrated for the Singularity to occur. In order to conquer the challenges we face regarding human-robotic physiology, we first need to identify a working model in today's world. Once identified, this model can form the basis for the study, creation, expansion, and optimization of human-robotic hybrid physiology. In this paper, I present and defend the line of argument that currently this kind of model (proposed to be named "IshBot") can best be studied in ventricular assist devices - VAD.

  7. Singularity now: using the ventricular assist device as a model for future human-robotic physiology

    PubMed Central

    Martin, Archer K.

    2016-01-01

    In our 21st century world, human-robotic interactions are far more complicated than Asimov predicted in 1942. The future of human-robotic interactions includes human-robotic machine hybrids with an integrated physiology, working together to achieve an enhanced level of baseline human physiological performance. This achievement can be described as a biological Singularity. I argue that this time of Singularity cannot be met by current biological technologies, and that human-robotic physiology must be integrated for the Singularity to occur. In order to conquer the challenges we face regarding human-robotic physiology, we first need to identify a working model in today’s world. Once identified, this model can form the basis for the study, creation, expansion, and optimization of human-robotic hybrid physiology. In this paper, I present and defend the line of argument that currently this kind of model (proposed to be named “IshBot”) can best be studied in ventricular assist devices – VAD. PMID:28913480

  8. Enhanced microglial pro-inflammatory response to lipopolysaccharide correlates with brain infiltration and blood-brain barrier dysregulation in a mouse model of telomere shortening.

    PubMed

    Raj, Divya D A; Moser, Jill; van der Pol, Susanne M A; van Os, Ronald P; Holtman, Inge R; Brouwer, Nieske; Oeseburg, Hisko; Schaafsma, Wandert; Wesseling, Evelyn M; den Dunnen, Wilfred; Biber, Knut P H; de Vries, Helga E; Eggen, Bart J L; Boddeke, Hendrikus W G M

    2015-12-01

    Microglia are a proliferative population of resident brain macrophages that under physiological conditions self-renew independent of hematopoiesis. Microglia are innate immune cells actively surveying the brain and are the earliest responders to injury. During aging, microglia elicit an enhanced innate immune response also referred to as 'priming'. To date, it remains unknown whether telomere shortening affects the proliferative capacity and induces priming of microglia. We addressed this issue using early (first-generation G1 mTerc(-/-) )- and late-generation (third-generation G3 and G4 mTerc(-/-) ) telomerase-deficient mice, which carry a homozygous deletion for the telomerase RNA component gene (mTerc). Late-generation mTerc(-/-) microglia show telomere shortening and decreased proliferation efficiency. Under physiological conditions, gene expression and functionality of G3 mTerc(-/-) microglia are comparable with microglia derived from G1 mTerc(-/-) mice despite changes in morphology. However, after intraperitoneal injection of bacterial lipopolysaccharide (LPS), G3 mTerc(-/-) microglia mice show an enhanced pro-inflammatory response. Nevertheless, this enhanced inflammatory response was not accompanied by an increased expression of genes known to be associated with age-associated microglia priming. The increased inflammatory response in microglia correlates closely with increased peripheral inflammation, a loss of blood-brain barrier integrity, and infiltration of immune cells in the brain parenchyma in this mouse model of telomere shortening. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  9. The central role of hypothalamic inflammation in the acute illness response and cachexia.

    PubMed

    Burfeind, Kevin G; Michaelis, Katherine A; Marks, Daniel L

    2016-06-01

    When challenged with a variety of inflammatory threats, multiple systems across the body undergo physiological responses to promote defense and survival. The constellation of fever, anorexia, and fatigue is known as the acute illness response, and represents an adaptive behavioral and physiological reaction to stimuli such as infection. On the other end of the spectrum, cachexia is a deadly and clinically challenging syndrome involving anorexia, fatigue, and muscle wasting. Both of these processes are governed by inflammatory mediators including cytokines, chemokines, and immune cells. Though the effects of cachexia can be partially explained by direct effects of disease processes on wasting tissues, a growing body of evidence shows the central nervous system (CNS) also plays an essential mechanistic role in cachexia. In the context of inflammatory stress, the hypothalamus integrates signals from peripheral systems, which it translates into neuroendocrine perturbations, altered neuronal signaling, and global metabolic derangements. Therefore, we will discuss how hypothalamic inflammation is an essential driver of both the acute illness response and cachexia, and why this organ is uniquely equipped to generate and maintain chronic inflammation. First, we will focus on the role of the hypothalamus in acute responses to dietary and infectious stimuli. Next, we will discuss the role of cytokines in driving homeostatic disequilibrium, resulting in muscle wasting, anorexia, and weight loss. Finally, we will address mechanisms and mediators of chronic hypothalamic inflammation, including endothelial cells, chemokines, and peripheral leukocytes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Noradrenaline and alpha-adrenergic signaling induce the hsp70 gene promoter in mollusc immune cells.

    PubMed

    Lacoste, A; De Cian, M C; Cueff, A; Poulet, S A

    2001-10-01

    Expression of heat shock proteins (hsp) is a homeostatic mechanism induced in both prokaryotic and eukaryotic cells in response to metabolic and environmental insults. A growing body of evidence suggests that in mammals, the hsp response is integrated with physiological responses through neuroendocrine signaling. In the present study, we have examined the effect of noradrenaline (NA) on the hsp70 response in mollusc immune cells. Oyster and abalone hemocytes transfected with a gene construct containing a gastropod hsp70 gene promoter linked to the luciferase reporter-gene were exposed to physiological concentrations of NA, or to various alpha- and beta-adrenoceptor agonists and antagonists. Results show that NA and alpha-adrenergic stimulations induced the expression of luciferase in transfected mollusc immunocytes. Furthermore, exposure of hemocytes to NA or to the alpha-adrenoceptor agonist phenylephrine (PE) resulted in the expression of the inducible isoform of the hsp70 protein. Pertussis toxin (PTX), the phospholipase C (PLC) inhibitor U73122, the protein kinase C (PKC) inhibitor calphostin C, the Ca(2+)-dependent PKC inhibitor Gö 6976 and the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor LY294002 blocked the PE-mediated induction of the hsp70 gene promoter. These results suggest that alpha-adrenergic signaling induces the transcriptionnal upregulation of hsp70 in mollusc hemocytes through a PTX-sensitive G-protein, PLC, Ca(2+)-dependent PKC and PI 3-kinase. Thus, a functional link exists between neuroendocrine signaling and the hsp70 response in mollusc immune cells.

  11. The functional integration of the anterior cingulate cortex during conflict processing.

    PubMed

    Fan, Jin; Hof, Patrick R; Guise, Kevin G; Fossella, John A; Posner, Michael I

    2008-04-01

    Although functional activation of the anterior cingulate cortex (ACC) related to conflict processing has been studied extensively, the functional integration of the subdivisions of the ACC and other brain regions during conditions of conflict is still unclear. In this study, participants performed a task designed to elicit conflict processing by using flanker interference on target response while they were scanned using event-related functional magnetic resonance imaging. The physiological response of several brain regions in terms of an interaction between conflict processing and activity of the anterior rostral cingulate zone (RCZa) of the ACC, and the effective connectivity between this zone and other regions were examined using psychophysiological interaction analysis and dynamic causal modeling, respectively. There was significant integration of the RCZa with the caudal cingulate zone (CCZ) of the ACC and other brain regions such as the lateral prefrontal, primary, and supplementary motor areas above and beyond the main effect of conflict and baseline connectivity. The intrinsic connectivity from the RCZa to the CCZ was modulated by the context of conflict. These findings suggest that conflict processing is associated with the effective contribution of the RCZa to the neuronal activity of CCZ, as well as other cortical regions.

  12. Analog integrated circuits design for processing physiological signals.

    PubMed

    Li, Yan; Poon, Carmen C Y; Zhang, Yuan-Ting

    2010-01-01

    Analog integrated circuits (ICs) designed for processing physiological signals are important building blocks of wearable and implantable medical devices used for health monitoring or restoring lost body functions. Due to the nature of physiological signals and the corresponding application scenarios, the ICs designed for these applications should have low power consumption, low cutoff frequency, and low input-referred noise. In this paper, techniques for designing the analog front-end circuits with these three characteristics will be reviewed, including subthreshold circuits, bulk-driven MOSFETs, floating gate MOSFETs, and log-domain circuits to reduce power consumption; methods for designing fully integrated low cutoff frequency circuits; as well as chopper stabilization (CHS) and other techniques that can be used to achieve a high signal-to-noise performance. Novel applications using these techniques will also be discussed.

  13. Increased Interest in Physiology and Science among Adolescents after Presentations and Activities Administered by Undergraduate Physiology Students

    ERIC Educational Resources Information Center

    da Silva de Vargas, Liane; Rosa de Menezes, Jefferson; Billig Mello-Carpes, Pâmela

    2016-01-01

    In this article, the authors describe a set of activities performed in south Brazil that are aligned with the objectives of PhUn Week and promote the integration between universities and public schools and the dissemination of knowledge of physiology. To achieve this goal, the authors adopted a program in which undergraduate physiology students…

  14. Species as Stressors: Heterospecific Interactions and the Cellular Stress Response under Global Change.

    PubMed

    Gunderson, Alex R; King, Emily E; Boyer, Kirsten; Tsukimura, Brian; Stillman, Jonathon H

    2017-07-01

    Anthropogenic global change is predicted to increase the physiological stress of organisms through changes in abiotic conditions such as temperature, pH, and pollution. However, organisms can also experience physiological stress through interactions with other species, especially parasites, predators, and competitors. The stress of species interactions could be an important driver of species' responses to global change as the composition of biological communities change through factors such as distributional and phenological shifts. Interactions between biotic and abiotic stressors could also induce non-linear physiological stress responses under global change. One of the primary means by which organisms deal with physiological stress is through the cellular stress response (CSR), which is broadly the upregulation of a conserved set of genes that facilitate the removal and repair of damaged macromolecules. Here, we present data on behavioral interactions and CSR gene expression for two competing species of intertidal zone porcelain crab (Petrolisthes cinctipes and Petrolisthes manimaculis). We found that P. cinctipes and P. manimaculis engage in more agonistic behaviors when interacting with heterospecifics than conspecifics; however, we found no evidence that heterospecific interactions induced a CSR in these species. In addition to our new data, we review the literature with respect to CSR induction via species interactions, focusing on predator-prey systems and heterospecific competition. We find extensive evidence for predators to induce cellular stress and aspects of the CSR in prey, even in the absence of direct physical contact between species. Effects of heterospecific competition on the CSR have been studied far less, but we do find evidence that agonistic interactions with heterospecifics can induce components of the CSR. Across all published studies, there is clear evidence that species interactions can lead to cellular stress and induction of the CSR. Nonetheless, our understanding of species-induced cellular stress lags far behind our understanding of abiotic cellular stress. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  15. Elastic model for crimped collagen fibrils

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Doehring, Todd C.

    2005-01-01

    A physiologic constitutive expression is presented in algorithmic format for the nonlinear elastic response of wavy collagen fibrils found in soft connective tissues. The model is based on the observation that crimped fibrils in a fascicle have a three-dimensional structure at the micron scale that we approximate as a helical spring. The symmetry of this wave form allows the force/displacement relationship derived from Castigliano's theorem to be solved in closed form: all integrals become analytic. Model predictions are in good agreement with experimental observations for mitral-valve chordae tendinece.

  16. Implementation of reflex loops in a biomechanical finite element model.

    PubMed

    Salin, Dorian; Arnoux, Pierre-Jean; Kayvantash, Kambiz; Behr, Michel

    2016-11-01

    In the field of biomechanics, the offer of models which are more and more realistic requires to integrate a physiological response, in particular, the controlled muscle bracing and the reflexes. The following work aims to suggest a unique methodology which couples together a sensory and motor loop with a finite element model. Our method is applied to the study of the oscillation of the elbow in the case of a biceps brachial stretch reflex. The results obtained are promising in the purpose of the development of reactive human body models.

  17. Research on the effects of integrated resorts in Korea on gambling addiction

    PubMed Central

    Jin, Chan-Ho

    2015-01-01

    This research discusses the effects of the integrated resorts centered around casinos being implemented in Korea. It particularly focuses on the symptoms and most recent definitions of gambling addiction such as physiological or psychological dependence from excessive gambling. This paper suggests that there is a high prevalence rate of pathological gambling in Korea. It provides an argument for prevention, early detection, and lastly, active and voluntary treatment. Furthermore, the study addresses the physiological pathway of gambling addiction and the physiological factors of gambling addicts to suggest exercise rehabilitation that are currently limited to psychological treatments. PMID:26331132

  18. Research on the effects of integrated resorts in Korea on gambling addiction.

    PubMed

    Jin, Chan-Ho

    2015-08-01

    This research discusses the effects of the integrated resorts centered around casinos being implemented in Korea. It particularly focuses on the symptoms and most recent definitions of gambling addiction such as physiological or psychological dependence from excessive gambling. This paper suggests that there is a high prevalence rate of pathological gambling in Korea. It provides an argument for prevention, early detection, and lastly, active and voluntary treatment. Furthermore, the study addresses the physiological pathway of gambling addiction and the physiological factors of gambling addicts to suggest exercise rehabilitation that are currently limited to psychological treatments.

  19. Predicting musically induced emotions from physiological inputs: linear and neural network models.

    PubMed

    Russo, Frank A; Vempala, Naresh N; Sandstrom, Gillian M

    2013-01-01

    Listening to music often leads to physiological responses. Do these physiological responses contain sufficient information to infer emotion induced in the listener? The current study explores this question by attempting to predict judgments of "felt" emotion from physiological responses alone using linear and neural network models. We measured five channels of peripheral physiology from 20 participants-heart rate (HR), respiration, galvanic skin response, and activity in corrugator supercilii and zygomaticus major facial muscles. Using valence and arousal (VA) dimensions, participants rated their felt emotion after listening to each of 12 classical music excerpts. After extracting features from the five channels, we examined their correlation with VA ratings, and then performed multiple linear regression to see if a linear relationship between the physiological responses could account for the ratings. Although linear models predicted a significant amount of variance in arousal ratings, they were unable to do so with valence ratings. We then used a neural network to provide a non-linear account of the ratings. The network was trained on the mean ratings of eight of the 12 excerpts and tested on the remainder. Performance of the neural network confirms that physiological responses alone can be used to predict musically induced emotion. The non-linear model derived from the neural network was more accurate than linear models derived from multiple linear regression, particularly along the valence dimension. A secondary analysis allowed us to quantify the relative contributions of inputs to the non-linear model. The study represents a novel approach to understanding the complex relationship between physiological responses and musically induced emotion.

  20. Oxygen-sensitive potassium channels in chemoreceptor cell physiology: making a virtue of necessity.

    PubMed

    Gonzalez, Constancio; Vaquero, Luis M; López-López, José Ramón; Pérez-García, M Teresa

    2009-10-01

    The characterization of the molecular mechanisms involved in low-oxygen chemotransduction has been an active field of research since the first description of an oxygen-sensitive K(+) channel in rabbit carotid body (CB) chemoreceptor cells. As a result, a large number of components of the transduction cascade, from O(2) sensors to O(2)-sensitive ion channels, have been found. Although the endpoints of the process are analogous, the heterogeneity of the elements involved in the different chemoreceptor tissues precludes a unifying theory of hypoxic signaling, and it has been a source of controversy. However, when these molecular constituents of the hypoxic cascade are brought back to their physiological context, it becomes clear that the diversity of mechanisms is necessary to build up an integrated cellular response that demands the concerted action of several O(2) sensors and several effectors.

  1. The Nature of Self-Regulatory Fatigue and "Ego Depletion": Lessons From Physical Fatigue.

    PubMed

    Evans, Daniel R; Boggero, Ian A; Segerstrom, Suzanne C

    2015-07-30

    Self-regulation requires overriding a dominant response and leads to temporary self-regulatory fatigue. Existing theories of the nature and causes of self-regulatory fatigue highlight physiological substrates such as glucose, or psychological processes such as motivation, but these explanations are incomplete on their own. Historically, theories of physical fatigue demonstrate a similar pattern of useful but incomplete explanations, as recent views of physical fatigue emphasize the roles of both physiological and psychological factors. In addition to accounting for multiple inputs, these newer views also explain how fatigue can occur even in the presence of sufficient resources. Examining these newer theories of physical fatigue can serve as a foundation on which to build a more comprehensive understanding of self-regulatory fatigue that integrates possible neurobiological underpinnings of physical and self-regulatory fatigue, and suggests the possible function of self-regulatory fatigue. © 2015 by the Society for Personality and Social Psychology, Inc.

  2. The nature of self-regulatory fatigue and “ego depletion”: Lessons from physical fatigue

    PubMed Central

    Evans, Daniel R.; Boggero, Ian A.; Segerstrom, Suzanne C.

    2016-01-01

    Self-regulation requires overriding a dominant response, and leads to temporary self-regulatory fatigue. Existing theories of the nature and causes of self-regulatory fatigue highlight physiological substrates such as glucose or psychological processes such as motivation, but these explanations are incomplete on their own. Historically, theories of physical fatigue demonstrate a similar pattern of useful but incomplete explanations, as recent views of physical fatigue emphasize the roles of both physiological and psychological factors. In addition to accounting for multiple inputs, these newer views also explain how fatigue can occur even in the presence of sufficient resources. Examining these newer theories of physical fatigue can serve as a foundation on which to build a more comprehensive understanding of self-regulatory fatigue that integrates possible neurobiological underpinnings of physical and self-regulatory fatigue, and suggests the possible function of self-regulatory fatigue. PMID:26228914

  3. Music and Autonomic Nervous System (Dys)function

    PubMed Central

    Ellis, Robert J.; Thayer, Julian F.

    2010-01-01

    Despite a wealth of evidence for the involvement of the autonomic nervous system (ANS) in health and disease and the ability of music to affect ANS activity, few studies have systematically explored the therapeutic effects of music on ANS dysfunction. Furthermore, when ANS activity is quantified and analyzed, it is usually from a point of convenience rather than from an understanding of its physiological basis. After a review of the experimental and therapeutic literatures exploring music and the ANS, a “Neurovisceral Integration” perspective on the interplay between the central and autonomic nervous systems is introduced, and the associated implications for physiological, emotional, and cognitive health are explored. The construct of heart rate variability is discussed both as an example of this complex interplay and as a useful metric for exploring the sometimes subtle effect of music on autonomic response. Suggestions for future investigations using musical interventions are offered based on this integrative account. PMID:21197136

  4. Interspecies chemical communication in bacterial development.

    PubMed

    Straight, Paul D; Kolter, Roberto

    2009-01-01

    Our view of bacteria, from the earliest observations through the heyday of antibiotic discovery, has shifted dramatically. We recognize communities of bacteria as integral and functionally important components of diverse habitats, ranging from soil collectives to the human microbiome. To function as productive communities, bacteria coordinate metabolic functions, often requiring shifts in growth and development. The hallmark of cellular development, which we characterize as physiological change in response to environmental stimuli, is a defining feature of many bacterial interspecies interactions. Bacterial communities rely on chemical exchanges to provide the cues for developmental change. Traditional methods in microbiology focus on isolation and characterization of bacteria in monoculture, separating the organisms from the surroundings in which interspecies chemical communication has relevance. Developing multispecies experimental systems that incorporate knowledge of bacterial physiology and metabolism with insights from biodiversity and metagenomics shows great promise for understanding interspecies chemical communication in the microbial world.

  5. Molecular and physiological manifestations and measurement of aging in humans.

    PubMed

    Khan, Sadiya S; Singer, Benjamin D; Vaughan, Douglas E

    2017-08-01

    Biological aging is associated with a reduction in the reparative and regenerative potential in tissues and organs. This reduction manifests as a decreased physiological reserve in response to stress (termed homeostenosis) and a time-dependent failure of complex molecular mechanisms that cumulatively create disorder. Aging inevitably occurs with time in all organisms and emerges on a molecular, cellular, organ, and organismal level with genetic, epigenetic, and environmental modulators. Individuals with the same chronological age exhibit differential trajectories of age-related decline, and it follows that we should assess biological age distinctly from chronological age. In this review, we outline mechanisms of aging with attention to well-described molecular and cellular hallmarks and discuss physiological changes of aging at the organ-system level. We suggest methods to measure aging with attention to both molecular biology (e.g., telomere length and epigenetic marks) and physiological function (e.g., lung function and echocardiographic measurements). Finally, we propose a framework to integrate these molecular and physiological data into a composite score that measures biological aging in humans. Understanding the molecular and physiological phenomena that drive the complex and multifactorial processes underlying the variable pace of biological aging in humans will inform how researchers assess and investigate health and disease over the life course. This composite biological age score could be of use to researchers seeking to characterize normal, accelerated, and exceptionally successful aging as well as to assess the effect of interventions aimed at modulating human aging. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  6. Direct impacts of climatic warming on heat stress in endothermic species: seabirds as bioindicators of changing thermoregulatory constraints.

    PubMed

    Oswald, Stephen A; Arnold, Jennifer M

    2012-06-01

    There is now abundant evidence that contemporary climatic change has indirectly affected a wide-range of species by changing trophic interactions, competition, epidemiology and habitat. However, direct physiological impacts of changing climates are rarely reported for endothermic species, despite being commonly reported for ectotherms. We review the evidence for changing physiological constraints on endothermic vertebrates at high temperatures, integrating theoretical and empirical perspectives on the morphology, physiology and behavior of marine birds. Potential for increasing heat stress exposure depends on changes in multiple environmental variables, not just air temperature, as well as organism-specific morphology, physiology and behavior. Endotherms breeding at high latitudes are vulnerable to the forecast, extensive temperature changes because of the adaptations they possess to minimize heat loss. Low-latitude species will also be challenged as they currently live close to their thermal limits and will likely suffer future water shortages. Small, highly-active species, particularly aerial foragers, are acutely vulnerable as they are least able to dissipate heat at high temperatures. Overall, direct physiological impacts of climatic change appear underrepresented in the published literature, but available data suggest they have much potential to shape behavior, morphology and distribution of endothermic species. Coincidence between future heat stress events and other energetic constraints on endotherms remains largely unexplored but will be key in determining the physiological impacts of climatic change. Multi-scale, biophysical modeling, informed by experiments that quantify thermoregulatory responses of endotherms to heat stress, is an essential precursor to urgently-needed analyses at the population or species level. © 2012 ISZS, Blackwell Publishing and IOZ/CAS.

  7. Thermal physiology of the fingered limpet Lottia digitalis under emersion and immersion.

    PubMed

    Bjelde, Brittany E; Todgham, Anne E

    2013-08-01

    Marine animals living high in the rocky intertidal zone experience long durations of aerial emersion, sometimes enduring rapid increases in temperature. To date, much of our understanding of the thermal physiology of intertidal organisms comes from studies in which organisms are exposed to increasing temperatures when immersed, with the added effect of aerial emersion rarely considered. In this study, we examined the physiological response of the finger limpet, Lottia digitalis, to increases in temperature under both immersed and emersed conditions. We investigated the thermal sensitivity and upper temperature tolerance of limpets through assessment of cardiac performance, metabolic rate, glycogen depletion and maintenance of protein integrity. Cardiac performance in response to ecologically relevant increases in temperature was similar in emersed and immersed limpets from 15 to 35°C and showed multiple break patterns in heart rate as temperature was increased. Overall, emersed limpets had a greater upper thermal limit on cardiac performance, with the ability to maintain heart rate at a temperature 3-5°C higher than that for immersed limpets. Metabolism in limpets also differed significantly between emersion and immersion, where a significant depression in aerobic metabolic rate was observed under immersion with increasing temperature. Greater levels of ubiquitin-conjugated proteins were found under emersed conditions compared with immersed limpets. Maintaining cardiac performance and aerobic metabolism to higher temperatures under emersed conditions is likely reflective of physiological adaptations to live in an aerially exposed environment. Measured field temperatures where fingered limpets were collected demonstrated that limpets have a narrow thermal safety margin for aerobic performance, and currently experience multiple days where summer temperatures might exceed their threshold limits.

  8. Glycemic extremes in youth with T1DM: the structural and functional integrity of the developing brain.

    PubMed

    Arbelaez, Ana Maria; Semenkovich, Katherine; Hershey, Tamara

    2013-12-01

    The adult brain accounts for a disproportionally large percentage of the body’s total energy consumption (1). However, during brain development,energy demand is even higher, reaching the adult rate by age 2 and increasing to nearly twice the adult rate by age 10, followed by gradual reduction toward adult levels in the next decade (1,2). The dramatic changes in brain metabolism occurring over the first two decades of life coincide with the initial proliferation and then pruning of synapses to adult levels.The brain derives its energy almost exclusively from glucose and is largely driven by neuronal signaling, biosynthesis, and neuroprotection (3–6).Glucose homeostasis in the body is tightly regulated by a series of hormones and physiologic responses. As a result, hypoglycemia and hyperglycemia are rare occurrences in normal individuals, but they occur commonly inpatients with type 1 diabetes mellitus (T1DM) due to a dysfunction of peripheral glucose-insulin-glucagon responses and non-physiologic doses of exogenous insulin, which imperfectly mimic normal physiology. These extremes can occur more frequently in children and adolescents with T1DM due to the inadequacies of insulin replacement therapy, events leading to the diagnosis [prolonged untreated hyperglycemia and diabetic ketoacidosis (DKA)], and to behavioral factors interfering with optimal treatment. When faced with fluctuations in glucose supply the metabolism of the body and brain change dramatically, largely to conserve resources and, at a cost to other organs, to preserve brain function (7). However,if the normal physiological mechanisms that prevent these severe glucose fluctuations and maintain homeostasis are impaired, neuronal function and potentially viability can be affected (8–11).

  9. Ghrelin

    PubMed Central

    Wu, James T.; Kral, John G.

    2004-01-01

    Objective: Ghrelin is a novel gastric hormone recognized in 1999 as a mediator of growth hormone release. Since growth hormone is anabolic, an important function of ghrelin may be to coordinate energy needs with the growth process. Newly discovered biologic roles of ghrelin imply that it may have other important physiological functions as well. This is a review of recent clinically relevant, yet less well-known, physiologic actions of ghrelin. Summary Background Data: Ghrelin has profound orexigenic, adipogenic, and somatotrophic properties, increasing food intake and body weight. Secreted predominantly from the stomach, ghrelin is the natural ligand for the growth hormone secretagogue receptor in the pituitary gland, thus fulfilling criteria of a brain-gut peptide. The brain-gut axis is the effector of anabolism by regulating growth, feeding, and metabolism via vagal afferents mediating ghrelin signaling. However, the wide tissue distribution of ghrelin suggests that it may have other functions as well. Methods: Systematic literature review of all PubMed citations between 1999 and August 2003 focusing on clinically relevant biochemical and physiological characteristics of ghrelin. Results: Ghrelin is an important component of an integrated regulatory system of growth and metabolism acting via the vagus nerve, and is implicated in a variety of altered energy states such as obesity, eating disorders, neoplasia, and cachexia. It also enhances immune responses and potentially down-regulates anti-inflammatory molecules. Ghrelin's role as a brain-gut peptide emphasizes the significance of afferent vagal fibers as a major pathway to the brain, serving the purpose of maintaining physiologic homeostasis. Conclusions: The discovery of ghrelin has increased our understanding of feeding regulation, nutritional homeostasis, and metabolic processes. Further characterization of ghrelin's functions will likely generate new pharmacological approaches to diagnose and treat different disease entities including those related to the over-nutrition of obesity and the catabolic response to surgical trauma. PMID:15024307

  10. Natural variation reveals relationships between pre-stress carbohydrate nutritional status and subsequent responses to xenobiotic and oxidative stress in Arabidopsis thaliana

    PubMed Central

    Ramel, Fanny; Sulmon, Cécile; Gouesbet, Gwenola; Couée, Ivan

    2009-01-01

    Background Soluble sugars are involved in responses to stress, and act as signalling molecules that activate specific or hormone cross-talk transduction pathways. Thus, exogenous sucrose treatment efficiently induces tolerance to the herbicide atrazine in Arabidopsis thaliana plantlets, at least partially through large-scale modifications of expression of stress-related genes. Methods Availability of sugars in planta for stress responses is likely to depend on complex dynamics of soluble sugar accumulation, sucrose–starch partition and organ allocation. The question of potential relationships between endogenous sugar levels and stress responses to atrazine treatment was investigated through analysis of natural genetic accessions of A. thaliana. Parallel quantitative and statistical analysis of biochemical parameters and of stress-sensitive physiological traits was carried out on a set of 11 accessions. Key Results Important natural variation was found between accessions of A. thaliana in pre-stress shoot endogenous sugar levels and responses of plantlets to subsequent atrazine stress. Moreover, consistent trends and statistically significant correlations were detected between specific endogenous sugar parameters, such as the pre-stress end of day sucrose level in shoots, and physiological markers of atrazine tolerance. Conclusions These significant relationships between endogenous carbohydrate metabolism and stress response therefore point to an important integration of carbon nutritional status and induction of stress tolerance in plants. The specific correlation between pre-stress sucrose level and greater atrazine tolerance may reflect adaptive mechanisms that link sucrose accumulation, photosynthesis-related stress and sucrose induction of stress defences. PMID:19789177

  11. Integrated multi-biomarker responses in two dreissenid species following metal and thermal cross-stress.

    PubMed

    Potet, Marine; Devin, Simon; Pain-Devin, Sandrine; Rousselle, Philippe; Giambérini, Laure

    2016-11-01

    With current global changes, the combination of several stressors such as temperature and contaminants may impact species distribution and ecosystem functioning. In this study, we evaluated the combined impact of two metals (Ni and Cr) with a thermal stress (from 12 to 17 °C) on biomarker responses in two bivalves, Dreissena rostriformis bugensis and Dreissena polymorpha. Biomarkers are informative tools to evaluate exposure and effects of stressors on organisms. The set of 14 biomarkers measured here was representative of both physiologic (filtration activity) and cellular antioxidant and detoxification mechanisms. Our aim was to study the response pattern of both species, and its meaning in terms of invasive potential. The implications for the use of these mussels in environmental monitoring are also discussed. Results evidenced that the two species do not respond to multiple stressors in the same way. Indeed, the effects of contamination on biomarker responses were more marked for D. polymorpha, especially under nickel exposure. While we cannot conclude as to the effect of temperature, invasiveness could be influenced by species sensitivity to contaminants. The physiological and cellular differences between D. polymorpha and D. r. bugensis might also be of concern for environmental risk assessment. The two species present differential bioaccumulation patterns, filtration activity and cellular biomarker responses. If D. polymorpha populations decline, their substitution by D. r. bugensis for biomonitoring or laboratory studies will not be possible without a deeper understanding of biomarker responses of the new invasive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Interactions between plant hormones and heavy metals responses.

    PubMed

    Bücker-Neto, Lauro; Paiva, Ana Luiza Sobral; Machado, Ronei Dorneles; Arenhart, Rafael Augusto; Margis-Pinheiro, Marcia

    2017-01-01

    Heavy metals are natural non-biodegradable constituents of the Earth's crust that accumulate and persist indefinitely in the ecosystem as a result of human activities. Since the industrial revolution, the concentration of cadmium, arsenic, lead, mercury and zinc, amongst others, have increasingly contaminated soil and water resources, leading to significant yield losses in plants. These issues have become an important concern of scientific interest. Understanding the molecular and physiological responses of plants to heavy metal stress is critical in order to maximize their productivity. Recent research has extended our view of how plant hormones can regulate and integrate growth responses to various environmental cues in order to sustain life. In the present review we discuss current knowledge about the role of the plant growth hormones abscisic acid, auxin, brassinosteroid and ethylene in signaling pathways, defense mechanisms and alleviation of heavy metal toxicity.

  13. What makes the learning of physiology in a PBL medical curriculum challenging? Student perceptions.

    PubMed

    Tufts, Mark A; Higgins-Opitz, Susan B

    2009-09-01

    Physiology is an integral component of any medical curriculum. Traditionally, the learning of physiology has relied heavily on systems-based didactic lectures. In 2001, the Nelson R. Mandela School of Medicine (NRMSM; Durban, South Africa) embarked on a problem-based curriculum in which the learning of physiology was integrated with relevant clinical scenarios. Students are expected to gain an understanding of physiology through self-directed research with only certain aspects being covered in large-group resource sessions (LGRSs). It has gradually become evident that this approach has resulted in significant gaps in students' understanding of basic physiological concepts. A survey of student perceptions of needs for physiology was undertaken to gain a better understanding of their perceived problems and also to inform them of proposed curricular changes. Students were asked to what extent they thought physiology was essential for their understanding of pathology, interpretation of patients' clinical signs and presentation of symptoms, and analysis of laboratory results. Students were also invited to detail the difficulties they experienced in understanding in LGRSs on clinical and physiological topics. The results of the survey indicate that greater interaction of students with experts is needed. In particular, students felt that they lacked the basic conceptual foundations essential for the learning and understanding of physiology, since the difficulties that the students identified are mainly terminological and conceptual in nature.

  14. A chlorophyll fluorescence-based method for the integrated characterization of the photophysiological response to light stress.

    PubMed

    Serôdio, João; Schmidt, William; Frankenbach, Silja

    2017-02-01

    This work introduces a new experimental method for the comprehensive description of the physiological responses to light of photosynthetic organisms. It allows the integration in a single experiment of the main established manipulative chlorophyll fluorescence-based protocols. It enables the integrated characterization of the photophysiology of samples regarding photoacclimation state (generating non-sequential light-response curves of effective PSII quantum yield, electron transport rate or non-photochemical quenching), photoprotection capacity (running light stress-recovery experiments, quantifying non-photochemical quenching components) and the operation of photoinactivation and photorepair processes (measuring rate constants of photoinactivation and repair for different light levels and the relative quantum yield of photoinactivation). The new method is based on a previously introduced technique, combining the illumination of a set of replicated samples with spatially separated actinic light beams of different intensity, and the simultaneous measurement of the fluorescence emitted by all samples using an imaging fluorometer. The main novelty described here is the independent manipulation of light intensity and duration of exposure for each sample, and the control of the cumulative light dose applied. The results demonstrate the proof of concept for the method, by comparing the responses of cultures of Chlorella vulgaris acclimated to low and high light regimes, highlighting the mapping of light stress responses over a wide range of light intensity and exposure conditions, and the rapid generation of paired light-response curves of photoinactivation and repair rate constants. This approach represents a chlorophyll fluorescence 'protocol of everything', contributing towards the high throughput characterization of the photophysiology of photosynthetic organisms. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Fashioning the Face: Sensorimotor Simulation Contributes to Facial Expression Recognition.

    PubMed

    Wood, Adrienne; Rychlowska, Magdalena; Korb, Sebastian; Niedenthal, Paula

    2016-03-01

    When we observe a facial expression of emotion, we often mimic it. This automatic mimicry reflects underlying sensorimotor simulation that supports accurate emotion recognition. Why this is so is becoming more obvious: emotions are patterns of expressive, behavioral, physiological, and subjective feeling responses. Activation of one component can therefore automatically activate other components. When people simulate a perceived facial expression, they partially activate the corresponding emotional state in themselves, which provides a basis for inferring the underlying emotion of the expresser. We integrate recent evidence in favor of a role for sensorimotor simulation in emotion recognition. We then connect this account to a domain-general understanding of how sensory information from multiple modalities is integrated to generate perceptual predictions in the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Temporal integration at consecutive processing stages in the auditory pathway of the grasshopper.

    PubMed

    Wirtssohn, Sarah; Ronacher, Bernhard

    2015-04-01

    Temporal integration in the auditory system of locusts was quantified by presenting single clicks and click pairs while performing intracellular recordings. Auditory neurons were studied at three processing stages, which form a feed-forward network in the metathoracic ganglion. Receptor neurons and most first-order interneurons ("local neurons") encode the signal envelope, while second-order interneurons ("ascending neurons") tend to extract more complex, behaviorally relevant sound features. In different neuron types of the auditory pathway we found three response types: no significant temporal integration (some ascending neurons), leaky energy integration (receptor neurons and some local neurons), and facilitatory processes (some local and ascending neurons). The receptor neurons integrated input over very short time windows (<2 ms). Temporal integration on longer time scales was found at subsequent processing stages, indicative of within-neuron computations and network activity. These different strategies, realized at separate processing stages and in parallel neuronal pathways within one processing stage, could enable the grasshopper's auditory system to evaluate longer time windows and thus to implement temporal filters, while at the same time maintaining a high temporal resolution. Copyright © 2015 the American Physiological Society.

  17. Physiological responsiveness of motor vehicle accident survivors with chronic posttraumatic stress disorder.

    PubMed

    Veazey, Connie H; Blanchard, Edward B; Hickling, Edward J; Buckley, Todd C

    2004-03-01

    This study sought to replicate past research that has shown differences in physiological responsiveness among survivors of motor vehicle accidents (MVAs) with posttraumatic stress disorder (PTSD) and those survivors who do not develop this disorder. Such physiological differences have been found specifically with heart rate (HR) reactivity. This study also attempts to account for differences among those survivors with PTSD who do respond physiologically in laboratory situations and those who do not show a physiological response when presented with audiotaped descriptions of their accidents. Results replicated the significant differences in HR reactivity between diagnostic groups with chronic PTSD versus those with subsyndromal PTSD and non-PTSD. Variables related to the severity of the diagnosis and trauma were found to discriminate between physiological responders and nonresponders with chronic PTSD.

  18. Physiological ecology of overwintering in the hatchling painted turtle: multiple-scale variation in response to environmental stress.

    PubMed

    Costanzo, Jon P; Dinkelacker, Stephen A; Iverson, John B; Lee, Richard E

    2004-01-01

    We integrated field and laboratory studies in an investigation of water balance, energy use, and mechanisms of cold-hardiness in hatchling painted turtles (Chrysemys picta) indigenous to west-central Nebraska (Chrysemys picta bellii) and northern Indiana (Chrysemys picta marginata) during the winters of 1999-2000 and 2000-2001. We examined 184 nests, 80 of which provided the hatchlings (n=580) and/or samples of soil used in laboratory analyses. Whereas winter 1999-2000 was relatively dry and mild, the following winter was wet and cold; serendipitously, the contrast illuminated a marked plasticity in physiological response to environmental stress. Physiological and cold-hardiness responses of turtles also varied between study locales, largely owing to differences in precipitation and edaphics and the lower prevailing and minimum nest temperatures (to -13.2 degrees C) encountered by Nebraska turtles. In Nebraska, winter mortality occurred within 12.5% (1999-2000) and 42.3% (2000-2001) of the sampled nests; no turtles died in the Indiana nests. Laboratory studies of the mechanisms of cold-hardiness used by hatchling C. picta showed that resistance to inoculative freezing and capacity for freeze tolerance increased as winter approached. However, the level of inoculation resistance strongly depended on the physical characteristics of nest soil, as well as its moisture content, which varied seasonally. Risk of inoculative freezing (and mortality) was greatest in midwinter when nest temperatures were lowest and soil moisture and activity of constituent organic ice nuclei were highest. Water balance in overwintering hatchlings was closely linked to dynamics of precipitation and soil moisture, whereas energy use and the size of the energy reserve available to hatchlings in spring depended on the winter thermal regime. Acute chilling resulted in hyperglycemia and hyperlactemia, which persisted throughout winter; this response may be cryoprotective. Some physiological characteristics and cold-hardiness attributes varied between years, between study sites, among nests at the same site, and among siblings sharing nests. Such variation may reflect adaptive phenotypic plasticity, maternal or paternal influence on an individual's response to environmental challenge, or a combination of these factors. Some evidence suggests that life-history traits, such as clutch size and body size, have been shaped by constraints imposed by the harsh winter environment.

  19. Does emotion help or hinder reasoning? The moderating role of relevance.

    PubMed

    Blanchette, Isabelle; Gavigan, Sarah; Johnston, Kathryn

    2014-06-01

    Some prior research has shown that emotion impairs logicality in deductive reasoning tasks, while other research suggests improved performance with emotional contents. We suggest that relevance, whether the affective state is associated with the semantic contents of the reasoning task, may be crucial in explaining these apparently inconsistent findings. This hypothesis is based on a framework distinguishing between integral emotions, where affective responses are evoked by the semantic contents of the target task, and incidental emotions, where affective responses are not related to the task. In 4 experiments we examined the effect of emotion on conditional reasoning when affective responses were relevant and irrelevant. We used images presented simultaneously with the reasoning stimuli (Experiments 1, 2, and 3) or videos presented prior to the reasoning stimuli (Experiment 4) that were either emotional or neutral and semantically related or not to the conditional statements. Results showed that emotion decreased the proportion of normatively correct responses only in the irrelevant condition. In the relevant condition, emotion did not produce reliable deleterious effects. We used reaction time and skin conductance measures to investigate the physiological and cognitive correlates of these effects. Results are discussed in terms of the distinction between incidental and integral emotions. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  20. Stereotype threat engenders neural attentional bias toward negative feedback to undermine performance.

    PubMed

    Forbes, Chad E; Leitner, Jordan B

    2014-10-01

    Stereotype threat, a situational pressure individuals experience when they fear confirming a negative group stereotype, engenders a cascade of physiological stress responses, negative appraisals, and performance monitoring processes that tax working memory resources necessary for optimal performance. Less is known, however, about how stereotype threat biases attentional processing in response to performance feedback, and how such attentional biases may undermine performance. Women received feedback on math problems in stereotype threatening compared to stereotype-neutral contexts while continuous EEG activity was recorded. Findings revealed that stereotype threatened women elicited larger midline P100 ERPs, increased phase locking between anterior cingulate cortex and dorsolateral prefrontal cortex (two regions integral for attentional processes), and increased power in left fusiform gyrus in response to negative feedback compared to positive feedback and women in stereotype-neutral contexts. Increased power in left fusiform gyrus in response to negative feedback predicted underperformance on the math task among stereotype threatened women only. Women in stereotype-neutral contexts exhibited the opposite trend. Findings suggest that in stereotype threatening contexts, neural networks integral for attention and working memory are biased toward negative, stereotype confirming feedback at very early speeds of information processing. This bias, in turn, plays a role in undermining performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Application of Physiologically Based Absorption Modeling to Characterize the Pharmacokinetic Profiles of Oral Extended Release Methylphenidate Products in Adults

    PubMed Central

    Yang, Xiaoxia; Duan, John; Fisher, Jeffrey

    2016-01-01

    A previously presented physiologically-based pharmacokinetic model for immediate release (IR) methylphenidate (MPH) was extended to characterize the pharmacokinetic behaviors of oral extended release (ER) MPH formulations in adults for the first time. Information on the anatomy and physiology of the gastrointestinal (GI) tract, together with the biopharmaceutical properties of MPH, was integrated into the original model, with model parameters representing hepatic metabolism and intestinal non-specific loss recalibrated against in vitro and in vivo kinetic data sets with IR MPH. A Weibull function was implemented to describe the dissolution of different ER formulations. A variety of mathematical functions can be utilized to account for the engineered release/dissolution technologies to achieve better model performance. The physiological absorption model tracked well the plasma concentration profiles in adults receiving a multilayer-release MPH formulation or Metadate CD, while some degree of discrepancy was observed between predicted and observed plasma concentration profiles for Ritalin LA and Medikinet Retard. A local sensitivity analysis demonstrated that model parameters associated with the GI tract significantly influenced model predicted plasma MPH concentrations, albeit to varying degrees, suggesting the importance of better understanding the GI tract physiology, along with the intestinal non-specific loss of MPH. The model provides a quantitative tool to predict the biphasic plasma time course data for ER MPH, helping elucidate factors responsible for the diverse plasma MPH concentration profiles following oral dosing of different ER formulations. PMID:27723791

  2. Early oxytocin inhibition of salt intake after furosemide treatment in rats?

    PubMed

    Core, Sheri L; Curtis, Kathleen S

    2017-05-01

    Body fluid homeostasis requires a complex suite of physiological and behavioral processes. Understanding of the role of the central nervous system (CNS) in integrating these processes has been advanced by research employing immunohistochemical techniques to assess responses to a variety of body fluid challenges. Such techniques have revealed sex/estrogen differences in CNS activation in response to hypotension and hypernatremia. In contrast, it has been difficult to conclusively identify specific CNS areas and neurotransmitter systems that are activated by hyponatremia using these techniques. In part, this difficulty is due to the temporal disconnect between the physiological effects of treatments commonly used to deplete body sodium and the behavioral response to such depletion. In some methods, sodium ingestion is delayed in association with increased oxytocin (OT), suggesting an inhibitory role for OT in sodium intake. Urinary sodium loss increases within an hour after treatment with furosemide, a natriuretic-diuretic, but sodium intake is delayed for 18-24h. Accordingly, we hypothesized that acute furosemide-induced sodium loss activates centrally-projecting OT neurons which provide an initial inhibition of sodium intake, and tested this hypothesis in ovariectomized Sprague-Dawley rats with or without estrogen using immunohistochemical methods. Neuronal activation in the hypothalamic paraventricular nuclei (PVN) after administration of furosemide corresponded to the timing of the physiological effects. The activation was not different in estrogen-treated rats, nor did estrogen alter the initial suppression of sodium intake. However, virtually no fos immunoreactive (fos-IR) neurons in the parvocellular PVN were also immunolabeled for OT. Thus, acute sodium loss after furosemide produces neural activation and an early inhibition of sodium intake that does not appear to involve activation of centrally-projecting OT neurons and is not influenced by estrogen. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Oxytocin and social affiliation in humans.

    PubMed

    Feldman, Ruth

    2012-03-01

    A conceptual model detailing the process of bio-behavioral synchrony between the online physiological and behavioral responses of attachment partners during social contact is presented as a theoretical and empirical framework for the study of affiliative bonds. Guided by an ethological behavior-based approach, we suggest that micro-level social behaviors in the gaze, vocal, affective, and touch modalities are dynamically integrated with online physiological processes and hormonal response to create dyad-specific affiliations. Studies across multiple attachments throughout life are presented and demonstrate that the extended oxytocin (OT) system provides the neurohormonal substrate for parental, romantic, and filial attachment in humans; that the three prototypes of affiliation are expressed in similar constellations of social behavior; and that OT is stable over time within individuals, is mutually-influencing among partners, and that mechanisms of cross-generation and inter-couple transmission relate to coordinated social behavior. Research showing links between peripheral and genetic markers of OT with concurrent parenting and memories of parental care; between administration of OT to parent and infant's physiological readiness for social engagement; and between neuropeptides and the online synchrony of maternal and paternal brain response in social-cognitive and empathy networks support the hypothesis that human attachment develops within the matrix of biological attunement and close behavioral synchrony. The findings have conceptual implications for the study of inter-subjectivity as well as translational implications for the treatment of social disorders originating in early childhood, such as autism spectrum disorders, or those associated with disruptions to early bonding, such as postpartum depression or child abuse and neglect. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Source-sink-storage relationships of conifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luxmoore, R.J.; Oren, R.; Sheriff, D.W.

    1995-07-01

    Irradiance, air temperature, saturation vapor pressure deficit, and soil temperature vary in association with Earth`s daily rotation, inducing significant hourly changes in the rates of plant physiological processes. These processes include carbon fixation in photosynthesis, sucrose translocation, and carbon utilization in growth, storage, and respiration. The sensitivity of these physiological processes to environmental factors such as temperature, soil water availability, and nutrient supply reveals differences that must be viewed as an interactive whole in order to comprehend whole-plant responses to the environment. Integrative frameworks for relationships between plant physiological processes are needed to provide syntheses of plant growth and development.more » Source-sink-storage relationships, addressed in this chapter, provide one framework for synthesis of whole-plant responses to external environmental variables. To address this issue, some examples of carbon assimilation and utilization responses of five conifer species to environmental factors from a range of field environments are first summarized. Next, the interactions between sources, sinks, and storages of carbon are examined at the leaf and tree scales, and finally, the review evaluates the proposition that processes involved with carbon utilization (sink activity) are more sensitive to the supply of water and nutrients (particularly nitrogen) than are the processes of carbon gain (source activity) and carbon storage. The terms {open_quotes}sink{close_quotes} and {open_quotes}source{close_quotes} refer to carbon utilization and carbon gain, respectively. The relative roles of stored carbon reserves and of current photosynthate in meeting sink demand are addressed. Discussions focus on source-sink-storage relationships within the diurnal, wetting-drying, and annual cycles of conifer growth and development, and some discussion of life cycle aspects is also presented.« less

  5. The impact of cardiac perception on emotion experience and cognitive performance under mental stress.

    PubMed

    Kindermann, Nicole K; Werner, Natalie S

    2014-12-01

    Mental stress evokes several physiological responses such as the acceleration of heart rate, increase of electrodermal activity and the release of adrenaline. Moreover, physiological stress responses interact with emotional and behavioral stress responses. In the present study we provide evidence that viscero-sensory feedback from the heart (cardiac perception) is an important factor modulating emotional and cognitive stress responses. In our study, we compared participants with high versus low cardiac perception using a computerized mental stress task, in which they had to respond to rapidly presented visual and acoustic stimuli. Additionally, we assessed physiological responses (heart rate, skin conductance). Participants high in cardiac perception reported more negative emotions and showed worse task performance under the stressor than participants low in cardiac perception. These results were not moderated by physiological responses. We conclude that cardiac perception modulates stress responses by intensifying negative emotions and by impairing cognitive performance.

  6. Bridging the Gap Between In Vitro Dissolution and the Time Course of Ibuprofen-Mediating Pain Relief.

    PubMed

    Cristofoletti, Rodrigo; Dressman, Jennifer B

    2016-12-01

    In vitro-in vivo extrapolation techniques combined with physiologically based pharmacokinetic models represent a feasible approach to establishing links between critical quality attributes and the time course of drug concentrations in vivo. By further integrating the results with pharmacodynamic (PD) models, scientists can also explore the time course of drug effect. The aim of this study was to assess whether differences in dissolution rates would affect the onset, magnitude, and duration of the time course of ibuprofen-mediating pain relief. An integrated in vitro-in vivo extrapolation-physiologically based pharmacokinetic/PD model was used to simulate pharmacokinetic and PD profiles for ibuprofen free acid (IBU-H) and its salts. Two elements of the pharmacokinetic profile, the peak of exposure (C max ) and the time to peak concentration (T max ), were sensitive to dissolution rate, whereas only 1 element of the pharmacodynamic profile was affected, namely the onset of drug action. The C max differences between IBU-H and its salts seem to be mitigated in the (hypothetical) effect compartment because of the concurrent distribution and elimination processes. Furthermore, the predicted maximum concentration in the effect compartment exceeded the EC 80 value, which marks the plateau phase of the PD concentration-response curve, regardless of whether IBU-H or its salts were administered. Understanding the target site distribution kinetics and the potential nonlinearities between exposure and response will assist in setting criteria that are more scientifically based for the demonstration of therapeutic equivalence. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Hemodynamic Flow-Induced Mechanotransduction Signaling Influences the Radiation Response of the Vascular Endothelium.

    PubMed

    Natarajan, Mohan; Aravindan, Natarajan; Sprague, Eugene A; Mohan, Sumathy

    2016-08-01

    Hemodynamic shear stress is defined as the physical force exerted by the continuous flow of blood in the vascular system. Endothelial cells, which line the inner layer of blood vessels, sense this physiological force through mechanotransduction signaling and adapt to maintain structural and functional homeostasis. Hemodynamic flow, shear stress and mechanotransduction signaling are, therefore, an integral part of endothelial pathophysiology. Although this is a well-established concept in the cardiovascular field, it is largely dismissed in studies aimed at understanding radiation injury to the endothelium and subsequent cardiovascular complications. We and others have reported on the differential response of the endothelium when the cells are under hemodynamic flow shear compared with static culture. Further, we have demonstrated significant differences in the gene expression of static versus shear-stressed irradiated cells in four key pathways, reinforcing the importance of shear stress in understanding radiation injury of the endothelium. This article further emphasizes the influence of hemodynamic shear stress and the associated mechanotransduction signaling on physiological functioning of the vascular endothelium and underscores its significance in understanding radiation injury to the vasculature and associated cardiac complications. Studies of radiation effect on endothelial biology and its implication on cardiotoxicity and vascular complications thus far have failed to highlight the significance of these factors. Factoring in these integral parts of the endothelium will enhance our understanding of the contribution of the endothelium to radiation biology. Without such information, the current approaches to studying radiation-induced injury to the endothelium and its consequences in health and disease are limited.

  8. Thyroid hormone regulation of Sirtuin 1 expression and implications to integrated responses in fasted mice.

    PubMed

    Cordeiro, Aline; de Souza, Luana Lopes; Oliveira, Lorraine Soares; Faustino, Larissa Costa; Santiago, Letícia Aragão; Bloise, Flavia Fonseca; Ortiga-Carvalho, Tania Maria; Almeida, Norma Aparecida Dos Santos; Pazos-Moura, Carmen Cabanelas

    2013-02-01

    Sirtuin 1 (SIRT1), a NAD(+)-dependent deacetylase, has been connected to beneficial effects elicited by calorie restriction. Physiological adaptation to starvation requires higher activity of SIRT1 and also the suppression of thyroid hormone (TH) action to achieve energy conservation. Here, we tested the hypothesis that those two events are correlated and that TH may be a regulator of SIRT1 expression. Forty-eight-hour fasting mice exhibited reduced serum TH and increased SIRT1 protein content in liver and brown adipose tissue (BAT), and physiological thyroxine replacement prevented or attenuated the increment of SIRT1 in liver and BAT of fasted mice. Hypothyroid mice exhibited increased liver SIRT1 protein, while hyperthyroid ones showed decreased SIRT1 in liver and BAT. In the liver, decreased protein is accompanied by reduced SIRT1 activity and no alteration in its mRNA. Hyperthyroid and hypothyroid mice exhibited increases and decreases in food intake and body weight gain respectively. Food-restricted hyperthyroid animals (pair-fed to euthyroid group) exhibited liver and BAT SIRT1 protein levels intermediary between euthyroid and hyperthyroid mice fed ad libitum. Mice with TH resistance at the liver presented increased hepatic SIRT1 protein and activity, with no alteration in Sirt1 mRNA. These results suggest that TH decreases SIRT1 protein, directly and indirectly, via food ingestion control and, in the liver, this reduction involves TRβ. The SIRT1 reduction induced by TH has important implication to integrated metabolic responses to fasting, as the increase in SIRT1 protein requires the fasting-associated suppression of TH serum levels.

  9. [Physiology and cybernetics: the history of mutual penetration of ideas, modern state and perspectives. To a 60-th anniversary of a writing the book "Cybernetics"by N. Wiener].

    PubMed

    Fedorov, V I

    2007-01-01

    Description of the history of cybernetics origin and physiology influence on it is given. Role of Russian and foreign physiologists in becoming and development of cybernetics and contribution of cybernetic theorists (N. Wiener and A.A. Lyapunov) to physiology are shown. Becoming and a modern state of various sections of cybernetic physiology and perspective of connection of cybernetics with integrative physiology are considered.

  10. What can imaging tell us about physiology? Lung growth and regional mechanical strain.

    PubMed

    Hsia, Connie C W; Tawhai, Merryn H

    2012-09-01

    The interplay of mechanical forces transduces diverse physico-biochemical processes to influence lung morphogenesis, growth, maturation, remodeling and repair. Because tissue stress is difficult to measure in vivo, mechano-sensitive responses are commonly inferred from global changes in lung volume, shape, or compliance and correlated with structural changes in tissue blocks sampled from postmortem-fixed lungs. Recent advances in noninvasive volumetric imaging technology, nonrigid image registration, and deformation analysis provide valuable tools for the quantitative analysis of in vivo regional anatomy and air and tissue-blood distributions and when combined with transpulmonary pressure measurements, allow characterization of regional mechanical function, e.g., displacement, strain, shear, within and among intact lobes, as well as between the lung and the components of its container-rib cage, diaphragm, and mediastinum-thereby yielding new insights into the inter-related metrics of mechanical stress-strain and growth/remodeling. Here, we review the state-of-the-art imaging applications for mapping asymmetric heterogeneous physical interactions within the thorax and how these interactions permit as well as constrain lung growth, remodeling, and compensation during development and following pneumonectomy to illustrate how advanced imaging could facilitate the understanding of physiology and pathophysiology. Functional imaging promises to facilitate the formulation of realistic computational models of lung growth that integrate mechano-sensitive events over multiple spatial and temporal scales to accurately describe in vivo physiology and pathophysiology. Improved computational models in turn could enhance our ability to predict regional as well as global responses to experimental and therapeutic interventions.

  11. Human-centric predictive model of task difficulty for human-in-the-loop control tasks

    PubMed Central

    Majewicz Fey, Ann

    2018-01-01

    Quantitatively measuring the difficulty of a manipulation task in human-in-the-loop control systems is ill-defined. Currently, systems are typically evaluated through task-specific performance measures and post-experiment user surveys; however, these methods do not capture the real-time experience of human users. In this study, we propose to analyze and predict the difficulty of a bivariate pointing task, with a haptic device interface, using human-centric measurement data in terms of cognition, physical effort, and motion kinematics. Noninvasive sensors were used to record the multimodal response of human user for 14 subjects performing the task. A data-driven approach for predicting task difficulty was implemented based on several task-independent metrics. We compare four possible models for predicting task difficulty to evaluated the roles of the various types of metrics, including: (I) a movement time model, (II) a fusion model using both physiological and kinematic metrics, (III) a model only with kinematic metrics, and (IV) a model only with physiological metrics. The results show significant correlation between task difficulty and the user sensorimotor response. The fusion model, integrating user physiology and motion kinematics, provided the best estimate of task difficulty (R2 = 0.927), followed by a model using only kinematic metrics (R2 = 0.921). Both models were better predictors of task difficulty than the movement time model (R2 = 0.847), derived from Fitt’s law, a well studied difficulty model for human psychomotor control. PMID:29621301

  12. Joint control of terrestrial gross primary productivity by plant phenology and physiology

    PubMed Central

    Xia, Jianyang; Niu, Shuli; Ciais, Philippe; Janssens, Ivan A.; Chen, Jiquan; Ammann, Christof; Arain, Altaf; Blanken, Peter D.; Cescatti, Alessandro; Bonal, Damien; Buchmann, Nina; Curtis, Peter S.; Chen, Shiping; Dong, Jinwei; Flanagan, Lawrence B.; Frankenberg, Christian; Georgiadis, Teodoro; Gough, Christopher M.; Hui, Dafeng; Kiely, Gerard; Li, Jianwei; Lund, Magnus; Magliulo, Vincenzo; Marcolla, Barbara; Merbold, Lutz; Olesen, Jørgen E.; Piao, Shilong; Raschi, Antonio; Roupsard, Olivier; Suyker, Andrew E.; Vaccari, Francesco P.; Varlagin, Andrej; Vesala, Timo; Wilkinson, Matthew; Weng, Ensheng; Yan, Liming; Luo, Yiqi

    2015-01-01

    Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate–carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biotic and abiotic factors operating mainly through changes in vegetation phenology and physiological processes. However, it is still unclear how plant phenology and physiology can be integrated to explain the spatiotemporal variability of terrestrial GPP. Based on analyses of eddy–covariance and satellite-derived data, we decomposed annual terrestrial GPP into the length of the CO2 uptake period (CUP) and the seasonal maximal capacity of CO2 uptake (GPPmax). The product of CUP and GPPmax explained >90% of the temporal GPP variability in most areas of North America during 2000–2010 and the spatial GPP variation among globally distributed eddy flux tower sites. It also explained GPP response to the European heatwave in 2003 (r2 = 0.90) and GPP recovery after a fire disturbance in South Dakota (r2 = 0.88). Additional analysis of the eddy–covariance flux data shows that the interbiome variation in annual GPP is better explained by that in GPPmax than CUP. These findings indicate that terrestrial GPP is jointly controlled by ecosystem-level plant phenology and photosynthetic capacity, and greater understanding of GPPmax and CUP responses to environmental and biological variations will, thus, improve predictions of GPP over time and space. PMID:25730847

  13. Deficit irrigation and sustainable water-resource strategies in agriculture for China's food security.

    PubMed

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J

    2015-04-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant's growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Critical Power: An Important Fatigue Threshold in Exercise Physiology

    PubMed Central

    Poole, David C.; Burnley, Mark; Vanhatalo, Anni; Rossiter, Harry B.; Jones, Andrew M.

    2016-01-01

    The hyperbolic form of the power-duration relationship is rigorous and highly conserved across species, forms of exercise and individual muscles/muscle groups. For modalities such as cycling, the relationship resolves to two parameters, the asymptote for power (critical power, CP) and the so-called W′ (work doable above CP), which together predict the tolerable duration of exercise above CP. Crucially, the CP concept integrates sentinel physiological profiles - respiratory, metabolic and contractile - within a coherent framework that has great scientific and practical utility. Rather than calibrating equivalent exercise intensities relative to metabolically distant parameters such as the lactate threshold or V̇O2 max, setting the exercise intensity relative to CP unifies the profile of systemic and intramuscular responses and, if greater than CP, predicts the tolerable duration of exercise until W′ is expended, V̇O2 max is attained, and intolerance is manifested. CP may be regarded as a ‘fatigue threshold’ in the sense that it separates exercise intensity domains within which the physiological responses to exercise can (CP) be stabilized. The CP concept therefore enables important insights into 1) the principal loci of fatigue development (central vs. peripheral) at different intensities of exercise, and 2) mechanisms of cardiovascular and metabolic control and their modulation by factors such as O2 delivery. Practically, the CP concept has great potential application in optimizing athletic training programs and performance as well as improving the life quality for individuals enduring chronic disease. PMID:27031742

  15. Critical Power: An Important Fatigue Threshold in Exercise Physiology.

    PubMed

    Poole, David C; Burnley, Mark; Vanhatalo, Anni; Rossiter, Harry B; Jones, Andrew M

    2016-11-01

    : The hyperbolic form of the power-duration relationship is rigorous and highly conserved across species, forms of exercise, and individual muscles/muscle groups. For modalities such as cycling, the relationship resolves to two parameters, the asymptote for power (critical power [CP]) and the so-called W' (work doable above CP), which together predict the tolerable duration of exercise above CP. Crucially, the CP concept integrates sentinel physiological profiles-respiratory, metabolic, and contractile-within a coherent framework that has great scientific and practical utility. Rather than calibrating equivalent exercise intensities relative to metabolically distant parameters such as the lactate threshold or V˙O2max, setting the exercise intensity relative to CP unifies the profile of systemic and intramuscular responses and, if greater than CP, predicts the tolerable duration of exercise until W' is expended, V˙O2max is attained, and intolerance is manifested. CP may be regarded as a "fatigue threshold" in the sense that it separates exercise intensity domains within which the physiological responses to exercise can (CP) be stabilized. The CP concept therefore enables important insights into 1) the principal loci of fatigue development (central vs. peripheral) at different intensities of exercise and 2) mechanisms of cardiovascular and metabolic control and their modulation by factors such as O2 delivery. Practically, the CP concept has great potential application in optimizing athletic training programs and performance as well as improving the life quality for individuals enduring chronic disease.

  16. Genetic Influences on Physiological and Subjective Responses to an Aerobic Exercise Session among Sedentary Adults

    PubMed Central

    Karoly, Hollis C.; Stevens, Courtney J.; Magnan, Renee E.; Harlaar, Nicole; Hutchison, Kent E.; Bryan, Angela D.

    2012-01-01

    Objective. To determine whether genetic variants suggested by the literature to be associated with physiology and fitness phenotypes predicted differential physiological and subjective responses to a bout of aerobic exercise among inactive but otherwise healthy adults. Method. Participants completed a 30-minute submaximal aerobic exercise session. Measures of physiological and subjective responding were taken before, during, and after exercise. 14 single nucleotide polymorphisms (SNPs) that have been previously associated with various exercise phenotypes were tested for associations with physiological and subjective response to exercise phenotypes. Results. We found that two SNPs in the FTO gene (rs8044769 and rs3751812) were related to positive affect change during exercise. Two SNPs in the CREB1 gene (rs2253206 and 2360969) were related to change in temperature during exercise and with maximal oxygen capacity (VO2 max). The SLIT2 SNP rs1379659 and the FAM5C SNP rs1935881 were associated with norepinephrine change during exercise. Finally, the OPRM1 SNP rs1799971 was related to changes in norepinephrine, lactate, and rate of perceived exertion (RPE) during exercise. Conclusion. Genetic factors influence both physiological and subjective responses to exercise. A better understanding of genetic factors underlying physiological and subjective responses to aerobic exercise has implications for development and potential tailoring of exercise interventions. PMID:22899923

  17. Systems analysis of the single photon response in invertebrate photoreceptors.

    PubMed

    Pumir, Alain; Graves, Jennifer; Ranganathan, Rama; Shraiman, Boris I

    2008-07-29

    Photoreceptors of Drosophila compound eye employ a G protein-mediated signaling pathway that transduces single photons into transient electrical responses called "quantum bumps" (QB). Although most of the molecular components of this pathway are already known, the system-level understanding of the mechanism of QB generation has remained elusive. Here, we present a quantitative model explaining how QBs emerge from stochastic nonlinear dynamics of the signaling cascade. The model shows that the cascade acts as an "integrate and fire" device and explains how photoreceptors achieve reliable responses to light although keeping low background in the dark. The model predicts the nontrivial behavior of mutants that enhance or suppress signaling and explains the dependence on external calcium, which controls feedback regulation. The results provide insight into physiological questions such as single-photon response efficiency and the adaptation of response to high incident-light level. The system-level analysis enabled by modeling phototransduction provides a foundation for understanding G protein signaling pathways less amenable to quantitative approaches.

  18. Research from the NASA Twins Study and Omics in Support of Mars Missions

    NASA Technical Reports Server (NTRS)

    Kundrot, C.; Shelhamer, M.; Scott, G.

    2015-01-01

    The NASA Twins Study, NASA's first foray into integrated omic studies in humans, illustrates how an integrated omics approach can be brought to bear on the challenges to human health and performance on a Mars mission. The NASA Twins Study involves US Astronaut Scott Kelly and his identical twin brother, Mark Kelly, a retired US Astronaut. No other opportunity to study a twin pair for a prolonged period with one subject in space and one on the ground is available for the foreseeable future. A team of 10 principal investigators are conducting the Twins Study, examining a very broad range of biological functions including the genome, epigenome, transcriptome, proteome, metabolome, gut microbiome, immunological response to vaccinations, indicators of atherosclerosis, physiological fluid shifts, and cognition. A novel aspect of the study is the integrated study of molecular, physiological, cognitive, and microbiological properties. Major sample and data collection from both subjects for this study began approximately six months before Scott Kelly's one year mission on the ISS, continue while Scott Kelly is in flight and will conclude approximately six months after his return to Earth. Mark Kelly will remain on Earth during this study, in a lifestyle unconstrained by this study, thereby providing a measure of normal variation in the properties being studied. An overview of initial results and the future plans will be described as well as the technological and ethical issues raised for spaceflight studies involving omics.

  19. Hunger Games: Interactive Ultrasound Imaging for Learning Gastrointestinal Physiology.

    PubMed

    Kafer, Ilana; Rennie, William; Noor, Ali; Pellerito, John S

    2017-02-01

    Ultrasound is playing an increasingly important role in medical student education. Although most uses of ultrasound have focused on learning purely anatomic relationships or augmentation of the physical examination, there is little documentation of the value of ultrasound as a learning tool regarding physiology alone or in association with anatomy. We devised an interactive learning session for first-year medical students using ultrasound to combine both anatomic and physiologic principles as an integration of gastrointestinal and vascular function. The incorporation of our activity, The Hunger Games, provides the foundation for a powerful integration tool for medical student education. © 2016 by the American Institute of Ultrasound in Medicine.

  20. Physiomodel - an integrative physiology in Modelica.

    PubMed

    Matejak, Marek; Kofranek, Jiri

    2015-08-01

    Physiomodel (http://www.physiomodel.org) is our reimplementation and extension of an integrative physiological model called HumMod 1.6 (http://www.hummod.org) using our Physiolibrary (http://www.physiolibrary.org). The computer language Modelica is well-suited to exactly formalize integrative physiology. Modelica is an equation-based, and object-oriented language for hybrid ordinary differential equations (http:// www.modelica.org). Almost every physiological term can be defined as a class in this language and can be instantiated as many times as it occurs in the body. Each class has a graphical icon for use in diagrams. These diagrams are self-describing; the Modelica code generated from them is the full representation of the underlying mathematical model. Special Modelica constructs of physical connectors from Physiolibrary allow us to create diagrams that are analogies of electrical circuits with Kirchhoff's laws. As electric currents and electric potentials are connected in electrical domain, so are molar flows and concentrations in the chemical domain; volumetric flows and pressures in the hydraulic domain; flows of heat energy and temperatures in the thermal domain; and changes and amounts of members in the population domain.

  1. Lab on chip microdevices for cellular mechanotransduction in urothelial cells

    NASA Astrophysics Data System (ADS)

    Maziz, A.; Guan, N.; Svennersten, K.; Hallén-Grufman, K.; Jager, Edwin W. H.

    2016-04-01

    Cellular mechanotransduction is crucial for physiological function in the lower urinary tract. The bladder is highly dependent on the ability to sense and process mechanical inputs, illustrated by the regulated filling and voiding of the bladder. However, the mechanisms by which the bladder integrates mechanical inputs, such as intravesicular pressure, and controls the smooth muscles, remain unknown. To date no tools exist that satisfactorily mimic in vitro the dynamic micromechanical events initiated e.g. by an emerging inflammatory process or a growing tumour mass in the urinary tract. More specifically, there is a need for tools to study these events on a single cell level or in a small population of cells. We have developed a micromechanical stimulation chip that can apply physiologically relevant mechanical stimuli to single cells to study mechanosensitive cells in the urinary tract. The chips comprise arrays of microactuators based on the electroactive polymer polypyrrole (PPy). PPy offers unique possibilities and is a good candidate to provide such physiological mechanical stimulation, since it is driven at low voltages, is biocompatible, and can be microfabricated. The PPy microactuators can provide mechanical stimulation at different strains and/or strain rates to single cells or clusters of cells, including controls, all integrated on one single chip, without the need to preprepare the cells. This paper reports initial results on the mechano-response of urothelial cells using the micromechanical stimulation chips. We show that urothelial cells are viable on our microdevices and do respond with intracellular Ca2+ increase when subjected to a micro-mechanical stimulation.

  2. Longevity and ageing: appraising the evolutionary consequences of growing old

    PubMed Central

    Bonsall, Michael B

    2005-01-01

    Senescence or ageing is an increase in mortality and/or decline in fertility with increasing age. Evolutionary theories predict that ageing or longevity evolves in response to patterns of extrinsic mortality or intrinsic damage. If ageing is viewed as the outcome of the processes of behaviour, growth and reproduction then it should be possible to predict mortality rate. Recent developments have shown that it is now possible to integrate these ecological and physiological processes and predict the shape of mortality trajectories. By drawing on the key exciting developments in the cellular, physiological and ecological process of longevity the evolutionary consequences of ageing are reviewed. In presenting these ideas an evolutionary demographic framework is used to argue how trade-offs in life-history strategies are important in the maintenance of variation in longevity within and between species. Evolutionary processes associated with longevity have an important role in explaining levels of biological diversity and speciation. In particular, the effects of life-history trait trade-offs in maintaining and promoting species diversity are explored. Such trade-offs can alleviate the effects of intense competition between species and promote species coexistence and diversification. These results have important implications for understanding a number of core ecological processes such as how species are divided among niches, how closely related species co-occur and the rules by which species assemble into food-webs. Theoretical work reveals that the proximate physiological processes are as important as the ecological factors in explaining the variation in the evolution of longevity. Possible future research challenges integrating work on the evolution and mechanisms of growing old are briefly discussed. PMID:16553312

  3. Coping with thermal challenges: physiological adaptations to environmental temperatures.

    PubMed

    Tattersall, Glenn J; Sinclair, Brent J; Withers, Philip C; Fields, Peter A; Seebacher, Frank; Cooper, Christine E; Maloney, Shane K

    2012-07-01

    Temperature profoundly influences physiological responses in animals, primarily due to the effects on biochemical reaction rates. Since physiological responses are often exemplified by their rate dependency (e.g., rate of blood flow, rate of metabolism, rate of heat production, and rate of ion pumping), the study of temperature adaptations has a long history in comparative and evolutionary physiology. Animals may either defend a fairly constant temperature by recruiting biochemical mechanisms of heat production and utilizing physiological responses geared toward modifying heat loss and heat gain from the environment, or utilize biochemical modifications to allow for physiological adjustments to temperature. Biochemical adaptations to temperature involve alterations in protein structure that compromise the effects of increased temperatures on improving catalytic enzyme function with the detrimental influences of higher temperature on protein stability. Temperature has acted to shape the responses of animal proteins in manners that generally preserve turnover rates at animals' normal, or optimal, body temperatures. Physiological responses to cold and warmth differ depending on whether animals maintain elevated body temperatures (endothermic) or exhibit minimal internal heat production (ectothermic). In both cases, however, these mechanisms involve regulated neural and hormonal over heat flow to the body or heat flow within the body. Examples of biochemical responses to temperature in endotherms involve metabolic uncoupling mechanisms that decrease metabolic efficiency with the outcome of producing heat, whereas ectothermic adaptations to temperature are best exemplified by the numerous mechanisms that allow for the tolerance or avoidance of ice crystal formation at temperatures below 0°C. 2012 American Physiological Society. Compr Physiol 2:2037-2061, 2012.

  4. Leveraging organismal biology to forecast the effects of climate change.

    PubMed

    Buckley, Lauren B; Cannistra, Anthony F; John, Aji

    2018-04-26

    Despite the pressing need for accurate forecasts of ecological and evolutionary responses to environmental change, commonly used modelling approaches exhibit mixed performance because they omit many important aspects of how organisms respond to spatially and temporally variable environments. Integrating models based on organismal phenotypes at the physiological, performance and fitness levels can improve model performance. We summarize current limitations of environmental data and models and discuss potential remedies. The paper reviews emerging techniques for sensing environments at fine spatial and temporal scales, accounting for environmental extremes, and capturing how organisms experience the environment. Intertidal mussel data illustrate biologically important aspects of environmental variability. We then discuss key challenges in translating environmental conditions into organismal performance including accounting for the varied timescales of physiological processes, for responses to environmental fluctuations including the onset of stress and other thresholds, and for how environmental sensitivities vary across lifecycles. We call for the creation of phenotypic databases to parameterize forecasting models and advocate for improved sharing of model code and data for model testing. We conclude with challenges in organismal biology that must be solved to improve forecasts over the next decade.acclimation, biophysical models, ecological forecasting, extremes, microclimate, spatial and temporal variability.

  5. The pathophysiology of pulmonary hypertension in left heart disease.

    PubMed

    Breitling, Siegfried; Ravindran, Krishnan; Goldenberg, Neil M; Kuebler, Wolfgang M

    2015-11-01

    Pulmonary hypertension (PH) is characterized by elevated pulmonary arterial pressure leading to right-sided heart failure and can arise from a wide range of etiologies. The most common cause of PH, termed Group 2 PH, is left-sided heart failure and is commonly known as pulmonary hypertension with left heart disease (PH-LHD). Importantly, while sharing many clinical features with pulmonary arterial hypertension (PAH), PH-LHD differs significantly at the cellular and physiological levels. These fundamental pathophysiological differences largely account for the poor response to PAH therapies experienced by PH-LHD patients. The relatively high prevalence of this disease, coupled with its unique features compared with PAH, signal the importance of an in-depth understanding of the mechanistic details of PH-LHD. The present review will focus on the current state of knowledge regarding the pathomechanisms of PH-LHD, highlighting work carried out both in human trials and in preclinical animal models. Adaptive processes at the alveolocapillary barrier and in the pulmonary circulation, including alterations in alveolar fluid transport, endothelial junctional integrity, and vasoactive mediator secretion will be discussed in detail, highlighting the aspects that impact the response to, and development of, novel therapeutics. Copyright © 2015 the American Physiological Society.

  6. Brain networks of social action-outcome contingency: The role of the ventral striatum in integrating signals from the sensory cortex and medial prefrontal cortex.

    PubMed

    Sumiya, Motofumi; Koike, Takahiko; Okazaki, Shuntaro; Kitada, Ryo; Sadato, Norihiro

    2017-10-01

    Social interactions can be facilitated by action-outcome contingency, in which self-actions result in relevant responses from others. Research has indicated that the striatal reward system plays a role in generating action-outcome contingency signals. However, the neural mechanisms wherein signals regarding self-action and others' responses are integrated to generate the contingency signal remain poorly understood. We conducted a functional MRI study to test the hypothesis that brain activity representing the self modulates connectivity between the striatal reward system and sensory regions involved in the processing of others' responses. We employed a contingency task in which participants made the listener laugh by telling jokes. Participants reported more pleasure when greater laughter followed their own jokes than those of another. Self-relevant listener's responses produced stronger activation in the medial prefrontal cortex (mPFC). Laughter was associated with activity in the auditory cortex. The ventral striatum exhibited stronger activation when participants made listeners laugh than when another did. In physio-physiological interaction analyses, the ventral striatum showed interaction effects for signals extracted from the mPFC and auditory cortex. These results support the hypothesis that the mPFC, which is implicated in self-related processing, gates sensory input associated with others' responses during value processing in the ventral striatum. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Self-contained, low-cost Body-on-a-Chip systems for drug development.

    PubMed

    Wang, Ying I; Oleaga, Carlota; Long, Christopher J; Esch, Mandy B; McAleer, Christopher W; Miller, Paula G; Hickman, James J; Shuler, Michael L

    2017-11-01

    Integrated multi-organ microphysiological systems are an evolving tool for preclinical evaluation of the potential toxicity and efficacy of drug candidates. Such systems, also known as Body-on-a-Chip devices, have a great potential to increase the successful conversion of drug candidates entering clinical trials into approved drugs. Systems, to be attractive for commercial adoption, need to be inexpensive, easy to operate, and give reproducible results. Further, the ability to measure functional responses, such as electrical activity, force generation, and barrier integrity of organ surrogates, enhances the ability to monitor response to drugs. The ability to operate a system for significant periods of time (up to 28 d) will provide potential to estimate chronic as well as acute responses of the human body. Here we review progress towards a self-contained low-cost microphysiological system with functional measurements of physiological responses. Impact statement Multi-organ microphysiological systems are promising devices to improve the drug development process. The development of a pumpless system represents the ability to build multi-organ systems that are of low cost, high reliability, and self-contained. These features, coupled with the ability to measure electrical and mechanical response in addition to chemical or metabolic changes, provides an attractive system for incorporation into the drug development process. This will be the most complete review of the pumpless platform with recirculation yet written.

  8. Seasonality and the Response of the Thecosome Pteropod Limacina retroversa to CO2 in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Maas, A.; Tarrant, A. M.; Bergan, A. J.; Wang, A. Z.; Lawson, G. L.

    2016-02-01

    Limacina retroversa is a thecosomatous pteropod found year round in the Gulf of Maine. Because carbonate chemistry within this shelf system is spatially variable and exhibits seasonal cycles, pteropods in this region may already be exposed to under-saturated, and hence corrosive, waters during certain seasons. To understand the implications of this variability, we have explored the physiological responses of L. retroversa at four time points over the course of a year to determine whether pteropods vary seasonally in their sensitivity to CO2 exposure on time-scales relevant to acclimation responses. In the laboratory, these animals were exposed to CO2 (ambient, 800, 1200 ppm) for 7-14 days and their response was assessed using an integrated set of metabolic, gene-expression and shell condition metrics. Similar to previous work with this species and others, pronounced changes in shell condition of exposed adults were discernible after less than 3 days of exposure, while changes to respiration rate were not consistently apparent. There were, however, seasonal variations in respiration rate indicative of an acclimation response. Differential expression analyses (RNAseq) revealed pronounced changes in gene expression among seasons, while laboratory CO2 exposure resulted in a lower number of differentially expressed transcripts. These gene expression studies, together with both respiration rate and shell condition metrics provide an integrated picture of the seasonal effect of CO2 on this sentinel species.

  9. Conservation physiology for applied management of marine fish: an overview with perspectives on the role and value of telemetry

    PubMed Central

    Metcalfe, J. D.; Le Quesne, W. J. F.; Cheung, W. W. L.; Righton, D. A.

    2012-01-01

    Physiological studies focus on the responses of cells, tissues and individuals to stressors, usually in laboratory situations. Conservation and management, on the other hand, focus on populations. The field of conservation physiology addresses the question of how abiotic drivers of physiological responses at the level of the individual alter requirements for successful conservation and management of populations. To achieve this, impacts of physiological effects at the individual level need to be scaled to impacts on population dynamics, which requires consideration of ecology. Successfully realizing the potential of conservation physiology requires interdisciplinary studies incorporating physiology and ecology, and requires that a constructive dialogue develops between these traditionally disparate fields. To encourage this dialogue, we consider the increasingly explicit incorporation of physiology into ecological models applied to marine fish conservation and management. Conservation physiology is further challenged as the physiology of an individual revealed under laboratory conditions is unlikely to reflect realized responses to the complex variable stressors to which it is exposed in the wild. Telemetry technology offers the capability to record an animal's behaviour while simultaneously recording environmental variables to which it is exposed. We consider how the emerging insights from telemetry can strengthen the incorporation of physiology into ecology. PMID:22566680

  10. Affective and physiological correlates of the perception of unimodal and bimodal emotional stimuli.

    PubMed

    Rosa, Pedro J; Oliveira, Jorge; Alghazzawi, Daniyal; Fardoun, Habib; Gamito, Pedro

    2017-08-01

    Despite the multisensory nature of perception, previous research on emotions has been focused on unimodal emotional cues with visual stimuli. To the best of our knowledge, there is no evidence on the extent to which incongruent emotional cues from visual and auditory sensory channels affect pupil size. To investigate the effects of audiovisual emotional information perception on the physiological and affective response, but also to determine the impact of mismatched cues in emotional perception on these physiological indexes. Pupil size, electrodermal activity and affective subjective responses were recorded while 30 participants were exposed to visual and auditory stimuli with varied emotional content in three different experimental conditions: pictures and sounds presented alone (unimodal), emotionally matched audio-visual stimuli (bimodal congruent) and emotionally mismatched audio-visual stimuli (bimodal incongruent). The data revealed no effect of emotional incongruence on physiological and affective responses. On the other hand, pupil size covaried with skin conductance response (SCR), but the subjective experience was partially dissociated from autonomic responses. Emotional stimuli are able to trigger physiological responses regardless of valence, sensory modality or level of emotional congruence.

  11. Integrated High Resolution Monitoring of Mediterranean vegetation

    NASA Astrophysics Data System (ADS)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone

    2017-04-01

    The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals (gcc, ExG) from digital images was also in according to the spectral signature (NDVI) obtained for single species (in particular for Juniperus phoenicea and Pistacia lentiscus). The integrated system developed during this project can provide continuous and high-resolution data, providing a valuable support for both ecological and environmental studies in particular for the analysis of phenological plants responses to environmental and climate changes, and the validation of eco-physiological models, and supporting research on climate change adaptations. This research was funded by the Regional Administration of Sardinia, RAS, L.R. 7/2007 "Scientific Research and Technological Innovation in Sardinia ".

  12. Investigation of the Physiological Responses of Belugas to Stressors to Aid in Assessing the Impact of Environmental and Anthropogenic Challenges on Health

    DTIC Science & Technology

    2013-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. FINAL REPORT Investigation of the Physiological Responses...The overall top level goal of this effort is to investigate the physiological i.e. neuroimmunoendocrinological responses of beluga whales to...adrenocorticotropin hormone, aldosterone , catecholamines) in different matrices (blood, saliva, blow, feces) in conjunction with immune function

  13. Promises and Challenges of Eco-Physiological Genomics in the Field: Tests of Drought Responses in Switchgrass1[OPEN

    PubMed Central

    Schwartz, Scott; Lowry, David B.; Aspinwall, Michael J.; Palacio-Mejia, Juan Diego; Hawkes, Christine V.; Fay, Philip A.

    2016-01-01

    Identifying the physiological and genetic basis of stress tolerance in plants has proven to be critical to understanding adaptation in both agricultural and natural systems. However, many discoveries were initially made in the controlled conditions of greenhouses or laboratories, not in the field. To test the comparability of drought responses across field and greenhouse environments, we undertook three independent experiments using the switchgrass reference genotype Alamo AP13. We analyzed physiological and gene expression variation across four locations, two sampling times, and three years. Relatively similar physiological responses and expression coefficients of variation across experiments masked highly dissimilar gene expression responses to drought. Critically, a drought experiment utilizing small pots in the greenhouse elicited nearly identical physiological changes as an experiment conducted in the field, but an order of magnitude more differentially expressed genes. However, we were able to define a suite of several hundred genes that were differentially expressed across all experiments. This list was strongly enriched in photosynthesis, water status, and reactive oxygen species responsive genes. The strong across-experiment correlations between physiological plasticity—but not differential gene expression—highlight the complex and diverse genetic mechanisms that can produce phenotypically similar responses to various soil water deficits. PMID:27246097

  14. Development of sensors for monitoring oxygen and free radicals in plant physiology

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Prachee

    Oxygen plays a critical role in the physiology of photosynthetic organisms, including bioenergetics, metabolism, development, and stress response. Oxygen levels affect photosynthesis, respiration, and alternative oxidase pathways. Likewise, the metabolic rate of spatially distinct plant cells (and therefore oxygen flux) is known to be affected by biotic stress (e.g., herbivory) and environmental stress (e.g., salt/nutrient stress). During aerobic metabolism, cells produce reactive oxygen species (ROS) as a by product. Plants also produce ROS during adaptation to stress (e.g., abscisic acid (ABA) mediated stress responses). If stress conditions are prolonged, ROS levels surpass the capacity of detoxifying mechanisms within the cell, resulting in oxidative damage. While stress response pathways such as ABA-mediated mechanisms have been well characterized (e.g., water stress, inhibited shoot growth, synthesis of storage proteins in seeds), the connection between ROS production, oxygen metabolism and stress response remains unknown. In part, this is because details of oxygen transport at the interface of cell(s) and the surrounding microenvironment remains nebulous. The overall goal of this research was to develop oxygen and Free radical sensors for studying stress signaling in plants. Recent developments in nanomaterials and data acquisition systems were integrated to develop real-time, non-invasive oxygen and Free radical sensors. The availability of these sensors for plant physiologists is an exciting opportunity to probe the functional realm of cells and tissues in ways that were not previously possible.

  15. Canopy reflectance, photosynthesis, and transpiration. III - A reanalysis using improved leaf models and a new canopy integration scheme

    NASA Technical Reports Server (NTRS)

    Sellers, P. J.; Berry, J. A.; Collatz, G. J.; Field, C. B.; Hall, F. G.

    1992-01-01

    The theoretical analyses of Sellers (1985, 1987), which linked canopy spectral reflectance properties to (unstressed) photosynthetic rates and conductances, are critically reviewed and significant shortcomings are identified. These are addressed in this article principally through the incorporation of a more sophisticated and realistic treatment of leaf physiological processes within a new canopy integration scheme. The results indicate that area-averaged spectral vegetation indices, as obtained from coarse resolution satellite sensors, may give good estimates of the area-integrals of photosynthesis and conductance even for spatially heterogenous (though physiologically uniform) vegetation covers.

  16. Stress physiology in marine mammals: how well do they fit the terrestrial model?

    PubMed

    Atkinson, Shannon; Crocker, Daniel; Houser, Dorian; Mashburn, Kendall

    2015-07-01

    Stressors are commonly accepted as the causal factors, either internal or external, that evoke physiological responses to mediate the impact of the stressor. The majority of research on the physiological stress response, and costs incurred to an animal, has focused on terrestrial species. This review presents current knowledge on the physiology of the stress response in a lesser studied group of mammals, the marine mammals. Marine mammals are an artificial or pseudo grouping from a taxonomical perspective, as this group represents several distinct and diverse orders of mammals. However, they all are fully or semi-aquatic animals and have experienced selective pressures that have shaped their physiology in a manner that differs from terrestrial relatives. What these differences are and how they relate to the stress response is an efflorescent topic of study. The identification of the many facets of the stress response is critical to marine mammal management and conservation efforts. Anthropogenic stressors in marine ecosystems, including ocean noise, pollution, and fisheries interactions, are increasing and the dramatic responses of some marine mammals to these stressors have elevated concerns over the impact of human-related activities on a diverse group of animals that are difficult to monitor. This review covers the physiology of the stress response in marine mammals and places it in context of what is known from research on terrestrial mammals, particularly with respect to mediator activity that diverges from generalized terrestrial models. Challenges in conducting research on stress physiology in marine mammals are discussed and ways to overcome these challenges in the future are suggested.

  17. Improving the physiological realism of experimental models.

    PubMed

    Vinnakota, Kalyan C; Cha, Chae Y; Rorsman, Patrik; Balaban, Robert S; La Gerche, Andre; Wade-Martins, Richard; Beard, Daniel A; Jeneson, Jeroen A L

    2016-04-06

    The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease.

  18. An Integrated Analysis of the Physiological Effects of Space Flight: Executive Summary

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1985-01-01

    A large array of models were applied in a unified manner to solve problems in space flight physiology. Mathematical simulation was used as an alternative way of looking at physiological systems and maximizing the yield from previous space flight experiments. A medical data analysis system was created which consist of an automated data base, a computerized biostatistical and data analysis system, and a set of simulation models of physiological systems. Five basic models were employed: (1) a pulsatile cardiovascular model; (2) a respiratory model; (3) a thermoregulatory model; (4) a circulatory, fluid, and electrolyte balance model; and (5) an erythropoiesis regulatory model. Algorithms were provided to perform routine statistical tests, multivariate analysis, nonlinear regression analysis, and autocorrelation analysis. Special purpose programs were prepared for rank correlation, factor analysis, and the integration of the metabolic balance data.

  19. 76 FR 573 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ..., [email protected] . Name of Committee: Biology of Development and Aging Integrated Review Group... Committee: Biology of Development and Aging Integrated Review Group, Development--1 Study Section. Date..., Metabolism, Nutrition and Reproductive Sciences Integrated Review Group, Integrative Physiology of Obesity...

  20. The ins and outs of breath holding: simple demonstrations of complex respiratory physiology.

    PubMed

    Skow, Rachel J; Day, Trevor A; Fuller, Jonathan E; Bruce, Christina D; Steinback, Craig D

    2015-09-01

    The physiology of breath holding is complex, and voluntary breath-hold duration is affected by many factors, including practice, psychology, respiratory chemoreflexes, and lung stretch. In this activity, we outline a number of simple laboratory activities or classroom demonstrations that illustrate the complexity of the integrative physiology behind breath-hold duration. These activities require minimal equipment and are easily adapted to small-group demonstrations or a larger-group inquiry format where students can design a protocol and collect and analyze data from their classmates. Specifically, breath-hold duration is measured during a number of maneuvers, including after end expiration, end inspiration, voluntary prior hyperventilation, and inspired hyperoxia. Further activities illustrate the potential contribution of chemoreflexes through rebreathing and repeated rebreathing after a maximum breath hold. The outcome measures resulting from each intervention are easily visualized and plotted and can comprise a comprehensive data set to illustrate and discuss complex and integrated cardiorespiratory physiology. Copyright © 2015 The American Physiological Society.

  1. Metabolic dynamics in skeletal muscle during acute reduction in blood flow and oxygen supply to mitochondria: in-silico studies using a multi-scale, top-down integrated model.

    PubMed

    Dash, Ranjan K; Li, Yanjun; Kim, Jaeyeon; Beard, Daniel A; Saidel, Gerald M; Cabrera, Marco E

    2008-09-09

    Control mechanisms of cellular metabolism and energetics in skeletal muscle that may become evident in response to physiological stresses such as reduction in blood flow and oxygen supply to mitochondria can be quantitatively understood using a multi-scale computational model. The analysis of dynamic responses from such a model can provide insights into mechanisms of metabolic regulation that may not be evident from experimental studies. For the purpose, a physiologically-based, multi-scale computational model of skeletal muscle cellular metabolism and energetics was developed to describe dynamic responses of key chemical species and reaction fluxes to muscle ischemia. The model, which incorporates key transport and metabolic processes and subcellular compartmentalization, is based on dynamic mass balances of 30 chemical species in both capillary blood and tissue cells (cytosol and mitochondria) domains. The reaction fluxes in cytosol and mitochondria are expressed in terms of a general phenomenological Michaelis-Menten equation involving the compartmentalized energy controller ratios ATP/ADP and NADH/NAD(+). The unknown transport and reaction parameters in the model are estimated simultaneously by minimizing the differences between available in vivo experimental data on muscle ischemia and corresponding model outputs in coupled with the resting linear flux balance constraints using a robust, nonlinear, constrained-based, reduced gradient optimization algorithm. With the optimal parameter values, the model is able to simulate dynamic responses to reduced blood flow and oxygen supply to mitochondria associated with muscle ischemia of several key metabolite concentrations and metabolic fluxes in the subcellular cytosolic and mitochondrial compartments, some that can be measured and others that can not be measured with the current experimental techniques. The model can be applied to test complex hypotheses involving dynamic regulation of cellular metabolism and energetics in skeletal muscle during physiological stresses such as ischemia, hypoxia, and exercise.

  2. Physiological responses induced by pleasant stimuli.

    PubMed

    Watanuki, Shigeki; Kim, Yeon-Kyu

    2005-01-01

    The specific physiological responses induced by pleasant stimuli were investigated in this study. Various physiological responses of the brain (encephaloelectrogram; EEG), autonomic nervous system (ANS), immune system and endocrine system were monitored when pleasant stimuli such as odors, emotional pictures and rakugo, a typical Japanese comical story-telling, were presented to subjects. The results revealed that (i) EEG activities of the left frontal brain region were enhanced by a pleasant odor; (ii) emotional pictures related to primitive element such as nudes and erotic couples elevated vasomotor sympathetic nervous activity; and (iii) an increase in secretory immunoglobulin A (s-IgA) and a decrease in salivary cortisol (s-cortisol) were induced by rakugo-derived linguistic pleasant emotion. Pleasant emotion is complicated state. However, by considering the evolutionary history of human being, it is possible to assess and evaluate pleasant emotion from certain physiological responses by appropriately summating various physiological parameters.

  3. Differences in autonomic physiological responses between good and poor inductive reasoners.

    PubMed

    Melis, C; van Boxtel, A

    2001-11-01

    We investigated individual- and task-related differences in autonomic physiological responses induced by time limited figural and verbal inductive reasoning tasks. In a group of 52 participants, the percentage of correctly responded task items was evaluated together with nine different autonomic physiological response measures and respiration rate (RR). Weighted multidimensional scaling analyses of the physiological responses revealed three underlying dimensions, primarily characterized by RR, parasympathetic, and sympathetic activity. RR and sympathetic activity appeared to be relatively more important response dimensions for poor reasoners, whereas parasympathetic responsivity was relatively more important for good reasoners. These results suggest that poor reasoners showed higher levels of cognitive processing intensity than good reasoners. Furthermore, for the good reasoners, the dimension of sympathetic activity was relatively more important during the figural than during the verbal reasoning task, which was explained in terms of hemispheric lateralization in autonomic function.

  4. Nitrate Transport, Sensing, and Responses in Plants.

    PubMed

    O'Brien, José A; Vega, Andrea; Bouguyon, Eléonore; Krouk, Gabriel; Gojon, Alain; Coruzzi, Gloria; Gutiérrez, Rodrigo A

    2016-06-06

    Nitrogen (N) is an essential macronutrient that affects plant growth and development. N is an important component of chlorophyll, amino acids, nucleic acids, and secondary metabolites. Nitrate is one of the most abundant N sources in the soil. Because nitrate and other N nutrients are often limiting, plants have developed sophisticated mechanisms to ensure adequate supply of nutrients in a variable environment. Nitrate is absorbed in the root and mobilized to other organs by nitrate transporters. Nitrate sensing activates signaling pathways that impinge upon molecular, metabolic, physiological, and developmental responses locally and at the whole plant level. With the advent of genomics technologies and genetic tools, important advances in our understanding of nitrate and other N nutrient responses have been achieved in the past decade. Furthermore, techniques that take advantage of natural polymorphisms present in divergent individuals from a single species have been essential in uncovering new components. However, there are still gaps in our understanding of how nitrate signaling affects biological processes in plants. Moreover, we still lack an integrated view of how all the regulatory factors identified interact or crosstalk to orchestrate the myriad N responses plants typically exhibit. In this review, we provide an updated overview of mechanisms by which nitrate is sensed and transported throughout the plant. We discuss signaling components and how nitrate sensing crosstalks with hormonal pathways for developmental responses locally and globally in the plant. Understanding how nitrate impacts on plant metabolism, physiology, and growth and development in plants is key to improving crops for sustainable agriculture. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  5. ITAG: A fine-scale measurement platform to inform organismal response to a changing ocean

    NASA Astrophysics Data System (ADS)

    Katija, K.; Shorter, K. A.; Mooney, T. A.; Mann, D.; Wang, A. Z.; Sonnichsen, F. N.

    2016-02-01

    Soft-bodied marine invertebrates comprise a keystone component of ocean ecosystems, however we know little of their behaviors and physiological responses within their natural habitat. Quantifying ocean conditions and measuring an organisms' response to the physical environment is vital to understanding organismal responses to a changing ocean. However, we face technological limitations when attempting to quantify the physical and environmental conditions that organisms encounter at spatial and temporal scales of an individual organism. Here we describe a novel, eco-sensor tag (the ITAG) that has 3-axis accelerometer, 3-axis magnetometer, pressure, temperature, and light sensors. Current and future efforts involve miniaturizing and integrating O2 and salinity sensors to the ITAG. The tagging package is designed to be neutrally buoyant, and after a prescribed time, the electronics separate from a weighted base and floats to the surface. Tags were deployed on five jellyfish (Aurelia aurita) and eight squid (Loligo forbesi) in laboratory conditions for up to 24 hr. Using concurrent video and tag data, movement signatures for specific behaviors were identified. Based on these laboratory trials, we found that squid activity level changed in response to ambient light conditions, which can inform trade-offs between behavior and energy expenditure in captive and wild animals. The ITAG opens the door for lab and field-based measurements of behavior, physiology, and concurrent environmental parameters that not only inform interactions in a changing ocean, but also provides a novel platform by which characterization of the environment can be conducted at fine spatial and temporal scales.

  6. The Adaptive Calibration Model of stress responsivity

    PubMed Central

    Ellis, Bruce J.; Shirtcliff, Elizabeth A.

    2010-01-01

    This paper presents the Adaptive Calibration Model (ACM), an evolutionary-developmental theory of individual differences in the functioning of the stress response system. The stress response system has three main biological functions: (1) to coordinate the organism’s allostatic response to physical and psychosocial challenges; (2) to encode and filter information about the organism’s social and physical environment, mediating the organism’s openness to environmental inputs; and (3) to regulate the organism’s physiology and behavior in a broad range of fitness-relevant areas including defensive behaviors, competitive risk-taking, learning, attachment, affiliation and reproductive functioning. The information encoded by the system during development feeds back on the long-term calibration of the system itself, resulting in adaptive patterns of responsivity and individual differences in behavior. Drawing on evolutionary life history theory, we build a model of the development of stress responsivity across life stages, describe four prototypical responsivity patterns, and discuss the emergence and meaning of sex differences. The ACM extends the theory of biological sensitivity to context (BSC) and provides an integrative framework for future research in the field. PMID:21145350

  7. Development of a cerebral circulation model for the automatic control of brain physiology.

    PubMed

    Utsuki, T

    2015-01-01

    In various clinical guidelines of brain injury, intracranial pressure (ICP), cerebral blood flow (CBF) and brain temperature (BT) are essential targets for precise management for brain resuscitation. In addition, the integrated automatic control of BT, ICP, and CBF is required for improving therapeutic effects and reducing medical costs and staff burden. Thus, a new model of cerebral circulation was developed in this study for integrative automatic control. With this model, the CBF and cerebral perfusion pressure of a normal adult male were regionally calculated according to cerebrovascular structure, blood viscosity, blood distribution, CBF autoregulation, and ICP. The analysis results were consistent with physiological knowledge already obtained with conventional studies. Therefore, the developed model is potentially available for the integrative control of the physiological state of the brain as a reference model of an automatic control system, or as a controlled object in various control simulations.

  8. Characterization of a Field Spectroradiometer for Unattended Vegetation Monitoring. Key Sensor Models and Impacts on Reflectance

    PubMed Central

    Pacheco-Labrador, Javier; Martín, M. Pilar

    2015-01-01

    Field spectroradiometers integrated in automated systems at Eddy Covariance (EC) sites are a powerful tool for monitoring and upscaling vegetation physiology and carbon and water fluxes. However, exposure to varying environmental conditions can affect the functioning of these sensors, especially if these cannot be completely insulated and stabilized. This can cause inaccuracy in the spectral measurements and hinder the comparison between data acquired at different sites. This paper describes the characterization of key sensor models in a double beam spectroradiometer necessary to calculate the Hemispherical-Conical Reflectance Factor (HCRF). Dark current, temperature dependence, non-linearity, spectral calibration and cosine receptor directional responses are modeled in the laboratory as a function of temperature, instrument settings, radiation measured or illumination angle. These models are used to correct the spectral measurements acquired continuously by the same instrument integrated outdoors in an automated system (AMSPEC-MED). Results suggest that part of the instrumental issues cancel out mutually or can be controlled by the instrument configuration, so that changes induced in HCFR reached about 0.05 at maximum. However, these corrections are necessary to ensure the inter-comparison of data with other ground or remote sensors and to discriminate instrumentally induced changes in HCRF from those related with vegetation physiology and directional effects. PMID:25679315

  9. Mammalian target of rapamycin (mTOR): a central regulator of male fertility?

    PubMed

    Jesus, Tito T; Oliveira, Pedro F; Sousa, Mário; Cheng, C Yan; Alves, Marco G

    2017-06-01

    Mammalian target of rapamycin (mTOR) is a central regulator of cellular metabolic phenotype and is involved in virtually all aspects of cellular function. It integrates not only nutrient and energy-sensing pathways but also actin cytoskeleton organization, in response to environmental cues including growth factors and cellular energy levels. These events are pivotal for spermatogenesis and determine the reproductive potential of males. Yet, the molecular mechanisms by which mTOR signaling acts in male reproductive system remain a matter of debate. Here, we review the current knowledge on physiological and molecular events mediated by mTOR in testis and testicular cells. In recent years, mTOR inhibition has been explored as a prime strategy to develop novel therapeutic approaches to treat cancer, cardiovascular disease, autoimmunity, and metabolic disorders. However, the physiological consequences of mTOR dysregulation and inhibition to male reproductive potential are still not fully understood. Compelling evidence suggests that mTOR is an arising regulator of male fertility and better understanding of this atypical protein kinase coordinated action in testis will provide insightful information concerning its biological significance in other tissues/organs. We also discuss why a new generation of mTOR inhibitors aiming to be used in clinical practice may also need to include an integrative view on the effects in male reproductive system.

  10. Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays

    NASA Astrophysics Data System (ADS)

    Laborde, C.; Pittino, F.; Verhoeven, H. A.; Lemay, S. G.; Selmi, L.; Jongsma, M. A.; Widdershoven, F. P.

    2015-09-01

    Platforms that offer massively parallel, label-free biosensing can, in principle, be created by combining all-electrical detection with low-cost integrated circuits. Examples include field-effect transistor arrays, which are used for mapping neuronal signals and sequencing DNA. Despite these successes, however, bioelectronics has so far failed to deliver a broadly applicable biosensing platform. This is due, in part, to the fact that d.c. or low-frequency signals cannot be used to probe beyond the electrical double layer formed by screening salt ions, which means that under physiological conditions the sensing of a target analyte located even a short distance from the sensor (∼1 nm) is severely hampered. Here, we show that high-frequency impedance spectroscopy can be used to detect and image microparticles and living cells under physiological salt conditions. Our assay employs a large-scale, high-density array of nanoelectrodes integrated with CMOS electronics on a single chip and the sensor response depends on the electrical properties of the analyte, allowing impedance-based fingerprinting. With our platform, we image the dynamic attachment and micromotion of BEAS, THP1 and MCF7 cancer cell lines in real time at submicrometre resolution in growth medium, demonstrating the potential of the platform for label/tracer-free high-throughput screening of anti-tumour drug candidates.

  11. Survival, growth and reproduction of non-indigenous Nile tilapia, Oreochromis niloticus (Linnaeus 1758). I. Physiological capabilities in various temperatures and salinities

    USGS Publications Warehouse

    Schofield, Pamela J.; Peterson, Mark S.; Lowe, Michael R.; Brown-Peterson, Nancy J.; Slack, William T.

    2011-01-01

    The physiological tolerances of non-native fishes is an integral component of assessing potential invasive risk. Salinity and temperature are environmental variables that limit the spread of many non-native fishes. We hypothesised that combinations of temperature and salinity will interact to affect survival, growth, and reproduction of Nile tilapia, Oreochromis niloticus, introduced into Mississippi, USA. Tilapia withstood acute transfer from fresh water up to a salinity of 20 and survived gradual transfer up to 60 at typical summertime (30°C) temperatures. However, cold temperature (14°C) reduced survival of fish in saline waters ≥10 and increased the incidence of disease in freshwater controls. Although fish were able to equilibrate to saline waters in warm temperatures, reproductive parameters were reduced at salinities ≥30. These integrated responses suggest that Nile tilapia can invade coastal areas beyond their point of introduction. However, successful invasion is subject to two caveats: (1) wintertime survival depends on finding thermal refugia, and (2) reproduction is hampered in regions where salinities are ≥30. These data are vital to predicting the invasion of non-native fishes into coastal watersheds. This is particularly important given the predicted changes in coastal landscapes due to global climate change and sea-level rise.

  12. Physiological-based modelling of marine fish early life stages provides process knowledge on climate impacts

    NASA Astrophysics Data System (ADS)

    Peck, M. A.

    2016-02-01

    Gaining a cause-and-effect understanding of climate-driven changes in marine fish populations at appropriate spatial scales is important for providing robust advice for ecosystem-based fisheries management. Coupling long-term, retrospective analyses and 3-d biophysical, individual-based models (IBMs) shows great potential to reveal mechanism underlying historical changes and to project future changes in marine fishes. IBMs created for marine fish early life stages integrate organismal-level physiological responses and climate-driven changes in marine habitats (from ocean physics to lower trophic level productivity) to test and reveal processes affecting marine fish recruitment. Case studies are provided for hindcasts and future (A1 and B2 projection) simulations performed on some of the most ecologically- and commercially-important pelagic and demersal fishes in the North Sea including European anchovy, Atlantic herring, European sprat and Atlantic cod. We discuss the utility of coupling biophysical IBMs to size-spectrum models to better project indirect (trophodynamic) pathways of climate influence on the early life stages of these and other fishes. Opportunities and challenges are discussed regarding the ability of these physiological-based tools to capture climate-driven changes in living marine resources and food web dynamics of shelf seas.

  13. Epithelial-mesenchymal transition in tissue repair and fibrosis.

    PubMed

    Stone, Rivka C; Pastar, Irena; Ojeh, Nkemcho; Chen, Vivien; Liu, Sophia; Garzon, Karen I; Tomic-Canic, Marjana

    2016-09-01

    The epithelial-mesenchymal transition (EMT) describes the global process by which stationary epithelial cells undergo phenotypic changes, including the loss of cell-cell adhesion and apical-basal polarity, and acquire mesenchymal characteristics that confer migratory capacity. EMT and its converse, MET (mesenchymal-epithelial transition), are integral stages of many physiologic processes and, as such, are tightly coordinated by a host of molecular regulators. Converging lines of evidence have identified EMT as a component of cutaneous wound healing, during which otherwise stationary keratinocytes (the resident skin epithelial cells) migrate across the wound bed to restore the epidermal barrier. Moreover, EMT plays a role in the development of scarring and fibrosis, as the matrix-producing myofibroblasts arise from cells of the epithelial lineage in response to injury but are pathologically sustained instead of undergoing MET or apoptosis. In this review, we summarize the role of EMT in physiologic repair and pathologic fibrosis of tissues and organs. We conclude that further investigation into the contribution of EMT to the faulty repair of fibrotic wounds might identify components of EMT signaling as common therapeutic targets for impaired healing in many tissues. Graphical Abstract Model for injury-triggered EMT activation in physiologic wound repair (left) and fibrotic wound healing (right).

  14. Temperature and CO2 additively regulate physiology, morphology and genomic responses of larval sea urchins, Strongylocentrotus purpuratus

    PubMed Central

    Padilla-Gamiño, Jacqueline L.; Kelly, Morgan W.; Evans, Tyler G.; Hofmann, Gretchen E.

    2013-01-01

    Ocean warming and ocean acidification, both consequences of anthropogenic production of CO2, will combine to influence the physiological performance of many species in the marine environment. In this study, we used an integrative approach to forecast the impact of future ocean conditions on larval purple sea urchins (Strongylocentrotus purpuratus) from the northeast Pacific Ocean. In laboratory experiments that simulated ocean warming and ocean acidification, we examined larval development, skeletal growth, metabolism and patterns of gene expression using an orthogonal comparison of two temperature (13°C and 18°C) and pCO2 (400 and 1100 μatm) conditions. Simultaneous exposure to increased temperature and pCO2 significantly reduced larval metabolism and triggered a widespread downregulation of histone encoding genes. pCO2 but not temperature impaired skeletal growth and reduced the expression of a major spicule matrix protein, suggesting that skeletal growth will not be further inhibited by ocean warming. Importantly, shifts in skeletal growth were not associated with developmental delay. Collectively, our results indicate that global change variables will have additive effects that exceed thresholds for optimized physiological performance in this keystone marine species. PMID:23536595

  15. Integration of Cadmium Accumulation, Subcellular Distribution, and Physiological Responses to Understand Cadmium Tolerance in Apple Rootstocks

    PubMed Central

    Zhou, Jiangtao; Wan, Huixue; He, Jiali; Lyu, Deguo; Li, Huifeng

    2017-01-01

    Cadmium (Cd) is a nonessential and highly toxic element causing agricultural problems. However, little information is available about the variation in Cd tolerance among apple rootstocks and its underlying physiological regulation mechanisms. This study investigated Cd accumulation, subcellular distribution, and chemical forms as well as physiological changes among four apple rootstocks exposed to either 0 or 300 μM CdCl2. The results showed that variations in Cd tolerance existed among these rootstocks. Cd exposure caused decline in photosynthesis, chlorophyll and biomass in four apple rootstocks, which was less pronounced in M. baccata, indicating its higher Cd tolerance. This finding was corroborated with higher Cd tolerance indexes (TIs) of the whole plant in M. baccata than those in the other three apple rootstocks. Among the four apple rootstocks, M. baccata displayed the lowest Cd concentrations in roots, wood, and leaves, the smallest total Cd amounts as well as the lowest BCF. In apple rootstocks, it was found that to immobilize Cd in cell wall and soluble fraction (most likely in vacuole) and to convert it into pectate- or protein- integrated forms and undissolved Cd phosphate forms may be the primary strategies to reduce Cd mobility and toxicity. The physiological changes including ROS, carbohydrates and antioxidants were in line with the variations of Cd tolerance among four apple rootstocks. In comparison with the other three apple rootstocks, M. baccata had lower concentrations of ROS in roots and bark, H2O2 in roots and leaves and MDA in roots, wood and bark, but higher concentrations of soluble sugars in bark and starch in roots and leaves, and enhanced antioxidants. These results indicate that M. baccata are more tolerant to Cd stress than the other three apple rootstocks under the current experiment conditions, which is probably related to Cd accumulation, subcellular partitioning and chemical forms of Cd and well-coordinated antioxidant defense mechanisms. PMID:28638400

  16. Physiological Stress in Koala Populations near the Arid Edge of Their Distribution

    PubMed Central

    Davies, Nicole Ashley; Gramotnev, Galina; McAlpine, Clive; Seabrook, Leonie; Baxter, Greg; Lunney, Daniel; Rhodes, Jonathan R.; Bradley, Adrian

    2013-01-01

    Recent research has shown that the ecology of stress has hitherto been neglected, but it is in fact an important influence on the distribution and numbers of wild vertebrates. Environmental changes have the potential to cause physiological stress that can affect population dynamics. Detailed information on the influence of environmental variables on glucocorticoid levels (a measure of stress) at the trailing edge of a species’ distribution can highlight stressors that potentially threaten species and thereby help explain how environmental challenges, such as climate change, will affect the survival of these populations. Rainfall determines leaf moisture and/or nutritional content, which in turn impacts on cortisol concentrations. We show that higher faecal cortisol metabolite (FCM) levels in koala populations at the trailing arid edge of their range in southwestern Queensland are associated with lower rainfall levels (especially rainfall from the previous two months), indicating an increase in physiological stress when moisture levels are low. These results show that koalas at the semi-arid, inland edge of their geographic range, will fail to cope with increasing aridity from climate change. The results demonstrate the importance of integrating physiological assessments into ecological studies to identify stressors that have the potential to compromise the long-term survival of threatened species. This finding points to the need for research to link these stressors to demographic decline to ensure a more comprehensive understanding of species’ responses to climate change. PMID:24265749

  17. Physiological markers of biased decision-making in problematic Internet users.

    PubMed

    Nikolaidou, Maria; Fraser, Danaë Stanton; Hinvest, Neal

    2016-09-01

    Background and aims Addiction has been reliably associated with biased emotional reactions to risky choices. Problematic Internet use (PIU) is a relatively new concept and its classification as an addiction is debated. Implicit emotional responses were measured in individuals expressing nonproblematic and problematic Internet behaviors while they made risky/ambiguous decisions to explore whether they showed similar responses to those found in agreed-upon addictions. Methods The design of the study was cross sectional. Participants were adult Internet users (N = 72). All testing took place in the Psychophysics Laboratory at the University of Bath, UK. Participants were given the Iowa Gambling Task (IGT) which provides an index of an individual's ability to process and learn probabilities of reward and loss. Integration of emotions into current decision-making frameworks is vital for optimal performance on the IGT and thus, skin conductance responses (SCRs) to reward, punishment, and in anticipation of both were measured to assess emotional function. Results Performance on the IGT did not differ between the groups of Internet users. However, problematic Internet users expressed increased sensitivity to punishment as revealed by stronger SCRs to trials with higher punishment magnitude. Discussion and conclusions PIU seems to differ on behavioral and physiological levels with other addictions. However, our data imply that problematic Internet users were more risk-sensitive, which is a suggestion that needs to be incorporated into in any measure and, potentially, any intervention for PIU.

  18. Nanotextured titanium surfaces stimulate spreading, migration, and growth of rat mast cells.

    PubMed

    Marcatti Amarú Maximiano, William; Marino Mazucato, Vivian; Tambasco de Oliveira, Paulo; Célia Jamur, Maria; Oliver, Constance

    2017-08-01

    Titanium is a biomaterial widely used in dental and orthopedic implants. Since tissue-implant interactions occur at the nanoscale level, nanotextured titanium surfaces may affect cellular activity and modulate the tissue response that occurs at the tissue-implant interface. Therefore, the characterization of diverse cell types in response to titanium surfaces with nanotopography is important for the rational design of implants. Mast cells are multifunctional cells of the immune system that release a range of chemical mediators involved in the inflammatory response that occurs at the tissue-implant interface. Therefore, the aim of this study was to investigate the effects of the nanotopography of titanium surfaces on the physiology of mast cells. The results show that the nanotopography of titanium surfaces promoted the spreading of mast cells, which was accompanied by the reorganization of the cytoskeleton. Also, the nanotopography of titanium surfaces enhanced cell migration and cell growth, but did not alter the number of adherent cells in first hours of culture or affect focal adhesions and mediator release. Thus, the results show that nanotopography of titanium surfaces can affect mast cell physiology, and represents an improved strategy for the rational production of surfaces that stimulate tissue integration with the titanium implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2150-2161, 2017. © 2017 Wiley Periodicals, Inc.

  19. A consolidated analysis of the physiologic and molecular responses induced under acid stress in the legume-symbiont model-soil bacterium Sinorhizobium meliloti.

    PubMed

    Draghi, W O; Del Papa, M F; Hellweg, C; Watt, S A; Watt, T F; Barsch, A; Lozano, M J; Lagares, A; Salas, M E; López, J L; Albicoro, F J; Nilsson, J F; Torres Tejerizo, G A; Luna, M F; Pistorio, M; Boiardi, J L; Pühler, A; Weidner, S; Niehaus, K; Lagares, A

    2016-07-11

    Abiotic stresses in general and extracellular acidity in particular disturb and limit nitrogen-fixing symbioses between rhizobia and their host legumes. Except for valuable molecular-biological studies on different rhizobia, no consolidated models have been formulated to describe the central physiologic changes that occur in acid-stressed bacteria. We present here an integrated analysis entailing the main cultural, metabolic, and molecular responses of the model bacterium Sinorhizobium meliloti growing under controlled acid stress in a chemostat. A stepwise extracellular acidification of the culture medium had indicated that S. meliloti stopped growing at ca. pH 6.0-6.1. Under such stress the rhizobia increased the O2 consumption per cell by more than 5-fold. This phenotype, together with an increase in the transcripts for several membrane cytochromes, entails a higher aerobic-respiration rate in the acid-stressed rhizobia. Multivariate analysis of global metabolome data served to unequivocally correlate specific-metabolite profiles with the extracellular pH, showing that at low pH the pentose-phosphate pathway exhibited increases in several transcripts, enzymes, and metabolites. Further analyses should be focused on the time course of the observed changes, its associated intracellular signaling, and on the comparison with the changes that operate during the sub lethal acid-adaptive response (ATR) in rhizobia.

  20. A consolidated analysis of the physiologic and molecular responses induced under acid stress in the legume-symbiont model-soil bacterium Sinorhizobium meliloti

    PubMed Central

    Draghi, W. O.; Del Papa, M. F.; Hellweg, C.; Watt, S. A.; Watt, T. F.; Barsch, A.; Lozano, M. J.; Lagares, A.; Salas, M. E.; López, J. L.; Albicoro, F. J.; Nilsson, J. F.; Torres Tejerizo, G. A.; Luna, M. F.; Pistorio, M.; Boiardi, J. L.; Pühler, A.; Weidner, S.; Niehaus, K.; Lagares, A.

    2016-01-01

    Abiotic stresses in general and extracellular acidity in particular disturb and limit nitrogen-fixing symbioses between rhizobia and their host legumes. Except for valuable molecular-biological studies on different rhizobia, no consolidated models have been formulated to describe the central physiologic changes that occur in acid-stressed bacteria. We present here an integrated analysis entailing the main cultural, metabolic, and molecular responses of the model bacterium Sinorhizobium meliloti growing under controlled acid stress in a chemostat. A stepwise extracellular acidification of the culture medium had indicated that S. meliloti stopped growing at ca. pH 6.0–6.1. Under such stress the rhizobia increased the O2 consumption per cell by more than 5-fold. This phenotype, together with an increase in the transcripts for several membrane cytochromes, entails a higher aerobic-respiration rate in the acid-stressed rhizobia. Multivariate analysis of global metabolome data served to unequivocally correlate specific-metabolite profiles with the extracellular pH, showing that at low pH the pentose-phosphate pathway exhibited increases in several transcripts, enzymes, and metabolites. Further analyses should be focused on the time course of the observed changes, its associated intracellular signaling, and on the comparison with the changes that operate during the sub lethal acid-adaptive response (ATR) in rhizobia. PMID:27404346

Top