Integrated Proteomic Approaches for Understanding Toxicity of Environmental Chemicals
To apply quantitative proteomic analysis to the evaluation of toxicity of environmental chemicals, we have developed an integrated proteomic technology platform. This platform has been applied to the analysis of the toxic effects and pathways of many important environmental chemi...
Investigators from the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC) who comprehensively analyzed 95 human colorectal tumor samples, have determined how gene alterations identified in previous analyses of the same samples are expressed at the protein level. The integration of proteomic and genomic data, or proteogenomics, provides a more comprehensive view of the biological features that drive cancer than genomic analysis alone and may help identify the most important targets for cancer detection and intervention.
Weckwerth, Wolfram; Wienkoop, Stefanie; Hoehenwarter, Wolfgang; Egelhofer, Volker; Sun, Xiaoliang
2014-01-01
Genome sequencing and systems biology are revolutionizing life sciences. Proteomics emerged as a fundamental technique of this novel research area as it is the basis for gene function analysis and modeling of dynamic protein networks. Here a complete proteomics platform suited for functional genomics and systems biology is presented. The strategy includes MAPA (mass accuracy precursor alignment; http://www.univie.ac.at/mosys/software.html ) as a rapid exploratory analysis step; MASS WESTERN for targeted proteomics; COVAIN ( http://www.univie.ac.at/mosys/software.html ) for multivariate statistical analysis, data integration, and data mining; and PROMEX ( http://www.univie.ac.at/mosys/databases.html ) as a database module for proteogenomics and proteotypic peptides for targeted analysis. Moreover, the presented platform can also be utilized to integrate metabolomics and transcriptomics data for the analysis of metabolite-protein-transcript correlations and time course analysis using COVAIN. Examples for the integration of MAPA and MASS WESTERN data, proteogenomic and metabolic modeling approaches for functional genomics, phosphoproteomics by integration of MOAC (metal-oxide affinity chromatography) with MAPA, and the integration of metabolomics, transcriptomics, proteomics, and physiological data using this platform are presented. All software and step-by-step tutorials for data processing and data mining can be downloaded from http://www.univie.ac.at/mosys/software.html.
Systems Proteomics for Translational Network Medicine
Arrell, D. Kent; Terzic, Andre
2012-01-01
Universal principles underlying network science, and their ever-increasing applications in biomedicine, underscore the unprecedented capacity of systems biology based strategies to synthesize and resolve massive high throughput generated datasets. Enabling previously unattainable comprehension of biological complexity, systems approaches have accelerated progress in elucidating disease prediction, progression, and outcome. Applied to the spectrum of states spanning health and disease, network proteomics establishes a collation, integration, and prioritization algorithm to guide mapping and decoding of proteome landscapes from large-scale raw data. Providing unparalleled deconvolution of protein lists into global interactomes, integrative systems proteomics enables objective, multi-modal interpretation at molecular, pathway, and network scales, merging individual molecular components, their plurality of interactions, and functional contributions for systems comprehension. As such, network systems approaches are increasingly exploited for objective interpretation of cardiovascular proteomics studies. Here, we highlight network systems proteomic analysis pipelines for integration and biological interpretation through protein cartography, ontological categorization, pathway and functional enrichment and complex network analysis. PMID:22896016
Yu, Kebing; Salomon, Arthur R
2009-12-01
Recently, dramatic progress has been achieved in expanding the sensitivity, resolution, mass accuracy, and scan rate of mass spectrometers able to fragment and identify peptides through MS/MS. Unfortunately, this enhanced ability to acquire proteomic data has not been accompanied by a concomitant increase in the availability of flexible tools allowing users to rapidly assimilate, explore, and analyze this data and adapt to various experimental workflows with minimal user intervention. Here we fill this critical gap by providing a flexible relational database called PeptideDepot for organization of expansive proteomic data sets, collation of proteomic data with available protein information resources, and visual comparison of multiple quantitative proteomic experiments. Our software design, built upon the synergistic combination of a MySQL database for safe warehousing of proteomic data with a FileMaker-driven graphical user interface for flexible adaptation to diverse workflows, enables proteomic end-users to directly tailor the presentation of proteomic data to the unique analysis requirements of the individual proteomics lab. PeptideDepot may be deployed as an independent software tool or integrated directly with our high throughput autonomous proteomic pipeline used in the automated acquisition and post-acquisition analysis of proteomic data.
Yu, Kebing; Salomon, Arthur R.
2010-01-01
Recently, dramatic progress has been achieved in expanding the sensitivity, resolution, mass accuracy, and scan rate of mass spectrometers able to fragment and identify peptides through tandem mass spectrometry (MS/MS). Unfortunately, this enhanced ability to acquire proteomic data has not been accompanied by a concomitant increase in the availability of flexible tools allowing users to rapidly assimilate, explore, and analyze this data and adapt to a variety of experimental workflows with minimal user intervention. Here we fill this critical gap by providing a flexible relational database called PeptideDepot for organization of expansive proteomic data sets, collation of proteomic data with available protein information resources, and visual comparison of multiple quantitative proteomic experiments. Our software design, built upon the synergistic combination of a MySQL database for safe warehousing of proteomic data with a FileMaker-driven graphical user interface for flexible adaptation to diverse workflows, enables proteomic end-users to directly tailor the presentation of proteomic data to the unique analysis requirements of the individual proteomics lab. PeptideDepot may be deployed as an independent software tool or integrated directly with our High Throughput Autonomous Proteomic Pipeline (HTAPP) used in the automated acquisition and post-acquisition analysis of proteomic data. PMID:19834895
Boyanova, Desislava; Nilla, Santosh; Klau, Gunnar W.; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus
2014-01-01
The continuously evolving field of proteomics produces increasing amounts of data while improving the quality of protein identifications. Albeit quantitative measurements are becoming more popular, many proteomic studies are still based on non-quantitative methods for protein identification. These studies result in potentially large sets of identified proteins, where the biological interpretation of proteins can be challenging. Systems biology develops innovative network-based methods, which allow an integrated analysis of these data. Here we present a novel approach, which combines prior knowledge of protein-protein interactions (PPI) with proteomics data using functional similarity measurements of interacting proteins. This integrated network analysis exactly identifies network modules with a maximal consistent functional similarity reflecting biological processes of the investigated cells. We validated our approach on small (H9N2 virus-infected gastric cells) and large (blood constituents) proteomic data sets. Using this novel algorithm, we identified characteristic functional modules in virus-infected cells, comprising key signaling proteins (e.g. the stress-related kinase RAF1) and demonstrate that this method allows a module-based functional characterization of cell types. Analysis of a large proteome data set of blood constituents resulted in clear separation of blood cells according to their developmental origin. A detailed investigation of the T-cell proteome further illustrates how the algorithm partitions large networks into functional subnetworks each representing specific cellular functions. These results demonstrate that the integrated network approach not only allows a detailed analysis of proteome networks but also yields a functional decomposition of complex proteomic data sets and thereby provides deeper insights into the underlying cellular processes of the investigated system. PMID:24807868
Martínez-Bartolomé, Salvador; Medina-Aunon, J Alberto; López-García, Miguel Ángel; González-Tejedo, Carmen; Prieto, Gorka; Navajas, Rosana; Salazar-Donate, Emilio; Fernández-Costa, Carolina; Yates, John R; Albar, Juan Pablo
2018-04-06
Mass-spectrometry-based proteomics has evolved into a high-throughput technology in which numerous large-scale data sets are generated from diverse analytical platforms. Furthermore, several scientific journals and funding agencies have emphasized the storage of proteomics data in public repositories to facilitate its evaluation, inspection, and reanalysis. (1) As a consequence, public proteomics data repositories are growing rapidly. However, tools are needed to integrate multiple proteomics data sets to compare different experimental features or to perform quality control analysis. Here, we present a new Java stand-alone tool, Proteomics Assay COMparator (PACOM), that is able to import, combine, and simultaneously compare numerous proteomics experiments to check the integrity of the proteomic data as well as verify data quality. With PACOM, the user can detect source of errors that may have been introduced in any step of a proteomics workflow and that influence the final results. Data sets can be easily compared and integrated, and data quality and reproducibility can be visually assessed through a rich set of graphical representations of proteomics data features as well as a wide variety of data filters. Its flexibility and easy-to-use interface make PACOM a unique tool for daily use in a proteomics laboratory. PACOM is available at https://github.com/smdb21/pacom .
Integrated proteomic and genomic analysis of colorectal cancer
Investigators who analyzed 95 human colorectal tumor samples have determined how gene alterations identified in previous analyses of the same samples are expressed at the protein level. The integration of proteomic and genomic data, or proteogenomics, pro
Deng, Ning; Li, Zhenye; Pan, Chao; Duan, Huilong
2015-01-01
Study of complex proteome brings forward higher request for the quantification method using mass spectrometry technology. In this paper, we present a mass spectrometry label-free quantification tool for complex proteomes, called freeQuant, which integrated quantification with functional analysis effectively. freeQuant consists of two well-integrated modules: label-free quantification and functional analysis with biomedical knowledge. freeQuant supports label-free quantitative analysis which makes full use of tandem mass spectrometry (MS/MS) spectral count, protein sequence length, shared peptides, and ion intensity. It adopts spectral count for quantitative analysis and builds a new method for shared peptides to accurately evaluate abundance of isoforms. For proteins with low abundance, MS/MS total ion count coupled with spectral count is included to ensure accurate protein quantification. Furthermore, freeQuant supports the large-scale functional annotations for complex proteomes. Mitochondrial proteomes from the mouse heart, the mouse liver, and the human heart were used to evaluate the usability and performance of freeQuant. The evaluation showed that the quantitative algorithms implemented in freeQuant can improve accuracy of quantification with better dynamic range.
Methods, Tools and Current Perspectives in Proteogenomics *
Ruggles, Kelly V.; Krug, Karsten; Wang, Xiaojing; Clauser, Karl R.; Wang, Jing; Payne, Samuel H.; Fenyö, David; Zhang, Bing; Mani, D. R.
2017-01-01
With combined technological advancements in high-throughput next-generation sequencing and deep mass spectrometry-based proteomics, proteogenomics, i.e. the integrative analysis of proteomic and genomic data, has emerged as a new research field. Early efforts in the field were focused on improving protein identification using sample-specific genomic and transcriptomic sequencing data. More recently, integrative analysis of quantitative measurements from genomic and proteomic studies have identified novel insights into gene expression regulation, cell signaling, and disease. Many methods and tools have been developed or adapted to enable an array of integrative proteogenomic approaches and in this article, we systematically classify published methods and tools into four major categories, (1) Sequence-centric proteogenomics; (2) Analysis of proteogenomic relationships; (3) Integrative modeling of proteogenomic data; and (4) Data sharing and visualization. We provide a comprehensive review of methods and available tools in each category and highlight their typical applications. PMID:28456751
Arntzen, Magnus Ø; Thiede, Bernd
2012-02-01
Apoptosis is the most commonly described form of programmed cell death, and dysfunction is implicated in a large number of human diseases. Many quantitative proteome analyses of apoptosis have been performed to gain insight in proteins involved in the process. This resulted in large and complex data sets that are difficult to evaluate. Therefore, we developed the ApoptoProteomics database for storage, browsing, and analysis of the outcome of large scale proteome analyses of apoptosis derived from human, mouse, and rat. The proteomics data of 52 publications were integrated and unified with protein annotations from UniProt-KB, the caspase substrate database homepage (CASBAH), and gene ontology. Currently, more than 2300 records of more than 1500 unique proteins were included, covering a large proportion of the core signaling pathways of apoptosis. Analysis of the data set revealed a high level of agreement between the reported changes in directionality reported in proteomics studies and expected apoptosis-related function and may disclose proteins without a current recognized involvement in apoptosis based on gene ontology. Comparison between induction of apoptosis by the intrinsic and the extrinsic apoptotic signaling pathway revealed slight differences. Furthermore, proteomics has significantly contributed to the field of apoptosis in identifying hundreds of caspase substrates. The database is available at http://apoptoproteomics.uio.no.
Arntzen, Magnus Ø.; Thiede, Bernd
2012-01-01
Apoptosis is the most commonly described form of programmed cell death, and dysfunction is implicated in a large number of human diseases. Many quantitative proteome analyses of apoptosis have been performed to gain insight in proteins involved in the process. This resulted in large and complex data sets that are difficult to evaluate. Therefore, we developed the ApoptoProteomics database for storage, browsing, and analysis of the outcome of large scale proteome analyses of apoptosis derived from human, mouse, and rat. The proteomics data of 52 publications were integrated and unified with protein annotations from UniProt-KB, the caspase substrate database homepage (CASBAH), and gene ontology. Currently, more than 2300 records of more than 1500 unique proteins were included, covering a large proportion of the core signaling pathways of apoptosis. Analysis of the data set revealed a high level of agreement between the reported changes in directionality reported in proteomics studies and expected apoptosis-related function and may disclose proteins without a current recognized involvement in apoptosis based on gene ontology. Comparison between induction of apoptosis by the intrinsic and the extrinsic apoptotic signaling pathway revealed slight differences. Furthermore, proteomics has significantly contributed to the field of apoptosis in identifying hundreds of caspase substrates. The database is available at http://apoptoproteomics.uio.no. PMID:22067098
Venkataramanan, Keerthi P; Min, Lie; Hou, Shuyu; Jones, Shawn W; Ralston, Matthew T; Lee, Kelvin H; Papoutsakis, E Terry
2015-01-01
Clostridium acetobutylicum is a model organism for both clostridial biology and solvent production. The organism is exposed to its own toxic metabolites butyrate and butanol, which trigger an adaptive stress response. Integrative analysis of proteomic and RNAseq data may provide novel insights into post-transcriptional regulation. The identified iTRAQ-based quantitative stress proteome is made up of 616 proteins with a 15 % genome coverage. The differentially expressed proteome correlated poorly with the corresponding differential RNAseq transcriptome. Up to 31 % of the differentially expressed proteins under stress displayed patterns opposite to those of the transcriptome, thus suggesting significant post-transcriptional regulation. The differential proteome of the translation machinery suggests that cells employ a different subset of ribosomal proteins under stress. Several highly upregulated proteins but with low mRNA levels possessed mRNAs with long 5'UTRs and strong RBS scores, thus supporting the argument that regulatory elements on the long 5'UTRs control their translation. For example, the oxidative stress response rubrerythrin was upregulated only at the protein level up to 40-fold without significant mRNA changes. We also identified many leaderless transcripts, several displaying different transcriptional start sites, thus suggesting mRNA-trimming mechanisms under stress. Downregulation of Rho and partner proteins pointed to changes in transcriptional elongation and termination under stress. The integrative proteomic-transcriptomic analysis demonstrated complex expression patterns of a large fraction of the proteome. Such patterns could not have been detected with one or the other omic analyses. Our analysis proposes the involvement of specific molecular mechanisms of post-transcriptional regulation to explain the observed complex stress response.
HTAPP: High-Throughput Autonomous Proteomic Pipeline
Yu, Kebing; Salomon, Arthur R.
2011-01-01
Recent advances in the speed and sensitivity of mass spectrometers and in analytical methods, the exponential acceleration of computer processing speeds, and the availability of genomic databases from an array of species and protein information databases have led to a deluge of proteomic data. The development of a lab-based automated proteomic software platform for the automated collection, processing, storage, and visualization of expansive proteomic datasets is critically important. The high-throughput autonomous proteomic pipeline (HTAPP) described here is designed from the ground up to provide critically important flexibility for diverse proteomic workflows and to streamline the total analysis of a complex proteomic sample. This tool is comprised of software that controls the acquisition of mass spectral data along with automation of post-acquisition tasks such as peptide quantification, clustered MS/MS spectral database searching, statistical validation, and data exploration within a user-configurable lab-based relational database. The software design of HTAPP focuses on accommodating diverse workflows and providing missing software functionality to a wide range of proteomic researchers to accelerate the extraction of biological meaning from immense proteomic data sets. Although individual software modules in our integrated technology platform may have some similarities to existing tools, the true novelty of the approach described here is in the synergistic and flexible combination of these tools to provide an integrated and efficient analysis of proteomic samples. PMID:20336676
Cambiaghi, Alice; Díaz, Ramón; Martinez, Julia Bauzá; Odena, Antonia; Brunelli, Laura; Caironi, Pietro; Masson, Serge; Baselli, Giuseppe; Ristagno, Giuseppe; Gattinoni, Luciano; de Oliveira, Eliandre; Pastorelli, Roberta; Ferrario, Manuela
2018-04-27
In this work, we examined plasma metabolome, proteome and clinical features in patients with severe septic shock enrolled in the multicenter ALBIOS study. The objective was to identify changes in the levels of metabolites involved in septic shock progression and to integrate this information with the variation occurring in proteins and clinical data. Mass spectrometry-based targeted metabolomics and untargeted proteomics allowed us to quantify absolute metabolites concentration and relative proteins abundance. We computed the ratio D7/D1 to take into account their variation from day 1 (D1) to day 7 (D7) after shock diagnosis. Patients were divided into two groups according to 28-day mortality. Three different elastic net logistic regression models were built: one on metabolites only, one on metabolites and proteins and one to integrate metabolomics and proteomics data with clinical parameters. Linear discriminant analysis and Partial least squares Discriminant Analysis were also implemented. All the obtained models correctly classified the observations in the testing set. By looking at the variable importance (VIP) and the selected features, the integration of metabolomics with proteomics data showed the importance of circulating lipids and coagulation cascade in septic shock progression, thus capturing a further layer of biological information complementary to metabolomics information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritsenko, Marina A.; Xu, Zhe; Liu, Tao
Comprehensive, quantitative information on abundances of proteins and their post-translational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labelling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification andmore » quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples, and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.« less
Gritsenko, Marina A; Xu, Zhe; Liu, Tao; Smith, Richard D
2016-01-01
Comprehensive, quantitative information on abundances of proteins and their posttranslational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labeling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification and quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.
Multidimensional proteomics for cell biology.
Larance, Mark; Lamond, Angus I
2015-05-01
The proteome is a dynamic system in which each protein has interconnected properties - dimensions - that together contribute to the phenotype of a cell. Measuring these properties has proved challenging owing to their diversity and dynamic nature. Advances in mass spectrometry-based proteomics now enable the measurement of multiple properties for thousands of proteins, including their abundance, isoform expression, turnover rate, subcellular localization, post-translational modifications and interactions. Complementing these experimental developments are new data analysis, integration and visualization tools as well as data-sharing resources. Together, these advances in the multidimensional analysis of the proteome are transforming our understanding of various cellular and physiological processes.
Xue, Lu; Lin, Lin; Zhou, Wenbin; Chen, Wendong; Tang, Jun; Sun, Xiujie; Huang, Peiwu; Tian, Ruijun
2018-06-09
Plasma proteome profiling by LC-MS based proteomics has drawn great attention recently for biomarker discovery from blood liquid biopsy. Due to standard multi-step sample preparation could potentially cause plasma protein degradation and analysis variation, integrated proteomics sample preparation technologies became promising solution towards this end. Here, we developed a fully integrated proteomics sample preparation technology for both fast and deep plasma proteome profiling under its native pH. All the sample preparation steps, including protein digestion and two-dimensional fractionation by both mixed-mode ion exchange and high-pH reversed phase mechanism were integrated into one spintip device for the first time. The mixed-mode ion exchange beads design achieved the sample loading at neutral pH and protein digestion within 30 min. Potential sample loss and protein degradation by pH changing could be voided. 1 μL of plasma sample with depletion of high abundant proteins was processed by the developed technology with 12 equally distributed fractions and analyzed with 12 h of LC-MS gradient time, resulting in the identification of 862 proteins. The combination of the Mixed-mode-SISPROT and data-independent MS method achieved fast plasma proteome profiling in 2 h with high identification overlap and quantification precision for a proof-of-concept study of plasma samples from 5 healthy donors. We expect that the Mixed-mode-SISPROT become a generally applicable sample preparation technology for clinical oriented plasma proteome profiling. Copyright © 2018 Elsevier B.V. All rights reserved.
Friso, Giulia; Giacomelli, Lisa; Ytterberg, A Jimmy; Peltier, Jean-Benoit; Rudella, Andrea; Sun, Qi; Wijk, Klaas J van
2004-02-01
An extensive analysis of the Arabidopsis thaliana peripheral and integral thylakoid membrane proteome was performed by sequential extractions with salt, detergent, and organic solvents, followed by multidimensional protein separation steps (reverse-phase HPLC and one- and two-dimensional electrophoresis gels), different enzymatic and nonenzymatic protein cleavage techniques, mass spectrometry, and bioinformatics. Altogether, 154 proteins were identified, of which 76 (49%) were alpha-helical integral membrane proteins. Twenty-seven new proteins without known function but with predicted chloroplast transit peptides were identified, of which 17 (63%) are integral membrane proteins. These new proteins, likely important in thylakoid biogenesis, include two rubredoxins, a potential metallochaperone, and a new DnaJ-like protein. The data were integrated with our analysis of the lumenal-enriched proteome. We identified 83 out of 100 known proteins of the thylakoid localized photosynthetic apparatus, including several new paralogues and some 20 proteins involved in protein insertion, assembly, folding, or proteolysis. An additional 16 proteins are involved in translation, demonstrating that the thylakoid membrane surface is an important site for protein synthesis. The high coverage of the photosynthetic apparatus and the identification of known hydrophobic proteins with low expression levels, such as cpSecE, Ohp1, and Ohp2, indicate an excellent dynamic resolution of the analysis. The sequential extraction process proved very helpful to validate transmembrane prediction. Our data also were cross-correlated to chloroplast subproteome analyses by other laboratories. All data are deposited in a new curated plastid proteome database (PPDB) with multiple search functions (http://cbsusrv01.tc.cornell.edu/users/ppdb/). This PPDB will serve as an expandable resource for the plant community.
Shteynberg, David; Deutsch, Eric W.; Lam, Henry; Eng, Jimmy K.; Sun, Zhi; Tasman, Natalie; Mendoza, Luis; Moritz, Robert L.; Aebersold, Ruedi; Nesvizhskii, Alexey I.
2011-01-01
The combination of tandem mass spectrometry and sequence database searching is the method of choice for the identification of peptides and the mapping of proteomes. Over the last several years, the volume of data generated in proteomic studies has increased dramatically, which challenges the computational approaches previously developed for these data. Furthermore, a multitude of search engines have been developed that identify different, overlapping subsets of the sample peptides from a particular set of tandem mass spectrometry spectra. We present iProphet, the new addition to the widely used open-source suite of proteomic data analysis tools Trans-Proteomics Pipeline. Applied in tandem with PeptideProphet, it provides more accurate representation of the multilevel nature of shotgun proteomic data. iProphet combines the evidence from multiple identifications of the same peptide sequences across different spectra, experiments, precursor ion charge states, and modified states. It also allows accurate and effective integration of the results from multiple database search engines applied to the same data. The use of iProphet in the Trans-Proteomics Pipeline increases the number of correctly identified peptides at a constant false discovery rate as compared with both PeptideProphet and another state-of-the-art tool Percolator. As the main outcome, iProphet permits the calculation of accurate posterior probabilities and false discovery rate estimates at the level of sequence identical peptide identifications, which in turn leads to more accurate probability estimates at the protein level. Fully integrated with the Trans-Proteomics Pipeline, it supports all commonly used MS instruments, search engines, and computer platforms. The performance of iProphet is demonstrated on two publicly available data sets: data from a human whole cell lysate proteome profiling experiment representative of typical proteomic data sets, and from a set of Streptococcus pyogenes experiments more representative of organism-specific composite data sets. PMID:21876204
Unraveling snake venom complexity with 'omics' approaches: challenges and perspectives.
Zelanis, André; Tashima, Alexandre Keiji
2014-09-01
The study of snake venom proteomes (venomics) has been experiencing a burst of reports, however the comprehensive knowledge of the dynamic range of proteins present within a single venom, the set of post-translational modifications (PTMs) as well as the lack of a comprehensive database related to venom proteins are among the main challenges in venomics research. The phenotypic plasticity in snake venom proteomes together with their inherent toxin proteoform diversity, points out to the use of integrative analysis in order to better understand their actual complexity. In this regard, such a systems venomics task should encompass the integration of data from transcriptomic and proteomic studies (specially the venom gland proteome), the identification of biological PTMs, and the estimation of artifactual proteomes and peptidomes generated by sample handling procedures. Copyright © 2014 Elsevier Ltd. All rights reserved.
Enhanced Missing Proteins Detection in NCI60 Cell Lines Using an Integrative Search Engine Approach.
Guruceaga, Elizabeth; Garin-Muga, Alba; Prieto, Gorka; Bejarano, Bartolomé; Marcilla, Miguel; Marín-Vicente, Consuelo; Perez-Riverol, Yasset; Casal, J Ignacio; Vizcaíno, Juan Antonio; Corrales, Fernando J; Segura, Victor
2017-12-01
The Human Proteome Project (HPP) aims deciphering the complete map of the human proteome. In the past few years, significant efforts of the HPP teams have been dedicated to the experimental detection of the missing proteins, which lack reliable mass spectrometry evidence of their existence. In this endeavor, an in depth analysis of shotgun experiments might represent a valuable resource to select a biological matrix in design validation experiments. In this work, we used all the proteomic experiments from the NCI60 cell lines and applied an integrative approach based on the results obtained from Comet, Mascot, OMSSA, and X!Tandem. This workflow benefits from the complementarity of these search engines to increase the proteome coverage. Five missing proteins C-HPP guidelines compliant were identified, although further validation is needed. Moreover, 165 missing proteins were detected with only one unique peptide, and their functional analysis supported their participation in cellular pathways as was also proposed in other studies. Finally, we performed a combined analysis of the gene expression levels and the proteomic identifications from the common cell lines between the NCI60 and the CCLE project to suggest alternatives for further validation of missing protein observations.
Enhanced Missing Proteins Detection in NCI60 Cell Lines Using an Integrative Search Engine Approach
2017-01-01
The Human Proteome Project (HPP) aims deciphering the complete map of the human proteome. In the past few years, significant efforts of the HPP teams have been dedicated to the experimental detection of the missing proteins, which lack reliable mass spectrometry evidence of their existence. In this endeavor, an in depth analysis of shotgun experiments might represent a valuable resource to select a biological matrix in design validation experiments. In this work, we used all the proteomic experiments from the NCI60 cell lines and applied an integrative approach based on the results obtained from Comet, Mascot, OMSSA, and X!Tandem. This workflow benefits from the complementarity of these search engines to increase the proteome coverage. Five missing proteins C-HPP guidelines compliant were identified, although further validation is needed. Moreover, 165 missing proteins were detected with only one unique peptide, and their functional analysis supported their participation in cellular pathways as was also proposed in other studies. Finally, we performed a combined analysis of the gene expression levels and the proteomic identifications from the common cell lines between the NCI60 and the CCLE project to suggest alternatives for further validation of missing protein observations. PMID:28960077
MinOmics, an Integrative and Immersive Tool for Multi-Omics Analysis.
Maes, Alexandre; Martinez, Xavier; Druart, Karen; Laurent, Benoist; Guégan, Sean; Marchand, Christophe H; Lemaire, Stéphane D; Baaden, Marc
2018-06-21
Proteomic and transcriptomic technologies resulted in massive biological datasets, their interpretation requiring sophisticated computational strategies. Efficient and intuitive real-time analysis remains challenging. We use proteomic data on 1417 proteins of the green microalga Chlamydomonas reinhardtii to investigate physicochemical parameters governing selectivity of three cysteine-based redox post translational modifications (PTM): glutathionylation (SSG), nitrosylation (SNO) and disulphide bonds (SS) reduced by thioredoxins. We aim to understand underlying molecular mechanisms and structural determinants through integration of redox proteome data from gene- to structural level. Our interactive visual analytics approach on an 8.3 m2 display wall of 25 MPixel resolution features stereoscopic three dimensions (3D) representation performed by UnityMol WebGL. Virtual reality headsets complement the range of usage configurations for fully immersive tasks. Our experiments confirm that fast access to a rich cross-linked database is necessary for immersive analysis of structural data. We emphasize the possibility to display complex data structures and relationships in 3D, intrinsic to molecular structure visualization, but less common for omics-network analysis. Our setup is powered by MinOmics, an integrated analysis pipeline and visualization framework dedicated to multi-omics analysis. MinOmics integrates data from various sources into a materialized physical repository. We evaluate its performance, a design criterion for the framework.
Ellis, Matthew J; Gillette, Michael; Carr, Steven A; Paulovich, Amanda G; Smith, Richard D; Rodland, Karin K; Townsend, R Reid; Kinsinger, Christopher; Mesri, Mehdi; Rodriguez, Henry; Liebler, Daniel C
2013-10-01
The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium is applying the latest generation of proteomic technologies to genomically annotated tumors from The Cancer Genome Atlas (TCGA) program, a joint initiative of the NCI and the National Human Genome Research Institute. By providing a fully integrated accounting of DNA, RNA, and protein abnormalities in individual tumors, these datasets will illuminate the complex relationship between genomic abnormalities and cancer phenotypes, thus producing biologic insights as well as a wave of novel candidate biomarkers and therapeutic targets amenable to verification using targeted mass spectrometry methods. ©2013 AACR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Elena S.; McCue, Lee Ann; Rutledge, Alexandra C.
2012-04-25
Visual Exploration and Statistics to Promote Annotation (VESPA) is an interactive visual analysis software tool that facilitates the discovery of structural mis-annotations in prokaryotic genomes. VESPA integrates high-throughput peptide-centric proteomics data and oligo-centric or RNA-Seq transcriptomics data into a genomic context. The data may be interrogated via visual analysis across multiple levels of genomic resolution, linked searches, exports and interaction with BLAST to rapidly identify location of interest within the genome and evaluate potential mis-annotations.
The Escherichia coli Proteome: Past, Present, and Future Prospects†
Han, Mee-Jung; Lee, Sang Yup
2006-01-01
Proteomics has emerged as an indispensable methodology for large-scale protein analysis in functional genomics. The Escherichia coli proteome has been extensively studied and is well defined in terms of biochemical, biological, and biotechnological data. Even before the entire E. coli proteome was fully elucidated, the largest available data set had been integrated to decipher regulatory circuits and metabolic pathways, providing valuable insights into global cellular physiology and the development of metabolic and cellular engineering strategies. With the recent advent of advanced proteomic technologies, the E. coli proteome has been used for the validation of new technologies and methodologies such as sample prefractionation, protein enrichment, two-dimensional gel electrophoresis, protein detection, mass spectrometry (MS), combinatorial assays with n-dimensional chromatographies and MS, and image analysis software. These important technologies will not only provide a great amount of additional information on the E. coli proteome but also synergistically contribute to other proteomic studies. Here, we review the past development and current status of E. coli proteome research in terms of its biological, biotechnological, and methodological significance and suggest future prospects. PMID:16760308
Integrated Analysis of Transcriptomic and Proteomic Data
Haider, Saad; Pal, Ranadip
2013-01-01
Until recently, understanding the regulatory behavior of cells has been pursued through independent analysis of the transcriptome or the proteome. Based on the central dogma, it was generally assumed that there exist a direct correspondence between mRNA transcripts and generated protein expressions. However, recent studies have shown that the correlation between mRNA and Protein expressions can be low due to various factors such as different half lives and post transcription machinery. Thus, a joint analysis of the transcriptomic and proteomic data can provide useful insights that may not be deciphered from individual analysis of mRNA or protein expressions. This article reviews the existing major approaches for joint analysis of transcriptomic and proteomic data. We categorize the different approaches into eight main categories based on the initial algorithm and final analysis goal. We further present analogies with other domains and discuss the existing research problems in this area. PMID:24082820
MASH Suite Pro: A Comprehensive Software Tool for Top-Down Proteomics*
Cai, Wenxuan; Guner, Huseyin; Gregorich, Zachery R.; Chen, Albert J.; Ayaz-Guner, Serife; Peng, Ying; Valeja, Santosh G.; Liu, Xiaowen; Ge, Ying
2016-01-01
Top-down mass spectrometry (MS)-based proteomics is arguably a disruptive technology for the comprehensive analysis of all proteoforms arising from genetic variation, alternative splicing, and posttranslational modifications (PTMs). However, the complexity of top-down high-resolution mass spectra presents a significant challenge for data analysis. In contrast to the well-developed software packages available for data analysis in bottom-up proteomics, the data analysis tools in top-down proteomics remain underdeveloped. Moreover, despite recent efforts to develop algorithms and tools for the deconvolution of top-down high-resolution mass spectra and the identification of proteins from complex mixtures, a multifunctional software platform, which allows for the identification, quantitation, and characterization of proteoforms with visual validation, is still lacking. Herein, we have developed MASH Suite Pro, a comprehensive software tool for top-down proteomics with multifaceted functionality. MASH Suite Pro is capable of processing high-resolution MS and tandem MS (MS/MS) data using two deconvolution algorithms to optimize protein identification results. In addition, MASH Suite Pro allows for the characterization of PTMs and sequence variations, as well as the relative quantitation of multiple proteoforms in different experimental conditions. The program also provides visualization components for validation and correction of the computational outputs. Furthermore, MASH Suite Pro facilitates data reporting and presentation via direct output of the graphics. Thus, MASH Suite Pro significantly simplifies and speeds up the interpretation of high-resolution top-down proteomics data by integrating tools for protein identification, quantitation, characterization, and visual validation into a customizable and user-friendly interface. We envision that MASH Suite Pro will play an integral role in advancing the burgeoning field of top-down proteomics. PMID:26598644
A-to-I RNA Editing Contributes to Proteomic Diversity in Cancer. | Office of Cancer Genomics
Adenosine (A) to inosine (I) RNA editing introduces many nucleotide changes in cancer transcriptomes. However, due to the complexity of post-transcriptional regulation, the contribution of RNA editing to proteomic diversity in human cancers remains unclear. Here, we performed an integrated analysis of TCGA genomic data and CPTAC proteomic data. Despite limited site diversity, we demonstrate that A-to-I RNA editing contributes to proteomic diversity in breast cancer through changes in amino acid sequences. We validate the presence of editing events at both RNA and protein levels.
Wu, Qi; Yuan, Huiming; Zhang, Lihua; Zhang, Yukui
2012-06-20
With the acceleration of proteome research, increasing attention has been paid to multidimensional liquid chromatography-mass spectrometry (MDLC-MS) due to its high peak capacity and separation efficiency. Recently, many efforts have been put to improve MDLC-based strategies including "top-down" and "bottom-up" to enable highly sensitive qualitative and quantitative analysis of proteins, as well as accelerate the whole analytical procedure. Integrated platforms with combination of sample pretreatment, multidimensional separations and identification were also developed to achieve high throughput and sensitive detection of proteomes, facilitating highly accurate and reproducible quantification. This review summarized the recent advances of such techniques and their applications in qualitative and quantitative analysis of proteomes. Copyright © 2012 Elsevier B.V. All rights reserved.
Senachak, Jittisak; Cheevadhanarak, Supapon; Hongsthong, Apiradee
2015-07-29
Spirulina (Arthrospira) platensis is the only cyanobacterium that in addition to being studied at the molecular level and subjected to gene manipulation, can also be mass cultivated in outdoor ponds for commercial use as a food supplement. Thus, encountering environmental changes, including temperature stresses, is common during the mass production of Spirulina. The use of cyanobacteria as an experimental platform, especially for photosynthetic gene manipulation in plants and bacteria, is becoming increasingly important. Understanding the mechanisms and protein-protein interaction networks that underlie low- and high-temperature responses is relevant to Spirulina mass production. To accomplish this goal, high-throughput techniques such as OMICs analyses are used. Thus, large datasets must be collected, managed and subjected to information extraction. Therefore, databases including (i) proteomic analysis and protein-protein interaction (PPI) data and (ii) domain/motif visualization tools are required for potential use in temperature response models for plant chloroplasts and photosynthetic bacteria. A web-based repository was developed including an embedded database, SpirPro, and tools for network visualization. Proteome data were analyzed integrated with protein-protein interactions and/or metabolic pathways from KEGG. The repository provides various information, ranging from raw data (2D-gel images) to associated results, such as data from interaction and/or pathway analyses. This integration allows in silico analyses of protein-protein interactions affected at the metabolic level and, particularly, analyses of interactions between and within the affected metabolic pathways under temperature stresses for comparative proteomic analysis. The developed tool, which is coded in HTML with CSS/JavaScript and depicted in Scalable Vector Graphics (SVG), is designed for interactive analysis and exploration of the constructed network. SpirPro is publicly available on the web at http://spirpro.sbi.kmutt.ac.th . SpirPro is an analysis platform containing an integrated proteome and PPI database that provides the most comprehensive data on this cyanobacterium at the systematic level. As an integrated database, SpirPro can be applied in various analyses, such as temperature stress response networking analysis in cyanobacterial models and interacting domain-domain analysis between proteins of interest.
NASA Astrophysics Data System (ADS)
Li, Huilin; Nguyen, Hong Hanh; Ogorzalek Loo, Rachel R.; Campuzano, Iain D. G.; Loo, Joseph A.
2018-02-01
Mass spectrometry (MS) has become a crucial technique for the analysis of protein complexes. Native MS has traditionally examined protein subunit arrangements, while proteomics MS has focused on sequence identification. These two techniques are usually performed separately without taking advantage of the synergies between them. Here we describe the development of an integrated native MS and top-down proteomics method using Fourier-transform ion cyclotron resonance (FTICR) to analyse macromolecular protein complexes in a single experiment. We address previous concerns of employing FTICR MS to measure large macromolecular complexes by demonstrating the detection of complexes up to 1.8 MDa, and we demonstrate the efficacy of this technique for direct acquirement of sequence to higher-order structural information with several large complexes. We then summarize the unique functionalities of different activation/dissociation techniques. The platform expands the ability of MS to integrate proteomics and structural biology to provide insights into protein structure, function and regulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez-Ferrer, Daniel; Petritis, Konstantinos; Robinson, Errol W.
2011-02-01
Integrated top-down bottom-up proteomics combined with online digestion has great potential to improve the characterization of protein isoforms in biological systems and is amendable to highthroughput proteomics experiments. Bottom-up proteomics ultimately provides the peptide sequences derived from the tandem MS analyses of peptides after the proteome has been digested. Top-down proteomics conversely entails the MS analyses of intact proteins for more effective characterization of genetic variations and/or post-translational modifications (PTMs). Herein, we describe recent efforts towards efficient integration of bottom-up and top-down LCMS based proteomic strategies. Since most proteomic platforms (i.e. LC systems) operate in acidic environments, we exploited themore » compatibility of the pepsin (i.e. the enzyme’s natural acidic activity) for the integration of bottom-up and top-down proteomics. Pressure enhanced pepsin digestions were successfully performed and characterized with several standard proteins in either an offline mode using a Barocycler or an online mode using a modified high pressure LC system referred to as a fast online digestion system (FOLDS). FOLDS was tested using pepsin and a whole microbial proteome, and the results compared against traditional trypsin digestions on the same platform. Additionally, FOLDS was integrated with a RePlay configuration to demonstrate an ultra-rapid integrated bottom-up top-down proteomic strategy employing a standard mixture of proteins and a monkey pox virus proteome.« less
Proteomics in medical microbiology.
Cash, P
2000-04-01
The techniques of proteomics (high resolution two-dimensional electrophoresis and protein characterisation) are widely used for microbiological research to analyse global protein synthesis as an indicator of gene expression. The rapid progress in microbial proteomics has been achieved through the wide availability of whole genome sequences for a number of bacterial groups. Beyond providing a basic understanding of microbial gene expression, proteomics has also played a role in medical areas of microbiology. Progress has been made in the use of the techniques for investigating the epidemiology and taxonomy of human microbial pathogens, the identification of novel pathogenic mechanisms and the analysis of drug resistance. In each of these areas, proteomics has provided new insights that complement genomic-based investigations. This review describes the current progress in these research fields and highlights some of the technical challenges existing for the application of proteomics in medical microbiology. The latter concern the analysis of genetically heterogeneous bacterial populations and the integration of the proteomic and genomic data for these bacteria. The characterisation of the proteomes of bacterial pathogens growing in their natural hosts remains a future challenge.
Mudaliar, Manikhandan; Tassi, Riccardo; Thomas, Funmilola C; McNeilly, Tom N; Weidt, Stefan K; McLaughlin, Mark; Wilson, David; Burchmore, Richard; Herzyk, Pawel; Eckersall, P David; Zadoks, Ruth N
2016-08-16
Mastitis, inflammation of the mammary gland, is the most common and costly disease of dairy cattle in the western world. It is primarily caused by bacteria, with Streptococcus uberis as one of the most prevalent causative agents. To characterize the proteome during Streptococcus uberis mastitis, an experimentally induced model of intramammary infection was used. Milk whey samples obtained from 6 cows at 6 time points were processed using label-free relative quantitative proteomics. This proteomic analysis complements clinical, bacteriological and immunological studies as well as peptidomic and metabolomic analysis of the same challenge model. A total of 2552 non-redundant bovine peptides were identified, and from these, 570 bovine proteins were quantified. Hierarchical cluster analysis and principal component analysis showed clear clustering of results by stage of infection, with similarities between pre-infection and resolution stages (0 and 312 h post challenge), early infection stages (36 and 42 h post challenge) and late infection stages (57 and 81 h post challenge). Ingenuity pathway analysis identified upregulation of acute phase protein pathways over the course of infection, with dominance of different acute phase proteins at different time points based on differential expression analysis. Antimicrobial peptides, notably cathelicidins and peptidoglycan recognition protein, were upregulated at all time points post challenge and peaked at 57 h, which coincided with 10 000-fold decrease in average bacterial counts. The integration of clinical, bacteriological, immunological and quantitative proteomics and other-omic data provides a more detailed systems level view of the host response to mastitis than has been achieved previously.
Proteogenomic characterization of human colon and rectal cancer
Zhang, Bing; Wang, Jing; Wang, Xiaojing; Zhu, Jing; Liu, Qi; Shi, Zhiao; Chambers, Matthew C.; Zimmerman, Lisa J.; Shaddox, Kent F.; Kim, Sangtae; Davies, Sherri R.; Wang, Sean; Wang, Pei; Kinsinger, Christopher R.; Rivers, Robert C.; Rodriguez, Henry; Townsend, R. Reid; Ellis, Matthew J.C.; Carr, Steven A.; Tabb, David L.; Coffey, Robert J.; Slebos, Robbert J.C.; Liebler, Daniel C.
2014-01-01
Summary We analyzed proteomes of colon and rectal tumors previously characterized by the Cancer Genome Atlas (TCGA) and performed integrated proteogenomic analyses. Somatic variants displayed reduced protein abundance compared to germline variants. mRNA transcript abundance did not reliably predict protein abundance differences between tumors. Proteomics identified five proteomic subtypes in the TCGA cohort, two of which overlapped with the TCGA “MSI/CIMP” transcriptomic subtype, but had distinct mutation, methylation, and protein expression patterns associated with different clinical outcomes. Although copy number alterations showed strong cis- and trans-effects on mRNA abundance, relatively few of these extend to the protein level. Thus, proteomics data enabled prioritization of candidate driver genes. The chromosome 20q amplicon was associated with the largest global changes at both mRNA and protein levels; proteomics data highlighted potential 20q candidates including HNF4A, TOMM34 and SRC. Integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and affords a new paradigm for understanding cancer biology. PMID:25043054
Bordbar, Aarash; Jamshidi, Neema; Palsson, Bernhard O
2011-07-12
The development of high-throughput technologies capable of whole cell measurements of genes, proteins, and metabolites has led to the emergence of systems biology. Integrated analysis of the resulting omic data sets has proved to be hard to achieve. Metabolic network reconstructions enable complex relationships amongst molecular components to be represented formally in a biologically relevant manner while respecting physical constraints. In silico models derived from such reconstructions can then be queried or interrogated through mathematical simulations. Proteomic profiling studies of the mature human erythrocyte have shown more proteins present related to metabolic function than previously thought; however the significance and the causal consequences of these findings have not been explored. Erythrocyte proteomic data was used to reconstruct the most expansive description of erythrocyte metabolism to date, following extensive manual curation, assessment of the literature, and functional testing. The reconstruction contains 281 enzymes representing functions from glycolysis to cofactor and amino acid metabolism. Such a comprehensive view of erythrocyte metabolism implicates the erythrocyte as a potential biomarker for different diseases as well as a 'cell-based' drug-screening tool. The analysis shows that 94 erythrocyte enzymes are implicated in morbid single nucleotide polymorphisms, representing 142 pathologies. In addition, over 230 FDA-approved and experimental pharmaceuticals have enzymatic targets in the erythrocyte. The advancement of proteomic technologies and increased generation of high-throughput proteomic data have created the need for a means to analyze these data in a coherent manner. Network reconstructions provide a systematic means to integrate and analyze proteomic data in a biologically meaning manner. Analysis of the red cell proteome has revealed an unexpected level of complexity in the functional capabilities of human erythrocyte metabolism.
Translational plant proteomics: a perspective.
Agrawal, Ganesh Kumar; Pedreschi, Romina; Barkla, Bronwyn J; Bindschedler, Laurence Veronique; Cramer, Rainer; Sarkar, Abhijit; Renaut, Jenny; Job, Dominique; Rakwal, Randeep
2012-08-03
Translational proteomics is an emerging sub-discipline of the proteomics field in the biological sciences. Translational plant proteomics aims to integrate knowledge from basic sciences to translate it into field applications to solve issues related but not limited to the recreational and economic values of plants, food security and safety, and energy sustainability. In this review, we highlight the substantial progress reached in plant proteomics during the past decade which has paved the way for translational plant proteomics. Increasing proteomics knowledge in plants is not limited to model and non-model plants, proteogenomics, crop improvement, and food analysis, safety, and nutrition but to many more potential applications. Given the wealth of information generated and to some extent applied, there is the need for more efficient and broader channels to freely disseminate the information to the scientific community. This article is part of a Special Issue entitled: Translational Proteomics. Copyright © 2012 Elsevier B.V. All rights reserved.
Veit, Johannes; Sachsenberg, Timo; Chernev, Aleksandar; Aicheler, Fabian; Urlaub, Henning; Kohlbacher, Oliver
2016-09-02
Modern mass spectrometry setups used in today's proteomics studies generate vast amounts of raw data, calling for highly efficient data processing and analysis tools. Software for analyzing these data is either monolithic (easy to use, but sometimes too rigid) or workflow-driven (easy to customize, but sometimes complex). Thermo Proteome Discoverer (PD) is a powerful software for workflow-driven data analysis in proteomics which, in our eyes, achieves a good trade-off between flexibility and usability. Here, we present two open-source plugins for PD providing additional functionality: LFQProfiler for label-free quantification of peptides and proteins, and RNP(xl) for UV-induced peptide-RNA cross-linking data analysis. LFQProfiler interacts with existing PD nodes for peptide identification and validation and takes care of the entire quantitative part of the workflow. We show that it performs at least on par with other state-of-the-art software solutions for label-free quantification in a recently published benchmark ( Ramus, C.; J. Proteomics 2016 , 132 , 51 - 62 ). The second workflow, RNP(xl), represents the first software solution to date for identification of peptide-RNA cross-links including automatic localization of the cross-links at amino acid resolution and localization scoring. It comes with a customized integrated cross-link fragment spectrum viewer for convenient manual inspection and validation of the results.
Recent advances in proteomics of cereals.
Bansal, Monika; Sharma, Madhu; Kanwar, Priyanka; Goyal, Aakash
Cereals contribute a major part of human nutrition and are considered as an integral source of energy for human diets. With genomic databases already available in cereals such as rice, wheat, barley, and maize, the focus has now moved to proteome analysis. Proteomics studies involve the development of appropriate databases based on developing suitable separation and purification protocols, identification of protein functions, and can confirm their functional networks based on already available data from other sources. Tremendous progress has been made in the past decade in generating huge data-sets for covering interactions among proteins, protein composition of various organs and organelles, quantitative and qualitative analysis of proteins, and to characterize their modulation during plant development, biotic, and abiotic stresses. Proteomics platforms have been used to identify and improve our understanding of various metabolic pathways. This article gives a brief review of efforts made by different research groups on comparative descriptive and functional analysis of proteomics applications achieved in the cereal science so far.
Pressurized Pepsin Digestion in Proteomics
López-Ferrer, Daniel; Petritis, Konstantinos; Robinson, Errol W.; Hixson, Kim K.; Tian, Zhixin; Lee, Jung Hwa; Lee, Sang-Won; Tolić, Nikola; Weitz, Karl K.; Belov, Mikhail E.; Smith, Richard D.; Paša-Tolić, Ljiljana
2011-01-01
Integrated top-down bottom-up proteomics combined with on-line digestion has great potential to improve the characterization of protein isoforms in biological systems and is amendable to high throughput proteomics experiments. Bottom-up proteomics ultimately provides the peptide sequences derived from the tandem MS analyses of peptides after the proteome has been digested. Top-down proteomics conversely entails the MS analyses of intact proteins for more effective characterization of genetic variations and/or post-translational modifications. Herein, we describe recent efforts toward efficient integration of bottom-up and top-down LC-MS-based proteomics strategies. Since most proteomics separations utilize acidic conditions, we exploited the compatibility of pepsin (where the optimal digestion conditions are at low pH) for integration into bottom-up and top-down proteomics work flows. Pressure-enhanced pepsin digestions were successfully performed and characterized with several standard proteins in either an off-line mode using a Barocycler or an on-line mode using a modified high pressure LC system referred to as a fast on-line digestion system (FOLDS). FOLDS was tested using pepsin and a whole microbial proteome, and the results were compared against traditional trypsin digestions on the same platform. Additionally, FOLDS was integrated with a RePlay configuration to demonstrate an ultrarapid integrated bottom-up top-down proteomics strategy using a standard mixture of proteins and a monkey pox virus proteome. PMID:20627868
Marine proteomics: a critical assessment of an emerging technology.
Slattery, Marc; Ankisetty, Sridevi; Corrales, Jone; Marsh-Hunkin, K Erica; Gochfeld, Deborah J; Willett, Kristine L; Rimoldi, John M
2012-10-26
The application of proteomics to marine sciences has increased in recent years because the proteome represents the interface between genotypic and phenotypic variability and, thus, corresponds to the broadest possible biomarker for eco-physiological responses and adaptations. Likewise, proteomics can provide important functional information regarding biosynthetic pathways, as well as insights into mechanism of action, of novel marine natural products. The goal of this review is to (1) explore the application of proteomics methodologies to marine systems, (2) assess the technical approaches that have been used, and (3) evaluate the pros and cons of this proteomic research, with the intent of providing a critical analysis of its future roles in marine sciences. To date, proteomics techniques have been utilized to investigate marine microbe, plant, invertebrate, and vertebrate physiology, developmental biology, seafood safety, susceptibility to disease, and responses to environmental change. However, marine proteomics studies often suffer from poor experimental design, sample processing/optimization difficulties, and data analysis/interpretation issues. Moreover, a major limitation is the lack of available annotated genomes and proteomes for most marine organisms, including several "model species". Even with these challenges in mind, there is no doubt that marine proteomics is a rapidly expanding and powerful integrative molecular research tool from which our knowledge of the marine environment, and the natural products from this resource, will be significantly expanded.
Shah, Anup D; Inder, Kerry L; Shah, Alok K; Cristino, Alexandre S; McKie, Arthur B; Gabra, Hani; Davis, Melissa J; Hill, Michelle M
2016-10-07
Lipid rafts are dynamic membrane microdomains that orchestrate molecular interactions and are implicated in cancer development. To understand the functions of lipid rafts in cancer, we performed an integrated analysis of quantitative lipid raft proteomics data sets modeling progression in breast cancer, melanoma, and renal cell carcinoma. This analysis revealed that cancer development is associated with increased membrane raft-cytoskeleton interactions, with ∼40% of elevated lipid raft proteins being cytoskeletal components. Previous studies suggest a potential functional role for the raft-cytoskeleton in the action of the putative tumor suppressors PTRF/Cavin-1 and Merlin. To extend the observation, we examined lipid raft proteome modulation by an unrelated tumor suppressor opioid binding protein cell-adhesion molecule (OPCML) in ovarian cancer SKOV3 cells. In agreement with the other model systems, quantitative proteomics revealed that 39% of OPCML-depleted lipid raft proteins are cytoskeletal components, with microfilaments and intermediate filaments specifically down-regulated. Furthermore, protein-protein interaction network and simulation analysis showed significantly higher interactions among cancer raft proteins compared with general human raft proteins. Collectively, these results suggest increased cytoskeleton-mediated stabilization of lipid raft domains with greater molecular interactions as a common, functional, and reversible feature of cancer cells.
Integrated proteogenomic characterization of human high grade serous ovarian cancer
Zhang, Bai; McDermott, Jason E; Zhou, Jian-Ying; Petyuk, Vladislav A; Chen, Li; Ray, Debjit; Sun, Shisheng; Yang, Feng; Chen, Lijun; Wang, Jing; Shah, Punit; Cha, Seong Won; Aiyetan, Paul; Woo, Sunghee; Tian, Yuan; Gritsenko, Marina A; Clauss, Therese R; Choi, Caitlin; Monroe, Matthew E; Thomas, Stefani; Nie, Song; Wu, Chaochao; Moore, Ronald J; Yu, Kun-Hsing; Tabb, David L; Fenyö, David; Bafna, Vineet; Wang, Yue; Rodriguez, Henry; Boja, Emily S; Hiltke, Tara; Rivers, Robert C; Sokoll, Lori; Zhu, Heng; Shih, Ie-Ming; Cope, Leslie; Pandey, Akhilesh; Zhang, Bing; Snyder, Michael P; Levine, Douglas A; Smith, Richard D
2016-01-01
SUMMARY To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSC). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease such as how different copy number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, as well as the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC. PMID:27372738
A practical data processing workflow for multi-OMICS projects.
Kohl, Michael; Megger, Dominik A; Trippler, Martin; Meckel, Hagen; Ahrens, Maike; Bracht, Thilo; Weber, Frank; Hoffmann, Andreas-Claudius; Baba, Hideo A; Sitek, Barbara; Schlaak, Jörg F; Meyer, Helmut E; Stephan, Christian; Eisenacher, Martin
2014-01-01
Multi-OMICS approaches aim on the integration of quantitative data obtained for different biological molecules in order to understand their interrelation and the functioning of larger systems. This paper deals with several data integration and data processing issues that frequently occur within this context. To this end, the data processing workflow within the PROFILE project is presented, a multi-OMICS project that aims on identification of novel biomarkers and the development of new therapeutic targets for seven important liver diseases. Furthermore, a software called CrossPlatformCommander is sketched, which facilitates several steps of the proposed workflow in a semi-automatic manner. Application of the software is presented for the detection of novel biomarkers, their ranking and annotation with existing knowledge using the example of corresponding Transcriptomics and Proteomics data sets obtained from patients suffering from hepatocellular carcinoma. Additionally, a linear regression analysis of Transcriptomics vs. Proteomics data is presented and its performance assessed. It was shown, that for capturing profound relations between Transcriptomics and Proteomics data, a simple linear regression analysis is not sufficient and implementation and evaluation of alternative statistical approaches are needed. Additionally, the integration of multivariate variable selection and classification approaches is intended for further development of the software. Although this paper focuses only on the combination of data obtained from quantitative Proteomics and Transcriptomics experiments, several approaches and data integration steps are also applicable for other OMICS technologies. Keeping specific restrictions in mind the suggested workflow (or at least parts of it) may be used as a template for similar projects that make use of different high throughput techniques. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan. Copyright © 2013 Elsevier B.V. All rights reserved.
Identifier mapping performance for integrating transcriptomics and proteomics experimental results
2011-01-01
Background Studies integrating transcriptomic data with proteomic data can illuminate the proteome more clearly than either separately. Integromic studies can deepen understanding of the dynamic complex regulatory relationship between the transcriptome and the proteome. Integrating these data dictates a reliable mapping between the identifier nomenclature resultant from the two high-throughput platforms. However, this kind of analysis is well known to be hampered by lack of standardization of identifier nomenclature among proteins, genes, and microarray probe sets. Therefore data integration may also play a role in critiquing the fallible gene identifications that both platforms emit. Results We compared three freely available internet-based identifier mapping resources for mapping UniProt accessions (ACCs) to Affymetrix probesets identifications (IDs): DAVID, EnVision, and NetAffx. Liquid chromatography-tandem mass spectrometry analyses of 91 endometrial cancer and 7 noncancer samples generated 11,879 distinct ACCs. For each ACC, we compared the retrieval sets of probeset IDs from each mapping resource. We confirmed a high level of discrepancy among the mapping resources. On the same samples, mRNA expression was available. Therefore, to evaluate the quality of each ACC-to-probeset match, we calculated proteome-transcriptome correlations, and compared the resources presuming that better mapping of identifiers should generate a higher proportion of mapped pairs with strong inter-platform correlations. A mixture model for the correlations fitted well and supported regression analysis, providing a window into the performance of the mapping resources. The resources have added and dropped matches over two years, but their overall performance has not changed. Conclusions The methods presented here serve to achieve concrete context-specific insight, to support well-informed decisions in choosing an ID mapping strategy for "omic" data merging. PMID:21619611
Scientific Workflow Management in Proteomics
de Bruin, Jeroen S.; Deelder, André M.; Palmblad, Magnus
2012-01-01
Data processing in proteomics can be a challenging endeavor, requiring extensive knowledge of many different software packages, all with different algorithms, data format requirements, and user interfaces. In this article we describe the integration of a number of existing programs and tools in Taverna Workbench, a scientific workflow manager currently being developed in the bioinformatics community. We demonstrate how a workflow manager provides a single, visually clear and intuitive interface to complex data analysis tasks in proteomics, from raw mass spectrometry data to protein identifications and beyond. PMID:22411703
Integrating cell biology and proteomic approaches in plants.
Takáč, Tomáš; Šamajová, Olga; Šamaj, Jozef
2017-10-03
Significant improvements of protein extraction, separation, mass spectrometry and bioinformatics nurtured advancements of proteomics during the past years. The usefulness of proteomics in the investigation of biological problems can be enhanced by integration with other experimental methods from cell biology, genetics, biochemistry, pharmacology, molecular biology and other omics approaches including transcriptomics and metabolomics. This review aims to summarize current trends integrating cell biology and proteomics in plant science. Cell biology approaches are most frequently used in proteomic studies investigating subcellular and developmental proteomes, however, they were also employed in proteomic studies exploring abiotic and biotic stress responses, vesicular transport, cytoskeleton and protein posttranslational modifications. They are used either for detailed cellular or ultrastructural characterization of the object subjected to proteomic study, validation of proteomic results or to expand proteomic data. In this respect, a broad spectrum of methods is employed to support proteomic studies including ultrastructural electron microscopy studies, histochemical staining, immunochemical localization, in vivo imaging of fluorescently tagged proteins and visualization of protein-protein interactions. Thus, cell biological observations on fixed or living cell compartments, cells, tissues and organs are feasible, and in some cases fundamental for the validation and complementation of proteomic data. Validation of proteomic data by independent experimental methods requires development of new complementary approaches. Benefits of cell biology methods and techniques are not sufficiently highlighted in current proteomic studies. This encouraged us to review most popular cell biology methods used in proteomic studies and to evaluate their relevance and potential for proteomic data validation and enrichment of purely proteomic analyses. We also provide examples of representative studies combining proteomic and cell biology methods for various purposes. Integrating cell biology approaches with proteomic ones allow validation and better interpretation of proteomic data. Moreover, cell biology methods remarkably extend the knowledge provided by proteomic studies and might be fundamental for the functional complementation of proteomic data. This review article summarizes current literature linking proteomics with cell biology. Copyright © 2017 Elsevier B.V. All rights reserved.
Goeminne, Ludger J E; Gevaert, Kris; Clement, Lieven
2018-01-16
Label-free shotgun proteomics is routinely used to assess proteomes. However, extracting relevant information from the massive amounts of generated data remains difficult. This tutorial provides a strong foundation on analysis of quantitative proteomics data. We provide key statistical concepts that help researchers to design proteomics experiments and we showcase how to analyze quantitative proteomics data using our recent free and open-source R package MSqRob, which was developed to implement the peptide-level robust ridge regression method for relative protein quantification described by Goeminne et al. MSqRob can handle virtually any experimental proteomics design and outputs proteins ordered by statistical significance. Moreover, its graphical user interface and interactive diagnostic plots provide easy inspection and also detection of anomalies in the data and flaws in the data analysis, allowing deeper assessment of the validity of results and a critical review of the experimental design. Our tutorial discusses interactive preprocessing, data analysis and visualization of label-free MS-based quantitative proteomics experiments with simple and more complex designs. We provide well-documented scripts to run analyses in bash mode on GitHub, enabling the integration of MSqRob in automated pipelines on cluster environments (https://github.com/statOmics/MSqRob). The concepts outlined in this tutorial aid in designing better experiments and analyzing the resulting data more appropriately. The two case studies using the MSqRob graphical user interface will contribute to a wider adaptation of advanced peptide-based models, resulting in higher quality data analysis workflows and more reproducible results in the proteomics community. We also provide well-documented scripts for experienced users that aim at automating MSqRob on cluster environments. Copyright © 2017 Elsevier B.V. All rights reserved.
PatternLab for proteomics 4.0: A one-stop shop for analyzing shotgun proteomic data
Carvalho, Paulo C; Lima, Diogo B; Leprevost, Felipe V; Santos, Marlon D M; Fischer, Juliana S G; Aquino, Priscila F; Moresco, James J; Yates, John R; Barbosa, Valmir C
2017-01-01
PatternLab for proteomics is an integrated computational environment that unifies several previously published modules for analyzing shotgun proteomic data. PatternLab contains modules for formatting sequence databases, performing peptide spectrum matching, statistically filtering and organizing shotgun proteomic data, extracting quantitative information from label-free and chemically labeled data, performing statistics for differential proteomics, displaying results in a variety of graphical formats, performing similarity-driven studies with de novo sequencing data, analyzing time-course experiments, and helping with the understanding of the biological significance of data in the light of the Gene Ontology. Here we describe PatternLab for proteomics 4.0, which closely knits together all of these modules in a self-contained environment, covering the principal aspects of proteomic data analysis as a freely available and easily installable software package. All updates to PatternLab, as well as all new features added to it, have been tested over the years on millions of mass spectra. PMID:26658470
Reddy, Panga Jaipal; Sinha, Sneha; Ray, Sandipan; Sathe, Gajanan J.; Chatterjee, Aditi; Prasad, T. S. Keshava; Dhali, Snigdha; Srikanth, Rapole; Panda, Dulal; Srivastava, Sanjeeva
2015-01-01
Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates) to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division. PMID:25874956
Reddy, Panga Jaipal; Sinha, Sneha; Ray, Sandipan; Sathe, Gajanan J; Chatterjee, Aditi; Prasad, T S Keshava; Dhali, Snigdha; Srikanth, Rapole; Panda, Dulal; Srivastava, Sanjeeva
2015-01-01
Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates) to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolker, Eugene
Our project focused primarily on analysis of different types of data produced by global high-throughput technologies, data integration of gene annotation, and gene and protein expression information, as well as on getting a better functional annotation of Shewanella genes. Specifically, four of our numerous major activities and achievements include the development of: statistical models for identification and expression proteomics, superior to currently available approaches (including our own earlier ones); approaches to improve gene annotations on the whole-organism scale; standards for annotation, transcriptomics and proteomics approaches; and generalized approaches for data integration of gene annotation, gene and protein expression information.
Zhang, Aihua; Zhou, Xiaohang; Zhao, Hongwei; Zou, Shiyu; Ma, Chung Wah; Liu, Qi; Sun, Hui; Liu, Liang; Wang, Xijun
2017-01-31
An integrative metabolomics and proteomics approach can provide novel insights in the understanding of biological systems. We have integrated proteome and metabolome data sets for a holistic view of the molecular mechanisms in disease. Using quantitative iTRAQ-LC-MS/MS proteomics coupled with UPLC-Q-TOF-HDMS based metabolomics, we determined the protein and metabolite expression changes in the kidney-yang deficiency syndrome (KYDS) rat model and further investigated the intervention effects of the Jinkui Shenqi Pill (JSP). The VIP-plot of the orthogonal PLS-DA (OPLS-DA) was used for discovering the potential biomarkers to clarify the therapeutic mechanisms of JSP in treating KYDS. The results showed that JSP can alleviate the kidney impairment induced by KYDS. Sixty potential biomarkers, including 5-l-glutamyl-taurine, phenylacetaldehyde, 4,6-dihydroxyquinoline, and xanthurenic acid etc., were definitely up- or down-regulated. The regulatory effect of JSP on the disturbed metabolic pathways was proved by the established metabonomic method. Using pathway analyses, we identified the disturbed metabolic pathways such as taurine and hypotaurine metabolism, pyrimidine metabolism, tyrosine metabolism, tryptophan metabolism, histidine metabolism, steroid hormone biosynthesis, etc. Furthermore, using iTRAQ-based quantitative proteomics analysis, seventeen differential proteins were identified and significantly altered by the JSP treatment. These proteins appear to be involved in Wnt, chemokine, PPAR, and MAPK signaling pathways, etc. Functional pathway analysis revealed that most of the proteins were found to play a key role in the regulation of metabolism pathways. Bioinformatics analysis with the IPA software found that these differentially-expressed moleculars had a strong correlation with the α-adrenergic signaling, FGF signaling, etc. Our data indicate that high-throughput metabolomics and proteomics can provide an insight on the herbal preparations affecting the metabolic disorders using high resolution mass spectrometry.
CyanOmics: an integrated database of omics for the model cyanobacterium Synechococcus sp. PCC 7002.
Yang, Yaohua; Feng, Jie; Li, Tao; Ge, Feng; Zhao, Jindong
2015-01-01
Cyanobacteria are an important group of organisms that carry out oxygenic photosynthesis and play vital roles in both the carbon and nitrogen cycles of the Earth. The annotated genome of Synechococcus sp. PCC 7002, as an ideal model cyanobacterium, is available. A series of transcriptomic and proteomic studies of Synechococcus sp. PCC 7002 cells grown under different conditions have been reported. However, no database of such integrated omics studies has been constructed. Here we present CyanOmics, a database based on the results of Synechococcus sp. PCC 7002 omics studies. CyanOmics comprises one genomic dataset, 29 transcriptomic datasets and one proteomic dataset and should prove useful for systematic and comprehensive analysis of all those data. Powerful browsing and searching tools are integrated to help users directly access information of interest with enhanced visualization of the analytical results. Furthermore, Blast is included for sequence-based similarity searching and Cluster 3.0, as well as the R hclust function is provided for cluster analyses, to increase CyanOmics's usefulness. To the best of our knowledge, it is the first integrated omics analysis database for cyanobacteria. This database should further understanding of the transcriptional patterns, and proteomic profiling of Synechococcus sp. PCC 7002 and other cyanobacteria. Additionally, the entire database framework is applicable to any sequenced prokaryotic genome and could be applied to other integrated omics analysis projects. Database URL: http://lag.ihb.ac.cn/cyanomics. © The Author(s) 2015. Published by Oxford University Press.
Identification of Maturation-Specific Proteins by Single-Cell Proteomics of Human Oocytes
Virant-Klun, Irma; Leicht, Stefan; Hughes, Christopher; Krijgsveld, Jeroen
2016-01-01
Oocytes undergo a range of complex processes via oogenesis, maturation, fertilization, and early embryonic development, eventually giving rise to a fully functioning organism. To understand proteome composition and diversity during maturation of human oocytes, here we have addressed crucial aspects of oocyte collection and proteome analysis, resulting in the first proteome and secretome maps of human oocytes. Starting from 100 oocytes collected via a novel serum-free hanging drop culture system, we identified 2,154 proteins, whose function indicate that oocytes are largely resting cells with a proteome that is tailored for homeostasis, cellular attachment, and interaction with its environment via secretory factors. In addition, we have identified 158 oocyte-enriched proteins (such as ECAT1, PIWIL3, NLRP7)1 not observed in high-coverage proteomics studies of other human cell lines or tissues. Exploiting SP3, a novel technology for proteomic sample preparation using magnetic beads, we scaled down proteome analysis to single cells. Despite the low protein content of only ∼100 ng per cell, we consistently identified ∼450 proteins from individual oocytes. When comparing individual oocytes at the germinal vesicle (GV) and metaphase II (MII) stage, we found that the Tudor and KH domain-containing protein (TDRKH) is preferentially expressed in immature oocytes, while Wee2, PCNA, and DNMT1 were enriched in mature cells, collectively indicating that maintenance of genome integrity is crucial during oocyte maturation. This study demonstrates that an innovative proteomics workflow facilitates analysis of single human oocytes to investigate human oocyte biology and preimplantation development. The approach presented here paves the way for quantitative proteomics in other quantity-limited tissues and cell types. Data associated with this study are available via ProteomeXchange with identifier PXD004142. PMID:27215607
Identification of Maturation-Specific Proteins by Single-Cell Proteomics of Human Oocytes.
Virant-Klun, Irma; Leicht, Stefan; Hughes, Christopher; Krijgsveld, Jeroen
2016-08-01
Oocytes undergo a range of complex processes via oogenesis, maturation, fertilization, and early embryonic development, eventually giving rise to a fully functioning organism. To understand proteome composition and diversity during maturation of human oocytes, here we have addressed crucial aspects of oocyte collection and proteome analysis, resulting in the first proteome and secretome maps of human oocytes. Starting from 100 oocytes collected via a novel serum-free hanging drop culture system, we identified 2,154 proteins, whose function indicate that oocytes are largely resting cells with a proteome that is tailored for homeostasis, cellular attachment, and interaction with its environment via secretory factors. In addition, we have identified 158 oocyte-enriched proteins (such as ECAT1, PIWIL3, NLRP7)(1) not observed in high-coverage proteomics studies of other human cell lines or tissues. Exploiting SP3, a novel technology for proteomic sample preparation using magnetic beads, we scaled down proteome analysis to single cells. Despite the low protein content of only ∼100 ng per cell, we consistently identified ∼450 proteins from individual oocytes. When comparing individual oocytes at the germinal vesicle (GV) and metaphase II (MII) stage, we found that the Tudor and KH domain-containing protein (TDRKH) is preferentially expressed in immature oocytes, while Wee2, PCNA, and DNMT1 were enriched in mature cells, collectively indicating that maintenance of genome integrity is crucial during oocyte maturation. This study demonstrates that an innovative proteomics workflow facilitates analysis of single human oocytes to investigate human oocyte biology and preimplantation development. The approach presented here paves the way for quantitative proteomics in other quantity-limited tissues and cell types. Data associated with this study are available via ProteomeXchange with identifier PXD004142. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Colangelo, Christopher M.; Shifman, Mark; Cheung, Kei-Hoi; Stone, Kathryn L.; Carriero, Nicholas J.; Gulcicek, Erol E.; Lam, TuKiet T.; Wu, Terence; Bjornson, Robert D.; Bruce, Can; Nairn, Angus C.; Rinehart, Jesse; Miller, Perry L.; Williams, Kenneth R.
2015-01-01
We report a significantly-enhanced bioinformatics suite and database for proteomics research called Yale Protein Expression Database (YPED) that is used by investigators at more than 300 institutions worldwide. YPED meets the data management, archival, and analysis needs of a high-throughput mass spectrometry-based proteomics research ranging from a single laboratory, group of laboratories within and beyond an institution, to the entire proteomics community. The current version is a significant improvement over the first version in that it contains new modules for liquid chromatography–tandem mass spectrometry (LC–MS/MS) database search results, label and label-free quantitative proteomic analysis, and several scoring outputs for phosphopeptide site localization. In addition, we have added both peptide and protein comparative analysis tools to enable pairwise analysis of distinct peptides/proteins in each sample and of overlapping peptides/proteins between all samples in multiple datasets. We have also implemented a targeted proteomics module for automated multiple reaction monitoring (MRM)/selective reaction monitoring (SRM) assay development. We have linked YPED’s database search results and both label-based and label-free fold-change analysis to the Skyline Panorama repository for online spectra visualization. In addition, we have built enhanced functionality to curate peptide identifications into an MS/MS peptide spectral library for all of our protein database search identification results. PMID:25712262
Colangelo, Christopher M; Shifman, Mark; Cheung, Kei-Hoi; Stone, Kathryn L; Carriero, Nicholas J; Gulcicek, Erol E; Lam, TuKiet T; Wu, Terence; Bjornson, Robert D; Bruce, Can; Nairn, Angus C; Rinehart, Jesse; Miller, Perry L; Williams, Kenneth R
2015-02-01
We report a significantly-enhanced bioinformatics suite and database for proteomics research called Yale Protein Expression Database (YPED) that is used by investigators at more than 300 institutions worldwide. YPED meets the data management, archival, and analysis needs of a high-throughput mass spectrometry-based proteomics research ranging from a single laboratory, group of laboratories within and beyond an institution, to the entire proteomics community. The current version is a significant improvement over the first version in that it contains new modules for liquid chromatography-tandem mass spectrometry (LC-MS/MS) database search results, label and label-free quantitative proteomic analysis, and several scoring outputs for phosphopeptide site localization. In addition, we have added both peptide and protein comparative analysis tools to enable pairwise analysis of distinct peptides/proteins in each sample and of overlapping peptides/proteins between all samples in multiple datasets. We have also implemented a targeted proteomics module for automated multiple reaction monitoring (MRM)/selective reaction monitoring (SRM) assay development. We have linked YPED's database search results and both label-based and label-free fold-change analysis to the Skyline Panorama repository for online spectra visualization. In addition, we have built enhanced functionality to curate peptide identifications into an MS/MS peptide spectral library for all of our protein database search identification results. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.
PIQMIe: a web server for semi-quantitative proteomics data management and analysis
Kuzniar, Arnold; Kanaar, Roland
2014-01-01
We present the Proteomics Identifications and Quantitations Data Management and Integration Service or PIQMIe that aids in reliable and scalable data management, analysis and visualization of semi-quantitative mass spectrometry based proteomics experiments. PIQMIe readily integrates peptide and (non-redundant) protein identifications and quantitations from multiple experiments with additional biological information on the protein entries, and makes the linked data available in the form of a light-weight relational database, which enables dedicated data analyses (e.g. in R) and user-driven queries. Using the web interface, users are presented with a concise summary of their proteomics experiments in numerical and graphical forms, as well as with a searchable protein grid and interactive visualization tools to aid in the rapid assessment of the experiments and in the identification of proteins of interest. The web server not only provides data access through a web interface but also supports programmatic access through RESTful web service. The web server is available at http://piqmie.semiqprot-emc.cloudlet.sara.nl or http://www.bioinformatics.nl/piqmie. This website is free and open to all users and there is no login requirement. PMID:24861615
PIQMIe: a web server for semi-quantitative proteomics data management and analysis.
Kuzniar, Arnold; Kanaar, Roland
2014-07-01
We present the Proteomics Identifications and Quantitations Data Management and Integration Service or PIQMIe that aids in reliable and scalable data management, analysis and visualization of semi-quantitative mass spectrometry based proteomics experiments. PIQMIe readily integrates peptide and (non-redundant) protein identifications and quantitations from multiple experiments with additional biological information on the protein entries, and makes the linked data available in the form of a light-weight relational database, which enables dedicated data analyses (e.g. in R) and user-driven queries. Using the web interface, users are presented with a concise summary of their proteomics experiments in numerical and graphical forms, as well as with a searchable protein grid and interactive visualization tools to aid in the rapid assessment of the experiments and in the identification of proteins of interest. The web server not only provides data access through a web interface but also supports programmatic access through RESTful web service. The web server is available at http://piqmie.semiqprot-emc.cloudlet.sara.nl or http://www.bioinformatics.nl/piqmie. This website is free and open to all users and there is no login requirement. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Tissue proteomics of the low-molecular weight proteome using an integrated cLC-ESI-QTOFMS approach.
Alvarez, MeiHwa Tanielle Bench; Shah, Dipti Jigar; Thulin, Craig D; Graves, Steven W
2013-05-01
Analysis of the protein/peptide composition of tissue has provided meaningful insights into tissue biology and even disease mechanisms. However, little has been published regarding top down methods to investigate lower molecular weight (MW) (500-5000 Da) species in tissue. Here, we evaluate a tissue proteomics approach involving tissue homogenization followed by depletion of large proteins and then cLC-MS (where c stands for capillary) analysis to interrogate the low MW/low abundance tissue proteome. In the development of this method, sheep heart, lung, liver, kidney, and spleen were surveyed to test our ability to observe tissue differences. After categorical tissue differences were demonstrated, a detailed study of this method's reproducibility was undertaken to determine whether or not it is suitable for analyzing more subtle differences in the abundance of small proteins and peptides. Our results suggest that this method should be useful in exploring the low MW proteome of tissues. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of high accuracy, quantitative proteomics data in the MaxQB database.
Schaab, Christoph; Geiger, Tamar; Stoehr, Gabriele; Cox, Juergen; Mann, Matthias
2012-03-01
MS-based proteomics generates rapidly increasing amounts of precise and quantitative information. Analysis of individual proteomic experiments has made great strides, but the crucial ability to compare and store information across different proteome measurements still presents many challenges. For example, it has been difficult to avoid contamination of databases with low quality peptide identifications, to control for the inflation in false positive identifications when combining data sets, and to integrate quantitative data. Although, for example, the contamination with low quality identifications has been addressed by joint analysis of deposited raw data in some public repositories, we reasoned that there should be a role for a database specifically designed for high resolution and quantitative data. Here we describe a novel database termed MaxQB that stores and displays collections of large proteomics projects and allows joint analysis and comparison. We demonstrate the analysis tools of MaxQB using proteome data of 11 different human cell lines and 28 mouse tissues. The database-wide false discovery rate is controlled by adjusting the project specific cutoff scores for the combined data sets. The 11 cell line proteomes together identify proteins expressed from more than half of all human genes. For each protein of interest, expression levels estimated by label-free quantification can be visualized across the cell lines. Similarly, the expression rank order and estimated amount of each protein within each proteome are plotted. We used MaxQB to calculate the signal reproducibility of the detected peptides for the same proteins across different proteomes. Spearman rank correlation between peptide intensity and detection probability of identified proteins was greater than 0.8 for 64% of the proteome, whereas a minority of proteins have negative correlation. This information can be used to pinpoint false protein identifications, independently of peptide database scores. The information contained in MaxQB, including high resolution fragment spectra, is accessible to the community via a user-friendly web interface at http://www.biochem.mpg.de/maxqb.
Andromeda: a peptide search engine integrated into the MaxQuant environment.
Cox, Jürgen; Neuhauser, Nadin; Michalski, Annette; Scheltema, Richard A; Olsen, Jesper V; Mann, Matthias
2011-04-01
A key step in mass spectrometry (MS)-based proteomics is the identification of peptides in sequence databases by their fragmentation spectra. Here we describe Andromeda, a novel peptide search engine using a probabilistic scoring model. On proteome data, Andromeda performs as well as Mascot, a widely used commercial search engine, as judged by sensitivity and specificity analysis based on target decoy searches. Furthermore, it can handle data with arbitrarily high fragment mass accuracy, is able to assign and score complex patterns of post-translational modifications, such as highly phosphorylated peptides, and accommodates extremely large databases. The algorithms of Andromeda are provided. Andromeda can function independently or as an integrated search engine of the widely used MaxQuant computational proteomics platform and both are freely available at www.maxquant.org. The combination enables analysis of large data sets in a simple analysis workflow on a desktop computer. For searching individual spectra Andromeda is also accessible via a web server. We demonstrate the flexibility of the system by implementing the capability to identify cofragmented peptides, significantly improving the total number of identified peptides.
Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer.
Zhang, Hui; Liu, Tao; Zhang, Zhen; Payne, Samuel H; Zhang, Bai; McDermott, Jason E; Zhou, Jian-Ying; Petyuk, Vladislav A; Chen, Li; Ray, Debjit; Sun, Shisheng; Yang, Feng; Chen, Lijun; Wang, Jing; Shah, Punit; Cha, Seong Won; Aiyetan, Paul; Woo, Sunghee; Tian, Yuan; Gritsenko, Marina A; Clauss, Therese R; Choi, Caitlin; Monroe, Matthew E; Thomas, Stefani; Nie, Song; Wu, Chaochao; Moore, Ronald J; Yu, Kun-Hsing; Tabb, David L; Fenyö, David; Bafna, Vineet; Wang, Yue; Rodriguez, Henry; Boja, Emily S; Hiltke, Tara; Rivers, Robert C; Sokoll, Lori; Zhu, Heng; Shih, Ie-Ming; Cope, Leslie; Pandey, Akhilesh; Zhang, Bing; Snyder, Michael P; Levine, Douglas A; Smith, Richard D; Chan, Daniel W; Rodland, Karin D
2016-07-28
To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass-spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSCs). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease, such as how different copy-number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, and the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC. VIDEO ABSTRACT. Copyright © 2016 Elsevier Inc. All rights reserved.
Li, Siyang; Plouffe, Brian D.; Belov, Arseniy M.; Ray, Somak; Wang, Xianzhe; Murthy, Shashi K.; Karger, Barry L.; Ivanov, Alexander R.
2015-01-01
Isolation and molecular characterization of rare cells (e.g. circulating tumor and stem cells) within biological fluids and tissues has significant potential in clinical diagnostics and personalized medicine. The present work describes an integrated platform of sample procurement, preparation, and analysis for deep proteomic profiling of rare cells in blood. Microfluidic magnetophoretic isolation of target cells spiked into 1 ml of blood at the level of 1000–2000 cells/ml, followed by focused acoustics-assisted sample preparation has been coupled with one-dimensional PLOT-LC-MS methodology. The resulting zeptomole detection sensitivity enabled identification of ∼4000 proteins with injection of the equivalent of only 100–200 cells per analysis. The characterization of rare cells in limited volumes of physiological fluids is shown by the isolation and quantitative proteomic profiling of first MCF-7 cells spiked into whole blood as a model system and then two CD133+ endothelial progenitor and hematopoietic cells in whole blood from volunteers. PMID:25755294
Gupta, Amit Kumar; Kaur, Karambir; Rajput, Akanksha; Dhanda, Sandeep Kumar; Sehgal, Manika; Khan, Md. Shoaib; Monga, Isha; Dar, Showkat Ahmad; Singh, Sandeep; Nagpal, Gandharva; Usmani, Salman Sadullah; Thakur, Anamika; Kaur, Gazaldeep; Sharma, Shivangi; Bhardwaj, Aman; Qureshi, Abid; Raghava, Gajendra Pal Singh; Kumar, Manoj
2016-01-01
Current Zika virus (ZIKV) outbreaks that spread in several areas of Africa, Southeast Asia, and in pacific islands is declared as a global health emergency by World Health Organization (WHO). It causes Zika fever and illness ranging from severe autoimmune to neurological complications in humans. To facilitate research on this virus, we have developed an integrative multi-omics platform; ZikaVR (http://bioinfo.imtech.res.in/manojk/zikavr/), dedicated to the ZIKV genomic, proteomic and therapeutic knowledge. It comprises of whole genome sequences, their respective functional information regarding proteins, genes, and structural content. Additionally, it also delivers sophisticated analysis such as whole-genome alignments, conservation and variation, CpG islands, codon context, usage bias and phylogenetic inferences at whole genome and proteome level with user-friendly visual environment. Further, glycosylation sites and molecular diagnostic primers were also analyzed. Most importantly, we also proposed potential therapeutically imperative constituents namely vaccine epitopes, siRNAs, miRNAs, sgRNAs and repurposing drug candidates. PMID:27633273
Proteomic approaches in brain research and neuropharmacology.
Vercauteren, Freya G G; Bergeron, John J M; Vandesande, Frans; Arckens, Lut; Quirion, Rémi
2004-10-01
Numerous applications of genomic technologies have enabled the assembly of unprecedented inventories of genes, expressed in cells under specific physiological and pathophysiological conditions. Complementing the valuable information generated through functional genomics with the integrative knowledge of protein expression and function should enable the development of more efficient diagnostic tools and therapeutic agents. Proteomic analyses are particularly suitable to elucidate posttranslational modifications, expression levels and protein-protein interactions of thousands of proteins at a time. In this review, two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) investigations of brain tissues in neurodegenerative diseases such as Alzheimer's disease, Down syndrome and schizophrenia, and the construction of 2D-PAGE proteome maps of the brain are discussed. The role of the Human Proteome Organization (HUPO) as an international coordinating organization for proteomic efforts, as well as challenges for proteomic technologies and data analysis are also addressed. It is expected that the use of proteomic strategies will have significant impact in neuropharmacology over the coming decade.
Wei, Lei; Wang, Qing; Ning, Xuanxuan; Mu, Changkao; Wang, Chunlin; Cao, Ruiwen; Wu, Huifeng; Cong, Ming; Li, Fei; Ji, Chenglong; Zhao, Jianmin
2015-03-01
Ocean acidification (OA) has been found to affect an array of normal physiological processes in mollusks, especially posing a significant threat to the fabrication process of mollusk shell. In the current study, the impact of exposure to elevated pCO2 condition was investigated in mantle tissue of Crassostrea gigas by an integrated metabolomic and proteomic approach. Analysis of metabolome and proteome revealed that elevated pCO2 could affect energy metabolism in oyster C. gigas, marked by differentially altered ATP, succinate, MDH, PEPCK and ALDH levels. Moreover, the up-regulated calponin-2, tropomyosins and myosin light chains indicated that elevated pCO2 probably caused disturbances in cytoskeleton structure in mantle tissue of oyster C. gigas. This work demonstrated that a combination of proteomics and metabolomics could provide important insights into the effects of OA at molecular levels. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, Li-Chao; Wei, Wen-Hui; Zhang, Xiao-Wen; Liu, Dan; Zeng, Ke-Wu; Tu, Peng-Fei
2018-01-01
Drastic macrophages activation triggered by exogenous infection or endogenous stresses is thought to be implicated in the pathogenesis of various inflammatory diseases. Carnosic acid (CA), a natural phenolic diterpene extracted from Salvia officinalis plant, has been reported to possess anti-inflammatory activity. However, its role in macrophages activation as well as potential molecular mechanism is largely unexplored. In the current study, we sought to elucidate the anti-inflammatory property of CA using an integrated approach based on unbiased proteomics and bioinformatics analysis. CA significantly inhibited the robust increase of nitric oxide and TNF-α, downregulated COX2 protein expression, and lowered the transcriptional level of inflammatory genes including Nos2, Tnfα, Cox2, and Mcp1 in LPS-stimulated RAW264.7 cells, a murine model of peritoneal macrophage cell line. The LC-MS/MS-based shotgun proteomics analysis showed CA negatively regulated 217 LPS-elicited proteins which were involved in multiple inflammatory processes including MAPK, nuclear factor (NF)-κB, and FoxO signaling pathways. A further molecular biology analysis revealed that CA effectually inactivated IKKβ/IκB-α/NF-κB, ERK/JNK/p38 MAPKs, and FoxO1/3 signaling pathways. Collectively, our findings demonstrated the role of CA in regulating inflammation response and provide some insights into the proteomics-guided pharmacological mechanism study of natural products. PMID:29713284
Wang, Lei; Sun, Xiaoliang; Weiszmann, Jakob; Weckwerth, Wolfram
2017-01-01
Grapevine is a fruit crop with worldwide economic importance. The grape berry undergoes complex biochemical changes from fruit set until ripening. This ripening process and production processes define the wine quality. Thus, a thorough understanding of berry ripening is crucial for the prediction of wine quality. For a systemic analysis of grape berry development we applied mass spectrometry based platforms to analyse the metabolome and proteome of Early Campbell at 12 stages covering major developmental phases. Primary metabolites involved in central carbon metabolism, such as sugars, organic acids and amino acids together with various bioactive secondary metabolites like flavonols, flavan-3-ols and anthocyanins were annotated and quantified. At the same time, the proteomic analysis revealed the protein dynamics of the developing grape berries. Multivariate statistical analysis of the integrated metabolomic and proteomic dataset revealed the growth trajectory and corresponding metabolites and proteins contributing most to the specific developmental process. K-means clustering analysis revealed 12 highly specific clusters of co-regulated metabolites and proteins. Granger causality network analysis allowed for the identification of time-shift correlations between metabolite-metabolite, protein- protein and protein-metabolite pairs which is especially interesting for the understanding of developmental processes. The integration of metabolite and protein dynamics with their corresponding biochemical pathways revealed an energy-linked metabolism before veraison with high abundances of amino acids and accumulation of organic acids, followed by protein and secondary metabolite synthesis. Anthocyanins were strongly accumulated after veraison whereas other flavonoids were in higher abundance at early developmental stages and decreased during the grape berry developmental processes. A comparison of the anthocyanin profile of Early Campbell to other cultivars revealed similarities to Concord grape and indicates the strong effect of genetic background on metabolic partitioning in primary and secondary metabolism.
Wang, Lei; Sun, Xiaoliang; Weiszmann, Jakob; Weckwerth, Wolfram
2017-01-01
Grapevine is a fruit crop with worldwide economic importance. The grape berry undergoes complex biochemical changes from fruit set until ripening. This ripening process and production processes define the wine quality. Thus, a thorough understanding of berry ripening is crucial for the prediction of wine quality. For a systemic analysis of grape berry development we applied mass spectrometry based platforms to analyse the metabolome and proteome of Early Campbell at 12 stages covering major developmental phases. Primary metabolites involved in central carbon metabolism, such as sugars, organic acids and amino acids together with various bioactive secondary metabolites like flavonols, flavan-3-ols and anthocyanins were annotated and quantified. At the same time, the proteomic analysis revealed the protein dynamics of the developing grape berries. Multivariate statistical analysis of the integrated metabolomic and proteomic dataset revealed the growth trajectory and corresponding metabolites and proteins contributing most to the specific developmental process. K-means clustering analysis revealed 12 highly specific clusters of co-regulated metabolites and proteins. Granger causality network analysis allowed for the identification of time-shift correlations between metabolite-metabolite, protein- protein and protein-metabolite pairs which is especially interesting for the understanding of developmental processes. The integration of metabolite and protein dynamics with their corresponding biochemical pathways revealed an energy-linked metabolism before veraison with high abundances of amino acids and accumulation of organic acids, followed by protein and secondary metabolite synthesis. Anthocyanins were strongly accumulated after veraison whereas other flavonoids were in higher abundance at early developmental stages and decreased during the grape berry developmental processes. A comparison of the anthocyanin profile of Early Campbell to other cultivars revealed similarities to Concord grape and indicates the strong effect of genetic background on metabolic partitioning in primary and secondary metabolism. PMID:28713396
Cell death proteomics database: consolidating proteomics data on cell death.
Arntzen, Magnus Ø; Bull, Vibeke H; Thiede, Bernd
2013-05-03
Programmed cell death is a ubiquitous process of utmost importance for the development and maintenance of multicellular organisms. More than 10 different types of programmed cell death forms have been discovered. Several proteomics analyses have been performed to gain insight in proteins involved in the different forms of programmed cell death. To consolidate these studies, we have developed the cell death proteomics (CDP) database, which comprehends data from apoptosis, autophagy, cytotoxic granule-mediated cell death, excitotoxicity, mitotic catastrophe, paraptosis, pyroptosis, and Wallerian degeneration. The CDP database is available as a web-based database to compare protein identifications and quantitative information across different experimental setups. The proteomics data of 73 publications were integrated and unified with protein annotations from UniProt-KB and gene ontology (GO). Currently, more than 6,500 records of more than 3,700 proteins are included in the CDP. Comparing apoptosis and autophagy using overrepresentation analysis of GO terms, the majority of enriched processes were found in both, but also some clear differences were perceived. Furthermore, the analysis revealed differences and similarities of the proteome between autophagosomal and overall autophagy. The CDP database represents a useful tool to consolidate data from proteome analyses of programmed cell death and is available at http://celldeathproteomics.uio.no.
MitoMiner: a data warehouse for mitochondrial proteomics data
Smith, Anthony C.; Blackshaw, James A.; Robinson, Alan J.
2012-01-01
MitoMiner (http://mitominer.mrc-mbu.cam.ac.uk/) is a data warehouse for the storage and analysis of mitochondrial proteomics data gathered from publications of mass spectrometry and green fluorescent protein tagging studies. In MitoMiner, these data are integrated with data from UniProt, Gene Ontology, Online Mendelian Inheritance in Man, HomoloGene, Kyoto Encyclopaedia of Genes and Genomes and PubMed. The latest release of MitoMiner stores proteomics data sets from 46 studies covering 11 different species from eumetazoa, viridiplantae, fungi and protista. MitoMiner is implemented by using the open source InterMine data warehouse system, which provides a user interface allowing users to upload data for analysis, personal accounts to store queries and results and enables queries of any data in the data model. MitoMiner also provides lists of proteins for use in analyses, including the new MitoMiner mitochondrial proteome reference sets that specify proteins with substantial experimental evidence for mitochondrial localization. As further mitochondrial proteomics data sets from normal and diseased tissue are published, MitoMiner can be used to characterize the variability of the mitochondrial proteome between tissues and investigate how changes in the proteome may contribute to mitochondrial dysfunction and mitochondrial-associated diseases such as cancer, neurodegenerative diseases, obesity, diabetes, heart failure and the ageing process. PMID:22121219
Derivative component analysis for mass spectral serum proteomic profiles.
Han, Henry
2014-01-01
As a promising way to transform medicine, mass spectrometry based proteomics technologies have seen a great progress in identifying disease biomarkers for clinical diagnosis and prognosis. However, there is a lack of effective feature selection methods that are able to capture essential data behaviors to achieve clinical level disease diagnosis. Moreover, it faces a challenge from data reproducibility, which means that no two independent studies have been found to produce same proteomic patterns. Such reproducibility issue causes the identified biomarker patterns to lose repeatability and prevents it from real clinical usage. In this work, we propose a novel machine-learning algorithm: derivative component analysis (DCA) for high-dimensional mass spectral proteomic profiles. As an implicit feature selection algorithm, derivative component analysis examines input proteomics data in a multi-resolution approach by seeking its derivatives to capture latent data characteristics and conduct de-noising. We further demonstrate DCA's advantages in disease diagnosis by viewing input proteomics data as a profile biomarker via integrating it with support vector machines to tackle the reproducibility issue, besides comparing it with state-of-the-art peers. Our results show that high-dimensional proteomics data are actually linearly separable under proposed derivative component analysis (DCA). As a novel multi-resolution feature selection algorithm, DCA not only overcomes the weakness of the traditional methods in subtle data behavior discovery, but also suggests an effective resolution to overcoming proteomics data's reproducibility problem and provides new techniques and insights in translational bioinformatics and machine learning. The DCA-based profile biomarker diagnosis makes clinical level diagnostic performances reproducible across different proteomic data, which is more robust and systematic than the existing biomarker discovery based diagnosis. Our findings demonstrate the feasibility and power of the proposed DCA-based profile biomarker diagnosis in achieving high sensitivity and conquering the data reproducibility issue in serum proteomics. Furthermore, our proposed derivative component analysis suggests the subtle data characteristics gleaning and de-noising are essential in separating true signals from red herrings for high-dimensional proteomic profiles, which can be more important than the conventional feature selection or dimension reduction. In particular, our profile biomarker diagnosis can be generalized to other omics data for derivative component analysis (DCA)'s nature of generic data analysis.
Molina, Laurence; Salvetat, Nicolas; Ameur, Randa Ben; Peres, Sabine; Sommerer, Nicolas; Jarraya, Fayçal; Ayadi, Hammadi; Molina, Franck; Granier, Claude
2011-12-10
The characterization of the normal urinary proteome is steadily progressing and represents a major interest in the assessment of clinical urinary biomarkers. To estimate quantitatively the variability of the normal urinary proteome, urines of 20 healthy people were collected. We first evaluated the impact of the sample conservation temperature on urine proteome integrity. Keeping the urine sample at RT or at +4°C until storage at -80°C seems the best way for long-term storage of samples for 2D-GE analysis. The quantitative variability of the normal urinary proteome was estimated on the 20 urines mapped by 2D-GE. The occurrence of the 910 identified spots was analysed throughout the gels and represented in a virtual 2D gel. Sixteen percent of the spots were found to occur in all samples and 23% occurred in at least 90% of urines. About 13% of the protein spots were present only in 10% or less of the samples, thus representing the most variable part of the normal urinary proteome. Twenty proteins corresponding to a fraction of the fully conserved spots were identified by mass spectrometry. In conclusion, a "public" urinary proteome, common to healthy individuals, seems to coexist with a "private" urinary proteome, which is more specific to each individual. Copyright © 2011 Elsevier B.V. All rights reserved.
Bergerat, Agnes; Decano, Julius; Wu, Chang-Jiun; Choi, Hyungwon; Nesvizhskii, Alexey I; Moran, Ann Marie; Ruiz-Opazo, Nelson; Steffen, Martin; Herrera, Victoria LM
2011-01-01
Stroke is the third leading cause of death in the United States with high rates of morbidity among survivors. The search to fill the unequivocal need for new therapeutic approaches would benefit from unbiased proteomic analyses of animal models of spontaneous stroke in the prestroke stage. Since brain microvessels play key roles in neurovascular coupling, we investigated prestroke microvascular proteome changes. Proteomic analysis of cerebral cortical microvessels (cMVs) was done by tandem mass spectrometry comparing two prestroke time points. Metaprotein-pathway analyses of proteomic spectral count data were done to identify risk factor–induced changes, followed by QSPEC-analyses of individual protein changes associated with increased stroke susceptibility. We report 26 cMV proteome profiles from male and female stroke-prone and non–stroke-prone rats at 2 months and 4.5 months of age prior to overt stroke events. We identified 1,934 proteins by two or more peptides. Metaprotein pathway analysis detected age-associated changes in energy metabolism and cell-to-microenvironment interactions, as well as sex-specific changes in energy metabolism and endothelial leukocyte transmigration pathways. Stroke susceptibility was associated independently with multiple protein changes associated with ischemia, angiogenesis or involved in blood brain barrier (BBB) integrity. Immunohistochemical analysis confirmed aquaporin-4 and laminin-α1 induction in cMVs, representative of proteomic changes with >65 Bayes factor (BF), associated with stroke susceptibility. Altogether, proteomic analysis demonstrates significant molecular changes in ischemic cerebral microvasculature in the prestroke stage, which could contribute to the observed model phenotype of microhemorrhages and postischemic hemorrhagic transformation. These pathways comprise putative targets for translational research of much needed novel diagnostic and therapeutic approaches for stroke. PMID:21519634
Yu, Yanbao; Leng, Taohua; Yun, Dong; Liu, Na; Yao, Jun; Dai, Ying; Yang, Pengyuan; Chen, Xian
2013-01-01
Emerging evidences indicate that blood platelets function in multiple biological processes including immune response, bone metastasis and liver regeneration in addition to their known roles in hemostasis and thrombosis. Global elucidation of platelet proteome will provide the molecular base of these platelet functions. Here, we set up a high throughput platform for maximum exploration of the rat/human platelet proteome using integrated proteomics technologies, and then applied to identify the largest number of the proteins expressed in both rat and human platelets. After stringent statistical filtration, a total of 837 unique proteins matched with at least two unique peptides were precisely identified, making it the first comprehensive protein database so far for rat platelets. Meanwhile, quantitative analyses of the thrombin-stimulated platelets offered great insights into the biological functions of platelet proteins and therefore confirmed our global profiling data. A comparative proteomic analysis between rat and human platelets was also conducted, which revealed not only a significant similarity, but also an across-species evolutionary link that the orthologous proteins representing ‘core proteome’, and the ‘evolutionary proteome’ is actually a relatively static proteome. PMID:20443191
Ponce, Dalia; Brinkman, Diane L; Potriquet, Jeremy; Mulvenna, Jason
2016-04-05
Jellyfish venoms are rich sources of toxins designed to capture prey or deter predators, but they can also elicit harmful effects in humans. In this study, an integrated transcriptomic and proteomic approach was used to identify putative toxins and their potential role in the venom of the scyphozoan jellyfish Chrysaora fuscescens. A de novo tentacle transcriptome, containing more than 23,000 contigs, was constructed and used in proteomic analysis of C. fuscescens venom to identify potential toxins. From a total of 163 proteins identified in the venom proteome, 27 were classified as putative toxins and grouped into six protein families: proteinases, venom allergens, C-type lectins, pore-forming toxins, glycoside hydrolases and enzyme inhibitors. Other putative toxins identified in the transcriptome, but not the proteome, included additional proteinases as well as lipases and deoxyribonucleases. Sequence analysis also revealed the presence of ShKT domains in two putative venom proteins from the proteome and an additional 15 from the transcriptome, suggesting potential ion channel blockade or modulatory activities. Comparison of these potential toxins to those from other cnidarians provided insight into their possible roles in C. fuscescens venom and an overview of the diversity of potential toxin families in cnidarian venoms.
Peterson, Elena S; McCue, Lee Ann; Schrimpe-Rutledge, Alexandra C; Jensen, Jeffrey L; Walker, Hyunjoo; Kobold, Markus A; Webb, Samantha R; Payne, Samuel H; Ansong, Charles; Adkins, Joshua N; Cannon, William R; Webb-Robertson, Bobbie-Jo M
2012-04-05
The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates. VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (Yersinia pestis Pestoides F and Synechococcus sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data. VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic genomes. Data is evaluated via visual analysis across multiple levels of genomic resolution, linked searches and interaction with existing bioinformatics tools. We highlight the novel functionality of VESPA and core programming requirements for visualization of these large heterogeneous datasets for a client-side application. The software is freely available at https://www.biopilot.org/docs/Software/Vespa.php.
2012-01-01
Background The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates. Results VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (Yersinia pestis Pestoides F and Synechococcus sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data. Conclusions VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic genomes. Data is evaluated via visual analysis across multiple levels of genomic resolution, linked searches and interaction with existing bioinformatics tools. We highlight the novel functionality of VESPA and core programming requirements for visualization of these large heterogeneous datasets for a client-side application. The software is freely available at https://www.biopilot.org/docs/Software/Vespa.php. PMID:22480257
Integrative Analysis of Longitudinal Metabolomics Data from a Personal Multi-Omics Profile
Stanberry, Larissa; Mias, George I.; Haynes, Winston; Higdon, Roger; Snyder, Michael; Kolker, Eugene
2013-01-01
The integrative personal omics profile (iPOP) is a pioneering study that combines genomics, transcriptomics, proteomics, metabolomics and autoantibody profiles from a single individual over a 14-month period. The observation period includes two episodes of viral infection: a human rhinovirus and a respiratory syncytial virus. The profile studies give an informative snapshot into the biological functioning of an organism. We hypothesize that pathway expression levels are associated with disease status. To test this hypothesis, we use biological pathways to integrate metabolomics and proteomics iPOP data. The approach computes the pathways’ differential expression levels at each time point, while taking into account the pathway structure and the longitudinal design. The resulting pathway levels show strong association with the disease status. Further, we identify temporal patterns in metabolite expression levels. The changes in metabolite expression levels also appear to be consistent with the disease status. The results of the integrative analysis suggest that changes in biological pathways may be used to predict and monitor the disease. The iPOP experimental design, data acquisition and analysis issues are discussed within the broader context of personal profiling. PMID:24958148
Pedroso, Amanda P; Souza, Adriana P; Dornellas, Ana P S; Oyama, Lila M; Nascimento, Cláudia M O; Santos, Gianni M S; Rosa, José C; Bertolla, Ricardo P; Klawitter, Jelena; Christians, Uwe; Tashima, Alexandre K; Ribeiro, Eliane B
2017-04-07
Programming of hypothalamic functions regulating energy homeostasis may play a role in intrauterine growth restriction (IUGR)-induced adulthood obesity. The present study investigated the effects of IUGR on the hypothalamus proteome and metabolome of adult rats submitted to 50% protein-energy restriction throughout pregnancy. Proteomic and metabolomic analyzes were performed by data independent acquisition mass spectrometry and multiple reaction monitoring, respectively. At age 4 months, the restricted rats showed elevated adiposity, increased leptin and signs of insulin resistance. 1356 proteins were identified and 348 quantified while 127 metabolites were quantified. The restricted hypothalamus showed down-regulation of 36 proteins and 5 metabolites and up-regulation of 21 proteins and 9 metabolites. Integrated pathway analysis of the proteomics and metabolomics data indicated impairment of hypothalamic glucose metabolism, increased flux through the hexosamine pathway, deregulation of TCA cycle and the respiratory chain, and alterations in glutathione metabolism. The data suggest IUGR modulation of energy metabolism and redox homeostasis in the hypothalamus of male adult rats. The present results indicated deleterious consequences of IUGR on hypothalamic pathways involved in pivotal physiological functions. These results provide guidance for future mechanistic studies assessing the role of intrauterine malnutrition in the development of metabolic diseases later in life.
Automated image alignment for 2D gel electrophoresis in a high-throughput proteomics pipeline.
Dowsey, Andrew W; Dunn, Michael J; Yang, Guang-Zhong
2008-04-01
The quest for high-throughput proteomics has revealed a number of challenges in recent years. Whilst substantial improvements in automated protein separation with liquid chromatography and mass spectrometry (LC/MS), aka 'shotgun' proteomics, have been achieved, large-scale open initiatives such as the Human Proteome Organization (HUPO) Brain Proteome Project have shown that maximal proteome coverage is only possible when LC/MS is complemented by 2D gel electrophoresis (2-DE) studies. Moreover, both separation methods require automated alignment and differential analysis to relieve the bioinformatics bottleneck and so make high-throughput protein biomarker discovery a reality. The purpose of this article is to describe a fully automatic image alignment framework for the integration of 2-DE into a high-throughput differential expression proteomics pipeline. The proposed method is based on robust automated image normalization (RAIN) to circumvent the drawbacks of traditional approaches. These use symbolic representation at the very early stages of the analysis, which introduces persistent errors due to inaccuracies in modelling and alignment. In RAIN, a third-order volume-invariant B-spline model is incorporated into a multi-resolution schema to correct for geometric and expression inhomogeneity at multiple scales. The normalized images can then be compared directly in the image domain for quantitative differential analysis. Through evaluation against an existing state-of-the-art method on real and synthetically warped 2D gels, the proposed analysis framework demonstrates substantial improvements in matching accuracy and differential sensitivity. High-throughput analysis is established through an accelerated GPGPU (general purpose computation on graphics cards) implementation. Supplementary material, software and images used in the validation are available at http://www.proteomegrid.org/rain/.
Mu, Huawei; Sun, Jin; Heras, Horacio; Chu, Ka Hou; Qiu, Jian-Wen
2017-02-23
Proteins of the egg perivitelline fluid (PVF) that surrounds the embryo are critical for embryonic development in many animals, but little is known about their identities. Using an integrated proteomic and transcriptomic approach, we identified 64 proteins from the PVF of Pomacea maculata, a freshwater snail adopting aerial oviposition. Proteins were classified into eight functional groups: major multifunctional perivitellin subunits, immune response, energy metabolism, protein degradation, oxidation-reduction, signaling and binding, transcription and translation, and others. Comparison of gene expression levels between tissues showed that 22 PVF genes were exclusively expressed in albumen gland, the female organ that secretes PVF. Base substitution analysis of PVF and housekeeping genes between P. maculata and its closely related species Pomacea canaliculata showed that the reproductive proteins had a higher mean evolutionary rate. Predicted 3D structures of selected PVF proteins showed that some nonsynonymous substitutions are located at or near the binding regions that may affect protein function. The proteome and sequence divergence analysis revealed a substantial amount of maternal investment in embryonic nutrition and defense, and higher adaptive selective pressure on PVF protein-coding genes when compared with housekeeping genes, providing insight into the adaptations associated with the unusual reproductive strategy in these mollusks. There has been great interest in studying reproduction-related proteins as such studies may not only answer fundamental questions about speciation and evolution, but also solve practical problems of animal infertility and pest outbreak. Our study has demonstrated the effectiveness of an integrated proteomic and transcriptomic approach in understanding the heavy maternal investment of proteins in the eggs of a non-model snail, and how the reproductive proteins may have evolved during the transition from laying underwater eggs to aerial eggs. Copyright © 2017 Elsevier B.V. All rights reserved.
Automated Big Data Analysis in Bottom-up and Targeted Proteomics
van der Plas-Duivesteijn, Suzanne; Domański, Dominik; Smith, Derek; Borchers, Christoph; Palmblad, Magnus; Mohamme, Yassene
2014-01-01
Similar to other data intensive sciences, analyzing mass spectrometry-based proteomics data involves multiple steps and diverse software using different algorithms and data formats and sizes. Besides that the distributed and evolving nature of the data in online repositories, another challenge is that a scientists have to deal with many steps of analysis pipelines. A documented data processing is also becoming an essential part for the overall reproducibility of the results. Thanks to different e-Science initiatives, scientific workflow engines have become a means for automated, sharable and reproducible data processing. While these are designed as general tools, they can be employed to solve different challenges that we are facing in handling our Big Data. Here we present three use cases: improving the performance of different spectral search engines by decomposing input data and recomposing the resulting files, building spectral libraries from more than 20 million spectra, and integrating information from multiple resources to select most appropriate peptides for targeted proteomics analyses. The three use cases demonstrate different challenges in exploiting proteomics data analysis. In the first we integrate local and cloud processing resources in order to obtain better performance resulting in more than 30-fold speed improvement. By considering search engines as legacy software our solution is applicable to multiple search algorithms. The second use case is an example of automated processing of many data files of different sizes and locations, starting with raw data and ending with the final, ready-to-use library. This demonstrates the robustness and fault tolerance when dealing with huge amount data stored in multiple files. The third use case demonstrates retrieval and integration of information and data from multiple online repositories. In addition to the diversity of data formats and Web interfaces, this use case also illustrates how to deal with incomplete data.
Contemporary Network Proteomics and Its Requirements
Goh, Wilson Wen Bin; Wong, Limsoon; Sng, Judy Chia Ghee
2013-01-01
The integration of networks with genomics (network genomics) is a familiar field. Conventional network analysis takes advantage of the larger coverage and relative stability of gene expression measurements. Network proteomics on the other hand has to develop further on two critical factors: (1) expanded data coverage and consistency, and (2) suitable reference network libraries, and data mining from them. Concerning (1) we discuss several contemporary themes that can improve data quality, which in turn will boost the outcome of downstream network analysis. For (2), we focus on network analysis developments, specifically, the need for context-specific networks and essential considerations for localized network analysis. PMID:24833333
Moon, Eunjung; Park, Hye Min; Lee, Choong Hwan; Do, Seon-Gil; Park, Jong-Moon; Han, Na-Young; Do, Moon Ho; Lee, Jong Ha; Lee, Hookeun; Kim, Sun Yeou
2015-03-18
Photodamage is extrinsically induced by overexposure to ultraviolet (UV) radiation, and it increases the risk of various skin disorders. Therefore, discovery of novel biomarkers of photodamage is important. In this study, using LC-MS/MS analysis of epidermis from UVB-irradiated hairless mice, we identified 57 proteins whose levels changed after UVB exposure, and selected 7 proteins related to the tricarboxylic acid (TCA) cycle through pathway analysis. Dihydrolipoyl dehydrogenase (DLD) was the only TCA cycle-associated protein that showed a decreased expression after the UVB exposure. We also performed targeted analysis to detect intermediates and products of the TCA cycle using GC-TOF-MS. Interestingly, malic acid and fumaric acid levels significantly decreased in the UVB-treated group. Our results demonstrate that DLD and its associated metabolites, malic acid and fumaric acid, may be candidate biomarkers of UVB-induced skin photoaging. Additionally, we showed that Aloe vera, a natural skin moisturizer, regulated DLD, malic acid and fumaric acid levels in UVB-exposed epidermis. Our strategy to integrate the proteome and targeted metabolite to detect novel UVB targets will lead to a better understanding of skin photoaging and photodamage. Our study also supports that A. vera exerts significant anti-photodamage activity via regulation of DLD, a novel UVB target, in the epidermis. This study is the first example of an integration of proteomic and metabolite analysis techniques to find new biomarker candidates for the regulation of the UVB-induced skin photoaging. DLD, malic acid, and fumaric acid can be used for development of cosmeceuticals and nutraceuticals regulating the change of skin metabolism induced by the UVB overexposure. Moreover, this is also the first attempt to investigate the role of the TCA cycle in photodamaged epidermis. Our integration of the proteomic and targeted metabolite analyses will lead to a better understanding of the unidentified photobiological results from UVB-irradiated models and can elicit new diagnostic and treatment strategies based on altered metabolism. Copyright © 2015. Published by Elsevier B.V.
Kang, Yuan; Dong, Xinran; Zhou, Qiongjie; Zhang, Ying; Cheng, Yan; Hu, Rong; Su, Cuihong; Jin, Hong; Liu, Xiaohui; Ma, Duan; Tian, Weidong; Li, Xiaotian
2012-03-01
This study aimed to identify candidate protein biomarkers from maternal serum for Down syndrome (DS) by integrated proteomic and bioinformatics analysis. A pregnancy DS group of 18 women and a control group with the same number were prepared, and the maternal serum proteins were analyzed by isobaric tags for relative and absolute quantitation and mass spectrometry, to identify DS differentially expressed maternal serum proteins (DS-DEMSPs). Comprehensive bioinformatics analysis was then employed to analyze DS-DEMSPs both in this paper and seven related publications. Down syndrome differentially expressed maternal serum proteins from different studies are significantly enriched with common Gene Ontology functions, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, transcription factor binding sites, and Pfam protein domains, However, the DS-DEMSPs are less functionally related to known DS-related genes. These evidences suggest that common molecular mechanisms induced by secondary effects may be present upon DS carrying. A simple scoring scheme revealed Alpha-2-macroglobulin, Apolipoprotein A1, Apolipoprotein E, Complement C1s subcomponent, Complement component 5, Complement component 8, alpha polypeptide, Complement component 8, beta polypeptide and Fibronectin as potential DS biomarkers. The integration of proteomics and bioinformatics studies provides a novel approach to develop new prenatal screening methods for noninvasive yet accurate diagnosis of DS. Copyright © 2012 John Wiley & Sons, Ltd.
A community proposal to integrate proteomics activities in ELIXIR.
Vizcaíno, Juan Antonio; Walzer, Mathias; Jiménez, Rafael C; Bittremieux, Wout; Bouyssié, David; Carapito, Christine; Corrales, Fernando; Ferro, Myriam; Heck, Albert J R; Horvatovich, Peter; Hubalek, Martin; Lane, Lydie; Laukens, Kris; Levander, Fredrik; Lisacek, Frederique; Novak, Petr; Palmblad, Magnus; Piovesan, Damiano; Pühler, Alfred; Schwämmle, Veit; Valkenborg, Dirk; van Rijswijk, Merlijn; Vondrasek, Jiri; Eisenacher, Martin; Martens, Lennart; Kohlbacher, Oliver
2017-01-01
Computational approaches have been major drivers behind the progress of proteomics in recent years. The aim of this white paper is to provide a framework for integrating computational proteomics into ELIXIR in the near future, and thus to broaden the portfolio of omics technologies supported by this European distributed infrastructure. This white paper is the direct result of a strategy meeting on 'The Future of Proteomics in ELIXIR' that took place in March 2017 in Tübingen (Germany), and involved representatives of eleven ELIXIR nodes. These discussions led to a list of priority areas in computational proteomics that would complement existing activities and close gaps in the portfolio of tools and services offered by ELIXIR so far. We provide some suggestions on how these activities could be integrated into ELIXIR's existing platforms, and how it could lead to a new ELIXIR use case in proteomics. We also highlight connections to the related field of metabolomics, where similar activities are ongoing. This white paper could thus serve as a starting point for the integration of computational proteomics into ELIXIR. Over the next few months we will be working closely with all stakeholders involved, and in particular with other representatives of the proteomics community, to further refine this paper.
A community proposal to integrate proteomics activities in ELIXIR
Vizcaíno, Juan Antonio; Walzer, Mathias; Jiménez, Rafael C.; Bittremieux, Wout; Bouyssié, David; Carapito, Christine; Corrales, Fernando; Ferro, Myriam; Heck, Albert J.R.; Horvatovich, Peter; Hubalek, Martin; Lane, Lydie; Laukens, Kris; Levander, Fredrik; Lisacek, Frederique; Novak, Petr; Palmblad, Magnus; Piovesan, Damiano; Pühler, Alfred; Schwämmle, Veit; Valkenborg, Dirk; van Rijswijk, Merlijn; Vondrasek, Jiri; Eisenacher, Martin; Martens, Lennart; Kohlbacher, Oliver
2017-01-01
Computational approaches have been major drivers behind the progress of proteomics in recent years. The aim of this white paper is to provide a framework for integrating computational proteomics into ELIXIR in the near future, and thus to broaden the portfolio of omics technologies supported by this European distributed infrastructure. This white paper is the direct result of a strategy meeting on ‘The Future of Proteomics in ELIXIR’ that took place in March 2017 in Tübingen (Germany), and involved representatives of eleven ELIXIR nodes. These discussions led to a list of priority areas in computational proteomics that would complement existing activities and close gaps in the portfolio of tools and services offered by ELIXIR so far. We provide some suggestions on how these activities could be integrated into ELIXIR’s existing platforms, and how it could lead to a new ELIXIR use case in proteomics. We also highlight connections to the related field of metabolomics, where similar activities are ongoing. This white paper could thus serve as a starting point for the integration of computational proteomics into ELIXIR. Over the next few months we will be working closely with all stakeholders involved, and in particular with other representatives of the proteomics community, to further refine this paper. PMID:28713550
Cole, Charles; Krampis, Konstantinos; Karagiannis, Konstantinos; Almeida, Jonas S; Faison, William J; Motwani, Mona; Wan, Quan; Golikov, Anton; Pan, Yang; Simonyan, Vahan; Mazumder, Raja
2014-01-27
Next-generation sequencing (NGS) technologies have resulted in petabytes of scattered data, decentralized in archives, databases and sometimes in isolated hard-disks which are inaccessible for browsing and analysis. It is expected that curated secondary databases will help organize some of this Big Data thereby allowing users better navigate, search and compute on it. To address the above challenge, we have implemented a NGS biocuration workflow and are analyzing short read sequences and associated metadata from cancer patients to better understand the human variome. Curation of variation and other related information from control (normal tissue) and case (tumor) samples will provide comprehensive background information that can be used in genomic medicine research and application studies. Our approach includes a CloudBioLinux Virtual Machine which is used upstream of an integrated High-performance Integrated Virtual Environment (HIVE) that encapsulates Curated Short Read archive (CSR) and a proteome-wide variation effect analysis tool (SNVDis). As a proof-of-concept, we have curated and analyzed control and case breast cancer datasets from the NCI cancer genomics program - The Cancer Genome Atlas (TCGA). Our efforts include reviewing and recording in CSR available clinical information on patients, mapping of the reads to the reference followed by identification of non-synonymous Single Nucleotide Variations (nsSNVs) and integrating the data with tools that allow analysis of effect nsSNVs on the human proteome. Furthermore, we have also developed a novel phylogenetic analysis algorithm that uses SNV positions and can be used to classify the patient population. The workflow described here lays the foundation for analysis of short read sequence data to identify rare and novel SNVs that are not present in dbSNP and therefore provides a more comprehensive understanding of the human variome. Variation results for single genes as well as the entire study are available from the CSR website (http://hive.biochemistry.gwu.edu/dna.cgi?cmd=csr). Availability of thousands of sequenced samples from patients provides a rich repository of sequence information that can be utilized to identify individual level SNVs and their effect on the human proteome beyond what the dbSNP database provides.
2014-01-01
Background Next-generation sequencing (NGS) technologies have resulted in petabytes of scattered data, decentralized in archives, databases and sometimes in isolated hard-disks which are inaccessible for browsing and analysis. It is expected that curated secondary databases will help organize some of this Big Data thereby allowing users better navigate, search and compute on it. Results To address the above challenge, we have implemented a NGS biocuration workflow and are analyzing short read sequences and associated metadata from cancer patients to better understand the human variome. Curation of variation and other related information from control (normal tissue) and case (tumor) samples will provide comprehensive background information that can be used in genomic medicine research and application studies. Our approach includes a CloudBioLinux Virtual Machine which is used upstream of an integrated High-performance Integrated Virtual Environment (HIVE) that encapsulates Curated Short Read archive (CSR) and a proteome-wide variation effect analysis tool (SNVDis). As a proof-of-concept, we have curated and analyzed control and case breast cancer datasets from the NCI cancer genomics program - The Cancer Genome Atlas (TCGA). Our efforts include reviewing and recording in CSR available clinical information on patients, mapping of the reads to the reference followed by identification of non-synonymous Single Nucleotide Variations (nsSNVs) and integrating the data with tools that allow analysis of effect nsSNVs on the human proteome. Furthermore, we have also developed a novel phylogenetic analysis algorithm that uses SNV positions and can be used to classify the patient population. The workflow described here lays the foundation for analysis of short read sequence data to identify rare and novel SNVs that are not present in dbSNP and therefore provides a more comprehensive understanding of the human variome. Variation results for single genes as well as the entire study are available from the CSR website (http://hive.biochemistry.gwu.edu/dna.cgi?cmd=csr). Conclusions Availability of thousands of sequenced samples from patients provides a rich repository of sequence information that can be utilized to identify individual level SNVs and their effect on the human proteome beyond what the dbSNP database provides. PMID:24467687
Complex clinical outcomes, such as adverse reaction to vaccination, arise from the concerted interactions among the myriad components of a biological system. Therefore, comprehensive etiological models can be developed only through the integrated study of multiple types of experi...
Komatsu, Setsuko; Wang, Xin; Yin, Xiaojian; Nanjo, Yohei; Ohyanagi, Hajime; Sakata, Katsumi
2017-06-23
The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max 'Enrei'). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. The Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all predicted proteins from genome sequences, though there are over lapped proteins. Based on the demonstrated application of data stored in the database for functional analyses, it is suggested that these data will be useful for analyses of biological mechanisms in soybean. Furthermore, coupled with recent advances in information and communication technology, the usefulness of this database would increase in the analyses of biological mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.
Perez-Riverol, Yasset; Alpi, Emanuele; Wang, Rui; Hermjakob, Henning; Vizcaíno, Juan Antonio
2015-01-01
Compared to other data-intensive disciplines such as genomics, public deposition and storage of MS-based proteomics, data are still less developed due to, among other reasons, the inherent complexity of the data and the variety of data types and experimental workflows. In order to address this need, several public repositories for MS proteomics experiments have been developed, each with different purposes in mind. The most established resources are the Global Proteome Machine Database (GPMDB), PeptideAtlas, and the PRIDE database. Additionally, there are other useful (in many cases recently developed) resources such as ProteomicsDB, Mass Spectrometry Interactive Virtual Environment (MassIVE), Chorus, MaxQB, PeptideAtlas SRM Experiment Library (PASSEL), Model Organism Protein Expression Database (MOPED), and the Human Proteinpedia. In addition, the ProteomeXchange consortium has been recently developed to enable better integration of public repositories and the coordinated sharing of proteomics information, maximizing its benefit to the scientific community. Here, we will review each of the major proteomics resources independently and some tools that enable the integration, mining and reuse of the data. We will also discuss some of the major challenges and current pitfalls in the integration and sharing of the data. PMID:25158685
Mudaliar, Manikhandan; Tassi, Riccardo; Thomas, Funmilola C.; McNeilly, Tom N.; Weidt, Stefan K.; McLaughlin, Mark; Wilson, David; Burchmore, Richard; Herzyk, Pawel; Eckersall, P. David
2016-01-01
Mastitis, inflammation of the mammary gland, is the most common and costly disease of dairy cattle in the western world. It is primarily caused by bacteria, with Streptococcus uberis as one of the most prevalent causative agents. To characterize the proteome during Streptococcus uberis mastitis, an experimentally induced model of intramammary infection was used. Milk whey samples obtained from 6 cows at 6 time points were processed using label-free relative quantitative proteomics. This proteomic analysis complements clinical, bacteriological and immunological studies as well as peptidomic and metabolomic analysis of the same challenge model. A total of 2552 non-redundant bovine peptides were identified, and from these, 570 bovine proteins were quantified. Hierarchical cluster analysis and principal component analysis showed clear clustering of results by stage of infection, with similarities between pre-infection and resolution stages (0 and 312 h post challenge), early infection stages (36 and 42 h post challenge) and late infection stages (57 and 81 h post challenge). Ingenuity pathway analysis identified upregulation of acute phase protein pathways over the course of infection, with dominance of different acute phase proteins at different time points based on differential expression analysis. Antimicrobial peptides, notably cathelicidins and peptidoglycan recognition protein, were upregulated at all time points post challenge and peaked at 57 h, which coincided with 10 000-fold decrease in average bacterial counts. The integration of clinical, bacteriological, immunological and quantitative proteomics and other-omic data provides a more detailed systems level view of the host response to mastitis than has been achieved previously. PMID:27412694
Proteogenomic characterization of human colon and rectal cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bing; Wang, Jing; Wang, Xiaojing
2014-09-18
We analyzed proteomes of colon and rectal tumors previously characterized by the Cancer Genome Atlas (TCGA) and performed integrated proteogenomic analyses. Protein sequence variants encoded by somatic genomic variations displayed reduced expression compared to protein variants encoded by germline variations. mRNA transcript abundance did not reliably predict protein expression differences between tumors. Proteomics identified five protein expression subtypes, two of which were associated with the TCGA "MSI/CIMP" transcriptional subtype, but had distinct mutation and methylation patterns and associated with different clinical outcomes. Although CNAs showed strong cis- and trans-effects on mRNA expression, relatively few of these extend to the proteinmore » level. Thus, proteomics data enabled prioritization of candidate driver genes. Our analyses identified HNF4A, a novel candidate driver gene in tumors with chromosome 20q amplifications. Integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and affords novel insights into cancer biology.« less
Gandhi, Deepa; Tarale, Prashant; Naoghare, Pravin K; Bafana, Amit; Kannan, Krishnamurthi; Sivanesan, Saravanadevi
2016-01-01
Endosulfan, an organochlorine pesticide, is known to induce multiple disorders/abnormalities including neuro-degenerative disorders in many animal species. However, the molecular mechanism of endosulfan induced neuronal alterations is still not well understood. In the present study, the effect of sub-lethal concentration of endosulfan (3 μM) on human neuroblastoma cells (SH-SY5Y) was investigated using genomic and proteomic approaches. Microarray and 2D-PAGE followed by MALDI-TOF-MS analysis revealed differential expression of 831 transcripts and 16 proteins in exposed cells. A gene ontology enrichment analysis revealed that the differentially expressed genes and proteins were involved in variety of cellular events such as neuronal developmental pathway, immune response, cell differentiation, apoptosis, transmission of nerve impulse, axonogenesis, etc. The present study attempted to explore the possible molecular mechanism of endosulfan induced neuronal alterations in SH-SY5Y cells using an integrated genomic and proteomic approach. Based on the gene and protein profile possible mechanisms underlying endosulfan neurotoxicity were predicted. Copyright © 2015 Elsevier B.V. All rights reserved.
Kim, Sang Hoon; Pajarillo, Edward Alain B; Balolong, Marilen P; Lee, Ji Yoon; Kang, Dae-Kyung
2016-06-28
In this study, the global proteome of the IPEC-J2 cell line was evaluated using ultra-high performance liquid chromatography coupled to a quadrupole Q Exactive™ Orbitrap mass spectrometer. Proteins were isolated from highly confluent IPEC-J2 cells in biological replicates and analyzed by label-free mass spectrometry prior to matching against a porcine genomic dataset. The results identified 1,517 proteins, accounting for 7.35% of all genes in the porcine genome. The highly abundant proteins detected, such as actin, annexin A2, and AHNAK nucleoprotein, are involved in structural integrity, signaling mechanisms, and cellular homeostasis. The high abundance of heat shock proteins indicated their significance in cellular defenses, barrier function, and gut homeostasis. Pathway analysis and annotation using the Kyoto Encyclopedia of Genes and Genomes database resulted in a putative protein network map of the regulation of immunological responses and structural integrity in the cell line. The comprehensive proteome analysis of IPEC-J2 cells provides fundamental insights into overall protein expression and pathway dynamics that might be useful in cell adhesion studies and immunological applications.
Perez-Riverol, Yasset; Alpi, Emanuele; Wang, Rui; Hermjakob, Henning; Vizcaíno, Juan Antonio
2015-03-01
Compared to other data-intensive disciplines such as genomics, public deposition and storage of MS-based proteomics, data are still less developed due to, among other reasons, the inherent complexity of the data and the variety of data types and experimental workflows. In order to address this need, several public repositories for MS proteomics experiments have been developed, each with different purposes in mind. The most established resources are the Global Proteome Machine Database (GPMDB), PeptideAtlas, and the PRIDE database. Additionally, there are other useful (in many cases recently developed) resources such as ProteomicsDB, Mass Spectrometry Interactive Virtual Environment (MassIVE), Chorus, MaxQB, PeptideAtlas SRM Experiment Library (PASSEL), Model Organism Protein Expression Database (MOPED), and the Human Proteinpedia. In addition, the ProteomeXchange consortium has been recently developed to enable better integration of public repositories and the coordinated sharing of proteomics information, maximizing its benefit to the scientific community. Here, we will review each of the major proteomics resources independently and some tools that enable the integration, mining and reuse of the data. We will also discuss some of the major challenges and current pitfalls in the integration and sharing of the data. © 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xu, Ruilian; Tang, Jun; Deng, Quantong; He, Wan; Sun, Xiujie; Xia, Ligang; Cheng, Zhiqiang; He, Lisheng; You, Shuyuan; Hu, Jintao; Fu, Yuxiang; Zhu, Jian; Chen, Yixin; Gao, Weina; He, An; Guo, Zhengyu; Lin, Lin; Li, Hua; Hu, Chaofeng; Tian, Ruijun
2018-05-01
Increasing attention has been focused on cell type proteome profiling for understanding the heterogeneous multicellular microenvironment in tissue samples. However, current cell type proteome profiling methods need large amounts of starting materials which preclude their application to clinical tumor specimens with limited access. Here, by seamlessly combining laser capture microdissection and integrated proteomics sample preparation technology SISPROT, specific cell types in tumor samples could be precisely dissected with single cell resolution and processed for high-sensitivity proteome profiling. Sample loss and contamination due to the multiple transfer steps are significantly reduced by the full integration and noncontact design. H&E staining dyes which are necessary for cell type investigation could be selectively removed by the unique two-stage design of the spintip device. This easy-to-use proteome profiling technology achieved high sensitivity with the identification of more than 500 proteins from only 0.1 mm 2 and 10 μm thickness colon cancer tissue section. The first cell type proteome profiling of four cell types from one colon tumor and surrounding normal tissue, including cancer cells, enterocytes, lymphocytes, and smooth muscle cells, was obtained. 5271, 4691, 4876, and 2140 protein groups were identified, respectively, from tissue section of only 5 mm 2 and 10 μm thickness. Furthermore, spatially resolved proteome distribution profiles of enterocytes, lymphocytes, and smooth muscle cells on the same tissue slices and across four consecutive sections with micrometer distance were successfully achieved. This fully integrated proteomics technology, termed LCM-SISPROT, is therefore promising for spatial-resolution cell type proteome profiling of tumor microenvironment with a minute amount of clinical starting materials.
The proteomic landscape of triple-negative breast cancer.
Lawrence, Robert T; Perez, Elizabeth M; Hernández, Daniel; Miller, Chris P; Haas, Kelsey M; Irie, Hanna Y; Lee, Su-In; Blau, C Anthony; Villén, Judit
2015-04-28
Triple-negative breast cancer is a heterogeneous disease characterized by poor clinical outcomes and a shortage of targeted treatment options. To discover molecular features of triple-negative breast cancer, we performed quantitative proteomics analysis of twenty human-derived breast cell lines and four primary breast tumors to a depth of more than 12,000 distinct proteins. We used this data to identify breast cancer subtypes at the protein level and demonstrate the precise quantification of biomarkers, signaling proteins, and biological pathways by mass spectrometry. We integrated proteomics data with exome sequence resources to identify genomic aberrations that affect protein expression. We performed a high-throughput drug screen to identify protein markers of drug sensitivity and understand the mechanisms of drug resistance. The genome and proteome provide complementary information that, when combined, yield a powerful engine for therapeutic discovery. This resource is available to the cancer research community to catalyze further analysis and investigation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Ponce, Dalia; Brinkman, Diane L.; Potriquet, Jeremy; Mulvenna, Jason
2016-01-01
Jellyfish venoms are rich sources of toxins designed to capture prey or deter predators, but they can also elicit harmful effects in humans. In this study, an integrated transcriptomic and proteomic approach was used to identify putative toxins and their potential role in the venom of the scyphozoan jellyfish Chrysaora fuscescens. A de novo tentacle transcriptome, containing more than 23,000 contigs, was constructed and used in proteomic analysis of C. fuscescens venom to identify potential toxins. From a total of 163 proteins identified in the venom proteome, 27 were classified as putative toxins and grouped into six protein families: proteinases, venom allergens, C-type lectins, pore-forming toxins, glycoside hydrolases and enzyme inhibitors. Other putative toxins identified in the transcriptome, but not the proteome, included additional proteinases as well as lipases and deoxyribonucleases. Sequence analysis also revealed the presence of ShKT domains in two putative venom proteins from the proteome and an additional 15 from the transcriptome, suggesting potential ion channel blockade or modulatory activities. Comparison of these potential toxins to those from other cnidarians provided insight into their possible roles in C. fuscescens venom and an overview of the diversity of potential toxin families in cnidarian venoms. PMID:27058558
Fahrmann, Johannes F.; Grapov, Dmitry; Wanichthanarak, Kwanjeera; DeFelice, Brian C.; Salemi, Michelle R.; Rom, William N.; Gandara, David R.; Phinney, Brett S.; Fiehn, Oliver; Pass, Harvey
2017-01-01
Abstract Lung cancer is the leading cause of cancer mortality in the United States with non-small cell lung cancer adenocarcinoma being the most common histological type. Early perturbations in cellular metabolism are a hallmark of cancer, but the extent of these changes in early stage lung adenocarcinoma remains largely unknown. In the current study, an integrated metabolomics and proteomics approach was utilized to characterize the biochemical and molecular alterations between malignant and matched control tissue from 27 subjects diagnosed with early stage lung adenocarcinoma. Differential analysis identified 71 metabolites and 1102 proteins that delineated tumor from control tissue. Integrated results indicated four major metabolic changes in early stage adenocarcinoma (1): increased glycosylation and glutaminolysis (2); elevated Nrf2 activation (3); increase in nicotinic and nicotinamide salvaging pathways and (4) elevated polyamine biosynthesis linked to differential regulation of the s-adenosylmethionine/nicotinamide methyl-donor pathway. Genomic data from publicly available databases were included to strengthen proteomic findings. Our findings provide insight into the biochemical and molecular biological reprogramming that may accompany early stage lung tumorigenesis and highlight potential therapeutic targets. PMID:28049629
Elamin, Ashraf; Titz, Bjoern; Dijon, Sophie; Merg, Celine; Geertz, Marcel; Schneider, Thomas; Martin, Florian; Schlage, Walter K; Frentzel, Stefan; Talamo, Fabio; Phillips, Blaine; Veljkovic, Emilija; Ivanov, Nikolai V; Vanscheeuwijck, Patrick; Peitsch, Manuel C; Hoeng, Julia
2016-08-11
Smoking is associated with several serious diseases, such as lung cancer and chronic obstructive pulmonary disease (COPD). Within our systems toxicology framework, we are assessing whether potential modified risk tobacco products (MRTP) can reduce smoking-related health risks compared to conventional cigarettes. In this article, we evaluated to what extent 2D-PAGE/MALDI MS/MS (2D-PAGE) can complement the iTRAQ LC-MS/MS results from a previously reported mouse inhalation study, in which we assessed a prototypic MRTP (pMRTP). Selected differentially expressed proteins identified by both LC-MS/MS and 2D-PAGE approaches were further verified using reverse-phase protein microarrays. LC-MS/MS captured the effects of cigarette smoke (CS) on the lung proteome more comprehensively than 2D-PAGE. However, an integrated analysis of both proteomics data sets showed that 2D-PAGE data complement the LC-MS/MS results by supporting the overall trend of lower effects of pMRTP aerosol than CS on the lung proteome. Biological effects of CS exposure supported by both methods included increases in immune-related, surfactant metabolism, proteasome, and actin cytoskeleton protein clusters. Overall, while 2D-PAGE has its value, especially as a complementary method for the analysis of effects on intact proteins, LC-MS/MS approaches will likely be the method of choice for proteome analysis in systems toxicology investigations. Quantitative proteomics is anticipated to play a growing role within systems toxicology assessment frameworks in the future. To further understand how different proteomics technologies can contribute to toxicity assessment, we conducted a quantitative proteomics analysis using 2D-PAGE and isobaric tag-based LC-MS/MS approaches and compared the results produced from the 2 approaches. Using a prototypic modified risk tobacco product (pMRTP) as our test item, we show compared with cigarette smoke, how 2D-PAGE results can complement and support LC-MS/MS data, demonstrating the much lower effects of pMRTP aerosol than cigarette smoke on the mouse lung proteome. The combined analysis of 2D-PAGE and LC-MS/MS data identified an effect of cigarette smoke on the proteasome and actin cytoskeleton in the lung. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Hou, Junjie; Zhang, Chengqian; Xue, Peng; Wang, Jifeng; Chen, Xiulan; Guo, Xiaojing; Yang, Fuquan
2017-01-01
Ovarian cancer is one of the most common cancer among women in the world, and chemotherapy remains the principal treatment for patients. However, drug resistance is a major obstacle to the effective treatment of ovarian cancers and the underlying mechanism is not clear. An increased understanding of the mechanisms that underline the pathogenesis of drug resistance is therefore needed to develop novel therapeutics and diagnostic. Herein, we report the comparative analysis of the doxorubicin sensitive OVCAR8 cells and its doxorubicin-resistant variant NCI/ADR-RES cells using integrated global proteomics and N-glycoproteomics. A total of 1525 unique N-glycosite-containing peptides from 740 N-glycoproteins were identified and quantified, of which 253 N-glycosite-containing peptides showed significant change in the NCI/ADR-RES cells. Meanwhile, stable isotope labeling by amino acids in cell culture (SILAC) based comparative proteomic analysis of the two ovarian cancer cells led to the quantification of 5509 proteins. As about 50% of the identified N-glycoproteins are low-abundance membrane proteins, only 44% of quantified unique N-glycosite-containing peptides had corresponding protein expression ratios. The comparison and calibration of the N-glycoproteome versus the proteome classified 14 change patterns of N-glycosite-containing peptides, including 8 up-regulated N-glycosite-containing peptides with the increased glycosylation sites occupancy, 35 up-regulated N-glycosite-containing peptides with the unchanged glycosylation sites occupancy, 2 down-regulated N-glycosite-containing peptides with the decreased glycosylation sites occupancy, 46 down-regulated N-glycosite-containing peptides with the unchanged glycosylation sites occupancy. Integrated proteomic and N-glycoproteomic analyses provide new insights, which can help to unravel the relationship of N-glycosylation and multidrug resistance (MDR), understand the mechanism of MDR, and discover the new diagnostic and therapeutic targets. PMID:28077793
ProCon - PROteomics CONversion tool.
Mayer, Gerhard; Stephan, Christian; Meyer, Helmut E; Kohl, Michael; Marcus, Katrin; Eisenacher, Martin
2015-11-03
With the growing amount of experimental data produced in proteomics experiments and the requirements/recommendations of journals in the proteomics field to publicly make available data described in papers, a need for long-term storage of proteomics data in public repositories arises. For such an upload one needs proteomics data in a standardized format. Therefore, it is desirable, that the proprietary vendor's software will integrate in the future such an export functionality using the standard formats for proteomics results defined by the HUPO-PSI group. Currently not all search engines and analysis tools support these standard formats. In the meantime there is a need to provide user-friendly free-to-use conversion tools that can convert the data into such standard formats in order to support wet-lab scientists in creating proteomics data files ready for upload into the public repositories. ProCon is such a conversion tool written in Java for conversion of proteomics identification data into standard formats mzIdentML and Pride XML. It allows the conversion of Sequest™/Comet .out files, of search results from the popular and often used ProteomeDiscoverer® 1.x (x=versions 1.1 to1.4) software and search results stored in the LIMS systems ProteinScape® 1.3 and 2.1 into mzIdentML and PRIDE XML. This article is part of a Special Issue entitled: Computational Proteomics. Copyright © 2015. Published by Elsevier B.V.
Application of proteomics to ecology and population biology.
Karr, T L
2008-02-01
Proteomics is a relatively new scientific discipline that merges protein biochemistry, genome biology and bioinformatics to determine the spatial and temporal expression of proteins in cells, tissues and whole organisms. There has been very little application of proteomics to the fields of behavioral genetics, evolution, ecology and population dynamics, and has only recently been effectively applied to the closely allied fields of molecular evolution and genetics. However, there exists considerable potential for proteomics to impact in areas related to functional ecology; this review will introduce the general concepts and methodologies that define the field of proteomics and compare and contrast the advantages and disadvantages with other methods. Examples of how proteomics can aid, complement and indeed extend the study of functional ecology will be discussed including the main tool of ecological studies, population genetics with an emphasis on metapopulation structure analysis. Because proteomic analyses provide a direct measure of gene expression, it obviates some of the limitations associated with other genomic approaches, such as microarray and EST analyses. Likewise, in conjunction with associated bioinformatics and molecular evolutionary tools, proteomics can provide the foundation of a systems-level integration approach that can enhance ecological studies. It can be envisioned that proteomics will provide important new information on issues specific to metapopulation biology and adaptive processes in nature. A specific example of the application of proteomics to sperm ageing is provided to illustrate the potential utility of the approach.
Proteomics and Systems Biology: Current and Future Applications in the Nutritional Sciences1
Moore, J. Bernadette; Weeks, Mark E.
2011-01-01
In the last decade, advances in genomics, proteomics, and metabolomics have yielded large-scale datasets that have driven an interest in global analyses, with the objective of understanding biological systems as a whole. Systems biology integrates computational modeling and experimental biology to predict and characterize the dynamic properties of biological systems, which are viewed as complex signaling networks. Whereas the systems analysis of disease-perturbed networks holds promise for identification of drug targets for therapy, equally the identified critical network nodes may be targeted through nutritional intervention in either a preventative or therapeutic fashion. As such, in the context of the nutritional sciences, it is envisioned that systems analysis of normal and nutrient-perturbed signaling networks in combination with knowledge of underlying genetic polymorphisms will lead to a future in which the health of individuals will be improved through predictive and preventative nutrition. Although high-throughput transcriptomic microarray data were initially most readily available and amenable to systems analysis, recent technological and methodological advances in MS have contributed to a linear increase in proteomic investigations. It is now commonplace for combined proteomic technologies to generate complex, multi-faceted datasets, and these will be the keystone of future systems biology research. This review will define systems biology, outline current proteomic methodologies, highlight successful applications of proteomics in nutrition research, and discuss the challenges for future applications of systems biology approaches in the nutritional sciences. PMID:22332076
A-to-I RNA Editing Contributes to Proteomic Diversity in Cancer.
Peng, Xinxin; Xu, Xiaoyan; Wang, Yumeng; Hawke, David H; Yu, Shuangxing; Han, Leng; Zhou, Zhicheng; Mojumdar, Kamalika; Jeong, Kang Jin; Labrie, Marilyne; Tsang, Yiu Huen; Zhang, Minying; Lu, Yiling; Hwu, Patrick; Scott, Kenneth L; Liang, Han; Mills, Gordon B
2018-05-14
Adenosine (A) to inosine (I) RNA editing introduces many nucleotide changes in cancer transcriptomes. However, due to the complexity of post-transcriptional regulation, the contribution of RNA editing to proteomic diversity in human cancers remains unclear. Here, we performed an integrated analysis of TCGA genomic data and CPTAC proteomic data. Despite limited site diversity, we demonstrate that A-to-I RNA editing contributes to proteomic diversity in breast cancer through changes in amino acid sequences. We validate the presence of editing events at both RNA and protein levels. The edited COPA protein increases proliferation, migration, and invasion of cancer cells in vitro. Our study suggests an important contribution of A-to-I RNA editing to protein diversity in cancer and highlights its translational potential. Copyright © 2018 Elsevier Inc. All rights reserved.
Proteomics in pharmaceutical research and development.
Cutler, Paul; Voshol, Hans
2015-08-01
In the 20 years since its inception, the evolution of proteomics in pharmaceutical industry has mirrored the developments within academia and indeed other industries. From initial enthusiasm and subsequent disappointment in global protein expression profiling, pharma research saw the biggest impact when relating to more focused approaches, such as those exploring the interaction between proteins and drugs. Nowadays, proteomics technologies have been integrated in many areas of pharmaceutical R&D, ranging from the analysis of therapeutic proteins to the monitoring of clinical trials. Here, we review the development of proteomics in the drug discovery process, placing it in a historical context as well as reviewing the current status in light of the contributions to this special issue, which reflect some of the diverse demands of the drug and biomarker pipelines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of the functional aspects and seminal plasma proteomic profile of sperm from smokers.
Antoniassi, Mariana Pereira; Intasqui, Paula; Camargo, Mariana; Zylbersztejn, Daniel Suslik; Carvalho, Valdemir Melechco; Cardozo, Karina H M; Bertolla, Ricardo Pimenta
2016-11-01
To evaluate the effect of smoking on sperm functional quality and seminal plasma proteomic profile. Sperm functional tests were performed in 20 non-smoking men with normal semen quality, according to the World Health Organization (2010) and in 20 smoking patients. These included: evaluation of DNA fragmentation by alkaline Comet assay; analysis of mitochondrial activity using DAB staining; and acrosomal integrity evaluation by PNA binding. The remaining semen was centrifuged and seminal plasma was used for proteomic analysis (liquid chromatography-tandem mass spectrometry). The quantified proteins were used for Venn diagram construction in Cytoscape 3.2.1 software, using the PINA4MS plug-in. Then, differentially expressed proteins were used for functional enrichment analysis of Gene Ontology categories, Kyoto Encyclopedia of Genes and Genomes and Reactome, using Cytoscape software and the ClueGO 2.2.0 plug-in. Smokers had a higher percentage of sperm DNA damage (Comet classes III and IV; P < 0.01), partially and fully inactive mitochondria (DAB classes III and IV; P = 0.001 and P = 0.006, respectively) and non-intact acrosomes (P < 0.01) when compared with the control group. With respect to proteomic analysis, 422 proteins were identified and quantified, of which one protein was absent, 27 proteins were under-represented and six proteins were over-represented in smokers. Functional enrichment analysis showed the enrichment of antigen processing and presentation, positive regulation of prostaglandin secretion involved in immune response, protein kinase A signalling and arachidonic acid secretion, complement activation, regulation of the cytokine-mediated signalling pathway and regulation of acute inflammatory response in the study group (smokers). In conclusion, cigarette smoking was associated with an inflammatory state in the accessory glands and in the testis, as shown by enriched proteomic pathways. This state causes an alteration in sperm functional quality, which is characterized by decreased acrosome integrity and mitochondrial activity, as well as by increased nuclear DNA fragmentation. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.
Colaert, Niklaas; Barsnes, Harald; Vaudel, Marc; Helsens, Kenny; Timmerman, Evy; Sickmann, Albert; Gevaert, Kris; Martens, Lennart
2011-08-05
The Thermo Proteome Discoverer program integrates both peptide identification and quantification into a single workflow for peptide-centric proteomics. Furthermore, its close integration with Thermo mass spectrometers has made it increasingly popular in the field. Here, we present a Java library to parse the msf files that constitute the output of Proteome Discoverer. The parser is also implemented as a graphical user interface allowing convenient access to the information found in the msf files, and in Rover, a program to analyze and validate quantitative proteomics information. All code, binaries, and documentation is freely available at http://thermo-msf-parser.googlecode.com.
Yang, Wei; Kim, Yongsoo; Kim, Taek-Kyun; Keay, Susan K; Kim, Kwang Pyo; Steen, Hanno; Freeman, Michael R; Hwang, Daehee; Kim, Jayoung
2012-12-01
What's known on the subject? and What does the study add? Interstitial cystitis (IC) is a prevalent and debilitating pelvic disorder generally accompanied by chronic pain combined with chronic urinating problems. Over one million Americans are affected, especially middle-aged women. However, its aetiology or mechanism remains unclear. No efficient drug has been provided to patients. Several urinary biomarker candidates have been identified for IC; among the most promising is antiproliferative factor (APF), whose biological activity is detectable in urine specimens from >94% of patients with both ulcerative and non-ulcerative IC. The present study identified several important mediators of the effect of APF on bladder cell physiology, suggesting several candidate drug targets against IC. In an attempt to identify potential proteins and genes regulated by APF in vivo, and to possibly expand the APF-regulated network identified by stable isotope labelling by amino acids in cell culture (SILAC), we performed an integration analysis of our own SILAC data and the microarray data of Gamper et al. (2009) BMC Genomics 10: 199. Notably, two of the proteins (i.e. MAPKSP1 and GSPT1) that are down-regulated by APF are involved in the activation of mTORC1, suggesting that the mammalian target of rapamycin (mTOR) pathway is potentially a critical pathway regulated by APF in vivo. Several components of the mTOR pathway are currently being studied as potential therapeutic targets in other diseases. Our analysis suggests that this pathway might also be relevant in the design of diagnostic tools and medications targeting IC. • To enhance our understanding of the interstitial cystitis urine biomarker antiproliferative factor (APF), as well as interstitial cystitis biology more generally at the systems level, we reanalyzed recently published large-scale quantitative proteomics and in vivo transcriptomics data sets using an integration analysis tool that we have developed. • To identify more differentially expressed genes with a lower false discovery rate from a previously published microarray data set, an integrative hypothesis-testing statistical approach was applied. • For validation experiments, expression and phosphorylation levels of select proteins were evaluated by western blotting. • Integration analysis of this transcriptomics data set with our own quantitative proteomics data set identified 10 genes that are potentially regulated by APF in vivo from 4140 differentially expressed genes identified with a false discovery rate of 1%. • Of these, five (i.e. JUP, MAPKSP1, GSPT1, PTGS2/COX-2 and XPOT) were found to be prominent after network modelling of the common genes identified in the proteomics and microarray studies. • This molecular signature reflects the biological processes of cell adhesion, cell proliferation and inflammation, which is consistent with the known physiological effects of APF. • Lastly, we found the mammalian target of rapamycin pathway was down-regulated in response to APF. • This unbiased integration analysis of in vitro quantitative proteomics data with in vivo quantitative transcriptomics data led to the identification of potential downstream mediators of the APF signal transduction pathway. © 2012 THE AUTHORS. BJU INTERNATIONAL © 2012 BJU INTERNATIONAL.
Biochemical Markers of Brain Injury: An Integrated Proteomics-Based Approach
2006-02-01
Anthony J Williams, X-C May Lu, Renwu Chen, Zhilin Liao, Rebeca Connors, Kevin K Wang, Ron L Hayes, Frank C Tortella, Jitendra R Dave. High throughput... YANG , A., et al. (2002). Evalu- ation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell...apoptosis. J. Biol. Chem. 279, 1030–1039. Kuida K., Zheng T. S., Na S., Kuan C., Yang D., Karasuyama H., Rakic P. and Flavell R. A. (1996) Decreased apoptosis
Bowler, Russell P; Wendt, Chris H; Fessler, Michael B; Foster, Matthew W; Kelly, Rachel S; Lasky-Su, Jessica; Rogers, Angela J; Stringer, Kathleen A; Winston, Brent W
2017-12-01
This document presents the proceedings from the workshop entitled, "New Strategies and Challenges in Lung Proteomics and Metabolomics" held February 4th-5th, 2016, in Denver, Colorado. It was sponsored by the National Heart Lung Blood Institute, the American Thoracic Society, the Colorado Biological Mass Spectrometry Society, and National Jewish Health. The goal of this workshop was to convene, for the first time, relevant experts in lung proteomics and metabolomics to discuss and overcome specific challenges in these fields that are unique to the lung. The main objectives of this workshop were to identify, review, and/or understand: (1) emerging technologies in metabolomics and proteomics as applied to the study of the lung; (2) the unique composition and challenges of lung-specific biological specimens for metabolomic and proteomic analysis; (3) the diverse informatics approaches and databases unique to metabolomics and proteomics, with special emphasis on the lung; (4) integrative platforms across genetic and genomic databases that can be applied to lung-related metabolomic and proteomic studies; and (5) the clinical applications of proteomics and metabolomics. The major findings and conclusions of this workshop are summarized at the end of the report, and outline the progress and challenges that face these rapidly advancing fields.
Efficient visualization of high-throughput targeted proteomics experiments: TAPIR.
Röst, Hannes L; Rosenberger, George; Aebersold, Ruedi; Malmström, Lars
2015-07-15
Targeted mass spectrometry comprises a set of powerful methods to obtain accurate and consistent protein quantification in complex samples. To fully exploit these techniques, a cross-platform and open-source software stack based on standardized data exchange formats is required. We present TAPIR, a fast and efficient Python visualization software for chromatograms and peaks identified in targeted proteomics experiments. The input formats are open, community-driven standardized data formats (mzML for raw data storage and TraML encoding the hierarchical relationships between transitions, peptides and proteins). TAPIR is scalable to proteome-wide targeted proteomics studies (as enabled by SWATH-MS), allowing researchers to visualize high-throughput datasets. The framework integrates well with existing automated analysis pipelines and can be extended beyond targeted proteomics to other types of analyses. TAPIR is available for all computing platforms under the 3-clause BSD license at https://github.com/msproteomicstools/msproteomicstools. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A comprehensive and scalable database search system for metaproteomics.
Chatterjee, Sandip; Stupp, Gregory S; Park, Sung Kyu Robin; Ducom, Jean-Christophe; Yates, John R; Su, Andrew I; Wolan, Dennis W
2016-08-16
Mass spectrometry-based shotgun proteomics experiments rely on accurate matching of experimental spectra against a database of protein sequences. Existing computational analysis methods are limited in the size of their sequence databases, which severely restricts the proteomic sequencing depth and functional analysis of highly complex samples. The growing amount of public high-throughput sequencing data will only exacerbate this problem. We designed a broadly applicable metaproteomic analysis method (ComPIL) that addresses protein database size limitations. Our approach to overcome this significant limitation in metaproteomics was to design a scalable set of sequence databases assembled for optimal library querying speeds. ComPIL was integrated with a modified version of the search engine ProLuCID (termed "Blazmass") to permit rapid matching of experimental spectra. Proof-of-principle analysis of human HEK293 lysate with a ComPIL database derived from high-quality genomic libraries was able to detect nearly all of the same peptides as a search with a human database (~500x fewer peptides in the database), with a small reduction in sensitivity. We were also able to detect proteins from the adenovirus used to immortalize these cells. We applied our method to a set of healthy human gut microbiome proteomic samples and showed a substantial increase in the number of identified peptides and proteins compared to previous metaproteomic analyses, while retaining a high degree of protein identification accuracy and allowing for a more in-depth characterization of the functional landscape of the samples. The combination of ComPIL with Blazmass allows proteomic searches to be performed with database sizes much larger than previously possible. These large database searches can be applied to complex meta-samples with unknown composition or proteomic samples where unexpected proteins may be identified. The protein database, proteomic search engine, and the proteomic data files for the 5 microbiome samples characterized and discussed herein are open source and available for use and additional analysis.
Qendro, Veneta; Bugos, Grace A; Lundgren, Debbie H; Glynn, John; Han, May H; Han, David K
2017-03-01
In order to gain mechanistic insights into multiple sclerosis (MS) pathogenesis, we utilized a multi-dimensional approach to test the hypothesis that mutations in myelin proteins lead to immune activation and central nervous system autoimmunity in MS. Mass spectrometry-based proteomic analysis of human MS brain lesions revealed seven unique mutations of PLP1; a key myelin protein that is known to be destroyed in MS. Surprisingly, in-depth genomic analysis of two MS patients at the genomic DNA and mRNA confirmed mutated PLP1 in RNA, but not in the genomic DNA. Quantification of wild type and mutant PLP RNA levels by qPCR further validated the presence of mutant PLP RNA in the MS patients. To seek evidence linking mutations in abundant myelin proteins and immune-mediated destruction of myelin, specific immune response against mutant PLP1 in MS patients was examined. Thus, we have designed paired, wild type and mutant peptide microarrays, and examined antibody response to multiple mutated PLP1 in sera from MS patients. Consistent with the idea of different patients exhibiting unique mutation profiles, we found that 13 out of 20 MS patients showed antibody responses against specific but not against all the mutant-PLP1 peptides. Interestingly, we found mutant PLP-directed antibody response against specific mutant peptides in the sera of pre-MS controls. The results from integrative proteomic, genomic, and immune analyses reveal a possible mechanism of mutation-driven pathogenesis in human MS. The study also highlights the need for integrative genomic and proteomic analyses for uncovering pathogenic mechanisms of human diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakayasu, Ernesto S.; Nicora, Carrie D.; Sims, Amy C.
2016-05-03
ABSTRACT Integrative multi-omics analyses can empower more effective investigation and complete understanding of complex biological systems. Despite recent advances in a range of omics analyses, multi-omic measurements of the same sample are still challenging and current methods have not been well evaluated in terms of reproducibility and broad applicability. Here we adapted a solvent-based method, widely applied for extracting lipids and metabolites, to add proteomics to mass spectrometry-based multi-omics measurements. Themetabolite,protein, andlipidextraction (MPLEx) protocol proved to be robust and applicable to a diverse set of sample types, including cell cultures, microbial communities, and tissues. To illustrate the utility of thismore » protocol, an integrative multi-omics analysis was performed using a lung epithelial cell line infected with Middle East respiratory syndrome coronavirus, which showed the impact of this virus on the host glycolytic pathway and also suggested a role for lipids during infection. The MPLEx method is a simple, fast, and robust protocol that can be applied for integrative multi-omic measurements from diverse sample types (e.g., environmental,in vitro, and clinical). IMPORTANCEIn systems biology studies, the integration of multiple omics measurements (i.e., genomics, transcriptomics, proteomics, metabolomics, and lipidomics) has been shown to provide a more complete and informative view of biological pathways. Thus, the prospect of extracting different types of molecules (e.g., DNAs, RNAs, proteins, and metabolites) and performing multiple omics measurements on single samples is very attractive, but such studies are challenging due to the fact that the extraction conditions differ according to the molecule type. Here, we adapted an organic solvent-based extraction method that demonstrated broad applicability and robustness, which enabled comprehensive proteomics, metabolomics, and lipidomics analyses from the same sample.« less
Integrating Mass Spectrometry of Intact Protein Complexes into Structural Proteomics
Hyung, Suk-Joon; Ruotolo, Brandon T.
2013-01-01
Summary Mass spectrometry analysis of intact protein complexes has emerged as an established technology for assessing the composition and connectivity within dynamic, heterogeneous multiprotein complexes at low concentrations and in the context of mixtures. As this technology continues to move forward, one of the main challenges is to integrate the information content of such intact protein complex measurements with other mass spectrometry approaches in structural biology. Methods such as H/D exchange, oxidative foot-printing, chemical cross-linking, affinity purification, and ion mobility separation add complementary information that allows access to every level of protein structure and organization. Here, we survey the structural information that can be retrieved by such experiments, demonstrate the applicability of integrative mass spectrometry approaches in structural proteomics, and look to the future to explore upcoming innovations in this rapidly-advancing area. PMID:22611037
Seliger, Barbara; Dressler, Sven P.; Wang, Ena; Kellner, Roland; Recktenwald, Christian V.; Lottspeich, Friedrich; Marincola, Francesco M.; Baumgärtner, Maja; Atkins, Derek; Lichtenfels, Rudolf
2012-01-01
Results obtained from expression profilings of renal cell carcinoma using different “ome”-based approaches and comprehensive data analysis demonstrated that proteome-based technologies and cDNA microarray analyses complement each other during the discovery phase for disease-related candidate biomarkers. The integration of the respective data revealed the uniqueness and complementarities of the different technologies. While comparative cDNA microarray analyses though restricted to upregulated targets largely revealed genes involved in controlling gene/protein expression (19%) and signal transduction processes (13%), proteomics/PROTEOMEX-defined candidate biomarkers include enzymes of the cellular metabolism (36%), transport proteins (12%) and cell motility/structural molecules (10%). Candidate biomarkers defined by proteomics and PROTEOMEX are frequently shared, whereas the sharing rate between cDNA microarray and proteome-based profilings is limited. Putative candidate biomarkers provide insights into their cellular (dys)function and their diagnostic/prognostic value but still warrant further validation in larger patient numbers. Based on the fact that merely 3 candidate biomarkers were shared by all applied technologies, namely annexin A4, tubulin alpha-1A chain and ubiquitin carboxyl-terminal hydrolase L1 the analysis at a single hierarchical level of biological regulation seems to provide only limited results thus emphasizing the importance and benefit of performing rather combinatorial screenings which can complement the standard clinical predictors. PMID:19235166
Neurobiological Signatures of Alcohol Dependence Revealed by Protein Profiling
Gorini, Giorgio; Roberts, Amanda J.; Mayfield, R. Dayne
2013-01-01
Alcohol abuse causes dramatic neuroadaptations in the brain, which contribute to tolerance, dependence, and behavioral modifications. Previous proteomic studies in human alcoholics and animal models have identified candidate alcoholism-related proteins. However, recent evidences suggest that alcohol dependence is caused by changes in co-regulation that are invisible to single protein-based analysis. Here, we analyze global proteomics data to integrate differential expression, co-expression networks, and gene annotations to unveil key neurobiological rearrangements associated with the transition to alcohol dependence modeled by a Chronic Intermittent Ethanol (CIE), two-bottle choice (2BC) paradigm. We analyzed cerebral cortices (CTX) and midbrains (MB) from male C57BL/6J mice subjected to a CIE, 2BC paradigm, which induces heavy drinking and represents one of the best available animal models for alcohol dependence and relapse drinking. CIE induced significant changes in protein levels in dependent mice compared with their non-dependent controls. Multiple protein isoforms showed region-specific differential regulation as a result of post-translational modifications. Our integrative analysis identified modules of co-expressed proteins that were highly correlated with CIE treatment. We found that modules most related to the effects of CIE treatment coordinate molecular imbalances in endocytic- and energy-related pathways, with specific proteins involved, such as dynamin-1. The qRT-PCR experiments validated both differential and co-expression analyses, and the correspondence among our data and previous genomic and proteomic studies in humans and rodents substantiates our findings. The changes identified above may play a key role in the escalation of ethanol consumption associated with dependence. Our approach to alcohol addiction will advance knowledge of brain remodeling mechanisms and adaptive changes in response to drug abuse, contribute to understanding of organizational principles of CTX and MB proteomes, and define potential new molecular targets for treating alcohol addiction. The integrative analysis employed here highlight the advantages of systems approaches in studying the neurobiology of alcohol addiction. PMID:24358215
Trindade, Fábio; Ferreira, Rita; Magalhães, Beatriz; Leite-Moreira, Adelino; Falcão-Pires, Inês; Vitorino, Rui
2018-01-16
Nowadays we are surrounded by a plethora of bioinformatics tools, powerful enough to deal with the large amounts of data arising from proteomic studies, but whose application is sometimes hard to find. Therefore, we used a specific clinical problem - to discriminate pathophysiology and potential biomarkers between two similar cardiovascular diseases, aortic valve stenosis (AVS) and coronary artery disease (CAD) - to make a step-by-step guide through four bioinformatics tools: STRING, DisGeNET, Cytoscape and ClueGO. Proteome data was collected from articles available on PubMed centered on proteomic studies enrolling subjects with AVS or CAD. Through the analysis of gene ontology provided by STRING and ClueGO we could find specific biological phenomena associated with AVS, such as down-regulation of elastic fiber assembly, and with CAD, such as up-regulation of plasminogen activation. Moreover, through Cytoscape and DisGeNET we could pinpoint surrogate markers either for AVS (e.g. popeye domain containing protein 2 and 28S ribosomal protein S36, mitochondrial) or for CAD (e.g. ankyrin repeat and SOCS box protein 7) which deserve future validation. Data recycling and integration as well as research orientation are among the main advantages of resorting to bioinformatics analysis, hence these tutorials can be of great convenience for proteomics investigators. As we saw for aortic valve stenosis and coronary artery disease, it can be of great relevance to perform preliminary bioinformatics analysis with already published proteomics data. It not only saves us time in the lab (avoiding work duplication) as it points out new hypothesis to explain the phenotypical presentation of the diseases as well as new surrogate markers with clinical relevance, deserving future scrutiny. These essential steps can be easily overcome if one follows the steps proposed in our tutorial for STRING, DisGeNET, Cytoscape and ClueGO utilization. Copyright © 2017 Elsevier B.V. All rights reserved.
A Combined Metabolomic and Proteomic Analysis of Gestational Diabetes Mellitus
Hajduk, Joanna; Klupczynska, Agnieszka; Dereziński, Paweł; Matysiak, Jan; Kokot, Piotr; Nowak, Dorota M.; Gajęcka, Marzena; Nowak-Markwitz, Ewa; Kokot, Zenon J.
2015-01-01
The aim of this pilot study was to apply a novel combined metabolomic and proteomic approach in analysis of gestational diabetes mellitus. The investigation was performed with plasma samples derived from pregnant women with diagnosed gestational diabetes mellitus (n = 18) and a matched control group (n = 13). The mass spectrometry-based analyses allowed to determine 42 free amino acids and low molecular-weight peptide profiles. Different expressions of several peptides and altered amino acid profiles were observed in the analyzed groups. The combination of proteomic and metabolomic data allowed obtaining the model with a high discriminatory power, where amino acids ethanolamine, l-citrulline, l-asparagine, and peptide ions with m/z 1488.59; 4111.89 and 2913.15 had the highest contribution to the model. The sensitivity (94.44%) and specificity (84.62%), as well as the total group membership classification value (90.32%) calculated from the post hoc classification matrix of a joint model were the highest when compared with a single analysis of either amino acid levels or peptide ion intensities. The obtained results indicated a high potential of integration of proteomic and metabolomics analysis regardless the sample size. This promising approach together with clinical evaluation of the subjects can also be used in the study of other diseases. PMID:26694367
Hegedűs, Tamás; Chaubey, Pururawa Mayank; Várady, György; Szabó, Edit; Sarankó, Hajnalka; Hofstetter, Lia; Roschitzki, Bernd; Sarkadi, Balázs
2015-01-01
Based on recent results, the determination of the easily accessible red blood cell (RBC) membrane proteins may provide new diagnostic possibilities for assessing mutations, polymorphisms or regulatory alterations in diseases. However, the analysis of the current mass spectrometry-based proteomics datasets and other major databases indicates inconsistencies—the results show large scattering and only a limited overlap for the identified RBC membrane proteins. Here, we applied membrane-specific proteomics studies in human RBC, compared these results with the data in the literature, and generated a comprehensive and expandable database using all available data sources. The integrated web database now refers to proteomic, genetic and medical databases as well, and contains an unexpected large number of validated membrane proteins previously thought to be specific for other tissues and/or related to major human diseases. Since the determination of protein expression in RBC provides a method to indicate pathological alterations, our database should facilitate the development of RBC membrane biomarker platforms and provide a unique resource to aid related further research and diagnostics. Database URL: http://rbcc.hegelab.org PMID:26078478
Zhang, Ying; Wang, Xi; Cui, Dan; Zhu, Jun
2016-12-01
Human whole saliva is a vital body fluid for studying the physiology and pathology of the oral cavity. As a powerful technique for biomarker discovery, MS-based proteomic strategies have been introduced for saliva analysis and identified hundreds of proteins and N-glycosylation sites. However, there is still a lack of quantitative analysis, which is necessary for biomarker screening and biological research. In this study, we establish an integrated workflow by the combination of stable isotope dimethyl labeling, HILIC enrichment, and high resolution MS for both quantification of the global proteome and N-glycoproteome of human saliva from oral ulcer patients. With the help of advanced bioinformatics, we comprehensively studied oral ulcers at both protein and glycoprotein scales. Bioinformatics analyses revealed that starch digestion and protein degradation activities are inhibited while the immune response is promoted in oral ulcer saliva. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Di Silvestre, Dario; Brambilla, Francesca; Scardoni, Giovanni; Brunetti, Pietro; Motta, Sara; Matteucci, Marco; Laudanna, Carlo; Recchia, Fabio A; Lionetti, Vincenzo; Mauri, Pierluigi
2017-05-01
We have demonstrated that intramyocardial delivery of human mesenchymal stem cells preconditioned with a hyaluronan mixed ester of butyric and retinoic acid (MSCp + ) is more effective in preventing the decay of regional myocardial contractility in a swine model of myocardial infarction (MI). However, the understanding of the role of MSCp + in proteomic remodeling of cardiac infarcted tissue is not complete. We therefore sought to perform a comprehensive analysis of the proteome of infarct remote (RZ) and border zone (BZ) of pigs treated with MSCp + or unconditioned stem cells. Heart tissues were analyzed by MudPIT and differentially expressed proteins were selected by a label-free approach based on spectral counting. Protein profiles were evaluated by using PPI networks and their topological analysis. The proteomic remodeling was largely prevented in MSCp + group. Extracellular proteins involved in fibrosis were down-regulated, while energetic pathways were globally up-regulated. Cardioprotectant pathways involved in the production of keto acid metabolites were also activated. Additionally, we found that new hub proteins support the cardioprotective phenotype characterizing the left ventricular BZ treated with MSCp + . In fact, the up-regulation of angiogenic proteins NCL and RAC1 can be explained by the increase of capillary density induced by MSCp + . Our results show that angiogenic pathways appear to be uniquely positioned to integrate signaling with energetic pathways involving cardiac repair. Our findings prompt the use of proteomics-based network analysis to optimize new approaches preventing the post-ischemic proteomic remodeling that may underlie the limited self-repair ability of adult heart. Copyright © 2017 Elsevier B.V. All rights reserved.
Tomar, Anil Kumar; Sooch, Balwinder Singh; Singh, Sarman; Yadav, Savita
2012-04-01
The clinical fertility tests, available in the market, fail to define the exact cause of male infertility in almost half of the cases and point toward a crucial need of developing better ways of infertility investigations. The protein biomarkers may help us toward better understanding of unknown cases of male infertility that, in turn, can guide us to find better therapeutic solutions. Many clinical attempts have been made to identify biomarkers of male infertility in sperm proteome but only few studies have targeted seminal plasma. Human seminal plasma is a rich source of proteins that are essentially required for development of sperm and successful fertilization. This viewpoint article highlights the importance of human seminal plasma proteome in reproductive physiology and suggests that differential proteomics integrated with functional analysis may help us in searching potential biomarkers of male infertility. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mol, Praseeda; Kannegundla, Uday; Dey, Gourav; Gopalakrishnan, Lathika; Dammalli, Manjunath; Kumar, Manish; Patil, Arun H; Basavaraju, Marappa; Rao, Akhila; Ramesha, Kerekoppa P; Prasad, Thottethodi Subrahmanya Keshava
2018-03-01
Bovine milk is important for both veterinary medicine and human nutrition. Understanding the bovine milk proteome at different stages of lactation has therefore broad significance for integrative biology and clinical medicine as well. Indeed, different lactation stages have marked influence on the milk yield, milk constituents, and nourishment of the neonates. We performed a comparative proteome analysis of the bovine milk obtained at different stages of lactation from the Indian indigenous cattle Malnad Gidda (Bos indicus), a widely available breed. The milk differential proteome during the lactation stages in B. indicus has not been investigated to date. Using high-resolution mass spectrometry-based quantitative proteomics of the bovine whey proteins at early, mid, and late lactation stages, we identified a total of 564 proteins, out of which 403 proteins were found to be differentially abundant at different lactation stages. As is expected of any body fluid proteome, 51% of the proteins identified in the milk were found to have signal peptides. Gene ontology analyses were carried out to categorize proteins altered across different lactation stages based on biological process and molecular function, which enabled us to correlate their significance in each lactation stage. We also investigated the potential pathways enriched in different lactation stages using bioinformatics pathway analysis tools. To the best of our knowledge, this study represents the first and largest inventory of milk proteins identified to date for an Indian cattle breed. We believe that the current study broadly informs both veterinary omics research and the emerging field of nutriproteomics during lactation stages.
Vijay, Sonam; Rawal, Ritu; Kadian, Kavita; Singh, Jagbir; Adak, Tridibesh; Sharma, Arun
2018-05-08
Midgut invasion, a major bottleneck for malaria parasites transmission is considered as a potential target for vector-parasite interaction studies. New intervention strategies are required to explore the midgut proteins and their potential role in refractoriness for malaria control in Anopheles mosquitoes. To better understand the midgut functional proteins of An. culicifacies susceptible and refractory species, proteomic approaches coupled with bioinformatics analysis is an effective means in order to understand the mechanism of refractoriness. In the present study, an integrated in solution- in gel trypsin digestion approach, along with Isobaric tag for relative and absolute quantitation (iTRAQ)-Liquid chromatography/Mass spectrometry (LC/MS/MS) and data mining were performed to identify the proteomic profile and differentially expressed proteins in Anopheles culicifacies susceptible species A and refractory species B. Shot gun proteomics approaches led to the identification of 80 proteins in An. culicifacies susceptible species A and 92 in refractory species B and catalogue was prepared. iTRAQ based proteomic analysis identified 48 differentially expressed proteins from total 130 proteins. Of these, 41 were downregulated and 7 were upregulated in refractory species B in comparison to susceptible species A. We report that the altered midgut proteins identified in naturally refractory mosquitoes are involved in oxidative phosphorylation, antioxidant and proteolysis process that may suggest their role in parasite growth inhibition. Furthermore, real time polymerase chain reaction (PCR) analysis of few proteins indicated higher expression of iTRAQ upregulated protein in refractory species than susceptible species. This study elucidates the first proteome of the midguts of An. culicifacies sibling species that attempts to analyze unique proteogenomic interactions to provide insights for better understanding of the mechanism of refractoriness. Functional implications of these upregulated proteins in refractory species may reflect the phenotypic characteristics of the mosquitoes and will improve our understandings of blood meal digestion process, parasite vector interactions and proteomes of other vectors of human diseases for development of novel vector control strategies.
Open reading frames associated with cancer in the dark matter of the human genome.
Delgado, Ana Paula; Brandao, Pamela; Chapado, Maria Julia; Hamid, Sheilin; Narayanan, Ramaswamy
2014-01-01
The uncharacterized proteins (open reading frames, ORFs) in the human genome offer an opportunity to discover novel targets for cancer. A systematic analysis of the dark matter of the human proteome for druggability and biomarker discovery is crucial to mining the genome. Numerous data mining tools are available to mine these ORFs to develop a comprehensive knowledge base for future target discovery and validation. Using the Genetic Association Database, the ORFs of the human dark matter proteome were screened for evidence of association with neoplasms. The Phenome-Genome Integrator tool was used to establish phenotypic association with disease traits including cancer. Batch analysis of the tools for protein expression analysis, gene ontology and motifs and domains was used to characterize the ORFs. Sixty-two ORFs were identified for neoplasm association. The expression Quantitative Trait Loci (eQTL) analysis identified thirteen ORFs related to cancer traits. Protein expression, motifs and domain analysis and genome-wide association studies verified the relevance of these OncoORFs in diverse tumors. The OncoORFs are also associated with a wide variety of human diseases and disorders. Our results link the OncoORFs to diverse diseases and disorders. This suggests a complex landscape of the uncharacterized proteome in human diseases. These results open the dark matter of the proteome to novel cancer target research. Copyright© 2014, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.
Umoh, Mfon E; Dammer, Eric B; Dai, Jingting; Duong, Duc M; Lah, James J; Levey, Allan I; Gearing, Marla; Glass, Jonathan D; Seyfried, Nicholas T
2018-01-01
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases with overlap in clinical presentation, neuropathology, and genetic underpinnings. The molecular basis for the overlap of these disorders is not well established. We performed a comparative unbiased mass spectrometry-based proteomic analysis of frontal cortical tissues from postmortem cases clinically defined as ALS, FTD, ALS and FTD (ALS/FTD), and controls. We also included a subset of patients with the C9orf72 expansion mutation, the most common genetic cause of both ALS and FTD Our systems-level analysis of the brain proteome integrated both differential expression and co-expression approaches to assess the relationship of these differences to clinical and pathological phenotypes. Weighted co-expression network analysis revealed 15 modules of co-expressed proteins, eight of which were significantly different across the ALS-FTD disease spectrum. These included modules associated with RNA binding proteins, synaptic transmission, and inflammation with cell-type specificity that showed correlation with TDP-43 pathology and cognitive dysfunction. Modules were also examined for their overlap with TDP-43 protein-protein interactions, revealing one module enriched with RNA-binding proteins and other causal ALS genes that increased in FTD/ALS and FTD cases. A module enriched with astrocyte and microglia proteins was significantly increased in ALS cases carrying the C9orf72 mutation compared to sporadic ALS cases, suggesting that the genetic expansion is associated with inflammation in the brain even without clinical evidence of dementia. Together, these findings highlight the utility of integrative systems-level proteomic approaches to resolve clinical phenotypes and genetic mechanisms underlying the ALS-FTD disease spectrum in human brain. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Subramanian, Vikram; Seemann, Ingar; Merl-Pham, Juliane; Hauck, Stefanie M; Stewart, Fiona A; Atkinson, Michael J; Tapio, Soile; Azimzadeh, Omid
2017-01-06
Epidemiological data from patients undergoing radiotherapy for thoracic tumors clearly show the damaging effect of ionizing radiation on cardiovascular system. The long-term impairment of heart function and structure after local high-dose irradiation is associated with systemic inflammatory response, contraction impairment, microvascular damage, and cardiac fibrosis. The goal of the present study was to investigate molecular mechanisms involved in this process. C57BL/6J mice received a single X-ray dose of 16 Gy given locally to the heart at the age of 8 weeks. Radiation-induced changes in the heart transcriptome and proteome were investigated 40 weeks after the exposure. The omics data were analyzed by bioinformatics tools and validated by immunoblotting. Integrated network analysis of transcriptomics and proteomics data elucidated the signaling pathways that were similarly affected at gene and protein level. Analysis showed induction of transforming growth factor (TGF) beta signaling but inactivation of peroxisome proliferator-activated receptor (PPAR) alpha signaling in irradiated heart. The putative mediator role of mitogen-activated protein kinase cascade linking PPAR alpha and TGF beta signaling was supported by data from immunoblotting and ELISA. This study indicates that both signaling pathways are involved in radiation-induced heart fibrosis, metabolic disordering, and impaired contractility, a pathophysiological condition that is often observed in patients that received high radiation doses in thorax.
Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome.
Marmagne, Anne; Rouet, Marie-Aude; Ferro, Myriam; Rolland, Norbert; Alcon, Carine; Joyard, Jacques; Garin, Jérome; Barbier-Brygoo, Hélène; Ephritikhine, Geneviève
2004-07-01
Identification and characterization of anion channel genes in plants represent a goal for a better understanding of their central role in cell signaling, osmoregulation, nutrition, and metabolism. Though channel activities have been well characterized in plasma membrane by electrophysiology, the corresponding molecular entities are little documented. Indeed, the hydrophobic protein equipment of plant plasma membrane still remains largely unknown, though several proteomic approaches have been reported. To identify new putative transport systems, we developed a new proteomic strategy based on mass spectrometry analyses of a plasma membrane fraction enriched in hydrophobic proteins. We produced from Arabidopsis cell suspensions a highly purified plasma membrane fraction and characterized it in detail by immunological and enzymatic tests. Using complementary methods for the extraction of hydrophobic proteins and mass spectrometry analyses on mono-dimensional gels, about 100 proteins have been identified, 95% of which had never been found in previous proteomic studies. The inventory of the plasma membrane proteome generated by this approach contains numerous plasma membrane integral proteins, one-third displaying at least four transmembrane segments. The plasma membrane localization was confirmed for several proteins, therefore validating such proteomic strategy. An in silico analysis shows a correlation between the putative functions of the identified proteins and the expected roles for plasma membrane in transport, signaling, cellular traffic, and metabolism. This analysis also reveals 10 proteins that display structural properties compatible with transport functions and will constitute interesting targets for further functional studies.
Simulation of two dimensional electrophoresis and tandem mass spectrometry for teaching proteomics.
Fisher, Amanda; Sekera, Emily; Payne, Jill; Craig, Paul
2012-01-01
In proteomics, complex mixtures of proteins are separated (usually by chromatography or electrophoresis) and identified by mass spectrometry. We have created 2DE Tandem MS, a computer program designed for use in the biochemistry, proteomics, or bioinformatics classroom. It contains two simulations-2D electrophoresis and tandem mass spectrometry. The two simulations are integrated together and are designed to teach the concept of proteome analysis of prokaryotic and eukaryotic organisms. 2DE-Tandem MS can be used as a freestanding simulation, or in conjunction with a wet lab, to introduce proteomics in the undergraduate classroom. 2DE Tandem MS is a free program available on Sourceforge at https://sourceforge.net/projects/jbf/. It was developed using Java Swing and functions in Mac OSX, Windows, and Linux, ensuring that every student sees a consistent and informative graphical user interface no matter the computer platform they choose. Java must be installed on the host computer to run 2DE Tandem MS. Example classroom exercises are provided in the Supporting Information. Copyright © 2012 Wiley Periodicals, Inc.
Stare, Tjaša; Stare, Katja; Weckwerth, Wolfram; Wienkoop, Stefanie; Gruden, Kristina
2017-07-06
Plant diseases caused by viral infection are affecting all major crops. Being an obligate intracellular organisms, chemical control of these pathogens is so far not applied in the field except to control the insect vectors of the viruses. Understanding of molecular responses of plant immunity is therefore economically important, guiding the enforcement of crop resistance. To disentangle complex regulatory mechanisms of the plant immune responses, understanding system as a whole is a must. However, integrating data from different molecular analysis (transcriptomics, proteomics, metabolomics, smallRNA regulation etc.) is not straightforward. We evaluated the response of potato ( Solanum tuberosum L.) following the infection with potato virus Y (PVY). The response has been analyzed on two molecular levels, with microarray transcriptome analysis and mass spectroscopy-based proteomics. Within this report, we performed detailed analysis of the results on both levels and compared two different approaches for analysis of proteomic data (spectral count versus MaxQuant). To link the data on different molecular levels, each protein was mapped to the corresponding potato transcript according to StNIB paralogue grouping. Only 33% of the proteins mapped to microarray probes in a one-to-one relation and additionally many showed discordance in detected levels of proteins with corresponding transcripts. We discussed functional importance of true biological differences between both levels and showed that the reason for the discordance between transcript and protein abundance lies partly in complexity and structure of biological regulation of proteome and transcriptome and partly in technical issues contributing to it.
Stare, Tjaša; Stare, Katja; Weckwerth, Wolfram; Wienkoop, Stefanie
2017-01-01
Plant diseases caused by viral infection are affecting all major crops. Being an obligate intracellular organisms, chemical control of these pathogens is so far not applied in the field except to control the insect vectors of the viruses. Understanding of molecular responses of plant immunity is therefore economically important, guiding the enforcement of crop resistance. To disentangle complex regulatory mechanisms of the plant immune responses, understanding system as a whole is a must. However, integrating data from different molecular analysis (transcriptomics, proteomics, metabolomics, smallRNA regulation etc.) is not straightforward. We evaluated the response of potato (Solanum tuberosum L.) following the infection with potato virus Y (PVY). The response has been analyzed on two molecular levels, with microarray transcriptome analysis and mass spectroscopy-based proteomics. Within this report, we performed detailed analysis of the results on both levels and compared two different approaches for analysis of proteomic data (spectral count versus MaxQuant). To link the data on different molecular levels, each protein was mapped to the corresponding potato transcript according to StNIB paralogue grouping. Only 33% of the proteins mapped to microarray probes in a one-to-one relation and additionally many showed discordance in detected levels of proteins with corresponding transcripts. We discussed functional importance of true biological differences between both levels and showed that the reason for the discordance between transcript and protein abundance lies partly in complexity and structure of biological regulation of proteome and transcriptome and partly in technical issues contributing to it. PMID:28684682
Waters, Katrina M.; Liu, Tao; Quesenberry, Ryan D.; Willse, Alan R.; Bandyopadhyay, Somnath; Kathmann, Loel E.; Weber, Thomas J.; Smith, Richard D.; Wiley, H. Steven; Thrall, Brian D.
2012-01-01
To understand how integration of multiple data types can help decipher cellular responses at the systems level, we analyzed the mitogenic response of human mammary epithelial cells to epidermal growth factor (EGF) using whole genome microarrays, mass spectrometry-based proteomics and large-scale western blots with over 1000 antibodies. A time course analysis revealed significant differences in the expression of 3172 genes and 596 proteins, including protein phosphorylation changes measured by western blot. Integration of these disparate data types showed that each contributed qualitatively different components to the observed cell response to EGF and that varying degrees of concordance in gene expression and protein abundance measurements could be linked to specific biological processes. Networks inferred from individual data types were relatively limited, whereas networks derived from the integrated data recapitulated the known major cellular responses to EGF and exhibited more highly connected signaling nodes than networks derived from any individual dataset. While cell cycle regulatory pathways were altered as anticipated, we found the most robust response to mitogenic concentrations of EGF was induction of matrix metalloprotease cascades, highlighting the importance of the EGFR system as a regulator of the extracellular environment. These results demonstrate the value of integrating multiple levels of biological information to more accurately reconstruct networks of cellular response. PMID:22479638
Protein cleavage strategies for an improved analysis of the membrane proteome
Fischer, Frank; Poetsch, Ansgar
2006-01-01
Background Membrane proteins still remain elusive in proteomic studies. This is in part due to the distribution of the amino acids lysine and arginine, which are less frequent in integral membrane proteins and almost absent in transmembrane helices. As these amino acids are cleavage targets for the commonly used protease trypsin, alternative cleavage conditions, which should improve membrane protein analysis, were tested by in silico digestion for the three organisms Saccharomyces cerevisiae, Halobacterium sp. NRC-1, and Corynebacterium glutamicum as hallmarks for eukaryotes, archea and eubacteria. Results For the membrane proteomes from all three analyzed organisms, we identified cleavage conditions that achieve better sequence and proteome coverage than trypsin. Greater improvement was obtained for bacteria than for yeast, which was attributed to differences in protein size and GRAVY. It was demonstrated for bacteriorhodopsin that the in silico predictions agree well with the experimental observations. Conclusion For all three examined organisms, it was found that a combination of chymotrypsin and staphylococcal peptidase I gave significantly better results than trypsin. As some of the improved cleavage conditions are not more elaborate than trypsin digestion and have been proven useful in practice, we suppose that the cleavage at both hydrophilic and hydrophobic amino acids should facilitate in general the analysis of membrane proteins for all organisms. PMID:16512920
Proteomic Cinderella: Customized analysis of bulky MS/MS data in one night.
Kiseleva, Olga; Poverennaya, Ekaterina; Shargunov, Alexander; Lisitsa, Andrey
2018-02-01
Proteomic challenges, stirred up by the advent of high-throughput technologies, produce large amount of MS data. Nowadays, the routine manual search does not satisfy the "speed" of modern science any longer. In our work, the necessity of single-thread analysis of bulky data emerged during interpretation of HepG2 proteome profiling results for proteoforms searching. We compared the contribution of each of the eight search engines (X!Tandem, MS-GF[Formula: see text], MS Amanda, MyriMatch, Comet, Tide, Andromeda, and OMSSA) integrated in an open-source graphical user interface SearchGUI ( http://searchgui.googlecode.com ) into total result of proteoforms identification and optimized set of engines working simultaneously. We also compared the results of our search combination with Mascot results using protein kit UPS2, containing 48 human proteins. We selected combination of X!Tandem, MS-GF[Formula: see text] and OMMSA as the most time-efficient and productive combination of search. We added homemade java-script to automatize pipeline from file picking to report generation. These settings resulted in rise of the efficiency of our customized pipeline unobtainable by manual scouting: the analysis of 192 files searched against human proteome (42153 entries) downloaded from UniProt took 11[Formula: see text]h.
Plasma proteomic analysis reveals altered protein abundances in cardiovascular disease.
Lygirou, Vasiliki; Latosinska, Agnieszka; Makridakis, Manousos; Mullen, William; Delles, Christian; Schanstra, Joost P; Zoidakis, Jerome; Pieske, Burkert; Mischak, Harald; Vlahou, Antonia
2018-04-17
Cardiovascular disease (CVD) describes the pathological conditions of the heart and blood vessels. Despite the large number of studies on CVD and its etiology, its key modulators remain largely unknown. To this end, we performed a comprehensive proteomic analysis of blood plasma, with the scope to identify disease-associated changes after placing them in the context of existing knowledge, and generate a well characterized dataset for further use in CVD multi-omics integrative analysis. LC-MS/MS was employed to analyze plasma from 32 subjects (19 cases of various CVD phenotypes and 13 controls) in two steps: discovery (13 cases and 8 controls) and test (6 cases and 5 controls) set analysis. Following label-free quantification, the detected proteins were correlated to existing plasma proteomics datasets (plasma proteome database; PPD) and functionally annotated (Cytoscape, Ingenuity Pathway Analysis). Differential expression was defined based on identification confidence (≥ 2 peptides per protein), statistical significance (Mann-Whitney p value ≤ 0.05) and a minimum of twofold change. Peptides detected in at least 50% of samples per group were considered, resulting in a total of 3796 identified proteins (838 proteins based on ≥ 2 peptides). Pathway annotation confirmed the functional relevance of the findings (representation of complement cascade, fibrin clot formation, platelet degranulation, etc.). Correlation of the relative abundance of the proteins identified in the discovery set with their reported concentrations in the PPD was significant, confirming the validity of the quantification method. The discovery set analysis revealed 100 differentially expressed proteins between cases and controls, 39 of which were verified (≥ twofold change) in the test set. These included proteins already studied in the context of CVD (such as apolipoprotein B, alpha-2-macroglobulin), as well as novel findings (such as low density lipoprotein receptor related protein 2 [LRP2], protein SZT2) for which a mechanism of action is suggested. This proteomic study provides a comprehensive dataset to be used for integrative and functional studies in the field. The observed protein changes reflect known CVD-related processes (e.g. lipid uptake, inflammation) but also novel hypotheses for further investigation including a potential pleiotropic role of LPR2 but also links of SZT2 to CVD.
NASA Astrophysics Data System (ADS)
Huang, Qingyu; Luo, Lianzhong; Alamdar, Ambreen; Zhang, Jie; Liu, Liangpo; Tian, Meiping; Eqani, Syed Ali Musstjab Akber Shah; Shen, Heqing
2016-09-01
Arsenic is a widespread metalloid in environment, whose exposure has been associated with a broad spectrum of toxic effects. However, a global view of arsenic-induced male reproductive toxicity is still lack, and the underlying mechanisms remain largely unclear. Our results revealed that arsenic exposure decreased testosterone level and reduced sperm quality in rats. By conducting an integrated proteomics and metabolomics analysis, the present study aims to investigate the global influence of arsenic exposure on the proteome and metabolome in rat testis. The abundance of 70 proteins (36 up-regulated and 34 down-regulated) and 13 metabolites (8 increased and 5 decreased) were found to be significantly altered by arsenic treatment. Among these, 19 proteins and 2 metabolites were specifically related to male reproductive system development and function, including spermatogenesis, sperm function and fertilization, fertility, internal genitalia development, and mating behavior. It is further proposed that arsenic mainly impaired spermatogenesis and fertilization via aberrant modulation of these male reproduction-related proteins and metabolites, which may be mediated by the ERK/AKT/NF-κB-dependent signaling pathway. Overall, these findings will aid our understanding of the mechanisms responsible for arsenic-induced male reproductive toxicity, and from such studies useful biomarkers indicative of arsenic exposure could be discovered.
Huang, Qingyu; Luo, Lianzhong; Alamdar, Ambreen; Zhang, Jie; Liu, Liangpo; Tian, Meiping; Eqani, Syed Ali Musstjab Akber Shah; Shen, Heqing
2016-09-02
Arsenic is a widespread metalloid in environment, whose exposure has been associated with a broad spectrum of toxic effects. However, a global view of arsenic-induced male reproductive toxicity is still lack, and the underlying mechanisms remain largely unclear. Our results revealed that arsenic exposure decreased testosterone level and reduced sperm quality in rats. By conducting an integrated proteomics and metabolomics analysis, the present study aims to investigate the global influence of arsenic exposure on the proteome and metabolome in rat testis. The abundance of 70 proteins (36 up-regulated and 34 down-regulated) and 13 metabolites (8 increased and 5 decreased) were found to be significantly altered by arsenic treatment. Among these, 19 proteins and 2 metabolites were specifically related to male reproductive system development and function, including spermatogenesis, sperm function and fertilization, fertility, internal genitalia development, and mating behavior. It is further proposed that arsenic mainly impaired spermatogenesis and fertilization via aberrant modulation of these male reproduction-related proteins and metabolites, which may be mediated by the ERK/AKT/NF-κB-dependent signaling pathway. Overall, these findings will aid our understanding of the mechanisms responsible for arsenic-induced male reproductive toxicity, and from such studies useful biomarkers indicative of arsenic exposure could be discovered.
NASA Astrophysics Data System (ADS)
Großerueschkamp, Frederik; Bracht, Thilo; Diehl, Hanna C.; Kuepper, Claus; Ahrens, Maike; Kallenbach-Thieltges, Angela; Mosig, Axel; Eisenacher, Martin; Marcus, Katrin; Behrens, Thomas; Brüning, Thomas; Theegarten, Dirk; Sitek, Barbara; Gerwert, Klaus
2017-03-01
Diffuse malignant mesothelioma (DMM) is a heterogeneous malignant neoplasia manifesting with three subtypes: epithelioid, sarcomatoid and biphasic. DMM exhibit a high degree of spatial heterogeneity that complicates a thorough understanding of the underlying different molecular processes in each subtype. We present a novel approach to spatially resolve the heterogeneity of a tumour in a label-free manner by integrating FTIR imaging and laser capture microdissection (LCM). Subsequent proteome analysis of the dissected homogenous samples provides in addition molecular resolution. FTIR imaging resolves tumour subtypes within tissue thin-sections in an automated and label-free manner with accuracy of about 85% for DMM subtypes. Even in highly heterogeneous tissue structures, our label-free approach can identify small regions of interest, which can be dissected as homogeneous samples using LCM. Subsequent proteome analysis provides a location specific molecular characterization. Applied to DMM subtypes, we identify 142 differentially expressed proteins, including five protein biomarkers commonly used in DMM immunohistochemistry panels. Thus, FTIR imaging resolves not only morphological alteration within tissue but it resolves even alterations at the level of single proteins in tumour subtypes. Our fully automated workflow FTIR-guided LCM opens new avenues collecting homogeneous samples for precise and predictive biomarkers from omics studies.
Großerueschkamp, Frederik; Bracht, Thilo; Diehl, Hanna C; Kuepper, Claus; Ahrens, Maike; Kallenbach-Thieltges, Angela; Mosig, Axel; Eisenacher, Martin; Marcus, Katrin; Behrens, Thomas; Brüning, Thomas; Theegarten, Dirk; Sitek, Barbara; Gerwert, Klaus
2017-03-30
Diffuse malignant mesothelioma (DMM) is a heterogeneous malignant neoplasia manifesting with three subtypes: epithelioid, sarcomatoid and biphasic. DMM exhibit a high degree of spatial heterogeneity that complicates a thorough understanding of the underlying different molecular processes in each subtype. We present a novel approach to spatially resolve the heterogeneity of a tumour in a label-free manner by integrating FTIR imaging and laser capture microdissection (LCM). Subsequent proteome analysis of the dissected homogenous samples provides in addition molecular resolution. FTIR imaging resolves tumour subtypes within tissue thin-sections in an automated and label-free manner with accuracy of about 85% for DMM subtypes. Even in highly heterogeneous tissue structures, our label-free approach can identify small regions of interest, which can be dissected as homogeneous samples using LCM. Subsequent proteome analysis provides a location specific molecular characterization. Applied to DMM subtypes, we identify 142 differentially expressed proteins, including five protein biomarkers commonly used in DMM immunohistochemistry panels. Thus, FTIR imaging resolves not only morphological alteration within tissue but it resolves even alterations at the level of single proteins in tumour subtypes. Our fully automated workflow FTIR-guided LCM opens new avenues collecting homogeneous samples for precise and predictive biomarkers from omics studies.
Proteogenomics connects somatic mutations to signalling in breast cancer.
Mertins, Philipp; Mani, D R; Ruggles, Kelly V; Gillette, Michael A; Clauser, Karl R; Wang, Pei; Wang, Xianlong; Qiao, Jana W; Cao, Song; Petralia, Francesca; Kawaler, Emily; Mundt, Filip; Krug, Karsten; Tu, Zhidong; Lei, Jonathan T; Gatza, Michael L; Wilkerson, Matthew; Perou, Charles M; Yellapantula, Venkata; Huang, Kuan-lin; Lin, Chenwei; McLellan, Michael D; Yan, Ping; Davies, Sherri R; Townsend, R Reid; Skates, Steven J; Wang, Jing; Zhang, Bing; Kinsinger, Christopher R; Mesri, Mehdi; Rodriguez, Henry; Ding, Li; Paulovich, Amanda G; Fenyö, David; Ellis, Matthew J; Carr, Steven A
2016-06-02
Somatic mutations have been extensively characterized in breast cancer, but the effects of these genetic alterations on the proteomic landscape remain poorly understood. Here we describe quantitative mass-spectrometry-based proteomic and phosphoproteomic analyses of 105 genomically annotated breast cancers, of which 77 provided high-quality data. Integrated analyses provided insights into the somatic cancer genome including the consequences of chromosomal loss, such as the 5q deletion characteristic of basal-like breast cancer. Interrogation of the 5q trans-effects against the Library of Integrated Network-based Cellular Signatures, connected loss of CETN3 and SKP1 to elevated expression of epidermal growth factor receptor (EGFR), and SKP1 loss also to increased SRC tyrosine kinase. Global proteomic data confirmed a stromal-enriched group of proteins in addition to basal and luminal clusters, and pathway analysis of the phosphoproteome identified a G-protein-coupled receptor cluster that was not readily identified at the mRNA level. In addition to ERBB2, other amplicon-associated highly phosphorylated kinases were identified, including CDK12, PAK1, PTK2, RIPK2 and TLK2. We demonstrate that proteogenomic analysis of breast cancer elucidates the functional consequences of somatic mutations, narrows candidate nominations for driver genes within large deletions and amplified regions, and identifies therapeutic targets.
iTRAQ-Based Proteomics Analysis and Network Integration for Kernel Tissue Development in Maize
Dong, Yongbin; Wang, Qilei; Du, Chunguang; Xiong, Wenwei; Li, Xinyu; Zhu, Sailan; Li, Yuling
2017-01-01
Grain weight is one of the most important yield components and a developmentally complex structure comprised of two major compartments (endosperm and pericarp) in maize (Zea mays L.), however, very little is known concerning the coordinated accumulation of the numerous proteins involved. Herein, we used isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative proteomic method to analyze the characteristics of dynamic proteomics for endosperm and pericarp during grain development. Totally, 9539 proteins were identified for both components at four development stages, among which 1401 proteins were non-redundant, 232 proteins were specific in pericarp and 153 proteins were specific in endosperm. A functional annotation of the identified proteins revealed the importance of metabolic and cellular processes, and binding and catalytic activities for the tissue development. Three and 76 proteins involved in 49 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were integrated for the specific endosperm and pericarp proteins, respectively, reflecting their complex metabolic interactions. In addition, four proteins with important functions and different expression levels were chosen for gene cloning and expression analysis. Different concordance between mRNA level and the protein abundance was observed across different proteins, stages, and tissues as in previous research. These results could provide useful message for understanding the developmental mechanisms in grain development in maize. PMID:28837076
SPIRE: Systematic protein investigative research environment.
Kolker, Eugene; Higdon, Roger; Morgan, Phil; Sedensky, Margaret; Welch, Dean; Bauman, Andrew; Stewart, Elizabeth; Haynes, Winston; Broomall, William; Kolker, Natali
2011-12-10
The SPIRE (Systematic Protein Investigative Research Environment) provides web-based experiment-specific mass spectrometry (MS) proteomics analysis (https://www.proteinspire.org). Its emphasis is on usability and integration of the best analytic tools. SPIRE provides an easy to use web-interface and generates results in both interactive and simple data formats. In contrast to run-based approaches, SPIRE conducts the analysis based on the experimental design. It employs novel methods to generate false discovery rates and local false discovery rates (FDR, LFDR) and integrates the best and complementary open-source search and data analysis methods. The SPIRE approach of integrating X!Tandem, OMSSA and SpectraST can produce an increase in protein IDs (52-88%) over current combinations of scoring and single search engines while also providing accurate multi-faceted error estimation. One of SPIRE's primary assets is combining the results with data on protein function, pathways and protein expression from model organisms. We demonstrate some of SPIRE's capabilities by analyzing mitochondrial proteins from the wild type and 3 mutants of C. elegans. SPIRE also connects results to publically available proteomics data through its Model Organism Protein Expression Database (MOPED). SPIRE can also provide analysis and annotation for user supplied protein ID and expression data. Copyright © 2011. Published by Elsevier B.V.
P2P proteomics -- data sharing for enhanced protein identification
2012-01-01
Background In order to tackle the important and challenging problem in proteomics of identifying known and new protein sequences using high-throughput methods, we propose a data-sharing platform that uses fully distributed P2P technologies to share specifications of peer-interaction protocols and service components. By using such a platform, information to be searched is no longer centralised in a few repositories but gathered from experiments in peer proteomics laboratories, which can subsequently be searched by fellow researchers. Methods The system distributively runs a data-sharing protocol specified in the Lightweight Communication Calculus underlying the system through which researchers interact via message passing. For this, researchers interact with the system through particular components that link to database querying systems based on BLAST and/or OMSSA and GUI-based visualisation environments. We have tested the proposed platform with data drawn from preexisting MS/MS data reservoirs from the 2006 ABRF (Association of Biomolecular Resource Facilities) test sample, which was extensively tested during the ABRF Proteomics Standards Research Group 2006 worldwide survey. In particular we have taken the data available from a subset of proteomics laboratories of Spain's National Institute for Proteomics, ProteoRed, a network for the coordination, integration and development of the Spanish proteomics facilities. Results and Discussion We performed queries against nine databases including seven ProteoRed proteomics laboratories, the NCBI Swiss-Prot database and the local database of the CSIC/UAB Proteomics Laboratory. A detailed analysis of the results indicated the presence of a protein that was supported by other NCBI matches and highly scored matches in several proteomics labs. The analysis clearly indicated that the protein was a relatively high concentrated contaminant that could be present in the ABRF sample. This fact is evident from the information that could be derived from the proposed P2P proteomics system, however it is not straightforward to arrive to the same conclusion by conventional means as it is difficult to discard organic contamination of samples. The actual presence of this contaminant was only stated after the ABRF study of all the identifications reported by the laboratories. PMID:22293032
Omics Integration in Biology and Medicine Workshop | Office of Cancer Clinical Proteomics Research
The focus of this meeting will be on the emerging field of integrating disparate omic data from genomics, proteomics, glycomics, etc. in order to better understand key biological processes and also improve clinical practice. Discussants will focus on identifying the technical and biological barriers in omic integration, with solutions to build a consensus towards data integration in bioscience and to better define phenotypes.
Shaping biological knowledge: applications in proteomics.
Lisacek, F; Chichester, C; Gonnet, P; Jaillet, O; Kappus, S; Nikitin, F; Roland, P; Rossier, G; Truong, L; Appel, R
2004-01-01
The central dogma of molecular biology has provided a meaningful principle for data integration in the field of genomics. In this context, integration reflects the known transitions from a chromosome to a protein sequence: transcription, intron splicing, exon assembly and translation. There is no such clear principle for integrating proteomics data, since the laws governing protein folding and interactivity are not quite understood. In our effort to bring together independent pieces of information relative to proteins in a biologically meaningful way, we assess the bias of bioinformatics resources and consequent approximations in the framework of small-scale studies. We analyse proteomics data while following both a data-driven (focus on proteins smaller than 10 kDa) and a hypothesis-driven (focus on whole bacterial proteomes) approach. These applications are potentially the source of specialized complements to classical biological ontologies.
Integrated network analysis and effective tools in plant systems biology
Fukushima, Atsushi; Kanaya, Shigehiko; Nishida, Kozo
2014-01-01
One of the ultimate goals in plant systems biology is to elucidate the genotype-phenotype relationship in plant cellular systems. Integrated network analysis that combines omics data with mathematical models has received particular attention. Here we focus on the latest cutting-edge computational advances that facilitate their combination. We highlight (1) network visualization tools, (2) pathway analyses, (3) genome-scale metabolic reconstruction, and (4) the integration of high-throughput experimental data and mathematical models. Multi-omics data that contain the genome, transcriptome, proteome, and metabolome and mathematical models are expected to integrate and expand our knowledge of complex plant metabolisms. PMID:25408696
Multi-Omics Driven Assembly and Annotation of the Sandalwood (Santalum album) Genome.
Mahesh, Hirehally Basavarajegowda; Subba, Pratigya; Advani, Jayshree; Shirke, Meghana Deepak; Loganathan, Ramya Malarini; Chandana, Shankara Lingu; Shilpa, Siddappa; Chatterjee, Oishi; Pinto, Sneha Maria; Prasad, Thottethodi Subrahmanya Keshava; Gowda, Malali
2018-04-01
Indian sandalwood ( Santalum album ) is an important tropical evergreen tree known for its fragrant heartwood-derived essential oil and its valuable carving wood. Here, we applied an integrated genomic, transcriptomic, and proteomic approach to assemble and annotate the Indian sandalwood genome. Our genome sequencing resulted in the establishment of a draft map of the smallest genome for any woody tree species to date (221 Mb). The genome annotation predicted 38,119 protein-coding genes and 27.42% repetitive DNA elements. In-depth proteome analysis revealed the identities of 72,325 unique peptides, which confirmed 10,076 of the predicted genes. The addition of transcriptomic and proteogenomic approaches resulted in the identification of 53 novel proteins and 34 gene-correction events that were missed by genomic approaches. Proteogenomic analysis also helped in reassigning 1,348 potential noncoding RNAs as bona fide protein-coding messenger RNAs. Gene expression patterns at the RNA and protein levels indicated that peptide sequencing was useful in capturing proteins encoded by nuclear and organellar genomes alike. Mass spectrometry-based proteomic evidence provided an unbiased approach toward the identification of proteins encoded by organellar genomes. Such proteins are often missed in transcriptome data sets due to the enrichment of only messenger RNAs that contain poly(A) tails. Overall, the use of integrated omic approaches enhanced the quality of the assembly and annotation of this nonmodel plant genome. The availability of genomic, transcriptomic, and proteomic data will enhance genomics-assisted breeding, germplasm characterization, and conservation of sandalwood trees. © 2018 American Society of Plant Biologists. All Rights Reserved.
Defining the extracellular matrix using proteomics
Byron, Adam; Humphries, Jonathan D; Humphries, Martin J
2013-01-01
The cell microenvironment has a profound influence on the behaviour, growth and survival of cells. The extracellular matrix (ECM) provides not only mechanical and structural support to cells and tissues but also binds soluble ligands and transmembrane receptors to provide spatial coordination of signalling processes. The ability of cells to sense the chemical, mechanical and topographical features of the ECM enables them to integrate complex, multiparametric information into a coherent response to the surrounding microenvironment. Consequently, dysregulation or mutation of ECM components results in a broad range of pathological conditions. Characterization of the composition of ECM derived from various cells has begun to reveal insights into ECM structure and function, and mechanisms of disease. Proteomic methodologies permit the global analysis of subcellular systems, but extracellular and transmembrane proteins present analytical difficulties to proteomic strategies owing to the particular biochemical properties of these molecules. Here, we review advances in proteomic approaches that have been applied to furthering our understanding of the ECM microenvironment. We survey recent studies that have addressed challenges in the analysis of ECM and discuss major outcomes in the context of health and disease. In addition, we summarize efforts to progress towards a systems-level understanding of ECM biology. PMID:23419153
Wedge, David C; Krishna, Ritesh; Blackhurst, Paul; Siepen, Jennifer A; Jones, Andrew R; Hubbard, Simon J
2011-04-01
Confident identification of peptides via tandem mass spectrometry underpins modern high-throughput proteomics. This has motivated considerable recent interest in the postprocessing of search engine results to increase confidence and calculate robust statistical measures, for example through the use of decoy databases to calculate false discovery rates (FDR). FDR-based analyses allow for multiple testing and can assign a single confidence value for both sets and individual peptide spectrum matches (PSMs). We recently developed an algorithm for combining the results from multiple search engines, integrating FDRs for sets of PSMs made by different search engine combinations. Here we describe a web-server and a downloadable application that makes this routinely available to the proteomics community. The web server offers a range of outputs including informative graphics to assess the confidence of the PSMs and any potential biases. The underlying pipeline also provides a basic protein inference step, integrating PSMs into protein ambiguity groups where peptides can be matched to more than one protein. Importantly, we have also implemented full support for the mzIdentML data standard, recently released by the Proteomics Standards Initiative, providing users with the ability to convert native formats to mzIdentML files, which are available to download.
Wedge, David C; Krishna, Ritesh; Blackhurst, Paul; Siepen, Jennifer A; Jones, Andrew R.; Hubbard, Simon J.
2013-01-01
Confident identification of peptides via tandem mass spectrometry underpins modern high-throughput proteomics. This has motivated considerable recent interest in the post-processing of search engine results to increase confidence and calculate robust statistical measures, for example through the use of decoy databases to calculate false discovery rates (FDR). FDR-based analyses allow for multiple testing and can assign a single confidence value for both sets and individual peptide spectrum matches (PSMs). We recently developed an algorithm for combining the results from multiple search engines, integrating FDRs for sets of PSMs made by different search engine combinations. Here we describe a web-server, and a downloadable application, which makes this routinely available to the proteomics community. The web server offers a range of outputs including informative graphics to assess the confidence of the PSMs and any potential biases. The underlying pipeline provides a basic protein inference step, integrating PSMs into protein ambiguity groups where peptides can be matched to more than one protein. Importantly, we have also implemented full support for the mzIdentML data standard, recently released by the Proteomics Standards Initiative, providing users with the ability to convert native formats to mzIdentML files, which are available to download. PMID:21222473
Ugras, Scott; Daniels, Malcolm J; Fazelinia, Hossein; Gould, Neal S; Yocum, Anastasia K; Luk, Kelvin C; Luna, Esteban; Ding, Hua; McKennan, Chris; Seeholzer, Steven; Martinez, Dan; Evans, Perry; Brown, Daniel; Duda, John E; Ischiropoulos, Harry
2018-05-01
Accumulation of aggregated α-synuclein into Lewy bodies is thought to contribute to the onset and progression of dopaminergic neuron degeneration in Parkinson's disease (PD) and related disorders. Although protein aggregation is associated with perturbation of proteostasis, how α-synuclein aggregation affects the brain proteome and signaling remains uncertain. In a mouse model of α-synuclein aggregation, 6% of 6215 proteins and 1.6% of 8183 phosphopeptides changed in abundance, indicating conservation of proteostasis and phosphorylation signaling. The proteomic analysis confirmed changes in abundance of proteins that regulate dopamine synthesis and transport, synaptic activity and integrity, and unearthed changes in mRNA binding, processing and protein translation. Phosphorylation signaling changes centered on axonal and synaptic cytoskeletal organization and structural integrity. Proteostatic responses included a significant increase in the levels of Lmp7, a component of the immunoproteasome. Increased Lmp7 levels and activity were also quantified in postmortem human brains with PD and dementia with Lewy bodies. Functionally, the immunoproteasome degrades α-synuclein aggregates and generates potentially antigenic peptides. Expression and activity of the immunoproteasome may represent testable targets to induce adaptive responses that maintain proteome integrity and modulate immune responses in protein aggregation disorders. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Mahadevan, Chidambareswaren; Krishnan, Anu; Saraswathy, Gayathri G.; Surendran, Arun; Jaleel, Abdul; Sakuntala, Manjula
2016-01-01
Black pepper (Piper nigrum L.), a tropical spice crop of global acclaim, is susceptible to Phytophthora capsici, an oomycete pathogen which causes the highly destructive foot rot disease. A systematic understanding of this phytopathosystem has not been possible owing to lack of genome or proteome information. In this study, we explain an integrated transcriptome-assisted label-free quantitative proteomics pipeline to study the basal immune components of black pepper when challenged with P. capsici. We report a global identification of 532 novel leaf proteins from black pepper, of which 518 proteins were functionally annotated using BLAST2GO tool. A label-free quantitation of the protein datasets revealed 194 proteins common to diseased and control protein datasets of which 22 proteins showed significant up-regulation and 134 showed significant down-regulation. Ninety-three proteins were identified exclusively on P. capsici infected leaf tissues and 245 were expressed only in mock (control) infected samples. In-depth analysis of our data gives novel insights into the regulatory pathways of black pepper which are compromised during the infection. Differential down-regulation was observed in a number of critical pathways like carbon fixation in photosynthetic organism, cyano-amino acid metabolism, fructose, and mannose metabolism, glutathione metabolism, and phenylpropanoid biosynthesis. The proteomics results were validated with real-time qRT-PCR analysis. We were also able to identify the complete coding sequences for all the proteins of which few selected genes were cloned and sequence characterized for further confirmation. Our study is the first report of a quantitative proteomics dataset in black pepper which provides convincing evidence on the effectiveness of a transcriptome-based label-free proteomics approach for elucidating the host response to biotic stress in a non-model spice crop like P. nigrum, for which genome information is unavailable. Our dataset will serve as a useful resource for future studies in this plant. Data are available via ProteomeXchange with identifier PXD003887. PMID:27379110
Mahadevan, Chidambareswaren; Krishnan, Anu; Saraswathy, Gayathri G; Surendran, Arun; Jaleel, Abdul; Sakuntala, Manjula
2016-01-01
Black pepper (Piper nigrum L.), a tropical spice crop of global acclaim, is susceptible to Phytophthora capsici, an oomycete pathogen which causes the highly destructive foot rot disease. A systematic understanding of this phytopathosystem has not been possible owing to lack of genome or proteome information. In this study, we explain an integrated transcriptome-assisted label-free quantitative proteomics pipeline to study the basal immune components of black pepper when challenged with P. capsici. We report a global identification of 532 novel leaf proteins from black pepper, of which 518 proteins were functionally annotated using BLAST2GO tool. A label-free quantitation of the protein datasets revealed 194 proteins common to diseased and control protein datasets of which 22 proteins showed significant up-regulation and 134 showed significant down-regulation. Ninety-three proteins were identified exclusively on P. capsici infected leaf tissues and 245 were expressed only in mock (control) infected samples. In-depth analysis of our data gives novel insights into the regulatory pathways of black pepper which are compromised during the infection. Differential down-regulation was observed in a number of critical pathways like carbon fixation in photosynthetic organism, cyano-amino acid metabolism, fructose, and mannose metabolism, glutathione metabolism, and phenylpropanoid biosynthesis. The proteomics results were validated with real-time qRT-PCR analysis. We were also able to identify the complete coding sequences for all the proteins of which few selected genes were cloned and sequence characterized for further confirmation. Our study is the first report of a quantitative proteomics dataset in black pepper which provides convincing evidence on the effectiveness of a transcriptome-based label-free proteomics approach for elucidating the host response to biotic stress in a non-model spice crop like P. nigrum, for which genome information is unavailable. Our dataset will serve as a useful resource for future studies in this plant. Data are available via ProteomeXchange with identifier PXD003887.
Principles of proteome allocation are revealed using proteomic data and genome-scale models
Yang, Laurence; Yurkovich, James T.; Lloyd, Colton J.; Ebrahim, Ali; Saunders, Michael A.; Palsson, Bernhard O.
2016-01-01
Integrating omics data to refine or make context-specific models is an active field of constraint-based modeling. Proteomics now cover over 95% of the Escherichia coli proteome by mass. Genome-scale models of Metabolism and macromolecular Expression (ME) compute proteome allocation linked to metabolism and fitness. Using proteomics data, we formulated allocation constraints for key proteome sectors in the ME model. The resulting calibrated model effectively computed the “generalist” (wild-type) E. coli proteome and phenotype across diverse growth environments. Across 15 growth conditions, prediction errors for growth rate and metabolic fluxes were 69% and 14% lower, respectively. The sector-constrained ME model thus represents a generalist ME model reflecting both growth rate maximization and “hedging” against uncertain environments and stresses, as indicated by significant enrichment of these sectors for the general stress response sigma factor σS. Finally, the sector constraints represent a general formalism for integrating omics data from any experimental condition into constraint-based ME models. The constraints can be fine-grained (individual proteins) or coarse-grained (functionally-related protein groups) as demonstrated here. This flexible formalism provides an accessible approach for narrowing the gap between the complexity captured by omics data and governing principles of proteome allocation described by systems-level models. PMID:27857205
Principles of proteome allocation are revealed using proteomic data and genome-scale models
Yang, Laurence; Yurkovich, James T.; Lloyd, Colton J.; ...
2016-11-18
Integrating omics data to refine or make context-specific models is an active field of constraint-based modeling. Proteomics now cover over 95% of the Escherichia coli proteome by mass. Genome-scale models of Metabolism and macromolecular Expression (ME) compute proteome allocation linked to metabolism and fitness. Using proteomics data, we formulated allocation constraints for key proteome sectors in the ME model. The resulting calibrated model effectively computed the “generalist” (wild-type) E. coli proteome and phenotype across diverse growth environments. Across 15 growth conditions, prediction errors for growth rate and metabolic fluxes were 69% and 14% lower, respectively. The sector-constrained ME model thusmore » represents a generalist ME model reflecting both growth rate maximization and “hedging” against uncertain environments and stresses, as indicated by significant enrichment of these sectors for the general stress response sigma factor σS. Finally, the sector constraints represent a general formalism for integrating omics data from any experimental condition into constraint-based ME models. The constraints can be fine-grained (individual proteins) or coarse-grained (functionally-related protein groups) as demonstrated here. Furthermore, this flexible formalism provides an accessible approach for narrowing the gap between the complexity captured by omics data and governing principles of proteome allocation described by systems-level models.« less
Nakayasu, Ernesto S.; Nicora, Carrie D.; Sims, Amy C.; Burnum-Johnson, Kristin E.; Kim, Young-Mo; Kyle, Jennifer E.; Matzke, Melissa M.; Shukla, Anil K.; Chu, Rosalie K.; Schepmoes, Athena A.; Jacobs, Jon M.; Baric, Ralph S.; Webb-Robertson, Bobbie-Jo; Smith, Richard D.
2016-01-01
ABSTRACT Integrative multi-omics analyses can empower more effective investigation and complete understanding of complex biological systems. Despite recent advances in a range of omics analyses, multi-omic measurements of the same sample are still challenging and current methods have not been well evaluated in terms of reproducibility and broad applicability. Here we adapted a solvent-based method, widely applied for extracting lipids and metabolites, to add proteomics to mass spectrometry-based multi-omics measurements. The metabolite, protein, and lipid extraction (MPLEx) protocol proved to be robust and applicable to a diverse set of sample types, including cell cultures, microbial communities, and tissues. To illustrate the utility of this protocol, an integrative multi-omics analysis was performed using a lung epithelial cell line infected with Middle East respiratory syndrome coronavirus, which showed the impact of this virus on the host glycolytic pathway and also suggested a role for lipids during infection. The MPLEx method is a simple, fast, and robust protocol that can be applied for integrative multi-omic measurements from diverse sample types (e.g., environmental, in vitro, and clinical). IMPORTANCE In systems biology studies, the integration of multiple omics measurements (i.e., genomics, transcriptomics, proteomics, metabolomics, and lipidomics) has been shown to provide a more complete and informative view of biological pathways. Thus, the prospect of extracting different types of molecules (e.g., DNAs, RNAs, proteins, and metabolites) and performing multiple omics measurements on single samples is very attractive, but such studies are challenging due to the fact that the extraction conditions differ according to the molecule type. Here, we adapted an organic solvent-based extraction method that demonstrated broad applicability and robustness, which enabled comprehensive proteomics, metabolomics, and lipidomics analyses from the same sample. Author Video: An author video summary of this article is available. PMID:27822525
Mishra, Pragya; Singh, Shweta; Rathinam, Maniraj; Nandiganti, Muralimohan; Ram Kumar, Nikhil; Thangaraj, Arulprakash; Thimmegowda, Vinutha; Krishnan, Veda; Mishra, Vagish; Jain, Neha; Rai, Vandna; Pattanayak, Debasis; Sreevathsa, Rohini
2017-02-22
Safety assessment of genetically modified plants is an important aspect prior to deregulation. Demonstration of substantial equivalence of the transgenics compared to their nontransgenic counterparts can be performed using different techniques at various molecular levels. The present study is a first-ever comprehensive evaluation of pigeon pea transgenics harboring two independent cry genes, cry2Aa and cry1AcF. The absence of unintended effects in the transgenic seed components was demonstrated by proteome and nutritional composition profiling. Analysis revealed that no significant differences were found in the various nutritional compositional analyses performed. Additionally, 2-DGE-based proteome analysis of the transgenic and nontransgenic seed protein revealed that there were no major changes in the protein profile, although a minor fold change in the expression of a few proteins was observed. Furthermore, the study also demonstrated that neither the integration of T-DNA nor the expression of the cry genes resulted in the production of unintended effects in the form of new toxins or allergens.
Havugimana, Pierre C; Hu, Pingzhao; Emili, Andrew
2017-10-01
Elucidation of the networks of physical (functional) interactions present in cells and tissues is fundamental for understanding the molecular organization of biological systems, the mechanistic basis of essential and disease-related processes, and for functional annotation of previously uncharacterized proteins (via guilt-by-association or -correlation). After a decade in the field, we felt it timely to document our own experiences in the systematic analysis of protein interaction networks. Areas covered: Researchers worldwide have contributed innovative experimental and computational approaches that have driven the rapidly evolving field of 'functional proteomics'. These include mass spectrometry-based methods to characterize macromolecular complexes on a global-scale and sophisticated data analysis tools - most notably machine learning - that allow for the generation of high-quality protein association maps. Expert commentary: Here, we recount some key lessons learned, with an emphasis on successful workflows, and challenges, arising from our own and other groups' ongoing efforts to generate, interpret and report proteome-scale interaction networks in increasingly diverse biological contexts.
State-of-the-art nanoplatform-integrated MALDI-MS impacting resolutions in urinary proteomics.
Gopal, Judy; Muthu, Manikandan; Chun, Se-Chul; Wu, Hui-Fen
2015-06-01
Urine proteomics has become a subject of interest, since it has led to a number of breakthroughs in disease diagnostics. Urine contains information not only from the kidney and the urinary tract but also from other organs, thus urinary proteome analysis allows for identification of biomarkers for both urogenital and systemic diseases. The following review gives a brief overview of the analytical techniques that have been in practice for urinary proteomics. MALDI-MS technique and its current application status in this area of clinical research have been discussed. The review comments on the challenges facing the conventional MALDI-MS technique and the upgradation of this technique with the introduction of nanotechnology. This review projects nano-based techniques such as nano-MALDI-MS, surface-assisted laser desorption/ionization, and nanostructure-initiator MS as the platforms that have the potential in trafficking MALDI-MS from the lab to the bedside. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Parasites, proteomes and systems: has Descartes' clock run out of time?
Wastling, J M; Armstrong, S D; Krishna, R; Xia, D
2012-08-01
Systems biology aims to integrate multiple biological data types such as genomics, transcriptomics and proteomics across different levels of structure and scale; it represents an emerging paradigm in the scientific process which challenges the reductionism that has dominated biomedical research for hundreds of years. Systems biology will nevertheless only be successful if the technologies on which it is based are able to deliver the required type and quality of data. In this review we discuss how well positioned is proteomics to deliver the data necessary to support meaningful systems modelling in parasite biology. We summarise the current state of identification proteomics in parasites, but argue that a new generation of quantitative proteomics data is now needed to underpin effective systems modelling. We discuss the challenges faced to acquire more complete knowledge of protein post-translational modifications, protein turnover and protein-protein interactions in parasites. Finally we highlight the central role of proteome-informatics in ensuring that proteomics data is readily accessible to the user-community and can be translated and integrated with other relevant data types.
Parasites, proteomes and systems: has Descartes’ clock run out of time?
WASTLING, J. M.; ARMSTRONG, S. D.; KRISHNA, R.; XIA, D.
2012-01-01
SUMMARY Systems biology aims to integrate multiple biological data types such as genomics, transcriptomics and proteomics across different levels of structure and scale; it represents an emerging paradigm in the scientific process which challenges the reductionism that has dominated biomedical research for hundreds of years. Systems biology will nevertheless only be successful if the technologies on which it is based are able to deliver the required type and quality of data. In this review we discuss how well positioned is proteomics to deliver the data necessary to support meaningful systems modelling in parasite biology. We summarise the current state of identification proteomics in parasites, but argue that a new generation of quantitative proteomics data is now needed to underpin effective systems modelling. We discuss the challenges faced to acquire more complete knowledge of protein post-translational modifications, protein turnover and protein-protein interactions in parasites. Finally we highlight the central role of proteome-informatics in ensuring that proteomics data is readily accessible to the user-community and can be translated and integrated with other relevant data types. PMID:22828391
Purification and proteomic analysis of plant plasma membranes.
Alexandersson, Erik; Gustavsson, Niklas; Bernfur, Katja; Karlsson, Adine; Kjellbom, Per; Larsson, Christer
2008-01-01
All techniques needed for proteomic analyses of plant plasma membranes are described in detail, from isolation of plasma membranes to protein identification by mass spectrometry (MS). Plasma membranes are isolated by aqueous two-phase partitioning yielding vesicles with a cytoplasmic side-in orientation and a purity of about 95%. These vesicles are turned inside-out by treatment with Brij 58, which removes soluble contaminating proteins enclosed in the vesicles as well as loosely attached proteins. The final plasma membrane preparation thus retains all integral proteins and many peripheral proteins. Proteins are separated by one-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), and protein bands are excised and digested with trypsin. Peptides in tryptic digests are separated by nanoflow liquid chromatography and either fed directly into an ESI-MS or spotted onto matrix-assisted laser desorption ionization (MALDI) plates for analysis with MALDI-MS. Finally, data processing and database searching are used for protein identification to define a plasma membrane proteome.
Limited proteolysis in proteomics using protease-immobilized microreactors.
Yamaguchi, Hiroshi; Miyazaki, Masaya; Maeda, Hideaki
2012-01-01
Proteolysis is the key step for proteomic studies integrated with MS analysis. Compared with the conventional method of in-solution digestion, proteolysis by a protease-immobilized microreactor has a number of advantages for proteomic analysis; i.e., rapid and efficient digestion, elimination of a purification step of the digests prior to MS, and high stability against a chemical or thermal denaturant. This chapter describes the preparation of the protease-immobilized microreactors and proteolysis performance of these microreactors. Immobilization of proteases by the formation of a polymeric membrane consisting solely of protease-proteins on the inner wall of the microchannel is performed. This was realized either by a cross-linking reaction in a laminar flow between lysine residues sufficiently present on the protein surfaces themselves or in the case of acidic proteins by mixing them with poly-lysine prior to the crosslink-reaction. The present procedure is simple and widely useful not only for proteases but also for several other enzymes.
Construction of a nasopharyngeal carcinoma 2D/MS repository with Open Source XML database--Xindice.
Li, Feng; Li, Maoyu; Xiao, Zhiqiang; Zhang, Pengfei; Li, Jianling; Chen, Zhuchu
2006-01-11
Many proteomics initiatives require integration of all information with uniformcriteria from collection of samples and data display to publication of experimental results. The integration and exchanging of these data of different formats and structure imposes a great challenge to us. The XML technology presents a promise in handling this task due to its simplicity and flexibility. Nasopharyngeal carcinoma (NPC) is one of the most common cancers in southern China and Southeast Asia, which has marked geographic and racial differences in incidence. Although there are some cancer proteome databases now, there is still no NPC proteome database. The raw NPC proteome experiment data were captured into one XML document with Human Proteome Markup Language (HUP-ML) editor and imported into native XML database Xindice. The 2D/MS repository of NPC proteome was constructed with Apache, PHP and Xindice to provide access to the database via Internet. On our website, two methods, keyword query and click query, were provided at the same time to access the entries of the NPC proteome database. Our 2D/MS repository can be used to share the raw NPC proteomics data that are generated from gel-based proteomics experiments. The database, as well as the PHP source codes for constructing users' own proteome repository, can be accessed at http://www.xyproteomics.org/.
Completed | Office of Cancer Clinical Proteomics Research
Prior to the current Clinical Proteomic Tumor Analysis Consortium (CPTAC), previously funded initiatives associated with clinical proteomics research included: Clinical Proteomic Tumor Analysis Consortium (CPTAC 2.0) Clinical Proteomic Technologies for Cancer Initiative (CPTC) Mouse Proteomic Technologies Initiative
2011-01-01
Background Since its inception, proteomics has essentially operated in a discovery mode with the goal of identifying and quantifying the maximal number of proteins in a sample. Increasingly, proteomic measurements are also supporting hypothesis-driven studies, in which a predetermined set of proteins is consistently detected and quantified in multiple samples. Selected reaction monitoring (SRM) is a targeted mass spectrometric technique that supports the detection and quantification of specific proteins in complex samples at high sensitivity and reproducibility. Here, we describe ATAQS, an integrated software platform that supports all stages of targeted, SRM-based proteomics experiments including target selection, transition optimization and post acquisition data analysis. This software will significantly facilitate the use of targeted proteomic techniques and contribute to the generation of highly sensitive, reproducible and complete datasets that are particularly critical for the discovery and validation of targets in hypothesis-driven studies in systems biology. Result We introduce a new open source software pipeline, ATAQS (Automated and Targeted Analysis with Quantitative SRM), which consists of a number of modules that collectively support the SRM assay development workflow for targeted proteomic experiments (project management and generation of protein, peptide and transitions and the validation of peptide detection by SRM). ATAQS provides a flexible pipeline for end-users by allowing the workflow to start or end at any point of the pipeline, and for computational biologists, by enabling the easy extension of java algorithm classes for their own algorithm plug-in or connection via an external web site. This integrated system supports all steps in a SRM-based experiment and provides a user-friendly GUI that can be run by any operating system that allows the installation of the Mozilla Firefox web browser. Conclusions Targeted proteomics via SRM is a powerful new technique that enables the reproducible and accurate identification and quantification of sets of proteins of interest. ATAQS is the first open-source software that supports all steps of the targeted proteomics workflow. ATAQS also provides software API (Application Program Interface) documentation that enables the addition of new algorithms to each of the workflow steps. The software, installation guide and sample dataset can be found in http://tools.proteomecenter.org/ATAQS/ATAQS.html PMID:21414234
Joyce, Brendan; Lee, Danny; Rubio, Alex; Ogurtsov, Aleksey; Alves, Gelio; Yu, Yi-Kuo
2018-03-15
RAId is a software package that has been actively developed for the past 10 years for computationally and visually analyzing MS/MS data. Founded on rigorous statistical methods, RAId's core program computes accurate E-values for peptides and proteins identified during database searches. Making this robust tool readily accessible for the proteomics community by developing a graphical user interface (GUI) is our main goal here. We have constructed a graphical user interface to facilitate the use of RAId on users' local machines. Written in Java, RAId_GUI not only makes easy executions of RAId but also provides tools for data/spectra visualization, MS-product analysis, molecular isotopic distribution analysis, and graphing the retrieval versus the proportion of false discoveries. The results viewer displays and allows the users to download the analyses results. Both the knowledge-integrated organismal databases and the code package (containing source code, the graphical user interface, and a user manual) are available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads/raid.html .
Mohammed, Yassene; Domański, Dominik; Jackson, Angela M; Smith, Derek S; Deelder, André M; Palmblad, Magnus; Borchers, Christoph H
2014-06-25
One challenge in Multiple Reaction Monitoring (MRM)-based proteomics is to select the most appropriate surrogate peptides to represent a target protein. We present here a software package to automatically generate these most appropriate surrogate peptides for an LC/MRM-MS analysis. Our method integrates information about the proteins, their tryptic peptides, and the suitability of these peptides for MRM which is available online in UniProtKB, NCBI's dbSNP, ExPASy, PeptideAtlas, PRIDE, and GPMDB. The scoring algorithm reflects our knowledge in choosing the best candidate peptides for MRM, based on the uniqueness of the peptide in the targeted proteome, its physiochemical properties, and whether it previously has been observed. The modularity of the workflow allows further extension and additional selection criteria to be incorporated. We have developed a simple Web interface where the researcher provides the protein accession number, the subject organism, and peptide-specific options. Currently, the software is designed for human and mouse proteomes, but additional species can be easily be added. Our software improved the peptide selection by eliminating human error, considering multiple data sources and all of the isoforms of the protein, and resulted in faster peptide selection - approximately 50 proteins per hour compared to 8 per day. Compiling a list of optimal surrogate peptides for target proteins to be analyzed by LC/MRM-MS has been a cumbersome process, in which expert researchers retrieved information from different online repositories and used their own reasoning to find the most appropriate peptides. Our scientific workflow automates this process by integrating information from different data sources including UniProt, Global Proteome Machine, NCBI's dbSNP, and PeptideAtlas, simulating the researchers' reasoning, and incorporating their knowledge of how to select the best proteotypic peptides for an MRM analysis. The developed software can help to standardize the selection of peptides, eliminate human error, and increase productivity. Copyright © 2014 Elsevier B.V. All rights reserved.
Inserra, Ilaria; Martelli, Claudia; Cipollina, Mara; Cicione, Claudia; Iavarone, Federica; Taranto, Giuseppe Di; Barba, Marta; Castagnola, Massimo; Desiderio, Claudia; Lattanzi, Wanda
2016-04-01
The lipoaspirate fluid (LAF) is emerging as a potentially valuable source in regenerative medicine. In particular, our group recently demonstrated that it is able to exert osteoinductive properties in vitro. This original observation stimulated the investigation of the proteomic component of LAF, by means of LC-ESI-LTQ-Orbitrap-MS top-down/bottom-up integrated approach, which represents the object of the present study. Top-down analyses required the optimization of sample pretreatment procedures to enable the correct investigation of the intact proteome. Bottom-up analyses have been directly applied to untreated samples after monodimensional SDS-PAGE separation. The analysis of the acid-soluble fraction of LAF by top-down approach allowed demonstrating the presence of albumin and hemoglobin fragments (i.e. VV- and LVV-hemorphin-7), thymosins β4 and β10 peptides, ubiquitin and acyl-CoA binding protein; adipogenesis regulatory factor, perilipin-1 fragments, and S100A6, along with their PTMs. Part of the bottom-up proteomic profile was reproducibly found in both tested samples. The bottom-up approach allowed demonstrating the presence of proteins, listed among the components of adipose tissue and/or comprised within the ASCs intracellular content and secreted proteome. Our data provide a first glance on the LAF molecular profile, which is consistent with its tissue environment. LAF appeared to contain bioactive proteins, peptides and paracrine factors, suggesting its potential translational exploitation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2011-01-01
Background During development, the branchial mesoderm of Torpedo californica transdifferentiates into an electric organ capable of generating high voltage discharges to stun fish. The organ contains a high density of cholinergic synapses and has served as a biochemical model for the membrane specialization of myofibers, the neuromuscular junction (NMJ). We studied the genome and proteome of the electric organ to gain insight into its composition, to determine if there is concordance with skeletal muscle and the NMJ, and to identify novel synaptic proteins. Results Of 435 proteins identified, 300 mapped to Torpedo cDNA sequences with ≥2 peptides. We identified 14 uncharacterized proteins in the electric organ that are known to play a role in acetylcholine receptor clustering or signal transduction. In addition, two human open reading frames, C1orf123 and C6orf130, showed high sequence similarity to electric organ proteins. Our profile lists several proteins that are highly expressed in skeletal muscle or are muscle specific. Synaptic proteins such as acetylcholinesterase, acetylcholine receptor subunits, and rapsyn were present in the electric organ proteome but absent in the skeletal muscle proteome. Conclusions Our integrated genomic and proteomic analysis supports research describing a muscle-like profile of the organ. We show that it is a repository of NMJ proteins but we present limitations on its use as a comprehensive model of the NMJ. Finally, we identified several proteins that may become candidates for signaling proteins not previously characterized as components of the NMJ. PMID:21798097
SWATH Mass Spectrometry Performance Using Extended Peptide MS/MS Assay Libraries.
Wu, Jemma X; Song, Xiaomin; Pascovici, Dana; Zaw, Thiri; Care, Natasha; Krisp, Christoph; Molloy, Mark P
2016-07-01
The use of data-independent acquisition methods such as SWATH for mass spectrometry based proteomics is usually performed with peptide MS/MS assay libraries which enable identification and quantitation of peptide peak areas. Reference assay libraries can be generated locally through information dependent acquisition, or obtained from community data repositories for commonly studied organisms. However, there have been no studies performed to systematically evaluate how locally generated or repository-based assay libraries affect SWATH performance for proteomic studies. To undertake this analysis, we developed a software workflow, SwathXtend, which generates extended peptide assay libraries by integration with a local seed library and delivers statistical analysis of SWATH-quantitative comparisons. We designed test samples using peptides from a yeast extract spiked into peptides from human K562 cell lysates at three different ratios to simulate protein abundance change comparisons. SWATH-MS performance was assessed using local and external assay libraries of varying complexities and proteome compositions. These experiments demonstrated that local seed libraries integrated with external assay libraries achieve better performance than local assay libraries alone, in terms of the number of identified peptides and proteins and the specificity to detect differentially abundant proteins. Our findings show that the performance of extended assay libraries is influenced by the MS/MS feature similarity of the seed and external libraries, while statistical analysis using multiple testing corrections increases the statistical rigor needed when searching against large extended assay libraries. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
SWATH Mass Spectrometry Performance Using Extended Peptide MS/MS Assay Libraries*
Wu, Jemma X.; Song, Xiaomin; Pascovici, Dana; Zaw, Thiri; Care, Natasha; Krisp, Christoph; Molloy, Mark P.
2016-01-01
The use of data-independent acquisition methods such as SWATH for mass spectrometry based proteomics is usually performed with peptide MS/MS assay libraries which enable identification and quantitation of peptide peak areas. Reference assay libraries can be generated locally through information dependent acquisition, or obtained from community data repositories for commonly studied organisms. However, there have been no studies performed to systematically evaluate how locally generated or repository-based assay libraries affect SWATH performance for proteomic studies. To undertake this analysis, we developed a software workflow, SwathXtend, which generates extended peptide assay libraries by integration with a local seed library and delivers statistical analysis of SWATH-quantitative comparisons. We designed test samples using peptides from a yeast extract spiked into peptides from human K562 cell lysates at three different ratios to simulate protein abundance change comparisons. SWATH-MS performance was assessed using local and external assay libraries of varying complexities and proteome compositions. These experiments demonstrated that local seed libraries integrated with external assay libraries achieve better performance than local assay libraries alone, in terms of the number of identified peptides and proteins and the specificity to detect differentially abundant proteins. Our findings show that the performance of extended assay libraries is influenced by the MS/MS feature similarity of the seed and external libraries, while statistical analysis using multiple testing corrections increases the statistical rigor needed when searching against large extended assay libraries. PMID:27161445
Systems and methods for integrating ion mobility and ion trap mass spectrometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Yehia M.; Garimella, Sandilya; Prost, Spencer A.
Described herein are examples of systems and methods for integrating IMS and MS systems. In certain examples, systems and methods for decoding double multiplexed data are described. The systems and methods can also perform multiple refining procedures in order to minimize the demultiplexing artifacts. The systems and methods can be used, for example, for the analysis of proteomic and petroleum samples, where the integration of IMS and high mass resolution are used for accurate assignment of molecular formulae.
Beck, David A. C.; Hendrickson, Erik L.; Vorobev, Alexey; Wang, Tiansong; Lim, Sujung; Kalyuzhnaya, Marina G.; Lidstrom, Mary E.; Hackett, Murray; Chistoserdova, Ludmila
2011-01-01
Methylotenera species, unlike their close relatives in the genera Methylophilus, Methylobacillus, and Methylovorus, neither exhibit the activity of methanol dehydrogenase nor possess mxaFI genes encoding this enzyme, yet they are able to grow on methanol. In this work, we integrated a genome-wide proteomics approach, shotgun proteomics, and a genome-wide transcriptomics approach, shotgun transcriptome sequencing (RNA-seq), of Methylotenera mobilis JLW8 to identify genes and enzymes potentially involved in methanol oxidation, with special attention to alternative nitrogen sources, to address the question of whether nitrate could play a role as an electron acceptor in place of oxygen. Both proteomics and transcriptomics identified a limited number of genes and enzymes specifically responding to methanol. This set includes genes involved in oxidative stress response systems, a number of oxidoreductases, including XoxF-type alcohol dehydrogenases, a type II secretion system, and proteins without a predicted function. Nitrate stimulated expression of some genes in assimilatory nitrate reduction and denitrification pathways, while ammonium downregulated some of the nitrogen metabolism genes. However, none of these genes appeared to respond to methanol, which suggests that oxygen may be the main electron sink during growth on methanol. This study identifies initial targets for future focused physiological studies, including mutant analysis, which will provide further details into this novel process. PMID:21764938
Han, Mee-Jung
2017-11-28
The Escherichia coli K-12 and B strains are among the most frequently used bacterial hosts for scientific research and biotechnological applications. However, omics analyses have revealed that E. coli K-12 and B exhibit notably different genotypic and phenotypic attributes, even though they were derived from the same ancestor. In a previous study, we identified a limited number of proteins from the two strains using two-dimensional gel electrophoresis and tandem mass spectrometry (MS/MS). In this study, an in-depth analysis of the physiological behavior of the E. coli K-12 and B strains at the proteomic level was performed using six-plex isobaric tandem mass tag-based quantitative MS. Additionally, the best lysis buffer for increasing the efficiency of protein extraction was selected from three tested buffers prior to the quantitative proteomic analysis. This study identifies the largest number of proteins in the two E. coli strains reported to date and is the first to show the dynamics of these proteins. Notable differences in proteins associated with key cellular properties, including some metabolic pathways, the biosynthesis and degradation of amino acids, membrane integrity, cellular tolerance, and motility, were found between the two representative strains. Compared with previous studies, these proteomic results provide a more holistic view of the overall state of E. coli cells based on a single proteomic study and reveal significant insights into why the two strains show distinct phenotypes. Additionally, the resulting data provide in-depth information that will help fine-tune processes in the future.
TRIC: an automated alignment strategy for reproducible protein quantification in targeted proteomics
Röst, Hannes L.; Liu, Yansheng; D’Agostino, Giuseppe; Zanella, Matteo; Navarro, Pedro; Rosenberger, George; Collins, Ben C.; Gillet, Ludovic; Testa, Giuseppe; Malmström, Lars; Aebersold, Ruedi
2016-01-01
Large scale, quantitative proteomic studies have become essential for the analysis of clinical cohorts, large perturbation experiments and systems biology studies. While next-generation mass spectrometric techniques such as SWATH-MS have substantially increased throughput and reproducibility, ensuring consistent quantification of thousands of peptide analytes across multiple LC-MS/MS runs remains a challenging and laborious manual process. To produce highly consistent and quantitatively accurate proteomics data matrices in an automated fashion, we have developed the TRIC software which utilizes fragment ion data to perform cross-run alignment, consistent peak-picking and quantification for high throughput targeted proteomics. TRIC uses a graph-based alignment strategy based on non-linear retention time correction to integrate peak elution information from all LC-MS/MS runs acquired in a study. When compared to state-of-the-art SWATH-MS data analysis, the algorithm was able to reduce the identification error by more than 3-fold at constant recall, while correcting for highly non-linear chromatographic effects. On a pulsed-SILAC experiment performed on human induced pluripotent stem (iPS) cells, TRIC was able to automatically align and quantify thousands of light and heavy isotopic peak groups and substantially increased the quantitative completeness and biological information in the data, providing insights into protein dynamics of iPS cells. Overall, this study demonstrates the importance of consistent quantification in highly challenging experimental setups, and proposes an algorithm to automate this task, constituting the last missing piece in a pipeline for automated analysis of massively parallel targeted proteomics datasets. PMID:27479329
Proteogenomics | Office of Cancer Clinical Proteomics Research
Proteogenomics, or the integration of proteomics with genomics and transcriptomics, is an emerging approach that promises to advance basic, translational and clinical research. By combining genomic and proteomic information, leading scientists are gaining new insights due to a more complete and unified understanding of complex biological processes.
Breen, Michael S; Uhlmann, Anne; Ozcan, Sureyya; Chan, Man; Pinto, Dalila; Bahn, Sabine; Stein, Dan J
2017-03-02
Methamphetamine-associated psychosis (MAP) involves widespread neurocognitive and molecular deficits, however accurate diagnosis remains challenging. Integrating relationships between biological markers, brain imaging and clinical parameters may provide an improved mechanistic understanding of MAP, that could in turn drive the development of better diagnostics and treatment approaches. We applied selected reaction monitoring (SRM)-based proteomics, profiling 43 proteins in serum previously implicated in the etiology of major psychiatric disorders, and integrated these data with diffusion tensor imaging (DTI) and psychometric measurements from patients diagnosed with MAP (N = 12), methamphetamine dependence without psychosis (MA; N = 14) and healthy controls (N = 16). Protein analysis identified changes in APOC2 and APOH, which differed significantly in MAP compared to MA and controls. DTI analysis indicated widespread increases in mean diffusivity and radial diffusivity delineating extensive loss of white matter integrity and axon demyelination in MAP. Upon integration, several co-linear relationships between serum proteins and DTI measures reported in healthy controls were disrupted in MA and MAP groups; these involved areas of the brain critical for memory and social emotional processing. These findings suggest that serum proteomics and DTI are sensitive measures for detecting pathophysiological changes in MAP and describe a potential diagnostic fingerprint of the disorder.
Zhao, Yan; Chang, Cheng; Qin, Peibin; Cao, Qichen; Tian, Fang; Jiang, Jing; Li, Xianyu; Yu, Wenfeng; Zhu, Yunping; He, Fuchu; Ying, Wantao; Qian, Xiaohong
2016-01-21
Human plasma is a readily available clinical sample that reflects the status of the body in normal physiological and disease states. Although the wide dynamic range and immense complexity of plasma proteins are obstacles, comprehensive proteomic analysis of human plasma is necessary for biomarker discovery and further verification. Various methods such as immunodepletion, protein equalization and hyper fractionation have been applied to reduce the influence of high-abundance proteins (HAPs) and to reduce the high level of complexity. However, the depth at which the human plasma proteome has been explored in a relatively short time frame has been limited, which impedes the transfer of proteomic techniques to clinical research. Development of an optimal strategy is expected to improve the efficiency of human plasma proteome profiling. Here, five three-dimensional strategies combining HAP depletion (the 1st dimension) and protein fractionation (the 2nd dimension), followed by LC-MS/MS analysis (the 3rd dimension) were developed and compared for human plasma proteome profiling. Pros and cons of the five strategies are discussed for two issues: HAP depletion and complexity reduction. Strategies A and B used proteome equalization and tandem Seppro IgY14 immunodepletion, respectively, as the first dimension. Proteome equalization (strategy A) was biased toward the enrichment of basic and low-molecular weight proteins and had limited ability to enrich low-abundance proteins. By tandem removal of HAPs (strategy B), the efficiency of HAP depletion was significantly increased, whereas more off-target proteins were subtracted simultaneously. In the comparison of complexity reduction, strategy D involved a deglycosylation step before high-pH RPLC separation. However, the increase in sequence coverage did not increase the protein number as expected. Strategy E introduced SDS-PAGE separation of proteins, and the results showed oversampling of HAPs and identification of fewer proteins. Strategy C combined single Seppro IgY14 immunodepletion, high-pH RPLC fractionation and LC-MS/MS analysis. It generated the largest dataset, containing 1544 plasma protein groups and 258 newly identified proteins in a 30-h-machine-time analysis, making it the optimum three-dimensional strategy in our study. Further analysis of the integrated data from the five strategies showed identical distribution patterns in terms of sequence features and GO functional analysis with the 1929-plasma-protein dataset, further supporting the reliability of our plasma protein identifications. The characterization of 20 cytokines in the concentration range from sub-nanograms/milliliter to micrograms/milliliter demonstrated the sensitivity of the current strategies. Copyright © 2015 Elsevier B.V. All rights reserved.
Steps for successful implementation of proteomic research in the OR.
Martin, Chidima Tsion; Henry, Linda; Martin, Lisa; Ad, Niv
2010-02-01
Proteomic studies (ie, the investigation and identification of proteins found in biological samples such as blood and tissue) are at the forefront of the identification of disease biomarkers and the understanding of proteins. These studies promise to enhance diagnostic and prognostic analysis across all disciplines of clinical practice. As the practice of nursing and medicine becomes more preventative in nature and predictive in terms of patient care, successfully integrating and implementing proteomic research will become increasingly important, especially in the OR. It is imperative that perioperative nurses and researchers establish a collaborative process for specimen collection. Steps in establishing and maintaining a successful specimen collection program include implementing and evaluating a protocol, developing good communication, and keeping all participants up to date on the progress of the study. Copyright 2010 AORN, Inc. Published by Elsevier Inc. All rights reserved.
Mammalian plasma membrane proteins as potential biomarkers and drug targets.
Rucevic, Marijana; Hixson, Douglas; Josic, Djuro
2011-06-01
Defining the plasma membrane proteome is crucial to understand the role of plasma membrane in fundamental biological processes. Change in membrane proteins is one of the first events that take place under pathological conditions, making plasma membrane proteins a likely source of potential disease biomarkers with prognostic or diagnostic potential. Membrane proteins are also potential targets for monoclonal antibodies and other drugs that block receptors or inhibit enzymes essential to the disease progress. Despite several advanced methods recently developed for the analysis of hydrophobic proteins and proteins with posttranslational modifications, integral membrane proteins are still under-represented in plasma membrane proteome. Recent advances in proteomic investigation of plasma membrane proteins, defining their roles as diagnostic and prognostic disease biomarkers and as target molecules in disease treatment, are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Shuzhen; Chen, Wenyue; Yang, Changdeng; Yao, Jian; Xiao, Wenfei; Xin, Ya; Qiu, Jieren; Hu, Weimin; Yao, Haigen; Ying, Wu; Fu, Yaping; Tong, Jianxin; Chen, Zhongzhong; Ruan, Songlin; Ma, Huasheng
2016-09-13
Polyploidy has pivotal influences on rice (Oryza sativa L.) morphology and physiology, and is very important for understanding rice domestication and improving agricultural traits. Diploid (DP) and triploid (TP) rice shows differences in morphological parameters, such as plant height, leaf length, leaf width and the physiological index of chlorophyll content. However, the underlying mechanisms determining these morphological differences are remain to be defined. To better understand the proteomic changes between DP and TP, tandem mass tags (TMT) mass spectrometry (MS)/MS was used to detect the significant changes to protein expression between DP and TP. Results indicated that both photosynthesis and metabolic pathways were highly significantly associated with proteomic alteration between DP and TP based on biological process and pathway enrichment analysis, and 13 higher abundance chloroplast proteins involving in these two pathways were identified in TP. Quantitative real-time PCR analysis demonstrated that 5 of the 13 chloroplast proteins ATPF, PSAA, PSAB, PSBB and RBL in TP were higher abundance compared with those in DP. This study integrates morphology, physiology and proteomic profiling alteration of DP and TP to address their underlying different molecular mechanisms. Our finding revealed that ATPF, PSAA, PSAB, PSBB and RBL can induce considerable expression changes in TP and may affect the development and growth of rice through photosynthesis and metabolic pathways.
Skyline: an open source document editor for creating and analyzing targeted proteomics experiments.
MacLean, Brendan; Tomazela, Daniela M; Shulman, Nicholas; Chambers, Matthew; Finney, Gregory L; Frewen, Barbara; Kern, Randall; Tabb, David L; Liebler, Daniel C; MacCoss, Michael J
2010-04-01
Skyline is a Windows client application for targeted proteomics method creation and quantitative data analysis. It is open source and freely available for academic and commercial use. The Skyline user interface simplifies the development of mass spectrometer methods and the analysis of data from targeted proteomics experiments performed using selected reaction monitoring (SRM). Skyline supports using and creating MS/MS spectral libraries from a wide variety of sources to choose SRM filters and verify results based on previously observed ion trap data. Skyline exports transition lists to and imports the native output files from Agilent, Applied Biosystems, Thermo Fisher Scientific and Waters triple quadrupole instruments, seamlessly connecting mass spectrometer output back to the experimental design document. The fast and compact Skyline file format is easily shared, even for experiments requiring many sample injections. A rich array of graphs displays results and provides powerful tools for inspecting data integrity as data are acquired, helping instrument operators to identify problems early. The Skyline dynamic report designer exports tabular data from the Skyline document model for in-depth analysis with common statistical tools. Single-click, self-updating web installation is available at http://proteome.gs.washington.edu/software/skyline. This web site also provides access to instructional videos, a support board, an issues list and a link to the source code project.
Sun, Xiaochuan; Wang, Yan; Xu, Liang; Li, Chao; Zhang, Wei; Luo, Xiaobo; Jiang, Haiyan; Liu, Liwang
2017-01-01
To understand the molecular mechanism underlying salt stress response in radish, iTRAQ-based proteomic analysis was conducted to investigate the differences in protein species abundance under different salt treatments. In total, 851, 706, and 685 differential abundance protein species (DAPS) were identified between CK vs. Na100, CK vs. Na200, and Na100 vs. Na200, respectively. Functional annotation analysis revealed that salt stress elicited complex proteomic alterations in radish roots involved in carbohydrate and energy metabolism, protein metabolism, signal transduction, transcription regulation, stress and defense and transport. Additionally, the expression levels of nine genes encoding DAPS were further verified using RT-qPCR. The integrative analysis of transcriptomic and proteomic data in conjunction with miRNAs was further performed to strengthen the understanding of radish response to salinity. The genes responsible for signal transduction, ROS scavenging and transport activities as well as several key miRNAs including miR171, miR395, and miR398 played crucial roles in salt stress response in radish. Based on these findings, a schematic genetic regulatory network of salt stress response was proposed. This study provided valuable insights into the molecular mechanism underlying salt stress response in radish roots and would facilitate developing effective strategies toward genetically engineered salt-tolerant radish and other root vegetable crops. PMID:28769938
Proteogenomics, integration of proteomics, genomics, and transcriptomics, is an emerging approach that promises to advance basic, translational and clinical research. By combining genomic and proteomic information, leading scientists are gaining new insights due to a more complete and unified understanding of complex biological processes.
Development of a Web-Enabled Informatics Platform for Manipulation of Gene Expression Data
2004-12-01
genomic platforms such as metabolomics and proteomics , and to federated databases for knowledge management. A successful SBIR Phase I completed...measurements that require sophisticated bioinformatic platforms for data archival, management, integration, and analysis if researchers are to derive...web-enabled bioinformatic platform consisting of a Laboratory Information Management System (LIMS), an Analysis Information Management System (AIMS
Pang, Chi Nam Ignatius; Tay, Aidan P; Aya, Carlos; Twine, Natalie A; Harkness, Linda; Hart-Smith, Gene; Chia, Samantha Z; Chen, Zhiliang; Deshpande, Nandan P; Kaakoush, Nadeem O; Mitchell, Hazel M; Kassem, Moustapha; Wilkins, Marc R
2014-01-03
Direct links between proteomic and genomic/transcriptomic data are not frequently made, partly because of lack of appropriate bioinformatics tools. To help address this, we have developed the PG Nexus pipeline. The PG Nexus allows users to covisualize peptides in the context of genomes or genomic contigs, along with RNA-seq reads. This is done in the Integrated Genome Viewer (IGV). A Results Analyzer reports the precise base position where LC-MS/MS-derived peptides cover genes or gene isoforms, on the chromosomes or contigs where this occurs. In prokaryotes, the PG Nexus pipeline facilitates the validation of genes, where annotation or gene prediction is available, or the discovery of genes using a "virtual protein"-based unbiased approach. We illustrate this with a comprehensive proteogenomics analysis of two strains of Campylobacter concisus . For higher eukaryotes, the PG Nexus facilitates gene validation and supports the identification of mRNA splice junction boundaries and splice variants that are protein-coding. This is illustrated with an analysis of splice junctions covered by human phosphopeptides, and other examples of relevance to the Chromosome-Centric Human Proteome Project. The PG Nexus is open-source and available from https://github.com/IntersectAustralia/ap11_Samifier. It has been integrated into Galaxy and made available in the Galaxy tool shed.
Listeriomics: an Interactive Web Platform for Systems Biology of Listeria
Koutero, Mikael; Tchitchek, Nicolas; Cerutti, Franck; Lechat, Pierre; Maillet, Nicolas; Hoede, Claire; Chiapello, Hélène; Gaspin, Christine
2017-01-01
ABSTRACT As for many model organisms, the amount of Listeria omics data produced has recently increased exponentially. There are now >80 published complete Listeria genomes, around 350 different transcriptomic data sets, and 25 proteomic data sets available. The analysis of these data sets through a systems biology approach and the generation of tools for biologists to browse these various data are a challenge for bioinformaticians. We have developed a web-based platform, named Listeriomics, that integrates different tools for omics data analyses, i.e., (i) an interactive genome viewer to display gene expression arrays, tiling arrays, and sequencing data sets along with proteomics and genomics data sets; (ii) an expression and protein atlas that connects every gene, small RNA, antisense RNA, or protein with the most relevant omics data; (iii) a specific tool for exploring protein conservation through the Listeria phylogenomic tree; and (iv) a coexpression network tool for the discovery of potential new regulations. Our platform integrates all the complete Listeria species genomes, transcriptomes, and proteomes published to date. This website allows navigation among all these data sets with enriched metadata in a user-friendly format and can be used as a central database for systems biology analysis. IMPORTANCE In the last decades, Listeria has become a key model organism for the study of host-pathogen interactions, noncoding RNA regulation, and bacterial adaptation to stress. To study these mechanisms, several genomics, transcriptomics, and proteomics data sets have been produced. We have developed Listeriomics, an interactive web platform to browse and correlate these heterogeneous sources of information. Our website will allow listeriologists and microbiologists to decipher key regulation mechanism by using a systems biology approach. PMID:28317029
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Laurence; Yurkovich, James T.; Lloyd, Colton J.
Integrating omics data to refine or make context-specific models is an active field of constraint-based modeling. Proteomics now cover over 95% of the Escherichia coli proteome by mass. Genome-scale models of Metabolism and macromolecular Expression (ME) compute proteome allocation linked to metabolism and fitness. Using proteomics data, we formulated allocation constraints for key proteome sectors in the ME model. The resulting calibrated model effectively computed the “generalist” (wild-type) E. coli proteome and phenotype across diverse growth environments. Across 15 growth conditions, prediction errors for growth rate and metabolic fluxes were 69% and 14% lower, respectively. The sector-constrained ME model thusmore » represents a generalist ME model reflecting both growth rate maximization and “hedging” against uncertain environments and stresses, as indicated by significant enrichment of these sectors for the general stress response sigma factor σS. Finally, the sector constraints represent a general formalism for integrating omics data from any experimental condition into constraint-based ME models. The constraints can be fine-grained (individual proteins) or coarse-grained (functionally-related protein groups) as demonstrated here. Furthermore, this flexible formalism provides an accessible approach for narrowing the gap between the complexity captured by omics data and governing principles of proteome allocation described by systems-level models.« less
Islam, Mohammad T; Garg, Gagan; Hancock, William S; Risk, Brian A; Baker, Mark S; Ranganathan, Shoba
2014-01-03
The chromosome-centric human proteome project (C-HPP) aims to define the complete set of proteins encoded in each human chromosome. The neXtProt database (September 2013) lists 20,128 proteins for the human proteome, of which 3831 human proteins (∼19%) are considered "missing" according to the standard metrics table (released September 27, 2013). In support of the C-HPP initiative, we have extended the annotation strategy developed for human chromosome 7 "missing" proteins into a semiautomated pipeline to functionally annotate the "missing" human proteome. This pipeline integrates a suite of bioinformatics analysis and annotation software tools to identify homologues and map putative functional signatures, gene ontology, and biochemical pathways. From sequential BLAST searches, we have primarily identified homologues from reviewed nonhuman mammalian proteins with protein evidence for 1271 (33.2%) "missing" proteins, followed by 703 (18.4%) homologues from reviewed nonhuman mammalian proteins and subsequently 564 (14.7%) homologues from reviewed human proteins. Functional annotations for 1945 (50.8%) "missing" proteins were also determined. To accelerate the identification of "missing" proteins from proteomics studies, we generated proteotypic peptides in silico. Matching these proteotypic peptides to ENCODE proteogenomic data resulted in proteomic evidence for 107 (2.8%) of the 3831 "missing proteins, while evidence from a recent membrane proteomic study supported the existence for another 15 "missing" proteins. The chromosome-wise functional annotation of all "missing" proteins is freely available to the scientific community through our web server (http://biolinfo.org/protannotator).
Proteomic analysis of Medulloblastoma reveals functional biology with translational potential.
Rivero-Hinojosa, Samuel; Lau, Ling San; Stampar, Mojca; Staal, Jerome; Zhang, Huizhen; Gordish-Dressman, Heather; Northcott, Paul A; Pfister, Stefan M; Taylor, Michael D; Brown, Kristy J; Rood, Brian R
2018-06-07
Genomic characterization has begun to redefine diagnostic classifications of cancers. However, it remains a challenge to infer disease phenotypes from genomic alterations alone. To help realize the promise of genomics, we have performed a quantitative proteomics investigation using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and 41 tissue samples spanning the 4 genomically based subgroups of medulloblastoma and control cerebellum. We have identified and quantitated thousands of proteins across these groups and find that we are able to recapitulate the genomic subgroups based upon subgroup restricted and differentially abundant proteins while also identifying subgroup specific protein isoforms. Integrating our proteomic measurements with genomic data, we calculate a poor correlation between mRNA and protein abundance. Using EPIC 850 k methylation array data on the same tissues, we also investigate the influence of copy number alterations and DNA methylation on the proteome in an attempt to characterize the impact of these genetic features on the proteome. Reciprocally, we are able to use the proteome to identify which genomic alterations result in altered protein abundance and thus are most likely to impact biology. Finally, we are able to assemble protein-based pathways yielding potential avenues for clinical intervention. From these, we validate the EIF4F cap-dependent translation pathway as a novel druggable pathway in medulloblastoma. Thus, quantitative proteomics complements genomic platforms to yield a more complete understanding of functional tumor biology and identify novel therapeutic targets for medulloblastoma.
Arabidopsis proteome responses to the smoke-derived growth regulator karrikin.
Baldrianová, Jana; Černý, Martin; Novák, Jan; Jedelský, Petr L; Divíšková, Eva; Brzobohatý, Břetislav
2015-04-29
Karrikins are butenolide plant growth regulators in smoke from burning plant material that have proven ability to promote germination and seedling photomorphogenesis. However, the molecular mechanisms underlying these processes are unclear. Here we provide the first proteome-wide analysis of early responses to karrikin in plants (Arabidopsis seedlings). Image analysis of two-dimensionally separated proteins, Rubisco-depleted proteomes and phosphoproteomes, together with LC-MS profiling, detected >1900 proteins, 113 of which responded to karrikin treatment. All the differentially abundant proteins (except HSP70-3) are novel karrikin-responders, and most are involved in photosynthesis, carbohydrate metabolism, redox homeostasis, transcription control, proteosynthesis, protein transport and processing, or protein degradation. Our data provide functionally complementary information to previous identifications of karrikin-responsive genes and evidence for a novel karrikin signalling pathway originating in chloroplasts. We present an updated model of karrikin signalling that integrates proteomic data and is supported by growth response observations. Karrikin has shown promising potential in agricultural applications, yet this process is poorly understood at the molecular level. To the best of our knowledge, this is the first survey of early global proteomic responses to karrikin in plants (Arabidopsis seedlings). The combination of label-free LC-MS profiling and 2-DE analyses provided highly sensitive snapshots of protein abundance and quantitative information on proteoform-level changes. These results present evidence of proteasome-independent karrikin signalling pathways and provide novel targets for detailed mechanistic studies using, e.g., mutants and transgenic plants. Copyright © 2015. Published by Elsevier B.V.
Gao, Jing; Zhong, Shaoyun; Zhou, Yanting; He, Han; Peng, Shuying; Zhu, Zhenyun; Liu, Xing; Zheng, Jing; Xu, Bin; Zhou, Hu
2017-06-06
Detergents and salts are widely used in lysis buffers to enhance protein extraction from biological samples, facilitating in-depth proteomic analysis. However, these detergents and salt additives must be efficiently removed from the digested samples prior to LC-MS/MS analysis to obtain high-quality mass spectra. Although filter-aided sample preparation (FASP), acetone precipitation (AP), followed by in-solution digestion, and strong cation exchange-based centrifugal proteomic reactors (CPRs) are commonly used for proteomic sample processing, little is known about their efficiencies at removing detergents and salt additives. In this study, we (i) developed an integrative workflow for the quantification of small molecular additives in proteomic samples, developing a multiple reaction monitoring (MRM)-based LC-MS approach for the quantification of six additives (i.e., Tris, urea, CHAPS, SDS, SDC, and Triton X-100) and (ii) systematically evaluated the relationships between the level of additive remaining in samples following sample processing and the number of peptides/proteins identified by mass spectrometry. Although FASP outperformed the other two methods, the results were complementary in terms of peptide/protein identification, as well as the GRAVY index and amino acid distributions. This is the first systematic and quantitative study of the effect of detergents and salt additives on protein identification. This MRM-based approach can be used for an unbiased evaluation of the performance of new sample preparation methods. Data are available via ProteomeXchange under identifier PXD005405.
Liu, Fuqing; Huang, Peng; Zhu, Pengcheng; Chen, Jinjun; Shi, Mingming; Guo, Fang; Cheng, Pi; Zeng, Jing; Liao, Yifang; Gong, Jing; Zhang, Hong-Mei; Wang, Depeng; Guo, An-Yuan; Xiong, Xingyao
2013-01-01
Background The Macleaya spp., including Macleaya cordata and Macleaya microcarpa, are traditional anti-virus, inflammation eliminating, and insecticide herb medicines for their isoquinoline alkaloids. They are also known as the basis of the popular natural animal food addictive in Europe. However, few studies especially at genomics level were conducted on them. Hence, we performed the Macleaya spp. transcriptome and integrated it with iTRAQ proteome analysis in order to identify potential genes involved in alkaloids biosynthesis. Methodology and Principal Findings We elaborately designed the transcriptome, proteome and metabolism profiling for 10 samples of both species to explore their alkaloids biosynthesis. From the transcriptome data, we obtained 69367 and 78255 unigenes for M. cordata and M. microcarpa, in which about two thirds of them were similar to sequences in public databases. By metabolism profiling, reverse patterns for alkaloids sanguinarine, chelerythrine, protopine, and allocryptopine were observed in different organs of two species. We characterized the expressions of enzymes in alkaloid biosynthesis pathways. We also identified more than 1000 proteins from iTRAQ proteome data. Our results strongly suggest that the root maybe the organ for major alkaloids biosynthesis of Macleaya spp. Except for biosynthesis, the alkaloids storage and transport were also important for their accumulation. The ultrastructure of laticifers by SEM helps us to prove the alkaloids maybe accumulated in the mature roots. Conclusions/Significance To our knowledge this is the first study to elucidate the genetic makeup of Macleaya spp. This work provides clues to the identification of the potential modulate genes involved in alkaloids biosynthesis in Macleaya spp., and sheds light on researches for non-model medicinal plants by integrating different high-throughput technologies. PMID:23326424
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boaro, Amy A.; Kim, Young-Mo; Konopka, Allan
2014-12-01
Integrated ‘omics have been used on pure cultures and co-cultures, yet they have not been applied to complex microbial communities to examine questions of perturbation response. In this study, we used integrated ‘omics to measure the perturbation response of a cellulose-degrading bioreactor community fed with microcrystalline cellulose (Avicel). We predicted that a pH decrease by addition of a pulse of acid would reduce microbial community diversity and temporarily reduce reactor function such as cellulose degradation. However, 16S rDNA pyrosequencing results revealed increased alpha diversity in the microbial community after the perturbation, and a persistence of the dominant community members overmore » the duration of the experiment. Proteomics results showed a decrease in activity of proteins associated with Fibrobacter succinogenes two days after the perturbation followed by increased protein abundances six days after the perturbation. The decrease in cellulolytic activity suggested by the proteomics was confirmed by the accumulation of Avicel in the reactor. Metabolomics showed a pattern similar to that of the proteome, with amino acid production decreasing two days after the perturbation and increasing after six days. This study demonstrated that community ‘omics data provides valuable information about the interactions and function of anaerobic cellulolytic community members after a perturbation.« less
WholePathwayScope: a comprehensive pathway-based analysis tool for high-throughput data
Yi, Ming; Horton, Jay D; Cohen, Jonathan C; Hobbs, Helen H; Stephens, Robert M
2006-01-01
Background Analysis of High Throughput (HTP) Data such as microarray and proteomics data has provided a powerful methodology to study patterns of gene regulation at genome scale. A major unresolved problem in the post-genomic era is to assemble the large amounts of data generated into a meaningful biological context. We have developed a comprehensive software tool, WholePathwayScope (WPS), for deriving biological insights from analysis of HTP data. Result WPS extracts gene lists with shared biological themes through color cue templates. WPS statistically evaluates global functional category enrichment of gene lists and pathway-level pattern enrichment of data. WPS incorporates well-known biological pathways from KEGG (Kyoto Encyclopedia of Genes and Genomes) and Biocarta, GO (Gene Ontology) terms as well as user-defined pathways or relevant gene clusters or groups, and explores gene-term relationships within the derived gene-term association networks (GTANs). WPS simultaneously compares multiple datasets within biological contexts either as pathways or as association networks. WPS also integrates Genetic Association Database and Partial MedGene Database for disease-association information. We have used this program to analyze and compare microarray and proteomics datasets derived from a variety of biological systems. Application examples demonstrated the capacity of WPS to significantly facilitate the analysis of HTP data for integrative discovery. Conclusion This tool represents a pathway-based platform for discovery integration to maximize analysis power. The tool is freely available at . PMID:16423281
Proteomic insights into floral biology.
Li, Xiaobai; Jackson, Aaron; Xie, Ming; Wu, Dianxing; Tsai, Wen-Chieh; Zhang, Sheng
2016-08-01
The flower is the most important biological structure for ensuring angiosperms reproductive success. Not only does the flower contain critical reproductive organs, but the wide variation in morphology, color, and scent has evolved to entice specialized pollinators, and arguably mankind in many cases, to ensure the successful propagation of its species. Recent proteomic approaches have identified protein candidates related to these flower traits, which has shed light on a number of previously unknown mechanisms underlying these traits. This review article provides a comprehensive overview of the latest advances in proteomic research in floral biology according to the order of flower structure, from corolla to male and female reproductive organs. It summarizes mainstream proteomic methods for plant research and recent improvements on two dimensional gel electrophoresis and gel-free workflows for both peptide level and protein level analysis. The recent advances in sequencing technologies provide a new paradigm for the ever-increasing genome and transcriptome information on many organisms. It is now possible to integrate genomic and transcriptomic data with proteomic results for large-scale protein characterization, so that a global understanding of the complex molecular networks in flower biology can be readily achieved. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. Copyright © 2016 Elsevier B.V. All rights reserved.
Bailey, Ulla-Maja; Schulz, Benjamin L
2013-04-01
Post-translational modification of proteins with glycosylation is of key importance in many biological systems in eukaryotes, influencing fundamental biological processes and regulating protein function. Changes in glycosylation are therefore of interest in understanding these processes and are also useful as clinical biomarkers of disease. The presence of glycosylation can also inhibit protease digestion and lower the quality and confidence of protein identification by mass spectrometry. While deglycosylation can improve the efficiency of subsequent protease digest and increase protein coverage, this step is often excluded from proteomic workflows. Here, we performed a systematic analysis that showed that deglycosylation with peptide-N-glycosidase F (PNGase F) prior to protease digestion with AspN or trypsin improved the quality of identification of the yeast cell wall proteome. The improvement in the confidence of identification of glycoproteins following PNGase F deglycosylation correlated with a higher density of glycosylation sites. Optimal identification across the proteome was achieved with PNGase F deglycosylation and complementary proteolysis with either AspN or trypsin. We used this combination of deglycosylation and complementary protease digest to identify changes in the yeast cell wall proteome caused by lack of the Alg3p protein, a key component of the biosynthetic pathway of protein N-glycosylation. The cell wall of yeast lacking Alg3p showed specifically increased levels of Cis3p, a protein important for cell wall integrity. Our results showed that deglycosylation prior to protease digestion improved the quality of proteomic analyses even if protein glycosylation is not of direct relevance to the study at hand. Copyright © 2013 Elsevier B.V. All rights reserved.
Tao, Dingyin; Zhang, Lihua; Shan, Yichu; Liang, Zhen; Zhang, Yukui
2011-01-01
High-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS-MS) is regarded as one of the most powerful techniques for separation and identification of proteins. Recently, much effort has been made to improve the separation capacity, detection sensitivity, and analysis throughput of micro- and nano-HPLC, by increasing column length, reducing column internal diameter, and using integrated techniques. Development of HPLC columns has also been rapid, as a result of the use of submicrometer packing materials and monolithic columns. All these innovations result in clearly improved performance of micro- and nano-HPLC for proteome research.
Li, Nan; Stein, Richard S L; He, Wei; Komives, Elizabeth; Wang, Wei
2013-10-01
Methylation is one of the important post-translational modifications that play critical roles in regulating protein functions. Proteomic identification of this post-translational modification and understanding how it affects protein activity remain great challenges. We tackled this problem from the aspect of methylation mediating protein-protein interaction. Using the chromodomain of human chromobox protein homolog 6 as a model system, we developed a systematic approach that integrates structure modeling, bioinformatics analysis, and peptide microarray experiments to identify lysine residues that are methylated and recognized by the chromodomain in the human proteome. Given the important role of chromobox protein homolog 6 as a reader of histone modifications, it was interesting to find that the majority of its interacting partners identified via this approach function in chromatin remodeling and transcriptional regulation. Our study not only illustrates a novel angle for identifying methyllysines on a proteome-wide scale and elucidating their potential roles in regulating protein function, but also suggests possible strategies for engineering the chromodomain-peptide interface to enhance the recognition of and manipulate the signal transduction mediated by such interactions.
A Targeted MRM Approach for Tempo-Spatial Proteomics Analyses.
Moradian, Annie; Porras-Yakushi, Tanya R; Sweredoski, Michael J; Hess, Sonja
2016-01-01
When deciding to perform a quantitative proteomics analysis, selectivity, sensitivity, and reproducibility are important criteria to consider. The use of multiple reaction monitoring (MRM) has emerged as a powerful proteomics technique in that regard since it avoids many of the problems typically observed in discovery-based analyses. A prerequisite for such a targeted approach is that the protein targets are known, either as a result of previous global proteomics experiments or because a specific hypothesis is to be tested. When guidelines that have been established in the pharmaceutical industry many decades ago are taken into account, setting up an MRM assay is relatively straightforward. Typically, proteotypic peptides with favorable mass spectrometric properties are synthesized with a heavy isotope for each protein that is to be monitored. Retention times and calibration curves are determined using triple-quadrupole mass spectrometers. The use of iRT peptide standards is both recommended and fully integrated into the bioinformatics pipeline. Digested biological samples are mixed with the heavy and iRT standards and quantified. Here we present a generic protocol for the development of an MRM assay.
OralCard: a bioinformatic tool for the study of oral proteome.
Arrais, Joel P; Rosa, Nuno; Melo, José; Coelho, Edgar D; Amaral, Diana; Correia, Maria José; Barros, Marlene; Oliveira, José Luís
2013-07-01
The molecular complexity of the human oral cavity can only be clarified through identification of components that participate within it. However current proteomic techniques produce high volumes of information that are dispersed over several online databases. Collecting all of this data and using an integrative approach capable of identifying unknown associations is still an unsolved problem. This is the main motivation for this work. We present the online bioinformatic tool OralCard, which comprises results from 55 manually curated articles reflecting the oral molecular ecosystem (OralPhysiOme). It comprises experimental information available from the oral proteome both of human (OralOme) and microbial origin (MicroOralOme) structured in protein, disease and organism. This tool is a key resource for researchers to understand the molecular foundations implicated in biology and disease mechanisms of the oral cavity. The usefulness of this tool is illustrated with the analysis of the oral proteome associated with diabetes melitus type 2. OralCard is available at http://bioinformatics.ua.pt/oralcard. Copyright © 2013 Elsevier Ltd. All rights reserved.
The secrets of Oriental panacea: Panax ginseng.
Colzani, Mara; Altomare, Alessandra; Caliendo, Matteo; Aldini, Giancarlo; Righetti, Pier Giorgio; Fasoli, Elisa
2016-01-01
The Panax ginseng root proteome has been investigated via capture with combinatorial peptide ligand libraries (CPLL) at three different pH values. Proteomic characterization by SDS-PAGE and nLC–MS/MS analysis, via LTQ-Orbitrap XL, led to the identification of a total of 207 expressed proteins. This quite large number of identifications was achieved by consulting two different plant databases: P. ginseng and Arabidopsis thaliana. The major groups of identified proteins were associated to structural species (19.2%), oxidoreductase (19.5%), dehydrogenases (7.6%) and synthases (9.0%). For the first time, an exploration of protein–protein interactions was performed by merging all recognized proteins and building an interactomic map, characterized by 196 nodes and 1554 interactions. Finally a peptidomic analysis was developed combining different in-silico enzymatic digestions to simulate the human gastrointestinal process: from 661 generated peptides, 95 were identified as possible bioactives and in particular 6 of them were characterized by antimicrobial activity. The present report offers new insight for future investigations focused on elucidation of biological properties of P. ginseng proteome and peptidome. Ginseng is a traditional oriental herbal remedy whose use is very diffused in all the world for its numerous pharmacological effects. However, the exact mechanism of action of ginseng components, both ginsenosides and proteins, is still unidentified. So the common use of ginseng requires strict investigations to assess both its efficiency and its safety. Although many reports have been published regarding the pharmacological effects of ginseng, little is known about the biochemical pathways of root. Proteomics analysis could be useful to elucidate the physiological pathways. In this manuscript, an integrated approach to proteomics and peptidomics will usher in exploration of Panax ginseng proteins and proteolytic peptides, obtained by in-silico gastrointestinal digestion, characterized by antimicrobial action. The present research would pave the way for better knowledge of metabolic functions connected with ginseng proteome and provide with new information necessary to understand better antimicrobial activity of P. ginseng.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Jun; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing; Chongqing Key Laboratory of Neurobiology, Chongqing
Purpose: Tuberculous meningitis (TBM) remains to be one of the most deadly infectious diseases. The pathogen interacts with the host immune system, the process of which is largely unknown. Various cellular processes of Mycobacterium tuberculosis (MTB) centers around lipid metabolism. To determine the lipid metabolism related proteins, a quantitative proteomic study was performed here to identify differential proteins in the cerebrospinal fluid (CSF) obtained from TBM patients (n = 12) and healthy controls (n = 12). Methods: CSF samples were desalted, concentrated, labelled with isobaric tags for relative and absolute quantitation (iTRAQ™), and analyzed by multi-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS). Gene ontology andmore » proteomic phenotyping analysis of the differential proteins were conducted using Database for Annotation, Visualization, and Integrated Discovery (DAVID) Bioinformatics Resources. ApoE and ApoB were selected for validation by ELISA. Results: Proteomic phenotyping of the 4 differential proteins was invloved in the lipid metabolism. ELISA showed significantly increased ApoB levels in TBM subjects compared to healthy controls. Area under the receiver operating characteristic curve analysis demonstrated ApoB levels could distinguish TBM subjects from healthy controls and viral meningitis subjects with 89.3% sensitivity and 92% specificity. Conclusions: CSF lipid metabolism disregulation, especially elevated expression of ApoB, gives insights into the pathogenesis of TBM. Further evaluation of these findings in larger studies including anti-tuberculosis medicated and unmedicated patient cohorts with other center nervous system infectious diseases is required for successful clinical translation. - Highlights: • The first proteomic study on the cerebrospinal fluid of tuberculous meningitis patients using iTRAQ. • Identify 4 differential proteins invloved in the lipid metabolism. • Elevated expression of ApoB gives insights into the pathogenesis of TBM.« less
Karapiperis, Christos; Kempf, Stefan J; Quintens, Roel; Azimzadeh, Omid; Vidal, Victoria Linares; Pazzaglia, Simonetta; Bazyka, Dimitry; Mastroberardino, Pier G; Scouras, Zacharias G; Tapio, Soile; Benotmane, Mohammed Abderrafi; Ouzounis, Christos A
2016-05-11
The underlying molecular processes representing stress responses to low-dose ionising radiation (LDIR) in mammals are just beginning to be understood. In particular, LDIR effects on the brain and their possible association with neurodegenerative disease are currently being explored using omics technologies. We describe a light-weight approach for the storage, analysis and distribution of relevant LDIR omics datasets. The data integration platform, called BRIDE, contains information from the literature as well as experimental information from transcriptomics and proteomics studies. It deploys a hybrid, distributed solution using both local storage and cloud technology. BRIDE can act as a knowledge broker for LDIR researchers, to facilitate molecular research on the systems biology of LDIR response in mammals. Its flexible design can capture a range of experimental information for genomics, epigenomics, transcriptomics, and proteomics. The data collection is available at:
Roland, Kathleen; Kestemont, Patrick; Dieu, Marc; Raes, Martine; Silvestre, Frédéric
2016-03-30
Using proteomic data as biomarkers of environmental pollution has the potential to be of a great interest in ecological risk assessment as they constitute early warning indicators of ecologically relevant effects on biological systems. To develop such specific and sensitive biomarkers, the use of a set of proteins is required and the identification of protein expression signatures (PES) may reflect the exposure to specific classes of pollutants. Using 2D-DIGE (Differential in Gel Electrophoresis) methodology, this study aimed at identifying specific PES on European eel (Anguilla anguilla) peripheral blood mononuclear cells (PBMC) after 48 h in vitro exposure to two sublethal concentrations of dichlorodiphenyltrichloroethane (p,p'-DDT) (10 μg/L and 1mg/L) or cadmium (Cd) (1 μg/L and 100 μg/L). The present results have been supplemented with data of a first in vitro study on cells exposed to perfluorooctane sulfonate (PFOS) (10 μg/L and 1mg/L). A total of thirty-four protein spots, belonging to 18 different identified proteins found in all conditions, have been selected as possible biomarkers to develop a synthetic Integrated Biomarker Proteomic (IBP) index. IBP follows a dose-response relationship with higher values at the highest tested concentration for each pollutant (Cd: 9.96; DDT: 7.44; PFOS: 7.94) compared to the lowest tested concentration (Cd: 3.81; DDT: 2.91; PFOS: 2.06). In a second step, star plot graphs have been applied to proteomic data in order to allow visual integration of a set of early warning responses measured with protein biomarkers. Such star plots permit to discriminate the type of pollutant inducing a proteomic response. We conclude that using IBP is relevant in environmental risk assessment, giving to this index the potential to be applied as a global index of proteome alteration in endangered species such as the European eel. In this study, 34 protein spots have been selected as possible biomarkers to develop a synthetic Integrated Biomarker Proteomic index (IBP). Results show that IBP follows a dose-response relationship with higher values at the highest tested concentration for each pollutant compared to the lowest tested concentration. Star plot graphs have also been applied to proteomic data in order to allow visual integration of a set of early warning responses measured with protein biomarkers. Such star plots permit to discriminate the type of pollutant inducing a proteomic response. IBP is relevant in environmental risk assessment, giving to this index the potential to be applied as a global index of proteome alteration in endangered species such as the European eel. Copyright © 2015. Published by Elsevier B.V.
Role of Proteomics in the Development of Personalized Medicine.
Jain, Kewal K
2016-01-01
Advances in proteomic technologies have made import contribution to the development of personalized medicine by facilitating detection of protein biomarkers, proteomics-based molecular diagnostics, as well as protein biochips and pharmacoproteomics. Application of nanobiotechnology in proteomics, nanoproteomics, has further enhanced applications in personalized medicine. Proteomics-based molecular diagnostics will have an important role in the diagnosis of certain conditions and understanding the pathomechanism of disease. Proteomics will be a good bridge between diagnostics and therapeutics; the integration of these will be important for advancing personalized medicine. Use of proteomic biomarkers and combination of pharmacoproteomics with pharmacogenomics will enable stratification of clinical trials and improve monitoring of patients for development of personalized therapies. Proteomics is an important component of several interacting technologies used for development of personalized medicine, which is depicted graphically. Finally, cancer is a good example of applications of proteomic technologies for personalized management of cancer. © 2016 Elsevier Inc. All rights reserved.
Silvestri, Elena; Glinni, Daniela; Cioffi, Federica; Moreno, Maria; Lombardi, Assunta; de Lange, Pieter; Senese, Rosalba; Ceccarelli, Michele; Salzano, Anna Maria; Scaloni, Andrea; Lanni, Antonia; Goglia, Fernando
2012-07-06
A novel functional iodothyronine analogue, TRC150094, which has a much lower potency toward thyroid hormone receptor (α1/β1) activation than triiodothyronine, has been shown to be effective at reducing adiposity in rats simultaneously receiving a high-fat diet (HFD). Here, by combining metabolic, functional and proteomic analysis, we studied how the hepatic and skeletal muscle phenotypes might respond to TRC150094 treatment in HFD-fed overweight rats. Drug treatment increased both the liver and skeletal muscle mitochondrial oxidative capacities without altering mitochondrial efficiency. Coherently, in terms of individual respiratory in-gel activity, blue-native analysis revealed an increased activity of complex V in the liver and of complexes II and V in tibialis muscle in TCR150094-treated animals. Subsequently, the identification of differentially expressed proteins and the analysis of their interrelations gave an integrated view of the phenotypic/metabolic adaptations occurring in the liver and muscle proteomes during drug treatment. TRC150094 significantly altered the expression of several proteins involved in key liver metabolic pathways, including amino acid and nitrogen metabolism, and fructose and mannose metabolism. The canonical pathways most strongly influenced by TRC150094 in tibialis muscle included glycolysis and gluconeogenesis, amino acid, fructose and mannose metabolism, and cell signaling. The phenotypic/metabolic influence of TRC150094 on the liver and skeletal muscle of HFD-fed overweight rats suggests the potential clinical application of this iodothyronine analogue in ameliorating metabolic risk parameters altered by diet regimens.
Budzinski, Ilara Gabriela Frasson; Moon, David H; Morosini, Júlia Silva; Lindén, Pernilla; Bragatto, Juliano; Moritz, Thomaz; Labate, Carlos Alberto
2016-07-01
Seasonal variation is presumed to play an important role in the regulation of tree growth, especially for Eucalyptus grandis, a fast-growing tree. This variation may induce changes in the whole tree at transcriptional, protein and metabolite levels. Bark represents an important group of tissues that protect trees from desiccation and pathogen attack, and it has been identified as potential feedstock for lignocellulosic derived biofuels. Despite the growing interest, little is known about the molecular mechanisms that regulates bark metabolism, particularly in tropical countries. In this study we report the changes observed in the primary metabolism of E. grandis bark during two contrasting seasons in Brazil, summer (wet) and winter (dry), through the combination of transcripts (RT-qPCR), proteome (2-DE gels) and metabolome (GC-MS) analysis, in an integrated manner. Twenty-four genes, involved in carbon metabolism, were analyzed in the two seasons. Eleven were up-regulated in summer, three were up-regulated in winter and ten did not show statistical differences in the expression pattern. The proteomic analysis using 2-DE gels showed 77 proteins expressing differences in abundance, with 38 spots up-regulated in summer and 37 in winter. Different metabolites significantly accumulated during winter. This study revealed a metabolic reconfiguration in the primary metabolism of E. grandis bark, triggered by seasonal variation. Transcripts and protein data suggests that during winter carbohydrate formation seems to be favored by tree metabolism. Glucose, fructose and sucrose accumulated at significant levels during the winter.
Stauch, Kelly L; Purnell, Phillip R; Fox, Howard S
2014-05-02
Synaptic mitochondria are essential for maintaining calcium homeostasis and producing ATP, processes vital for neuronal integrity and synaptic transmission. Synaptic mitochondria exhibit increased oxidative damage during aging and are more vulnerable to calcium insult than nonsynaptic mitochondria. Why synaptic mitochondria are specifically more susceptible to cumulative damage remains to be determined. In this study, the generation of a super-SILAC mix that served as an appropriate internal standard for mouse brain mitochondria mass spectrometry based analysis allowed for the quantification of the proteomic differences between synaptic and nonsynaptic mitochondria isolated from 10-month-old mice. We identified a total of 2260 common proteins between synaptic and nonsynaptic mitochondria of which 1629 were annotated as mitochondrial. Quantitative proteomic analysis of the proteins common between synaptic and nonsynaptic mitochondria revealed significant differential expression of 522 proteins involved in several pathways including oxidative phosphorylation, mitochondrial fission/fusion, calcium transport, and mitochondrial DNA replication and maintenance. In comparison to nonsynaptic mitochondria, synaptic mitochondria exhibited increased age-associated mitochondrial DNA deletions and decreased bioenergetic function. These findings provide insights into synaptic mitochondrial susceptibility to damage.
2015-01-01
Synaptic mitochondria are essential for maintaining calcium homeostasis and producing ATP, processes vital for neuronal integrity and synaptic transmission. Synaptic mitochondria exhibit increased oxidative damage during aging and are more vulnerable to calcium insult than nonsynaptic mitochondria. Why synaptic mitochondria are specifically more susceptible to cumulative damage remains to be determined. In this study, the generation of a super-SILAC mix that served as an appropriate internal standard for mouse brain mitochondria mass spectrometry based analysis allowed for the quantification of the proteomic differences between synaptic and nonsynaptic mitochondria isolated from 10-month-old mice. We identified a total of 2260 common proteins between synaptic and nonsynaptic mitochondria of which 1629 were annotated as mitochondrial. Quantitative proteomic analysis of the proteins common between synaptic and nonsynaptic mitochondria revealed significant differential expression of 522 proteins involved in several pathways including oxidative phosphorylation, mitochondrial fission/fusion, calcium transport, and mitochondrial DNA replication and maintenance. In comparison to nonsynaptic mitochondria, synaptic mitochondria exhibited increased age-associated mitochondrial DNA deletions and decreased bioenergetic function. These findings provide insights into synaptic mitochondrial susceptibility to damage. PMID:24708184
Omics Workshop Videocast Available | Office of Cancer Clinical Proteomics Research
The Omics Integration in Biology and Medicine Workshop, held on June 19th and 20th is now available for viewing on NIH Videocast: Day 1 and Day 2. The workshop focused on the emerging field of integrating disparate omic data from genomics, proteomics, glycomics, etc. in order to better understand key biological processes and also improve clinical practice.
Galazis, Nicolas; Olaleye, Olalekan; Haoula, Zeina; Layfield, Robert; Atiomo, William
2012-12-01
To review and identify possible biomarkers for ovarian cancer (OC) in women with polycystic ovary syndrome (PCOS). Systematic literature searches of MEDLINE, EMBASE, and Cochrane using the search terms "proteomics," "proteomic," and "ovarian cancer" or "ovarian carcinoma." Proteomic biomarkers for OC were then integrated with an updated previously published database of all proteomic biomarkers identified to date in patients with PCOS. Academic department of obstetrics and gynecology in the United Kingdom. A total of 180 women identified in the six studies. Tissue samples from women with OC vs. tissue samples from women without OC. Proteomic biomarkers, proteomic technique used, and methodologic quality score. A panel of six biomarkers was overexpressed both in women with OC and in women with PCOS. These biomarkers include calreticulin, fibrinogen-γ, superoxide dismutase, vimentin, malate dehydrogenase, and lamin B2. These biomarkers could help improve our understanding of the links between PCOS and OC and could potentially be used to identify subgroups of women with PCOS at increased risk of OC. More studies are required to further evaluate the role these biomarkers play in women with PCOS and OC. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Magana, Alejandra J.; Taleyarkhan, Manaz; Alvarado, Daniela Rivera; Kane, Michael; Springer, John; Clase, Kari
2014-01-01
Bioinformatics education can be broadly defined as the teaching and learning of the use of computer and information technology, along with mathematical and statistical analysis for gathering, storing, analyzing, interpreting, and integrating data to solve biological problems. The recent surge of genomics, proteomics, and structural biology in the…
Skyline: an open source document editor for creating and analyzing targeted proteomics experiments
MacLean, Brendan; Tomazela, Daniela M.; Shulman, Nicholas; Chambers, Matthew; Finney, Gregory L.; Frewen, Barbara; Kern, Randall; Tabb, David L.; Liebler, Daniel C.; MacCoss, Michael J.
2010-01-01
Summary: Skyline is a Windows client application for targeted proteomics method creation and quantitative data analysis. It is open source and freely available for academic and commercial use. The Skyline user interface simplifies the development of mass spectrometer methods and the analysis of data from targeted proteomics experiments performed using selected reaction monitoring (SRM). Skyline supports using and creating MS/MS spectral libraries from a wide variety of sources to choose SRM filters and verify results based on previously observed ion trap data. Skyline exports transition lists to and imports the native output files from Agilent, Applied Biosystems, Thermo Fisher Scientific and Waters triple quadrupole instruments, seamlessly connecting mass spectrometer output back to the experimental design document. The fast and compact Skyline file format is easily shared, even for experiments requiring many sample injections. A rich array of graphs displays results and provides powerful tools for inspecting data integrity as data are acquired, helping instrument operators to identify problems early. The Skyline dynamic report designer exports tabular data from the Skyline document model for in-depth analysis with common statistical tools. Availability: Single-click, self-updating web installation is available at http://proteome.gs.washington.edu/software/skyline. This web site also provides access to instructional videos, a support board, an issues list and a link to the source code project. Contact: brendanx@u.washington.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20147306
Larance, Mark; Kirkwood, Kathryn J.; Tinti, Michele; Brenes Murillo, Alejandro; Ferguson, Michael A. J.; Lamond, Angus I.
2016-01-01
We present a methodology using in vivo crosslinking combined with HPLC-MS for the global analysis of endogenous protein complexes by protein correlation profiling. Formaldehyde crosslinked protein complexes were extracted with high yield using denaturing buffers that maintained complex solubility during chromatographic separation. We show this efficiently detects both integral membrane and membrane-associated protein complexes,in addition to soluble complexes, allowing identification and analysis of complexes not accessible in native extracts. We compare the protein complexes detected by HPLC-MS protein correlation profiling in both native and formaldehyde crosslinked U2OS cell extracts. These proteome-wide data sets of both in vivo crosslinked and native protein complexes from U2OS cells are freely available via a searchable online database (www.peptracker.com/epd). Raw data are also available via ProteomeXchange (identifier PXD003754). PMID:27114452
Ma, Yanlei; Zhang, Peng; Wang, Feng; Liu, Weijie; Yang, Jianjun; Qin, Huanlong
2012-04-01
The present study was designed to search for potential diagnostic biomarkers in the serum of colorectal cancer (CRC). CRC is the third most common cancer worldwide, and its prognosis is poor at early stages. A panel of novel biomarkers is urgently needed for early diagnosis of CRC. An integrated proteomics and metabolomics approach was performed to define oncofetal biomarkers in CRC by protein and metabolite profiling of serum samples from CRC patients, healthy control adults, and fetus. The differentially expressed proteins were identified by a 2-D DIGE (2-Dimensional Difference Gel Electrophoresis) coupled with a Finnigan LTQ-based proteomics approach. Meanwhile, the serum metabolome was analyzed using gas chromatography-mass spectrometry integrated with a commercial mass spectral library for peak identification. Of the 28 identified proteins and the 34 analyzed metabolites, only 5 protein spots and 6 metabolites were significantly increased or decreased in both CRC and fetal serum groups compared with the healthy adult group. Data from supervised predictive models allowed a separation of 93.5% of CRC patients from the healthy controls using the 6 metabolites. Finally, correlation analysis was applied to establish quantitative linkages between the 5 individual metabolite 3-hydroxybutyric acid, L-valine, L-threonine, 1-deoxyglucose, and glycine and the 5 individual proteins MACF1, APOH, A2M, IGL@, and VDB. Furthermore, 10 potential oncofetal biomarkers were characterized and their potential for CRC diagnosis was validated. The integrated approach we developed will promote the translation of biomarkers with clinical value into routine clinical practice.
Integrated Omic Analysis of a Guinea Pig Model of Heart Failure and Sudden Cardiac Death.
Foster, D Brian; Liu, Ting; Kammers, Kai; O'Meally, Robert; Yang, Ni; Papanicolaou, Kyriakos N; Talbot, C Conover; Cole, Robert N; O'Rourke, Brian
2016-09-02
Here, we examine key regulatory pathways underlying the transition from compensated hypertrophy (HYP) to decompensated heart failure (HF) and sudden cardiac death (SCD) in a guinea pig pressure-overload model by integrated multiome analysis. Relative protein abundances from sham-operated HYP and HF hearts were assessed by iTRAQ LC-MS/MS. Metabolites were quantified by LC-MS/MS or GC-MS. Transcriptome profiles were obtained using mRNA microarrays. The guinea pig HF proteome exhibited classic biosignatures of cardiac HYP, left ventricular dysfunction, fibrosis, inflammation, and extravasation. Fatty acid metabolism, mitochondrial transcription/translation factors, antioxidant enzymes, and other mitochondrial procsses, were downregulated in HF but not HYP. Proteins upregulated in HF implicate extracellular matrix remodeling, cytoskeletal remodeling, and acute phase inflammation markers. Among metabolites, acylcarnitines were downregulated in HYP and fatty acids accumulated in HF. The correlation of transcript and protein changes in HF was weak (R(2) = 0.23), suggesting post-transcriptional gene regulation in HF. Proteome/metabolome integration indicated metabolic bottlenecks in fatty acyl-CoA processing by carnitine palmitoyl transferase (CPT1B) as well as TCA cycle inhibition. On the basis of these findings, we present a model of cardiac decompensation involving impaired nuclear integration of Ca(2+) and cyclic nucleotide signals that are coupled to mitochondrial metabolic and antioxidant defects through the CREB/PGC1α transcriptional axis.
MOPED enables discoveries through consistently processed proteomics data
Higdon, Roger; Stewart, Elizabeth; Stanberry, Larissa; Haynes, Winston; Choiniere, John; Montague, Elizabeth; Anderson, Nathaniel; Yandl, Gregory; Janko, Imre; Broomall, William; Fishilevich, Simon; Lancet, Doron; Kolker, Natali; Kolker, Eugene
2014-01-01
The Model Organism Protein Expression Database (MOPED, http://moped.proteinspire.org), is an expanding proteomics resource to enable biological and biomedical discoveries. MOPED aggregates simple, standardized and consistently processed summaries of protein expression and metadata from proteomics (mass spectrometry) experiments from human and model organisms (mouse, worm and yeast). The latest version of MOPED adds new estimates of protein abundance and concentration, as well as relative (differential) expression data. MOPED provides a new updated query interface that allows users to explore information by organism, tissue, localization, condition, experiment, or keyword. MOPED supports the Human Proteome Project’s efforts to generate chromosome and diseases specific proteomes by providing links from proteins to chromosome and disease information, as well as many complementary resources. MOPED supports a new omics metadata checklist in order to harmonize data integration, analysis and use. MOPED’s development is driven by the user community, which spans 90 countries guiding future development that will transform MOPED into a multi-omics resource. MOPED encourages users to submit data in a simple format. They can use the metadata a checklist generate a data publication for this submission. As a result, MOPED will provide even greater insights into complex biological processes and systems and enable deeper and more comprehensive biological and biomedical discoveries. PMID:24350770
Unraveling endometriosis-associated ovarian carcinomas using integrative proteomics
Leung, Felix; Bernardini, Marcus Q.; Liang, Kun; Batruch, Ihor; Rouzbahman, Marjan; Diamandis, Eleftherios P.; Kulasingam, Vathany
2018-01-01
Background: To elucidate potential markers of endometriosis and endometriosis-associated endometrioid and clear cell ovarian carcinomas using mass spectrometry-based proteomics. Methods: A total of 21 fresh, frozen tissues from patients diagnosed with clear cell carcinoma, endometrioid carcinoma, endometriosis and benign endometrium were subjected to an in-depth liquid chromatography-tandem mass spectrometry analysis on the Q-Exactive Plus. Protein identification and quantification were performed using MaxQuant, while downstream analyses were performed using Perseus and various bioinformatics databases. Results: Approximately 9000 proteins were identified in total, representing the first in-depth proteomic investigation of endometriosis and its associated cancers. This proteomic data was shown to be biologically sound, with minimal variation within patient cohorts and recapitulation of known markers. While moderate concordance with genomic data was observed, it was shown that such data are limited in their abilities to represent tumours on the protein level and to distinguish tumours from their benign precursors. Conclusions: The proteomic data suggests that distinct markers may differentiate endometrioid and clear cell carcinoma from endometriosis. These markers may be indicators of pathobiology but will need to be further investigated. Ultimately, this dataset may serve as a basis to unravel the underlying biology of the endometrioid and clear cell cancers with respect to their endometriotic origins. PMID:29721309
Proteomic and metallomic strategies for understanding the mode of action of anticancer metallodrugs.
Gabbiani, Chiara; Magherini, Francesca; Modesti, Alessandra; Messori, Luigi
2010-05-01
Since the discovery of cisplatin and its introduction in the clinics, metal compounds have been intensely investigated in view of their possible application in cancer therapy. In this frame, a deeper understanding of their mode of action, still rather obscure, might turn crucial for the design and the obtainment of new and better anticancer agents. Due to the extreme complexity of the biological systems, it is now widely accepted that innovative and information-rich methods are absolutely needed to afford such a goal. Recently, both proteomic and metallomic strategies were successfully implemented for the elucidation of specific mechanistic features of anticancer metallodrugs within an innovative "Systems Biology" perspective. Particular attention was paid to the following issues: i) proteomic studies of the molecular basis of platinum resistance; ii) proteomic analysis of cellular responses to cytotoxic metallodrugs; iii) metallomic studies of the transformation and fate of metallodrugs in cellular systems. Notably, those pioneering studies, that are reviewed here, allowed a significant progress in the understanding of the molecular mechanisms of metal based drugs at the cellular level. A further extension of those studies and a closer integration of proteomic and metallomic strategies and technologies might realistically lead to rapid and significant advancements in the mechanistic knowledge of anticancer metallodrugs.
Microfluidic liquid chromatography system for proteomic applications and biomarker screening.
Lazar, Iulia M; Trisiripisal, Phichet; Sarvaiya, Hetal A
2006-08-01
A microfluidic liquid chromatography (LC) system for proteomic investigations that integrates all the necessary components for stand-alone operation, i.e., pump, valve, separation column, and electrospray interface, is described in this paper. The overall size of the LC device is small enough to enable the integration of two fully functional separation systems on a 3 in. x 1 in. glass microchip. A multichannel architecture that uses electroosmotic pumping principles provides the necessary functionality for eluent propulsion and sample valving. The flow rates generated within these chips are fully consistent with the requirements of nano-LC platforms that are routinely used in proteomic applications. The microfluidic device was evaluated for the analysis of a protein digest obtained from the MCF7 breast cancer cell line. The cytosolic protein extract was processed according to a shotgun protocol, and after tryptic digestion and prefractionation using strong cation exchange chromatography (SCX), selected sample subfractions were analyzed with conventional and microfluidic LC platforms. Using similar experimental conditions, the performance of the microchip LC was comparable to that obtained with benchtop instrumentation, providing an overlap of 75% in proteins that were identified by more than two unique peptides. The microfluidic LC analysis of a protein-rich SCX fraction enabled the confident identification of 77 proteins by using conventional data filtering parameters, of 39 proteins with p < 0.001, and of 5 proteins that are known to be cancer-specific biomarkers, demonstrating thus the potential applicability of these chips for future high-throughput biomarker screening applications.
Janssen, K A; Sidoli, S; Garcia, B A
2017-01-01
Functional epigenetic regulation occurs by dynamic modification of chromatin, including genetic material (i.e., DNA methylation), histone proteins, and other nuclear proteins. Due to the highly complex nature of the histone code, mass spectrometry (MS) has become the leading technique in identification of single and combinatorial histone modifications. MS has now overcome antibody-based strategies due to its automation, high resolution, and accurate quantitation. Moreover, multiple approaches to analysis have been developed for global quantitation of posttranslational modifications (PTMs), including large-scale characterization of modification coexistence (middle-down and top-down proteomics), which is not currently possible with any other biochemical strategy. Recently, our group and others have simplified and increased the effectiveness of analyzing histone PTMs by improving multiple MS methods and data analysis tools. This review provides an overview of the major achievements in the analysis of histone PTMs using MS with a focus on the most recent improvements. We speculate that the workflow for histone analysis at its state of the art is highly reliable in terms of identification and quantitation accuracy, and it has the potential to become a routine method for systems biology thanks to the possibility of integrating histone MS results with genomics and proteomics datasets. © 2017 Elsevier Inc. All rights reserved.
Crysalis: an integrated server for computational analysis and design of protein crystallization.
Wang, Huilin; Feng, Liubin; Zhang, Ziding; Webb, Geoffrey I; Lin, Donghai; Song, Jiangning
2016-02-24
The failure of multi-step experimental procedures to yield diffraction-quality crystals is a major bottleneck in protein structure determination. Accordingly, several bioinformatics methods have been successfully developed and employed to select crystallizable proteins. Unfortunately, the majority of existing in silico methods only allow the prediction of crystallization propensity, seldom enabling computational design of protein mutants that can be targeted for enhancing protein crystallizability. Here, we present Crysalis, an integrated crystallization analysis tool that builds on support-vector regression (SVR) models to facilitate computational protein crystallization prediction, analysis, and design. More specifically, the functionality of this new tool includes: (1) rapid selection of target crystallizable proteins at the proteome level, (2) identification of site non-optimality for protein crystallization and systematic analysis of all potential single-point mutations that might enhance protein crystallization propensity, and (3) annotation of target protein based on predicted structural properties. We applied the design mode of Crysalis to identify site non-optimality for protein crystallization on a proteome-scale, focusing on proteins currently classified as non-crystallizable. Our results revealed that site non-optimality is based on biases related to residues, predicted structures, physicochemical properties, and sequence loci, which provides in-depth understanding of the features influencing protein crystallization. Crysalis is freely available at http://nmrcen.xmu.edu.cn/crysalis/.
Crysalis: an integrated server for computational analysis and design of protein crystallization
Wang, Huilin; Feng, Liubin; Zhang, Ziding; Webb, Geoffrey I.; Lin, Donghai; Song, Jiangning
2016-01-01
The failure of multi-step experimental procedures to yield diffraction-quality crystals is a major bottleneck in protein structure determination. Accordingly, several bioinformatics methods have been successfully developed and employed to select crystallizable proteins. Unfortunately, the majority of existing in silico methods only allow the prediction of crystallization propensity, seldom enabling computational design of protein mutants that can be targeted for enhancing protein crystallizability. Here, we present Crysalis, an integrated crystallization analysis tool that builds on support-vector regression (SVR) models to facilitate computational protein crystallization prediction, analysis, and design. More specifically, the functionality of this new tool includes: (1) rapid selection of target crystallizable proteins at the proteome level, (2) identification of site non-optimality for protein crystallization and systematic analysis of all potential single-point mutations that might enhance protein crystallization propensity, and (3) annotation of target protein based on predicted structural properties. We applied the design mode of Crysalis to identify site non-optimality for protein crystallization on a proteome-scale, focusing on proteins currently classified as non-crystallizable. Our results revealed that site non-optimality is based on biases related to residues, predicted structures, physicochemical properties, and sequence loci, which provides in-depth understanding of the features influencing protein crystallization. Crysalis is freely available at http://nmrcen.xmu.edu.cn/crysalis/. PMID:26906024
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Yilin; Wilkins, Michael J.; Yabusaki, Steven B.
2012-12-12
Biomass and shotgun global proteomics data that reflected relative protein abundances from samples collected during the 2008 experiment at the U.S. Department of Energy Integrated Field-Scale Subsurface Research Challenge site in Rifle, Colorado, provided an unprecedented opportunity to validate a genome-scale metabolic model of Geobacter metallireducens and assess its performance with respect to prediction of metal reduction, biomass yield, and growth rate under dynamic field conditions. Reconstructed from annotated genomic sequence, biochemical, and physiological data, the constraint-based in silico model of G. metallireducens relates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes.more » Proteomic analysis showed that 180 of the 637 G. metallireducens proteins detected during the 2008 experiment were associated with specific metabolic reactions in the in silico model. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through the in silico model reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low fluxes through amino acid transport and metabolism, revealed pathways or flux constraints in the in silico model that could be updated to more accurately predict metabolic processes that occur in the subsurface environment.« less
Proteomic analysis of the Theileria annulata schizont
Witschi, M.; Xia, D.; Sanderson, S.; Baumgartner, M.; Wastling, J.M.; Dobbelaere, D.A.E.
2013-01-01
The apicomplexan parasite, Theileria annulata, is the causative agent of tropical theileriosis, a devastating lymphoproliferative disease of cattle. The schizont stage transforms bovine leukocytes and provides an intriguing model to study host/pathogen interactions. The genome of T. annulata has been sequenced and transcriptomic data are rapidly accumulating. In contrast, little is known about the proteome of the schizont, the pathogenic, transforming life cycle stage of the parasite. Using one-dimensional (1-D) gel LC-MS/MS, a proteomic analysis of purified T. annulata schizonts was carried out. In whole parasite lysates, 645 proteins were identified. Proteins with transmembrane domains (TMDs) were under-represented and no proteins with more than four TMDs could be detected. To tackle this problem, Triton X-114 treatment was applied, which facilitates the extraction of membrane proteins, followed by 1-D gel LC-MS/MS. This resulted in the identification of an additional 153 proteins. Half of those had one or more TMD and 30 proteins with more than four TMDs were identified. This demonstrates that Triton X-114 treatment can provide a valuable additional tool for the identification of new membrane proteins in proteomic studies. With two exceptions, all proteins involved in glycolysis and the citric acid cycle were identified. For at least 29% of identified proteins, the corresponding transcripts were not present in the existing expressed sequence tag databases. The proteomics data were integrated into the publicly accessible database resource at EuPathDB (www.eupathdb.org) so that mass spectrometry-based protein expression evidence for T. annulata can be queried alongside transcriptional and other genomics data available for these parasites. PMID:23178997
SwissPalm: Protein Palmitoylation database.
Blanc, Mathieu; David, Fabrice; Abrami, Laurence; Migliozzi, Daniel; Armand, Florence; Bürgi, Jérôme; van der Goot, Françoise Gisou
2015-01-01
Protein S-palmitoylation is a reversible post-translational modification that regulates many key biological processes, although the full extent and functions of protein S-palmitoylation remain largely unexplored. Recent developments of new chemical methods have allowed the establishment of palmitoyl-proteomes of a variety of cell lines and tissues from different species. As the amount of information generated by these high-throughput studies is increasing, the field requires centralization and comparison of this information. Here we present SwissPalm ( http://swisspalm.epfl.ch), our open, comprehensive, manually curated resource to study protein S-palmitoylation. It currently encompasses more than 5000 S-palmitoylated protein hits from seven species, and contains more than 500 specific sites of S-palmitoylation. SwissPalm also provides curated information and filters that increase the confidence in true positive hits, and integrates predictions of S-palmitoylated cysteine scores, orthologs and isoform multiple alignments. Systems analysis of the palmitoyl-proteome screens indicate that 10% or more of the human proteome is susceptible to S-palmitoylation. Moreover, ontology and pathway analyses of the human palmitoyl-proteome reveal that key biological functions involve this reversible lipid modification. Comparative analysis finally shows a strong crosstalk between S-palmitoylation and other post-translational modifications. Through the compilation of data and continuous updates, SwissPalm will provide a powerful tool to unravel the global importance of protein S-palmitoylation.
SwissPalm: Protein Palmitoylation database
Abrami, Laurence; Migliozzi, Daniel; Armand, Florence; Bürgi, Jérôme; van der Goot, Françoise Gisou
2015-01-01
Protein S-palmitoylation is a reversible post-translational modification that regulates many key biological processes, although the full extent and functions of protein S-palmitoylation remain largely unexplored. Recent developments of new chemical methods have allowed the establishment of palmitoyl-proteomes of a variety of cell lines and tissues from different species. As the amount of information generated by these high-throughput studies is increasing, the field requires centralization and comparison of this information. Here we present SwissPalm ( http://swisspalm.epfl.ch), our open, comprehensive, manually curated resource to study protein S-palmitoylation. It currently encompasses more than 5000 S-palmitoylated protein hits from seven species, and contains more than 500 specific sites of S-palmitoylation. SwissPalm also provides curated information and filters that increase the confidence in true positive hits, and integrates predictions of S-palmitoylated cysteine scores, orthologs and isoform multiple alignments. Systems analysis of the palmitoyl-proteome screens indicate that 10% or more of the human proteome is susceptible to S-palmitoylation. Moreover, ontology and pathway analyses of the human palmitoyl-proteome reveal that key biological functions involve this reversible lipid modification. Comparative analysis finally shows a strong crosstalk between S-palmitoylation and other post-translational modifications. Through the compilation of data and continuous updates, SwissPalm will provide a powerful tool to unravel the global importance of protein S-palmitoylation. PMID:26339475
The MaxQuant computational platform for mass spectrometry-based shotgun proteomics.
Tyanova, Stefka; Temu, Tikira; Cox, Juergen
2016-12-01
MaxQuant is one of the most frequently used platforms for mass-spectrometry (MS)-based proteomics data analysis. Since its first release in 2008, it has grown substantially in functionality and can be used in conjunction with more MS platforms. Here we present an updated protocol covering the most important basic computational workflows, including those designed for quantitative label-free proteomics, MS1-level labeling and isobaric labeling techniques. This protocol presents a complete description of the parameters used in MaxQuant, as well as of the configuration options of its integrated search engine, Andromeda. This protocol update describes an adaptation of an existing protocol that substantially modifies the technique. Important concepts of shotgun proteomics and their implementation in MaxQuant are briefly reviewed, including different quantification strategies and the control of false-discovery rates (FDRs), as well as the analysis of post-translational modifications (PTMs). The MaxQuant output tables, which contain information about quantification of proteins and PTMs, are explained in detail. Furthermore, we provide a short version of the workflow that is applicable to data sets with simple and standard experimental designs. The MaxQuant algorithms are efficiently parallelized on multiple processors and scale well from desktop computers to servers with many cores. The software is written in C# and is freely available at http://www.maxquant.org.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukunaga, Satoki; Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugade-Naka, Konohana-ku, Osaka 554-8558; Kakehashi, Anna
To determine miRNAs and their predicted target proteins regulatory networks which are potentially involved in onset of pulmonary fibrosis in the bleomycin rat model, we conducted integrative miRNA microarray and iTRAQ-coupled LC-MS/MS proteomic analyses, and evaluated the significance of altered biological functions and pathways. We observed that alterations of miRNAs and proteins are associated with the early phase of bleomycin-induced pulmonary fibrosis, and identified potential target pairs by using ingenuity pathway analysis. Using the data set of these alterations, it was demonstrated that those miRNAs, in association with their predicted target proteins, are potentially involved in canonical pathways reflective ofmore » initial epithelial injury and fibrogenic processes, and biofunctions related to induction of cellular development, movement, growth, and proliferation. Prediction of activated functions suggested that lung cells acquire proliferative, migratory, and invasive capabilities, and resistance to cell death especially in the very early phase of bleomycin-induced pulmonary fibrosis. The present study will provide new insights for understanding the molecular pathogenesis of idiopathic pulmonary fibrosis. - Highlights: • We analyzed bleomycin-induced pulmonary fibrosis in the rat. • Integrative analyses of miRNA microarray and proteomics were conducted. • We determined the alterations of miRNAs and their potential target proteins. • The alterations may control biological functions and pathways in pulmonary fibrosis. • Our result may provide new insights of pulmonary fibrosis.« less
Adaptation of Decoy Fusion Strategy for Existing Multi-Stage Search Workflows
NASA Astrophysics Data System (ADS)
Ivanov, Mark V.; Levitsky, Lev I.; Gorshkov, Mikhail V.
2016-09-01
A number of proteomic database search engines implement multi-stage strategies aiming at increasing the sensitivity of proteome analysis. These approaches often employ a subset of the original database for the secondary stage of analysis. However, if target-decoy approach (TDA) is used for false discovery rate (FDR) estimation, the multi-stage strategies may violate the underlying assumption of TDA that false matches are distributed uniformly across the target and decoy databases. This violation occurs if the numbers of target and decoy proteins selected for the second search are not equal. Here, we propose a method of decoy database generation based on the previously reported decoy fusion strategy. This method allows unbiased TDA-based FDR estimation in multi-stage searches and can be easily integrated into existing workflows utilizing popular search engines and post-search algorithms.
Ford, Kristina L.; Zeng, Wei; Heazlewood, Joshua L.; ...
2015-08-28
The analysis of post-translational modifications (PTMs) by proteomics is regarded as a technically challenging undertaking. While in recent years approaches to examine and quantify protein phosphorylation have greatly improved, the analysis of many protein modifications, such as glycosylation, are still regarded as problematic. Limitations in the standard proteomics workflow, such as use of suboptimal peptide fragmentation methods, can significantly prevent the identification of glycopeptides. The current generation of tandem mass spectrometers has made available a variety of fragmentation options, many of which are becoming standard features on these instruments. Lastly, we have used three common fragmentation techniques, namely CID, HCD,more » and ETD, to analyze a glycopeptide and highlight how an integrated fragmentation approach can be used to identify the modified residue and characterize the N-glycan on a peptide.« less
Keller, Martin; Hettich, Robert
2009-03-01
The increase in sequencing capacity led to a new wave of metagenomic projects, enabling and setting the prerequisite for the application of environmental proteomics technologies. This review describes the current status of environmental proteomics. It describes sample preparation as well as the two major technologies applied within this field: two-dimensional electrophoresis-based environmental proteomics and liquid chromatography-mass spectrometry-based environmental proteomics. It also highlights current publications and describes major scientific findings. The review closes with a discussion of critical improvements in the area of integrating experimental mass spectrometry technologies with bioinformatics as well as improved sample handling.
The developmental proteome of Drosophila melanogaster
Casas-Vila, Nuria; Bluhm, Alina; Sayols, Sergi; Dinges, Nadja; Dejung, Mario; Altenhein, Tina; Kappei, Dennis; Altenhein, Benjamin; Roignant, Jean-Yves; Butter, Falk
2017-01-01
Drosophila melanogaster is a widely used genetic model organism in developmental biology. While this model organism has been intensively studied at the RNA level, a comprehensive proteomic study covering the complete life cycle is still missing. Here, we apply label-free quantitative proteomics to explore proteome remodeling across Drosophila’s life cycle, resulting in 7952 proteins, and provide a high temporal-resolved embryogenesis proteome of 5458 proteins. Our proteome data enabled us to monitor isoform-specific expression of 34 genes during development, to identify the pseudogene Cyp9f3Ψ as a protein-coding gene, and to obtain evidence of 268 small proteins. Moreover, the comparison with available transcriptomic data uncovered examples of poor correlation between mRNA and protein, underscoring the importance of proteomics to study developmental progression. Data integration of our embryogenesis proteome with tissue-specific data revealed spatial and temporal information for further functional studies of yet uncharacterized proteins. Overall, our high resolution proteomes provide a powerful resource and can be explored in detail in our interactive web interface. PMID:28381612
Rigbolt, Kristoffer T G; Vanselow, Jens T; Blagoev, Blagoy
2011-08-01
Recent technological advances have made it possible to identify and quantify thousands of proteins in a single proteomics experiment. As a result of these developments, the analysis of data has become the bottleneck of proteomics experiment. To provide the proteomics community with a user-friendly platform for comprehensive analysis, inspection and visualization of quantitative proteomics data we developed the Graphical Proteomics Data Explorer (GProX)(1). The program requires no special bioinformatics training, as all functions of GProX are accessible within its graphical user-friendly interface which will be intuitive to most users. Basic features facilitate the uncomplicated management and organization of large data sets and complex experimental setups as well as the inspection and graphical plotting of quantitative data. These are complemented by readily available high-level analysis options such as database querying, clustering based on abundance ratios, feature enrichment tests for e.g. GO terms and pathway analysis tools. A number of plotting options for visualization of quantitative proteomics data is available and most analysis functions in GProX create customizable high quality graphical displays in both vector and bitmap formats. The generic import requirements allow data originating from essentially all mass spectrometry platforms, quantitation strategies and software to be analyzed in the program. GProX represents a powerful approach to proteomics data analysis providing proteomics experimenters with a toolbox for bioinformatics analysis of quantitative proteomics data. The program is released as open-source and can be freely downloaded from the project webpage at http://gprox.sourceforge.net.
Rigbolt, Kristoffer T. G.; Vanselow, Jens T.; Blagoev, Blagoy
2011-01-01
Recent technological advances have made it possible to identify and quantify thousands of proteins in a single proteomics experiment. As a result of these developments, the analysis of data has become the bottleneck of proteomics experiment. To provide the proteomics community with a user-friendly platform for comprehensive analysis, inspection and visualization of quantitative proteomics data we developed the Graphical Proteomics Data Explorer (GProX)1. The program requires no special bioinformatics training, as all functions of GProX are accessible within its graphical user-friendly interface which will be intuitive to most users. Basic features facilitate the uncomplicated management and organization of large data sets and complex experimental setups as well as the inspection and graphical plotting of quantitative data. These are complemented by readily available high-level analysis options such as database querying, clustering based on abundance ratios, feature enrichment tests for e.g. GO terms and pathway analysis tools. A number of plotting options for visualization of quantitative proteomics data is available and most analysis functions in GProX create customizable high quality graphical displays in both vector and bitmap formats. The generic import requirements allow data originating from essentially all mass spectrometry platforms, quantitation strategies and software to be analyzed in the program. GProX represents a powerful approach to proteomics data analysis providing proteomics experimenters with a toolbox for bioinformatics analysis of quantitative proteomics data. The program is released as open-source and can be freely downloaded from the project webpage at http://gprox.sourceforge.net. PMID:21602510
Wendler, Sergej; Otto, Andreas; Ortseifen, Vera; Bonn, Florian; Neshat, Armin; Schneiker-Bekel, Susanne; Walter, Frederik; Wolf, Timo; Zemke, Till; Wehmeier, Udo F; Hecker, Michael; Kalinowski, Jörn; Becher, Dörte; Pühler, Alfred
2015-07-01
Acarbose is an α-glucosidase inhibitor produced by Actinoplanes sp. SE50/110 that is medically important due to its application in the treatment of type2 diabetes. In this work, a comprehensive proteome analysis of Actinoplanes sp. SE50/110 was carried out to determine the location of proteins of the acarbose (acb) and the putative pyochelin (pch) biosynthesis gene cluster. Therefore, a comprehensive state-of-the-art proteomics approach combining subcellular fractionation, shotgun proteomics and spectral counting to assess the relative abundance of proteins within fractions was applied. The analysis of four different proteome fractions (cytosolic, enriched membrane, membrane shaving and extracellular fraction) resulted in the identification of 1582 of the 8270 predicted proteins. All 22 Acb-proteins and 21 of the 23 Pch-proteins were detected. Predicted membrane-associated, integral membrane or extracellular proteins of the pch and the acb gene cluster were found among the most abundant proteins in corresponding fractions. Intracellular biosynthetic proteins of both gene clusters were not only detected in the cytosolic, but also in the enriched membrane fraction, indicating that the biosynthesis of acarbose and putative pyochelin metabolites takes place at the inner membrane. Actinoplanes sp. SE50/110 is a natural producer of the α-glucosidase inhibitor acarbose, a bacterial secondary metabolite that is used as a drug for the treatment of type 2 diabetes, a disease which is a global pandemic that currently affects 387 million people and accounts for 11% of worldwide healthcare expenditures (www.idf.org). The work presented here is the first comprehensive investigation of protein localization and abundance in Actinoplanes sp. SE50/110 and provides an extensive source of information for the selection of genes for future mutational analysis and other hypothesis driven experiments. The conclusion that acarbose or pyochelin family siderophores are synthesized at the inner side of the cytoplasmic membrane determined from this work, indicates that studying corresponding intermediates will be challenging. In addition to previous studies on the genome and transcriptome, the work presented here demonstrates that the next omic level, the proteome, is now accessible for detailed physiological analysis of Actinoplanes sp. SE50/110, as well as mutants derived from this and related species. Copyright © 2015 Elsevier B.V. All rights reserved.
Breast tumors educate stromal tissue with individualized but coordinated proteomic signatures
Wang, Xuya; Mooradian, Arshag D.; Erdmann-Gilmore, Petra; Zhang, Qiang; Viner, Rosa; Davies, Sherri R.; Huang, Kuan-lin; Bomgarden, Ryan; Van Tine, Brian A.; Shao, Jieya; Ding, Li; Li, Shunqiang; Ellis, Matthew J.; Rogers, John C.; Townsend, R. Reid; Fenyö, David; Held, Jason M.
2017-01-01
Cancer forms specialized microenvironmental niches that promote local invasion and colonization. Engrafted patient-derived xenografts (PDXs) locally invade and colonize naïve stroma, while enabling unambiguous molecular discrimination of human proteins in the tumor from mouse proteins in the microenvironment. To characterize how patient breast tumors form a niche and educate naïve stroma, subcutaneous breast cancer PDXs were globally profiled using species-specific quantitative proteomics. Regulation of PDX stromal proteins by breast tumors was extensive, with thirty-five percent of the stromal proteome consistently altered by tumors across different animals and passages. Differentially regulated proteins in the stroma clustered into six signatures that included both known and novel contributors to tumor invasion and colonization. Stromal proteomes were coordinately regulated, though the sets of proteins altered by each tumor were highly distinct. Integrated analysis of tumor and stromal proteins, a comparison possible in xenograft models, indicated that the known hallmarks of cancer contribute pleiotropically to establishing and maintaining the tumor’s microenvironmental niche. Tumor education of the stroma is therefore an intrinsic property of breast tumors that is highly individualized, yet proceeds by consistent, non-random and defined tumor-promoting molecular alterations. PMID:28790197
Systematic Proteomic Approach to Characterize the Impacts of ...
Chemical interactions have posed a big challenge in toxicity characterization and human health risk assessment of environmental mixtures. To characterize the impacts of chemical interactions on protein and cytotoxicity responses to environmental mixtures, we established a systems biology approach integrating proteomics, bioinformatics, statistics, and computational toxicology to measure expression or phosphorylation levels of 21 critical toxicity pathway regulators and 445 downstream proteins in human BEAS-28 cells treated with 4 concentrations of nickel, 2 concentrations each of cadmium and chromium, as well as 12 defined binary and 8 defined ternary mixtures of these metals in vitro. Multivariate statistical analysis and mathematical modeling of the metal-mediated proteomic response patterns showed a high correlation between changes in protein expression or phosphorylation and cellular toxic responses to both individual metals and metal mixtures. Of the identified correlated proteins, only a small set of proteins including HIF-1a is likely to be responsible for selective cytotoxic responses to different metals and metals mixtures. Furthermore, support vector machine learning was utilized to computationally predict protein responses to uncharacterized metal mixtures using experimentally generated protein response profiles corresponding to known metal mixtures. This study provides a novel proteomic approach for characterization and prediction of toxicities of
The National Cancer Institute will hold a public pre-application webinar on Friday, December 11 at 12:00 p.m. (EST) for the Funding Opportunity Announcements (FOAs) RFA-CA-15-021 entitled “Proteome Characterization Centers for Clinical Proteomic Tumor Analysis Consortium (U24), RFA-CA-15-022 entitled “Proteogenomic Translational Research Centers for Clinical Proteomic Tumor Analysis Consortium (U01)”, and RFA-CA-15-023 entitled “Proteogenomic Data Analysis Centers for Clinical Proteomic Tumor Analysis Consortium (U24)”.
Mu, Jun; Yang, Yongtao; Chen, Jin; Cheng, Ke; Li, Qi; Wei, Yongdong; Zhu, Dan; Shao, Weihua; Zheng, Peng; Xie, Peng
2015-10-30
Tuberculous meningitis (TBM) remains to be one of the most deadly infectious diseases. The pathogen interacts with the host immune system, the process of which is largely unknown. Various cellular processes of Mycobacterium tuberculosis (MTB) centers around lipid metabolism. To determine the lipid metabolism related proteins, a quantitative proteomic study was performed here to identify differential proteins in the cerebrospinal fluid (CSF) obtained from TBM patients (n = 12) and healthy controls (n = 12). CSF samples were desalted, concentrated, labelled with isobaric tags for relative and absolute quantitation (iTRAQ™), and analyzed by multi-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS). Gene ontology and proteomic phenotyping analysis of the differential proteins were conducted using Database for Annotation, Visualization, and Integrated Discovery (DAVID) Bioinformatics Resources. ApoE and ApoB were selected for validation by ELISA. Proteomic phenotyping of the 4 differential proteins was invloved in the lipid metabolism. ELISA showed significantly increased ApoB levels in TBM subjects compared to healthy controls. Area under the receiver operating characteristic curve analysis demonstrated ApoB levels could distinguish TBM subjects from healthy controls and viral meningitis subjects with 89.3% sensitivity and 92% specificity. CSF lipid metabolism disregulation, especially elevated expression of ApoB, gives insights into the pathogenesis of TBM. Further evaluation of these findings in larger studies including anti-tuberculosis medicated and unmedicated patient cohorts with other center nervous system infectious diseases is required for successful clinical translation. Copyright © 2015 Elsevier Inc. All rights reserved.
Sun, Liangliang; Zhu, Guijie; Yan, Xiaojing; Champion, Mathew M.
2014-01-01
The vast majority of proteomic studies employ reversed-phase high-performance liquid chromatography coupled with tandem mass spectrometry for analysis of the tryptic digest of a cellular lysate. This technology is quite mature, and typically provides identification of hundreds to thousands of peptides, which is used to infer the identity of hundreds to thousands of proteins. These approaches usually require milligrams to micrograms of starting material. Capillary zone electrophoresis provides an interesting alternative separation method based on a different separation mechanism than HPLC. Capillary electrophoresis received some attention for protein analysis beginning 25 years ago. Those efforts stalled because of the limited performance of the electrospray interfaces and the limited speed and sensitivity of mass spectrometers of that era. This review considers a new electrospray interface design coupled with Orbitrap Velos and linear Q-trap mass spectrometers. Capillary zone electrophoresis coupled with this interface and these detectors provides single shot detection of >1,250 peptides from an E. coli digest in less than one hour, identification of nearly 5,000 peptides from analysis of seven fractions produced by solid-phase extraction of the E. coli digest in a six hour total analysis time, low attomole detection limits for peptides generated from standard proteins, and high zeptomole detection limits for selected ion monitoring of peptides. Incorporation of an integrated on-line immobilized trypsin microreactor allows digestion and analysis of picogram amounts of a complex eukaryotic proteome. PMID:24277677
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jing; Ma, Zihao; Carr, Steven A.
Coexpression of mRNAs under multiple conditions is commonly used to infer cofunctionality of their gene products despite well-known limitations of this “guilt-by-association” (GBA) approach. Recent advancements in mass spectrometry-based proteomic technologies have enabled global expression profiling at the protein level; however, whether proteome profiling data can outperform transcriptome profiling data for coexpression based gene function prediction has not been systematically investigated. Here, we address this question by constructing and analyzing mRNA and protein coexpression networks for three cancer types with matched mRNA and protein profiling data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC).more » Our analyses revealed a marked difference in wiring between the mRNA and protein coexpression networks. Whereas protein coexpression was driven primarily by functional similarity between coexpressed genes, mRNA coexpression was driven by both cofunction and chromosomal colocalization of the genes. Functionally coherent mRNA modules were more likely to have their edges preserved in corresponding protein networks than functionally incoherent mRNA modules. Proteomic data strengthened the link between gene expression and function for at least 75% of Gene Ontology (GO) biological processes and 90% of KEGG pathways. A web application Gene2Net (http://cptac.gene2net.org) developed based on the three protein coexpression networks revealed novel gene-function relationships, such as linking ERBB2 (HER2) to lipid biosynthetic process in breast cancer, identifying PLG as a new gene involved in complement activation, and identifying AEBP1 as a new epithelial-mesenchymal transition (EMT) marker. Our results demonstrate that proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Proteomics should be integrated if not preferred in gene function and human disease studies. Molecular & Cellular Proteomics 16: 10.1074/mcp.M116.060301, 121–134, 2017.« less
Lundquist, Peter K.; Poliakov, Anton; Bhuiyan, Nazmul H.; Zybailov, Boris; Sun, Qi; van Wijk, Klaas J.
2012-01-01
Plastoglobules (PGs) in chloroplasts are thylakoid-associated monolayer lipoprotein particles containing prenyl and neutral lipids and several dozen proteins mostly with unknown functions. An integrated view of the role of the PG is lacking. Here, we better define the PG proteome and provide a conceptual framework for further studies. The PG proteome from Arabidopsis (Arabidopsis thaliana) leaf chloroplasts was determined by mass spectrometry of isolated PGs and quantitative comparison with the proteomes of unfractionated leaves, thylakoids, and stroma. Scanning electron microscopy showed the purity and size distribution of the isolated PGs. Compared with previous PG proteome analyses, we excluded several proteins and identified six new PG proteins, including an M48 metallopeptidase and two Absence of bc1 complex (ABC1) atypical kinases, confirmed by immunoblotting. This refined PG proteome consisted of 30 proteins, including six ABC1 kinases and seven fibrillins together comprising more than 70% of the PG protein mass. Other fibrillins were located predominantly in the stroma or thylakoid and not in PGs; we discovered that this partitioning can be predicted by their isoelectric point and hydrophobicity. A genome-wide coexpression network for the PG genes was then constructed from mRNA expression data. This revealed a modular network with four distinct modules that each contained at least one ABC1K and/or fibrillin gene. Each module showed clear enrichment in specific functions, including chlorophyll degradation/senescence, isoprenoid biosynthesis, plastid proteolysis, and redox regulators and phosphoregulators of electron flow. We propose a new testable model for the PGs, in which sets of genes are associated with specific PG functions. PMID:22274653
Agrawal, Ganesh Kumar; Sarkar, Abhijit; Righetti, Pier Giorgio; Pedreschi, Romina; Carpentier, Sebastien; Wang, Tai; Barkla, Bronwyn J; Kohli, Ajay; Ndimba, Bongani Kaiser; Bykova, Natalia V; Rampitsch, Christof; Zolla, Lello; Rafudeen, Mohamed Suhail; Cramer, Rainer; Bindschedler, Laurence Veronique; Tsakirpaloglou, Nikolaos; Ndimba, Roya Janeen; Farrant, Jill M; Renaut, Jenny; Job, Dominique; Kikuchi, Shoshi; Rakwal, Randeep
2013-01-01
Tremendous progress in plant proteomics driven by mass spectrometry (MS) techniques has been made since 2000 when few proteomics reports were published and plant proteomics was in its infancy. These achievements include the refinement of existing techniques and the search for new techniques to address food security, safety, and health issues. It is projected that in 2050, the world's population will reach 9-12 billion people demanding a food production increase of 34-70% (FAO, 2009) from today's food production. Provision of food in a sustainable and environmentally committed manner for such a demand without threatening natural resources, requires that agricultural production increases significantly and that postharvest handling and food manufacturing systems become more efficient requiring lower energy expenditure, a decrease in postharvest losses, less waste generation and food with longer shelf life. There is also a need to look for alternative protein sources to animal based (i.e., plant based) to be able to fulfill the increase in protein demands by 2050. Thus, plant biology has a critical role to play as a science capable of addressing such challenges. In this review, we discuss proteomics especially MS, as a platform, being utilized in plant biology research for the past 10 years having the potential to expedite the process of understanding plant biology for human benefits. The increasing application of proteomics technologies in food security, analysis, and safety is emphasized in this review. But, we are aware that no unique approach/technology is capable to address the global food issues. Proteomics-generated information/resources must be integrated and correlated with other omics-based approaches, information, and conventional programs to ensure sufficient food and resources for human development now and in the future. © 2013 Wiley Periodicals, Inc.
[Applications of meta-analysis in multi-omics].
Han, Mingfei; Zhu, Yunping
2014-07-01
As a statistical method integrating multi-features and multi-data, meta-analysis was introduced to the field of life science in the 1990s. With the rapid advances in high-throughput technologies, life omics, the core of which are genomics, transcriptomics and proteomics, is becoming the new hot spot of life science. Although the fast output of massive data has promoted the development of omics study, it results in excessive data that are difficult to integrate systematically. In this case, meta-analysis is frequently applied to analyze different types of data and is improved continuously. Here, we first summarize the representative meta-analysis methods systematically, and then study the current applications of meta-analysis in various omics fields, finally we discuss the still-existing problems and the future development of meta-analysis.
Takáč, Tomáš; Šamajová, Olga; Pechan, Tibor; Luptovčiak, Ivan; Šamaj, Jozef
2017-09-01
Microtubule organization and dynamics are critical for key developmental processes such as cell division, elongation, and morphogenesis. Microtubule severing is an essential regulator of microtubules and is exclusively executed by KATANIN 1 in Arabidopsis In this study, we comparatively studied the proteome-wide effects in two KATANIN 1 mutants. Thus, shotgun proteomic analysis of roots and aerial parts of single nucleotide mutant fra2 and T-DNA insertion mutant ktn1-2 was carried out. We have detected 42 proteins differentially abundant in both fra2 and ktn1-2 KATANIN 1 dysfunction altered the abundance of proteins involved in development, metabolism, and stress responses. The differential regulation of tubulins and microtubule-destabilizing protein MDP25 implied a feedback microtubule control in KATANIN 1 mutants. Furthermore, deregulation of profilin 1, actin-depolymerizing factor 3, and actin 7 was observed. These findings were confirmed by immunoblotting analysis of actin and by microscopic observation of actin filaments using fluorescently labeled phalloidin. Results obtained by quantitative RT-PCR analysis revealed that changed protein abundances were not a consequence of altered expression levels of corresponding genes in the mutants. In conclusion, we show that abundances of several cytoskeletal proteins as well as organization of microtubules and the actin cytoskeleton are amended in accordance with defective microtubule severing. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Integration of cardiac proteome biology and medicine by a specialized knowledgebase.
Zong, Nobel C; Li, Haomin; Li, Hua; Lam, Maggie P Y; Jimenez, Rafael C; Kim, Christina S; Deng, Ning; Kim, Allen K; Choi, Jeong Ho; Zelaya, Ivette; Liem, David; Meyer, David; Odeberg, Jacob; Fang, Caiyun; Lu, Hao-Jie; Xu, Tao; Weiss, James; Duan, Huilong; Uhlen, Mathias; Yates, John R; Apweiler, Rolf; Ge, Junbo; Hermjakob, Henning; Ping, Peipei
2013-10-12
Omics sciences enable a systems-level perspective in characterizing cardiovascular biology. Integration of diverse proteomics data via a computational strategy will catalyze the assembly of contextualized knowledge, foster discoveries through multidisciplinary investigations, and minimize unnecessary redundancy in research efforts. The goal of this project is to develop a consolidated cardiac proteome knowledgebase with novel bioinformatics pipeline and Web portals, thereby serving as a new resource to advance cardiovascular biology and medicine. We created Cardiac Organellar Protein Atlas Knowledgebase (COPaKB; www.HeartProteome.org), a centralized platform of high-quality cardiac proteomic data, bioinformatics tools, and relevant cardiovascular phenotypes. Currently, COPaKB features 8 organellar modules, comprising 4203 LC-MS/MS experiments from human, mouse, drosophila, and Caenorhabditis elegans, as well as expression images of 10,924 proteins in human myocardium. In addition, the Java-coded bioinformatics tools provided by COPaKB enable cardiovascular investigators in all disciplines to retrieve and analyze pertinent organellar protein properties of interest. COPaKB provides an innovative and interactive resource that connects research interests with the new biological discoveries in protein sciences. With an array of intuitive tools in this unified Web server, nonproteomics investigators can conveniently collaborate with proteomics specialists to dissect the molecular signatures of cardiovascular phenotypes.
Choong, Wai-Kok; Lih, Tung-Shing Mamie; Chen, Yu-Ju; Sung, Ting-Yi
2017-12-01
To confirm the existence of missing proteins, we need to identify at least two unique peptides with length of 9-40 amino acids of a missing protein in bottom-up mass-spectrometry-based proteomic experiments. However, an identified unique peptide of the missing protein, even identified with high level of confidence, could possibly coincide with a peptide of a commonly observed protein due to isobaric substitutions, mass modifications, alternative splice isoforms, or single amino acid variants (SAAVs). Besides unique peptides of missing proteins, identified variant peptides (SAAV-containing peptides) could also alternatively map to peptides of other proteins due to the aforementioned issues. Therefore, we conducted a thorough comparative analysis on data sets in PeptideAtlas Tiered Human Integrated Search Proteome (THISP, 2017-03 release), including neXtProt (2017-01 release), to systematically investigate the possibility of unique peptides in missing proteins (PE2-4), unique peptides in dubious proteins, and variant peptides affected by isobaric substitutions, causing doubtful identification results. In this study, we considered 11 isobaric substitutions. From our analysis, we found <5% of the unique peptides of missing proteins and >6% of variant peptides became shared with peptides of PE1 proteins after isobaric substitutions.
Organellar proteome analyses of ricin toxin-treated HeLa cells.
Liao, Peng; Li, Yunhu; Li, Hongyang; Liu, Wensen
2016-07-01
Apoptosis triggered by ricin toxin (RT) has previously been associated with certain cellular organellar compartments, but the diversity in the composition of the organellar proteins remains unclear. Here, we applied a shotgun proteomics strategy to examine the differential expression of proteins in the mitochondria, nuclei, and cytoplasm of HeLa cells treated and not treated with RT. Data were combined with a global bioinformatics analysis and experimental confirmations. A total of 3107 proteins were identified. Bioinformatics predictors (Proteome Analyst, WoLF PSORT, TargetP, MitoPred, Nucleo, MultiLoc, and k-nearest neighbor) and a Bayesian model that integrated these predictors were used to predict the locations of 1349 distinct organellar proteins. Our data indicate that the Bayesian model was more efficient than the individual implementation of these predictors. Additionally, a Biomolecular Interaction Network (BIN) analysis was used to identify 149 BIN subnetworks. Our experimental confirmations indicate that certain apoptosis-related proteins (e.g. cytochrome c, enolase, lamin B, Bax, and Drp1) were found to be translocated and had variable expression levels. These results provide new insights for the systematic understanding of RT-induced apoptosis responses. © The Author(s) 2014.
Proteomics in food: Quality, safety, microbes, and allergens.
Piras, Cristian; Roncada, Paola; Rodrigues, Pedro M; Bonizzi, Luigi; Soggiu, Alessio
2016-03-01
Food safety and quality and their associated risks pose a major concern worldwide regarding not only the relative economical losses but also the potential danger to consumer's health. Customer's confidence in the integrity of the food supply could be hampered by inappropriate food safety measures. A lack of measures and reliable assays to evaluate and maintain a good control of food characteristics may affect the food industry economy and shatter consumer confidence. It is imperative to create and to establish fast and reliable analytical methods that allow a good and rapid analysis of food products during the whole food chain. Proteomics can represent a powerful tool to address this issue, due to its proven excellent quantitative and qualitative drawbacks in protein analysis. This review illustrates the applications of proteomics in the past few years in food science focusing on food of animal origin with some brief hints on other types. Aim of this review is to highlight the importance of this science as a valuable tool to assess food quality and safety. Emphasis is also posed in food processing, allergies, and possible contaminants like bacteria, fungi, and other pathogens. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Learning from Heterogeneous Data Sources: An Application in Spatial Proteomics
Breckels, Lisa M.; Holden, Sean B.; Wojnar, David; Mulvey, Claire M.; Christoforou, Andy; Groen, Arnoud; Trotter, Matthew W. B.; Kohlbacher, Oliver; Lilley, Kathryn S.; Gatto, Laurent
2016-01-01
Sub-cellular localisation of proteins is an essential post-translational regulatory mechanism that can be assayed using high-throughput mass spectrometry (MS). These MS-based spatial proteomics experiments enable us to pinpoint the sub-cellular distribution of thousands of proteins in a specific system under controlled conditions. Recent advances in high-throughput MS methods have yielded a plethora of experimental spatial proteomics data for the cell biology community. Yet, there are many third-party data sources, such as immunofluorescence microscopy or protein annotations and sequences, which represent a rich and vast source of complementary information. We present a unique transfer learning classification framework that utilises a nearest-neighbour or support vector machine system, to integrate heterogeneous data sources to considerably improve on the quantity and quality of sub-cellular protein assignment. We demonstrate the utility of our algorithms through evaluation of five experimental datasets, from four different species in conjunction with four different auxiliary data sources to classify proteins to tens of sub-cellular compartments with high generalisation accuracy. We further apply the method to an experiment on pluripotent mouse embryonic stem cells to classify a set of previously unknown proteins, and validate our findings against a recent high resolution map of the mouse stem cell proteome. The methodology is distributed as part of the open-source Bioconductor pRoloc suite for spatial proteomics data analysis. PMID:27175778
Circulating protein synthesis rates reveal skeletal muscle proteome dynamics
Shankaran, Mahalakshmi; King, Chelsea L.; Angel, Thomas E.; Holmes, William E.; Li, Kelvin W.; Colangelo, Marc; Price, John C.; Turner, Scott M.; Bell, Christopher; Hamilton, Karyn L.; Miller, Benjamin F.; Hellerstein, Marc K.
2015-01-01
Here, we have described and validated a strategy for monitoring skeletal muscle protein synthesis rates in rodents and humans over days or weeks from blood samples. We based this approach on label incorporation into proteins that are synthesized specifically in skeletal muscle and escape into the circulation. Heavy water labeling combined with sensitive tandem mass spectrometric analysis allowed integrated synthesis rates of proteins in muscle tissue across the proteome to be measured over several weeks. Fractional synthesis rate (FSR) of plasma creatine kinase M-type (CK-M) and carbonic anhydrase 3 (CA-3) in the blood, more than 90% of which is derived from skeletal muscle, correlated closely with FSR of CK-M, CA-3, and other proteins of various ontologies in skeletal muscle tissue in both rodents and humans. Protein synthesis rates across the muscle proteome generally changed in a coordinate manner in response to a sprint interval exercise training regimen in humans and to denervation or clenbuterol treatment in rodents. FSR of plasma CK-M and CA-3 revealed changes and interindividual differences in muscle tissue proteome dynamics. In human subjects, sprint interval training primarily stimulated synthesis of structural and glycolytic proteins. Together, our results indicate that this approach provides a virtual biopsy, sensitively revealing individualized changes in proteome-wide synthesis rates in skeletal muscle without a muscle biopsy. Accordingly, this approach has potential applications for the diagnosis, management, and treatment of muscle disorders. PMID:26657858
Jarnuczak, Andrew F; Lee, Dave C H; Lawless, Craig; Holman, Stephen W; Eyers, Claire E; Hubbard, Simon J
2016-09-02
Quantitative mass spectrometry-based proteomics of complex biological samples remains challenging in part due to the variability and charge competition arising during electrospray ionization (ESI) of peptides and the subsequent transfer and detection of ions. These issues preclude direct quantification from signal intensity alone in the absence of a standard. A deeper understanding of the governing principles of peptide ionization and exploitation of the inherent ionization and detection parameters of individual peptides is thus of great value. Here, using the yeast proteome as a model system, we establish the concept of peptide F-factor as a measure of detectability, closely related to ionization efficiency. F-factor is calculated by normalizing peptide precursor ion intensity by absolute abundance of the parent protein. We investigated F-factor characteristics in different shotgun proteomics experiments, including across multiple ESI-based LC-MS platforms. We show that F-factors mirror previously observed physicochemical predictors as peptide detectability but demonstrate a nonlinear relationship between hydrophobicity and peptide detectability. Similarly, we use F-factors to show how peptide ion coelution adversely affects detectability and ionization. We suggest that F-factors have great utility for understanding peptide detectability and gas-phase ion chemistry in complex peptide mixtures, selection of surrogate peptides in targeted MS studies, and for calibration of peptide ion signal in label-free workflows. Data are available via ProteomeXchange with identifier PXD003472.
Advances in microscale separations towards nanoproteomics applications
Yi, Lian; Piehowski, Paul D.; Shi, Tujin; ...
2017-07-21
Microscale separation (e.g., liquid chromatography or capillary electrophoresis) coupled with mass spectrometry (MS) has become the primary tool for advanced proteomics, an indispensable technology for gaining understanding of complex biological processes. In recent decades significant advances have been achieved in MS-based proteomics. But, the current proteomics platforms still face an analytical challenge in overall sensitivity towards nanoproteomics applications for starting materials of less than 1 μg total proteins (e.g., cellular heterogeneity in tissue pathologies). We review recent advances in microscale separation techniques and integrated sample processing strategies that improve the overall sensitivity and proteome coverage of the proteomics workflow, andmore » their contributions towards nanoproteomics applications.« less
Advances in microscale separations towards nanoproteomics applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Lian; Piehowski, Paul D.; Shi, Tujin
Microscale separation (e.g., liquid chromatography or capillary electrophoresis) coupled with mass spectrometry (MS) has become the primary tool for advanced proteomics, an indispensable technology for gaining understanding of complex biological processes. In recent decades significant advances have been achieved in MS-based proteomics. But, the current proteomics platforms still face an analytical challenge in overall sensitivity towards nanoproteomics applications for starting materials of less than 1 μg total proteins (e.g., cellular heterogeneity in tissue pathologies). We review recent advances in microscale separation techniques and integrated sample processing strategies that improve the overall sensitivity and proteome coverage of the proteomics workflow, andmore » their contributions towards nanoproteomics applications.« less
Integrated omics dissection of proteome dynamics during cardiac remodeling.
Lau, Edward; Cao, Quan; Lam, Maggie P Y; Wang, Jie; Ng, Dominic C M; Bleakley, Brian J; Lee, Jessica M; Liem, David A; Wang, Ding; Hermjakob, Henning; Ping, Peipei
2018-01-09
Transcript abundance and protein abundance show modest correlation in many biological models, but how this impacts disease signature discovery in omics experiments is rarely explored. Here we report an integrated omics approach, incorporating measurements of transcript abundance, protein abundance, and protein turnover to map the landscape of proteome remodeling in a mouse model of pathological cardiac hypertrophy. Analyzing the hypertrophy signatures that are reproducibly discovered from each omics data type across six genetic strains of mice, we find that the integration of transcript abundance, protein abundance, and protein turnover data leads to 75% gain in discovered disease gene candidates. Moreover, the inclusion of protein turnover measurements allows discovery of post-transcriptional regulations across diverse pathways, and implicates distinct disease proteins not found in steady-state transcript and protein abundance data. Our results suggest that multi-omics investigations of proteome dynamics provide important insights into disease pathogenesis in vivo.
Guerette, Paul A; Hoon, Shawn; Seow, Yiqi; Raida, Manfred; Masic, Admir; Wong, Fong T; Ho, Vincent H B; Kong, Kiat Whye; Demirel, Melik C; Pena-Francesch, Abdon; Amini, Shahrouz; Tay, Gavin Z; Ding, Dawei; Miserez, Ali
2013-10-01
Efforts to engineer new materials inspired by biological structures are hampered by the lack of genomic data from many model organisms studied in biomimetic research. Here we show that biomimetic engineering can be accelerated by integrating high-throughput RNA-seq with proteomics and advanced materials characterization. This approach can be applied to a broad range of systems, as we illustrate by investigating diverse high-performance biological materials involved in embryo protection, adhesion and predation. In one example, we rapidly engineer recombinant squid sucker ring teeth proteins into a range of structural and functional materials, including nanopatterned surfaces and photo-cross-linked films that exceed the mechanical properties of most natural and synthetic polymers. Integrating RNA-seq with proteomics and materials science facilitates the molecular characterization of natural materials and the effective translation of their molecular designs into a wide range of bio-inspired materials.
Genic insights from integrated human proteomics in GeneCards.
Fishilevich, Simon; Zimmerman, Shahar; Kohn, Asher; Iny Stein, Tsippi; Olender, Tsviya; Kolker, Eugene; Safran, Marilyn; Lancet, Doron
2016-01-01
GeneCards is a one-stop shop for searchable human gene annotations (http://www.genecards.org/). Data are automatically mined from ∼120 sources and presented in an integrated web card for every human gene. We report the application of recent advances in proteomics to enhance gene annotation and classification in GeneCards. First, we constructed the Human Integrated Protein Expression Database (HIPED), a unified database of protein abundance in human tissues, based on the publically available mass spectrometry (MS)-based proteomics sources ProteomicsDB, Multi-Omics Profiling Expression Database, Protein Abundance Across Organisms and The MaxQuant DataBase. The integrated database, residing within GeneCards, compares favourably with its individual sources, covering nearly 90% of human protein-coding genes. For gene annotation and comparisons, we first defined a protein expression vector for each gene, based on normalized abundances in 69 normal human tissues. This vector is portrayed in the GeneCards expression section as a bar graph, allowing visual inspection and comparison. These data are juxtaposed with transcriptome bar graphs. Using the protein expression vectors, we further defined a pairwise metric that helps assess expression-based pairwise proximity. This new metric for finding functional partners complements eight others, including sharing of pathways, gene ontology (GO) terms and domains, implemented in the GeneCards Suite. In parallel, we calculated proteome-based differential expression, highlighting a subset of tissues that overexpress a gene and subserving gene classification. This textual annotation allows users of VarElect, the suite's next-generation phenotyper, to more effectively discover causative disease variants. Finally, we define the protein-RNA expression ratio and correlation as yet another attribute of every gene in each tissue, adding further annotative information. The results constitute a significant enhancement of several GeneCards sections and help promote and organize the genome-wide structural and functional knowledge of the human proteome. Database URL:http://www.genecards.org/. © The Author(s) 2016. Published by Oxford University Press.
Cho, Jin-Young; Lee, Hyoung-Joo; Jeong, Seul-Ki; Paik, Young-Ki
2017-12-01
Mass spectrometry (MS) is a widely used proteome analysis tool for biomedical science. In an MS-based bottom-up proteomic approach to protein identification, sequence database (DB) searching has been routinely used because of its simplicity and convenience. However, searching a sequence DB with multiple variable modification options can increase processing time, false-positive errors in large and complicated MS data sets. Spectral library searching is an alternative solution, avoiding the limitations of sequence DB searching and allowing the detection of more peptides with high sensitivity. Unfortunately, this technique has less proteome coverage, resulting in limitations in the detection of novel and whole peptide sequences in biological samples. To solve these problems, we previously developed the "Combo-Spec Search" method, which uses manually multiple references and simulated spectral library searching to analyze whole proteomes in a biological sample. In this study, we have developed a new analytical interface tool called "Epsilon-Q" to enhance the functions of both the Combo-Spec Search method and label-free protein quantification. Epsilon-Q performs automatically multiple spectral library searching, class-specific false-discovery rate control, and result integration. It has a user-friendly graphical interface and demonstrates good performance in identifying and quantifying proteins by supporting standard MS data formats and spectrum-to-spectrum matching powered by SpectraST. Furthermore, when the Epsilon-Q interface is combined with the Combo-Spec search method, called the Epsilon-Q system, it shows a synergistic function by outperforming other sequence DB search engines for identifying and quantifying low-abundance proteins in biological samples. The Epsilon-Q system can be a versatile tool for comparative proteome analysis based on multiple spectral libraries and label-free quantification.
Proteomic Analysis of the Soybean Symbiosome Identifies New Symbiotic Proteins*
Clarke, Victoria C.; Loughlin, Patrick C.; Gavrin, Aleksandr; Chen, Chi; Brear, Ella M.; Day, David A.; Smith, Penelope M.C.
2015-01-01
Legumes form a symbiosis with rhizobia in which the plant provides an energy source to the rhizobia bacteria that it uses to fix atmospheric nitrogen. This nitrogen is provided to the legume plant, allowing it to grow without the addition of nitrogen fertilizer. As part of the symbiosis, the bacteria in the infected cells of a new root organ, the nodule, are surrounded by a plant-derived membrane, the symbiosome membrane, which becomes the interface between the symbionts. Fractions containing the symbiosome membrane (SM) and material from the lumen of the symbiosome (peribacteroid space or PBS) were isolated from soybean root nodules and analyzed using nongel proteomic techniques. Bicarbonate stripping and chloroform-methanol extraction of isolated SM were used to reduce complexity of the samples and enrich for hydrophobic integral membrane proteins. One hundred and ninety-seven proteins were identified as components of the SM, with an additional fifteen proteins identified from peripheral membrane and PBS protein fractions. Proteins involved in a range of cellular processes such as metabolism, protein folding and degradation, membrane trafficking, and solute transport were identified. These included a number of proteins previously localized to the SM, such as aquaglyceroporin nodulin 26, sulfate transporters, remorin, and Rab7 homologs. Among the proteome were a number of putative transporters for compounds such as sulfate, calcium, hydrogen ions, peptide/dicarboxylate, and nitrate, as well as transporters for which the substrate is not easy to predict. Analysis of the promoter activity for six genes encoding putative SM proteins showed nodule specific expression, with five showing expression only in infected cells. Localization of two proteins was confirmed using GFP-fusion experiments. The data have been deposited to the ProteomeXchange with identifier PXD001132. This proteome will provide a rich resource for the study of the legume-rhizobium symbiosis. PMID:25724908
Zhang, Zhe; Voothuluru, Priyamvada; Yamaguchi, Mineo; Sharp, Robert E; Peck, Scott C
2013-01-01
Within the growth zone of the maize primary root, there are well-defined patterns of spatial and temporal organization of cell division and elongation. However, the processes underlying this organization remain poorly understood. To gain additional insights into the differences amongst the defined regions, we performed a proteomic analysis focusing on fractions enriched for plasma membrane (PM) proteins. The PM is the interface between the plant cell and the apoplast and/or extracellular space. As such, it is a key structure involved in the exchange of nutrients and other molecules as well as in the integration of signals that regulate growth and development. Despite the important functions of PM-localized proteins in mediating these processes, a full understanding of dynamic changes in PM proteomes is often impeded by low relative concentrations relative to total proteins. Using a relatively simple strategy of treating microsomal fractions with Brij-58 detergent to enrich for PM proteins, we compared the developmental distribution of proteins within the root growth zone which revealed a number of previously known as well as novel proteins with interesting patterns of abundance. For instance, the quantitative proteomic analysis detected a gradient of PM aquaporin proteins similar to that previously reported using immunoblot analyses, confirming the veracity of this strategy. Cellulose synthases increased in abundance with increasing distance from the root apex, consistent with expected locations of cell wall deposition. The similar distribution pattern for Brittle-stalk-2-like protein implicates that this protein may also have cell wall related functions. These results show that the simplified PM enrichment method previously demonstrated in Arabidopsis can be successfully applied to completely unrelated plant tissues and provide insights into differences in the PM proteome throughout growth and development zones of the maize primary root.
Petruzziello, Filomena; Fouillen, Laetitia; Wadensten, Henrik; Kretz, Robert; Andren, Per E; Rainer, Gregor; Zhang, Xiaozhe
2012-02-03
Neuropeptidomics is used to characterize endogenous peptides in the brain of tree shrews (Tupaia belangeri). Tree shrews are small animals similar to rodents in size but close relatives of primates, and are excellent models for brain research. Currently, tree shrews have no complete proteome information available on which direct database search can be allowed for neuropeptide identification. To increase the capability in the identification of neuropeptides in tree shrews, we developed an integrated mass spectrometry (MS)-based approach that combines methods including data-dependent, directed, and targeted liquid chromatography (LC)-Fourier transform (FT)-tandem MS (MS/MS) analysis, database construction, de novo sequencing, precursor protein search, and homology analysis. Using this integrated approach, we identified 107 endogenous peptides that have sequences identical or similar to those from other mammalian species. High accuracy MS and tandem MS information, with BLAST analysis and chromatographic characteristics were used to confirm the sequences of all the identified peptides. Interestingly, further sequence homology analysis demonstrated that tree shrew peptides have a significantly higher degree of homology to equivalent sequences in humans than those in mice or rats, consistent with the close phylogenetic relationship between tree shrews and primates. Our results provide the first extensive characterization of the peptidome in tree shrews, which now permits characterization of their function in nervous and endocrine system. As the approach developed fully used the conservative properties of neuropeptides in evolution and the advantage of high accuracy MS, it can be portable for identification of neuropeptides in other species for which the fully sequenced genomes or proteomes are not available.
Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation
Chen, Ke; Gao, Ye; Mih, Nathan; O’Brien, Edward J.; Yang, Laurence; Palsson, Bernhard O.
2017-01-01
Maintenance of a properly folded proteome is critical for bacterial survival at notably different growth temperatures. Understanding the molecular basis of thermoadaptation has progressed in two main directions, the sequence and structural basis of protein thermostability and the mechanistic principles of protein quality control assisted by chaperones. Yet we do not fully understand how structural integrity of the entire proteome is maintained under stress and how it affects cellular fitness. To address this challenge, we reconstruct a genome-scale protein-folding network for Escherichia coli and formulate a computational model, FoldME, that provides statistical descriptions of multiscale cellular response consistent with many datasets. FoldME simulations show (i) that the chaperones act as a system when they respond to unfolding stress rather than achieving efficient folding of any single component of the proteome, (ii) how the proteome is globally balanced between chaperones for folding and the complex machinery synthesizing the proteins in response to perturbation, (iii) how this balancing determines growth rate dependence on temperature and is achieved through nonspecific regulation, and (iv) how thermal instability of the individual protein affects the overall functional state of the proteome. Overall, these results expand our view of cellular regulation, from targeted specific control mechanisms to global regulation through a web of nonspecific competing interactions that modulate the optimal reallocation of cellular resources. The methodology developed in this study enables genome-scale integration of environment-dependent protein properties and a proteome-wide study of cellular stress responses. PMID:29073085
Noukakis, Dimitrios; Gadola, Stephan; Stöcklin, Reto
2005-08-01
How close are we to using proteomics tools in the every day practice of physicians? What are the socio-economical issues our health care system may face with the advent of biomarkers for early diagnosis? How to get the specialists from the various disciplines integrated in proteomics to establish a common understanding of the clinical issues and develop the necessary standards (methods, biochemicals and IT)? These were the kind of questions a panel of specialists tried to answer during the roundtable discussion that took place in Bern during the Swiss Proteomics Society 2004 congress.
Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function.
Lin, Ming-Kuem; Lee, Young-Jin; Lough, Tony J; Phinney, Brett S; Lucas, William J
2009-02-01
Increasing evidence suggests that proteins present in the angiosperm sieve tube system play an important role in the long distance signaling system of plants. To identify the nature of these putatively non-cell-autonomous proteins, we adopted a large scale proteomics approach to analyze pumpkin phloem exudates. Phloem proteins were fractionated by fast protein liquid chromatography using both anion and cation exchange columns and then either in-solution or in-gel digested following further separation by SDS-PAGE. A total of 345 LC-MS/MS data sets were analyzed using a combination of Mascot and X!Tandem against the NCBI non-redundant green plant database and an extensive Cucurbit maxima expressed sequence tag database. In this analysis, 1,209 different consensi were obtained of which 1,121 could be annotated from GenBank and BLAST search analyses against three plant species, Arabidopsis thaliana, rice (Oryza sativa), and poplar (Populus trichocarpa). Gene ontology (GO) enrichment analyses identified sets of phloem proteins that function in RNA binding, mRNA translation, ubiquitin-mediated proteolysis, and macromolecular and vesicle trafficking. Our findings indicate that protein synthesis and turnover, processes that were thought to be absent in enucleate sieve elements, likely occur within the angiosperm phloem translocation stream. In addition, our GO analysis identified a set of phloem proteins that are associated with the GO term "embryonic development ending in seed dormancy"; this finding raises the intriguing question as to whether the phloem may exert some level of control over seed development. The universal significance of the phloem proteome was highlighted by conservation of the phloem proteome in species as diverse as monocots (rice), eudicots (Arabidopsis and pumpkin), and trees (poplar). These results are discussed from the perspective of the role played by the phloem proteome as an integral component of the whole plant communication system.
Comparison of Normal and Breast Cancer Cell lines using Proteome, Genome and Interactome data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patwardhan, Anil J.; Strittmatter, Eric F.; Camp, David G.
2005-12-01
Normal and cancer cell line proteomes were profiled using high throughput mass spectrometry techniques. Application of both protein-level and peptide-level sample fractionation combined with LC-MS/MS analysis enabled the confident identification of 2,235 unmodified proteins representing a broad range of functional and compartmental classes. An iterative multi-step search strategy was used to identify post-translational modifications and detected several proteins that are preferentially modified in cancer cells. Information regarding both unmodified and modified protein forms was combined with publicly available gene expression and protein-protein interaction data. The resulting integrated dataset revealed several functionally related proteins that are differentially regulated between normal andmore » cancer cell lines.« less
National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have released a dataset of proteins and phosphopeptides identified through deep proteomic and phosphoproteomic analysis of breast tumor samples, previously genomically analyzed by The Cancer Genome Atlas (TCGA).
National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have just released a comprehensive dataset of the proteomic analysis of high grade serous ovarian tumor samples, previously genomically analyzed by The Cancer Genome Atlas (TCGA). This is one of the largest public datasets covering the proteome, phosphoproteome and glycoproteome with complementary deep genomic sequencing data on the same tumor.
Wang, Jack P.; Matthews, Megan L.; Williams, Cranos M.; ...
2018-04-20
A multi-omics quantitative integrative analysis of lignin biosynthesis can advance the strategic engineering of wood for timber, pulp, and biofuels. Lignin is polymerized from three monomers (monolignols) produced by a grid-like pathway. The pathway in wood formation of Populus trichocarpa has at least 21 genes, encoding enzymes that mediate 37 reactions on 24 metabolites, leading to lignin and affecting wood properties. We perturb these 21 pathway genes and integrate transcriptomic, proteomic, fluxomic and phenomic data from 221 lines selected from ~2000 transgenics (6-month-old). The integrative analysis estimates how changing expression of pathway gene or gene combination affects protein abundance, metabolic-flux,more » metabolite concentrations, and 25 wood traits, including lignin, tree-growth, density, strength, and saccharification. The analysis then predicts improvements in any of these 25 traits individually or in combinations, through engineering expression of specific monolignol genes. The analysis may lead to greater understanding of other pathways for improved growth and adaptation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jack P.; Matthews, Megan L.; Williams, Cranos M.
A multi-omics quantitative integrative analysis of lignin biosynthesis can advance the strategic engineering of wood for timber, pulp, and biofuels. Lignin is polymerized from three monomers (monolignols) produced by a grid-like pathway. The pathway in wood formation of Populus trichocarpa has at least 21 genes, encoding enzymes that mediate 37 reactions on 24 metabolites, leading to lignin and affecting wood properties. We perturb these 21 pathway genes and integrate transcriptomic, proteomic, fluxomic and phenomic data from 221 lines selected from ~2000 transgenics (6-month-old). The integrative analysis estimates how changing expression of pathway gene or gene combination affects protein abundance, metabolic-flux,more » metabolite concentrations, and 25 wood traits, including lignin, tree-growth, density, strength, and saccharification. The analysis then predicts improvements in any of these 25 traits individually or in combinations, through engineering expression of specific monolignol genes. The analysis may lead to greater understanding of other pathways for improved growth and adaptation.« less
Wang, Jack P; Matthews, Megan L; Williams, Cranos M; Shi, Rui; Yang, Chenmin; Tunlaya-Anukit, Sermsawat; Chen, Hsi-Chuan; Li, Quanzi; Liu, Jie; Lin, Chien-Yuan; Naik, Punith; Sun, Ying-Hsuan; Loziuk, Philip L; Yeh, Ting-Feng; Kim, Hoon; Gjersing, Erica; Shollenberger, Todd; Shuford, Christopher M; Song, Jina; Miller, Zachary; Huang, Yung-Yun; Edmunds, Charles W; Liu, Baoguang; Sun, Yi; Lin, Ying-Chung Jimmy; Li, Wei; Chen, Hao; Peszlen, Ilona; Ducoste, Joel J; Ralph, John; Chang, Hou-Min; Muddiman, David C; Davis, Mark F; Smith, Chris; Isik, Fikret; Sederoff, Ronald; Chiang, Vincent L
2018-04-20
A multi-omics quantitative integrative analysis of lignin biosynthesis can advance the strategic engineering of wood for timber, pulp, and biofuels. Lignin is polymerized from three monomers (monolignols) produced by a grid-like pathway. The pathway in wood formation of Populus trichocarpa has at least 21 genes, encoding enzymes that mediate 37 reactions on 24 metabolites, leading to lignin and affecting wood properties. We perturb these 21 pathway genes and integrate transcriptomic, proteomic, fluxomic and phenomic data from 221 lines selected from ~2000 transgenics (6-month-old). The integrative analysis estimates how changing expression of pathway gene or gene combination affects protein abundance, metabolic-flux, metabolite concentrations, and 25 wood traits, including lignin, tree-growth, density, strength, and saccharification. The analysis then predicts improvements in any of these 25 traits individually or in combinations, through engineering expression of specific monolignol genes. The analysis may lead to greater understanding of other pathways for improved growth and adaptation.
Dong, Yun-Zi; Zhang, Li-Juan; Wu, Zi-Mei; Gao, Ling; Yao, Yi-Sang; Tan, Ning-Zhi; Wu, Jian-Yong; Ni, Luqun; Zhu, Jia-Shi
2014-01-01
To examine the maturational changes in proteomic polymorphisms resulting from differential expression by multiple intrinsic fungi in the caterpillar body and stroma of natural Cordyceps sinensis (Cs), an integrated micro-ecosystem. The surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) biochip technique was used to profile the altered protein compositions in the caterpillar body and stroma of Cs during its maturation. The MS chromatograms were analyzed using density-weighted algorithms to examine the similarities and cluster relationships among the proteomic polymorphisms of the Cs compartments and the mycelial products Hirsutella sinensis (Hs) and Paecilomyces hepiali (Ph). SELDI-TOF MS chromatograms displayed dynamic proteomic polymorphism alterations among samples from the different Cs compartments during maturation. More than 1,900 protein bands were analyzed using density-weighted ZUNIX similarity equations and clustering methods, revealing integral polymorphism similarities of 57.4% between the premature and mature stromata and 42.8% between the premature and mature caterpillar bodies. The across-compartment similarity was low, ranging from 10.0% to 18.4%. Consequently, each Cs compartment (i.e., the stroma and caterpillar body) formed a clustering clade, and the 2 clades formed a Cs cluster. The polymorphic similarities ranged from 0.51% to 1.04% between Hs and the Cs compartments and were 2.8- to 4.8-fold higher (1.92%-4.34%) between Ph and the Cs compartments. The Hs and Ph mycelial samples formed isolated clades outside of the Cs cluster. Proteomic polymorphisms in the caterpillar body and stroma of Cs change dynamically during maturation. The proteomic polymorphisms in Hs and Ph differ from those in Cs, suggesting the presence of multiple Cs-associated fungi and multiple Ophiocordyceps sinensis genotypes with altered differential protein expression in the Cs compartments during maturation. In conjunction with prior mycological and molecular observations, the findings from this proteomic study support the integrated micro-ecosystem hypothesis for natural Cs.
Wu, Zi-Mei; Gao, Ling; Yao, Yi-Sang; Tan, Ning-Zhi; Wu, Jian-Yong; Ni, Luqun; Zhu, Jia-Shi
2014-01-01
Objective To examine the maturational changes in proteomic polymorphisms resulting from differential expression by multiple intrinsic fungi in the caterpillar body and stroma of natural Cordyceps sinensis (Cs), an integrated micro-ecosystem. Methods The surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) biochip technique was used to profile the altered protein compositions in the caterpillar body and stroma of Cs during its maturation. The MS chromatograms were analyzed using density-weighted algorithms to examine the similarities and cluster relationships among the proteomic polymorphisms of the Cs compartments and the mycelial products Hirsutella sinensis (Hs) and Paecilomyces hepiali (Ph). Results: SELDI-TOF MS chromatograms displayed dynamic proteomic polymorphism alterations among samples from the different Cs compartments during maturation. More than 1,900 protein bands were analyzed using density-weighted ZUNIX similarity equations and clustering methods, revealing integral polymorphism similarities of 57.4% between the premature and mature stromata and 42.8% between the premature and mature caterpillar bodies. The across-compartment similarity was low, ranging from 10.0% to 18.4%. Consequently, each Cs compartment (i.e., the stroma and caterpillar body) formed a clustering clade, and the 2 clades formed a Cs cluster. The polymorphic similarities ranged from 0.51% to 1.04% between Hs and the Cs compartments and were 2.8- to 4.8-fold higher (1.92%–4.34%) between Ph and the Cs compartments. The Hs and Ph mycelial samples formed isolated clades outside of the Cs cluster. Conclusion Proteomic polymorphisms in the caterpillar body and stroma of Cs change dynamically during maturation. The proteomic polymorphisms in Hs and Ph differ from those in Cs, suggesting the presence of multiple Cs-associated fungi and multiple Ophiocordyceps sinensis genotypes with altered differential protein expression in the Cs compartments during maturation. In conjunction with prior mycological and molecular observations, the findings from this proteomic study support the integrated micro-ecosystem hypothesis for natural Cs. PMID:25310818
Integrated transcriptomic and proteomic evaluation of gentamicin nephrotoxicity in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Com, Emmanuelle, E-mail: emmanuelle.com@univ-rennes1.fr; INSERM U625, Proteomics Core Facility Biogenouest, Rennes; Boitier, Eric
2012-01-01
Gentamicin is an aminoglycoside antibiotic, which induces renal tubular necrosis in rats. In the context of the European InnoMed PredTox project, transcriptomic and proteomic studies were performed to provide new insights into the molecular mechanisms of gentamicin-induced nephrotoxicity. Male Wistar rats were treated with 25 and 75 mg/kg/day subcutaneously for 1, 3 and 14 days. Histopathology observations showed mild tubular degeneration/necrosis and regeneration and moderate mononuclear cell infiltrate after long-term treatment. Transcriptomic data indicated a strong treatment-related gene expression modulation in kidney and blood cells at the high dose after 14 days of treatment, with the regulation of 463 andmore » 3241 genes, respectively. Of note, the induction of NF-kappa B pathway via the p38 MAPK cascade in the kidney, together with the activation of T-cell receptor signaling in blood cells were suggestive of inflammatory processes in relation with the recruitment of mononuclear cells in the kidney. Proteomic results showed a regulation of 163 proteins in kidney at the high dose after 14 days of treatment. These protein modulations were suggestive of a mitochondrial dysfunction with impairment of cellular energy production, induction of oxidative stress, an effect on protein biosynthesis and on cellular assembly and organization. Proteomic results also provided clues for potential nephrotoxicity biomarkers such as AGAT and PRBP4 which were strongly modulated in the kidney. Transcriptomic and proteomic data turned out to be complementary and their integration gave a more comprehensive insight into the putative mode of nephrotoxicity of gentamicin which was in accordance with histopathological findings. -- Highlights: ► Gentamicin induces renal tubular necrosis in rats. ► The mechanisms of gentamicin nephrotoxicity remain still elusive. ► Transcriptomic and proteomic analyses were performed to study this toxicity in rats. ► Transcriptomic and proteomic data turned out to be complementary and are integrated. ► A more comprehensive putative model of nephrotoxicity of gentamicin is presented.« less
Biochemical Markers of Brain Injury: An Integrated Proteomics-Based Approach
2005-02-01
Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author( s ) and should not be construed as an official...Brain Injury: An Integrated DAMD17-03-1-0066 Proteomics-Based Approach 6. AUTHOR( S ) Ronald L. Hayes, Ph.D. 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS...10. SPONSORING / MONITORING AGENCY NAME( S ) AND ADDRESS(ES) AGENCY REPORT NUMBER U.S. Army Medical Research and Materiel Command Fort Detrick
Tuncbag, Nurcan; McCallum, Scott; Huang, Shao-shan Carol; Fraenkel, Ernest
2012-01-01
High-throughput technologies including transcriptional profiling, proteomics and reverse genetics screens provide detailed molecular descriptions of cellular responses to perturbations. However, it is difficult to integrate these diverse data to reconstruct biologically meaningful signaling networks. Previously, we have established a framework for integrating transcriptional, proteomic and interactome data by searching for the solution to the prize-collecting Steiner tree problem. Here, we present a web server, SteinerNet, to make this method available in a user-friendly format for a broad range of users with data from any species. At a minimum, a user only needs to provide a set of experimentally detected proteins and/or genes and the server will search for connections among these data from the provided interactomes for yeast, human, mouse, Drosophila melanogaster and Caenorhabditis elegans. More advanced users can upload their own interactome data as well. The server provides interactive visualization of the resulting optimal network and downloadable files detailing the analysis and results. We believe that SteinerNet will be useful for researchers who would like to integrate their high-throughput data for a specific condition or cellular response and to find biologically meaningful pathways. SteinerNet is accessible at http://fraenkel.mit.edu/steinernet. PMID:22638579
Halligan, Brian D.; Geiger, Joey F.; Vallejos, Andrew K.; Greene, Andrew S.; Twigger, Simon N.
2009-01-01
One of the major difficulties for many laboratories setting up proteomics programs has been obtaining and maintaining the computational infrastructure required for the analysis of the large flow of proteomics data. We describe a system that combines distributed cloud computing and open source software to allow laboratories to set up scalable virtual proteomics analysis clusters without the investment in computational hardware or software licensing fees. Additionally, the pricing structure of distributed computing providers, such as Amazon Web Services, allows laboratories or even individuals to have large-scale computational resources at their disposal at a very low cost per run. We provide detailed step by step instructions on how to implement the virtual proteomics analysis clusters as well as a list of current available preconfigured Amazon machine images containing the OMSSA and X!Tandem search algorithms and sequence databases on the Medical College of Wisconsin Proteomics Center website (http://proteomics.mcw.edu/vipdac). PMID:19358578
Halligan, Brian D; Geiger, Joey F; Vallejos, Andrew K; Greene, Andrew S; Twigger, Simon N
2009-06-01
One of the major difficulties for many laboratories setting up proteomics programs has been obtaining and maintaining the computational infrastructure required for the analysis of the large flow of proteomics data. We describe a system that combines distributed cloud computing and open source software to allow laboratories to set up scalable virtual proteomics analysis clusters without the investment in computational hardware or software licensing fees. Additionally, the pricing structure of distributed computing providers, such as Amazon Web Services, allows laboratories or even individuals to have large-scale computational resources at their disposal at a very low cost per run. We provide detailed step-by-step instructions on how to implement the virtual proteomics analysis clusters as well as a list of current available preconfigured Amazon machine images containing the OMSSA and X!Tandem search algorithms and sequence databases on the Medical College of Wisconsin Proteomics Center Web site ( http://proteomics.mcw.edu/vipdac ).
The National Cancer Institute is soliciting applications for the reissuance of its Clinical Proteomic Tumor Analysis Consortium (CPTAC) program. CPTAC will support broad efforts focused on several cancer types to explore further the complexities of cancer proteomes and their connections to abnormalities in cancer genomes.
The Escherichia coli Peripheral Inner Membrane Proteome*
Papanastasiou, Malvina; Orfanoudaki, Georgia; Koukaki, Marina; Kountourakis, Nikos; Sardis, Marios Frantzeskos; Aivaliotis, Michalis; Karamanou, Spyridoula; Economou, Anastassios
2013-01-01
Biological membranes are essential for cell viability. Their functional characteristics strongly depend on their protein content, which consists of transmembrane (integral) and peripherally associated membrane proteins. Both integral and peripheral inner membrane proteins mediate a plethora of biological processes. Whereas transmembrane proteins have characteristic hydrophobic stretches and can be predicted using bioinformatics approaches, peripheral inner membrane proteins are hydrophilic, exist in equilibria with soluble pools, and carry no discernible membrane targeting signals. We experimentally determined the cytoplasmic peripheral inner membrane proteome of the model organism Escherichia coli using a multidisciplinary approach. Initially, we extensively re-annotated the theoretical proteome regarding subcellular localization using literature searches, manual curation, and multi-combinatorial bioinformatics searches of the available databases. Next we used sequential biochemical fractionations coupled to direct identification of individual proteins and protein complexes using high resolution mass spectrometry. We determined that the proposed cytoplasmic peripheral inner membrane proteome occupies a previously unsuspected ∼19% of the basic E. coli BL21(DE3) proteome, and the detected peripheral inner membrane proteome occupies ∼25% of the estimated expressed proteome of this cell grown in LB medium to mid-log phase. This value might increase when fleeting interactions, not studied here, are taken into account. Several proteins previously regarded as exclusively cytoplasmic bind membranes avidly. Many of these proteins are organized in functional or/and structural oligomeric complexes that bind to the membrane with multiple interactions. Identified proteins cover the full spectrum of biological activities, and more than half of them are essential. Our data suggest that the cytoplasmic proteome displays remarkably dynamic and extensive communication with biological membrane surfaces that we are only beginning to decipher. PMID:23230279
Dindia, Laura A; Alderman, Sarah L; Gillis, Todd E
2017-05-24
The changes in the cardiac proteome of rainbow trout (Oncorhynchus mykiss) were quantified during the early phases (4, 7, and 14d) of a typical exercise-training regime to provide a comprehensive overview of the cellular changes responsible for developing a trained heart phenotype. Enhanced somatic growth during the 14d experiment was paralleled by cardiac growth to maintain relative ventricular mass. This was reflected in the cardiac proteome by the increased abundance of contractile proteins and cellular integrity proteins as early as Day 4, including a pronounced and sustained increase in blood vessel epicardial substance - an intercellular adhesion protein expressed in the vertebrate heart. An unexpected finding was that proteins involved in energy pathways, including glycolysis, β-oxidation, the TCA cycle, and the electron transport chain, were generally present at lower levels relative to Day 0 levels, suggesting a reduced investment in the maintenance of energy production pathways. However, as the fish demonstrated somatic and cardiac growth during the exercise-training program, this change did not appear to influence cardiac function. The in-depth analysis of temporal changes in the cardiac proteome of trout during the early stages of exercise training reveals novel insights into cardiac remodelling in an important model species. Rainbow trout hearts have a remarkable ability for molecular, structural, and functional plasticity, and the inherent athleticism of these fish makes them ideal models for studies in comparative exercise physiology. Indeed, several decades of research using exercise-trained trout has shown both conserved and unique aspects of cardiac plasticity induced by a sustained increase in the workload of the heart. Despite a strong appreciation for the outcome of exercise training, however, the temporal events that generate this phenotype are not known. This study interrogates the early stages of exercise training using in-depth proteomic analysis to understand the molecular pathways of cardiac remodelling. Two major and novel findings emerge: (1) structural remodelling is initiated very early in training, as evidenced by a general increase in proteins associated with muscle contraction and integrity at Day 4, and (2) the abundance of proteins directly involved in energy production are decreased during 14d of exercise training, which contrasts the general acceptance of an exercise-induced increase in aerobic capacity of muscle, and suggests that regulation of energy pathways occurs at a different biological level than protein abundance. Copyright © 2017 Elsevier B.V. All rights reserved.
Mohien, Ceereena Ubaida; Colquhoun, David R.; Mathias, Derrick K.; Gibbons, John G.; Armistead, Jennifer S.; Rodriguez, Maria C.; Rodriguez, Mario Henry; Edwards, Nathan J.; Hartler, Jürgen; Thallinger, Gerhard G.; Graham, David R.; Martinez-Barnetche, Jesus; Rokas, Antonis; Dinglasan, Rhoel R.
2013-01-01
Malaria morbidity and mortality caused by both Plasmodium falciparum and Plasmodium vivax extend well beyond the African continent, and although P. vivax causes between 80 and 300 million severe cases each year, vivax transmission remains poorly understood. Plasmodium parasites are transmitted by Anopheles mosquitoes, and the critical site of interaction between parasite and host is at the mosquito's luminal midgut brush border. Although the genome of the “model” African P. falciparum vector, Anopheles gambiae, has been sequenced, evolutionary divergence limits its utility as a reference across anophelines, especially non-sequenced P. vivax vectors such as Anopheles albimanus. Clearly, technologies and platforms that bridge this substantial scientific gap are required in order to provide public health scientists with key transcriptomic and proteomic information that could spur the development of novel interventions to combat this disease. To our knowledge, no approaches have been published that address this issue. To bolster our understanding of P. vivax–An. albimanus midgut interactions, we developed an integrated bioinformatic-hybrid RNA-Seq-LC-MS/MS approach involving An. albimanus transcriptome (15,764 contigs) and luminal midgut subproteome (9,445 proteins) assembly, which, when used with our custom Diptera protein database (685,078 sequences), facilitated a comparative proteomic analysis of the midgut brush borders of two important malaria vectors, An. gambiae and An. albimanus. PMID:23082028
Ubaida Mohien, Ceereena; Colquhoun, David R; Mathias, Derrick K; Gibbons, John G; Armistead, Jennifer S; Rodriguez, Maria C; Rodriguez, Mario Henry; Edwards, Nathan J; Hartler, Jürgen; Thallinger, Gerhard G; Graham, David R; Martinez-Barnetche, Jesus; Rokas, Antonis; Dinglasan, Rhoel R
2013-01-01
Malaria morbidity and mortality caused by both Plasmodium falciparum and Plasmodium vivax extend well beyond the African continent, and although P. vivax causes between 80 and 300 million severe cases each year, vivax transmission remains poorly understood. Plasmodium parasites are transmitted by Anopheles mosquitoes, and the critical site of interaction between parasite and host is at the mosquito's luminal midgut brush border. Although the genome of the "model" African P. falciparum vector, Anopheles gambiae, has been sequenced, evolutionary divergence limits its utility as a reference across anophelines, especially non-sequenced P. vivax vectors such as Anopheles albimanus. Clearly, technologies and platforms that bridge this substantial scientific gap are required in order to provide public health scientists with key transcriptomic and proteomic information that could spur the development of novel interventions to combat this disease. To our knowledge, no approaches have been published that address this issue. To bolster our understanding of P. vivax-An. albimanus midgut interactions, we developed an integrated bioinformatic-hybrid RNA-Seq-LC-MS/MS approach involving An. albimanus transcriptome (15,764 contigs) and luminal midgut subproteome (9,445 proteins) assembly, which, when used with our custom Diptera protein database (685,078 sequences), facilitated a comparative proteomic analysis of the midgut brush borders of two important malaria vectors, An. gambiae and An. albimanus.
Jiang, Jianfu; Liu, Xinna; Liu, Guotian; Li, Shaohua
2017-01-01
Heat stress is one of the primary abiotic stresses that limit crop production. Grape (Vitis vinifera) is a cultivated fruit with high economic value throughout the world, with its growth and development often influenced by high temperature. Alternative splicing (AS) is a widespread phenomenon increasing transcriptome and proteome diversity. We conducted high-temperature treatments (35°C, 40°C, and 45°C) on grapevines and assessed transcriptomic (especially AS) and proteomic changes in leaves. We found that nearly 70% of the genes were alternatively spliced under high temperature. Intron retention (IR), exon skipping, and alternative donor/acceptor sites were markedly induced under different high temperatures. Among all differential AS events, IR was the most abundant up- and down-regulated event. Moreover, the occurrence frequency of IR events at 40°C and 45°C was far higher than at 35°C. These results indicated that AS, especially IR, is an important posttranscriptional regulatory event during grape leaf responses to high temperature. Proteomic analysis showed that protein levels of the RNA-binding proteins SR45, SR30, and SR34 and the nuclear ribonucleic protein U1A gradually rose as ambient temperature increased, which revealed a reason why AS events occurred more frequently under high temperature. After integrating transcriptomic and proteomic data, we found that heat shock proteins and some important transcription factors such as MULTIPROTEIN BRIDGING FACTOR1c and HEAT SHOCK TRANSCRIPTION FACTOR A2 were involved mainly in heat tolerance in grape through up-regulating transcriptional (especially modulated by AS) and translational levels. To our knowledge, these results provide the first evidence for grape leaf responses to high temperature at simultaneous transcriptional, posttranscriptional, and translational levels. PMID:28049741
Integrating Omics and Alternative Splicing Reveals Insights into Grape Response to High Temperature.
Jiang, Jianfu; Liu, Xinna; Liu, Chonghuai; Liu, Guotian; Li, Shaohua; Wang, Lijun
2017-02-01
Heat stress is one of the primary abiotic stresses that limit crop production. Grape (Vitis vinifera) is a cultivated fruit with high economic value throughout the world, with its growth and development often influenced by high temperature. Alternative splicing (AS) is a widespread phenomenon increasing transcriptome and proteome diversity. We conducted high-temperature treatments (35°C, 40°C, and 45°C) on grapevines and assessed transcriptomic (especially AS) and proteomic changes in leaves. We found that nearly 70% of the genes were alternatively spliced under high temperature. Intron retention (IR), exon skipping, and alternative donor/acceptor sites were markedly induced under different high temperatures. Among all differential AS events, IR was the most abundant up- and down-regulated event. Moreover, the occurrence frequency of IR events at 40°C and 45°C was far higher than at 35°C. These results indicated that AS, especially IR, is an important posttranscriptional regulatory event during grape leaf responses to high temperature. Proteomic analysis showed that protein levels of the RNA-binding proteins SR45, SR30, and SR34 and the nuclear ribonucleic protein U1A gradually rose as ambient temperature increased, which revealed a reason why AS events occurred more frequently under high temperature. After integrating transcriptomic and proteomic data, we found that heat shock proteins and some important transcription factors such as MULTIPROTEIN BRIDGING FACTOR1c and HEAT SHOCK TRANSCRIPTION FACTOR A2 were involved mainly in heat tolerance in grape through up-regulating transcriptional (especially modulated by AS) and translational levels. To our knowledge, these results provide the first evidence for grape leaf responses to high temperature at simultaneous transcriptional, posttranscriptional, and translational levels. © 2017 American Society of Plant Biologists. All Rights Reserved.
Integrated redox proteomics and metabolomics of mitochondria to identify mechanisms of cd toxicity.
Go, Young-Mi; Roede, James R; Orr, Michael; Liang, Yongliang; Jones, Dean P
2014-05-01
Cadmium (Cd) exposure contributes to human diseases affecting liver, kidney, lung, and other organ systems, but mechanisms underlying the pleotropic nature of these toxicities are poorly understood. Cd accumulates in humans from dietary, environmental (including cigarette smoke), and occupational sources, and has a twenty-year biologic half-life. Our previous mouse and cell studies showed that environmental low-dose Cd exposure altered protein redox states resulting in stimulation of inflammatory signaling and disruption of the actin cytoskeleton system, suggesting that Cd could impact multiple mechanisms of disease. In the current study, we investigated the effects of acute Cd exposure on the redox proteome and metabolome of mouse liver mitochondria to gain insight into associated toxicological mechanisms and functions. We analyzed redox states of liver mitochondrial proteins by redox proteomics using isotope coded affinity tag (ICAT) combined mass spectrometry. Redox ICAT identified 2687 cysteine-containing peptides (peptidyl Cys) of which 1667 peptidyl Cys (657 proteins) were detected in both control and Cd-exposed samples. Of these, 46% (1247 peptidyl Cys, 547 proteins) were oxidized by Cd more than 1.5-fold relative to controls. Bioinformatics analysis using MetaCore software showed that Cd affected 86 pathways, including 24 Cys in proteins functioning in branched chain amino acid (BCAA) and 14 Cys in proteins functioning in fatty acid (acylcarnitine/carnitine) metabolism. Consistently, high-resolution metabolomics data showed that Cd treatment altered levels of BCAA and carnitine metabolites. Together, these results show that mitochondrial protein redox and metabolites are targets in Cd-induced hepatotoxicity. The results further indicate that redox proteomics and metabolomics can be used in an integrated systems approach to investigate complex disease mechanisms.
Arrell, D. Kent; Zlatkovic, Jelena; Kane, Garvan C.; Yamada, Satsuki; Terzic, Andre
2010-01-01
Forecasting disease susceptibility requires detection of maladaptive signatures prior to onset of overt symptoms. A case-in-point are cardiac ATP-sensitive K+ (KATP) channelopathies, for which the substrate underlying disease vulnerability remains to be identified. Resolving molecular pathobiology, even for single genetic defects, mandates a systems platform to reliably diagnose disease predisposition. High-throughput proteomic analysis was here integrated with network biology to decode consequences of Kir6.2 KATP channel pore deletion. Differential two-dimensional gel electrophoresis reproducibly resolved > 800 protein species from hearts of asymptomatic wild-type and Kir6.2-knockout counterparts. KATP channel ablation remodeled the cardiac proteome, significantly altering 71 protein spots, from which 102 unique identities were assigned following hybrid linear ion trap quadrupole-Orbitrap tandem mass spectrometry. Ontological annotation stratified the KATP channel-dependent protein cohort into a predominant bioenergetic module (63 resolved identities), with additional focused sets representing signaling molecules (6), oxidoreductases (8), chaperones (6), and proteins involved in catabolism (6), cytostructure (8), and transcription and translation (5). Protein interaction mapping, in conjunction with expression level changes, localized a KATP channel-associated subproteome within a nonstochastic scale-free network. Global assessment of the KATP channel deficient environment verified the primary impact on metabolic pathways and revealed overrepresentation of markers associated with cardiovascular disease. Experimental imposition of graded stress precipitated exaggerated structural and functional myocardial defects in the Kir6.2-knockout, decreasing survivorship and validating the forecast of disease susceptibility. Proteomic cartography thus provides an integral view of molecular remodeling in the heart induced by KATP channel deletion, establishing a systems approach that predicts outcome at a presymptomatic stage. PMID:19673485
Hirayama, Mio; Kobayashi, Daiki; Mizuguchi, Souhei; Morikawa, Takashi; Nagayama, Megumi; Midorikawa, Uichi; Wilson, Masayo M; Nambu, Akiko N; Yoshizawa, Akiyasu C; Kawano, Shin; Araki, Norie
2013-05-01
Neurofibromatosis type 1 (NF1) tumor suppressor gene product, neurofibromin, functions in part as a Ras-GAP, and though its loss is implicated in the neuronal abnormality of NF1 patients, its precise cellular function remains unclear. To study the molecular mechanism of NF1 pathogenesis, we prepared NF1 gene knockdown (KD) PC12 cells, as a NF1 disease model, and analyzed their molecular (gene and protein) expression profiles with a unique integrated proteomics approach, comprising iTRAQ, 2D-DIGE, and DNA microarrays, using an integrated protein and gene expression analysis chart (iPEACH). In NF1-KD PC12 cells showing abnormal neuronal differentiation after NGF treatment, of 3198 molecules quantitatively identified and listed in iPEACH, 97 molecules continuously up- or down-regulated over time were extracted. Pathway and network analysis further revealed overrepresentation of calcium signaling and transcriptional regulation by glucocorticoid receptor (GR) in the up-regulated protein set, whereas nerve system development was overrepresented in the down-regulated protein set. The novel up-regulated network we discovered, "dynein IC2-GR-COX-1 signaling," was then examined in NF1-KD cells. Validation studies confirmed that NF1 knockdown induces altered splicing and phosphorylation patterns of dynein IC2 isomers, up-regulation and accumulation of nuclear GR, and increased COX-1 expression in NGF-treated cells. Moreover, the neurite retraction phenotype observed in NF1-KD cells was significantly recovered by knockdown of the dynein IC2-C isoform and COX-1. In addition, dynein IC2 siRNA significantly inhibited nuclear translocation and accumulation of GR and up-regulation of COX-1 expression. These results suggest that dynein IC2 up-regulates GR nuclear translocation and accumulation, and subsequently causes increased COX-1 expression, in this NF1 disease model. Our integrated proteomics strategy, which combines multiple approaches, demonstrates that NF1-related neural abnormalities are, in part, caused by up-regulation of dynein IC2-GR-COX-1 signaling, which may be a novel therapeutic target for NF1.
Dentistry proteomics: from laboratory development to clinical practice.
Rezende, Taia M B; Lima, Stella M F; Petriz, Bernardo A; Silva, Osmar N; Freire, Mirna S; Franco, Octávio L
2013-12-01
Despite all the dental information acquired over centuries and the importance of proteome research, the cross-link between these two areas only emerged around mid-nineties. Proteomic tools can help dentistry in the identification of risk factors, early diagnosis, prevention, and systematic control that will promote the evolution of treatment in all dentistry specialties. This review mainly focuses on the evolution of dentistry in different specialties based on proteomic research and how these tools can improve knowledge in dentistry. The subjects covered are an overview of proteomics in dentistry, specific information on different fields in dentistry (dental structure, restorative dentistry, endodontics, periodontics, oral pathology, oral surgery, and orthodontics) and future directions. There are many new proteomic technologies that have never been used in dentistry studies and some dentistry areas that have never been explored by proteomic tools. It is expected that a greater integration of these areas will help to understand what is still unknown in oral health and disease. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Sheynkman, Gloria M.; Shortreed, Michael R.; Cesnik, Anthony J.; Smith, Lloyd M.
2016-06-01
Mass spectrometry-based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications.
Sheynkman, Gloria M.; Shortreed, Michael R.; Cesnik, Anthony J.; Smith, Lloyd M.
2016-01-01
Mass spectrometry–based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications. PMID:27049631
Data Independent Acquisition analysis in ProHits 4.0.
Liu, Guomin; Knight, James D R; Zhang, Jian Ping; Tsou, Chih-Chiang; Wang, Jian; Lambert, Jean-Philippe; Larsen, Brett; Tyers, Mike; Raught, Brian; Bandeira, Nuno; Nesvizhskii, Alexey I; Choi, Hyungwon; Gingras, Anne-Claude
2016-10-21
Affinity purification coupled with mass spectrometry (AP-MS) is a powerful technique for the identification and quantification of physical interactions. AP-MS requires careful experimental design, appropriate control selection and quantitative workflows to successfully identify bona fide interactors amongst a large background of contaminants. We previously introduced ProHits, a Laboratory Information Management System for interaction proteomics, which tracks all samples in a mass spectrometry facility, initiates database searches and provides visualization tools for spectral counting-based AP-MS approaches. More recently, we implemented Significance Analysis of INTeractome (SAINT) within ProHits to provide scoring of interactions based on spectral counts. Here, we provide an update to ProHits to support Data Independent Acquisition (DIA) with identification software (DIA-Umpire and MSPLIT-DIA), quantification tools (through DIA-Umpire, or externally via targeted extraction), and assessment of quantitative enrichment (through mapDIA) and scoring of interactions (through SAINT-intensity). With additional improvements, notably support of the iProphet pipeline, facilitated deposition into ProteomeXchange repositories and enhanced export and viewing functions, ProHits 4.0 offers a comprehensive suite of tools to facilitate affinity proteomics studies. It remains challenging to score, annotate and analyze proteomics data in a transparent manner. ProHits was previously introduced as a LIMS to enable storing, tracking and analysis of standard AP-MS data. In this revised version, we expand ProHits to include integration with a number of identification and quantification tools based on Data-Independent Acquisition (DIA). ProHits 4.0 also facilitates data deposition into public repositories, and the transfer of data to new visualization tools. Copyright © 2016 Elsevier B.V. All rights reserved.
Quantitative proteomics in cardiovascular research: global and targeted strategies
Shen, Xiaomeng; Young, Rebeccah; Canty, John M.; Qu, Jun
2014-01-01
Extensive technical advances in the past decade have substantially expanded quantitative proteomics in cardiovascular research. This has great promise for elucidating the mechanisms of cardiovascular diseases (CVD) and the discovery of cardiac biomarkers used for diagnosis and treatment evaluation. Global and targeted proteomics are the two major avenues of quantitative proteomics. While global approaches enable unbiased discovery of altered proteins via relative quantification at the proteome level, targeted techniques provide higher sensitivity and accuracy, and are capable of multiplexed absolute quantification in numerous clinical/biological samples. While promising, technical challenges need to be overcome to enable full utilization of these techniques in cardiovascular medicine. Here we discuss recent advances in quantitative proteomics and summarize applications in cardiovascular research with an emphasis on biomarker discovery and elucidating molecular mechanisms of disease. We propose the integration of global and targeted strategies as a high-throughput pipeline for cardiovascular proteomics. Targeted approaches enable rapid, extensive validation of biomarker candidates discovered by global proteomics. These approaches provide a promising alternative to immunoassays and other low-throughput means currently used for limited validation. PMID:24920501
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xin; Tian, Changhai; Liu, Miao
2012-04-06
Induced pluripotent stem cells (iPSC) hold great promise for regenerative medicine as well as for investigations into the pathogenesis and treatment of various diseases. Understanding of key intracellular signaling pathways and protein targets that control development of iPSC from somatic cells is essential for designing new approaches to improve reprogramming efficiency. Here we report the development and application of an integrated quantitative proteomics platform for investigating differences in protein expressions between mouse embryonic fibroblasts (MEF) and MEF-derived iPSC. This platform consists of 16O/18O labeling, multidimensional peptide separation coupled with tandem mass spectrometry, and data analysis with UNiquant software. Using thismore » platform a total of 2,481 proteins were identified and quantified from the 16O/18O-labeled MEF-iPSC proteome mixtures with a false discovery rate of 0.01. Among them, 218 proteins were significantly upregulated, while 247 proteins were significantly downregulated in iPSC compared to MEF. Many nuclear proteins, including Hdac1, Dnmt1, Pcna, Ccnd1, Smarcc1, and subunits in DNA replication and RNA polymerase II complex were found to be enhanced in iPSC. Protein network analysis revealed that Pcna functions as a hub orchestrating complicated mechanisms including DNA replication, epigenetic inheritance (Dnmt1) and chromatin remodeling (Smarcc1) to reprogram MEF and maintain stemness of iPSC.« less
Mass spectrometry based proteomics: existing capabilities and future directions
Angel, Thomas E.; Aryal, Uma K.; Hengel, Shawna M.; Baker, Erin S.; Kelly, Ryan T.; Robinson, Errol W.; Smith, Richard D.
2012-01-01
Mass spectrometry (MS)-based proteomics is emerging as a broadly effective means for identification, characterization, and quantification of proteins that are integral components of the processes essential for life. Characterization of proteins at the proteome and sub-proteome (e.g., the phosphoproteome, proteoglycome, or degradome/peptidome) levels provides a foundation for understanding fundamental aspects of biology. Emerging technologies such as ion mobility separations coupled with MS and microchip-based-proteome measurements combined with MS instrumentation and chromatographic separation techniques, such as nanoscale reversed phase liquid chromatography and capillary electrophoresis, show great promise for both broad undirected and targeted highly sensitive measurements. MS-based proteomics is increasingly contribute to our understanding of the dynamics, interactions, and roles that proteins and peptides play, advancing our understanding of biology on a systems wide level for a wide range of applications including investigations of microbial communities, bioremediation, and human health. PMID:22498958
Single-cell-type Proteomics: Toward a Holistic Understanding of Plant Function*
Dai, Shaojun; Chen, Sixue
2012-01-01
Multicellular organisms such as plants contain different types of cells with specialized functions. Analyzing the protein characteristics of each type of cell will not only reveal specific cell functions, but also enhance understanding of how an organism works. Most plant proteomics studies have focused on using tissues and organs containing a mixture of different cells. Recent single-cell-type proteomics efforts on pollen grains, guard cells, mesophyll cells, root hairs, and trichomes have shown utility. We expect that high resolution proteomic analyses will reveal novel functions in single cells. This review provides an overview of recent developments in plant single-cell-type proteomics. We discuss application of the approach for understanding important cell functions, and we consider the technical challenges of extending the approach to all plant cell types. Finally, we consider the integration of single-cell-type proteomics with transcriptomics and metabolomics with the goal of providing a holistic understanding of plant function. PMID:22982375
CPTAC | Office of Cancer Clinical Proteomics Research
The National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC) is a national effort to accelerate the understanding of the molecular basis of cancer through the application of large-scale proteome and genome analysis, or proteogenomics.
Comparative bioinformatics analyses and profiling of lysosome-related organelle proteomes
NASA Astrophysics Data System (ADS)
Hu, Zhang-Zhi; Valencia, Julio C.; Huang, Hongzhan; Chi, An; Shabanowitz, Jeffrey; Hearing, Vincent J.; Appella, Ettore; Wu, Cathy
2007-01-01
Complete and accurate profiling of cellular organelle proteomes, while challenging, is important for the understanding of detailed cellular processes at the organelle level. Mass spectrometry technologies coupled with bioinformatics analysis provide an effective approach for protein identification and functional interpretation of organelle proteomes. In this study, we have compiled human organelle reference datasets from large-scale proteomic studies and protein databases for seven lysosome-related organelles (LROs), as well as the endoplasmic reticulum and mitochondria, for comparative organelle proteome analysis. Heterogeneous sources of human organelle proteins and rodent homologs are mapped to human UniProtKB protein entries based on ID and/or peptide mappings, followed by functional annotation and categorization using the iProXpress proteomic expression analysis system. Cataloging organelle proteomes allows close examination of both shared and unique proteins among various LROs and reveals their functional relevance. The proteomic comparisons show that LROs are a closely related family of organelles. The shared proteins indicate the dynamic and hybrid nature of LROs, while the unique transmembrane proteins may represent additional candidate marker proteins for LROs. This comparative analysis, therefore, provides a basis for hypothesis formulation and experimental validation of organelle proteins and their functional roles.
Proteomic Analysis of Trauma-Induced Heterotopic Ossification Formation
2016-10-01
60% of these patients go on to form abnormal bone within the soft tissue of their injured limbs. This condition, known as Heterotopic Ossification... psychological and physical damage sustained as a result of multiple orthopaedic surgical procedures. As a result, the effort, time, and cost of wounded...third year of this research project has continued to integrate productive and complementary activities across four distinct campuses. Critical
Liu, Haipeng; Yu, Jia; Qiao, Rui; Zhou, Mi; Yang, Yongtao; Zhou, Jian; Xie, Peng
2016-01-01
The enormous depth complexity of the human plasma proteome poses a significant challenge for current mass spectrometry-based proteomic technologies in terms of detecting low-level proteins in plasma, which is essential for successful biomarker discovery efforts. Typically, a single-step analytical approach cannot reduce this intrinsic complexity. Current simplex immunodepletion techniques offer limited capacity for detecting low-abundance proteins, and integrated strategies are thus desirable. In this respect, we developed an improved strategy for analyzing the human plasma proteome by integrating polyethylene glycol (PEG) fractionation with immunoaffinity depletion. PEG fractionation of plasma proteins is simple, rapid, efficient, and compatible with a downstream immunodepletion step. Compared with immunodepletion alone, our integrated strategy substantially improved the proteome coverage afforded by PEG fractionation. Coupling this new protocol with liquid chromatography-tandem mass spectrometry, 135 proteins with reported normal concentrations below 100 ng/mL were confidently identified as common low-abundance proteins. A side-by-side comparison indicated that our integrated strategy was increased by average 43.0% in the identification rate of low-abundance proteins, relying on an average 65.8% increase of the corresponding unique peptides. Further investigation demonstrated that this combined strategy could effectively alleviate the signal-suppressive effects of the major high-abundance proteins by affinity depletion, especially with moderate-abundance proteins after incorporating PEG fractionation, thereby greatly enhancing the detection of low-abundance proteins. In sum, the newly developed strategy of incorporating PEG fractionation to immunodepletion methods can potentially aid in the discovery of plasma biomarkers of therapeutic and clinical interest. PMID:27832179
The protein expression landscape of mitosis and meiosis in diploid budding yeast.
Becker, Emmanuelle; Com, Emmanuelle; Lavigne, Régis; Guilleux, Marie-Hélène; Evrard, Bertrand; Pineau, Charles; Primig, Michael
2017-03-06
Saccharomyces cerevisiae is an established model organism for the molecular analysis of fundamental biological processes. The genomes of numerous strains have been sequenced, and the transcriptome and proteome ofmajor phases during the haploid and diploid yeast life cycle have been determined. However, much less is known about dynamic changes of the proteome when cells switch from mitotic growth to meiotic development. We report a quantitative protein profiling analysis of yeast cell division and differentiation based on mass spectrometry. Information about protein levels was integrated with strand-specific tiling array expression data. We identified a total of 2366 proteins in at least one condition, including 175 proteins showing a statistically significant>5-fold change across the sample set, and 136 proteins detectable in sporulating but not respiring cells. We correlate protein expression patterns with biological processes and molecular function by Gene Ontology term enrichment, chemoprofiling, transcription interference and the formation of double stranded RNAs by overlapping sense/antisense transcripts. Our work provides initial quantitative insight into protein expression in diploid respiring and differentiating yeast cells. Critically, it associates developmentally regulated induction of antisense long noncoding RNAs and double stranded RNAs with fluctuating protein concentrations during growth and development. This integrated genomics analysis helps better understand how the transcriptome and the proteome correlate in diploid yeast cells undergoing mitotic growth in the presence of acetate (respiration) versus meiotic differentiation (Meiosis I and II). The study (i) provides quantitative expression data for 2366 proteins and their cognate mRNAs in at least one sample, (ii) shows strongly fluctuating protein levels during growth and differentiation for 175 cases, and (iii) identifies 136 proteins absent in mitotic but present in meiotic yeast cells. We have integrated protein profiling data using mass spectrometry with tiling array RNA profiling data and information on double-stranded RNAs (dsRNAs) by overlapping sense/antisense transcripts from an RNA-Sequencing experiment. This work therefore provides quantitative insight into protein expression during cell division and development and associates changing protein levels with developmental stage specific induction of antisense transcripts and the formation of dsRNAs. Copyright © 2017 Elsevier B.V. All rights reserved.
Trends in mass spectrometry instrumentation for proteomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Richard D.
2002-12-01
Mass spectrometry has become a primary tool for proteomics due to its capabilities for rapid and sensitive protein identification and quantitation. It is now possible to identify thousands of proteins from microgram sample quantities in a single day and to quantify relative protein abundances. However, the needs for increased capabilities for proteome measurements are immense and are now driving both new strategies and instrument advances. These developments include those based on integration with multi-dimensional liquid separations and high accuracy mass measurements, and promise more than order of magnitude improvements in sensitivity, dynamic range, and throughput for proteomic analyses in themore » near future.« less
Spatial and temporal dynamics of the cardiac mitochondrial proteome.
Lau, Edward; Huang, Derrick; Cao, Quan; Dincer, T Umut; Black, Caitie M; Lin, Amanda J; Lee, Jessica M; Wang, Ding; Liem, David A; Lam, Maggie P Y; Ping, Peipei
2015-04-01
Mitochondrial proteins alter in their composition and quantity drastically through time and space in correspondence to changing energy demands and cellular signaling events. The integrity and permutations of this dynamism are increasingly recognized to impact the functions of the cardiac proteome in health and disease. This article provides an overview on recent advances in defining the spatial and temporal dynamics of mitochondrial proteins in the heart. Proteomics techniques to characterize dynamics on a proteome scale are reviewed and the physiological consequences of altered mitochondrial protein dynamics are discussed. Lastly, we offer our perspectives on the unmet challenges in translating mitochondrial dynamics markers into the clinic.
Bao, Yongbo; Liu, Xiao; Zhang, Weiwei; Cao, Jianping; Li, Wei; Li, Chenghua; Lin, Zhihua
2016-01-01
Clam, a filter-feeding lamellibranch mollusk, is capable to accumulate high levels of trace metals and has therefore become a model for investigation the mechanism of heavy metal toxification. In this study, the effects of cadmium were characterized in the gills of Tegillarca granosa during a 96-hour exposure course using integrated metabolomic and proteomic approaches. Neurotoxicity and disturbances in energy metabolism were implicated according to the metabolic responses after Cd exposure, and eventually affected the osmotic function of gill tissue. Proteomic analysis showed that oxidative stress, calcium-binding and sulfur-compound metabolism proteins were key factors responding to Cd challenge. A knowledge-based network regulation model was constructed with both metabolic and proteomic data. The model suggests that Cd stimulation mainly inhibits a core regulation network that is associated with histone function, ribosome processing and tight junctions, with the hub proteins actin, gamma 1 and Calmodulin 1. Moreover, myosin complex inhibition causes abnormal tight junctions and is linked to the irregular synthesis of amino acids. For the first time, this study provides insight into the proteomic and metabolomic changes caused by Cd in the blood clam T. granosa and suggests a potential toxicological pathway for Cd. PMID:27760991
Proteomic changes during intestinal cell maturation in vivo
Chang, Jinsook; Chance, Mark R.; Nicholas, Courtney; Ahmed, Naseem; Guilmeau, Sandra; Flandez, Marta; Wang, Donghai; Byun, Do-Sun; Nasser, Shannon; Albanese, Joseph M.; Corner, Georgia A.; Heerdt, Barbara G.; Wilson, Andrew J.; Augenlicht, Leonard H.; Mariadason, John M.
2008-01-01
Intestinal epithelial cells undergo progressive cell maturation as they migrate along the crypt-villus axis. To determine molecular signatures that define this process, proteins differentially expressed between the crypt and villus were identified by 2D-DIGE and MALDI-MS. Forty-six differentially expressed proteins were identified, several of which were validated by immunohistochemistry. Proteins upregulated in the villus were enriched for those involved in brush border assembly and lipid uptake, established features of differentiated intestinal epithelial cells. Multiple proteins involved in glycolysis were also upregulated in the villus, suggesting increased glycolysis is a feature of intestinal cell differentiation. Conversely, proteins involved in nucleotide metabolism, and protein processing and folding were increased in the crypt, consistent with functions associated with cell proliferation. Three novel paneth cell markers, AGR2, HSPA5 and RRBP1 were also identified. Notably, significant correlation was observed between overall proteomic changes and corresponding gene expression changes along the crypt-villus axis, indicating intestinal cell maturation is primarily regulated at the transcriptional level. This proteomic profiling analysis identified several novel proteins and functional processes differentially induced during intestinal cell maturation in vivo. Integration of proteomic, immunohistochemical, and parallel gene expression datasets demonstrate the coordinated manner in which intestinal cell maturation is regulated. PMID:18824147
Yu, Yadong; Li, Tao; Wu, Na; Jiang, Ling; Ji, Xiaojun; Huang, He
2017-03-07
Lipid droplets (LDs) participate in many cellular processes in oleaginous microorganisms. However, the exact function of LDs in the Mortierella alpina aging process remains elusive. Herein, subcellular proteomics was employed to unveil the composition and dynamics of the LD proteome in the aging M. alpina for the first time. More than 400 proteins were detected in LDs and 62 of them changed expression significantly during aging. By combining the LD proteomic data with whole-cell data, we found that the carbohydrate metabolism and de novo lipid biosynthesis were all inhibited during aging of M. alpina mycelia. The up-regulation of fructose metabolism-related enzymes in LDs might imply that LDs facilitated the fructose metabolism, which in turn might cause pyruvate to accumulate and enter malate-pyruvate cycle, and ultimately, provide additional NADPH for the synthesis of arachidonic acid (ARA). Lysophospholipase and lecithinase were up-regulated in LDs during the aging process, suggesting that the phospholipids and lecithin were starting to be hydrolyzed, in order to release fatty acids for the cells. The impairment of the anti-oxidant system might lead to the accumulation of ROS and consequently cause the up-regulation of autophagy-related proteins in LDs, which further induces the M. alpina mycelia to activate the autophagy process.
Marmagne, Anne; Ferro, Myriam; Meinnel, Thierry; Bruley, Christophe; Kuhn, Lauriane; Garin, Jérome; Barbier-Brygoo, Hélène; Ephritikhine, Geneviève
2007-11-01
The proteomics of plasma membrane has brought to date only scarce and partial information on the actual protein repertoire. In this work, the plant plasma membrane proteome of Arabidopsis thaliana was investigated. A highly purified plasma membrane fraction was washed by NaCl and Na2CO3 salts, and the insoluble fractions were further analyzed by nano-LC-MS/MS. With 446 proteins identified, we hereby describe the largest plasma membrane proteome diversity reported so far. Half of the proteins were predicted to display transmembrane domains and/or to be anchored to the membrane, validating a posteriori the pertinence of the approach. A fine analysis highlighted two main specific and novel features. First, the main functional category is represented by a majority of as yet unreported signaling proteins, including 11% receptor-like kinases. Second, 16% of the identified proteins are predicted to be lipid-modified, specifically involving double lipid linkage through N-terminal myristoylation, S-palmitoylation, C-terminal prenylation, or glycosylphosphatidylinositol anchors. Thus, our approach led for the first time to the identification of a large number of peripheral proteins as part of the plasma membrane and allowed the functionality of the plasma membrane in the cell context to be reconsidered.
Integration of gel-based proteome data with pProRep.
Laukens, Kris; Matthiesen, Rune; Lemière, Filip; Esmans, Eddy; Onckelen, Harry Van; Jensen, Ole Nørregaard; Witters, Erwin
2006-11-15
pProRep is a web application integrating electrophoretic and mass spectral data from proteome analyses into a relational database. The graphical web-interface allows users to upload, analyse and share experimental proteome data. It offers researchers the possibility to query all previously analysed datasets and can visualize selected features, such as the presence of a certain set of ions in a peptide mass spectrum, on the level of the two-dimensional gel. The pProRep package and instructions for its use can be downloaded from http://www.ptools.ua.ac.be/pProRep. The application requires a web server that runs PHP 5 (http://www.php.net) and MySQL. Some (non-essential) extensions need additional freely available libraries: details are described in the installation instructions.
Human body fluid proteome analysis
Hu, Shen; Loo, Joseph A.; Wong, David T.
2010-01-01
The focus of this article is to review the recent advances in proteome analysis of human body fluids, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, and amniotic fluid, as well as its applications to human disease biomarker discovery. We aim to summarize the proteomics technologies currently used for global identification and quantification of body fluid proteins, and elaborate the putative biomarkers discovered for a variety of human diseases through human body fluid proteome (HBFP) analysis. Some critical concerns and perspectives in this emerging field are also discussed. With the advances made in proteomics technologies, the impact of HBFP analysis in the search for clinically relevant disease biomarkers would be realized in the future. PMID:17083142
Human body fluid proteome analysis.
Hu, Shen; Loo, Joseph A; Wong, David T
2006-12-01
The focus of this article is to review the recent advances in proteome analysis of human body fluids, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, and amniotic fluid, as well as its applications to human disease biomarker discovery. We aim to summarize the proteomics technologies currently used for global identification and quantification of body fluid proteins, and elaborate the putative biomarkers discovered for a variety of human diseases through human body fluid proteome (HBFP) analysis. Some critical concerns and perspectives in this emerging field are also discussed. With the advances made in proteomics technologies, the impact of HBFP analysis in the search for clinically relevant disease biomarkers would be realized in the future.
Growth in spaceflight hardware results in alterations to the transcriptome and proteome
NASA Astrophysics Data System (ADS)
Basu, Proma; Kruse, Colin P. S.; Luesse, Darron R.; Wyatt, Sarah E.
2017-11-01
The Biological Research in Canisters (BRIC) hardware has been used to house many biology experiments on both the Space Transport System (STS, commonly known as the space shuttle) and the International Space Station (ISS). However, microscopic examination of Arabidopsis seedlings by Johnson et al. (2015) indicated the hardware itself may affect cell morphology. The experiment herein was designed to assess the effects of the BRIC-Petri Dish Fixation Units (BRIC-PDFU) hardware on the transcriptome and proteome of Arabidopsis seedlings. To our knowledge, this is the first transcriptomic and proteomic comparison of Arabidopsis seedlings grown with and without hardware. Arabidopsis thaliana wild-type Columbia (Col-0) seeds were sterilized and bulk plated on forty-four 60 mm Petri plates, of which 22 were integrated into the BRIC-PDFU hardware and 22 were maintained in closed containers at Ohio University. Seedlings were grown for approximately 3 days, fixed with RNAlater® and stored at -80 °C prior to RNA and protein extraction, with proteins separated into membrane and soluble fractions prior to analysis. The RNAseq analysis identified 1651 differentially expressed genes; MS/MS analysis identified 598 soluble and 589 membrane proteins differentially abundant both at p < .05. Fold enrichment analysis of gene ontology terms related to differentially expressed transcripts and proteins highlighted a variety of stress responses. Some of these genes and proteins have been previously identified in spaceflight experiments, indicating that these genes and proteins may be perturbed by both conditions.
Shao, Shiying; Guo, Tiannan; Gross, Vera; Lazarev, Alexander; Koh, Ching Chiek; Gillessen, Silke; Joerger, Markus; Jochum, Wolfram; Aebersold, Ruedi
2016-06-03
The reproducible and efficient extraction of proteins from biopsy samples for quantitative analysis is a critical step in biomarker and translational research. Recently, we described a method consisting of pressure-cycling technology (PCT) and sequential windowed acquisition of all theoretical fragment ions-mass spectrometry (SWATH-MS) for the rapid quantification of thousands of proteins from biopsy-size tissue samples. As an improvement of the method, we have incorporated the PCT-MicroPestle into the PCT-SWATH workflow. The PCT-MicroPestle is a novel, miniaturized, disposable mechanical tissue homogenizer that fits directly into the microTube sample container. We optimized the pressure-cycling conditions for tissue lysis with the PCT-MicroPestle and benchmarked the performance of the system against the conventional PCT-MicroCap method using mouse liver, heart, brain, and human kidney tissues as test samples. The data indicate that the digestion of the PCT-MicroPestle-extracted proteins yielded 20-40% more MS-ready peptide mass from all tissues tested with a comparable reproducibility when compared to the conventional PCT method. Subsequent SWATH-MS analysis identified a higher number of biologically informative proteins from a given sample. In conclusion, we have developed a new device that can be seamlessly integrated into the PCT-SWATH workflow, leading to increased sample throughput and improved reproducibility at both the protein extraction and proteomic analysis levels when applied to the quantitative proteomic analysis of biopsy-level samples.
Majeran, Wojciech; Friso, Giulia; Ponnala, Lalit; Connolly, Brian; Huang, Mingshu; Reidel, Edwin; Zhang, Cankui; Asakura, Yukari; Bhuiyan, Nazmul H; Sun, Qi; Turgeon, Robert; van Wijk, Klaas J
2010-11-01
C(4) grasses, such as maize (Zea mays), have high photosynthetic efficiency through combined biochemical and structural adaptations. C(4) photosynthesis is established along the developmental axis of the leaf blade, leading from an undifferentiated leaf base just above the ligule into highly specialized mesophyll cells (MCs) and bundle sheath cells (BSCs) at the tip. To resolve the kinetics of maize leaf development and C(4) differentiation and to obtain a systems-level understanding of maize leaf formation, the accumulation profiles of proteomes of the leaf and the isolated BSCs with their vascular bundle along the developmental gradient were determined using large-scale mass spectrometry. This was complemented by extensive qualitative and quantitative microscopy analysis of structural features (e.g., Kranz anatomy, plasmodesmata, cell wall, and organelles). More than 4300 proteins were identified and functionally annotated. Developmental protein accumulation profiles and hierarchical cluster analysis then determined the kinetics of organelle biogenesis, formation of cellular structures, metabolism, and coexpression patterns. Two main expression clusters were observed, each divided in subclusters, suggesting that a limited number of developmental regulatory networks organize concerted protein accumulation along the leaf gradient. The coexpression with BSC and MC markers provided strong candidates for further analysis of C(4) specialization, in particular transporters and biogenesis factors. Based on the integrated information, we describe five developmental transitions that provide a conceptual and practical template for further analysis. An online protein expression viewer is provided through the Plant Proteome Database.
Bensaddek, Dalila; Narayan, Vikram; Nicolas, Armel; Murillo, Alejandro Brenes; Gartner, Anton; Kenyon, Cynthia J; Lamond, Angus I
2016-02-01
Proteomics studies typically analyze proteins at a population level, using extracts prepared from tens of thousands to millions of cells. The resulting measurements correspond to average values across the cell population and can mask considerable variation in protein expression and function between individual cells or organisms. Here, we report the development of micro-proteomics for the analysis of Caenorhabditis elegans, a eukaryote composed of 959 somatic cells and ∼1500 germ cells, measuring the worm proteome at a single organism level to a depth of ∼3000 proteins. This includes detection of proteins across a wide dynamic range of expression levels (>6 orders of magnitude), including many chromatin-associated factors involved in chromosome structure and gene regulation. We apply the micro-proteomics workflow to measure the global proteome response to heat-shock in individual nematodes. This shows variation between individual animals in the magnitude of proteome response following heat-shock, including variable induction of heat-shock proteins. The micro-proteomics pipeline thus facilitates the investigation of stochastic variation in protein expression between individuals within an isogenic population of C. elegans. All data described in this study are available online via the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd), an open access, searchable database resource. © 2015 The Authors. PROTEOMICS Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chemical Proteomic Approaches Targeting Cancer Stem Cells: A Review of Current Literature.
Jung, Hye Jin
2017-01-01
Cancer stem cells (CSCs) have been proposed as central drivers of tumor initiation, progression, recurrence, and therapeutic resistance. Therefore, identifying stem-like cells within cancers and understanding their properties is crucial for the development of effective anticancer therapies. Recently, chemical proteomics has become a powerful tool to efficiently determine protein networks responsible for CSC pathophysiology and comprehensively elucidate molecular mechanisms of drug action against CSCs. This review provides an overview of major methodologies utilized in chemical proteomic approaches. In addition, recent successful chemical proteomic applications targeting CSCs are highlighted. Future direction of potential CSC research by integrating chemical genomic and proteomic data obtained from a single biological sample of CSCs are also suggested in this review. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
M2Lite: An Open-source, Light-weight, Pluggable and Fast Proteome Discoverer MSF to mzIdentML Tool.
Aiyetan, Paul; Zhang, Bai; Chen, Lily; Zhang, Zhen; Zhang, Hui
2014-04-28
Proteome Discoverer is one of many tools used for protein database search and peptide to spectrum assignment in mass spectrometry-based proteomics. However, the inadequacy of conversion tools makes it challenging to compare and integrate its results to those of other analytical tools. Here we present M2Lite, an open-source, light-weight, easily pluggable and fast conversion tool. M2Lite converts proteome discoverer derived MSF files to the proteomics community defined standard - the mzIdentML file format. M2Lite's source code is available as open-source at https://bitbucket.org/paiyetan/m2lite/src and its compiled binaries and documentation can be freely downloaded at https://bitbucket.org/paiyetan/m2lite/downloads.
Lynx web services for annotations and systems analysis of multi-gene disorders.
Sulakhe, Dinanath; Taylor, Andrew; Balasubramanian, Sandhya; Feng, Bo; Xie, Bingqing; Börnigen, Daniela; Dave, Utpal J; Foster, Ian T; Gilliam, T Conrad; Maltsev, Natalia
2014-07-01
Lynx is a web-based integrated systems biology platform that supports annotation and analysis of experimental data and generation of weighted hypotheses on molecular mechanisms contributing to human phenotypes and disorders of interest. Lynx has integrated multiple classes of biomedical data (genomic, proteomic, pathways, phenotypic, toxicogenomic, contextual and others) from various public databases as well as manually curated data from our group and collaborators (LynxKB). Lynx provides tools for gene list enrichment analysis using multiple functional annotations and network-based gene prioritization. Lynx provides access to the integrated database and the analytical tools via REST based Web Services (http://lynx.ci.uchicago.edu/webservices.html). This comprises data retrieval services for specific functional annotations, services to search across the complete LynxKB (powered by Lucene), and services to access the analytical tools built within the Lynx platform. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Mass Spec Studio for Integrative Structural Biology
Rey, Martial; Sarpe, Vladimir; Burns, Kyle; Buse, Joshua; Baker, Charles A.H.; van Dijk, Marc; Wordeman, Linda; Bonvin, Alexandre M.J.J.; Schriemer, David C.
2015-01-01
SUMMARY The integration of biophysical data from multiple sources is critical for developing accurate structural models of large multiprotein systems and their regulators. Mass spectrometry (MS) can be used to measure the insertion location for a wide range of topographically sensitive chemical probes, and such insertion data provide a rich, but disparate set of modeling restraints. We have developed a software platform that integrates the analysis of label-based MS data with protein modeling activities (Mass Spec Studio). Analysis packages can mine any labeling data from any mass spectrometer in a proteomics-grade manner, and link labeling methods with data-directed protein interaction modeling using HADDOCK. Support is provided for hydrogen/ deuterium exchange (HX) and covalent labeling chemistries, including novel acquisition strategies such as targeted HX-tandem MS (MS2) and data-independent HX-MS2. The latter permits the modeling of highly complex systems, which we demonstrate by the analysis of microtubule interactions. PMID:25242457
MASPECTRAS: a platform for management and analysis of proteomics LC-MS/MS data
Hartler, Jürgen; Thallinger, Gerhard G; Stocker, Gernot; Sturn, Alexander; Burkard, Thomas R; Körner, Erik; Rader, Robert; Schmidt, Andreas; Mechtler, Karl; Trajanoski, Zlatko
2007-01-01
Background The advancements of proteomics technologies have led to a rapid increase in the number, size and rate at which datasets are generated. Managing and extracting valuable information from such datasets requires the use of data management platforms and computational approaches. Results We have developed the MAss SPECTRometry Analysis System (MASPECTRAS), a platform for management and analysis of proteomics LC-MS/MS data. MASPECTRAS is based on the Proteome Experimental Data Repository (PEDRo) relational database schema and follows the guidelines of the Proteomics Standards Initiative (PSI). Analysis modules include: 1) import and parsing of the results from the search engines SEQUEST, Mascot, Spectrum Mill, X! Tandem, and OMSSA; 2) peptide validation, 3) clustering of proteins based on Markov Clustering and multiple alignments; and 4) quantification using the Automated Statistical Analysis of Protein Abundance Ratios algorithm (ASAPRatio). The system provides customizable data retrieval and visualization tools, as well as export to PRoteomics IDEntifications public repository (PRIDE). MASPECTRAS is freely available at Conclusion Given the unique features and the flexibility due to the use of standard software technology, our platform represents significant advance and could be of great interest to the proteomics community. PMID:17567892
Peddinti, Divyaswetha; Nanduri, Bindu; Kaya, Abdullah; Feugang, Jean M; Burgess, Shane C; Memili, Erdogan
2008-02-22
Male infertility is a major problem for mammalian reproduction. However, molecular details including the underlying mechanisms of male fertility are still not known. A thorough understanding of these mechanisms is essential for obtaining consistently high reproductive efficiency and to ensure lower cost and time-loss by breeder. Using high and low fertility bull spermatozoa, here we employed differential detergent fractionation multidimensional protein identification technology (DDF-Mud PIT) and identified 125 putative biomarkers of fertility. We next used quantitative Systems Biology modeling and canonical protein interaction pathways and networks to show that high fertility spermatozoa differ from low fertility spermatozoa in four main ways. Compared to sperm from low fertility bulls, sperm from high fertility bulls have higher expression of proteins involved in: energy metabolism, cell communication, spermatogenesis, and cell motility. Our data also suggests a hypothesis that low fertility sperm DNA integrity may be compromised because cell cycle: G2/M DNA damage checkpoint regulation was most significant signaling pathway identified in low fertility spermatozoa. This is the first comprehensive description of the bovine spermatozoa proteome. Comparative proteomic analysis of high fertility and low fertility bulls, in the context of protein interaction networks identified putative molecular markers associated with high fertility phenotype.
Li, Taotao; Zhang, Jingying; Zhu, Hong; Qu, Hongxia; You, Shulin; Duan, Xuewu; Jiang, Yueming
2016-01-01
Mandarin (Citrus reticulata), a non-climacteric fruit, is an economically important fruit worldwide. The mechanism underlying senescence of non-climacteric fruit is poorly understood. In this study, a gel-based proteomic study followed by LC-ESI-MS/MS analysis was carried out to investigate the proteomic changes involved in peel senescence in harvested mandarin “Shatangju” fruit stored for 18 days. Over the course of the storage period, the fruit gradually senesced, accompanied by a decreased respiration rate and increased chlorophyll degradation and disruption of membrane integrity. Sixty-three proteins spots that showed significant differences in abundance were identified. The up-regulated proteins were mainly associated with cell wall degradation, lipid degradation, protein degradation, senescence-related transcription factors, and transcription-related proteins. In contrast, most proteins associated with ATP synthesis and scavenging of reactive oxygen species were significantly down-regulated during peel senescence. Three thioredoxin proteins and three Ca2+ signaling-related proteins were significantly up-regulated during peel senescence. It is suggested that mandarin peel senescence is associated with energy supply efficiency, decreased antioxidant capability, and increased protein and lipid degradation. In addition, activation of Ca2+ signaling and transcription factors might be involved in cell wall degradation and primary or secondary metabolism. PMID:27303420
Kremer, Lukas P M; Leufken, Johannes; Oyunchimeg, Purevdulam; Schulze, Stefan; Fufezan, Christian
2016-03-04
Proteomics data integration has become a broad field with a variety of programs offering innovative algorithms to analyze increasing amounts of data. Unfortunately, this software diversity leads to many problems as soon as the data is analyzed using more than one algorithm for the same task. Although it was shown that the combination of multiple peptide identification algorithms yields more robust results, it is only recently that unified approaches are emerging; however, workflows that, for example, aim to optimize search parameters or that employ cascaded style searches can only be made accessible if data analysis becomes not only unified but also and most importantly scriptable. Here we introduce Ursgal, a Python interface to many commonly used bottom-up proteomics tools and to additional auxiliary programs. Complex workflows can thus be composed using the Python scripting language using a few lines of code. Ursgal is easily extensible, and we have made several database search engines (X!Tandem, OMSSA, MS-GF+, Myrimatch, MS Amanda), statistical postprocessing algorithms (qvality, Percolator), and one algorithm that combines statistically postprocessed outputs from multiple search engines ("combined FDR") accessible as an interface in Python. Furthermore, we have implemented a new algorithm ("combined PEP") that combines multiple search engines employing elements of "combined FDR", PeptideShaker, and Bayes' theorem.
Peddinti, Divyaswetha; Nanduri, Bindu; Kaya, Abdullah; Feugang, Jean M; Burgess, Shane C; Memili, Erdogan
2008-01-01
Background Male infertility is a major problem for mammalian reproduction. However, molecular details including the underlying mechanisms of male fertility are still not known. A thorough understanding of these mechanisms is essential for obtaining consistently high reproductive efficiency and to ensure lower cost and time-loss by breeder. Results Using high and low fertility bull spermatozoa, here we employed differential detergent fractionation multidimensional protein identification technology (DDF-Mud PIT) and identified 125 putative biomarkers of fertility. We next used quantitative Systems Biology modeling and canonical protein interaction pathways and networks to show that high fertility spermatozoa differ from low fertility spermatozoa in four main ways. Compared to sperm from low fertility bulls, sperm from high fertility bulls have higher expression of proteins involved in: energy metabolism, cell communication, spermatogenesis, and cell motility. Our data also suggests a hypothesis that low fertility sperm DNA integrity may be compromised because cell cycle: G2/M DNA damage checkpoint regulation was most significant signaling pathway identified in low fertility spermatozoa. Conclusion This is the first comprehensive description of the bovine spermatozoa proteome. Comparative proteomic analysis of high fertility and low fertility bulls, in the context of protein interaction networks identified putative molecular markers associated with high fertility phenotype. PMID:18294385
Proteomic characterization of the nucleolar linker histone H1 interaction network
Szerlong, Heather J.; Herman, Jacob A.; Krause, Christine M.; DeLuca, Jennifer G.; Skoultchi, Arthur; Winger, Quinton A.; Prenni, Jessica E.; Hansen, Jeffrey C.
2015-01-01
To investigate the relationship between linker histone H1 and protein-protein interactions in the nucleolus, biochemical and proteomics approaches were used to characterize nucleoli purified from cultured human and mouse cells. Mass spectrometry identified 175 proteins in human T-cell nucleolar extracts that bound to sepharose-immobilized H1 in vitro. Gene ontology analysis found significant enrichment for H1 binding proteins with functions related to nucleolar chromatin structure and RNA polymerase I transcription regulation, rRNA processing, and mRNA splicing. Consistent with the affinity binding results, H1 existed in large (400 to >650 kDa) macromolecular complexes in human T cell nucleolar extracts. To complement the biochemical experiments, the effects of in vivo H1 depletion on protein content and structural integrity of the nucleolus were investigated using the H1 triple isoform knock out (H1ΔTKO) mouse embryonic stem cell (mESC) model system. Proteomic profiling of purified wild type mESC nucleoli identified a total of 613 proteins, only ~60% of which were detected in the H1 mutant nucleoli. Within the affected group, spectral counting analysis quantitated 135 specific nucleolar proteins whose levels were significantly altered in H1ΔTKO mESC. Importantly, the functions of the affected proteins in mESC closely overlapped with those of the human T cell nucleolar H1 binding proteins. Immunofluorescence microscopy of intact H1ΔTKO mESC demonstrated both a loss of nucleolar RNA content and altered nucleolar morphology resulting from in vivo H1 depletion. We conclude that H1 organizes and maintains an extensive protein-protein interaction network in the nucleolus required for nucleolar structure and integrity. PMID:25584861
Kim, So W.; Gupta, Ravi; Lee, Seo H.; Min, Cheol W.; Agrawal, Ganesh K.; Rakwal, Randeep; Kim, Jong B.; Jo, Ick H.; Park, Soo-Yun; Kim, Jae K.; Kim, Young-Chang; Bang, Kyong H.; Kim, Sun T.
2016-01-01
Panax ginseng roots are well known for their medicinal properties and have been used in Korean and Chinese traditional medicines for 1000s of years. However, the medicinal value of P. ginseng fruits remain poorly characterized. In this study, we used an integrated biochemical, proteomics, and metabolomics approach to look into the medicinal properties of ginseng fruits. DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS [2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid)] assays showed higher antioxidant activities in ginseng fruits than leaves or roots. Two-dimensional gel electrophoresis (2-DE) profiling of ginseng fruit proteins (cv. Cheongsun) showed more than 400 spots wherein a total of 81 protein spots were identified by mass spectrometry using NCBInr, UniRef, and an in-house developed RNAseq (59,251 protein sequences)-based databases. Gene ontology analysis showed that most of the identified proteins were related to the hydrolase (18%), oxidoreductase (16%), and ATP binding (15%) activities. Further, a comparative proteome analysis of four cultivars of ginseng fruits (cvs. Yunpoong, Gumpoong, Chunpoong, and Cheongsun) led to the identification of 22 differentially modulated protein spots. Using gas chromatography-time of flight mass spectrometry (GC-TOF MS), 66 metabolites including amino acids, sugars, organic acids, phenolic acids, phytosterols, tocopherols, and policosanols were identified and quantified. Some of these are well known medicinal compounds and were not previously identified in ginseng. Interestingly, the concentration of almost all metabolites was higher in the Chunpoong and Gumpoong cultivars. Parallel comparison of the four cultivars also revealed higher amounts of the medicinal metabolites in Chunpoong and Gumpoong cultivars. Taken together, our results demonstrate that ginseng fruits are a rich source of medicinal compounds with potential beneficial health effects. PMID:27458475
Development of Droplet Microfluidics Enabling High-Throughput Single-Cell Analysis.
Wen, Na; Zhao, Zhan; Fan, Beiyuan; Chen, Deyong; Men, Dong; Wang, Junbo; Chen, Jian
2016-07-05
This article reviews recent developments in droplet microfluidics enabling high-throughput single-cell analysis. Five key aspects in this field are included in this review: (1) prototype demonstration of single-cell encapsulation in microfluidic droplets; (2) technical improvements of single-cell encapsulation in microfluidic droplets; (3) microfluidic droplets enabling single-cell proteomic analysis; (4) microfluidic droplets enabling single-cell genomic analysis; and (5) integrated microfluidic droplet systems enabling single-cell screening. We examine the advantages and limitations of each technique and discuss future research opportunities by focusing on key performances of throughput, multifunctionality, and absolute quantification.
Loziuk, Philip; Meier, Florian; Johnson, Caroline
2016-01-01
Quantitative methods for detection of biological molecules are needed more than ever before in the emerging age of “omics” and “big data.” Here, we provide an integrated approach for systematic analysis of the “lipidome” in tissue. To test our approach in a biological context, we utilized brain tissue selectively deficient for the transcription factor Specificity Protein 2 (Sp2). Conditional deletion of Sp2 in the mouse cerebral cortex results in developmental deficiencies including disruption of lipid metabolism. Silver (Ag) cationization was implemented for infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) to enhance the ion abundances for olefinic lipids, as these have been linked to regulation by Sp2. Combining Ag-doped and conventional IR-MALDESI imaging, this approach was extended to IR-MALDESI imaging of embryonic mouse brains. Further, our imaging technique was combined with bottom-up shotgun proteomic LC-MS/MS analysis and western blot for comparing Sp2 conditional knockout (Sp2-cKO) and wild-type (WT) cortices of tissue sections. This provided an integrated omics dataset which revealed many specific changes to fundamental cellular processes and biosynthetic pathways. In particular, step-specific altered abundances of nucleotides, lipids, and associated proteins were observed in the cerebral cortices of Sp2-cKO embryos. PMID:26942738
Knowledge Translation: Moving Proteomics Science to Innovation in Society.
Holmes, Christina; McDonald, Fiona; Jones, Mavis; Graham, Janice
2016-06-01
Proteomics is one of the pivotal next-generation biotechnologies in the current "postgenomics" era. Little is known about the ways in which innovative proteomics science is navigating the complex socio-political space between laboratory and society. It cannot be assumed that the trajectory between proteomics laboratory and society is linear and unidirectional. Concerned about public accountability and hopes for knowledge-based innovations, funding agencies and citizens increasingly expect that emerging science and technologies, such as proteomics, are effectively translated and disseminated as innovation in society. Here, we describe translation strategies promoted in the knowledge translation (KT) and science communication literatures and examine the use of these strategies within the field of proteomics. Drawing on data generated from qualitative interviews with proteomics scientists and ethnographic observation of international proteomics conferences over a 5-year period, we found that proteomics science incorporates a variety of KT strategies to reach knowledge users outside the field. To attain the full benefit of KT, however, proteomics scientists must challenge their own normative assumptions and approaches to innovation dissemination-beyond the current paradigm relying primarily on publication for one's scientific peers within one's field-and embrace the value of broader (interdisciplinary) KT strategies in promoting the uptake of their research. Notably, the Human Proteome Organization (HUPO) is paying increasing attention to a broader range of KT strategies, including targeted dissemination, integrated KT, and public outreach. We suggest that increasing the variety of KT strategies employed by proteomics scientists is timely and would serve well the omics system sciences community.
The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) announces the release of the cancer proteome confirmatory colon study data. The goal of the study is to analyze the proteomes of approximately 100 confirmatory colon tumor patients, which includes tumor and adjacent normal samples, with liquid chromatography-tandem mass spectrometry (LC-MS/MS) global proteomic and phosphoproteomic profiling.
PROTICdb: a web-based application to store, track, query, and compare plant proteome data.
Ferry-Dumazet, Hélène; Houel, Gwenn; Montalent, Pierre; Moreau, Luc; Langella, Olivier; Negroni, Luc; Vincent, Delphine; Lalanne, Céline; de Daruvar, Antoine; Plomion, Christophe; Zivy, Michel; Joets, Johann
2005-05-01
PROTICdb is a web-based application, mainly designed to store and analyze plant proteome data obtained by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and mass spectrometry (MS). The purposes of PROTICdb are (i) to store, track, and query information related to proteomic experiments, i.e., from tissue sampling to protein identification and quantitative measurements, and (ii) to integrate information from the user's own expertise and other sources into a knowledge base, used to support data interpretation (e.g., for the determination of allelic variants or products of post-translational modifications). Data insertion into the relational database of PROTICdb is achieved either by uploading outputs of image analysis and MS identification software, or by filling web forms. 2-D PAGE annotated maps can be displayed, queried, and compared through a graphical interface. Links to external databases are also available. Quantitative data can be easily exported in a tabulated format for statistical analyses. PROTICdb is based on the Oracle or the PostgreSQL Database Management System and is freely available upon request at the following URL: http://moulon.inra.fr/ bioinfo/PROTICdb.
Kirkwood, Kathryn J.; Ahmad, Yasmeen; Larance, Mark; Lamond, Angus I.
2013-01-01
Proteins form a diverse array of complexes that mediate cellular function and regulation. A largely unexplored feature of such protein complexes is the selective participation of specific protein isoforms and/or post-translationally modified forms. In this study, we combined native size-exclusion chromatography (SEC) with high-throughput proteomic analysis to characterize soluble protein complexes isolated from human osteosarcoma (U2OS) cells. Using this approach, we have identified over 71,500 peptides and 1,600 phosphosites, corresponding to over 8,000 proteins, distributed across 40 SEC fractions. This represents >50% of the predicted U2OS cell proteome, identified with a mean peptide sequence coverage of 27% per protein. Three biological replicates were performed, allowing statistical evaluation of the data and demonstrating a high degree of reproducibility in the SEC fractionation procedure. Specific proteins were detected interacting with multiple independent complexes, as typified by the separation of distinct complexes for the MRFAP1-MORF4L1-MRGBP interaction network. The data also revealed protein isoforms and post-translational modifications that selectively associated with distinct subsets of protein complexes. Surprisingly, there was clear enrichment for specific Gene Ontology terms associated with differential size classes of protein complexes. This study demonstrates that combined SEC/MS analysis can be used for the system-wide annotation of protein complexes and to predict potential isoform-specific interactions. All of these SEC data on the native separation of protein complexes have been integrated within the Encyclopedia of Proteome Dynamics, an online, multidimensional data-sharing resource available to the community. PMID:24043423
Kirkwood, Kathryn J; Ahmad, Yasmeen; Larance, Mark; Lamond, Angus I
2013-12-01
Proteins form a diverse array of complexes that mediate cellular function and regulation. A largely unexplored feature of such protein complexes is the selective participation of specific protein isoforms and/or post-translationally modified forms. In this study, we combined native size-exclusion chromatography (SEC) with high-throughput proteomic analysis to characterize soluble protein complexes isolated from human osteosarcoma (U2OS) cells. Using this approach, we have identified over 71,500 peptides and 1,600 phosphosites, corresponding to over 8,000 proteins, distributed across 40 SEC fractions. This represents >50% of the predicted U2OS cell proteome, identified with a mean peptide sequence coverage of 27% per protein. Three biological replicates were performed, allowing statistical evaluation of the data and demonstrating a high degree of reproducibility in the SEC fractionation procedure. Specific proteins were detected interacting with multiple independent complexes, as typified by the separation of distinct complexes for the MRFAP1-MORF4L1-MRGBP interaction network. The data also revealed protein isoforms and post-translational modifications that selectively associated with distinct subsets of protein complexes. Surprisingly, there was clear enrichment for specific Gene Ontology terms associated with differential size classes of protein complexes. This study demonstrates that combined SEC/MS analysis can be used for the system-wide annotation of protein complexes and to predict potential isoform-specific interactions. All of these SEC data on the native separation of protein complexes have been integrated within the Encyclopedia of Proteome Dynamics, an online, multidimensional data-sharing resource available to the community.
2012-01-01
Background The post-genomic era of malaria research provided unprecedented insights into the biology of Plasmodium parasites. Due to the large evolutionary distance to model eukaryotes, however, we lack a profound understanding of many processes in Plasmodium biology. One example is the cell nucleus, which controls the parasite genome in a development- and cell cycle-specific manner through mostly unknown mechanisms. To study this important organelle in detail, we conducted an integrative analysis of the P. falciparum nuclear proteome. Results We combined high accuracy mass spectrometry and bioinformatic approaches to present for the first time an experimentally determined core nuclear proteome for P. falciparum. Besides a large number of factors implicated in known nuclear processes, one-third of all detected proteins carry no functional annotation, including many phylum- or genus-specific factors. Importantly, extensive experimental validation using 30 transgenic cell lines confirmed the high specificity of this inventory, and revealed distinct nuclear localization patterns of hitherto uncharacterized proteins. Further, our detailed analysis identified novel protein domains potentially implicated in gene transcription pathways, and sheds important new light on nuclear compartments and processes including regulatory complexes, the nucleolus, nuclear pores, and nuclear import pathways. Conclusion Our study provides comprehensive new insight into the biology of the Plasmodium nucleus and will serve as an important platform for dissecting general and parasite-specific nuclear processes in malaria parasites. Moreover, as the first nuclear proteome characterized in any protist organism, it will provide an important resource for studying evolutionary aspects of nuclear biology. PMID:23181666
CPTAC Proteomics Data on UCSC Genome Browser | Office of Cancer Clinical Proteomics Research
The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium scientists are working together with the University of California, Santa Cruz (UCSC) Genomics Institute to provide public access to cancer proteomics data via the UCSC Genome Browser. This effort extends accessibility of the CPTAC data to more researchers and provides an additional level of analysis to assist the cancer biology community.
Albar, Juan Pablo; Binz, Pierre-Alain; Eisenacher, Martin; Jones, Andrew R; Mayer, Gerhard; Omenn, Gilbert S; Orchard, Sandra; Vizcaíno, Juan Antonio; Hermjakob, Henning
2015-01-01
Objective To describe the goals of the Proteomics Standards Initiative (PSI) of the Human Proteome Organization, the methods that the PSI has employed to create data standards, the resulting output of the PSI, lessons learned from the PSI’s evolution, and future directions and synergies for the group. Materials and Methods The PSI has 5 categories of deliverables that have guided the group. These are minimum information guidelines, data formats, controlled vocabularies, resources and software tools, and dissemination activities. These deliverables are produced via the leadership and working group organization of the initiative, driven by frequent workshops and ongoing communication within the working groups. Official standards are subjected to a rigorous document process that includes several levels of peer review prior to release. Results We have produced and published minimum information guidelines describing what information should be provided when making data public, either via public repositories or other means. The PSI has produced a series of standard formats covering mass spectrometer input, mass spectrometer output, results of informatics analysis (both qualitative and quantitative analyses), reports of molecular interaction data, and gel electrophoresis analyses. We have produced controlled vocabularies that ensure that concepts are uniformly annotated in the formats and engaged in extensive software development and dissemination efforts so that the standards can efficiently be used by the community. Conclusion In its first dozen years of operation, the PSI has produced many standards that have accelerated the field of proteomics by facilitating data exchange and deposition to data repositories. We look to the future to continue developing standards for new proteomics technologies and workflows and mechanisms for integration with other omics data types. Our products facilitate the translation of genomics and proteomics findings to clinical and biological phenotypes. The PSI website can be accessed at http://www.psidev.info. PMID:25726569
Thiele, H.; Glandorf, J.; Koerting, G.; Reidegeld, K.; Blüggel, M.; Meyer, H.; Stephan, C.
2007-01-01
In today’s proteomics research, various techniques and instrumentation bioinformatics tools are necessary to manage the large amount of heterogeneous data with an automatic quality control to produce reliable and comparable results. Therefore a data-processing pipeline is mandatory for data validation and comparison in a data-warehousing system. The proteome bioinformatics platform ProteinScape has been proven to cover these needs. The reprocessing of HUPO BPP participants’ MS data was done within ProteinScape. The reprocessed information was transferred into the global data repository PRIDE. ProteinScape as a data-warehousing system covers two main aspects: archiving relevant data of the proteomics workflow and information extraction functionality (protein identification, quantification and generation of biological knowledge). As a strategy for automatic data validation, different protein search engines are integrated. Result analysis is performed using a decoy database search strategy, which allows the measurement of the false-positive identification rate. Peptide identifications across different workflows, different MS techniques, and different search engines are merged to obtain a quality-controlled protein list. The proteomics identifications database (PRIDE), as a public data repository, is an archiving system where data are finally stored and no longer changed by further processing steps. Data submission to PRIDE is open to proteomics laboratories generating protein and peptide identifications. An export tool has been developed for transferring all relevant HUPO BPP data from ProteinScape into PRIDE using the PRIDE.xml format. The EU-funded ProDac project will coordinate the development of software tools covering international standards for the representation of proteomics data. The implementation of data submission pipelines and systematic data collection in public standards–compliant repositories will cover all aspects, from the generation of MS data in each laboratory to the conversion of all the annotating information and identifications to a standardized format. Such datasets can be used in the course of publishing in scientific journals.
Plant proteome analysis: a 2006 update.
Jorrín, Jesús V; Maldonado, Ana M; Castillejo, Ma Angeles
2007-08-01
This 2006 'Plant Proteomics Update' is a continuation of the two previously published in 'Proteomics' by 2004 (Canovas et al., Proteomics 2004, 4, 285-298) and 2006 (Rossignol et al., Proteomics 2006, 6, 5529-5548) and it aims to bring up-to-date the contribution of proteomics to plant biology on the basis of the original research papers published throughout 2006, with references to those appearing last year. According to the published papers and topics addressed, we can conclude that, as observed for the three previous years, there has been a quantitative, but not qualitative leap in plant proteomics. The full potential of proteomics is far from being exploited in plant biology research, especially if compared to other organisms, mainly yeast and humans, and a number of challenges, mainly technological, remain to be tackled. The original papers published last year numbered nearly 100 and deal with the proteome of at least 26 plant species, with a high percentage for Arabidopsis thaliana (28) and rice (11). Scientific objectives ranged from proteomic analysis of organs/tissues/cell suspensions (57) or subcellular fractions (29), to the study of plant development (12), the effect of hormones and signalling molecules (8) and response to symbionts (4) and stresses (27). A small number of contributions have covered PTMs (8) and protein interactions (4). 2-DE (specifically IEF-SDS-PAGE) coupled to MS still constitutes the almost unique platform utilized in plant proteome analysis. The application of gel-free protein separation methods and 'second generation' proteomic techniques such as multidimensional protein identification technology (MudPIT), and those for quantitative proteomics including DIGE, isotope-coded affinity tags (ICAT), iTRAQ and stable isotope labelling by amino acids in cell culture (SILAC) still remains anecdotal. This review is divided into seven sections: Introduction, Methodology, Subcellular proteomes, Development, Responses to biotic and abiotic stresses, PTMs and Protein interactions. Section 8 summarizes the major pitfalls and challenges of plant proteomics.
Proteomic Analysis of Trauma-Induced Heterotopic Ossification Formation
2017-12-01
patients go on to form abnormal bone within the soft tissue of their injured limbs. This condition, known as Heterotopic Ossification (HO), causes...than today’s combat casualties. They will no longer have the same high risk of developing HO and can avoid the emotional, psychological and physical...brief description of future plans to accomplish the goals and objectives shall also be included. This research project has integrated productive
Tsai, Tsung-Heng; Tadesse, Mahlet G.; Di Poto, Cristina; Pannell, Lewis K.; Mechref, Yehia; Wang, Yue; Ressom, Habtom W.
2013-01-01
Motivation: Liquid chromatography-mass spectrometry (LC-MS) has been widely used for profiling expression levels of biomolecules in various ‘-omic’ studies including proteomics, metabolomics and glycomics. Appropriate LC-MS data preprocessing steps are needed to detect true differences between biological groups. Retention time (RT) alignment, which is required to ensure that ion intensity measurements among multiple LC-MS runs are comparable, is one of the most important yet challenging preprocessing steps. Current alignment approaches estimate RT variability using either single chromatograms or detected peaks, but do not simultaneously take into account the complementary information embedded in the entire LC-MS data. Results: We propose a Bayesian alignment model for LC-MS data analysis. The alignment model provides estimates of the RT variability along with uncertainty measures. The model enables integration of multiple sources of information including internal standards and clustered chromatograms in a mathematically rigorous framework. We apply the model to LC-MS metabolomic, proteomic and glycomic data. The performance of the model is evaluated based on ground-truth data, by measuring correlation of variation, RT difference across runs and peak-matching performance. We demonstrate that Bayesian alignment model improves significantly the RT alignment performance through appropriate integration of relevant information. Availability and implementation: MATLAB code, raw and preprocessed LC-MS data are available at http://omics.georgetown.edu/alignLCMS.html Contact: hwr@georgetown.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24013927
Sychev, Zoi E.; Hu, Alex; Lagunoff, Michael
2017-01-01
Kaposi’s Sarcoma associated Herpesvirus (KSHV), an oncogenic, human gamma-herpesvirus, is the etiological agent of Kaposi’s Sarcoma the most common tumor of AIDS patients world-wide. KSHV is predominantly latent in the main KS tumor cell, the spindle cell, a cell of endothelial origin. KSHV modulates numerous host cell-signaling pathways to activate endothelial cells including major metabolic pathways involved in lipid metabolism. To identify the underlying cellular mechanisms of KSHV alteration of host signaling and endothelial cell activation, we identified changes in the host proteome, phosphoproteome and transcriptome landscape following KSHV infection of endothelial cells. A Steiner forest algorithm was used to integrate the global data sets and, together with transcriptome based predicted transcription factor activity, cellular networks altered by latent KSHV were predicted. Several interesting pathways were identified, including peroxisome biogenesis. To validate the predictions, we showed that KSHV latent infection increases the number of peroxisomes per cell. Additionally, proteins involved in peroxisomal lipid metabolism of very long chain fatty acids, including ABCD3 and ACOX1, are required for the survival of latently infected cells. In summary, novel cellular pathways altered during herpesvirus latency that could not be predicted by a single systems biology platform, were identified by integrated proteomics and transcriptomics data analysis and when correlated with our metabolomics data revealed that peroxisome lipid metabolism is essential for KSHV latent infection of endothelial cells. PMID:28257516
Martyniuk, Christopher J; Popesku, Jason T; Chown, Brittany; Denslow, Nancy D; Trudeau, Vance L
2012-05-01
Neuroendocrine systems integrate both extrinsic and intrinsic signals to regulate virtually all aspects of an animal's physiology. In aquatic toxicology, studies have shown that pollutants are capable of disrupting the neuroendocrine system of teleost fish, and many chemicals found in the environment can also have a neurotoxic mode of action. Omics approaches are now used to better understand cell signaling cascades underlying fish neurophysiology and the control of pituitary hormone release, in addition to identifying adverse effects of pollutants in the teleostean central nervous system. For example, both high throughput genomics and proteomic investigations of molecular signaling cascades for both neurotransmitter and nuclear receptor agonists/antagonists have been reported. This review highlights recent studies that have utilized quantitative proteomics methods such as 2D differential in-gel electrophoresis (DIGE) and isobaric tagging for relative and absolute quantitation (iTRAQ) in neuroendocrine regions and uses these examples to demonstrate the challenges of using proteomics in neuroendocrinology and neurotoxicology research. To begin to characterize the teleost neuroproteome, we functionally annotated 623 unique proteins found in the fish hypothalamus and telencephalon. These proteins have roles in biological processes that include synaptic transmission, ATP production, receptor activity, cell structure and integrity, and stress responses. The biological processes most represented by proteins detected in the teleost neuroendocrine brain included transport (8.4%), metabolic process (5.5%), and glycolysis (4.8%). We provide an example of using sub-network enrichment analysis (SNEA) to identify protein networks in the fish hypothalamus in response to dopamine receptor signaling. Dopamine signaling altered the abundance of proteins that are binding partners of microfilaments, integrins, and intermediate filaments, consistent with data suggesting dopaminergic regulation of neuronal stability and structure. Lastly, for fish neuroendocrine studies using both high-throughput genomics and proteomics, we compare gene and protein relationships in the hypothalamus and demonstrate that correlation is often poor for single time point experiments. These studies highlight the need for additional time course analyses to better understand gene-protein relationships and adverse outcome pathways. This is important if both transcriptomics and proteomics are to be used together to investigate neuroendocrine signaling pathways or as bio-monitoring tools in ecotoxicology. Copyright © 2011 Elsevier Inc. All rights reserved.
Ayyar, Vivaswath S; Almon, Richard R; DuBois, Debra C; Sukumaran, Siddharth; Qu, Jun; Jusko, William J
2017-05-08
Corticosteroids (CS) are anti-inflammatory agents that cause extensive pharmacogenomic and proteomic changes in multiple tissues. An understanding of the proteome-wide effects of CS in liver and its relationships to altered hepatic and systemic physiology remains incomplete. Here, we report the application of a functional pharmacoproteomic approach to gain integrated insight into the complex nature of CS responses in liver in vivo. An in-depth functional analysis was performed using rich pharmacodynamic (temporal-based) proteomic data measured over 66h in rat liver following a single dose of methylprednisolone (MPL). Data mining identified 451 differentially regulated proteins. These proteins were analyzed on the basis of temporal regulation, cellular localization, and literature-mined functional information. Of the 451 proteins, 378 were clustered into six functional groups based on major clinically-relevant effects of CS in liver. MPL-responsive proteins were highly localized in the mitochondria (20%) and cytosol (24%). Interestingly, several proteins were related to hepatic stress and signaling processes, which appear to be involved in secondary signaling cascades and in protecting the liver from CS-induced oxidative damage. Consistent with known adverse metabolic effects of CS, several rate-controlling enzymes involved in amino acid metabolism, gluconeogenesis, and fatty-acid metabolism were altered by MPL. In addition, proteins involved in the metabolism of endogenous compounds, xenobiotics, and therapeutic drugs including cytochrome P450 and Phase-II enzymes were differentially regulated. Proteins related to the inflammatory acute-phase response were up-regulated in response to MPL. Functionally-similar proteins showed large diversity in their temporal profiles, indicating complex mechanisms of regulation by CS. Clinical use of corticosteroid (CS) therapy is frequent and chronic. However, current knowledge on the proteome-level effects of CS in liver and other tissues is sparse. While transcriptomic regulation following methylprednisolone (MPL) dosing has been temporally examined in rat liver, proteomic assessments are needed to better characterize the tissue-specific functional aspects of MPL actions. This study describes a functional pharmacoproteomic analysis of dynamic changes in MPL-regulated proteins in liver and provides biological insight into how steroid-induced perturbations on a molecular level may relate to both adverse and therapeutic responses presented clinically. Copyright © 2017 Elsevier B.V. All rights reserved.
Rinschen, Markus M; Gödel, Markus; Grahammer, Florian; Zschiedrich, Stefan; Helmstädter, Martin; Kretz, Oliver; Zarei, Mostafa; Braun, Daniela A; Dittrich, Sebastian; Pahmeyer, Caroline; Schroder, Patricia; Teetzen, Carolin; Gee, HeonYung; Daouk, Ghaleb; Pohl, Martin; Kuhn, Elisa; Schermer, Bernhard; Küttner, Victoria; Boerries, Melanie; Busch, Hauke; Schiffer, Mario; Bergmann, Carsten; Krüger, Marcus; Hildebrandt, Friedhelm; Dengjel, Joern; Benzing, Thomas; Huber, Tobias B
2018-05-22
Damage to and loss of glomerular podocytes has been identified as the culprit lesion in progressive kidney diseases. Here, we combine mass spectrometry-based proteomics with mRNA sequencing, bioinformatics, and hypothesis-driven studies to provide a comprehensive and quantitative map of mammalian podocytes that identifies unanticipated signaling pathways. Comparison of the in vivo datasets with proteomics data from podocyte cell cultures showed a limited value of available cell culture models. Moreover, in vivo stable isotope labeling by amino acids uncovered surprisingly rapid synthesis of mitochondrial proteins under steady-state conditions that was perturbed under autophagy-deficient, disease-susceptible conditions. Integration of acquired omics dimensions suggested FARP1 as a candidate essential for podocyte function, which could be substantiated by genetic analysis in humans and knockdown experiments in zebrafish. This work exemplifies how the integration of multi-omics datasets can identify a framework of cell-type-specific features relevant for organ health and disease. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Liu, Suli; Im, Hogune; Bairoch, Amos; Cristofanilli, Massimo; Chen, Rui; Deutsch, Eric W; Dalton, Stephen; Fenyo, David; Fanayan, Susan; Gates, Chris; Gaudet, Pascale; Hincapie, Marina; Hanash, Samir; Kim, Hoguen; Jeong, Seul-Ki; Lundberg, Emma; Mias, George; Menon, Rajasree; Mu, Zhaomei; Nice, Edouard; Paik, Young-Ki; Uhlen, Mathias; Wells, Lance; Wu, Shiaw-Lin; Yan, Fangfei; Zhang, Fan; Zhang, Yue; Snyder, Michael; Omenn, Gilbert S; Beavis, Ronald C; Hancock, William S
2013-01-04
We report progress assembling the parts list for chromosome 17 and illustrate the various processes that we have developed to integrate available data from diverse genomic and proteomic knowledge bases. As primary resources, we have used GPMDB, neXtProt, PeptideAtlas, Human Protein Atlas (HPA), and GeneCards. All sites share the common resource of Ensembl for the genome modeling information. We have defined the chromosome 17 parts list with the following information: 1169 protein-coding genes, the numbers of proteins confidently identified by various experimental approaches as documented in GPMDB, neXtProt, PeptideAtlas, and HPA, examples of typical data sets obtained by RNASeq and proteomic studies of epithelial derived tumor cell lines (disease proteome) and a normal proteome (peripheral mononuclear cells), reported evidence of post-translational modifications, and examples of alternative splice variants (ASVs). We have constructed a list of the 59 "missing" proteins as well as 201 proteins that have inconclusive mass spectrometric (MS) identifications. In this report we have defined a process to establish a baseline for the incorporation of new evidence on protein identification and characterization as well as related information from transcriptome analyses. This initial list of "missing" proteins that will guide the selection of appropriate samples for discovery studies as well as antibody reagents. Also we have illustrated the significant diversity of protein variants (including post-translational modifications, PTMs) using regions on chromosome 17 that contain important oncogenes. We emphasize the need for mandated deposition of proteomics data in public databases, the further development of improved PTM, ASV, and single nucleotide variant (SNV) databases, and the construction of Web sites that can integrate and regularly update such information. In addition, we describe the distribution of both clustered and scattered sets of protein families on the chromosome. Since chromosome 17 is rich in cancer-associated genes, we have focused the clustering of cancer-associated genes in such genomic regions and have used the ERBB2 amplicon as an example of the value of a proteogenomic approach in which one integrates transcriptomic with proteomic information and captures evidence of coexpression through coordinated regulation.
Cardnell, Robert J.G.; Behrens, Carmen; Diao, Lixia; Fan, YouHong; Tang, Ximing; Tong, Pan; John D., Minna; Mills, Gordon B.; Heymach, John V.; Wistuba, Ignacio I.; Wang, Jing; Byers., Lauren A.
2015-01-01
Purpose Thyroid transcription factor-1 (TTF1) immunohistochemistry (IHC) is used clinically to differentiate primary lung adenocarcinomas (LUAD) from squamous lung cancers and metastatic adenocarcinomas from other primary sites. However, a subset of LUAD (15-20%) does not express TTF1 and TTF1-negative patients have worse clinical outcomes. As there are no established targeted agents with activity in TTF1-negative LUAD, we performed an integrated molecular analysis to identify potential therapeutic targets. Experimental Design Using two clinical LUAD cohorts (274 tumors), one from our institution (PROSPECT) and the TCGA, we interrogated proteomic profiles (by reverse-phase protein array (RPPA)), gene expression, and mutational data. Drug response data from 74 cell lines were used to validate potential therapeutic agents. Results Strong correlations were observed between TTF1 IHC and TTF1 measurements by RPPA (Rho=0.57, p<0.001) and gene expression (NKX2-1, Rho=0.61, p<0.001). Established driver mutations (e.g. BRAF and EGFR) were associated with high TTF1 expression. In contrast, TTF1-negative LUAD had a higher frequency of inactivating KEAP1 mutations (p=0.001). Proteomic profiling identified increased expression of DNA repair proteins (e.g., Chk1 and the DNA repair score) and suppressed PI3K/MAPK signaling among TTF1-negative tumors, with differences in total proteins confirmed at the mRNA level. Cell line analysis showed drugs targeting DNA repair to be more active in TTF1-low cell lines. Conclusions Combined genomic and proteomic analyses demonstrated infrequent alteration of validated lung cancer targets (including the absence of BRAF mutations in TTF1-negative LUAD), but identified novel potential targets for TTF1-negative LUAD includingKEAP1/Nrf2 and DNA repair pathways. PMID:25878335
A Proteomics View of the Molecular Mechanisms and Biomarkers of Glaucomatous Neurodegeneration
Tezel, Gülgün
2013-01-01
Despite improving understanding of glaucoma, key molecular players of neurodegeneration that can be targeted for treatment of glaucoma, or molecular biomarkers that can be useful for clinical testing, remain unclear. Proteomics technology offers a powerful toolbox to accomplish these important goals of the glaucoma research and is increasingly being applied to identify molecular mechanisms and biomarkers of glaucoma. Recent studies of glaucoma using proteomics analysis techniques have resulted in the lists of differentially expressed proteins in human glaucoma and animal models. The global analysis of protein expression in glaucoma has been followed by cell-specific proteome analysis of retinal ganglion cells and astrocytes. The proteomics data have also guided targeted studies to identify post-translational modifications and protein-protein interactions during glaucomatous neurodegeneration. In addition, recent applications of proteomics have provided a number of potential biomarker candidates. Proteomics technology holds great promise to move glaucoma research forward toward new treatment strategies and biomarker discovery. By reviewing the major proteomics approaches and their applications in the field of glaucoma, this article highlights the power of proteomics in translational and clinical research related to glaucoma and also provides a framework for future research to functionally test the importance of specific molecular pathways and validate candidate biomarkers. PMID:23396249
Park, Gun Wook; Hwang, Heeyoun; Kim, Kwang Hoe; Lee, Ju Yeon; Lee, Hyun Kyoung; Park, Ji Yeong; Ji, Eun Sun; Park, Sung-Kyu Robin; Yates, John R; Kwon, Kyung-Hoon; Park, Young Mok; Lee, Hyoung-Joo; Paik, Young-Ki; Kim, Jin Young; Yoo, Jong Shin
2016-11-04
In the Chromosome-Centric Human Proteome Project (C-HPP), false-positive identification by peptide spectrum matches (PSMs) after database searches is a major issue for proteogenomic studies using liquid-chromatography and mass-spectrometry-based large proteomic profiling. Here we developed a simple strategy for protein identification, with a controlled false discovery rate (FDR) at the protein level, using an integrated proteomic pipeline (IPP) that consists of four engrailed steps as follows. First, using three different search engines, SEQUEST, MASCOT, and MS-GF+, individual proteomic searches were performed against the neXtProt database. Second, the search results from the PSMs were combined using statistical evaluation tools including DTASelect and Percolator. Third, the peptide search scores were converted into E-scores normalized using an in-house program. Last, ProteinInferencer was used to filter the proteins containing two or more peptides with a controlled FDR of 1.0% at the protein level. Finally, we compared the performance of the IPP to a conventional proteomic pipeline (CPP) for protein identification using a controlled FDR of <1% at the protein level. Using the IPP, a total of 5756 proteins (vs 4453 using the CPP) including 477 alternative splicing variants (vs 182 using the CPP) were identified from human hippocampal tissue. In addition, a total of 10 missing proteins (vs 7 using the CPP) were identified with two or more unique peptides, and their tryptic peptides were validated using MS/MS spectral pattern from a repository database or their corresponding synthetic peptides. This study shows that the IPP effectively improved the identification of proteins, including alternative splicing variants and missing proteins, in human hippocampal tissues for the C-HPP. All RAW files used in this study were deposited in ProteomeXchange (PXD000395).
The online Tabloid Proteome: an annotated database of protein associations
Turan, Demet; Tavernier, Jan
2018-01-01
Abstract A complete knowledge of the proteome can only be attained by determining the associations between proteins, along with the nature of these associations (e.g. physical contact in protein–protein interactions, participation in complex formation or different roles in the same pathway). Despite extensive efforts in elucidating direct protein interactions, our knowledge on the complete spectrum of protein associations remains limited. We therefore developed a new approach that detects protein associations from identifications obtained after re-processing of large-scale, public mass spectrometry-based proteomics data. Our approach infers protein association based on the co-occurrence of proteins across many different proteomics experiments, and provides information that is almost completely complementary to traditional direct protein interaction studies. We here present a web interface to query and explore the associations derived from this method, called the online Tabloid Proteome. The online Tabloid Proteome also integrates biological knowledge from several existing resources to annotate our derived protein associations. The online Tabloid Proteome is freely available through a user-friendly web interface, which provides intuitive navigation and data exploration options for the user at http://iomics.ugent.be/tabloidproteome. PMID:29040688
Topic model-based mass spectrometric data analysis in cancer biomarker discovery studies.
Wang, Minkun; Tsai, Tsung-Heng; Di Poto, Cristina; Ferrarini, Alessia; Yu, Guoqiang; Ressom, Habtom W
2016-08-18
A fundamental challenge in quantitation of biomolecules for cancer biomarker discovery is owing to the heterogeneous nature of human biospecimens. Although this issue has been a subject of discussion in cancer genomic studies, it has not yet been rigorously investigated in mass spectrometry based proteomic and metabolomic studies. Purification of mass spectometric data is highly desired prior to subsequent analysis, e.g., quantitative comparison of the abundance of biomolecules in biological samples. We investigated topic models to computationally analyze mass spectrometric data considering both integrated peak intensities and scan-level features, i.e., extracted ion chromatograms (EICs). Probabilistic generative models enable flexible representation in data structure and infer sample-specific pure resources. Scan-level modeling helps alleviate information loss during data preprocessing. We evaluated the capability of the proposed models in capturing mixture proportions of contaminants and cancer profiles on LC-MS based serum proteomic and GC-MS based tissue metabolomic datasets acquired from patients with hepatocellular carcinoma (HCC) and liver cirrhosis as well as synthetic data we generated based on the serum proteomic data. The results we obtained by analysis of the synthetic data demonstrated that both intensity-level and scan-level purification models can accurately infer the mixture proportions and the underlying true cancerous sources with small average error ratios (<7 %) between estimation and ground truth. By applying the topic model-based purification to mass spectrometric data, we found more proteins and metabolites with significant changes between HCC cases and cirrhotic controls. Candidate biomarkers selected after purification yielded biologically meaningful pathway analysis results and improved disease discrimination power in terms of the area under ROC curve compared to the results found prior to purification. We investigated topic model-based inference methods to computationally address the heterogeneity issue in samples analyzed by LC/GC-MS. We observed that incorporation of scan-level features have the potential to lead to more accurate purification results by alleviating the loss in information as a result of integrating peaks. We believe cancer biomarker discovery studies that use mass spectrometric analysis of human biospecimens can greatly benefit from topic model-based purification of the data prior to statistical and pathway analyses.
Bergkvist, Jonas; Ekström, Simon; Wallman, Lars; Löfgren, Mikael; Marko-Varga, György; Nilsson, Johan; Laurell, Thomas
2002-04-01
A recently introduced silicon microextraction chip (SMEC), used for on-line proteomic sample preparation, has proved to facilitate the process of protein identification by sample clean up and enrichment of peptides. It is demonstrated that a novel grid-SMEC design improves the operating characteristics for solid-phase microextraction, by reducing dispersion effects and thereby improving the sample preparation conditions. The structures investigated in this paper are treated both numerically and experimentally. The numerical approach is based on finite element analysis of the microfluidic flow in the microchip. The analysis is accomplished by use of the computational fluid dynamics-module FLOTRAN in the ANSYS software package. The modeling and analysis of the previously reported weir-SMEC design indicates some severe drawbacks, that can be reduced by changing the microextraction chip geometry to the grid-SMEC design. The overall analytical performance was thereby improved and also verified by experimental work. Matrix-assisted laser desorption/ionization mass spectra of model peptides extracted from both the weir-SMEC and the new grid-SMEC support the numerical analysis results. Further use of numerical modeling and analysis of the SMEC structures is also discussed and suggested in this work.
FunRich proteomics software analysis, let the fun begin!
Benito-Martin, Alberto; Peinado, Héctor
2015-08-01
Protein MS analysis is the preferred method for unbiased protein identification. It is normally applied to a large number of both small-scale and high-throughput studies. However, user-friendly computational tools for protein analysis are still needed. In this issue, Mathivanan and colleagues (Proteomics 2015, 15, 2597-2601) report the development of FunRich software, an open-access software that facilitates the analysis of proteomics data, providing tools for functional enrichment and interaction network analysis of genes and proteins. FunRich is a reinterpretation of proteomic software, a standalone tool combining ease of use with customizable databases, free access, and graphical representations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Top-down proteomics for the analysis of proteolytic events - Methods, applications and perspectives.
Tholey, Andreas; Becker, Alexander
2017-11-01
Mass spectrometry based proteomics is an indispensable tool for almost all research areas relevant for the understanding of proteolytic processing, ranging from the identification of substrates, products and cleavage sites up to the analysis of structural features influencing protease activity. The majority of methods for these studies are based on bottom-up proteomics performing analysis at peptide level. As this approach is characterized by a number of pitfalls, e.g. loss of molecular information, there is an ongoing effort to establish top-down proteomics, performing separation and MS analysis both at intact protein level. We briefly introduce major approaches of bottom-up proteomics used in the field of protease research and highlight the shortcomings of these methods. We then discuss the present state-of-the-art of top-down proteomics. Together with the discussion of known challenges we show the potential of this approach and present a number of successful applications of top-down proteomics in protease research. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John. Copyright © 2017 Elsevier B.V. All rights reserved.
Shotgun proteomics of plant plasma membrane and microdomain proteins using nano-LC-MS/MS.
Takahashi, Daisuke; Li, Bin; Nakayama, Takato; Kawamura, Yukio; Uemura, Matsuo
2014-01-01
Shotgun proteomics allows the comprehensive analysis of proteins extracted from plant cells, subcellular organelles, and membranes. Previously, two-dimensional gel electrophoresis-based proteomics was used for mass spectrometric analysis of plasma membrane proteins. In order to get comprehensive proteome profiles of the plasma membrane including highly hydrophobic proteins with a number of transmembrane domains, a mass spectrometry-based shotgun proteomics method using nano-LC-MS/MS for proteins from the plasma membrane proteins and plasma membrane microdomain fraction is described. The results obtained are easily applicable to label-free protein semiquantification.
2010-01-01
Background Papaver somniferum (opium poppy) is the source for several pharmaceutical benzylisoquinoline alkaloids including morphine, the codeine and sanguinarine. In response to treatment with a fungal elicitor, the biosynthesis and accumulation of sanguinarine is induced along with other plant defense responses in opium poppy cell cultures. The transcriptional induction of alkaloid metabolism in cultured cells provides an opportunity to identify components of this process via the integration of deep transcriptome and proteome databases generated using next-generation technologies. Results A cDNA library was prepared for opium poppy cell cultures treated with a fungal elicitor for 10 h. Using 454 GS-FLX Titanium pyrosequencing, 427,369 expressed sequence tags (ESTs) with an average length of 462 bp were generated. Assembly of these sequences yielded 93,723 unigenes, of which 23,753 were assigned Gene Ontology annotations. Transcripts encoding all known sanguinarine biosynthetic enzymes were identified in the EST database, 5 of which were represented among the 50 most abundant transcripts. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) of total protein extracts from cell cultures treated with a fungal elicitor for 50 h facilitated the identification of 1,004 proteins. Proteins were fractionated by one-dimensional SDS-PAGE and digested with trypsin prior to LC-MS/MS analysis. Query of an opium poppy-specific EST database substantially enhanced peptide identification. Eight out of 10 known sanguinarine biosynthetic enzymes and many relevant primary metabolic enzymes were represented in the peptide database. Conclusions The integration of deep transcriptome and proteome analyses provides an effective platform to catalogue the components of secondary metabolism, and to identify genes encoding uncharacterized enzymes. The establishment of corresponding transcript and protein databases generated by next-generation technologies in a system with a well-defined metabolite profile facilitates an improved linkage between genes, enzymes, and pathway components. The proteome database represents the most relevant alkaloid-producing enzymes, compared with the much deeper and more complete transcriptome library. The transcript database contained full-length mRNAs encoding most alkaloid biosynthetic enzymes, which is a key requirement for the functional characterization of novel gene candidates. PMID:21083930
Keller, Andrew; Bader, Samuel L.; Shteynberg, David; Hood, Leroy; Moritz, Robert L.
2015-01-01
Proteomics by mass spectrometry technology is widely used for identifying and quantifying peptides and proteins. The breadth and sensitivity of peptide detection have been advanced by the advent of data-independent acquisition mass spectrometry. Analysis of such data, however, is challenging due to the complexity of fragment ion spectra that have contributions from multiple co-eluting precursor ions. We present SWATHProphet software that identifies and quantifies peptide fragment ion traces in data-independent acquisition data, provides accurate probabilities to ensure results are correct, and automatically detects and removes contributions to quantitation originating from interfering precursor ions. Integration in the widely used open source Trans-Proteomic Pipeline facilitates subsequent analyses such as combining results of multiple data sets together for improved discrimination using iProphet and inferring sample proteins using ProteinProphet. This novel development should greatly help make data-independent acquisition mass spectrometry accessible to large numbers of users. PMID:25713123
NASA Astrophysics Data System (ADS)
Martin, Nicholas J.; Bunch, Josephine; Cooper, Helen J.
2013-08-01
Dried blood spots offer many advantages as a sample format including ease and safety of transport and handling. To date, the majority of mass spectrometry analyses of dried blood spots have focused on small molecules or hemoglobin. However, dried blood spots are a potentially rich source of protein biomarkers, an area that has been overlooked. To address this issue, we have applied an untargeted bottom-up proteomics approach to the analysis of dried blood spots. We present an automated and integrated method for extraction of endogenous proteins from the surface of dried blood spots and sample preparation via trypsin digestion by use of the Advion Biosciences Triversa Nanomate robotic platform. Liquid chromatography tandem mass spectrometry of the resulting digests enabled identification of 120 proteins from a single dried blood spot. The proteins identified cross a concentration range of four orders of magnitude. The method is evaluated and the results discussed in terms of the proteins identified and their potential use as biomarkers in screening programs.
A Method for Label-Free, Differential Top-Down Proteomics.
Ntai, Ioanna; Toby, Timothy K; LeDuc, Richard D; Kelleher, Neil L
2016-01-01
Biomarker discovery in the translational research has heavily relied on labeled and label-free quantitative bottom-up proteomics. Here, we describe a new approach to biomarker studies that utilizes high-throughput top-down proteomics and is the first to offer whole protein characterization and relative quantitation within the same experiment. Using yeast as a model, we report procedures for a label-free approach to quantify the relative abundance of intact proteins ranging from 0 to 30 kDa in two different states. In this chapter, we describe the integrated methodology for the large-scale profiling and quantitation of the intact proteome by liquid chromatography-mass spectrometry (LC-MS) without the need for metabolic or chemical labeling. This recent advance for quantitative top-down proteomics is best implemented with a robust and highly controlled sample preparation workflow before data acquisition on a high-resolution mass spectrometer, and the application of a hierarchical linear statistical model to account for the multiple levels of variance contained in quantitative proteomic comparisons of samples for basic and clinical research.
Application of proteomics in research on traditional Chinese medicine.
Suo, Tongchuan; Wang, Haixia; Li, Zheng
2016-09-01
Traditional Chinese medicine (TCM) is a widely used complementary alternative medicine approach. Although many aspects of its effectiveness have been approved clinically, rigorous scientific techniques are highly required to translate the promises from TCM into powerful modern therapies. In this respect, proteomics is useful because of its ability to unveil the underlying target proteins and/or protein biomarkers. In this review, we summarize the recent interplay between proteomics and research on TCM, ranging from exploration of the medicinal materials to the biological basis of TCM concepts, and from pathological studies to pharmacological investigations. We show that proteomic analyses provide preliminary biological evidence of the promises in TCM, and the integration of proteomics with other omics and bioinformatics offers a comprehensive methodology to address the complications of TCM. Expert commentary: Currently, only limited information can be obtained regarding TCM issues and thus more work is required to resolve the ambiguity. As such, more collaborations between proteomics and other techniques (other omics, network pharmacology, etc.) are essential for deciphering the underlying biological basis in TCM topics.
[Application progress of proteomic in pharmacological study of Chinese medicinal formulae].
Liu, Yu-Qian; Zhan, Shu-Yu; Ruan, Yu-Er; Zuo, Zhi-Yan; Ji, Xiao-Ming; Wang, Shuai-Jie; Ding, Bao-Yue
2017-10-01
Chinese medicinal formulae are the important means of clinical treatment in traditional Chinese medicine. It is urgent to use modern advanced scientific and technological means to reveal the complicated mechanism of Chinese medicinal formulae because they have the function characteristics of multiple components, multiple targets and integrated regulation. The systematic and comprehensive research model of proteomic is in line with the function characteristics of Chinese medicinal formulae, and proteomic has been widely used in the study of pharmacological mechanism of Chinese medicinal formulae. The recent applications of proteomic in pharmacological study of Chinese medicinal formulae in anti-cardiovascular and cerebrovascular diseases, anti-liver disease, antidiabetic, anticancer, anti-rheumatoid arthritis and other diseases were reviewed in this paper, and then the future development direction of proteomic in pharmacological study of Chinese medicinal formulae was put forward. This review is to provide the ideas and method for proteomic research on function mechanism of Chinese medicinal formulae. Copyright© by the Chinese Pharmaceutical Association.
Weniger, Markus; Engelmann, Julia C; Schultz, Jörg
2007-01-01
Background Regulation of gene expression is relevant to many areas of biology and medicine, in the study of treatments, diseases, and developmental stages. Microarrays can be used to measure the expression level of thousands of mRNAs at the same time, allowing insight into or comparison of different cellular conditions. The data derived out of microarray experiments is highly dimensional and often noisy, and interpretation of the results can get intricate. Although programs for the statistical analysis of microarray data exist, most of them lack an integration of analysis results and biological interpretation. Results We have developed GEPAT, Genome Expression Pathway Analysis Tool, offering an analysis of gene expression data under genomic, proteomic and metabolic context. We provide an integration of statistical methods for data import and data analysis together with a biological interpretation for subsets of probes or single probes on the chip. GEPAT imports various types of oligonucleotide and cDNA array data formats. Different normalization methods can be applied to the data, afterwards data annotation is performed. After import, GEPAT offers various statistical data analysis methods, as hierarchical, k-means and PCA clustering, a linear model based t-test or chromosomal profile comparison. The results of the analysis can be interpreted by enrichment of biological terms, pathway analysis or interaction networks. Different biological databases are included, to give various information for each probe on the chip. GEPAT offers no linear work flow, but allows the usage of any subset of probes and samples as a start for a new data analysis. GEPAT relies on established data analysis packages, offers a modular approach for an easy extension, and can be run on a computer grid to allow a large number of users. It is freely available under the LGPL open source license for academic and commercial users at . Conclusion GEPAT is a modular, scalable and professional-grade software integrating analysis and interpretation of microarray gene expression data. An installation available for academic users can be found at . PMID:17543125
Wilmes, Anja; Bielow, Chris; Ranninger, Christina; Bellwon, Patricia; Aschauer, Lydia; Limonciel, Alice; Chassaigne, Hubert; Kristl, Theresa; Aiche, Stephan; Huber, Christian G; Guillou, Claude; Hewitt, Philipp; Leonard, Martin O; Dekant, Wolfgang; Bois, Frederic; Jennings, Paul
2015-12-25
Cisplatin is one of the most widely used chemotherapeutic agents for the treatment of solid tumours. The major dose-limiting factor is nephrotoxicity, in particular in the proximal tubule. Here, we use an integrated omics approach, including transcriptomics, proteomics and metabolomics coupled to biokinetics to identify cell stress response pathways induced by cisplatin. The human renal proximal tubular cell line RPTEC/TERT1 was treated with sub-cytotoxic concentrations of cisplatin (0.5 and 2 μM) in a daily repeat dose treating regime for up to 14 days. Biokinetic analysis showed that cisplatin was taken up from the basolateral compartment, transported to the apical compartment, and accumulated in cells over time. This is in line with basolateral uptake of cisplatin via organic cation transporter 2 and bioactivation via gamma-glutamyl transpeptidase located on the apical side of proximal tubular cells. Cisplatin affected several pathways including, p53 signalling, Nrf2 mediated oxidative stress response, mitochondrial processes, mTOR and AMPK signalling. In addition, we identified novel pathways changed by cisplatin, including eIF2 signalling, actin nucleation via the ARP/WASP complex and regulation of cell polarization. In conclusion, using an integrated omic approach together with biokinetics we have identified both novel and established mechanisms of cisplatin toxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.
ProteoSign: an end-user online differential proteomics statistical analysis platform.
Efstathiou, Georgios; Antonakis, Andreas N; Pavlopoulos, Georgios A; Theodosiou, Theodosios; Divanach, Peter; Trudgian, David C; Thomas, Benjamin; Papanikolaou, Nikolas; Aivaliotis, Michalis; Acuto, Oreste; Iliopoulos, Ioannis
2017-07-03
Profiling of proteome dynamics is crucial for understanding cellular behavior in response to intrinsic and extrinsic stimuli and maintenance of homeostasis. Over the last 20 years, mass spectrometry (MS) has emerged as the most powerful tool for large-scale identification and characterization of proteins. Bottom-up proteomics, the most common MS-based proteomics approach, has always been challenging in terms of data management, processing, analysis and visualization, with modern instruments capable of producing several gigabytes of data out of a single experiment. Here, we present ProteoSign, a freely available web application, dedicated in allowing users to perform proteomics differential expression/abundance analysis in a user-friendly and self-explanatory way. Although several non-commercial standalone tools have been developed for post-quantification statistical analysis of proteomics data, most of them are not end-user appealing as they often require very stringent installation of programming environments, third-party software packages and sometimes further scripting or computer programming. To avoid this bottleneck, we have developed a user-friendly software platform accessible via a web interface in order to enable proteomics laboratories and core facilities to statistically analyse quantitative proteomics data sets in a resource-efficient manner. ProteoSign is available at http://bioinformatics.med.uoc.gr/ProteoSign and the source code at https://github.com/yorgodillo/ProteoSign. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Han, Kaikai; Zhao, Dongmin; Liu, Yuzhuo; Liu, Qingtao; Huang, Xinmei; Yang, Jing; An, Fengjiao; Li, Yin
2016-01-01
Duck Tembusu virus (DTMUV) is a newly emerging pathogenic flavivirus that has caused massive economic losses to the duck industry in China. DTMUV infection mainly results in significant decreases in egg production in egg-laying ducks within 1–2 weeks post infection. However, information on the comparative protein expression of host tissues in response to DTMUV infection is limited. In the present study, the cellular protein response to DTMUV infection in duck ovarian follicles was analyzed using nano-flow high-performance liquid chromatography-electrospray tandem mass spectrometry. Quantitative proteomic analysis revealed 131 differentially expressed proteins, among which 53 were up regulated and 78 were down regulated. The identified proteins were involved in the regulation of essential processes such as cellular structure and integrity, RNA processing, protein biosynthesis and modification, vesicle transport, signal transduction, and mitochondrial pathway. Some selected proteins that were found to be regulated in DTMUV-infected tissues were screened by quantitative real-time PCR to examine their regulation at the transcriptional level, western blot analysis was used to validate the changes of some selected proteins on translational level. To our knowledge, this study is the first to analyze the proteomic changes in duck ovarian follicles following DTMUV infection. The protein-related information obtained in this study may be useful to understand the host response to DTMUV infection and the inherent mechanism of DTMUV replication and pathogenicity. PMID:27066001
Gregorich, Zachery R; Peng, Ying; Cai, Wenxuan; Jin, Yutong; Wei, Liming; Chen, Albert J; McKiernan, Susan H; Aiken, Judd M; Moss, Richard L; Diffee, Gary M; Ge, Ying
2016-08-05
Sarcopenia, the loss of skeletal muscle mass and function with advancing age, is a significant cause of disability and loss of independence in the elderly and thus, represents a formidable challenge for the aging population. Nevertheless, the molecular mechanism(s) underlying sarcopenia-associated muscle dysfunction remain poorly understood. In this study, we employed an integrated approach combining top-down targeted proteomics with mechanical measurements to dissect the molecular mechanism(s) in age-related muscle dysfunction. Top-down targeted proteomic analysis uncovered a progressive age-related decline in the phosphorylation of myosin regulatory light chain (RLC), a critical protein involved in the modulation of muscle contractility, in the skeletal muscle of aging rats. Top-down tandem mass spectrometry analysis identified a previously unreported bis-phosphorylated proteoform of fast skeletal RLC and localized the sites of decreasing phosphorylation to Ser14/15. Of these sites, Ser14 phosphorylation represents a previously unidentified site of phosphorylation in RLC from fast-twitch skeletal muscle. Subsequent mechanical analysis of single fast-twitch fibers isolated from the muscles of rats of different ages revealed that the observed decline in RLC phosphorylation can account for age-related decreases in the contractile properties of sarcopenic fast-twitch muscles. These results strongly support a role for decreasing RLC phosphorylation in sarcopenia-associated muscle dysfunction and suggest that therapeutic modulation of RLC phosphorylation may represent a new avenue for the treatment of sarcopenia.
Tumor Cold Ischemia | Office of Cancer Clinical Proteomics Research
In a recently published manuscript in the journal of Molecular and Cellular Proteomics, researchers from the National Cancer Institutes (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) investigated the effect of cold ischemia on the proteome of fresh frozen tumors.
Proteomics wants cRacker: automated standardized data analysis of LC-MS derived proteomic data.
Zauber, Henrik; Schulze, Waltraud X
2012-11-02
The large-scale analysis of thousands of proteins under various experimental conditions or in mutant lines has gained more and more importance in hypothesis-driven scientific research and systems biology in the past years. Quantitative analysis by large scale proteomics using modern mass spectrometry usually results in long lists of peptide ion intensities. The main interest for most researchers, however, is to draw conclusions on the protein level. Postprocessing and combining peptide intensities of a proteomic data set requires expert knowledge, and the often repetitive and standardized manual calculations can be time-consuming. The analysis of complex samples can result in very large data sets (lists with several 1000s to 100,000 entries of different peptides) that cannot easily be analyzed using standard spreadsheet programs. To improve speed and consistency of the data analysis of LC-MS derived proteomic data, we developed cRacker. cRacker is an R-based program for automated downstream proteomic data analysis including data normalization strategies for metabolic labeling and label free quantitation. In addition, cRacker includes basic statistical analysis, such as clustering of data, or ANOVA and t tests for comparison between treatments. Results are presented in editable graphic formats and in list files.
Simulated linear test applied to quantitative proteomics.
Pham, T V; Jimenez, C R
2016-09-01
Omics studies aim to find significant changes due to biological or functional perturbation. However, gene and protein expression profiling experiments contain inherent technical variation. In discovery proteomics studies where the number of samples is typically small, technical variation plays an important role because it contributes considerably to the observed variation. Previous methods place both technical and biological variations in tightly integrated mathematical models that are difficult to adapt for different technological platforms. Our aim is to derive a statistical framework that allows the inclusion of a wide range of technical variability. We introduce a new method called the simulated linear test, or the s-test, that is easy to implement and easy to adapt for different models of technical variation. It generates virtual data points from the observed values according to a pre-defined technical distribution and subsequently employs linear modeling for significance analysis. We demonstrate the flexibility of the proposed approach by deriving a new significance test for quantitative discovery proteomics for which missing values have been a major issue for traditional methods such as the t-test. We evaluate the result on two label-free (phospho) proteomics datasets based on ion-intensity quantitation. Available at http://www.oncoproteomics.nl/software/stest.html : t.pham@vumc.nl. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Jiang, Ning; Liu, Hong-fang; Li, Si-di; Zhou, Wen-xia; Zhang, Yong-xiang; Zhang, Qi; Yan, Xian-zhong
2015-06-01
To investigate specific changes in metabolites and proteins of Kidney-Yin Deficiency Syndrome (KYDS) patients with diabetes mellitus (DM) in China. KYDS (n=29) and non-KYDS (n=23) patients with DM were recruited for this study. The KYDS was diagnosed by two senior TCM clinicians separately. The metabonomic and proteomic profiles of the patients were assessed using a metabonomic strategy based on NMR with multivariate analysis and a proteomic strategy based on MALDI-TOF-MS, respectively. Eighteen upregulated peptides and thirty downregulated peptides were observed in the plasma of the KYDS patients. Comparing the proteomic profiles of the KYDS and non-KYDS groups, however, no significantly differentially expressed peptides were found. At the same time, major metabolic alterations were found to distinguish the two groups, including eight significantly changed metabolites (creatinine, citrate, TMAO, phenylalanine, tyrosine, alanine, glycine and taurine). The levels of creatinine, citrate, TMAO, phenylalanine and tyrosine were decreased, whereas the levels of alanine, glycine and taurine were increased in the KYDS patients. These biochemical changes were found to be associated with alterations in amino acid metabolism, energy metabolism and gut microflora. The identification of distinct expression profiles of metabolites and signaling pathways in KYDS patients with DM suggests that there are indeed molecular signatures underlying the principles of 'Syndrome Differentiation' in traditional Chinese medicine.
Saw, Jimmy H; Mountain, Bruce W; Feng, Lu; Omelchenko, Marina V; Hou, Shaobin; Saito, Jennifer A; Stott, Matthew B; Li, Dan; Zhao, Guang; Wu, Junli; Galperin, Michael Y; Koonin, Eugene V; Makarova, Kira S; Wolf, Yuri I; Rigden, Daniel J; Dunfield, Peter F; Wang, Lei; Alam, Maqsudul
2008-01-01
Background Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. Results We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. Conclusions Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli. PMID:19014707
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saw, Jimmy H; Mountain, Bruce W; Feng, Lu
Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. We report here the complete genome sequence of A. flavithermus strain WK1, isolated from themore » waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.« less
Growth in spaceflight hardware results in alterations to the transcriptome and proteome.
Basu, Proma; Kruse, Colin P S; Luesse, Darron R; Wyatt, Sarah E
2017-11-01
The Biological Research in Canisters (BRIC) hardware has been used to house many biology experiments on both the Space Transport System (STS, commonly known as the space shuttle) and the International Space Station (ISS). However, microscopic examination of Arabidopsis seedlings by Johnson et al. (2015) indicated the hardware itself may affect cell morphology. The experiment herein was designed to assess the effects of the BRIC-Petri Dish Fixation Units (BRIC-PDFU) hardware on the transcriptome and proteome of Arabidopsis seedlings. To our knowledge, this is the first transcriptomic and proteomic comparison of Arabidopsis seedlings grown with and without hardware. Arabidopsis thaliana wild-type Columbia (Col-0) seeds were sterilized and bulk plated on forty-four 60 mm Petri plates, of which 22 were integrated into the BRIC-PDFU hardware and 22 were maintained in closed containers at Ohio University. Seedlings were grown for approximately 3 days, fixed with RNAlater ® and stored at -80 °C prior to RNA and protein extraction, with proteins separated into membrane and soluble fractions prior to analysis. The RNAseq analysis identified 1651 differentially expressed genes; MS/MS analysis identified 598 soluble and 589 membrane proteins differentially abundant both at p < .05. Fold enrichment analysis of gene ontology terms related to differentially expressed transcripts and proteins highlighted a variety of stress responses. Some of these genes and proteins have been previously identified in spaceflight experiments, indicating that these genes and proteins may be perturbed by both conditions. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Building ProteomeTools based on a complete synthetic human proteome
Zolg, Daniel P.; Wilhelm, Mathias; Schnatbaum, Karsten; Zerweck, Johannes; Knaute, Tobias; Delanghe, Bernard; Bailey, Derek J.; Gessulat, Siegfried; Ehrlich, Hans-Christian; Weininger, Maximilian; Yu, Peng; Schlegl, Judith; Kramer, Karl; Schmidt, Tobias; Kusebauch, Ulrike; Deutsch, Eric W.; Aebersold, Ruedi; Moritz, Robert L.; Wenschuh, Holger; Moehring, Thomas; Aiche, Stephan; Huhmer, Andreas; Reimer, Ulf; Kuster, Bernhard
2018-01-01
The ProteomeTools project builds molecular and digital tools from the human proteome to facilitate biomedical and life science research. Here, we report the generation and multimodal LC-MS/MS analysis of >330,000 synthetic tryptic peptides representing essentially all canonical human gene products and exemplify the utility of this data. The resource will be extended to >1 million peptides and all data will be shared with the community via ProteomicsDB and proteomeXchange. PMID:28135259
Comparative shotgun proteomics using spectral count data and quasi-likelihood modeling.
Li, Ming; Gray, William; Zhang, Haixia; Chung, Christine H; Billheimer, Dean; Yarbrough, Wendell G; Liebler, Daniel C; Shyr, Yu; Slebos, Robbert J C
2010-08-06
Shotgun proteomics provides the most powerful analytical platform for global inventory of complex proteomes using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and allows a global analysis of protein changes. Nevertheless, sampling of complex proteomes by current shotgun proteomics platforms is incomplete, and this contributes to variability in assessment of peptide and protein inventories by spectral counting approaches. Thus, shotgun proteomics data pose challenges in comparing proteomes from different biological states. We developed an analysis strategy using quasi-likelihood Generalized Linear Modeling (GLM), included in a graphical interface software package (QuasiTel) that reads standard output from protein assemblies created by IDPicker, an HTML-based user interface to query shotgun proteomic data sets. This approach was compared to four other statistical analysis strategies: Student t test, Wilcoxon rank test, Fisher's Exact test, and Poisson-based GLM. We analyzed the performance of these tests to identify differences in protein levels based on spectral counts in a shotgun data set in which equimolar amounts of 48 human proteins were spiked at different levels into whole yeast lysates. Both GLM approaches and the Fisher Exact test performed adequately, each with their unique limitations. We subsequently compared the proteomes of normal tonsil epithelium and HNSCC using this approach and identified 86 proteins with differential spectral counts between normal tonsil epithelium and HNSCC. We selected 18 proteins from this comparison for verification of protein levels between the individual normal and tumor tissues using liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM-MS). This analysis confirmed the magnitude and direction of the protein expression differences in all 6 proteins for which reliable data could be obtained. Our analysis demonstrates that shotgun proteomic data sets from different tissue phenotypes are sufficiently rich in quantitative information and that statistically significant differences in proteins spectral counts reflect the underlying biology of the samples.
Comparative Shotgun Proteomics Using Spectral Count Data and Quasi-Likelihood Modeling
2010-01-01
Shotgun proteomics provides the most powerful analytical platform for global inventory of complex proteomes using liquid chromatography−tandem mass spectrometry (LC−MS/MS) and allows a global analysis of protein changes. Nevertheless, sampling of complex proteomes by current shotgun proteomics platforms is incomplete, and this contributes to variability in assessment of peptide and protein inventories by spectral counting approaches. Thus, shotgun proteomics data pose challenges in comparing proteomes from different biological states. We developed an analysis strategy using quasi-likelihood Generalized Linear Modeling (GLM), included in a graphical interface software package (QuasiTel) that reads standard output from protein assemblies created by IDPicker, an HTML-based user interface to query shotgun proteomic data sets. This approach was compared to four other statistical analysis strategies: Student t test, Wilcoxon rank test, Fisher’s Exact test, and Poisson-based GLM. We analyzed the performance of these tests to identify differences in protein levels based on spectral counts in a shotgun data set in which equimolar amounts of 48 human proteins were spiked at different levels into whole yeast lysates. Both GLM approaches and the Fisher Exact test performed adequately, each with their unique limitations. We subsequently compared the proteomes of normal tonsil epithelium and HNSCC using this approach and identified 86 proteins with differential spectral counts between normal tonsil epithelium and HNSCC. We selected 18 proteins from this comparison for verification of protein levels between the individual normal and tumor tissues using liquid chromatography−multiple reaction monitoring mass spectrometry (LC−MRM-MS). This analysis confirmed the magnitude and direction of the protein expression differences in all 6 proteins for which reliable data could be obtained. Our analysis demonstrates that shotgun proteomic data sets from different tissue phenotypes are sufficiently rich in quantitative information and that statistically significant differences in proteins spectral counts reflect the underlying biology of the samples. PMID:20586475
Ichibangase, Tomoko; Sugawara, Yasuhiro; Yamabe, Akio; Koshiyama, Akiyo; Yoshimura, Akari; Enomoto, Takemi; Imai, Kazuhiro
2012-01-01
Systems biology aims to understand biological phenomena in terms of complex biological and molecular interactions, and thus proteomics plays an important role in elucidating protein networks. However, many proteomic methods have suffered from their high variability, resulting in only showing altered protein names. Here, we propose a strategy for elucidating cellular protein networks based on an FD-LC-MS/MS proteomic method. The strategy permits reproducible relative quantitation of differences in protein levels between different cell populations and allows for integration of the data with those obtained through other methods. We demonstrate the validity of the approach through a comparison of differential protein expression in normal and conditional superoxide dismutase 1 gene knockout cells and believe that beginning with an FD-LC-MS/MS proteomic approach will enable researchers to elucidate protein networks more easily and comprehensively. PMID:23029042
Characterization of individual mouse cerebrospinal fluid proteomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Jeffrey S.; Angel, Thomas E.; Chavkin, Charles
2014-03-20
Analysis of cerebrospinal fluid (CSF) offers key insight into the status of the central nervous system. Characterization of murine CSF proteomes can provide a valuable resource for studying central nervous system injury and disease in animal models. However, the small volume of CSF in mice has thus far limited individual mouse proteome characterization. Through non-terminal CSF extractions in C57Bl/6 mice and high-resolution liquid chromatography-mass spectrometry analysis of individual murine samples, we report the most comprehensive proteome characterization of individual murine CSF to date. Utilizing stringent protein inclusion criteria that required the identification of at least two unique peptides (1% falsemore » discovery rate at the peptide level) we identified a total of 566 unique proteins, including 128 proteins from three individual CSF samples that have been previously identified in brain tissue. Our methods and analysis provide a mechanism for individual murine CSF proteome analysis.« less
[Methods of quantitative proteomics].
Kopylov, A T; Zgoda, V G
2007-01-01
In modern science proteomic analysis is inseparable from other fields of systemic biology. Possessing huge resources quantitative proteomics operates colossal information on molecular mechanisms of life. Advances in proteomics help researchers to solve complex problems of cell signaling, posttranslational modification, structure and functional homology of proteins, molecular diagnostics etc. More than 40 various methods have been developed in proteomics for quantitative analysis of proteins. Although each method is unique and has certain advantages and disadvantages all these use various isotope labels (tags). In this review we will consider the most popular and effective methods employing both chemical modifications of proteins and also metabolic and enzymatic methods of isotope labeling.
Quantifying Ubiquitin Signaling
Ordureau, Alban; Münch, Christian; Harper, J. Wade
2015-01-01
Ubiquitin (UB)-driven signaling systems permeate biology, and are often integrated with other types of post-translational modifications (PTMs), most notably phosphorylation. Flux through such pathways is typically dictated by the fractional stoichiometry of distinct regulatory modifications and protein assemblies as well as the spatial organization of pathway components. Yet, we rarely understand the dynamics and stoichiometry of rate-limiting intermediates along a reaction trajectory. Here, we review how quantitative proteomic tools and enrichment strategies are being used to quantify UB-dependent signaling systems, and to integrate UB signaling with regulatory phosphorylation events. A key regulatory feature of ubiquitylation is that the identity of UB chain linkage types can control downstream processes. We also describe how proteomic and enzymological tools can be used to identify and quantify UB chain synthesis and linkage preferences. The emergence of sophisticated quantitative proteomic approaches will set a new standard for elucidating biochemical mechanisms of UB-driven signaling systems. PMID:26000850
Analyzing large-scale proteomics projects with latent semantic indexing.
Klie, Sebastian; Martens, Lennart; Vizcaíno, Juan Antonio; Côté, Richard; Jones, Phil; Apweiler, Rolf; Hinneburg, Alexander; Hermjakob, Henning
2008-01-01
Since the advent of public data repositories for proteomics data, readily accessible results from high-throughput experiments have been accumulating steadily. Several large-scale projects in particular have contributed substantially to the amount of identifications available to the community. Despite the considerable body of information amassed, very few successful analyses have been performed and published on this data, leveling off the ultimate value of these projects far below their potential. A prominent reason published proteomics data is seldom reanalyzed lies in the heterogeneous nature of the original sample collection and the subsequent data recording and processing. To illustrate that at least part of this heterogeneity can be compensated for, we here apply a latent semantic analysis to the data contributed by the Human Proteome Organization's Plasma Proteome Project (HUPO PPP). Interestingly, despite the broad spectrum of instruments and methodologies applied in the HUPO PPP, our analysis reveals several obvious patterns that can be used to formulate concrete recommendations for optimizing proteomics project planning as well as the choice of technologies used in future experiments. It is clear from these results that the analysis of large bodies of publicly available proteomics data by noise-tolerant algorithms such as the latent semantic analysis holds great promise and is currently underexploited.
NCI's Office of Cancer Clinical Proteomics Research authored a review of the current state of clinical proteomics in the peer-reviewed Journal of Proteome Research. The review highlights outcomes from the CPTC program and also provides a thorough overview of the different technologies that have pushed the field forward. Additionally, the review provides a vision for moving the field forward through linking advances in genomic and proteomic analysis to develop new, molecularly targeted interventions.
Tholey, Andreas; Taylor, Nicolas L; Heazlewood, Joshua L; Bendixen, Emøke
2017-12-01
Mapping of the human proteome has advanced significantly in recent years and will provide a knowledge base to accelerate our understanding of how proteins and protein networks can affect human health and disease. However, providing solutions to human health challenges will likely fail if insights are exclusively based on studies of human samples and human proteomes. In recent years, it has become evident that human health depends on an integrated understanding of the many species that make human life possible. These include the commensal microorganisms that are essential to human life, pathogens, and food species as well as the classic model organisms that enable studies of biological mechanisms. The Human Proteome Organization (HUPO) initiative on multiorganism proteomes (iMOP) works to support proteome research undertaken on nonhuman species that remain widely under-studied compared with the progress in human proteome research. This perspective argues the need for further research on multiple species that impact human life. We also present an update on recent progress in model organisms, microbiota, and food species, address the emerging problem of antibiotics resistance, and outline how iMOP activities could lead to a more inclusive approach for the human proteome project (HPP) to better support proteome research aimed at improving human health and furthering knowledge on human biology.
Clinical proteomic analysis of scrub typhus infection.
Park, Edmond Changkyun; Lee, Sang-Yeop; Yun, Sung Ho; Choi, Chi-Won; Lee, Hayoung; Song, Hyun Seok; Jun, Sangmi; Kim, Gun-Hwa; Lee, Chang-Seop; Kim, Seung Il
2018-01-01
Scrub typhus is an acute and febrile infectious disease caused by the Gram-negative α-proteobacterium Orientia tsutsugamushi from the family Rickettsiaceae that is widely distributed in Northern, Southern and Eastern Asia. In the present study, we analysed the serum proteome of scrub typhus patients to investigate specific clinical protein patterns in an attempt to explain pathophysiology and discover potential biomarkers of infection. Serum samples were collected from three patients (before and after treatment with antibiotics) and three healthy subjects. One-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis followed by liquid chromatography-tandem mass spectrometry was performed to identify differentially abundant proteins using quantitative proteomic approaches. Bioinformatic analysis was then performed using Ingenuity Pathway Analysis. Proteomic analysis identified 236 serum proteins, of which 32 were differentially expressed in normal subjects, naive scrub typhus patients and patients treated with antibiotics. Comparative bioinformatic analysis of the identified proteins revealed up-regulation of proteins involved in immune responses, especially complement system, following infection with O. tsutsugamushi , and normal expression was largely rescued by antibiotic treatment. This is the first proteomic study of clinical serum samples from scrub typhus patients. Proteomic analysis identified changes in protein expression upon infection with O. tsutsugamushi and following antibiotic treatment. Our results provide valuable information for further investigation of scrub typhus therapy and diagnosis.
Moreira, Leandro M; Soares, Márcia R; Facincani, Agda P; Ferreira, Cristiano B; Ferreira, Rafael M; Ferro, Maria I T; Gozzo, Fábio C; Felestrino, Érica B; Assis, Renata A B; Garcia, Camila Carrião M; Setubal, João C; Ferro, Jesus A; de Oliveira, Julio C F
2017-07-11
Xanthomonas citri subsp. citri (Xac) is the causal agent of citrus canker. A proteomic analysis under in planta infectious and non-infectious conditions was conducted in order to increase our knowledge about the adaptive process of Xac during infection. For that, a 2D-based proteomic analysis of Xac at 1, 3 and 5 days after inoculation, in comparison to Xac growth in NB media was carried out and followed by MALDI-TOF-TOF identification of 124 unique differentially abundant proteins. Among them, 79 correspond to up-regulated proteins in at least one of the three stages of infection. Our results indicate an important role of proteins related to biofilm synthesis, lipopolysaccharides biosynthesis, and iron uptake and metabolism as possible modulators of plant innate immunity, and revealed an intricate network of proteins involved in reactive oxygen species adaptation during Plants` Oxidative Burst response. We also identified proteins previously unknown to be involved in Xac-Citrus interaction, including the hypothetical protein XAC3981. A mutant strain for this gene has proved to be non-pathogenic in respect to classical symptoms of citrus canker induced in compatible plants. This is the first time that a protein repertoire is shown to be active and working in an integrated manner during the infection process in a compatible host, pointing to an elaborate mechanism for adaptation of Xac once inside the plant.
Quantitative and temporal proteome analysis of butyrate-treated colorectal cancer cells.
Tan, Hwee Tong; Tan, Sandra; Lin, Qingsong; Lim, Teck Kwang; Hew, Choy Leong; Chung, Maxey C M
2008-06-01
Colorectal cancer is one of the most common cancers in developed countries, and its incidence is negatively associated with high dietary fiber intake. Butyrate, a short-chain fatty acid fermentation by-product of fiber induces cell maturation with the promotion of growth arrest, differentiation, and/or apoptosis of cancer cells. The stimulation of cell maturation by butyrate in colonic cancer cells follows a temporal progression from the early phase of growth arrest to the activation of apoptotic cascades. Previously we performed two-dimensional DIGE to identify differentially expressed proteins induced by 24-h butyrate treatment of HCT-116 colorectal cancer cells. Herein we used quantitative proteomics approaches using iTRAQ (isobaric tags for relative and absolute quantitation), a stable isotope labeling methodology that enables multiplexing of four samples, for a temporal study of HCT-116 cells treated with butyrate. In addition, cleavable ICAT, which selectively tags cysteine-containing proteins, was also used, and the results complemented those obtained from the iTRAQ strategy. Selected protein targets were validated by real time PCR and Western blotting. A model is proposed to illustrate our findings from this temporal analysis of the butyrate-responsive proteome that uncovered several integrated cellular processes and pathways involved in growth arrest, apoptosis, and metastasis. These signature clusters of butyrate-regulated pathways are potential targets for novel chemopreventive and therapeutic drugs for treatment of colorectal cancer.
Wang, Zhenchao; Yu, Lu; Jin, Linhong; Wang, Wenli; Zhao, Qi; Ran, Longlu; Li, Xiangyang; Chen, Zhuo; Guo, Rong; Wei, Yongtian; Yang, Zhongcheng; Liu, Enlong; Hu, Deyu; Song, Baoan
2017-02-22
Diseases caused by southern rice black-streaked dwarf virus (SRBSDV) and rice ragged stunt virus (RRSV) considerably decrease grain yield. Therefore, determining rice cultivars with high resistance to SRBSDV and RRSV is necessary. In this study, rice cultivars with high resistance to SRBSDV and RRSV were evaluated through field trials in Shidian and Mangshi county, Yunnan province, China. SYBR Green I-based quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to quantitatively detect virus gene expression levels in different rice varieties. The following parameters were applied to evaluate rice resistance: acre yield (A.Y.), incidence of infected plants (I.I.P.), virus load (V.L.), disease index (D.I.), and insect quantity (I.Q.) per 100 clusters. Zhongzheyou1 (Z1) and Liangyou2186 (L2186) were considered the most suitable varieties with integrated higher A.Y., lower I.I.P., V.L., D.I. and I.Q. In order to investigate the mechanism of rice resistance, comparative label-free shotgun liquid chromatography tandem-mass spectrometry (LC-MS/MS) proteomic approaches were applied to comprehensively describe the proteomics of rice varieties' SRBSDV tolerance. Systemic acquired resistance (SAR)-related proteins in Z1 and L2186 may result in the superior resistance of these varieties compared with Fengyouxiangzhan (FYXZ).
A Comprehensive Transcriptomic and Proteomic Analysis of Hydra Head Regeneration
Petersen, Hendrik O.; Höger, Stefanie K.; Looso, Mario; Lengfeld, Tobias; Kuhn, Anne; Warnken, Uwe; Nishimiya-Fujisawa, Chiemi; Schnölzer, Martina; Krüger, Marcus; Özbek, Suat; Simakov, Oleg; Holstein, Thomas W.
2015-01-01
The cnidarian freshwater polyp Hydra sp. exhibits an unparalleled regeneration capacity in the animal kingdom. Using an integrative transcriptomic and stable isotope labeling by amino acids in cell culture proteomic/phosphoproteomic approach, we studied stem cell-based regeneration in Hydra polyps. As major contributors to head regeneration, we identified diverse signaling pathways adopted for the regeneration response as well as enriched novel genes. Our global analysis reveals two distinct molecular cascades: an early injury response and a subsequent, signaling driven patterning of the regenerating tissue. A key factor of the initial injury response is a general stabilization of proteins and a net upregulation of transcripts, which is followed by a subsequent activation cascade of signaling molecules including Wnts and transforming growth factor (TGF) beta-related factors. We observed moderate overlap between the factors contributing to proteomic and transcriptomic responses suggesting a decoupled regulation between the transcriptional and translational levels. Our data also indicate that interstitial stem cells and their derivatives (e.g., neurons) have no major role in Hydra head regeneration. Remarkably, we found an enrichment of evolutionarily more recent genes in the early regeneration response, whereas conserved genes are more enriched in the late phase. In addition, genes specific to the early injury response were enriched in transposon insertions. Genetic dynamicity and taxon-specific factors might therefore play a hitherto underestimated role in Hydra regeneration. PMID:25841488
Omenn, Gilbert S; Lane, Lydie; Lundberg, Emma K; Beavis, Ronald C; Overall, Christopher M; Deutsch, Eric W
2016-11-04
The HUPO Human Proteome Project (HPP) has two overall goals: (1) stepwise completion of the protein parts list-the draft human proteome including confidently identifying and characterizing at least one protein product from each protein-coding gene, with increasing emphasis on sequence variants, post-translational modifications (PTMs), and splice isoforms of those proteins; and (2) making proteomics an integrated counterpart to genomics throughout the biomedical and life sciences community. PeptideAtlas and GPMDB reanalyze all major human mass spectrometry data sets available through ProteomeXchange with standardized protocols and stringent quality filters; neXtProt curates and integrates mass spectrometry and other findings to present the most up to date authorative compendium of the human proteome. The HPP Guidelines for Mass Spectrometry Data Interpretation version 2.1 were applied to manuscripts submitted for this 2016 C-HPP-led special issue [ www.thehpp.org/guidelines ]. The Human Proteome presented as neXtProt version 2016-02 has 16,518 confident protein identifications (Protein Existence [PE] Level 1), up from 13,664 at 2012-12, 15,646 at 2013-09, and 16,491 at 2014-10. There are 485 proteins that would have been PE1 under the Guidelines v1.0 from 2012 but now have insufficient evidence due to the agreed-upon more stringent Guidelines v2.0 to reduce false positives. neXtProt and PeptideAtlas now both require two non-nested, uniquely mapping (proteotypic) peptides of at least 9 aa in length. There are 2,949 missing proteins (PE2+3+4) as the baseline for submissions for this fourth annual C-HPP special issue of Journal of Proteome Research. PeptideAtlas has 14,629 canonical (plus 1187 uncertain and 1755 redundant) entries. GPMDB has 16,190 EC4 entries, and the Human Protein Atlas has 10,475 entries with supportive evidence. neXtProt, PeptideAtlas, and GPMDB are rich resources of information about post-translational modifications (PTMs), single amino acid variants (SAAVSs), and splice isoforms. Meanwhile, the Biology- and Disease-driven (B/D)-HPP has created comprehensive SRM resources, generated popular protein lists to guide targeted proteomics assays for specific diseases, and launched an Early Career Researchers initiative.
Röst, Hannes L; Liu, Yansheng; D'Agostino, Giuseppe; Zanella, Matteo; Navarro, Pedro; Rosenberger, George; Collins, Ben C; Gillet, Ludovic; Testa, Giuseppe; Malmström, Lars; Aebersold, Ruedi
2016-09-01
Next-generation mass spectrometric (MS) techniques such as SWATH-MS have substantially increased the throughput and reproducibility of proteomic analysis, but ensuring consistent quantification of thousands of peptide analytes across multiple liquid chromatography-tandem MS (LC-MS/MS) runs remains a challenging and laborious manual process. To produce highly consistent and quantitatively accurate proteomics data matrices in an automated fashion, we developed TRIC (http://proteomics.ethz.ch/tric/), a software tool that utilizes fragment-ion data to perform cross-run alignment, consistent peak-picking and quantification for high-throughput targeted proteomics. TRIC reduced the identification error compared to a state-of-the-art SWATH-MS analysis without alignment by more than threefold at constant recall while correcting for highly nonlinear chromatographic effects. On a pulsed-SILAC experiment performed on human induced pluripotent stem cells, TRIC was able to automatically align and quantify thousands of light and heavy isotopic peak groups. Thus, TRIC fills a gap in the pipeline for automated analysis of massively parallel targeted proteomics data sets.
Architecture of a Host-Parasite Interface: Complex Targeting Mechanisms Revealed Through Proteomics.
Gadelha, Catarina; Zhang, Wenzhu; Chamberlain, James W; Chait, Brian T; Wickstead, Bill; Field, Mark C
2015-07-01
Surface membrane organization and composition is key to cellular function, and membrane proteins serve many essential roles in endocytosis, secretion, and cell recognition. The surface of parasitic organisms, however, is a double-edged sword; this is the primary interface between parasites and their hosts, and those crucial cellular processes must be carried out while avoiding elimination by the host immune defenses. For extracellular African trypanosomes, the surface is partitioned such that all endo- and exocytosis is directed through a specific membrane region, the flagellar pocket, in which it is thought the majority of invariant surface proteins reside. However, very few of these proteins have been identified, severely limiting functional studies, and hampering the development of potential treatments. Here we used an integrated biochemical, proteomic and bioinformatic strategy to identify surface components of the human parasite Trypanosoma brucei. This surface proteome contains previously known flagellar pocket proteins as well as multiple novel components, and is significantly enriched in proteins that are essential for parasite survival. Molecules with receptor-like properties are almost exclusively parasite-specific, whereas transporter-like proteins are conserved in model organisms. Validation shows that the majority of surface proteome constituents are bona fide surface-associated proteins and, as expected, most present at the flagellar pocket. Moreover, the largest systematic analysis of trypanosome surface molecules to date provides evidence that the cell surface is compartmentalized into three distinct domains with free diffusion of molecules in each, but selective, asymmetric traffic between. This work provides a paradigm for the compartmentalization of a cell surface and a resource for its analysis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Cuadrat, Rafael R C; da Serra Cruz, Sérgio Manuel; Tschoeke, Diogo Antônio; Silva, Edno; Tosta, Frederico; Jucá, Henrique; Jardim, Rodrigo; Campos, Maria Luiza M; Mattoso, Marta; Dávila, Alberto M R
2014-08-01
A key focus in 21(st) century integrative biology and drug discovery for neglected tropical and other diseases has been the use of BLAST-based computational methods for identification of orthologous groups in pathogenic organisms to discern orthologs, with a view to evaluate similarities and differences among species, and thus allow the transfer of annotation from known/curated proteins to new/non-annotated ones. We used here a profile-based sensitive methodology to identify distant homologs, coupled to the NCBI's COG (Unicellular orthologs) and KOG (Eukaryote orthologs), permitting us to perform comparative genomics analyses on five protozoan genomes. OrthoSearch was used in five protozoan proteomes showing that 3901 and 7473 orthologs can be identified by comparison with COG and KOG proteomes, respectively. The core protozoa proteome inferred was 418 Protozoa-COG orthologous groups and 704 Protozoa-KOG orthologous groups: (i) 31.58% (132/418) belongs to the category J (translation, ribosomal structure, and biogenesis), and 9.81% (41/418) to the category O (post-translational modification, protein turnover, chaperones) using COG; (ii) 21.45% (151/704) belongs to the categories J, and 13.92% (98/704) to the O using KOG. The phylogenomic analysis showed four well-supported clades for Eukarya, discriminating Multicellular [(i) human, fly, plant and worm] and Unicellular [(ii) yeast, (iii) fungi, and (iv) protozoa] species. These encouraging results attest to the usefulness of the profile-based methodology for comparative genomics to accelerate semi-automatic re-annotation, especially of the protozoan proteomes. This approach may also lend itself for applications in global health, for example, in the case of novel drug target discovery against pathogenic organisms previously considered difficult to research with traditional drug discovery tools.
Cuadrat, Rafael R. C.; da Serra Cruz, Sérgio Manuel; Tschoeke, Diogo Antônio; Silva, Edno; Tosta, Frederico; Jucá, Henrique; Jardim, Rodrigo; Campos, Maria Luiza M.; Mattoso, Marta
2014-01-01
Abstract A key focus in 21st century integrative biology and drug discovery for neglected tropical and other diseases has been the use of BLAST-based computational methods for identification of orthologous groups in pathogenic organisms to discern orthologs, with a view to evaluate similarities and differences among species, and thus allow the transfer of annotation from known/curated proteins to new/non-annotated ones. We used here a profile-based sensitive methodology to identify distant homologs, coupled to the NCBI's COG (Unicellular orthologs) and KOG (Eukaryote orthologs), permitting us to perform comparative genomics analyses on five protozoan genomes. OrthoSearch was used in five protozoan proteomes showing that 3901 and 7473 orthologs can be identified by comparison with COG and KOG proteomes, respectively. The core protozoa proteome inferred was 418 Protozoa-COG orthologous groups and 704 Protozoa-KOG orthologous groups: (i) 31.58% (132/418) belongs to the category J (translation, ribosomal structure, and biogenesis), and 9.81% (41/418) to the category O (post-translational modification, protein turnover, chaperones) using COG; (ii) 21.45% (151/704) belongs to the categories J, and 13.92% (98/704) to the O using KOG. The phylogenomic analysis showed four well-supported clades for Eukarya, discriminating Multicellular [(i) human, fly, plant and worm] and Unicellular [(ii) yeast, (iii) fungi, and (iv) protozoa] species. These encouraging results attest to the usefulness of the profile-based methodology for comparative genomics to accelerate semi-automatic re-annotation, especially of the protozoan proteomes. This approach may also lend itself for applications in global health, for example, in the case of novel drug target discovery against pathogenic organisms previously considered difficult to research with traditional drug discovery tools. PMID:24960463
Schilling, Birgit; Rardin, Matthew J; MacLean, Brendan X; Zawadzka, Anna M; Frewen, Barbara E; Cusack, Michael P; Sorensen, Dylan J; Bereman, Michael S; Jing, Enxuan; Wu, Christine C; Verdin, Eric; Kahn, C Ronald; Maccoss, Michael J; Gibson, Bradford W
2012-05-01
Despite advances in metabolic and postmetabolic labeling methods for quantitative proteomics, there remains a need for improved label-free approaches. This need is particularly pressing for workflows that incorporate affinity enrichment at the peptide level, where isobaric chemical labels such as isobaric tags for relative and absolute quantitation and tandem mass tags may prove problematic or where stable isotope labeling with amino acids in cell culture labeling cannot be readily applied. Skyline is a freely available, open source software tool for quantitative data processing and proteomic analysis. We expanded the capabilities of Skyline to process ion intensity chromatograms of peptide analytes from full scan mass spectral data (MS1) acquired during HPLC MS/MS proteomic experiments. Moreover, unlike existing programs, Skyline MS1 filtering can be used with mass spectrometers from four major vendors, which allows results to be compared directly across laboratories. The new quantitative and graphical tools now available in Skyline specifically support interrogation of multiple acquisitions for MS1 filtering, including visual inspection of peak picking and both automated and manual integration, key features often lacking in existing software. In addition, Skyline MS1 filtering displays retention time indicators from underlying MS/MS data contained within the spectral library to ensure proper peak selection. The modular structure of Skyline also provides well defined, customizable data reports and thus allows users to directly connect to existing statistical programs for post hoc data analysis. To demonstrate the utility of the MS1 filtering approach, we have carried out experiments on several MS platforms and have specifically examined the performance of this method to quantify two important post-translational modifications: acetylation and phosphorylation, in peptide-centric affinity workflows of increasing complexity using mouse and human models.
Schilling, Birgit; Rardin, Matthew J.; MacLean, Brendan X.; Zawadzka, Anna M.; Frewen, Barbara E.; Cusack, Michael P.; Sorensen, Dylan J.; Bereman, Michael S.; Jing, Enxuan; Wu, Christine C.; Verdin, Eric; Kahn, C. Ronald; MacCoss, Michael J.; Gibson, Bradford W.
2012-01-01
Despite advances in metabolic and postmetabolic labeling methods for quantitative proteomics, there remains a need for improved label-free approaches. This need is particularly pressing for workflows that incorporate affinity enrichment at the peptide level, where isobaric chemical labels such as isobaric tags for relative and absolute quantitation and tandem mass tags may prove problematic or where stable isotope labeling with amino acids in cell culture labeling cannot be readily applied. Skyline is a freely available, open source software tool for quantitative data processing and proteomic analysis. We expanded the capabilities of Skyline to process ion intensity chromatograms of peptide analytes from full scan mass spectral data (MS1) acquired during HPLC MS/MS proteomic experiments. Moreover, unlike existing programs, Skyline MS1 filtering can be used with mass spectrometers from four major vendors, which allows results to be compared directly across laboratories. The new quantitative and graphical tools now available in Skyline specifically support interrogation of multiple acquisitions for MS1 filtering, including visual inspection of peak picking and both automated and manual integration, key features often lacking in existing software. In addition, Skyline MS1 filtering displays retention time indicators from underlying MS/MS data contained within the spectral library to ensure proper peak selection. The modular structure of Skyline also provides well defined, customizable data reports and thus allows users to directly connect to existing statistical programs for post hoc data analysis. To demonstrate the utility of the MS1 filtering approach, we have carried out experiments on several MS platforms and have specifically examined the performance of this method to quantify two important post-translational modifications: acetylation and phosphorylation, in peptide-centric affinity workflows of increasing complexity using mouse and human models. PMID:22454539
Balabanov, Stefan; Wilhelm, Thomas; Venz, Simone; Keller, Gunhild; Scharf, Christian; Pospisil, Heike; Braig, Melanie; Barett, Christine; Bokemeyer, Carsten; Walther, Reinhard; Brümmendorf, Tim H; Schuppert, Andreas
2013-01-01
In drug discovery, the characterisation of the precise modes of action (MoA) and of unwanted off-target effects of novel molecularly targeted compounds is of highest relevance. Recent approaches for identification of MoA have employed various techniques for modeling of well defined signaling pathways including structural information, changes in phenotypic behavior of cells and gene expression patterns after drug treatment. However, efficient approaches focusing on proteome wide data for the identification of MoA including interference with mutations are underrepresented. As mutations are key drivers of drug resistance in molecularly targeted tumor therapies, efficient analysis and modeling of downstream effects of mutations on drug MoA is a key to efficient development of improved targeted anti-cancer drugs. Here we present a combination of a global proteome analysis, reengineering of network models and integration of apoptosis data used to infer the mode-of-action of various tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML) cell lines expressing wild type as well as TKI resistance conferring mutants of BCR-ABL. The inferred network models provide a tool to predict the main MoA of drugs as well as to grouping of drugs with known similar kinase inhibitory activity patterns in comparison to drugs with an additional MoA. We believe that our direct network reconstruction approach, demonstrated on proteomics data, can provide a complementary method to the established network reconstruction approaches for the preclinical modeling of the MoA of various types of targeted drugs in cancer treatment. Hence it may contribute to the more precise prediction of clinically relevant on- and off-target effects of TKIs.
Balabanov, Stefan; Wilhelm, Thomas; Venz, Simone; Keller, Gunhild; Scharf, Christian; Pospisil, Heike; Braig, Melanie; Barett, Christine; Bokemeyer, Carsten; Walther, Reinhard
2013-01-01
In drug discovery, the characterisation of the precise modes of action (MoA) and of unwanted off-target effects of novel molecularly targeted compounds is of highest relevance. Recent approaches for identification of MoA have employed various techniques for modeling of well defined signaling pathways including structural information, changes in phenotypic behavior of cells and gene expression patterns after drug treatment. However, efficient approaches focusing on proteome wide data for the identification of MoA including interference with mutations are underrepresented. As mutations are key drivers of drug resistance in molecularly targeted tumor therapies, efficient analysis and modeling of downstream effects of mutations on drug MoA is a key to efficient development of improved targeted anti-cancer drugs. Here we present a combination of a global proteome analysis, reengineering of network models and integration of apoptosis data used to infer the mode-of-action of various tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML) cell lines expressing wild type as well as TKI resistance conferring mutants of BCR-ABL. The inferred network models provide a tool to predict the main MoA of drugs as well as to grouping of drugs with known similar kinase inhibitory activity patterns in comparison to drugs with an additional MoA. We believe that our direct network reconstruction approach, demonstrated on proteomics data, can provide a complementary method to the established network reconstruction approaches for the preclinical modeling of the MoA of various types of targeted drugs in cancer treatment. Hence it may contribute to the more precise prediction of clinically relevant on- and off-target effects of TKIs. PMID:23326482
Preprocessing and Analysis of LC-MS-Based Proteomic Data
Tsai, Tsung-Heng; Wang, Minkun; Ressom, Habtom W.
2016-01-01
Liquid chromatography coupled with mass spectrometry (LC-MS) has been widely used for profiling protein expression levels. This chapter is focused on LC-MS data preprocessing, which is a crucial step in the analysis of LC-MS based proteomics. We provide a high-level overview, highlight associated challenges, and present a step-by-step example for analysis of data from LC-MS based untargeted proteomic study. Furthermore, key procedures and relevant issues with the subsequent analysis by multiple reaction monitoring (MRM) are discussed. PMID:26519169
Metabolome and proteome profiling of complex I deficiency induced by rotenone.
Gielisch, Ina; Meierhofer, David
2015-01-02
Complex I (CI; NADH dehydrogenase) deficiency causes mitochondrial diseases, including Leigh syndrome. A variety of clinical symptoms of CI deficiency are known, including neurodegeneration. Here, we report an integrative study combining liquid chromatography-mass spectrometry (LC-MS)-based metabolome and proteome profiling in CI deficient HeLa cells. We report a rapid LC-MS-based method for the relative quantification of targeted metabolome profiling with an additional layer of confidence by applying multiple reaction monitoring (MRM) ion ratios for further identity confirmation and robustness. The proteome was analyzed by label-free quantification (LFQ). More than 6000 protein groups were identified. Pathway and network analyses revealed that the respiratory chain was highly deregulated, with metabolites such as FMN, FAD, NAD(+), and ADP, direct players of the OXPHOS system, and metabolites of the TCA cycle decreased up to 100-fold. Synthesis of functional iron-sulfur clusters, which are of central importance for the electron transfer chain, and degradation products like bilirubin were also significantly reduced. Glutathione metabolism on the pathway level, as well as individual metabolite components such as NADPH, glutathione (GSH), and oxidized glutathione (GSSG), was downregulated. Overall, metabolome and proteome profiles in CI deficient cells correlated well, supporting our integrated approach.
CSF proteomic fingerprints for HIV-associated cognitive impairment.
Laspiur, Juliana Pérez; Anderson, Eric R; Ciborowski, Pawel; Wojna, Valerie; Rozek, Wojciech; Duan, Fenghai; Mayo, Raul; Rodríguez, Elaine; Plaud-Valentín, Marinés; Rodríguez-Orengo, José; Gendelman, Howard E; Meléndez, Loyda M
2007-12-01
Cognitive impairment remains a major complication of advanced human immunodeficiency virus (HIV) infection despite the widespread use of anti-retroviral therapy. Diagnosis is made by exclusion making biomarkers of great potential use. Thus, we used an integrated proteomics platform to assess cerebrospinal fluid protein profiles from 50 HIV-1 seropositive Hispanic women. Nine of 38 proteins identified were unique in those patients with cognitive impairment (CI). These proteins were linked to cell signaling, structural function, and antioxidant activities. This work highlights, in a preliminary manner, the utility of proteomic profiling for biomarker discovery for HIV-1 associated cognitive dysfunction.
CSF proteomic fingerprints for HIV- associated cognitive impairment
Laspiur, Juliana Pérez; Anderson, Eric R.; Ciborowski, Pawel; Wojna, Valerie; Rozek, Wojciech; Duan, Fenghai; Mayo, Raul; Rodríguez, Elaine; Plaud-Valentín, Marinés; Rodríguez-Orengo, José; Gendelman, Howard E.; Meléndez, Loyda M.
2008-01-01
Cognitive impairment remains a major complication of advanced human immunodeficiency virus (HIV) infection despite the wide spread use of anti-retroviral therapy. Diagnosis is made by exclusion making biomarkers of great potential use. Thus, we used an integrated proteomics platform to assess cerebrospinal fluid protein profiles from 50 HIV-1 seropositive Hispanic women. Nine of 38 proteins identified were unique in those patients with cognitive impairment. These proteins were linked to cell signaling, structural function, and antioxidant activities. This work highlights, in a preliminary manner, the utility of proteomic profiling for biomarker discovery for HIV-1 associated cognitive dysfunction. PMID:17950469
NCI's Proteome Characterization Centers Announced | Office of Cancer Clinical Proteomics Research
The National Cancer Institute (NCI), part of the National Institutes of Health, announces the launch of a Clinical Proteomic Tumor Analysis Consortium (CPTAC). CPTAC is a comprehensive, coordinated team effort to accelerate the understanding of the molecular basis of cancer through the application of robust, quantitative, proteomic technologies and workflows.
Proteomic analysis of ligamentum flavum from patients with lumbar spinal stenosis.
Kamita, Masahiro; Mori, Taiki; Sakai, Yoshihito; Ito, Sadayuki; Gomi, Masahiro; Miyamoto, Yuko; Harada, Atsushi; Niida, Shumpei; Yamada, Tesshi; Watanabe, Ken; Ono, Masaya
2015-05-01
Lumbar spinal stenosis (LSS) is a syndromic degenerative spinal disease and is characterized by spinal canal narrowing with subsequent neural compression causing gait disturbances. Although LSS is a major age-related musculoskeletal disease that causes large decreases in the daily living activities of the elderly, its molecular pathology has not been investigated using proteomics. Thus, we used several proteomic technologies to analyze the ligamentum flavum (LF) of individuals with LSS. Using comprehensive proteomics with strong cation exchange fractionation, we detected 1288 proteins in these LF samples. A GO analysis of the comprehensive proteome revealed that more than 30% of the identified proteins were extracellular. Next, we used 2D image converted analysis of LC/MS to compare LF obtained from individuals with LSS to that obtained from individuals with disc herniation (nondegenerative control). We detected 64 781 MS peaks and identified 1675 differentially expressed peptides derived from 286 proteins. We verified four differentially expressed proteins (fibronectin, serine protease HTRA1, tenascin, and asporin) by quantitative proteomics using SRM/MRM. The present proteomic study is the first to identify proteins from degenerated and hypertrophied LF in LSS, which will help in studying LSS. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Surinova, Silvia; Hüttenhain, Ruth; Chang, Ching-Yun; Espona, Lucia; Vitek, Olga; Aebersold, Ruedi
2013-08-01
Targeted proteomics based on selected reaction monitoring (SRM) mass spectrometry is commonly used for accurate and reproducible quantification of protein analytes in complex biological mixtures. Strictly hypothesis-driven, SRM assays quantify each targeted protein by collecting measurements on its peptide fragment ions, called transitions. To achieve sensitive and accurate quantitative results, experimental design and data analysis must consistently account for the variability of the quantified transitions. This consistency is especially important in large experiments, which increasingly require profiling up to hundreds of proteins over hundreds of samples. Here we describe a robust and automated workflow for the analysis of large quantitative SRM data sets that integrates data processing, statistical protein identification and quantification, and dissemination of the results. The integrated workflow combines three software tools: mProphet for peptide identification via probabilistic scoring; SRMstats for protein significance analysis with linear mixed-effect models; and PASSEL, a public repository for storage, retrieval and query of SRM data. The input requirements for the protocol are files with SRM traces in mzXML format, and a file with a list of transitions in a text tab-separated format. The protocol is especially suited for data with heavy isotope-labeled peptide internal standards. We demonstrate the protocol on a clinical data set in which the abundances of 35 biomarker candidates were profiled in 83 blood plasma samples of subjects with ovarian cancer or benign ovarian tumors. The time frame to realize the protocol is 1-2 weeks, depending on the number of replicates used in the experiment.
Ruggles, Kelly V; Tang, Zuojian; Wang, Xuya; Grover, Himanshu; Askenazi, Manor; Teubl, Jennifer; Cao, Song; McLellan, Michael D; Clauser, Karl R; Tabb, David L; Mertins, Philipp; Slebos, Robbert; Erdmann-Gilmore, Petra; Li, Shunqiang; Gunawardena, Harsha P; Xie, Ling; Liu, Tao; Zhou, Jian-Ying; Sun, Shisheng; Hoadley, Katherine A; Perou, Charles M; Chen, Xian; Davies, Sherri R; Maher, Christopher A; Kinsinger, Christopher R; Rodland, Karen D; Zhang, Hui; Zhang, Zhen; Ding, Li; Townsend, R Reid; Rodriguez, Henry; Chan, Daniel; Smith, Richard D; Liebler, Daniel C; Carr, Steven A; Payne, Samuel; Ellis, Matthew J; Fenyő, David
2016-03-01
Improvements in mass spectrometry (MS)-based peptide sequencing provide a new opportunity to determine whether polymorphisms, mutations, and splice variants identified in cancer cells are translated. Herein, we apply a proteogenomic data integration tool (QUILTS) to illustrate protein variant discovery using whole genome, whole transcriptome, and global proteome datasets generated from a pair of luminal and basal-like breast-cancer-patient-derived xenografts (PDX). The sensitivity of proteogenomic analysis for singe nucleotide variant (SNV) expression and novel splice junction (NSJ) detection was probed using multiple MS/MS sample process replicates defined here as an independent tandem MS experiment using identical sample material. Despite analysis of over 30 sample process replicates, only about 10% of SNVs (somatic and germline) detected by both DNA and RNA sequencing were observed as peptides. An even smaller proportion of peptides corresponding to NSJ observed by RNA sequencing were detected (<0.1%). Peptides mapping to DNA-detected SNVs without a detectable mRNA transcript were also observed, suggesting that transcriptome coverage was incomplete (∼80%). In contrast to germline variants, somatic variants were less likely to be detected at the peptide level in the basal-like tumor than in the luminal tumor, raising the possibility of differential translation or protein degradation effects. In conclusion, this large-scale proteogenomic integration allowed us to determine the degree to which mutations are translated and identify gaps in sequence coverage, thereby benchmarking current technology and progress toward whole cancer proteome and transcriptome analysis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Silva, Wanderson M; Carvalho, Rodrigo D; Soares, Siomar C; Bastos, Isabela Fs; Folador, Edson L; Souza, Gustavo Hmf; Le Loir, Yves; Miyoshi, Anderson; Silva, Artur; Azevedo, Vasco
2014-12-04
Corynebacterium pseudotuberculosis biovar ovis is a facultative intracellular pathogen, and the etiological agent of caseous lymphadenitis in small ruminants. During the infection process, the bacterium is subjected to several stress conditions, including nitrosative stress, which is caused by nitric oxide (NO). In silico analysis of the genome of C. pseudotuberculosis ovis 1002 predicted several genes that could influence the resistance of this pathogen to nitrosative stress. Here, we applied high-throughput proteomics using high definition mass spectrometry to characterize the functional genome of C. pseudotuberculosis ovis 1002 in the presence of NO-donor Diethylenetriamine/nitric oxide adduct (DETA/NO), with the aim of identifying proteins involved in nitrosative stress resistance. We characterized 835 proteins, representing approximately 41% of the predicted proteome of C. pseudotuberculosis ovis 1002, following exposure to nitrosative stress. In total, 102 proteins were exclusive to the proteome of DETA/NO-induced cells, and a further 58 proteins were differentially regulated between the DETA/NO and control conditions. An interactomic analysis of the differential proteome of C. pseudotuberculosis in response to nitrosative stress was also performed. Our proteomic data set suggested the activation of both a general stress response and a specific nitrosative stress response, as well as changes in proteins involved in cellular metabolism, detoxification, transcriptional regulation, and DNA synthesis and repair. Our proteomic analysis validated previously-determined in silico data for C. pseudotuberculosis ovis 1002. In addition, proteomic screening performed in the presence of NO enabled the identification of a set of factors that can influence the resistance and survival of C. pseudotuberculosis during exposure to nitrosative stress.
A new funding opportunity in support of the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC) seeks to prospectively procure tumor samples, collected for proteomics investigation.
Proteomics: a new approach to the study of disease.
Chambers, G; Lawrie, L; Cash, P; Murray, G I
2000-11-01
The global analysis of cellular proteins has recently been termed proteomics and is a key area of research that is developing in the post-genome era. Proteomics uses a combination of sophisticated techniques including two-dimensional (2D) gel electrophoresis, image analysis, mass spectrometry, amino acid sequencing, and bio-informatics to resolve comprehensively, to quantify, and to characterize proteins. The application of proteomics provides major opportunities to elucidate disease mechanisms and to identify new diagnostic markers and therapeutic targets. This review aims to explain briefly the background to proteomics and then to outline proteomic techniques. Applications to the study of human disease conditions ranging from cancer to infectious diseases are reviewed. Finally, possible future advances are briefly considered, especially those which may lead to faster sample throughput and increased sensitivity for the detection of individual proteins. Copyright 2000 John Wiley & Sons, Ltd.
Picotti, Paola; Clement-Ziza, Mathieu; Lam, Henry; Campbell, David S.; Schmidt, Alexander; Deutsch, Eric W.; Röst, Hannes; Sun, Zhi; Rinner, Oliver; Reiter, Lukas; Shen, Qin; Michaelson, Jacob J.; Frei, Andreas; Alberti, Simon; Kusebauch, Ulrike; Wollscheid, Bernd; Moritz, Robert; Beyer, Andreas; Aebersold, Ruedi
2013-01-01
Complete reference maps or datasets, like the genomic map of an organism, are highly beneficial tools for biological and biomedical research. Attempts to generate such reference datasets for a proteome so far failed to reach complete proteome coverage, with saturation apparent at approximately two thirds of the proteomes tested, even for the most thoroughly characterized proteomes. Here, we used a strategy based on high-throughput peptide synthesis and mass spectrometry to generate a close to complete reference map (97% of the genome-predicted proteins) of the S. cerevisiae proteome. We generated two versions of this mass spectrometric map one supporting discovery- (shotgun) and the other hypothesis-driven (targeted) proteomic measurements. The two versions of the map, therefore, constitute a complete set of proteomic assays to support most studies performed with contemporary proteomic technologies. The reference libraries can be browsed via a web-based repository and associated navigation tools. To demonstrate the utility of the reference libraries we applied them to a protein quantitative trait locus (pQTL) analysis, which requires measurement of the same peptides over a large number of samples with high precision. Protein measurements over a set of 78 S. cerevisiae strains revealed a complex relationship between independent genetic loci, impacting on the levels of related proteins. Our results suggest that selective pressure favors the acquisition of sets of polymorphisms that maintain the stoichiometry of protein complexes and pathways. PMID:23334424
Proteome analysis of the triton-insoluble erythrocyte membrane skeleton.
Basu, Avik; Harper, Sandra; Pesciotta, Esther N; Speicher, Kaye D; Chakrabarti, Abhijit; Speicher, David W
2015-10-14
Erythrocyte shape and membrane integrity is imparted by the membrane skeleton, which can be isolated as a Triton X-100 insoluble structure that retains the biconcave shape of intact erythrocytes, indicating isolation of essentially intact membrane skeletons. These erythrocyte "Triton Skeletons" have been studied morphologically and biochemically, but unbiased proteome analysis of this substructure of the membrane has not been reported. In this study, different extraction buffers and in-depth proteome analyses were used to more fully define the protein composition of this functionally critical macromolecular complex. As expected, the major, well-characterized membrane skeleton proteins and their associated membrane anchors were recovered in good yield. But surprisingly, a substantial number of additional proteins that are not considered in erythrocyte membrane skeleton models were recovered in high yields, including myosin-9, lipid raft proteins (stomatin, flotillin1 and 2), multiple chaperone proteins (HSPs, protein disulfide isomerase and calnexin), and several other proteins. These results show that the membrane skeleton is substantially more complex than previous biochemical studies indicated, and it apparently has localized regions with unique protein compositions and functions. This comprehensive catalog of the membrane skeleton should lead to new insights into erythrocyte membrane biology and pathogenic mutations that perturb membrane stability. Biological significance Current models of erythrocyte membranes describe fairly simple homogenous structures that are incomplete. Proteome analysis of the erythrocyte membrane skeleton shows that it is quite complex and includes a substantial number of proteins whose roles and locations in the membrane are not well defined. Further elucidation of interactions involving these proteins and definition of microdomains in the membrane that contain these proteins should yield novel insights into how the membrane skeleton produces the normal biconcave erythrocyte shape and how it is perturbed in pathological conditions that destabilize the membrane. Copyright © 2015 Elsevier B.V. All rights reserved.
A knowledge-based T2-statistic to perform pathway analysis for quantitative proteomic data
Chen, Yi-Hau
2017-01-01
Approaches to identify significant pathways from high-throughput quantitative data have been developed in recent years. Still, the analysis of proteomic data stays difficult because of limited sample size. This limitation also leads to the practice of using a competitive null as common approach; which fundamentally implies genes or proteins as independent units. The independent assumption ignores the associations among biomolecules with similar functions or cellular localization, as well as the interactions among them manifested as changes in expression ratios. Consequently, these methods often underestimate the associations among biomolecules and cause false positives in practice. Some studies incorporate the sample covariance matrix into the calculation to address this issue. However, sample covariance may not be a precise estimation if the sample size is very limited, which is usually the case for the data produced by mass spectrometry. In this study, we introduce a multivariate test under a self-contained null to perform pathway analysis for quantitative proteomic data. The covariance matrix used in the test statistic is constructed by the confidence scores retrieved from the STRING database or the HitPredict database. We also design an integrating procedure to retain pathways of sufficient evidence as a pathway group. The performance of the proposed T2-statistic is demonstrated using five published experimental datasets: the T-cell activation, the cAMP/PKA signaling, the myoblast differentiation, and the effect of dasatinib on the BCR-ABL pathway are proteomic datasets produced by mass spectrometry; and the protective effect of myocilin via the MAPK signaling pathway is a gene expression dataset of limited sample size. Compared with other popular statistics, the proposed T2-statistic yields more accurate descriptions in agreement with the discussion of the original publication. We implemented the T2-statistic into an R package T2GA, which is available at https://github.com/roqe/T2GA. PMID:28622336
A knowledge-based T2-statistic to perform pathway analysis for quantitative proteomic data.
Lai, En-Yu; Chen, Yi-Hau; Wu, Kun-Pin
2017-06-01
Approaches to identify significant pathways from high-throughput quantitative data have been developed in recent years. Still, the analysis of proteomic data stays difficult because of limited sample size. This limitation also leads to the practice of using a competitive null as common approach; which fundamentally implies genes or proteins as independent units. The independent assumption ignores the associations among biomolecules with similar functions or cellular localization, as well as the interactions among them manifested as changes in expression ratios. Consequently, these methods often underestimate the associations among biomolecules and cause false positives in practice. Some studies incorporate the sample covariance matrix into the calculation to address this issue. However, sample covariance may not be a precise estimation if the sample size is very limited, which is usually the case for the data produced by mass spectrometry. In this study, we introduce a multivariate test under a self-contained null to perform pathway analysis for quantitative proteomic data. The covariance matrix used in the test statistic is constructed by the confidence scores retrieved from the STRING database or the HitPredict database. We also design an integrating procedure to retain pathways of sufficient evidence as a pathway group. The performance of the proposed T2-statistic is demonstrated using five published experimental datasets: the T-cell activation, the cAMP/PKA signaling, the myoblast differentiation, and the effect of dasatinib on the BCR-ABL pathway are proteomic datasets produced by mass spectrometry; and the protective effect of myocilin via the MAPK signaling pathway is a gene expression dataset of limited sample size. Compared with other popular statistics, the proposed T2-statistic yields more accurate descriptions in agreement with the discussion of the original publication. We implemented the T2-statistic into an R package T2GA, which is available at https://github.com/roqe/T2GA.
Han, Chia-Li; Chen, Jinn-Shiun; Chan, Err-Cheng; Wu, Chien-Peng; Yu, Kun-Hsing; Chen, Kuei-Tien; Tsou, Chih-Chiang; Tsai, Chia-Feng; Chien, Chih-Wei; Kuo, Yung-Bin; Lin, Pei-Yi; Yu, Jau-Song; Hsueh, Chuen; Chen, Min-Chi; Chan, Chung-Chuan; Chang, Yu-Sun; Chen, Yu-Ju
2011-01-01
We developed a multiplexed label-free quantification strategy, which integrates an efficient gel-assisted digestion protocol, high-performance liquid chromatography tandem MS analysis, and a bioinformatics alignment method to determine personalized proteomic profiles for membrane proteins in human tissues. This strategy provided accurate (6% error) and reproducible (34% relative S.D.) quantification of three independently purified membrane fractions from the same human colorectal cancer (CRC) tissue. Using CRC as a model, we constructed the personalized membrane protein atlas of paired tumor and adjacent normal tissues from 28 patients with different stages of CRC. Without fractionation, this strategy confidently quantified 856 proteins (≥2 unique peptides) across different patients, including the first and robust detection (Mascot score: 22,074) of the well-documented CRC marker, carcinoembryonic antigen 5 by a discovery-type proteomics approach. Further validation of a panel of proteins, annexin A4, neutrophils defensin A1, and claudin 3, confirmed differential expression levels and high occurrences (48–70%) in 60 CRC patients. The most significant discovery is the overexpression of stomatin-like 2 (STOML2) for early diagnostic and prognostic potential. Increased expression of STOML2 was associated with decreased CRC-related survival; the mean survival period was 34.77 ± 2.03 months in patients with high STOML2 expression, whereas 53.67 ± 3.46 months was obtained for patients with low STOML2 expression. Further analysis by ELISA verified that plasma concentrations of STOML2 in early-stage CRC patients were elevated as compared with those of healthy individuals (p < 0.001), suggesting that STOML2 may be a noninvasive serological biomarker for early CRC diagnosis. The overall sensitivity of STOML2 for CRC detection was 71%, which increased to 87% when combined with CEA measurements. This study demonstrated a sensitive, label-free strategy for differential analysis of tissue membrane proteome, which may provide a roadmap for the subsequent identification of molecular target candidates of multiple cancer types. PMID:21209152
Mao, Song; Chai, Xiaoqiang; Hu, Yuling; Hou, Xugang; Tang, Yiheng; Bi, Cheng; Li, Xiao
2014-01-01
Mitochondrion plays a central role in diverse biological processes in most eukaryotes, and its dysfunctions are critically involved in a large number of diseases and the aging process. A systematic identification of mitochondrial proteomes and characterization of functional linkages among mitochondrial proteins are fundamental in understanding the mechanisms underlying biological functions and human diseases associated with mitochondria. Here we present a database MitProNet which provides a comprehensive knowledgebase for mitochondrial proteome, interactome and human diseases. First an inventory of mammalian mitochondrial proteins was compiled by widely collecting proteomic datasets, and the proteins were classified by machine learning to achieve a high-confidence list of mitochondrial proteins. The current version of MitProNet covers 1124 high-confidence proteins, and the remainders were further classified as middle- or low-confidence. An organelle-specific network of functional linkages among mitochondrial proteins was then generated by integrating genomic features encoded by a wide range of datasets including genomic context, gene expression profiles, protein-protein interactions, functional similarity and metabolic pathways. The functional-linkage network should be a valuable resource for the study of biological functions of mitochondrial proteins and human mitochondrial diseases. Furthermore, we utilized the network to predict candidate genes for mitochondrial diseases using prioritization algorithms. All proteins, functional linkages and disease candidate genes in MitProNet were annotated according to the information collected from their original sources including GO, GEO, OMIM, KEGG, MIPS, HPRD and so on. MitProNet features a user-friendly graphic visualization interface to present functional analysis of linkage networks. As an up-to-date database and analysis platform, MitProNet should be particularly helpful in comprehensive studies of complicated biological mechanisms underlying mitochondrial functions and human mitochondrial diseases. MitProNet is freely accessible at http://bio.scu.edu.cn:8085/MitProNet. PMID:25347823
Birth of plant proteomics in India: a new horizon.
Narula, Kanika; Pandey, Aarti; Gayali, Saurabh; Chakraborty, Niranjan; Chakraborty, Subhra
2015-09-08
In the post-genomic era, proteomics is acknowledged as the next frontier for biological research. Although India has a long and distinguished tradition in protein research, the initiation of proteomics studies was a new horizon. Protein research witnessed enormous progress in protein separation, high-resolution refinements, biochemical identification of the proteins, protein-protein interaction, and structure-function analysis. Plant proteomics research, in India, began its journey on investigation of the proteome profiling, complexity analysis, protein trafficking, and biochemical modeling. The research article by Bhushan et al. in 2006 marked the birth of the plant proteomics research in India. Since then plant proteomics studies expanded progressively and are now being carried out in various institutions spread across the country. The compilation presented here seeks to trace the history of development in the area during the past decade based on publications till date. In this review, we emphasize on outcomes of the field providing prospects on proteomic pathway analyses. Finally, we discuss the connotation of strategies and the potential that would provide the framework of plant proteome research. The past decades have seen rapidly growing number of sequenced plant genomes and associated genomic resources. To keep pace with this increasing body of data, India is in the provisional phase of proteomics research to develop a comparative hub for plant proteomes and protein families, but it requires a strong impetus from intellectuals, entrepreneurs, and government agencies. Here, we aim to provide an overview of past, present and future of Indian plant proteomics, which would serve as an evaluation platform for those seeking to incorporate proteomics into their research programs. This article is part of a Special Issue entitled: Proteomics in India. Copyright © 2015 Elsevier B.V. All rights reserved.
Oxidative stress in aging: advances in proteomic approaches.
Ortuño-Sahagún, Daniel; Pallàs, Mercè; Rojas-Mayorquín, Argelia E
2014-01-01
Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual's Quality of Life (QOL). Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS]), which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8), naked mole-rat (Heterocephalus glaber), and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS) and oxidative stress in aging.
Cell wall proteome analysis of Arabidopsis thaliana mature stems.
Duruflé, Harold; Clemente, Hélène San; Balliau, Thierry; Zivy, Michel; Dunand, Christophe; Jamet, Elisabeth
2017-04-01
Plant stems carry flowers necessary for species propagation and need to be adapted to mechanical disturbance and environmental factors. The stem cell walls are different from other organs and can modify their rigidity or viscoelastic properties for the integrity and the robustness required to withstand mechanical impacts and environmental stresses. Plant cell wall is composed of complex polysaccharide networks also containing cell wall proteins (CWPs) crucial to perceive and limit the environmental effects. The CWPs are fundamental players in cell wall remodeling processes, and today, only 86 have been identified from the mature stems of the model plant Arabidopsis thaliana. With a destructive method, this study has enlarged its coverage to 302 CWPs. This new proteome is mainly composed of 27.5% proteins acting on polysaccharides, 16% proteases, 11.6% oxido-reductases, 11% possibly related to lipid metabolism and 11% of proteins with interacting domains with proteins or polysaccharides. Compared to stem cell wall proteomes already available (Brachypodium distachyon, Sacharum officinarum, Linum usitatissimum, Medicago sativa), that of A. thaliana stems has a higher proportion of proteins acting on polysaccharides and of proteases, but a lower proportion of oxido-reductases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, Mark H.; Qian, Weijun; Wang, Haixing
2008-02-10
The molecular mechanisms underlying the changes in the nigrostriatal pathway in Parkinson disease (PD) are not completely understood. Here we use mass spectrometry and microarrays to study the proteomic and transcriptomic changes in the striatum of two mouse models of PD, induced by the distinct neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and methamphetamine (METH). Proteomic analyses resulted in the identification and relative quantification of 912 proteins with two or more unique peptides and 85 proteins with significant abundance changes following neurotoxin treatment. Similarly, microarray analyses revealed 181 genes with significant changes in mRNA following neurotoxin treatment. The combined protein and gene list providesmore » a clearer picture of the potential mechanisms underlying neurodegeneration observed in PD. Functional analysis of this combined list revealed a number of significant categories, including mitochondrial dysfunction, oxidative stress response and apoptosis. Additionally, codon usage and miRNAs may play an important role in translational control in the striatum. These results constitute one of the largest datasets integrating protein and transcript changes for these neurotoxin models with many similar endpoint phenotypes but distinct mechanisms.« less
Barkla, Bronwyn J; Castellanos-Cervantes, Thelma; de León, José L Diaz; Matros, Andrea; Mock, Hans-Peter; Perez-Alfocea, Francisco; Salekdeh, Ghasem H; Witzel, Katja; Zörb, Christian
2013-06-01
Salinity is a major threat limiting the productivity of crop plants. A clear demand for improving the salinity tolerance of the major crop plants is imposed by the rapidly growing world population. This review summarizes the achievements of proteomic studies to elucidate the response mechanisms of selected model and crop plants to cope with salinity stress. We also aim at identifying research areas, which deserve increased attention in future proteome studies, as a prerequisite to identify novel targets for breeding strategies. Such areas include the impact of plant-microbial communities on the salinity tolerance of crops under field conditions, the importance of hormone signaling in abiotic stress tolerance, and the significance of control mechanisms underlying the observed changes in the proteome patterns. We briefly highlight the impact of novel tools for future proteome studies and argue for the use of integrated approaches. The evaluation of genetic resources by means of novel automated phenotyping facilities will have a large impact on the application of proteomics especially in combination with metabolomics or transcriptomics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sanchez-Lucas, Rosa; Mehta, Angela; Valledor, Luis; Cabello-Hurtado, Francisco; Romero-Rodrıguez, M Cristina; Simova-Stoilova, Lyudmila; Demir, Sekvan; Rodriguez-de-Francisco, Luis E; Maldonado-Alconada, Ana M; Jorrin-Prieto, Ana L; Jorrín-Novo, Jesus V
2016-03-01
The present review is an update of the previous one published in Proteomics 2015 Reviews special issue [Jorrin-Novo, J. V. et al., Proteomics 2015, 15, 1089-1112] covering the July 2014-2015 period. It has been written on the bases of the publications that appeared in Proteomics journal during that period and the most relevant ones that have been published in other high-impact journals. Methodological advances and the contribution of the field to the knowledge of plant biology processes and its translation to agroforestry and environmental sectors will be discussed. This review has been organized in four blocks, with a starting general introduction (literature survey) followed by sections focusing on the methodology (in vitro, in vivo, wet, and dry), proteomics integration with other approaches (systems biology and proteogenomics), biological information, and knowledge (cell communication, receptors, and signaling), ending with a brief mention of some other biological and translational topics to which proteomics has made some contribution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Proteomics and syndrome of Chinese medicine
Lu, Chuan-Li; Qv, Xiao-Ying; Jiang, Jian-Guo
2010-01-01
Abstract Syndrome of Chinese medicine is an understanding of the regularity of disease occurrence and development and its performance of symptoms. Syndrome is the key to recognize diseases and the foundation to treat them. However, because of the complexity of the concept and the limitation of present investigations, the research of syndrome is hard to go further. Proteomics has been received extensive attention in the area of medical diagnosis and drug development. In the holistic and systemic context, proteomics have a convergence with traditional Chinese medicine (TCM) syndrome, which could overcome the one-sidedness and singleness of TCM and avoid the complication and tedious processes. Chinese medicine has a wealth of experience and proteomics has a substantial research potential, the integration of the two aspects will bring a great enhancement of our knowledge of disease. PMID:20874721
NCI Launches Proteomics Assay Portal | Office of Cancer Clinical Proteomics Research
In a paper recently published by the journal Nature Methods, Investigators from the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (NCI-CPTAC) announced the launch of a proteomics Assay Portal for multiple reaction monitoring-mass spectrometry (MRM-MS) assays. This community web-based repository for well-characterized quantitative proteomic assays currently consists of 456 unique peptide assays to 282 unique proteins and ser
On September 4, 2013, NCI’s Clinical Proteomics Tumor Analysis Consortium (CPTAC) publicly released proteomic data produced from colorectal tumor samples previously analyzed by The Cancer Genome Atlas (TCGA). This is the initial release of proteomic tumor data designed to complement genomic data on the same tumors. The data is publicly available at the CPTAC data portal.
USDA-ARS?s Scientific Manuscript database
2-DE analysis of complex plant proteomes has limited dynamic resolution because only abundant proteins can be detected. Proteomic assessment of the low abundance proteins within leaf tissue is difficult when it is comprised of 30 – 50% of the CO2 fixation enzyme Rubisco. Resolution can be improved t...
de Bernonville, Thomas Dugé; Albenne, Cécile; Arlat, Matthieu; Hoffmann, Laurent; Lauber, Emmanuelle; Jamet, Elisabeth
2014-01-01
Proteomic analysis of xylem sap has recently become a major field of interest to understand several biological questions related to plant development and responses to environmental clues. The xylem sap appears as a dynamic fluid undergoing changes in its proteome upon abiotic and biotic stresses. Unlike cell compartments which are amenable to purification in sufficient amount prior to proteomic analysis, the xylem sap has to be collected in particular conditions to avoid contamination by intracellular proteins and to obtain enough material. A model plant like Arabidopsis thaliana is not suitable for such an analysis because efficient harvesting of xylem sap is difficult. The analysis of the xylem sap proteome also requires specific procedures to concentrate proteins and to focus on proteins predicted to be secreted. Indeed, xylem sap proteins appear to be synthesized and secreted in the root stele or to originate from dying differentiated xylem cells. This chapter describes protocols to collect xylem sap from Brassica species and to prepare total and N-glycoprotein extracts for identification of proteins by mass spectrometry analyses and bioinformatics.
Braga-Lagache, Sophie; Buchs, Natasha; Iacovache, Mircea-Ioan; Zuber, Benoît; Jackson, Christopher Benjamin
2016-01-01
Cells of the vascular system release spherical vesicles, called microparticles, in the size range of 0.1–1 μm induced by a variety of stress factors resulting in variable concentrations between health and disease. Furthermore, microparticles have intercellular communication/signaling properties and interfere with inflammation and coagulation pathways. Today's most used analytical technology for microparticle characterization, flow cytometry, is lacking sensitivity and specificity, which might have led to the publication of contradicting results in the past. We propose the use of nano-liquid chromatography two-stage mass spectrometry as a nonbiased tool for quantitative MP proteome analysis. For this, we developed an improved microparticle isolation protocol and quantified the microparticle protein composition of twelve healthy volunteers with a label-free, data-dependent and independent proteomics approach on a quadrupole orbitrap instrument. Using aliquots of 250 μl platelet-free plasma from one individual donor, we achieved excellent reproducibility with an interassay coefficient of variation of 2.7 ± 1.7% (mean ± 1 standard deviation) on individual peptide intensities across 27 acquisitions performed over a period of 3.5 months. We show that the microparticle proteome between twelve healthy volunteers were remarkably similar, and that it is clearly distinguishable from whole cell and platelet lysates. We propose the use of the proteome profile shown in this work as a quality criterion for microparticle purity in proteomics studies. Furthermore, one freeze thaw cycle damaged the microparticle integrity, articulated by a loss of cytoplasm proteins, encompassing a specific set of proteins involved in regulating dynamic structures of the cytoskeleton, and thrombin activation leading to MP clotting. On the other hand, plasma membrane protein composition was unaffected. Finally, we show that multiplexed data-independent acquisition can be used for relative quantification of target proteins using Skyline software. Mass spectrometry data are available via ProteomeXchange (identifier PXD003935) and panoramaweb.org (https://panoramaweb.org/labkey/N1OHMk.url). PMID:27738094
Comparative Salivary Proteome of Hepatitis B- and C-Infected Patients
Gonçalves, Lorena Da Rós; Campanhon, Isabele Batista; Domingues, Romênia R.; Paes Leme, Adriana F.; Soares da Silva, Márcia Regina
2014-01-01
Hepatitis B and C virus (HBV and HCV) infections are an important cause of cirrhosis and hepatocellular carcinoma. The natural history has a prominent latent phase, and infected patients may remain undiagnosed; this situation may lead to the continuing spread of these infections in the community. Compelling reasons exist for using saliva as a diagnostic fluid because it meets the demands of being an inexpensive, noninvasive and easy-to-use diagnostic method. Indeed, comparative analysis of the salivary proteome using mass spectrometry is a promising new strategy for identifying biomarkers. Our goal is to apply an Orbitrap-based quantitative approach to explore the salivary proteome profile in HBV- and HCV-infected patients. In the present study, whole saliva was obtained from 20 healthy, (control) 20 HBV-infected and 20 HCV-infected subjects. Two distinct pools containing saliva from 10 subjects of each group were obtained. The samples were ultracentrifuged and fractionated, and all fractions were hydrolyzed (trypsin) and injected into an LTQ-VELOS ORBITRAP. The identification and analyses of peptides were performed using Proteome Discoverer1.3 and ScaffoldQ + v.3.3.1. From a total of 362 distinct proteins identified, 344 proteins were identified in the HBV, 326 in the HCV and 303 in the control groups. Some blood proteins, such as flavin reductase (which converts biliverdin to bilirubin), were detected only in the HCV group. The data showed a reduced presence of complement C3, ceruloplasmin, alpha(1)-acid glycoprotein and alpha(2)-acid glycoprotein in the hepatitis-infected patients. Peptides of serotransferrin and haptoglobin were less detected in the HCV group. This study provides an integrated perspective of the salivary proteome, which should be further explored in future studies targeting specific disease markers for HBV and HCV infection. PMID:25423034
Global, quantitative and dynamic mapping of protein subcellular localization.
Itzhak, Daniel N; Tyanova, Stefka; Cox, Jürgen; Borner, Georg Hh
2016-06-09
Subcellular localization critically influences protein function, and cells control protein localization to regulate biological processes. We have developed and applied Dynamic Organellar Maps, a proteomic method that allows global mapping of protein translocation events. We initially used maps statically to generate a database with localization and absolute copy number information for over 8700 proteins from HeLa cells, approaching comprehensive coverage. All major organelles were resolved, with exceptional prediction accuracy (estimated at >92%). Combining spatial and abundance information yielded an unprecedented quantitative view of HeLa cell anatomy and organellar composition, at the protein level. We subsequently demonstrated the dynamic capabilities of the approach by capturing translocation events following EGF stimulation, which we integrated into a quantitative model. Dynamic Organellar Maps enable the proteome-wide analysis of physiological protein movements, without requiring any reagents specific to the investigated process, and will thus be widely applicable in cell biology.
Koppenol-Raab, Marijke; Sjoelund, Virginie; Manes, Nathan P.; Gottschalk, Rachel A.; Dutta, Bhaskar; Benet, Zachary L.; Fraser, Iain D. C.
2017-01-01
The innate immune system is the organism's first line of defense against pathogens. Pattern recognition receptors (PRRs) are responsible for sensing the presence of pathogen-associated molecules. The prototypic PRRs, the membrane-bound receptors of the Toll-like receptor (TLR) family, recognize pathogen-associated molecular patterns (PAMPs) and initiate an innate immune response through signaling pathways that depend on the adaptor molecules MyD88 and TRIF. Deciphering the differences in the complex signaling events that lead to pathogen recognition and initiation of the correct response remains challenging. Here we report the discovery of temporal changes in the protein signaling components involved in innate immunity. Using an integrated strategy combining unbiased proteomics, transcriptomics and macrophage stimulations with three different PAMPs, we identified differences in signaling between individual TLRs and revealed specifics of pathway regulation at the protein level. PMID:28235783
Jeong, Seul-Ki; Hancock, William S; Paik, Young-Ki
2015-09-04
Since the launch of the Chromosome-centric Human Proteome Project (C-HPP) in 2012, the number of "missing" proteins has fallen to 2932, down from ∼5932 since the number was first counted in 2011. We compared the characteristics of missing proteins with those of already annotated proteins with respect to transcriptional expression pattern and the time periods in which newly identified proteins were annotated. We learned that missing proteins commonly exhibit lower levels of transcriptional expression and less tissue-specific expression compared with already annotated proteins. This makes it more difficult to identify missing proteins as time goes on. One of the C-HPP goals is to identify alternative spliced product of proteins (ASPs), which are usually difficult to find by shot-gun proteomic methods due to their sequence similarities with the representative proteins. To resolve this problem, it may be necessary to use a targeted proteomics approach (e.g., selected and multiple reaction monitoring [S/MRM] assays) and an innovative bioinformatics platform that enables the selection of target peptides for rarely expressed missing proteins or ASPs. Given that the success of efforts to identify missing proteins may rely on more informative public databases, it was necessary to upgrade the available integrative databases. To this end, we attempted to improve the features and utility of GenomewidePDB by integrating transcriptomic information (e.g., alternatively spliced transcripts), annotated peptide information, and an advanced search interface that can find proteins of interest when applying a targeted proteomics strategy. This upgraded version of the database, GenomewidePDB 2.0, may not only expedite identification of the remaining missing proteins but also enhance the exchange of information among the proteome community. GenomewidePDB 2.0 is available publicly at http://genomewidepdb.proteomix.org/.
Design and analysis issues in quantitative proteomics studies.
Karp, Natasha A; Lilley, Kathryn S
2007-09-01
Quantitative proteomics is the comparison of distinct proteomes which enables the identification of protein species which exhibit changes in expression or post-translational state in response to a given stimulus. Many different quantitative techniques are being utilized and generate large datasets. Independent of the technique used, these large datasets need robust data analysis to ensure valid conclusions are drawn from such studies. Approaches to address the problems that arise with large datasets are discussed to give insight into the types of statistical analyses of data appropriate for the various experimental strategies that can be employed by quantitative proteomic studies. This review also highlights the importance of employing a robust experimental design and highlights various issues surrounding the design of experiments. The concepts and examples discussed within will show how robust design and analysis will lead to confident results that will ensure quantitative proteomics delivers.
Establishing Substantial Equivalence: Proteomics
NASA Astrophysics Data System (ADS)
Lovegrove, Alison; Salt, Louise; Shewry, Peter R.
Wheat is a major crop in world agriculture and is consumed after processing into a range of food products. It is therefore of great importance to determine the consequences (intended and unintended) of transgenesis in wheat and whether genetically modified lines are substantially equivalent to those produced by conventional plant breeding. Proteomic analysis is one of several approaches which can be used to address these questions. Two-dimensional PAGE (2D PAGE) remains the most widely available method for proteomic analysis, but is notoriously difficult to reproduce between laboratories. We therefore describe methods which have been developed as standard operating procedures in our laboratory to ensure the reproducibility of proteomic analyses of wheat using 2D PAGE analysis of grain proteins.
Welker, F
2018-02-20
The study of ancient protein sequences is increasingly focused on the analysis of older samples, including those of ancient hominins. The analysis of such ancient proteomes thereby potentially suffers from "cross-species proteomic effects": the loss of peptide and protein identifications at increased evolutionary distances due to a larger number of protein sequence differences between the database sequence and the analyzed organism. Error-tolerant proteomic search algorithms should theoretically overcome this problem at both the peptide and protein level; however, this has not been demonstrated. If error-tolerant searches do not overcome the cross-species proteomic issue then there might be inherent biases in the identified proteomes. Here, a bioinformatics experiment is performed to test this using a set of modern human bone proteomes and three independent searches against sequence databases at increasing evolutionary distances: the human (0 Ma), chimpanzee (6-8 Ma) and orangutan (16-17 Ma) reference proteomes, respectively. Incorrectly suggested amino acid substitutions are absent when employing adequate filtering criteria for mutable Peptide Spectrum Matches (PSMs), but roughly half of the mutable PSMs were not recovered. As a result, peptide and protein identification rates are higher in error-tolerant mode compared to non-error-tolerant searches but did not recover protein identifications completely. Data indicates that peptide length and the number of mutations between the target and database sequences are the main factors influencing mutable PSM identification. The error-tolerant results suggest that the cross-species proteomics problem is not overcome at increasing evolutionary distances, even at the protein level. Peptide and protein loss has the potential to significantly impact divergence dating and proteome comparisons when using ancient samples as there is a bias towards the identification of conserved sequences and proteins. Effects are minimized between moderately divergent proteomes, as indicated by almost complete recovery of informative positions in the search against the chimpanzee proteome (≈90%, 6-8 Ma). This provides a bioinformatic background to future phylogenetic and proteomic analysis of ancient hominin proteomes, including the future description of novel hominin amino acid sequences, but also has negative implications for the study of fast-evolving proteins in hominins, non-hominin animals, and ancient bacterial proteins in evolutionary contexts.
Hur, Manhoi; Campbell, Alexis Ann; Almeida-de-Macedo, Marcia; Li, Ling; Ransom, Nick; Jose, Adarsh; Crispin, Matt; Nikolau, Basil J; Wurtele, Eve Syrkin
2013-04-01
Discovering molecular components and their functionality is key to the development of hypotheses concerning the organization and regulation of metabolic networks. The iterative experimental testing of such hypotheses is the trajectory that can ultimately enable accurate computational modelling and prediction of metabolic outcomes. This information can be particularly important for understanding the biology of natural products, whose metabolism itself is often only poorly defined. Here, we describe factors that must be in place to optimize the use of metabolomics in predictive biology. A key to achieving this vision is a collection of accurate time-resolved and spatially defined metabolite abundance data and associated metadata. One formidable challenge associated with metabolite profiling is the complexity and analytical limits associated with comprehensively determining the metabolome of an organism. Further, for metabolomics data to be efficiently used by the research community, it must be curated in publicly available metabolomics databases. Such databases require clear, consistent formats, easy access to data and metadata, data download, and accessible computational tools to integrate genome system-scale datasets. Although transcriptomics and proteomics integrate the linear predictive power of the genome, the metabolome represents the nonlinear, final biochemical products of the genome, which results from the intricate system(s) that regulate genome expression. For example, the relationship of metabolomics data to the metabolic network is confounded by redundant connections between metabolites and gene-products. However, connections among metabolites are predictable through the rules of chemistry. Therefore, enhancing the ability to integrate the metabolome with anchor-points in the transcriptome and proteome will enhance the predictive power of genomics data. We detail a public database repository for metabolomics, tools and approaches for statistical analysis of metabolomics data, and methods for integrating these datasets with transcriptomic data to create hypotheses concerning specialized metabolisms that generate the diversity in natural product chemistry. We discuss the importance of close collaborations among biologists, chemists, computer scientists and statisticians throughout the development of such integrated metabolism-centric databases and software.
Hur, Manhoi; Campbell, Alexis Ann; Almeida-de-Macedo, Marcia; Li, Ling; Ransom, Nick; Jose, Adarsh; Crispin, Matt; Nikolau, Basil J.
2013-01-01
Discovering molecular components and their functionality is key to the development of hypotheses concerning the organization and regulation of metabolic networks. The iterative experimental testing of such hypotheses is the trajectory that can ultimately enable accurate computational modelling and prediction of metabolic outcomes. This information can be particularly important for understanding the biology of natural products, whose metabolism itself is often only poorly defined. Here, we describe factors that must be in place to optimize the use of metabolomics in predictive biology. A key to achieving this vision is a collection of accurate time-resolved and spatially defined metabolite abundance data and associated metadata. One formidable challenge associated with metabolite profiling is the complexity and analytical limits associated with comprehensively determining the metabolome of an organism. Further, for metabolomics data to be efficiently used by the research community, it must be curated in publically available metabolomics databases. Such databases require clear, consistent formats, easy access to data and metadata, data download, and accessible computational tools to integrate genome system-scale datasets. Although transcriptomics and proteomics integrate the linear predictive power of the genome, the metabolome represents the nonlinear, final biochemical products of the genome, which results from the intricate system(s) that regulate genome expression. For example, the relationship of metabolomics data to the metabolic network is confounded by redundant connections between metabolites and gene-products. However, connections among metabolites are predictable through the rules of chemistry. Therefore, enhancing the ability to integrate the metabolome with anchor-points in the transcriptome and proteome will enhance the predictive power of genomics data. We detail a public database repository for metabolomics, tools and approaches for statistical analysis of metabolomics data, and methods for integrating these dataset with transcriptomic data to create hypotheses concerning specialized metabolism that generates the diversity in natural product chemistry. We discuss the importance of close collaborations among biologists, chemists, computer scientists and statisticians throughout the development of such integrated metabolism-centric databases and software. PMID:23447050
Integrated proteomic and transcriptomic analysis of the Aedes aegypti eggshell
2014-01-01
Background Mosquito eggshells show remarkable diversity in physical properties and structure consistent with adaptations to the wide variety of environments exploited by these insects. We applied proteomic, transcriptomic, and hybridization in situ techniques to identify gene products and pathways that participate in the assembly of the Aedes aegypti eggshell. Aedes aegypti population density is low during cold and dry seasons and increases immediately after rainfall. The survival of embryos through unfavorable periods is a key factor in the persistence of their populations. The work described here supports integrated vector control approaches that target eggshell formation and result in Ae. aegypti drought-intolerant phenotypes for public health initiatives directed to reduce mosquito-borne diseases. Results A total of 130 proteins were identified from the combined mass spectrometric analyses of eggshell preparations. Conclusions Classification of proteins according to their known and putative functions revealed the complexity of the eggshell structure. Three novel Ae. aegypti vitelline membrane proteins were discovered. Odorant-binding and cysteine-rich proteins that may be structural components of the eggshell were identified. Enzymes with peroxidase, laccase and phenoloxidase activities also were identified, and their likely involvements in cross-linking reactions that stabilize the eggshell structure are discussed. PMID:24707823
clusterProfiler: an R package for comparing biological themes among gene clusters.
Yu, Guangchuang; Wang, Li-Gen; Han, Yanyan; He, Qing-Yu
2012-05-01
Increasing quantitative data generated from transcriptomics and proteomics require integrative strategies for analysis. Here, we present an R package, clusterProfiler that automates the process of biological-term classification and the enrichment analysis of gene clusters. The analysis module and visualization module were combined into a reusable workflow. Currently, clusterProfiler supports three species, including humans, mice, and yeast. Methods provided in this package can be easily extended to other species and ontologies. The clusterProfiler package is released under Artistic-2.0 License within Bioconductor project. The source code and vignette are freely available at http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html.
2015-09-01
glioblastoma . We have successfully established several patient-derived cell lines from glioblastoma tumors and further established a number of...and single-cell technologies. Although the focus of this research is glioblastoma , the proposed tools are generally applicable to all cancer-based...studies. 15. SUBJECT TERMS Human cohorts, Glioblastoma , Genomic, Proteomic, Single-cell technologies, Hypothesis-driven, integrative systems approach
Shi, Kui; Gu, Jiayu; Guo, Huijun; Zhao, Linshu; Xie, Yongdun; Xiong, Hongchun; Li, Junhui; Zhao, Shirong; Song, Xiyun; Liu, Luxiang
2017-01-01
Chloroplast development is an integral part of plant survival and growth, and occurs in parallel with chlorophyll biosynthesis. However, little is known about the mechanisms underlying chloroplast development in hexaploid wheat. Here, we obtained a spaceflight-induced wheat albino mutant mta. Chloroplast ultra-structural observation showed that chloroplasts of mta exhibit abnormal morphology and distribution compared to wild type. Photosynthetic pigments content was also significantly decreased in mta. Transcriptome and chloroplast proteome profiling of mta and wild type were done to identify differentially expressed genes (DEGs) and proteins (DEPs), respectively. In total 4,588 DEGs including 1,980 up- and 2,608 down-regulated, and 48 chloroplast DEPs including 15 up- and 33 down-regulated were identified in mta. Classification of DEGs revealed that most were involved in chloroplast development, chlorophyll biosynthesis, or photosynthesis. Besides, transcription factors such as PIF3, GLK and MYB which might participate in those pathways were also identified. The correlation analysis between DEGs and DEPs revealed that the transcript-to-protein in abundance was functioned into photosynthesis and chloroplast relevant groups. Real time qPCR analysis validated that the expression level of genes encoding photosynthetic proteins was significantly decreased in mta. Together, our results suggest that the molecular mechanism for albino leaf color formation in mta is a thoroughly regulated and complicated process. The combined analysis of transcriptome and proteome afford comprehensive information for further research on chloroplast development mechanism in wheat. And spaceflight provides a potential means for mutagenesis in crop breeding.
Achievements and perspectives of top-down proteomics.
Armirotti, Andrea; Damonte, Gianluca
2010-10-01
Over the last years, top-down (TD) MS has gained a remarkable space in proteomics, rapidly trespassing the limit between a promising approach and a solid, established technique. Several research groups worldwide have implemented TD analysis in their routine work on proteomics, deriving structural information on proteins with the level of accuracy that is impossible to achieve with classical bottom-up approaches. Complete maps of PTMs and assessment of single aminoacid polymorphisms are only a few of the results that can be obtained with this technique. Despite some existing technical and economical limitations, TD analysis is at present the most powerful instrument for MS-based proteomics and its implementation in routine workflow is a rapidly approaching turning point in proteomics. In this review article, the state-of-the-art of TD approach is described along with its major advantages and drawbacks and the most recent trends in TD analysis are discussed. References for all the covered topics are reported in the text, with the aim to support both newcomers and mass spectrometrists already introduced to TD proteomics.
Snow, Joseph T.; Polyviou, Despo; Skipp, Paul; Chrismas, Nathan A. M.; Hitchcock, Andrew; Geider, Richard; Moore, C. Mark; Bibby, Thomas S.
2015-01-01
Trichodesmium is a biogeochemically important marine cyanobacterium, responsible for a significant proportion of the annual ‘new’ nitrogen introduced into the global ocean. These non-heterocystous filamentous diazotrophs employ a potentially unique strategy of near-concurrent nitrogen fixation and oxygenic photosynthesis, potentially burdening Trichodesmium with a particularly high iron requirement due to the iron-binding proteins involved in these processes. Iron availability may therefore have a significant influence on the biogeography of Trichodesmium. Previous investigations of molecular responses to iron stress in this keystone marine microbe have largely been targeted. Here a holistic approach was taken using a label-free quantitative proteomics technique (MSE) to reveal a sophisticated multi-faceted proteomic response of Trichodesmium erythraeum IMS101 to iron stress. Increased abundances of proteins known to be involved in acclimation to iron stress and proteins known or predicted to be involved in iron uptake were observed, alongside decreases in the abundances of iron-binding proteins involved in photosynthesis and nitrogen fixation. Preferential loss of proteins with a high iron content contributed to overall reductions of 55–60% in estimated proteomic iron requirements. Changes in the abundances of iron-binding proteins also suggested the potential importance of alternate photosynthetic pathways as Trichodesmium reallocates the limiting resource under iron stress. Trichodesmium therefore displays a significant and integrated proteomic response to iron availability that likely contributes to the ecological success of this species in the ocean. PMID:26562022
Proteomics of industrial fungi: trends and insights for biotechnology.
de Oliveira, José Miguel P Ferreira; de Graaff, Leo H
2011-01-01
Filamentous fungi are widely known for their industrial applications, namely, the production of food-processing enzymes and metabolites such as antibiotics and organic acids. In the past decade, the full genome sequencing of filamentous fungi increased the potential to predict encoded proteins enormously, namely, hydrolytic enzymes or proteins involved in the biosynthesis of metabolites of interest. The integration of genome sequence information with possible phenotypes requires, however, the knowledge of all the proteins in the cell in a system-wise manner, given by proteomics. This review summarises the progress of proteomics and its importance for the study of biotechnological processes in filamentous fungi. A major step forward in proteomics was to couple protein separation with high-resolution mass spectrometry, allowing accurate protein quantification. Despite the fact that most fungal proteomic studies have been focused on proteins from mycelial extracts, many proteins are related to processes which are compartmentalised in the fungal cell, e.g. β-lactam antibiotic production in the microbody. For the study of such processes, a targeted approach is required, e.g. by organelle proteomics. Typical workflows for sample preparation in fungal organelle proteomics are discussed, including homogenisation and sub-cellular fractionation. Finally, examples are presented of fungal organelle proteomic studies, which have enlarged the knowledge on areas of interest to biotechnology, such as protein secretion, energy production or antibiotic biosynthesis.
Proteomics of industrial fungi: trends and insights for biotechnology
de Oliveira, José Miguel P. Ferreira
2010-01-01
Filamentous fungi are widely known for their industrial applications, namely, the production of food-processing enzymes and metabolites such as antibiotics and organic acids. In the past decade, the full genome sequencing of filamentous fungi increased the potential to predict encoded proteins enormously, namely, hydrolytic enzymes or proteins involved in the biosynthesis of metabolites of interest. The integration of genome sequence information with possible phenotypes requires, however, the knowledge of all the proteins in the cell in a system-wise manner, given by proteomics. This review summarises the progress of proteomics and its importance for the study of biotechnological processes in filamentous fungi. A major step forward in proteomics was to couple protein separation with high-resolution mass spectrometry, allowing accurate protein quantification. Despite the fact that most fungal proteomic studies have been focused on proteins from mycelial extracts, many proteins are related to processes which are compartmentalised in the fungal cell, e.g. β-lactam antibiotic production in the microbody. For the study of such processes, a targeted approach is required, e.g. by organelle proteomics. Typical workflows for sample preparation in fungal organelle proteomics are discussed, including homogenisation and sub-cellular fractionation. Finally, examples are presented of fungal organelle proteomic studies, which have enlarged the knowledge on areas of interest to biotechnology, such as protein secretion, energy production or antibiotic biosynthesis. PMID:20922379
Gollapalli, Kishore; Ghantasala, Saicharan; Atak, Apurva; Rapole, Srikanth; Moiyadi, Aliasgar; Epari, Sridhar; Srivastava, Sanjeeva
2017-05-01
Gliomas are heterogeneous and most commonly occurring brain tumors. Blood-brain barrier restricts the entry of brain tumor proteins into blood stream thus limiting the usage of serum or plasma for proteomic analysis. Our study aimed at understanding the molecular basis of aggressiveness of various grades of brain tumors using isobaric tagging for relative and absolute quantification (iTRAQ) based mass spectrometry. Tissue proteomic analysis of various grades of gliomas was performed using four-plex iTRAQ. We labeled five sets (each set consists of control, grade-II, III, and IV tumor samples) of individual glioma patients using iTRAQ reagents. Significantly altered proteins were subjected to bioinformatics analysis using Database for Annotation, Visualization and Integrated Discovery (DAVID). Various metabolic pathways like glycolysis, TCA-cycle, electron transport chain, lactate metabolism, and blood coagulation pathways were majorly observed to be perturbed in gliomas. Most of the identified proteins involved in redox reactions, protein folding, pre-messenger RNA (mRNA) processing, antiapoptosis, and blood coagulation were found to be upregulated in gliomas. Transcriptomics data of glioblastoma multiforme (GBM), low-grade gliomas (LGGs), and controls were downloaded from The Cancer Genome Atlas (TCGA) data portal and further analyzed using BRB-Array tools. Expression levels of a few significantly altered proteins like lactate dehydrogenase, alpha-1 antitrypsin, fibrinogen alpha chain, nucleophosmin, annexin A5, thioredoxin, ferritin light chain, thymosin beta-4-like protein 3, superoxide dismutase-2, and peroxiredoxin-1 and 6 showed a positive correlation with increasing grade of gliomas thereby offering an insight into molecular basis behind their aggressive nature. Several proteins identified in different grades of gliomas are potential grade-specific markers, and perturbed pathways provide comprehensive overview of molecular cues involved in glioma pathogenesis.
Castillejo, María Ángeles; Bani, Moustafa; Rubiales, Diego
2015-07-01
Fusarium oxysporum f. sp. pisi (Fop) is an important and destructive pathogen affecting pea crop (Pisum sativum) throughout the world. Control of this disease is achieved mainly by integration of different disease management procedures. However, the constant evolution of the pathogen drives the necessity to broaden the molecular basis of resistance to Fop. Our proteomic study was performed on pea with the aim of identifying proteins involved in different resistance mechanisms operating during F. oxysporum infection. For such purpose, we used a two-dimensional electrophoresis (2-DE) coupled to mass spectrometry (MALDI-TOF/TOF) analysis to study the root proteome of three pea genotypes showing different resistance response to Fop race 2. Multivariate statistical analysis identified 132 differential protein spots under the experimental conditions (genotypes/treatments). All of these protein spots were subjected to mass spectrometry analysis to deduce their possible functions. A total of 53 proteins were identified using a combination of peptide mass fingerprinting (PMF) and MSMS fragmentation. The following main functional categories were assigned to the identified proteins: carbohydrate and energy metabolism, nucleotides and aminoacid metabolism, signal transduction and cellular process, folding and degradation, redox and homeostasis, defense, biosynthetic process and transcription/translation. Results obtained in this work suggest that the most susceptible genotypes have increased levels of enzymes involved in the production of reducing power which could then be used as cofactor for enzymes of the redox reactions. This is in concordance with the fact that a ROS burst occurred in the same genotypes, as well as an increase of PR proteins. Conversely, in the resistant genotype proteins responsible to induce changes in the membrane and cell wall composition related to reinforcement were identified. Results are discussed in terms of the differential response to Fop. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mechanisms of CCl4-induced liver fibrosis with combined transcriptomic and proteomic analysis.
Dong, Shu; Chen, Qi-Long; Song, Ya-Nan; Sun, Yang; Wei, Bin; Li, Xiao-Yan; Hu, Yi-Yang; Liu, Ping; Su, Shi-Bing
2016-01-01
The classic toxicity of carbon tetrachloride (CCl4) is to induce liver lesion and liver fibrosis. Liver fibrosis is a consequence of chronic liver lesion, which can progress into liver cirrhosis even hepatocarcinoma. However, the toxicological mechanisms of CCl4-induced liver fibrosis remain not fully understood. We combined transcriptomic and proteomic analysis and biological network technology, predicted toxicological targets and regulatory networks of CCl4 in liver fibrosis. Wistar rats were treated with CCl4 for 9 weeks. Histopathological changes, hydroxyproline (Hyp) contents, serum ALT and AST in the CCl4-treated group were significantly higher than that of CCl4-untreated group. CCl4-treated and -untreated liver tissues were examined by microarray and iTRAQ. The results showed that 3535 genes (fold change ≥ 1.5, P < 0.05) and 1412 proteins (fold change ≥ 1.2, P < 0.05) were differentially expressed. Moreover, the integrative analysis of transcriptomics and proteomics data showed 523 overlapped proteins, enriched in 182 GO terms including oxidation reduction, response to oxidative stress, inflammatory response, extracellular matrix organization, etc. Furthermore, KEGG pathway analysis showed that 36 pathways including retinol metabolism, PPAR signaling pathway, glycolysis/gluconeogenesis, arachidonic acid metabolism, metabolism of xenobiotics by cytochrome P450 and drug metabolism. Network of protein-protein interaction (PPI) and key function with their related targets were performed and the degree of network was calculated with Cytoscape. The expression of key targets such as CYP4A3, ALDH2 and ALDH7A1 decreased after CCl4 treatment. Therefore, the toxicological mechanisms of CCl4-induced liver fibrosis may be related with multi biological process, pathway and targets which may provide potential protection reaction mechanism for CCl4 detoxication in the liver.
Alberio, Tiziana; Pieroni, Luisa; Ronci, Maurizio; Banfi, Cristina; Bongarzone, Italia; Bottoni, Patrizia; Brioschi, Maura; Caterino, Marianna; Chinello, Clizia; Cormio, Antonella; Cozzolino, Flora; Cunsolo, Vincenzo; Fontana, Simona; Garavaglia, Barbara; Giusti, Laura; Greco, Viviana; Lucacchini, Antonio; Maffioli, Elisa; Magni, Fulvio; Monteleone, Francesca; Monti, Maria; Monti, Valentina; Musicco, Clara; Petrosillo, Giuseppe; Porcelli, Vito; Saletti, Rosaria; Scatena, Roberto; Soggiu, Alessio; Tedeschi, Gabriella; Zilocchi, Mara; Roncada, Paola; Urbani, Andrea; Fasano, Mauro
2017-12-01
The Mitochondrial Human Proteome Project aims at understanding the function of the mitochondrial proteome and its crosstalk with the proteome of other organelles. Being able to choose a suitable and validated enrichment protocol of functional mitochondria, based on the specific needs of the downstream proteomics analysis, would greatly help the researchers in the field. Mitochondrial fractions from ten model cell lines were prepared using three enrichment protocols and analyzed on seven different LC-MS/MS platforms. All data were processed using neXtProt as reference database. The data are available for the Human Proteome Project purposes through the ProteomeXchange Consortium with the identifier PXD007053. The processed data sets were analyzed using a suite of R routines to perform a statistical analysis and to retrieve subcellular and submitochondrial localizations. Although the overall number of identified total and mitochondrial proteins was not significantly dependent on the enrichment protocol, specific line to line differences were observed. Moreover, the protein lists were mapped to a network representing the functional mitochondrial proteome, encompassing mitochondrial proteins and their first interactors. More than 80% of the identified proteins resulted in nodes of this network but with a different ability in coisolating mitochondria-associated structures for each enrichment protocol/cell line pair.
Estimation of the proteomic cancer co-expression sub networks by using association estimators.
Erdoğan, Cihat; Kurt, Zeyneb; Diri, Banu
2017-01-01
In this study, the association estimators, which have significant influences on the gene network inference methods and used for determining the molecular interactions, were examined within the co-expression network inference concept. By using the proteomic data from five different cancer types, the hub genes/proteins within the disease-associated gene-gene/protein-protein interaction sub networks were identified. Proteomic data from various cancer types is collected from The Cancer Proteome Atlas (TCPA). Correlation and mutual information (MI) based nine association estimators that are commonly used in the literature, were compared in this study. As the gold standard to measure the association estimators' performance, a multi-layer data integration platform on gene-disease associations (DisGeNET) and the Molecular Signatures Database (MSigDB) was used. Fisher's exact test was used to evaluate the performance of the association estimators by comparing the created co-expression networks with the disease-associated pathways. It was observed that the MI based estimators provided more successful results than the Pearson and Spearman correlation approaches, which are used in the estimation of biological networks in the weighted correlation network analysis (WGCNA) package. In correlation-based methods, the best average success rate for five cancer types was 60%, while in MI-based methods the average success ratio was 71% for James-Stein Shrinkage (Shrink) and 64% for Schurmann-Grassberger (SG) association estimator, respectively. Moreover, the hub genes and the inferred sub networks are presented for the consideration of researchers and experimentalists.
Sample handling for mass spectrometric proteomic investigations of human sera.
West-Nielsen, Mikkel; Høgdall, Estrid V; Marchiori, Elena; Høgdall, Claus K; Schou, Christian; Heegaard, Niels H H
2005-08-15
Proteomic investigations of sera are potentially of value for diagnosis, prognosis, choice of therapy, and disease activity assessment by virtue of discovering new biomarkers and biomarker patterns. Much debate focuses on the biological relevance and the need for identification of such biomarkers while less effort has been invested in devising standard procedures for sample preparation and storage in relation to model building based on complex sets of mass spectrometric (MS) data. Thus, development of standardized methods for collection and storage of patient samples together with standards for transportation and handling of samples are needed. This requires knowledge about how sample processing affects MS-based proteome analyses and thereby how nonbiological biased classification errors are avoided. In this study, we characterize the effects of sample handling, including clotting conditions, storage temperature, storage time, and freeze/thaw cycles, on MS-based proteomics of human serum by using principal components analysis, support vector machine learning, and clustering methods based on genetic algorithms as class modeling and prediction methods. Using spiking to artificially create differentiable sample groups, this integrated approach yields data that--even when working with sample groups that differ more than may be expected in biological studies--clearly demonstrate the need for comparable sampling conditions for samples used for modeling and for the samples that are going into the test set group. Also, the study emphasizes the difference between class prediction and class comparison studies as well as the advantages and disadvantages of different modeling methods.
Estimation of the proteomic cancer co-expression sub networks by using association estimators
Kurt, Zeyneb; Diri, Banu
2017-01-01
In this study, the association estimators, which have significant influences on the gene network inference methods and used for determining the molecular interactions, were examined within the co-expression network inference concept. By using the proteomic data from five different cancer types, the hub genes/proteins within the disease-associated gene-gene/protein-protein interaction sub networks were identified. Proteomic data from various cancer types is collected from The Cancer Proteome Atlas (TCPA). Correlation and mutual information (MI) based nine association estimators that are commonly used in the literature, were compared in this study. As the gold standard to measure the association estimators’ performance, a multi-layer data integration platform on gene-disease associations (DisGeNET) and the Molecular Signatures Database (MSigDB) was used. Fisher's exact test was used to evaluate the performance of the association estimators by comparing the created co-expression networks with the disease-associated pathways. It was observed that the MI based estimators provided more successful results than the Pearson and Spearman correlation approaches, which are used in the estimation of biological networks in the weighted correlation network analysis (WGCNA) package. In correlation-based methods, the best average success rate for five cancer types was 60%, while in MI-based methods the average success ratio was 71% for James-Stein Shrinkage (Shrink) and 64% for Schurmann-Grassberger (SG) association estimator, respectively. Moreover, the hub genes and the inferred sub networks are presented for the consideration of researchers and experimentalists. PMID:29145449
Islam, Mohammad Tawhidul; Mohamedali, Abidali; Ahn, Seong Beom; Nawar, Ishmam; Baker, Mark S; Ranganathan, Shoba
2017-01-01
In the past decade, proteomics and mass spectrometry have taken tremendous strides forward, particularly in the life sciences, spurred on by rapid advances in technology resulting in generation and conglomeration of vast amounts of data. Though this has led to tremendous advancements in biology, the interpretation of the data poses serious challenges for many practitioners due to the immense size and complexity of the data. Furthermore, the lack of annotation means that a potential gold mine of relevant biological information may be hiding within this data. We present here a simple and intuitive workflow for the research community to investigate and mine this data, not only to extract relevant data but also to segregate usable, quality data to develop hypotheses for investigation and validation. We apply an MS evidence workflow for verifying peptides of proteins from one's own data as well as publicly available databases. We then integrate a suite of freely available bioinformatics analysis and annotation software tools to identify homologues and map putative functional signatures, gene ontology and biochemical pathways. We also provide an example of the functional annotation of missing proteins in human chromosome 7 data from the NeXtProt database, where no evidence is available at the proteomic, antibody, or structural levels. We give examples of protocols, tools and detailed flowcharts that can be extended or tailored to interpret and annotate the proteome of any novel organism.
Siu, S O; Lam, Maggie P Y; Lau, Edward; Yeung, William S B; Cox, David M; Chu, Ivan K
2010-01-01
Although reverse-phase liquid chromatography (RP-LC) is a common technique for peptide separation in shotgun proteomics and glycoproteomics, it often provides unsatisfactory results for the analysis of glycopeptides and glycans. This bias against glycopeptides makes it difficult to study glycoproteins. By coupling mass spectrometry (MS) with a combination of RP-LC and normal-phase (NP)-LC as an integrated front-end separation system, we demonstrate that effective identification and characterization of both peptides and glycopeptides mixtures, and their constituent glycan structures, can be achieved from a single sample injection event.
Workflow based framework for life science informatics.
Tiwari, Abhishek; Sekhar, Arvind K T
2007-10-01
Workflow technology is a generic mechanism to integrate diverse types of available resources (databases, servers, software applications and different services) which facilitate knowledge exchange within traditionally divergent fields such as molecular biology, clinical research, computational science, physics, chemistry and statistics. Researchers can easily incorporate and access diverse, distributed tools and data to develop their own research protocols for scientific analysis. Application of workflow technology has been reported in areas like drug discovery, genomics, large-scale gene expression analysis, proteomics, and system biology. In this article, we have discussed the existing workflow systems and the trends in applications of workflow based systems.
Semantic similarity analysis of protein data: assessment with biological features and issues.
Guzzi, Pietro H; Mina, Marco; Guerra, Concettina; Cannataro, Mario
2012-09-01
The integration of proteomics data with biological knowledge is a recent trend in bioinformatics. A lot of biological information is available and is spread on different sources and encoded in different ontologies (e.g. Gene Ontology). Annotating existing protein data with biological information may enable the use (and the development) of algorithms that use biological ontologies as framework to mine annotated data. Recently many methodologies and algorithms that use ontologies to extract knowledge from data, as well as to analyse ontologies themselves have been proposed and applied to other fields. Conversely, the use of such annotations for the analysis of protein data is a relatively novel research area that is currently becoming more and more central in research. Existing approaches span from the definition of the similarity among genes and proteins on the basis of the annotating terms, to the definition of novel algorithms that use such similarities for mining protein data on a proteome-wide scale. This work, after the definition of main concept of such analysis, presents a systematic discussion and comparison of main approaches. Finally, remaining challenges, as well as possible future directions of research are presented.
Xu, Xiaofei; Yang, Jiguo; Ning, Zhengxiang; Zhang, Xuewu
2016-01-01
Lentinula edodes-derived polysaccharides are well known for their immunomodulation and antitumor activities. However, the mechanisms of action have not been fully elucidated. This study presents proteomic analysis of the colon and small intestine from mice fed with an immunostimulating heteropolysaccharide L2 from the fruit body of L. edodes. Two-dimensional gel electrophoresis (2-DE) and MALDI-TOF-TOF MS/MS were employed to characterize the protein profiles. Twenty nine gel spots representing 20 proteins in colon tissues and 38 gel spots in small intestine tissues representing 23 proteins were identified as showing significant changes in abundance. These differential proteins in abundance are mainly involved in metabolism, binding, structural components, and response to stimulus. Protein-protein interaction network analysis demonstrated mapping of the 20 colon proteins to a 7-protein and a 3-protein sub-network, and mapping of the 23 small intestine proteins to a 9-protein and a 5-protein sub-network. All the 40 altered proteins were integrated into a unified network containing 25 proteins, suggesting the existence of a concerted mechanism, although acting on the colon and small intestine separately. These findings facilitate the understanding of the regulatory mechanism in response to L2 treatment.
CEBS object model for systems biology data, SysBio-OM.
Xirasagar, Sandhya; Gustafson, Scott; Merrick, B Alex; Tomer, Kenneth B; Stasiewicz, Stanley; Chan, Denny D; Yost, Kenneth J; Yates, John R; Sumner, Susan; Xiao, Nianqing; Waters, Michael D
2004-09-01
To promote a systems biology approach to understanding the biological effects of environmental stressors, the Chemical Effects in Biological Systems (CEBS) knowledge base is being developed to house data from multiple complex data streams in a systems friendly manner that will accommodate extensive querying from users. Unified data representation via a single object model will greatly aid in integrating data storage and management, and facilitate reuse of software to analyze and display data resulting from diverse differential expression or differential profile technologies. Data streams include, but are not limited to, gene expression analysis (transcriptomics), protein expression and protein-protein interaction analysis (proteomics) and changes in low molecular weight metabolite levels (metabolomics). To enable the integration of microarray gene expression, proteomics and metabolomics data in the CEBS system, we designed an object model, Systems Biology Object Model (SysBio-OM). The model is comprehensive and leverages other open source efforts, namely the MicroArray Gene Expression Object Model (MAGE-OM) and the Proteomics Experiment Data Repository (PEDRo) object model. SysBio-OM is designed by extending MAGE-OM to represent protein expression data elements (including those from PEDRo), protein-protein interaction and metabolomics data. SysBio-OM promotes the standardization of data representation and data quality by facilitating the capture of the minimum annotation required for an experiment. Such standardization refines the accuracy of data mining and interpretation. The open source SysBio-OM model, which can be implemented on varied computing platforms is presented here. A universal modeling language depiction of the entire SysBio-OM is available at http://cebs.niehs.nih.gov/SysBioOM/. The Rational Rose object model package is distributed under an open source license that permits unrestricted academic and commercial use and is available at http://cebs.niehs.nih.gov/cebsdownloads. The database and interface are being built to implement the model and will be available for public use at http://cebs.niehs.nih.gov.
A catalogue of molecular aberrations that cause ovarian cancer is critical for developing and deploying diagnostics and therapies that will improve patients’ lives. Because a comprehensive molecular view of cancer is important for ultimately guiding treatment, the National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) has released the cancer proteome confirmatory ovarian study data sets.
Couto, Narciso; Schooling, Sarah R; Dutcher, John R; Barber, Jill
2015-10-02
In the present work, two different proteomic platforms, gel-based and gel-free, were used to map the matrix and outer membrane vesicle exoproteomes of Pseudomonas aeruginosa PAO1 biofilms. These two proteomic strategies allowed us a confident identification of 207 and 327 proteins from enriched outer membrane vesicles and whole matrix isolated from biofilms. Because of the physicochemical characteristics of these subproteomes, the two strategies showed complementarity, and thus, the most comprehensive analysis of P. aeruginosa exoproteome to date was achieved. Under our conditions, outer membrane vesicles contribute approximately 20% of the whole matrix proteome, demonstrating that membrane vesicles are an important component of the matrix. The proteomic profiles were analyzed in terms of their biological context, namely, a biofilm. Accordingly relevant metabolic processes involved in cellular adaptation to the biofilm lifestyle as well as those related to P. aeruginosa virulence capabilities were a key feature of the analyses. The diversity of the matrix proteome corroborates the idea of high heterogeneity within the biofilm; cells can display different levels of metabolism and can adapt to local microenvironments making this proteomic analysis challenging. In addition to analyzing our own primary data, we extend the analysis to published data by other groups in order to deepen our understanding of the complexity inherent within biofilm populations.
Advances of Proteomic Sciences in Dentistry.
Khurshid, Zohaib; Zohaib, Sana; Najeeb, Shariq; Zafar, Muhammad Sohail; Rehman, Rabia; Rehman, Ihtesham Ur
2016-05-13
Applications of proteomics tools revolutionized various biomedical disciplines such as genetics, molecular biology, medicine, and dentistry. The aim of this review is to highlight the major milestones in proteomics in dentistry during the last fifteen years. Human oral cavity contains hard and soft tissues and various biofluids including saliva and crevicular fluid. Proteomics has brought revolution in dentistry by helping in the early diagnosis of various diseases identified by the detection of numerous biomarkers present in the oral fluids. This paper covers the role of proteomics tools for the analysis of oral tissues. In addition, dental materials proteomics and their future directions are discussed.
Van, Phu T; Schmid, Amy K; King, Nichole L; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T; Goo, Young Ah; Deutsch, Eric W; Reiss, David J; Mallick, Parag; Baliga, Nitin S
2008-09-01
The relatively small numbers of proteins and fewer possible post-translational modifications in microbes provide a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a PeptideAtlas (PA) covering 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636 000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has highlighted plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore, we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics.
Progress on the HUPO Draft Human Proteome: 2017 Metrics of the Human Proteome Project.
Omenn, Gilbert S; Lane, Lydie; Lundberg, Emma K; Overall, Christopher M; Deutsch, Eric W
2017-12-01
The Human Proteome Organization (HUPO) Human Proteome Project (HPP) continues to make progress on its two overall goals: (1) completing the protein parts list, with an annual update of the HUPO draft human proteome, and (2) making proteomics an integrated complement to genomics and transcriptomics throughout biomedical and life sciences research. neXtProt version 2017-01-23 has 17 008 confident protein identifications (Protein Existence [PE] level 1) that are compliant with the HPP Guidelines v2.1 ( https://hupo.org/Guidelines ), up from 13 664 in 2012-12 and 16 518 in 2016-04. Remaining to be found by mass spectrometry and other methods are 2579 "missing proteins" (PE2+3+4), down from 2949 in 2016. PeptideAtlas 2017-01 has 15 173 canonical proteins, accounting for nearly all of the 15 290 PE1 proteins based on MS data. These resources have extensive data on PTMs, single amino acid variants, and splice isoforms. The Human Protein Atlas v16 has 10 492 highly curated protein entries with tissue and subcellular spatial localization of proteins and transcript expression. Organ-specific popular protein lists have been generated for broad use in quantitative targeted proteomics using SRM-MS or DIA-SWATH-MS studies of biology and disease.
QIL1 is a novel mitochondrial protein required for MICOS complex stability and cristae morphology.
Guarani, Virginia; McNeill, Elizabeth M; Paulo, Joao A; Huttlin, Edward L; Fröhlich, Florian; Gygi, Steven P; Van Vactor, David; Harper, J Wade
2015-05-21
The mitochondrial contact site and cristae junction (CJ) organizing system (MICOS) dynamically regulate mitochondrial membrane architecture. Through systematic proteomic analysis of human MICOS, we identified QIL1 (C19orf70) as a novel conserved MICOS subunit. QIL1 depletion disrupted CJ structure in cultured human cells and in Drosophila muscle and neuronal cells in vivo. In human cells, mitochondrial disruption correlated with impaired respiration. Moreover, increased mitochondrial fragmentation was observed upon QIL1 depletion in flies. Using quantitative proteomics, we show that loss of QIL1 resulted in MICOS disassembly with the accumulation of a MIC60-MIC19-MIC25 sub-complex and degradation of MIC10, MIC26, and MIC27. Additionally, we demonstrated that in QIL1-depleted cells, overexpressed MIC10 fails to significantly restore its interaction with other MICOS subunits and SAMM50. Collectively, our work uncovers a previously unrecognized subunit of the MICOS complex, necessary for CJ integrity, cristae morphology, and mitochondrial function and provides a resource for further analysis of MICOS architecture.
QIL1 is a novel mitochondrial protein required for MICOS complex stability and cristae morphology
Guarani, Virginia; McNeill, Elizabeth M; Paulo, Joao A; Huttlin, Edward L; Fröhlich, Florian; Gygi, Steven P; Van Vactor, David; Harper, J Wade
2015-01-01
The mitochondrial contact site and cristae junction (CJ) organizing system (MICOS) dynamically regulate mitochondrial membrane architecture. Through systematic proteomic analysis of human MICOS, we identified QIL1 (C19orf70) as a novel conserved MICOS subunit. QIL1 depletion disrupted CJ structure in cultured human cells and in Drosophila muscle and neuronal cells in vivo. In human cells, mitochondrial disruption correlated with impaired respiration. Moreover, increased mitochondrial fragmentation was observed upon QIL1 depletion in flies. Using quantitative proteomics, we show that loss of QIL1 resulted in MICOS disassembly with the accumulation of a MIC60-MIC19-MIC25 sub-complex and degradation of MIC10, MIC26, and MIC27. Additionally, we demonstrated that in QIL1-depleted cells, overexpressed MIC10 fails to significantly restore its interaction with other MICOS subunits and SAMM50. Collectively, our work uncovers a previously unrecognized subunit of the MICOS complex, necessary for CJ integrity, cristae morphology, and mitochondrial function and provides a resource for further analysis of MICOS architecture. DOI: http://dx.doi.org/10.7554/eLife.06265.001 PMID:25997101
De Novo Peptide Sequencing: Deep Mining of High-Resolution Mass Spectrometry Data.
Islam, Mohammad Tawhidul; Mohamedali, Abidali; Fernandes, Criselda Santan; Baker, Mark S; Ranganathan, Shoba
2017-01-01
High resolution mass spectrometry has revolutionized proteomics over the past decade, resulting in tremendous amounts of data in the form of mass spectra, being generated in a relatively short span of time. The mining of this spectral data for analysis and interpretation though has lagged behind such that potentially valuable data is being overlooked because it does not fit into the mold of traditional database searching methodologies. Although the analysis of spectra by de novo sequences removes such biases and has been available for a long period of time, its uptake has been slow or almost nonexistent within the scientific community. In this chapter, we propose a methodology to integrate de novo peptide sequencing using three commonly available software solutions in tandem, complemented by homology searching, and manual validation of spectra. This simplified method would allow greater use of de novo sequencing approaches and potentially greatly increase proteome coverage leading to the unearthing of valuable insights into protein biology, especially of organisms whose genomes have been recently sequenced or are poorly annotated.
Omics integrating physical techniques: aged Piedmontese meat analysis.
Lana, Alessandro; Longo, Valentina; Dalmasso, Alessandra; D'Alessandro, Angelo; Bottero, Maria Teresa; Zolla, Lello
2015-04-01
Piedmontese meat tenderness becomes higher by extending the ageing period after slaughter up to 44 days. Classical physical analysis only partially explain this evidence, so in order to discover the reason of the potential beneficial effects of prolonged ageing, we performed omic analysis in the Longissimus thoracis muscle by examining main biochemical changes through mass spectrometry-based metabolomics and proteomics. We observed a progressive decline in myofibrillar structural integrity (underpinning meat tenderness) and impaired energy metabolism. Markers of autophagic responses (e.g. serine and glutathione metabolism) and nitrogen metabolism (urea cycle intermediates) accumulated until the end of the assayed period. Key metabolites such as glutamate, a mediator of the appreciated umami taste of the meat, were found to constantly accumulate until day 44. Finally, statistical analyses revealed that glutamate, serine and arginine could serve as good predictors of ultimate meat quality parameters, even though further studies are mandatory. Copyright © 2014 Elsevier Ltd. All rights reserved.
Advances in microscale separations towards nanoproteomics applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Lian; Piehowski, Paul D.; Shi, Tujin
Microscale separations (e.g., liquid chromatography or capillary electrophoresis) coupled with mass spectrometry (MS) has become the primary tool for advanced proteomics, an indispensable technology for gaining understanding of complex biological processes. While significant advances have been achieved in MS-based proteomics, the current platforms still face a significant challenge in overall sensitivity towards nanoproteomics (i.e., with less than 1 g total amount of proteins available) applications such as cellular heterogeneity in tissue pathologies. Herein, we review recent advances in microscale separation techniques and integrated sample processing systems that improve the overall sensitivity and coverage of the proteomics workflow, and their contributionsmore » towards nanoproteomics applications.« less
The journal Molecular & Cellular Proteomics (MCP), in collaboration with the Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI), part of the National Institutes of Health, announce new guidelines and requirements for papers describing the development and application of targeted mass spectrometry measurements of peptides, modified peptides and proteins (Mol Cell Proteomics 2017; PMID: 28183812). NCI’s participation is part of NIH’s overall effort to address the r
An estimated 252,710 new cases of female breast cancer, accounting for 15% of all new cancer cases, occurred in 2017. To better understand proteogenomic abnormalities in breast cancer, the National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) announces the release of the cancer proteome confirmatory breast study data. The goal of the study was to comprehensively characterize the proteome and phosphoproteome on approximately 100 prospectively collected breast tumor and adjacent normal tissues.
Hu, Zenglei; Gu, Han; Hu, Jiao; Hu, Shunlin; Wang, Xiaoquan; Liu, Xiaowen; Jiao, Xinan; Liu, Xiufan
2018-06-15
Pathogenesis of genotype VII Newcastle disease virus (NDV) is characterized with remarkable immunopathology in the spleen in chickens. However, the mechanism for this unique pathological phenotype is not fully understood. Previous transcriptomics data showed that genotype VII NDV JS5/05 caused a greater downregulation of extracellular matrix (ECM) genes than genotype IV virus Herts/33 in the spleen. In this study, the role of ECM in pathology of genotype VII NDV was investigated using quantitative proteomics. Pathology studies showed that JS5/05 caused severe immunopathology characterized with remarkable necrosis in the spleen, whereas Herts/33 only induced mild pathological changes. The ECM was firstly enriched from the spleens and ECM proteins of different categories were identified by LC-MS/MS. Quantitative proteomic analysis showed that JS5/05 caused a significant disruption of ECM integrity and molecular composition compared to Herts/33. Particularly, JS5/05 induced a more remarkable collagen breakdown in the spleen compared to Herts/33. Moreover, matrix metalloproteinase (MMP)-13 and -14 were significantly upregulated by JS5/05 infection. KEGG pathway analysis suggested that differential regulation of ECM proteins by JS5/05 and Herts/33 may impact pathology through different pathways. Therefore, our results suggested that MMP upregulation and consequent ECM degradation contribute to immunopathology of genotype VII NDV in the spleen. Pathogenesis of genotype VII NDV is characterized with severe immunopathology in the spleen in chickens. Elucidating the mechanism of this pathology phenotype is critical to understand pathogenesis of genotype VII NDV. Here, we present the proteomic data of an important non-cellular compartment, the extracellular matrix (ECM), in the spleen from chickens infected with genotype VII and IV NDVs. Our results suggest that significant upregulation of matrix metalloproteinases by genotype VII NDV and consequent disruption of ECM integrity and composition may be associated with immunopathology in the spleen. Moreover, ECM degradation, represented by collagen breakdown, is an important pathology event in the process of genotype VII NDV infection. Our study for the first time presents evidence of ECM regulation by NDV and adds ECM remodeling as a new manifestation for NDV pathology. Our findings also deepen the understanding of NDV pathogenesis. Copyright © 2018. Published by Elsevier B.V.
Tiered Human Integrated Sequence Search Databases for Shotgun Proteomics.
Deutsch, Eric W; Sun, Zhi; Campbell, David S; Binz, Pierre-Alain; Farrah, Terry; Shteynberg, David; Mendoza, Luis; Omenn, Gilbert S; Moritz, Robert L
2016-11-04
The results of analysis of shotgun proteomics mass spectrometry data can be greatly affected by the selection of the reference protein sequence database against which the spectra are matched. For many species there are multiple sources from which somewhat different sequence sets can be obtained. This can lead to confusion about which database is best in which circumstances-a problem especially acute in human sample analysis. All sequence databases are genome-based, with sequences for the predicted gene and their protein translation products compiled. Our goal is to create a set of primary sequence databases that comprise the union of sequences from many of the different available sources and make the result easily available to the community. We have compiled a set of four sequence databases of varying sizes, from a small database consisting of only the ∼20,000 primary isoforms plus contaminants to a very large database that includes almost all nonredundant protein sequences from several sources. This set of tiered, increasingly complete human protein sequence databases suitable for mass spectrometry proteomics sequence database searching is called the Tiered Human Integrated Search Proteome set. In order to evaluate the utility of these databases, we have analyzed two different data sets, one from the HeLa cell line and the other from normal human liver tissue, with each of the four tiers of database complexity. The result is that approximately 0.8%, 1.1%, and 1.5% additional peptides can be identified for Tiers 2, 3, and 4, respectively, as compared with the Tier 1 database, at substantially increasing computational cost. This increase in computational cost may be worth bearing if the identification of sequence variants or the discovery of sequences that are not present in the reviewed knowledge base entries is an important goal of the study. We find that it is useful to search a data set against a simpler database, and then check the uniqueness of the discovered peptides against a more complex database. We have set up an automated system that downloads all the source databases on the first of each month and automatically generates a new set of search databases and makes them available for download at http://www.peptideatlas.org/thisp/ .
Tiered Human Integrated Sequence Search Databases for Shotgun Proteomics
Deutsch, Eric W.; Sun, Zhi; Campbell, David S.; Binz, Pierre-Alain; Farrah, Terry; Shteynberg, David; Mendoza, Luis; Omenn, Gilbert S.; Moritz, Robert L.
2016-01-01
The results of analysis of shotgun proteomics mass spectrometry data can be greatly affected by the selection of the reference protein sequence database against which the spectra are matched. For many species there are multiple sources from which somewhat different sequence sets can be obtained. This can lead to confusion about which database is best in which circumstances – a problem especially acute in human sample analysis. All sequence databases are genome-based, with sequences for the predicted gene and their protein translation products compiled. Our goal is to create a set of primary sequence databases that comprise the union of sequences from many of the different available sources and make the result easily available to the community. We have compiled a set of four sequence databases of varying sizes, from a small database consisting of only the ~20,000 primary isoforms plus contaminants to a very large database that includes almost all non-redundant protein sequences from several sources. This set of tiered, increasingly complete human protein sequence databases suitable for mass spectrometry proteomics sequence database searching is called the Tiered Human Integrated Search Proteome set. In order to evaluate the utility of these databases, we have analyzed two different data sets, one from the HeLa cell line and the other from normal human liver tissue, with each of the four tiers of database complexity. The result is that approximately 0.8%, 1.1%, and 1.5% additional peptides can be identified for Tiers 2, 3, and 4, respectively, as compared with the Tier 1 database, at substantially increasing computational cost. This increase in computational cost may be worth bearing if the identification of sequence variants or the discovery of sequences that are not present in the reviewed knowledge base entries is an important goal of the study. We find that it is useful to search a data set against a simpler database, and then check the uniqueness of the discovered peptides against a more complex database. We have set up an automated system that downloads all the source databases on the first of each month and automatically generates a new set of search databases and makes them available for download at http://www.peptideatlas.org/thisp/. PMID:27577934
Tashima, Alexandre K.; Zelanis, André; Kitano, Eduardo S.; Ianzer, Danielle; Melo, Robson L.; Rioli, Vanessa; Sant'anna, Sávio S.; Schenberg, Ana C. G.; Camargo, Antônio C. M.; Serrano, Solange M. T.
2012-01-01
Snake venom proteomes/peptidomes are highly complex and maintenance of their integrity within the gland lumen is crucial for the expression of toxin activities. There has been considerable progress in the field of venom proteomics, however, peptidomics does not progress as fast, because of the lack of comprehensive venom sequence databases for analysis of MS data. Therefore, in many cases venom peptides have to be sequenced manually by MS/MS analysis or Edman degradation. This is critical for rare snake species, as is the case of Bothrops cotiara (BC) and B. fonsecai (BF), which are regarded as near threatened with extinction. In this study we conducted a comprehensive analysis of the venom peptidomes of BC, BF, and B. jararaca (BJ) using a combination of solid-phase extraction and reversed-phase HPLC to fractionate the peptides, followed by nano-liquid chromatography-tandem MS (LC-MS/MS) or direct infusion electrospray ionization-(ESI)-MS/MS or MALDI-MS/MS analyses. We detected marked differences in the venom peptidomes and identified peptides ranging from 7 to 39 residues in length by de novo sequencing. Forty-four unique sequences were manually identified, out of which 30 are new peptides, including 17 bradykinin-potentiating peptides, three poly-histidine-poly-glycine peptides and interestingly, 10 l-amino acid oxidase fragments. Some of the new bradykinin-potentiating peptides display significant bradykinin potentiating activity. Automated database search revealed fragments from several toxins in the peptidomes, mainly from l-amino acid oxidase, and allowed the determination of the peptide bond specificity of proteinases and amino acid occurrences for the P4-P4′ sites. We also demonstrate that the venom lyophilization/resolubilization process greatly increases the complexity of the peptidome because of the imbalance caused to the venom proteome and the consequent activity of proteinases on venom components. The use of proteinase inhibitors clearly showed different outcomes in the peptidome characterization and suggested that degradomic-peptidomic analysis of snake venoms is highly sensitive to the conditions of sampling procedures. PMID:22869554
Microfluidic-Mass Spectrometry Interfaces for Translational Proteomics.
Pedde, R Daniel; Li, Huiyan; Borchers, Christoph H; Akbari, Mohsen
2017-10-01
Interfacing mass spectrometry (MS) with microfluidic chips (μchip-MS) holds considerable potential to transform a clinician's toolbox, providing translatable methods for the early detection, diagnosis, monitoring, and treatment of noncommunicable diseases by streamlining and integrating laborious sample preparation workflows on high-throughput, user-friendly platforms. Overcoming the limitations of competitive immunoassays - currently the gold standard in clinical proteomics - μchip-MS can provide unprecedented access to complex proteomic assays having high sensitivity and specificity, but without the labor, costs, and complexities associated with conventional MS sample processing. This review surveys recent μchip-MS systems for clinical applications and examines their emerging role in streamlining the development and translation of MS-based proteomic assays by alleviating many of the challenges that currently inhibit widespread clinical adoption. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
The landscape of viral proteomics and its potential to impact human health
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxford, Kristie L.; Wendler, Jason P.; McDermott, Jason E.
2016-05-06
Translating the intimate discourse between viruses and their host cells during infection is a challenging but critical task for development of antiviral interventions and diagnostics. Viruses commandeer cellular processes at every step of their life cycle, altering expression of genes and proteins. Advances in mass spectrometry-based proteomic technologies are enhancing studies of viral pathogenesis by identifying virus-induced changes in the protein repertoire of infected cells or extracellular fluids. Interpretation of proteomics results using knowledge of cellular pathways and networks leads to identification of proteins that influence a range of infection processes, thereby focusing efforts for clinical diagnoses and therapeutics development.more » Herein we discuss applications of global proteomic studies of viral infections with the goal of providing a basis for improved studies that will benefit community-wide data integration and interpretation.« less
Quantifying ubiquitin signaling.
Ordureau, Alban; Münch, Christian; Harper, J Wade
2015-05-21
Ubiquitin (UB)-driven signaling systems permeate biology, and are often integrated with other types of post-translational modifications (PTMs), including phosphorylation. Flux through such pathways is dictated by the fractional stoichiometry of distinct modifications and protein assemblies as well as the spatial organization of pathway components. Yet, we rarely understand the dynamics and stoichiometry of rate-limiting intermediates along a reaction trajectory. Here, we review how quantitative proteomic tools and enrichment strategies are being used to quantify UB-dependent signaling systems, and to integrate UB signaling with regulatory phosphorylation events, illustrated with the PINK1/PARKIN pathway. A key feature of ubiquitylation is that the identity of UB chain linkage types can control downstream processes. We also describe how proteomic and enzymological tools can be used to identify and quantify UB chain synthesis and linkage preferences. The emergence of sophisticated quantitative proteomic approaches will set a new standard for elucidating biochemical mechanisms of UB-driven signaling systems. Copyright © 2015 Elsevier Inc. All rights reserved.
Proteomic analysis of bovine nucleolus.
Patel, Amrutlal K; Olson, Doug; Tikoo, Suresh K
2010-09-01
Nucleolus is the most prominent subnuclear structure, which performs a wide variety of functions in the eukaryotic cellular processes. In order to understand the structural and functional role of the nucleoli in bovine cells, we analyzed the proteomic composition of the bovine nucleoli. The nucleoli were isolated from Madin Darby bovine kidney cells and subjected to proteomic analysis by LC-MS/MS after fractionation by SDS-PAGE and strong cation exchange chromatography. Analysis of the data using the Mascot database search and the GPM database search identified 311 proteins in the bovine nucleoli, which contained 22 proteins previously not identified in the proteomic analysis of human nucleoli. Analysis of the identified proteins using the GoMiner software suggested that the bovine nucleoli contained proteins involved in ribosomal biogenesis, cell cycle control, transcriptional, translational and post-translational regulation, transport, and structural organization. Copyright © 2010 Beijing Genomics Institute. Published by Elsevier Ltd. All rights reserved.
Choi, Hyungwon; Kim, Sinae; Fermin, Damian; Tsou, Chih-Chiang; Nesvizhskii, Alexey I
2015-11-03
We introduce QPROT, a statistical framework and computational tool for differential protein expression analysis using protein intensity data. QPROT is an extension of the QSPEC suite, originally developed for spectral count data, adapted for the analysis using continuously measured protein-level intensity data. QPROT offers a new intensity normalization procedure and model-based differential expression analysis, both of which account for missing data. Determination of differential expression of each protein is based on the standardized Z-statistic based on the posterior distribution of the log fold change parameter, guided by the false discovery rate estimated by a well-known Empirical Bayes method. We evaluated the classification performance of QPROT using the quantification calibration data from the clinical proteomic technology assessment for cancer (CPTAC) study and a recently published Escherichia coli benchmark dataset, with evaluation of FDR accuracy in the latter. QPROT is a statistical framework with computational software tool for comparative quantitative proteomics analysis. It features various extensions of QSPEC method originally built for spectral count data analysis, including probabilistic treatment of missing values in protein intensity data. With the increasing popularity of label-free quantitative proteomics data, the proposed method and accompanying software suite will be immediately useful for many proteomics laboratories. This article is part of a Special Issue entitled: Computational Proteomics. Copyright © 2015 Elsevier B.V. All rights reserved.
Halobacterium salinarum NRC-1 PeptideAtlas: strategies for targeted proteomics
Van, Phu T.; Schmid, Amy K.; King, Nichole L.; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T.; Goo, Young-Ah; Deutsch, Eric W.; Reiss, David J.; Mallick, Parag; Baliga, Nitin S.
2009-01-01
The relatively small numbers of proteins and fewer possible posttranslational modifications in microbes provides a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a Peptide Atlas (PA) for 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636,000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has helped highlight plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics. PMID:18652504
[Techniques for rapid production of monoclonal antibodies for use with antibody technology].
Kamada, Haruhiko
2012-01-01
A monoclonal antibody (Mab), due to its specific binding ability to a target protein, can potentially be one of the most useful tools for the functional analysis of proteins in recent proteomics-based research. However, the production of Mab is a very time-consuming and laborious process (i.e., preparation of recombinant antigens, immunization of animals, preparation of hybridomas), making it the rate-limiting step in using Mabs in high-throughput proteomics research, which heavily relies on comprehensive and rapid methods. Therefore, there is a great demand for new methods to efficiently generate Mabs against a group of proteins identified by proteome analysis. Here, we describe a useful method called "Antibody proteomic technique" for the rapid generations of Mabs to pharmaceutical target, which were identified by proteomic analyses of disease samples (ex. tumor tissue, etc.). We also introduce another method to find profitable targets on vasculature, which is called "Vascular proteomic technique". Our results suggest that this method for the rapid generation of Mabs to proteins may be very useful in proteomics-based research as well as in clinical applications.
Kahnt, Jörg; Aguiluz, Kryssia; Koch, Jürgen; Treuner-Lange, Anke; Konovalova, Anna; Huntley, Stuart; Hoppert, Michael; Søgaard-Andersen, Lotte; Hedderich, Reiner
2010-10-01
Social behavior in the bacterium Myxococcus xanthus relies on contact-dependent activities involving cell-cell and cell-substratum interactions. To identify outer membrane proteins that have a role in these activities, we profiled the outer membrane proteome of growing and starving cells using two strategies. First, outer membrane proteins were enriched by biotinylation of intact cells using the reagent NHS (N-hydroxysuccinimide)-PEO(12) (polyethylene oxide)-biotin with subsequent membrane solubilization and affinity chromatography. Second, the proteome of outer membrane vesicles (OMV) was determined. Comparisons of detected proteins show that these methods have different detection profiles and together provide a comprehensive view of the outer membrane proteome. From 362 proteins identified, 274 (76%) were cell envelope proteins including 64 integral outer membrane proteins and 85 lipoproteins. The majority of these proteins were of unknown function. Among integral outer membrane proteins with homologues of known function, TonB-dependent transporters comprise the largest group. Our data suggest novel functions for these transporters. Among lipoproteins with homologues of known function, proteins with hydrolytic functions comprise the largest group. The luminal load of OMV was enriched for proteins with hydrolytic functions. Our data suggest that OMV have functions in predation and possibly in transfer of intercellular signaling molecules between cells.
High throughput gene expression profiling: a molecular approach to integrative physiology
Liang, Mingyu; Cowley, Allen W; Greene, Andrew S
2004-01-01
Integrative physiology emphasizes the importance of understanding multiple pathways with overlapping, complementary, or opposing effects and their interactions in the context of intact organisms. The DNA microarray technology, the most commonly used method for high-throughput gene expression profiling, has been touted as an integrative tool that provides insights into regulatory pathways. However, the physiology community has been slow in acceptance of these techniques because of early failure in generating useful data and the lack of a cohesive theoretical framework in which experiments can be analysed. With recent advances in both technology and analysis, we propose a concept of multidimensional integration of physiology that incorporates data generated by DNA microarray and other functional, genomic, and proteomic approaches to achieve a truly integrative understanding of physiology. Analysis of several studies performed in simpler organisms or in mammalian model animals supports the feasibility of such multidimensional integration and demonstrates the power of DNA microarray as an indispensable molecular tool for such integration. Evaluation of DNA microarray techniques indicates that these techniques, despite limitations, have advanced to a point where the question-driven profiling research has become a feasible complement to the conventional, hypothesis-driven research. With a keen sense of homeostasis, global regulation, and quantitative analysis, integrative physiologists are uniquely positioned to apply these techniques to enhance the understanding of complex physiological functions. PMID:14678487
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omenn, Gilbert; States, David J.; Adamski, Marcin
2005-08-13
HUPO initiated the Plasma Proteome Project (PPP) in 2002. Its pilot phase has (1) evaluated advantages and limitations of many depletion, fractionation, and MS technology platforms; (2) compared PPP reference specimens of human serum and EDTA, heparin, and citrate-anticoagulated plasma; and (3) created a publicly-available knowledge base (www.bioinformatics. med.umich.edu/hupo/ppp; www.ebi.ac.uk/pride). Thirty-five participating laboratories in 13 countries submitted datasets. Working groups addressed (a) specimen stability and protein concentrations; (b) protein identifications from 18 MS/MS datasets; (c) independent analyses from raw MS-MS spectra; (d) search engine performance, subproteome analyses, and biological insights; (e) antibody arrays; and (f) direct MS/SELDI analyses. MS-MS datasetsmore » had 15 710 different International Protein Index (IPI) protein IDs; our integration algorithm applied to multiple matches of peptide sequences yielded 9504 IPI proteins identified with one or more peptides and 3020 proteins identified with two or more peptides (the Core Dataset). These proteins have been characterized with Gene Ontology, InterPro, Novartis Atlas, OMIM, and immunoassay based concentration determinations. The database permits examination of many other subsets, such as 1274 proteins identified with three or more peptides. Reverse protein to DNA matching identified proteins for 118 previously unidentified ORFs. We recommend use of plasma instead of serum, with EDTA (or citrate) for anticoagulation. To improve resolution, sensitivity and reproducibility of peptide identifications and protein matches, we recommend combinations of depletion, fractionation, and MS/MS technologies, with explicit criteria for evaluation of spectra, use of search algorithms, and integration of homologous protein matches. This Special Issue of PROTEOMICS presents papers integral to the collaborative analysis plus many reports of supplementary work on various aspects of the PPP workplan. These PPP results on complexity, dynamic range, incomplete sampling, false-positive matches, and integration of diverse datasets for plasma and serum proteins lay a foundation for development and validation of circulating protein biomarkers in health and disease.« less
Stewart, Paul A; Parapatics, Katja; Welsh, Eric A; Müller, André C; Cao, Haoyun; Fang, Bin; Koomen, John M; Eschrich, Steven A; Bennett, Keiryn L; Haura, Eric B
2015-01-01
We performed a pilot proteogenomic study to compare lung adenocarcinoma to lung squamous cell carcinoma using quantitative proteomics (6-plex TMT) combined with a customized Affymetrix GeneChip. Using MaxQuant software, we identified 51,001 unique peptides that mapped to 7,241 unique proteins and from these identified 6,373 genes with matching protein expression for further analysis. We found a minor correlation between gene expression and protein expression; both datasets were able to independently recapitulate known differences between the adenocarcinoma and squamous cell carcinoma subtypes. We found 565 proteins and 629 genes to be differentially expressed between adenocarcinoma and squamous cell carcinoma, with 113 of these consistently differentially expressed at both the gene and protein levels. We then compared our results to published adenocarcinoma versus squamous cell carcinoma proteomic data that we also processed with MaxQuant. We selected two proteins consistently overexpressed in squamous cell carcinoma in all studies, MCT1 (SLC16A1) and GLUT1 (SLC2A1), for further investigation. We found differential expression of these same proteins at the gene level in our study as well as in other public gene expression datasets. These findings combined with survival analysis of public datasets suggest that MCT1 and GLUT1 may be potential prognostic markers in adenocarcinoma and druggable targets in squamous cell carcinoma. Data are available via ProteomeXchange with identifier PXD002622.
Weissinger, E M; Metzger, J; Dobbelstein, C; Wolff, D; Schleuning, M; Kuzmina, Z; Greinix, H; Dickinson, A M; Mullen, W; Kreipe, H; Hamwi, I; Morgan, M; Krons, A; Tchebotarenko, I; Ihlenburg-Schwarz, D; Dammann, E; Collin, M; Ehrlich, S; Diedrich, H; Stadler, M; Eder, M; Holler, E; Mischak, H; Krauter, J; Ganser, A
2014-04-01
Allogeneic hematopoietic stem cell transplantation is one curative treatment for hematological malignancies, but is compromised by life-threatening complications, such as severe acute graft-versus-host disease (aGvHD). Prediction of severe aGvHD as early as possible is crucial to allow timely initiation of treatment. Here we report on a multicentre validation of an aGvHD-specific urinary proteomic classifier (aGvHD_MS17) in 423 patients. Samples (n=1106) were collected prospectively between day +7 and day +130 and analyzed using capillary electrophoresis coupled on-line to mass spectrometry. Integration of aGvHD_MS17 analysis with demographic and clinical variables using a logistic regression model led to correct classification of patients developing severe aGvHD 14 days before any clinical signs with 82.4% sensitivity and 77.3% specificity. Multivariate regression analysis showed that aGvHD_MS17 positivity was the only strong predictor for aGvHD grade III or IV (P<0.0001). The classifier consists of 17 peptides derived from albumin, β2-microglobulin, CD99, fibronectin and various collagen α-chains, indicating inflammation, activation of T cells and changes in the extracellular matrix as early signs of GvHD-induced organ damage. This study is currently the largest demonstration of accurate and investigator-independent prediction of patients at risk for severe aGvHD, thus allowing preemptive therapy based on proteomic profiling.
A Comprehensive Transcriptomic and Proteomic Analysis of Hydra Head Regeneration.
Petersen, Hendrik O; Höger, Stefanie K; Looso, Mario; Lengfeld, Tobias; Kuhn, Anne; Warnken, Uwe; Nishimiya-Fujisawa, Chiemi; Schnölzer, Martina; Krüger, Marcus; Özbek, Suat; Simakov, Oleg; Holstein, Thomas W
2015-08-01
The cnidarian freshwater polyp Hydra sp. exhibits an unparalleled regeneration capacity in the animal kingdom. Using an integrative transcriptomic and stable isotope labeling by amino acids in cell culture proteomic/phosphoproteomic approach, we studied stem cell-based regeneration in Hydra polyps. As major contributors to head regeneration, we identified diverse signaling pathways adopted for the regeneration response as well as enriched novel genes. Our global analysis reveals two distinct molecular cascades: an early injury response and a subsequent, signaling driven patterning of the regenerating tissue. A key factor of the initial injury response is a general stabilization of proteins and a net upregulation of transcripts, which is followed by a subsequent activation cascade of signaling molecules including Wnts and transforming growth factor (TGF) beta-related factors. We observed moderate overlap between the factors contributing to proteomic and transcriptomic responses suggesting a decoupled regulation between the transcriptional and translational levels. Our data also indicate that interstitial stem cells and their derivatives (e.g., neurons) have no major role in Hydra head regeneration. Remarkably, we found an enrichment of evolutionarily more recent genes in the early regeneration response, whereas conserved genes are more enriched in the late phase. In addition, genes specific to the early injury response were enriched in transposon insertions. Genetic dynamicity and taxon-specific factors might therefore play a hitherto underestimated role in Hydra regeneration. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
The accurate quantitation of proteins or peptides using Mass Spectrometry (MS) is gaining prominence in the biomedical research community as an alternative method for analyte measurement. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) investigators have been at the forefront in the promotion of reproducible MS techniques, through the development and application of standardized proteomic methods for protein quantitation on biologically relevant samples.
Du, Chao; van Wezel, Gilles P
2018-04-30
Natural products (NPs) are a major source of compounds for medical, agricultural, and biotechnological industries. Many of these compounds are of microbial origin, and, in particular, from Actinobacteria or filamentous fungi. To successfully identify novel compounds that correlate to a bioactivity of interest, or discover new enzymes with desired functions, systematic multiomics approaches have been developed over the years. Bioinformatics tools harness the rapidly expanding wealth of genome sequence information, revealing previously unsuspected biosynthetic diversity. Varying growth conditions or application of elicitors are applied to activate cryptic biosynthetic gene clusters, and metabolomics provide detailed insights into the NPs they specify. Combining these technologies with proteomics-based approaches to profile the biosynthetic enzymes provides scientists with insights into the full biosynthetic potential of microorganisms. The proteomics approaches include enrichment strategies such as employing activity-based probes designed by chemical biology, as well as unbiased (quantitative) proteomics methods. In this review, the opportunities and challenges in microbial NP research are discussed, and, in particular, the application of proteomics to link biosynthetic enzymes to the molecules they produce, and vice versa. © 2018 The Authors. Proteomics Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Meat science: From proteomics to integrated omics towards system biology.
D'Alessandro, Angelo; Zolla, Lello
2013-01-14
Since the main ultimate goal of farm animal raising is the production of proteins for human consumption, research tools to investigate proteins play a major role in farm animal and meat science. Indeed, proteomics has been applied to the field of farm animal science to monitor in vivo performances of livestock animals (growth performances, fertility, milk quality etc.), but also to further our understanding of the molecular processes at the basis of meat quality, which are largely dependent on the post mortem biochemistry of the muscle, often in a species-specific way. Post mortem alterations to the muscle proteome reflect the biological complexity of the process of "muscle to meat conversion," a process that, despite decades of advancements, is all but fully understood. This is mainly due to the enormous amounts of variables affecting meat tenderness per se, including biological factors, such as animal species, breed specific-characteristic, muscle under investigation. However, it is rapidly emerging that the tender meat phenotype is not only tied to genetics (livestock breeding selection), but also to extrinsic factors, such as the rearing environment, feeding conditions, physical activity, administration of hormonal growth promotants, pre-slaughter handling and stress, post mortem handling. From this intricate scenario, biochemical approaches and systems-wide integrated investigations (metabolomics, transcriptomics, interactomics, phosphoproteomics, mathematical modeling), which have emerged as complementary tools to proteomics, have helped establishing a few milestones in our understanding of the events leading from muscle to meat conversion. The growing integration of omics disciplines in the field of systems biology will soon contribute to take further steps forward. Copyright © 2012 Elsevier B.V. All rights reserved.
accumulation," J. Proteomics (2013) "Comparative Proteomics Lends Insight into Genotype-Specific Pathogenicity," J. Proteomics (2013) "De Novo Transcriptomic Analysis of Hydrogen Production in the amino acid changes in the small envelope protein and rescued by a novel glycosolation site," J