Sample records for integrated reliability evaluations

  1. Reliability studies of Integrated Modular Engine system designs

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.; Rapp, Douglas C.

    1993-01-01

    A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.

  2. Reliability studies of integrated modular engine system designs

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.; Rapp, Douglas C.

    1993-01-01

    A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.

  3. Reliability studies of integrated modular engine system designs

    NASA Astrophysics Data System (ADS)

    Hardy, Terry L.; Rapp, Douglas C.

    1993-06-01

    A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.

  4. Reliability studies of Integrated Modular Engine system designs

    NASA Astrophysics Data System (ADS)

    Hardy, Terry L.; Rapp, Douglas C.

    1993-06-01

    A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.

  5. Probability techniques for reliability analysis of composite materials

    NASA Technical Reports Server (NTRS)

    Wetherhold, Robert C.; Ucci, Anthony M.

    1994-01-01

    Traditional design approaches for composite materials have employed deterministic criteria for failure analysis. New approaches are required to predict the reliability of composite structures since strengths and stresses may be random variables. This report will examine and compare methods used to evaluate the reliability of composite laminae. The two types of methods that will be evaluated are fast probability integration (FPI) methods and Monte Carlo methods. In these methods, reliability is formulated as the probability that an explicit function of random variables is less than a given constant. Using failure criteria developed for composite materials, a function of design variables can be generated which defines a 'failure surface' in probability space. A number of methods are available to evaluate the integration over the probability space bounded by this surface; this integration delivers the required reliability. The methods which will be evaluated are: the first order, second moment FPI methods; second order, second moment FPI methods; the simple Monte Carlo; and an advanced Monte Carlo technique which utilizes importance sampling. The methods are compared for accuracy, efficiency, and for the conservativism of the reliability estimation. The methodology involved in determining the sensitivity of the reliability estimate to the design variables (strength distributions) and importance factors is also presented.

  6. A System for Integrated Reliability and Safety Analyses

    NASA Technical Reports Server (NTRS)

    Kostiuk, Peter; Shapiro, Gerald; Hanson, Dave; Kolitz, Stephan; Leong, Frank; Rosch, Gene; Coumeri, Marc; Scheidler, Peter, Jr.; Bonesteel, Charles

    1999-01-01

    We present an integrated reliability and aviation safety analysis tool. The reliability models for selected infrastructure components of the air traffic control system are described. The results of this model are used to evaluate the likelihood of seeing outcomes predicted by simulations with failures injected. We discuss the design of the simulation model, and the user interface to the integrated toolset.

  7. Techniques for control of long-term reliability of complex integrated circuits. I - Reliability assurance by test vehicle qualification.

    NASA Technical Reports Server (NTRS)

    Van Vonno, N. W.

    1972-01-01

    Development of an alternate approach to the conventional methods of reliability assurance for large-scale integrated circuits. The product treated is a large-scale T squared L array designed for space applications. The concept used is that of qualification of product by evaluation of the basic processing used in fabricating the product, providing an insight into its potential reliability. Test vehicles are described which enable evaluation of device characteristics, surface condition, and various parameters of the two-level metallization system used. Evaluation of these test vehicles is performed on a lot qualification basis, with the lot consisting of one wafer. Assembled test vehicles are evaluated by high temperature stress at 300 C for short time durations. Stressing at these temperatures provides a rapid method of evaluation and permits a go/no go decision to be made on the wafer lot in a timely fashion.

  8. Reliability analysis of laminated CMC components through shell subelement techniques

    NASA Technical Reports Server (NTRS)

    Starlinger, Alois; Duffy, Stephen F.; Gyekenyesi, John P.

    1992-01-01

    An updated version of the integrated design program Composite Ceramics Analysis and Reliability Evaluation of Structures (C/CARES) was developed for the reliability evaluation of ceramic matrix composites (CMC) laminated shell components. The algorithm is now split into two modules: a finite-element data interface program and a reliability evaluation algorithm. More flexibility is achieved, allowing for easy implementation with various finite-element programs. The interface program creates a neutral data base which is then read by the reliability module. This neutral data base concept allows easy data transfer between different computer systems. The new interface program from the finite-element code Matrix Automated Reduction and Coupling (MARC) also includes the option of using hybrid laminates (a combination of plies of different materials or different layups) and allows for variations in temperature fields throughout the component. In the current version of C/CARES, a subelement technique was implemented, enabling stress gradients within an element to be taken into account. The noninteractive reliability function is now evaluated at each Gaussian integration point instead of using averaging techniques. As a result of the increased number of stress evaluation points, considerable improvements in the accuracy of reliability analyses were realized.

  9. Integrated Evaluation of Reliability and Power Consumption of Wireless Sensor Networks.

    PubMed

    Dâmaso, Antônio; Rosa, Nelson; Maciel, Paulo

    2017-11-05

    Power consumption is a primary interest in Wireless Sensor Networks (WSNs), and a large number of strategies have been proposed to evaluate it. However, those approaches usually neither consider reliability issues nor the power consumption of applications executing in the network. A central concern is the lack of consolidated solutions that enable us to evaluate the power consumption of applications and the network stack also considering their reliabilities. To solve this problem, we introduce a fully automatic solution to design power consumption aware WSN applications and communication protocols. The solution presented in this paper comprises a methodology to evaluate the power consumption based on the integration of formal models, a set of power consumption and reliability models, a sensitivity analysis strategy to select WSN configurations and a toolbox named EDEN to fully support the proposed methodology. This solution allows accurately estimating the power consumption of WSN applications and the network stack in an automated way.

  10. The reliability of physical examination tests for the diagnosis of anterior cruciate ligament rupture--A systematic review.

    PubMed

    Lange, Toni; Freiberg, Alice; Dröge, Patrik; Lützner, Jörg; Schmitt, Jochen; Kopkow, Christian

    2015-06-01

    Systematic literature review. Despite their frequent application in routine care, a systematic review on the reliability of clinical examination tests to evaluate the integrity of the ACL is missing. To summarize and evaluate intra- and interrater reliability research on physical examination tests used for the diagnosis of ACL tears. A comprehensive systematic literature search was conducted in MEDLINE, EMBASE and AMED until May 30th 2013. Studies were included if they assessed the intra- and/or interrater reliability of physical examination tests for the integrity of the ACL. Methodological quality was evaluated with the Quality Appraisal of Reliability Studies (QAREL) tool by two independent reviewers. 110 hits were achieved of which seven articles finally met the inclusion criteria. These studies examined the reliability of four physical examination tests. Intrarater reliability was assessed in three studies and ranged from fair to almost perfect (Cohen's k = 0.22-1.00). Interrater reliability was assessed in all included studies and ranged from slight to almost perfect (Cohen's k = 0.02-0.81). The Lachman test is the physical tests with the highest intrarater reliability (Cohen's k = 1.00), the Lachman test performed in prone position the test with the highest interrater reliability (Cohen's k = 0.81). Included studies were partly of low methodological quality. A meta-analysis could not be performed due to the heterogeneity in study populations, reliability measures and methodological quality of included studies. Systematic investigations on the reliability of physical examination tests to assess the integrity of the ACL are scarce and of varying methodological quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. ASSESSING AND COMBINING RELIABILITY OF PROTEIN INTERACTION SOURCES

    PubMed Central

    LEACH, SONIA; GABOW, AARON; HUNTER, LAWRENCE; GOLDBERG, DEBRA S.

    2008-01-01

    Integrating diverse sources of interaction information to create protein networks requires strategies sensitive to differences in accuracy and coverage of each source. Previous integration approaches calculate reliabilities of protein interaction information sources based on congruity to a designated ‘gold standard.’ In this paper, we provide a comparison of the two most popular existing approaches and propose a novel alternative for assessing reliabilities which does not require a gold standard. We identify a new method for combining the resultant reliabilities and compare it against an existing method. Further, we propose an extrinsic approach to evaluation of reliability estimates, considering their influence on the downstream tasks of inferring protein function and learning regulatory networks from expression data. Results using this evaluation method show 1) our method for reliability estimation is an attractive alternative to those requiring a gold standard and 2) the new method for combining reliabilities is less sensitive to noise in reliability assignments than the similar existing technique. PMID:17990508

  12. Assessing the reliability of ecotoxicological studies: An overview of current needs and approaches.

    PubMed

    Moermond, Caroline; Beasley, Amy; Breton, Roger; Junghans, Marion; Laskowski, Ryszard; Solomon, Keith; Zahner, Holly

    2017-07-01

    In general, reliable studies are well designed and well performed, and enough details on study design and performance are reported to assess the study. For hazard and risk assessment in various legal frameworks, many different types of ecotoxicity studies need to be evaluated for reliability. These studies vary in study design, methodology, quality, and level of detail reported (e.g., reviews, peer-reviewed research papers, or industry-sponsored studies documented under Good Laboratory Practice [GLP] guidelines). Regulators have the responsibility to make sound and verifiable decisions and should evaluate each study for reliability in accordance with scientific principles regardless of whether they were conducted in accordance with GLP and/or standardized methods. Thus, a systematic and transparent approach is needed to evaluate studies for reliability. In this paper, 8 different methods for reliability assessment were compared using a number of attributes: categorical versus numerical scoring methods, use of exclusion and critical criteria, weighting of criteria, whether methods are tested with case studies, domain of applicability, bias toward GLP studies, incorporation of standard guidelines in the evaluation method, number of criteria used, type of criteria considered, and availability of guidance material. Finally, some considerations are given on how to choose a suitable method for assessing reliability of ecotoxicity studies. Integr Environ Assess Manag 2017;13:640-651. © 2016 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2016 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  13. Reliability analysis of laminated CMC components through shell subelement techniques

    NASA Technical Reports Server (NTRS)

    Starlinger, A.; Duffy, S. F.; Gyekenyesi, J. P.

    1992-01-01

    An updated version of the integrated design program C/CARES (composite ceramic analysis and reliability evaluation of structures) was developed for the reliability evaluation of CMC laminated shell components. The algorithm is now split in two modules: a finite-element data interface program and a reliability evaluation algorithm. More flexibility is achieved, allowing for easy implementation with various finite-element programs. The new interface program from the finite-element code MARC also includes the option of using hybrid laminates and allows for variations in temperature fields throughout the component.

  14. Integrated Evaluation of Reliability and Power Consumption of Wireless Sensor Networks

    PubMed Central

    Dâmaso, Antônio; Maciel, Paulo

    2017-01-01

    Power consumption is a primary interest in Wireless Sensor Networks (WSNs), and a large number of strategies have been proposed to evaluate it. However, those approaches usually neither consider reliability issues nor the power consumption of applications executing in the network. A central concern is the lack of consolidated solutions that enable us to evaluate the power consumption of applications and the network stack also considering their reliabilities. To solve this problem, we introduce a fully automatic solution to design power consumption aware WSN applications and communication protocols. The solution presented in this paper comprises a methodology to evaluate the power consumption based on the integration of formal models, a set of power consumption and reliability models, a sensitivity analysis strategy to select WSN configurations and a toolbox named EDEN to fully support the proposed methodology. This solution allows accurately estimating the power consumption of WSN applications and the network stack in an automated way. PMID:29113078

  15. An integrated approach to system design, reliability, and diagnosis

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, F. A.; Iverson, David L.

    1990-01-01

    The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems engineering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms. Procedures have been developed at Ames that perform reliability evaluations during design and failure diagnoses during system operation. These procedures utilize information from a central source, structured as object-oriented fault trees. Fault trees were selected because they are a flexible model widely used in aerospace applications and because they give a concise, structured representation of system behavior. The utility of this integrated environment for aerospace applications in light of our experiences during its development and use is described. The techniques for reliability evaluation and failure diagnosis are discussed, and current extensions of the environment and areas requiring further development are summarized.

  16. An integrated approach to system design, reliability, and diagnosis

    NASA Astrophysics Data System (ADS)

    Patterson-Hine, F. A.; Iverson, David L.

    1990-12-01

    The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems engineering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms. Procedures have been developed at Ames that perform reliability evaluations during design and failure diagnoses during system operation. These procedures utilize information from a central source, structured as object-oriented fault trees. Fault trees were selected because they are a flexible model widely used in aerospace applications and because they give a concise, structured representation of system behavior. The utility of this integrated environment for aerospace applications in light of our experiences during its development and use is described. The techniques for reliability evaluation and failure diagnosis are discussed, and current extensions of the environment and areas requiring further development are summarized.

  17. Partnering to Establish and Study Simulation in International Nursing Education.

    PubMed

    Garner, Shelby L; Killingsworth, Erin; Raj, Leena

    The purpose of this article was to describe an international partnership to establish and study simulation in India. A pilot study was performed to determine interrater reliability among faculty new to simulation when evaluating nursing student competency performance. Interrater reliability was below the ideal agreement level. Findings in this study underscore the need to obtain baseline interrater reliability data before integrating competency evaluation into a simulation program.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santamarina, A.; Bernard, D.; Dos Santos, N.

    This paper describes the method to define relevant targeted integral measurements that allow the improvement of nuclear data evaluations and the determination of corresponding reliable covariances. {sup 235}U and {sup 56}Fe examples are pointed out for the improvement of JEFF3 data. Utilizations of these covariances are shown for Sensitivity and Representativity studies, Uncertainty calculations, and Transposition of experimental results to industrial applications. S/U studies are more and more used in Reactor Physics and Safety-Criticality. However, the reliability of study results relies strongly on the ND covariance relevancy. Our method derives the real uncertainty associated with each evaluation from calibration onmore » targeted integral measurements. These realistic covariance matrices allow reliable JEFF3.1.1 calculation of prior uncertainty due to nuclear data, as well as uncertainty reduction based on representative integral experiments, in challenging design calculations such as GEN3 and RJH reactors.« less

  19. Beyond the buildingcentric approach: A vision for an integrated evaluation of sustainable buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conte, Emilia, E-mail: conte@poliba.it; Monno, Valeria, E-mail: vmonno@poliba.it

    2012-04-15

    The available sustainable building evaluation systems have produced a new environmental design paradigm. However, there is an increasing need to overcome the buildingcentric approach of these systems, in order to further exploit their innovate potential for sustainable building practices. The paper takes this challenge by developing a cross-scale evaluation approach focusing on the reliability of sustainable building design solutions for the context in which the building is situated. An integrated building-urban evaluation model is proposed based on the urban matrix, which is a conceptualisation of the built environment as a social-ecological system. The model aims at evaluating the sustainability ofmore » a building considering it as an active entity contributing to the resilience of the urban matrix. Few holistic performance indicators are used for evaluating such contribution, so expressing the building reliability. The discussion on the efficacy of the model shows that it works as a heuristic tool, supporting the acquisition of a better insight into the complexity which characterises the relationships between the building and the built environment sustainability. Shading new lights on the meaning of sustainable buildings, the model can play a positive role in innovating sustainable building design practices, thus complementing current evaluation systems. - Highlights: Black-Right-Pointing-Pointer We model an integrated building-urban evaluation approach. Black-Right-Pointing-Pointer The urban matrix represents the social-ecological functioning of the urban context. Black-Right-Pointing-Pointer We introduce the concept of reliability to evaluate sustainable buildings. Black-Right-Pointing-Pointer Holistic indicators express the building reliability. Black-Right-Pointing-Pointer The evaluation model works as heuristic tool and complements other tools.« less

  20. The Reliability and Validity of a Scale to Measure Teachers' Attitudes toward Integration in an Australian Context.

    ERIC Educational Resources Information Center

    Roberts, Clare; Pratt, Chris

    1988-01-01

    The study evaluated the psychometric properties of reliability and construct validity of the Attitude Toward Mainstreaming Scale (ATMS) in an Australian context. It was concluded that the scale is both reliable and factorially valid in an Australian context. (Author/DB)

  1. Reliability and validity of clinical tests to assess the anatomical integrity of the cervical spine in adults with neck pain and its associated disorders: Part 1-A systematic review from the Cervical Assessment and Diagnosis Research Evaluation (CADRE) Collaboration.

    PubMed

    Lemeunier, Nadège; da Silva-Oolup, S; Chow, N; Southerst, D; Carroll, L; Wong, J J; Shearer, H; Mastragostino, P; Cox, J; Côté, E; Murnaghan, K; Sutton, D; Côté, P

    2017-09-01

    To determine the reliability and validity of clinical tests to assess the anatomical integrity of the cervical spine in adults with neck pain and its associated disorders. We updated the systematic review of the 2000-2010 Bone and Joint Decade Task Force on Neck Pain and its Associated Disorders. We also searched the literature to identify studies on the reliability and validity of Doppler velocimetry for the evaluation of cervical arteries. Two independent reviewers screened and critically appraised studies. We conducted a best evidence synthesis of low risk of bias studies and ranked the phases of investigations using the classification proposed by Sackett and Haynes. We screened 9022 articles and critically appraised 8 studies; all 8 studies had low risk of bias (three reliability and five validity Phase II-III studies). Preliminary evidence suggests that the extension-rotation test may be reliable and has adequate validity to rule out pain arising from facet joints. The evidence suggests variable reliability and preliminary validity for the evaluation of cervical radiculopathy including neurological examination (manual motor testing, dermatomal sensory testing, deep tendon reflexes, and pathological reflex testing), Spurling's and the upper limb neurodynamic tests. No evidence was found for doppler velocimetry. Little evidence exists to support the use of clinical tests to evaluate the anatomical integrity of the cervical spine in adults with neck pain and its associated disorders. We found preliminary evidence to support the use of the extension-rotation test, neurological examination, Spurling's and the upper limb neurodynamic tests.

  2. Sensor Network Architectures for Monitoring Underwater Pipelines

    PubMed Central

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring. PMID:22346669

  3. Sensor network architectures for monitoring underwater pipelines.

    PubMed

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (radio frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring.

  4. Integrated Approach To Design And Analysis Of Systems

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, F. A.; Iverson, David L.

    1993-01-01

    Object-oriented fault-tree representation unifies evaluation of reliability and diagnosis of faults. Programming/fault tree described more fully in "Object-Oriented Algorithm For Evaluation Of Fault Trees" (ARC-12731). Augmented fault tree object contains more information than fault tree object used in quantitative analysis of reliability. Additional information needed to diagnose faults in system represented by fault tree.

  5. An Evaluation of Test Speededness in an Assessment for Third-Grade Gifted Students

    ERIC Educational Resources Information Center

    Hailey, Emily; Callahan, Carolyn M.; Azano, Amy; Moon, Tonya R.

    2012-01-01

    Reliability and validity are integral concepts in assessment design. Test speededness, the influence of time constraints on test taker performance, is often an overlooked threat to reliability and validity, especially in classroom-based testing. The purpose of this study is to evaluate the degree of test speededness of classroom-based assessments…

  6. Ceramic component reliability with the restructured NASA/CARES computer program

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Starlinger, Alois; Gyekenyesi, John P.

    1992-01-01

    The Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design program on statistical fast fracture reliability and monolithic ceramic components is enhanced to include the use of a neutral data base, two-dimensional modeling, and variable problem size. The data base allows for the efficient transfer of element stresses, temperatures, and volumes/areas from the finite element output to the reliability analysis program. Elements are divided to insure a direct correspondence between the subelements and the Gaussian integration points. Two-dimensional modeling is accomplished by assessing the volume flaw reliability with shell elements. To demonstrate the improvements in the algorithm, example problems are selected from a round-robin conducted by WELFEP (WEakest Link failure probability prediction by Finite Element Postprocessors).

  7. [Integral evaluation of immune homeostasis in rockets liquidators and role of this evaluation for prophylaxis].

    PubMed

    2010-01-01

    Long-standing clinical and immunologic monitoring and integral evaluation of immune homeostasis (through generalized parameter) in personnel of Center for liquid-fuel rockets liquidation demonstrated diagnostically reliable immunity parameters that enable to forecast changes in the workers' health state. The authors defined boundary values of the generalized parameter to form risk groups for specific entities formation.

  8. Reliability Evaluation and Improvement Approach of Chemical Production Man - Machine - Environment System

    NASA Astrophysics Data System (ADS)

    Miao, Yongchun; Kang, Rongxue; Chen, Xuefeng

    2017-12-01

    In recent years, with the gradual extension of reliability research, the study of production system reliability has become the hot topic in various industries. Man-machine-environment system is a complex system composed of human factors, machinery equipment and environment. The reliability of individual factor must be analyzed in order to gradually transit to the research of three-factor reliability. Meanwhile, the dynamic relationship among man-machine-environment should be considered to establish an effective blurry evaluation mechanism to truly and effectively analyze the reliability of such systems. In this paper, based on the system engineering, fuzzy theory, reliability theory, human error, environmental impact and machinery equipment failure theory, the reliabilities of human factor, machinery equipment and environment of some chemical production system were studied by the method of fuzzy evaluation. At last, the reliability of man-machine-environment system was calculated to obtain the weighted result, which indicated that the reliability value of this chemical production system was 86.29. Through the given evaluation domain it can be seen that the reliability of man-machine-environment integrated system is in a good status, and the effective measures for further improvement were proposed according to the fuzzy calculation results.

  9. Survey of critical failure events in on-chip interconnect by fault tree analysis

    NASA Astrophysics Data System (ADS)

    Yokogawa, Shinji; Kunii, Kyousuke

    2018-07-01

    In this paper, a framework based on reliability physics is proposed for adopting fault tree analysis (FTA) to the on-chip interconnect system of a semiconductor. By integrating expert knowledge and experience regarding the possibilities of failure on basic events, critical issues of on-chip interconnect reliability will be evaluated by FTA. In particular, FTA is used to identify the minimal cut sets with high risk priority. Critical events affecting the on-chip interconnect reliability are identified and discussed from the viewpoint of long-term reliability assessment. The moisture impact is evaluated as an external event.

  10. Reviewing Reliability and Validity of Information for University Educational Evaluation

    NASA Astrophysics Data System (ADS)

    Otsuka, Yusaku

    To better utilize evaluations in higher education, it is necessary to share the methods of reviewing reliability and validity of examination scores and grades, and to accumulate and share data for confirming results. Before the GPA system is first introduced into a university or college, the reliability of examination scores and grades, especially for essay examinations, must be assured. Validity is a complicated concept, so should be assured in various ways, including using professional audits, theoretical models, and statistical data analysis. Because individual students and teachers are continually improving, using evaluations to appraise their progress is not always compatible with using evaluations in appraising the implementation of accountability in various departments or the university overall. To better utilize evaluations and improve higher education, evaluations should be integrated into the current system by sharing the vision of an academic learning community and promoting interaction between students and teachers based on sufficiently reliable and validated evaluation tools.

  11. The analysis of reliability and validity of the IT-MAIS, MAIS and MUSS.

    PubMed

    Zhong, Yan; Xu, Tianqiu; Dong, Ruijuan; Lyu, Jing; Liu, Bo; Chen, Xueqing

    2017-05-01

    The aim of this study was to investigate the reliability and validity of the Infant-toddler Meaningful Auditory Integration Scale (IT-MAIS), Meaningful Auditory Integration Scale (MAIS), and Meaningful Use of Speech Scale (MUSS). IT-MAIS, MAIS and MUSS were divided into 3 sub dimensions. 300 children with cochlear implants (CI) were included in the investigation. To assess test-retest reliability of these questionnaires, 30 children were selected randomly to be evaluated at a two-week interval indicated that there were no significant changes between test and retest. Furthermore random test analysis by different evaluators was also administered to 30 users. Reliability test: Test-retest reliability of the three scales was proved to be satisfactory. All domains had correlation coefficients that exceeded 0.750(P < 0.01). The Cronbach's α of the three scales and their three domains were greater than 0.700. Reliability between evaluators of the three scales were considered to be satisfactory. All domains had correlation coefficients that exceeded 0.750(P < 0.01). Validity test: The evaluation of content validity by expert review showed the questionnaire had good content validity; The correlation coefficients between the overall scores of the three scales and their three domains were 0.699-0.978(P < 0.01). There were correlations among the three sub-domains but the strength of the correlations was relatively low. There was certain construct validity. IT-MAIS, MAIS, MUSS scales have good reliability and validity, and can be used to measure the outcome for children with cochlear implants hearing and speech evaluation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A novel evaluation method for building construction project based on integrated information entropy with reliability theory.

    PubMed

    Bai, Xiao-ping; Zhang, Xi-wei

    2013-01-01

    Selecting construction schemes of the building engineering project is a complex multiobjective optimization decision process, in which many indexes need to be selected to find the optimum scheme. Aiming at this problem, this paper selects cost, progress, quality, and safety as the four first-order evaluation indexes, uses the quantitative method for the cost index, uses integrated qualitative and quantitative methodologies for progress, quality, and safety indexes, and integrates engineering economics, reliability theories, and information entropy theory to present a new evaluation method for building construction project. Combined with a practical case, this paper also presents detailed computing processes and steps, including selecting all order indexes, establishing the index matrix, computing score values of all order indexes, computing the synthesis score, sorting all selected schemes, and making analysis and decision. Presented method can offer valuable references for risk computing of building construction projects.

  13. Integrated performance and reliability specification for digital avionics systems

    NASA Technical Reports Server (NTRS)

    Brehm, Eric W.; Goettge, Robert T.

    1995-01-01

    This paper describes an automated tool for performance and reliability assessment of digital avionics systems, called the Automated Design Tool Set (ADTS). ADTS is based on an integrated approach to design assessment that unifies traditional performance and reliability views of system designs, and that addresses interdependencies between performance and reliability behavior via exchange of parameters and result between mathematical models of each type. A multi-layer tool set architecture has been developed for ADTS that separates the concerns of system specification, model generation, and model solution. Performance and reliability models are generated automatically as a function of candidate system designs, and model results are expressed within the system specification. The layered approach helps deal with the inherent complexity of the design assessment process, and preserves long-term flexibility to accommodate a wide range of models and solution techniques within the tool set structure. ADTS research and development to date has focused on development of a language for specification of system designs as a basis for performance and reliability evaluation. A model generation and solution framework has also been developed for ADTS, that will ultimately encompass an integrated set of analytic and simulated based techniques for performance, reliability, and combined design assessment.

  14. Technical Reliability Studies. EOS/ESD Technology Abstracts

    DTIC Science & Technology

    1982-01-01

    RESISTANT BIPOLAR TRANSISTOR DESIGN AND ITS APPLICATIONS TO LINEAR INTEGRATED CIRCUITS 16145 MODULE ELECTROSTATIC DISCHARGE SIMULATOR 15786 SOME...T.M. 16476 STATIC DISCHARGE MODELING TECHNIQUES FOR EVALUATION OF INTEGRATED (FET) CIRCUIT DESTRUCTION 16145 MODULE ELECTAOSTATIC DISCHARGE SIMULATOR...PLASTIC LSI CIRCUITS PRklE, L.A., II 16145 MODULE ELECTROSTATIC DISCHARGE SIMULATOR PRICE, R.D. 13455 EVALUATION OF PLASTIC LSI CIRCUITS PSHAENICH, A

  15. Meta-analytic guidelines for evaluating single-item reliabilities of personality instruments.

    PubMed

    Spörrle, Matthias; Bekk, Magdalena

    2014-06-01

    Personality is an important predictor of various outcomes in many social science disciplines. However, when personality traits are not the principal focus of research, for example, in global comparative surveys, it is often not possible to assess them extensively. In this article, we first provide an overview of the advantages and challenges of single-item measures of personality, a rationale for their construction, and a summary of alternative ways of assessing their reliability. Second, using seven diverse samples (Ntotal = 4,263) we develop the SIMP-G, the German adaptation of the Single-Item Measures of Personality, an instrument assessing the Big Five with one item per trait, and evaluate its validity and reliability. Third, we integrate previous research and our data into a first meta-analysis of single-item reliabilities of personality measures, and provide researchers with guidelines and recommendations for the evaluation of single-item reliabilities. © The Author(s) 2013.

  16. Qualification of an evaluated butterfly-packaged DFB laser designed for space applications

    NASA Astrophysics Data System (ADS)

    Tornow, S.; Stier, C.; Buettner, T.; Laurent, T.; Kneier, M.; Bru, J.; Lien, Y.

    2017-11-01

    An extended qualification program has proven the quality of a previously evaluated semiconductor laser diode, which is intended to be used in a subsystem for the GAIA mission. We report on results of several reliability tests performed in subgroups. The requirements of the procurement specification with respect to reliability and desired manufacturing processes were confirmed. This is an example for successful collaboration between component supplier, system integrator and payload responsible party.

  17. Reliability program requirements for aeronautical and space system contractors

    NASA Technical Reports Server (NTRS)

    1987-01-01

    General reliability program requirements for NASA contracts involving the design, development, fabrication, test, and/or use of aeronautical and space systems including critical ground support equipment are prescribed. The reliability program requirements require (1) thorough planning and effective management of the reliability effort; (2) definition of the major reliability tasks and their place as an integral part of the design and development process; (3) planning and evaluating the reliability of the system and its elements (including effects of software interfaces) through a program of analysis, review, and test; and (4) timely status indication by formal documentation and other reporting to facilitate control of the reliability program.

  18. Assessing treatment integrity in cognitive-behavioral therapy: comparing session segments with entire sessions.

    PubMed

    Weck, Florian; Grikscheit, Florian; Höfling, Volkmar; Stangier, Ulrich

    2014-07-01

    The evaluation of treatment integrity (therapist adherence and competence) is a necessary condition to ensure the internal and external validity of psychotherapy research. However, the evaluation process is associated with high costs, because therapy sessions must be rated by experienced clinicians. It is debatable whether rating session segments is an adequate alternative to rating entire sessions. Four judges evaluated treatment integrity (i.e., therapist adherence and competence) in 84 randomly selected videotapes of cognitive-behavioral therapy for major depressive disorder, social anxiety disorder, and hypochondriasis (from three different treatment outcome studies). In each case, two judges provided ratings based on entire therapy sessions and two on session segments only (i.e., the middle third of the entire sessions). Interrater reliability of adherence and competence evaluations proved satisfactory for ratings based on segments and the level of reliability did not differ from ratings based on entire sessions. Ratings of treatment integrity that were based on entire sessions and session segments were strongly correlated (r=.62 for adherence and r=.73 for competence). The relationship between treatment integrity and outcome was comparable for ratings based on session segments and those based on entire sessions. However, significant relationships between therapist competence and therapy outcome were only found in the treatment of social anxiety disorder. Ratings based on segments proved to be adequate for the evaluation of treatment integrity. The findings demonstrate that session segments are an adequate and cost-effective alternative to entire sessions for the evaluation of therapist adherence and competence. Copyright © 2014. Published by Elsevier Ltd.

  19. 10 CFR 712.36 - Medical assessment process.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Medical assessment process. 712.36 Section 712.36 Energy DEPARTMENT OF ENERGY HUMAN RELIABILITY PROGRAM Medical Standards § 712.36 Medical assessment process. (a) The... the SOMD must integrate the medical evaluations, psychological evaluations, psychiatric evaluations...

  20. Validating the Alcohol Use Disorders Identification Test with Persons Who Have a Serious Mental Illness

    ERIC Educational Resources Information Center

    O'Hare, Thomas; Sherrer, Margaret V.; LaButti, Annamaria; Emrick, Kelly

    2004-01-01

    Objective/Method: The use of brief, reliable, valid, and practical measures of substance use is critical for conducting individual assessments and program evaluation for integrated mental health-substance abuse services for persons with serious mental illness. This investigation examines the internal consistency reliability, concurrent validity,…

  1. The detection of tightly closed flaws by nondestructive testing (NDT) methods. [fatigue crack formation in aluminum alloy test specimens

    NASA Technical Reports Server (NTRS)

    Rummel, W. D.; Rathke, R. A.; Todd, P. H., Jr.; Mullen, S. J.

    1975-01-01

    Liquid penetrant, ultrasonic, eddy current and X-radiographic techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens in integrally stiffened panel, and weld panel configurations. Fatigue cracks in integrally stiffened panels, lack-of-fusion in weld panels, and fatigue cracks in weld panels were the flaw types used for evaluation. A 2319 aluminum alloy weld filler rod was used for all welding to produce the test specimens. Forty seven integrally stiffened panels containing a total of 146 fatigue cracks, ninety three lack-of-penetration (LOP) specimens containing a total of 239 LOP flaws, and one-hundred seventeen welded specimens containing a total of 293 fatigue cracks were evaluated. Nondestructive test detection reliability enhancement was evaluated during separate inspection sequences in the specimens in the 'as-machined or as-welded', post etched and post proof loaded conditions. Results of the nondestructive test evaluations were compared to the actual flaw size obtained by measurement of the fracture specimens after completing all inspection sequences. Inspection data were then analyzed to provide a statistical basis for determining the flaw detection reliability.

  2. A method for computing the kernel of the downwash integral equation for arbitrary complex frequencies

    NASA Technical Reports Server (NTRS)

    Desmarais, R. N.; Rowe, W. S.

    1984-01-01

    For the design of active controls to stabilize flight vehicles, which requires the use of unsteady aerodynamics that are valid for arbitrary complex frequencies, algorithms are derived for evaluating the nonelementary part of the kernel of the integral equation that relates unsteady pressure to downwash. This part of the kernel is separated into an infinite limit integral that is evaluated using Bessel and Struve functions and into a finite limit integral that is expanded in series and integrated termwise in closed form. The developed series expansions gave reliable answers for all complex reduced frequencies and executed faster than exponential approximations for many pressure stations.

  3. [Development of a scale to measure Korean ego-integrity in older adults].

    PubMed

    Chang, Sung Ok; Kong, Eun Sook; Kim, Kwuy Bun; Kim, Nam Cho; Kim, Ju Hee; Kim, Chun Gill; Kim, Hee Kyung; Song, Mi Soon; Ahn, Soo Yeon; Lee, Kyung Ja; Lee, Young Whee; Chon, Si Ja; Cho, Nam Ok; Cho, Myung Ok; Choi, Kyung Sook

    2007-04-01

    Ego-integrity in older adults is the central concept related to quality of life in later life. Therefore, for effective interventions to enhance the quality of later life, a scale to measure ego-integrity in older adults is necessary. This study was carried out to develop a scale to measure ego-integrity in older adults. This study utilized cronbach's alpha in analyzing the reliability of the collected data and expert group, and factor analysis and item analysis to analyze validity. Seventeen items were selected from a total of 21 items. Cronbach's alpha coefficient for internal consistency was .88 for the 17 items of ego-integrity in the older adults scale. Three factors evolved by factor analysis, which explained 50.71% of the total variance. The scale for measuring ego-integrity in Korean older adults in this study was evaluated as a tool with a high degree of reliability and validity.

  4. Field evaluation of roller integrated intelligent compaction monitoring : tech summary.

    DOT National Transportation Integrated Search

    2016-04-01

    The objectives of the research were to: : 1. Demonstrate the value of RICM to accelerate construction, reduce re-work, and improve uniformity : of pavement layers. : 2. Evaluate the reliability and potential use of RICM data for acceptance and measur...

  5. An integrated approach to system design, reliability, and diagnosis

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, F. A.; Iverson, David L.

    1990-01-01

    The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems ingeneering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms.

  6. Semi-Markov adjunction to the Computer-Aided Markov Evaluator (CAME)

    NASA Technical Reports Server (NTRS)

    Rosch, Gene; Hutchins, Monica A.; Leong, Frank J.; Babcock, Philip S., IV

    1988-01-01

    The rule-based Computer-Aided Markov Evaluator (CAME) program was expanded in its ability to incorporate the effect of fault-handling processes into the construction of a reliability model. The fault-handling processes are modeled as semi-Markov events and CAME constructs and appropriate semi-Markov model. To solve the model, the program outputs it in a form which can be directly solved with the Semi-Markov Unreliability Range Evaluator (SURE) program. As a means of evaluating the alterations made to the CAME program, the program is used to model the reliability of portions of the Integrated Airframe/Propulsion Control System Architecture (IAPSA 2) reference configuration. The reliability predictions are compared with a previous analysis. The results bear out the feasibility of utilizing CAME to generate appropriate semi-Markov models to model fault-handling processes.

  7. Development of a survey instrument to measure patient experience of integrated care.

    PubMed

    Walker, Kara Odom; Stewart, Anita L; Grumbach, Kevin

    2016-06-01

    Healthcare systems are working to move towards more integrated, patient-centered care. This study describes the development and testing of a multidimensional self-report measure of patients' experiences of integrated care. Random-digit-dial telephone survey in 2012 of 317 adults aged 40 years or older in the San Francisco region who had used healthcare at least twice in the past 12 months. One-time cross-sectional survey; psychometric evaluation to confirm dimensions and create multi-item scales. Survey data were analyzed using VARCLUS and confirmatory factor analysis and internal consistency reliability testing. Scales measuring five domains were confirmed: coordination within and between care teams, navigation (arranging appointments and visits), communication between specialist and primary care doctor, and communication between primary care doctor and specialist. Four of these demonstrated excellent internal consistency reliability. Mean scale scores indicated low levels of integration. These scales measuring integrated care capture meaningful domains of patients' experiences of health care. The low levels of care integration reported by patients in the study sample suggest that these types of measures should be considered in ongoing evaluations of health system performance and improvement. Further research should examine whether differences in patient experience of integrated care are associated with differences in the processes and outcomes of care received.

  8. Post-operative rotator cuff integrity, based on Sugaya's classification, can reflect abduction muscle strength of the shoulder.

    PubMed

    Yoshida, Masahito; Collin, Phillipe; Josseaume, Thierry; Lädermann, Alexandre; Goto, Hideyuki; Sugimoto, Katumasa; Otsuka, Takanobu

    2018-01-01

    Magnetic resonance (MR) imaging is common in structural and qualitative assessment of the rotator cuff post-operatively. Rotator cuff integrity has been thought to be associated with clinical outcome. The purpose of this study was to evaluate the inter-observer reliability of cuff integrity (Sugaya's classification) and assess the correlation between Sugaya's classification and the clinical outcome. It was hypothesized that Sugaya's classification would show good reliability and good correlation with the clinical outcome. Post-operative MR images were taken two years post-operatively, following arthroscopic rotator cuff repair. For assessment of inter-rater reliability, all radiographic evaluations for the supraspinatus muscle were done by two orthopaedic surgeons and one radiologist. Rotator cuff integrity was classified into five categories, according to Sugaya's classification. Fatty infiltration was graded into four categories, based on the Fuchs' classification grading system. Muscle hypotrophy was graded as four grades, according to the scale proposed by Warner. The clinical outcome was assessed according to the constant scoring system pre-operatively and 2 years post-operatively. Of the sixty-two consecutive patients with full-thickness rotator cuff tears, fifty-two patients were reviewed in this study. These subjects included twenty-three men and twenty-nine women, with an average age of fifty-seven years. In terms of the inter-rater reliability between orthopaedic surgeons, Sugaya's classification showed the highest agreement [ICC (2.1) = 0.82] for rotator cuff integrity. The grade of fatty infiltration and muscle atrophy demonstrated good agreement, respectively (0.722 and 0.758). With regard to the inter-rater reliability between orthopaedic surgeon and radiologist, Sugaya's classification showed good reliability [ICC (2.1) = 0.70]. On the other hand, fatty infiltration and muscle hypotrophy classifications demonstrated fair and moderate agreement [ICC (2.1) = 0.39 and 0.49]. Although no significant correlation was found between overall post-operative constant score and Sugaya's classification, Sugaya's classification indicated significant correlation with the muscle strength score. Sugaya's classification showed repeatability and good agreement between the orthopaedist and radiologist, who are involved in the patient care for the rotator cuff tear. Common classification of rotator cuff integrity with good reliability will give appropriate information for clinicians to improve the patient care of the rotator cuff tear. This classification also would be helpful to predict the strength of arm abduction in the scapular plane. IV.

  9. Space station software reliability analysis based on failures observed during testing at the multisystem integration facility

    NASA Technical Reports Server (NTRS)

    Tamayo, Tak Chai

    1987-01-01

    Quality of software not only is vital to the successful operation of the space station, it is also an important factor in establishing testing requirements, time needed for software verification and integration as well as launching schedules for the space station. Defense of management decisions can be greatly strengthened by combining engineering judgments with statistical analysis. Unlike hardware, software has the characteristics of no wearout and costly redundancies, thus making traditional statistical analysis not suitable in evaluating reliability of software. A statistical model was developed to provide a representation of the number as well as types of failures occur during software testing and verification. From this model, quantitative measure of software reliability based on failure history during testing are derived. Criteria to terminate testing based on reliability objectives and methods to estimate the expected number of fixings required are also presented.

  10. Reliability analysis of composite structures

    NASA Technical Reports Server (NTRS)

    Kan, Han-Pin

    1992-01-01

    A probabilistic static stress analysis methodology has been developed to estimate the reliability of a composite structure. Closed form stress analysis methods are the primary analytical tools used in this methodology. These structural mechanics methods are used to identify independent variables whose variations significantly affect the performance of the structure. Once these variables are identified, scatter in their values is evaluated and statistically characterized. The scatter in applied loads and the structural parameters are then fitted to appropriate probabilistic distribution functions. Numerical integration techniques are applied to compute the structural reliability. The predicted reliability accounts for scatter due to variability in material strength, applied load, fabrication and assembly processes. The influence of structural geometry and mode of failure are also considerations in the evaluation. Example problems are given to illustrate various levels of analytical complexity.

  11. A Model of Information Integration for Jury Deliberation.

    ERIC Educational Resources Information Center

    Kaplan, Martin F.

    Several factors are included in judgment formation by a juror during a trial, including evaluating each piece of information received with respect to the judgment in question, weighting each piece of information according to its validity for the particular judgment and its reliability, and integrating the weighted scale values into a single…

  12. Confirmatory Factor Analysis of the Beck Depression Inventory-II in Bariatric Surgery Candidates

    ERIC Educational Resources Information Center

    Hall, Brian J.; Hood, Megan M.; Nackers, Lisa M.; Azarbad, Leila; Ivan, Iulia; Corsica, Joyce

    2013-01-01

    Screening for depression is an integral part of psychological evaluations conducted prior to bariatric surgery. The Beck Depression Inventory-II (BDI-II) is the most commonly used measure of depression in these treatment evaluations. The reliability and validity of the BDI-II has not yet been evaluated within bariatric surgery-seeking samples,…

  13. Unified method to integrate and blend several, potentially related, sources of information for genetic evaluation.

    PubMed

    Vandenplas, Jérémie; Colinet, Frederic G; Gengler, Nicolas

    2014-09-30

    A condition to predict unbiased estimated breeding values by best linear unbiased prediction is to use simultaneously all available data. However, this condition is not often fully met. For example, in dairy cattle, internal (i.e. local) populations lead to evaluations based only on internal records while widely used foreign sires have been selected using internally unavailable external records. In such cases, internal genetic evaluations may be less accurate and biased. Because external records are unavailable, methods were developed to combine external information that summarizes these records, i.e. external estimated breeding values and associated reliabilities, with internal records to improve accuracy of internal genetic evaluations. Two issues of these methods concern double-counting of contributions due to relationships and due to records. These issues could be worse if external information came from several evaluations, at least partially based on the same records, and combined into a single internal evaluation. Based on a Bayesian approach, the aim of this research was to develop a unified method to integrate and blend simultaneously several sources of information into an internal genetic evaluation by avoiding double-counting of contributions due to relationships and due to records. This research resulted in equations that integrate and blend simultaneously several sources of information and avoid double-counting of contributions due to relationships and due to records. The performance of the developed equations was evaluated using simulated and real datasets. The results showed that the developed equations integrated and blended several sources of information well into a genetic evaluation. The developed equations also avoided double-counting of contributions due to relationships and due to records. Furthermore, because all available external sources of information were correctly propagated, relatives of external animals benefited from the integrated information and, therefore, more reliable estimated breeding values were obtained. The proposed unified method integrated and blended several sources of information well into a genetic evaluation by avoiding double-counting of contributions due to relationships and due to records. The unified method can also be extended to other types of situations such as single-step genomic or multi-trait evaluations, combining information across different traits.

  14. A diameter-sensitive flow entropy method for reliability consideration in water distribution system design

    NASA Astrophysics Data System (ADS)

    Liu, Haixing; Savić, Dragan; Kapelan, Zoran; Zhao, Ming; Yuan, Yixing; Zhao, Hongbin

    2014-07-01

    Flow entropy is a measure of uniformity of pipe flows in water distribution systems. By maximizing flow entropy one can identify reliable layouts or connectivity in networks. In order to overcome the disadvantage of the common definition of flow entropy that does not consider the impact of pipe diameter on reliability, an extended definition of flow entropy, termed as diameter-sensitive flow entropy, is proposed. This new methodology is then assessed by using other reliability methods, including Monte Carlo Simulation, a pipe failure probability model, and a surrogate measure (resilience index) integrated with water demand and pipe failure uncertainty. The reliability assessment is based on a sample of WDS designs derived from an optimization process for each of the two benchmark networks. Correlation analysis is used to evaluate quantitatively the relationship between entropy and reliability. To ensure reliability, a comparative analysis between the flow entropy and the new method is conducted. The results demonstrate that the diameter-sensitive flow entropy shows consistently much stronger correlation with the three reliability measures than simple flow entropy. Therefore, the new flow entropy method can be taken as a better surrogate measure for reliability and could be potentially integrated into the optimal design problem of WDSs. Sensitivity analysis results show that the velocity parameters used in the new flow entropy has no significant impact on the relationship between diameter-sensitive flow entropy and reliability.

  15. Ensuring Data Quality in Extension Research and Evaluation Studies

    ERIC Educational Resources Information Center

    Radhakrishna, Rama; Tobin, Daniel; Brennan, Mark; Thomson, Joan

    2012-01-01

    This article presents a checklist as a guide for Extension professionals to use in research and evaluation studies they carry out. A total of 40 statements grouped under eight data quality components--relevance, objectivity, validity, reliability, integrity, generalizability, completeness, and utility--are identified to ensure that research…

  16. Evaluation of rail test frequencies using risk analysis

    DOT National Transportation Integrated Search

    2009-03-03

    Several industries now use risk analysis to develop : inspection programs to ensure acceptable mechanical integrity : and reliability. These industries include nuclear and electric : power generation, oil refining, gas processing, onshore and : offsh...

  17. Integrated technology rotor/flight research rotor hub concept definition

    NASA Technical Reports Server (NTRS)

    Dixon, P. G. C.

    1983-01-01

    Two variations of the helicopter bearingless main rotor hub concept are proposed as bases for further development in the preliminary design phase of the Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) program. This selection was the result of an evaluation of three bearingless hub concepts and two articulated hub concepts with elastomeric bearings. The characteristics of each concept were evaluated by means of simplified methodology. These characteristics included the assessment of stability, vulnerability, weight, drag, cost, stiffness, fatigue life, maintainability, and reliability.

  18. Reliability of CGA/LGA/HDI Package Board/Assembly (Revision A)

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2013-01-01

    This follow-up report presents reliability test results conducted by thermal cycling of five CGA assemblies evaluated under two extreme cycle profiles, representative of use for high-reliability applications. The thermal cycles ranged from a low temperature of 55 C to maximum temperatures of either 100 C or 125 C with slow ramp-up rate (3 C/min) and dwell times of about 15 minutes at the two extremes. Optical photomicrographs that illustrate key inspection findings of up to 200 thermal cycles are presented. Other information presented include an evaluation of the integrity of capacitors on CGA substrate after thermal cycling as well as process evaluation for direct assembly of an LGA onto PCB. The qualification guidelines, which are based on the test results for CGA/LGA/HDI packages and board assemblies, will facilitate NASA projects' use of very dense and newly available FPGA area array packages with known reliably and mitigation risks, allowing greater processing power in a smaller board footprint and lower system weight.

  19. A New Tool for Nutrition App Quality Evaluation (AQEL): Development, Validation, and Reliability Testing

    PubMed Central

    Huang, Wenhao; Chapman-Novakofski, Karen M

    2017-01-01

    Background The extensive availability and increasing use of mobile apps for nutrition-based health interventions makes evaluation of the quality of these apps crucial for integration of apps into nutritional counseling. Objective The goal of this research was the development, validation, and reliability testing of the app quality evaluation (AQEL) tool, an instrument for evaluating apps’ educational quality and technical functionality. Methods Items for evaluating app quality were adapted from website evaluations, with additional items added to evaluate the specific characteristics of apps, resulting in 79 initial items. Expert panels of nutrition and technology professionals and app users reviewed items for face and content validation. After recommended revisions, nutrition experts completed a second AQEL review to ensure clarity. On the basis of 150 sets of responses using the revised AQEL, principal component analysis was completed, reducing AQEL into 5 factors that underwent reliability testing, including internal consistency, split-half reliability, test-retest reliability, and interrater reliability (IRR). Two additional modifiable constructs for evaluating apps based on the age and needs of the target audience as selected by the evaluator were also tested for construct reliability. IRR testing using intraclass correlations (ICC) with all 7 constructs was conducted, with 15 dietitians evaluating one app. Results Development and validation resulted in the 51-item AQEL. These were reduced to 25 items in 5 factors after principal component analysis, plus 9 modifiable items in two constructs that were not included in principal component analysis. Internal consistency and split-half reliability of the following constructs derived from principal components analysis was good (Cronbach alpha >.80, Spearman-Brown coefficient >.80): behavior change potential, support of knowledge acquisition, app function, and skill development. App purpose split half-reliability was .65. Test-retest reliability showed no significant change over time (P>.05) for all but skill development (P=.001). Construct reliability was good for items assessing age appropriateness of apps for children, teens, and a general audience. In addition, construct reliability was acceptable for assessing app appropriateness for various target audiences (Cronbach alpha >.70). For the 5 main factors, ICC (1,k) was >.80, with a P value of <.05. When 15 nutrition professionals evaluated one app, ICC (2,15) was .98, with a P value of <.001 for all 7 constructs when the modifiable items were specified for adults seeking weight loss support. Conclusions Our preliminary effort shows that AQEL is a valid, reliable instrument for evaluating nutrition apps’ qualities for clinical interventions by nutrition clinicians, educators, and researchers. Further efforts in validating AQEL in various contexts are needed. PMID:29079554

  20. Selecting process quality indicators for the integrated care of vulnerable older adults affected by cognitive impairment or dementia.

    PubMed

    Kröger, Edeltraut; Tourigny, André; Morin, Diane; Côté, Lise; Kergoat, Marie-Jeanne; Lebel, Paule; Robichaud, Line; Imbeault, Shirley; Proulx, Solange; Benounissa, Zohra

    2007-11-29

    This study aimed at evaluating face and content validity, feasibility and reliability of process quality indicators developed previously in the United States or other countries. The indicators can be used to evaluate care and services for vulnerable older adults affected by cognitive impairment or dementia within an integrated service system in Quebec, Canada. A total of 33 clinical experts from three major urban centres in Quebec formed a panel representing two medical specialties (family medicine, geriatrics) and seven health or social services specialties (nursing, occupational therapy, psychology, neuropsychology, pharmacy, nutrition, social work), from primary or secondary levels of care, including long-term care. A modified version of the RAND(R)/University of California at Los Angeles (UCLA) appropriateness method, a two-round Delphi panel, was used to assess face and content validity of process quality indicators. The appropriateness of indicators was evaluated according to a) agreement of the panel with three criteria, defined as a median rating of 7-9 on a nine-point rating scale, and b) agreement among panellists, judged by the statistical measure of the interpercentile range adjusted for symmetry. Feasibility of quality assessment and reliability of appropriate indicators were then evaluated within a pilot study on 29 patients affected by cognitive impairment or dementia. For measurable indicators the inter-observer reliability was calculated with the Kappa statistic. Initially, 82 indicators for care of vulnerable older adults with cognitive impairment or dementia were submitted to the panellists. Of those, 72 (88%) were accepted after two rounds. Among 29 patients for whom medical files of the preceding two years were evaluated, 63 (88%) of these indicators were considered applicable at least once, for at least one patient. Only 22 indicators were considered applicable at least once for ten or more out of 29 patients. Four indicators could be measured with the help of a validated questionnaire on patient satisfaction. Inter-observer reliability was moderate (Kappa = 0.57). A multidisciplinary panel of experts judged a large majority of the initial indicators valid for use in integrated care systems for vulnerable older adults in Quebec, Canada. Most of these indicators can be measured using patient files or patient or caregiver interviews and reliability of assessment from patient-files is moderate.

  1. Selecting process quality indicators for the integrated care of vulnerable older adults affected by cognitive impairment or dementia

    PubMed Central

    Kröger, Edeltraut; Tourigny, André; Morin, Diane; Côté, Lise; Kergoat, Marie-Jeanne; Lebel, Paule; Robichaud, Line; Imbeault, Shirley; Proulx, Solange; Benounissa, Zohra

    2007-01-01

    Background This study aimed at evaluating face and content validity, feasibility and reliability of process quality indicators developed previously in the United States or other countries. The indicators can be used to evaluate care and services for vulnerable older adults affected by cognitive impairment or dementia within an integrated service system in Quebec, Canada. Methods A total of 33 clinical experts from three major urban centres in Quebec formed a panel representing two medical specialties (family medicine, geriatrics) and seven health or social services specialties (nursing, occupational therapy, psychology, neuropsychology, pharmacy, nutrition, social work), from primary or secondary levels of care, including long-term care. A modified version of the RAND®/University of California at Los Angeles (UCLA) appropriateness method, a two-round Delphi panel, was used to assess face and content validity of process quality indicators. The appropriateness of indicators was evaluated according to a) agreement of the panel with three criteria, defined as a median rating of 7–9 on a nine-point rating scale, and b) agreement among panellists, judged by the statistical measure of the interpercentile range adjusted for symmetry. Feasibility of quality assessment and reliability of appropriate indicators were then evaluated within a pilot study on 29 patients affected by cognitive impairment or dementia. For measurable indicators the inter-observer reliability was calculated with the Kappa statistic. Results Initially, 82 indicators for care of vulnerable older adults with cognitive impairment or dementia were submitted to the panellists. Of those, 72 (88%) were accepted after two rounds. Among 29 patients for whom medical files of the preceding two years were evaluated, 63 (88%) of these indicators were considered applicable at least once, for at least one patient. Only 22 indicators were considered applicable at least once for ten or more out of 29 patients. Four indicators could be measured with the help of a validated questionnaire on patient satisfaction. Inter-observer reliability was moderate (Kappa = 0.57). Conclusion A multidisciplinary panel of experts judged a large majority of the initial indicators valid for use in integrated care systems for vulnerable older adults in Quebec, Canada. Most of these indicators can be measured using patient files or patient or caregiver interviews and reliability of assessment from patient-files is moderate. PMID:18047668

  2. Structural reliability methods: Code development status

    NASA Astrophysics Data System (ADS)

    Millwater, Harry R.; Thacker, Ben H.; Wu, Y.-T.; Cruse, T. A.

    1991-05-01

    The Probabilistic Structures Analysis Method (PSAM) program integrates state of the art probabilistic algorithms with structural analysis methods in order to quantify the behavior of Space Shuttle Main Engine structures subject to uncertain loadings, boundary conditions, material parameters, and geometric conditions. An advanced, efficient probabilistic structural analysis software program, NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) was developed as a deliverable. NESSUS contains a number of integrated software components to perform probabilistic analysis of complex structures. A nonlinear finite element module NESSUS/FEM is used to model the structure and obtain structural sensitivities. Some of the capabilities of NESSUS/FEM are shown. A Fast Probability Integration module NESSUS/FPI estimates the probability given the structural sensitivities. A driver module, PFEM, couples the FEM and FPI. NESSUS, version 5.0, addresses component reliability, resistance, and risk.

  3. Structural reliability methods: Code development status

    NASA Technical Reports Server (NTRS)

    Millwater, Harry R.; Thacker, Ben H.; Wu, Y.-T.; Cruse, T. A.

    1991-01-01

    The Probabilistic Structures Analysis Method (PSAM) program integrates state of the art probabilistic algorithms with structural analysis methods in order to quantify the behavior of Space Shuttle Main Engine structures subject to uncertain loadings, boundary conditions, material parameters, and geometric conditions. An advanced, efficient probabilistic structural analysis software program, NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) was developed as a deliverable. NESSUS contains a number of integrated software components to perform probabilistic analysis of complex structures. A nonlinear finite element module NESSUS/FEM is used to model the structure and obtain structural sensitivities. Some of the capabilities of NESSUS/FEM are shown. A Fast Probability Integration module NESSUS/FPI estimates the probability given the structural sensitivities. A driver module, PFEM, couples the FEM and FPI. NESSUS, version 5.0, addresses component reliability, resistance, and risk.

  4. Intelligent Structural Health Management of Civil Infrastructure

    DOT National Transportation Integrated Search

    2012-10-19

    The collapse of the I-35W Mississippi River Bridge in Minneapolis has spawned a growing interest in the : development of reliable techniques for evaluating the structural integrity of civil infrastructure. Current inspection : techniques tailored to ...

  5. Probabilistic sizing of laminates with uncertainties

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Liaw, D. G.; Chamis, C. C.

    1993-01-01

    A reliability based design methodology for laminate sizing and configuration for a special case of composite structures is described. The methodology combines probabilistic composite mechanics with probabilistic structural analysis. The uncertainties of constituent materials (fiber and matrix) to predict macroscopic behavior are simulated using probabilistic theory. Uncertainties in the degradation of composite material properties are included in this design methodology. A multi-factor interaction equation is used to evaluate load and environment dependent degradation of the composite material properties at the micromechanics level. The methodology is integrated into a computer code IPACS (Integrated Probabilistic Assessment of Composite Structures). Versatility of this design approach is demonstrated by performing a multi-level probabilistic analysis to size the laminates for design structural reliability of random type structures. The results show that laminate configurations can be selected to improve the structural reliability from three failures in 1000, to no failures in one million. Results also show that the laminates with the highest reliability are the least sensitive to the loading conditions.

  6. A new method for computing the reliability of consecutive k-out-of-n:F systems

    NASA Astrophysics Data System (ADS)

    Gökdere, Gökhan; Gürcan, Mehmet; Kılıç, Muhammet Burak

    2016-01-01

    In many physical systems, reliability evaluation, such as ones encountered in telecommunications, the design of integrated circuits, microwave relay stations, oil pipeline systems, vacuum systems in accelerators, computer ring networks, and spacecraft relay stations, have had applied consecutive k-out-of-n system models. These systems are characterized as logical connections among the components of the systems placed in lines or circles. In literature, a great deal of attention has been paid to the study of the reliability evaluation of consecutive k-out-of-n systems. In this paper, we propose a new method to compute the reliability of consecutive k-out-of-n:F systems, with n linearly and circularly arranged components. The proposed method provides a simple way for determining the system failure probability. Also, we write R-Project codes based on our proposed method to compute the reliability of the linear and circular systems which have a great number of components.

  7. The weakest t-norm based intuitionistic fuzzy fault-tree analysis to evaluate system reliability.

    PubMed

    Kumar, Mohit; Yadav, Shiv Prasad

    2012-07-01

    In this paper, a new approach of intuitionistic fuzzy fault-tree analysis is proposed to evaluate system reliability and to find the most critical system component that affects the system reliability. Here weakest t-norm based intuitionistic fuzzy fault tree analysis is presented to calculate fault interval of system components from integrating expert's knowledge and experience in terms of providing the possibility of failure of bottom events. It applies fault-tree analysis, α-cut of intuitionistic fuzzy set and T(ω) (the weakest t-norm) based arithmetic operations on triangular intuitionistic fuzzy sets to obtain fault interval and reliability interval of the system. This paper also modifies Tanaka et al.'s fuzzy fault-tree definition. In numerical verification, a malfunction of weapon system "automatic gun" is presented as a numerical example. The result of the proposed method is compared with the listing approaches of reliability analysis methods. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  8. User's guide to Monte Carlo methods for evaluating path integrals

    NASA Astrophysics Data System (ADS)

    Westbroek, Marise J. E.; King, Peter R.; Vvedensky, Dimitri D.; Dürr, Stephan

    2018-04-01

    We give an introduction to the calculation of path integrals on a lattice, with the quantum harmonic oscillator as an example. In addition to providing an explicit computational setup and corresponding pseudocode, we pay particular attention to the existence of autocorrelations and the calculation of reliable errors. The over-relaxation technique is presented as a way to counter strong autocorrelations. The simulation methods can be extended to compute observables for path integrals in other settings.

  9. Superior model for fault tolerance computation in designing nano-sized circuit systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, N. S. S., E-mail: narinderjit@petronas.com.my; Muthuvalu, M. S., E-mail: msmuthuvalu@gmail.com; Asirvadam, V. S., E-mail: vijanth-sagayan@petronas.com.my

    2014-10-24

    As CMOS technology scales nano-metrically, reliability turns out to be a decisive subject in the design methodology of nano-sized circuit systems. As a result, several computational approaches have been developed to compute and evaluate reliability of desired nano-electronic circuits. The process of computing reliability becomes very troublesome and time consuming as the computational complexity build ups with the desired circuit size. Therefore, being able to measure reliability instantly and superiorly is fast becoming necessary in designing modern logic integrated circuits. For this purpose, the paper firstly looks into the development of an automated reliability evaluation tool based on the generalizationmore » of Probabilistic Gate Model (PGM) and Boolean Difference-based Error Calculator (BDEC) models. The Matlab-based tool allows users to significantly speed-up the task of reliability analysis for very large number of nano-electronic circuits. Secondly, by using the developed automated tool, the paper explores into a comparative study involving reliability computation and evaluation by PGM and, BDEC models for different implementations of same functionality circuits. Based on the reliability analysis, BDEC gives exact and transparent reliability measures, but as the complexity of the same functionality circuits with respect to gate error increases, reliability measure by BDEC tends to be lower than the reliability measure by PGM. The lesser reliability measure by BDEC is well explained in this paper using distribution of different signal input patterns overtime for same functionality circuits. Simulation results conclude that the reliability measure by BDEC depends not only on faulty gates but it also depends on circuit topology, probability of input signals being one or zero and also probability of error on signal lines.« less

  10. Measuring and Evaluating Trends for Reliability, Integrity, and Continued Success (METRICS) Act

    THOMAS, 111th Congress

    Rep. Holt, Rush [D-NJ-12

    2010-04-14

    House - 04/30/2010 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  11. Reliability of Radioisotope Stirling Convertor Linear Alternator

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin; Korovaichuk, Igor; Geng, Steven M.; Schreiber, Jeffrey G.

    2006-01-01

    Onboard radioisotope power systems being developed and planned for NASA s deep-space missions would require reliable design lifetimes of up to 14 years. Critical components and materials of Stirling convertors have been undergoing extensive testing and evaluation in support of a reliable performance for the specified life span. Of significant importance to the successful development of the Stirling convertor is the design of a lightweight and highly efficient linear alternator. Alternator performance could vary due to small deviations in the permanent magnet properties, operating temperature, and component geometries. Durability prediction and reliability of the alternator may be affected by these deviations from nominal design conditions. Therefore, it is important to evaluate the effect of these uncertainties in predicting the reliability of the linear alternator performance. This paper presents a study in which a reliability-based methodology is used to assess alternator performance. The response surface characterizing the induced open-circuit voltage performance is constructed using 3-D finite element magnetic analysis. Fast probability integration method is used to determine the probability of the desired performance and its sensitivity to the alternator design parameters.

  12. Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Tutorial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. L. Smith; S. T. Beck; S. T. Wood

    2008-08-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a set of computer programs that were developed to create and analyze probabilistic risk assessment (PRAs). This volume is the tutorial manual for the SAPHIRE system. In this document, a series of lessons are provided that guide the user through basic steps common to most analyses preformed with SAPHIRE. The tutorial is divided into two major sections covering both basic and advanced features. The section covering basic topics contains lessons that lead the reader through development of a probabilistic hypothetical problem involving a vehicle accident, highlighting the program’smore » most fundamental features. The advanced features section contains additional lessons that expand on fundamental analysis features of SAPHIRE and provide insights into more complex analysis techniques. Together, these two elements provide an overview into the operation and capabilities of the SAPHIRE software.« less

  13. A New Tool for Nutrition App Quality Evaluation (AQEL): Development, Validation, and Reliability Testing.

    PubMed

    DiFilippo, Kristen Nicole; Huang, Wenhao; Chapman-Novakofski, Karen M

    2017-10-27

    The extensive availability and increasing use of mobile apps for nutrition-based health interventions makes evaluation of the quality of these apps crucial for integration of apps into nutritional counseling. The goal of this research was the development, validation, and reliability testing of the app quality evaluation (AQEL) tool, an instrument for evaluating apps' educational quality and technical functionality. Items for evaluating app quality were adapted from website evaluations, with additional items added to evaluate the specific characteristics of apps, resulting in 79 initial items. Expert panels of nutrition and technology professionals and app users reviewed items for face and content validation. After recommended revisions, nutrition experts completed a second AQEL review to ensure clarity. On the basis of 150 sets of responses using the revised AQEL, principal component analysis was completed, reducing AQEL into 5 factors that underwent reliability testing, including internal consistency, split-half reliability, test-retest reliability, and interrater reliability (IRR). Two additional modifiable constructs for evaluating apps based on the age and needs of the target audience as selected by the evaluator were also tested for construct reliability. IRR testing using intraclass correlations (ICC) with all 7 constructs was conducted, with 15 dietitians evaluating one app. Development and validation resulted in the 51-item AQEL. These were reduced to 25 items in 5 factors after principal component analysis, plus 9 modifiable items in two constructs that were not included in principal component analysis. Internal consistency and split-half reliability of the following constructs derived from principal components analysis was good (Cronbach alpha >.80, Spearman-Brown coefficient >.80): behavior change potential, support of knowledge acquisition, app function, and skill development. App purpose split half-reliability was .65. Test-retest reliability showed no significant change over time (P>.05) for all but skill development (P=.001). Construct reliability was good for items assessing age appropriateness of apps for children, teens, and a general audience. In addition, construct reliability was acceptable for assessing app appropriateness for various target audiences (Cronbach alpha >.70). For the 5 main factors, ICC (1,k) was >.80, with a P value of <.05. When 15 nutrition professionals evaluated one app, ICC (2,15) was .98, with a P value of <.001 for all 7 constructs when the modifiable items were specified for adults seeking weight loss support. Our preliminary effort shows that AQEL is a valid, reliable instrument for evaluating nutrition apps' qualities for clinical interventions by nutrition clinicians, educators, and researchers. Further efforts in validating AQEL in various contexts are needed. ©Kristen Nicole DiFilippo, Wenhao Huang, Karen M. Chapman-Novakofski. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 27.10.2017.

  14. One approach for evaluating the Distributed Computing Design System (DCDS)

    NASA Technical Reports Server (NTRS)

    Ellis, J. T.

    1985-01-01

    The Distributed Computer Design System (DCDS) provides an integrated environment to support the life cycle of developing real-time distributed computing systems. The primary focus of DCDS is to significantly increase system reliability and software development productivity, and to minimize schedule and cost risk. DCDS consists of integrated methodologies, languages, and tools to support the life cycle of developing distributed software and systems. Smooth and well-defined transistions from phase to phase, language to language, and tool to tool provide a unique and unified environment. An approach to evaluating DCDS highlights its benefits.

  15. Evaluating Prototype Tasks and Alternative Rating Schemes for a New ESL Writing Test through G-Theory

    ERIC Educational Resources Information Center

    Lee, Yong-Won; Kantor, Robert

    2007-01-01

    Possible integrated and independent tasks were pilot tested for the writing section of a new generation of the TOEFL[R] (Test of English as a Foreign Language[TM]). This study examines the impact of various rating designs and of the number of tasks and raters on the reliability of writing scores based on integrated and independent tasks from the…

  16. Measuring and Evaluating Trends for Reliability, Integrity, and Continued Success (METRICS) Act

    THOMAS, 111th Congress

    Sen. Brown, Sherrod [D-OH

    2010-04-14

    Senate - 04/14/2010 Read twice and referred to the Committee on Health, Education, Labor, and Pensions. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  17. Towards Integrating Distributed Energy Resources and Storage Devices in Smart Grid.

    PubMed

    Xu, Guobin; Yu, Wei; Griffith, David; Golmie, Nada; Moulema, Paul

    2017-02-01

    Internet of Things (IoT) provides a generic infrastructure for different applications to integrate information communication techniques with physical components to achieve automatic data collection, transmission, exchange, and computation. The smart grid, as one of typical applications supported by IoT, denoted as a re-engineering and a modernization of the traditional power grid, aims to provide reliable, secure, and efficient energy transmission and distribution to consumers. How to effectively integrate distributed (renewable) energy resources and storage devices to satisfy the energy service requirements of users, while minimizing the power generation and transmission cost, remains a highly pressing challenge in the smart grid. To address this challenge and assess the effectiveness of integrating distributed energy resources and storage devices, in this paper we develop a theoretical framework to model and analyze three types of power grid systems: the power grid with only bulk energy generators, the power grid with distributed energy resources, and the power grid with both distributed energy resources and storage devices. Based on the metrics of the power cumulative cost and the service reliability to users, we formally model and analyze the impact of integrating distributed energy resources and storage devices in the power grid. We also use the concept of network calculus, which has been traditionally used for carrying out traffic engineering in computer networks, to derive the bounds of both power supply and user demand to achieve a high service reliability to users. Through an extensive performance evaluation, our data shows that integrating distributed energy resources conjointly with energy storage devices can reduce generation costs, smooth the curve of bulk power generation over time, reduce bulk power generation and power distribution losses, and provide a sustainable service reliability to users in the power grid.

  18. Towards Integrating Distributed Energy Resources and Storage Devices in Smart Grid

    PubMed Central

    Xu, Guobin; Yu, Wei; Griffith, David; Golmie, Nada; Moulema, Paul

    2017-01-01

    Internet of Things (IoT) provides a generic infrastructure for different applications to integrate information communication techniques with physical components to achieve automatic data collection, transmission, exchange, and computation. The smart grid, as one of typical applications supported by IoT, denoted as a re-engineering and a modernization of the traditional power grid, aims to provide reliable, secure, and efficient energy transmission and distribution to consumers. How to effectively integrate distributed (renewable) energy resources and storage devices to satisfy the energy service requirements of users, while minimizing the power generation and transmission cost, remains a highly pressing challenge in the smart grid. To address this challenge and assess the effectiveness of integrating distributed energy resources and storage devices, in this paper we develop a theoretical framework to model and analyze three types of power grid systems: the power grid with only bulk energy generators, the power grid with distributed energy resources, and the power grid with both distributed energy resources and storage devices. Based on the metrics of the power cumulative cost and the service reliability to users, we formally model and analyze the impact of integrating distributed energy resources and storage devices in the power grid. We also use the concept of network calculus, which has been traditionally used for carrying out traffic engineering in computer networks, to derive the bounds of both power supply and user demand to achieve a high service reliability to users. Through an extensive performance evaluation, our data shows that integrating distributed energy resources conjointly with energy storage devices can reduce generation costs, smooth the curve of bulk power generation over time, reduce bulk power generation and power distribution losses, and provide a sustainable service reliability to users in the power grid1. PMID:29354654

  19. Healing of voids in the aluminum metallization of integrated circuit chips

    NASA Technical Reports Server (NTRS)

    Cuddihy, Edward F.; Lawton, Russell A.; Gavin, Thomas R.

    1990-01-01

    The thermal stability of GaAs modulation-doped field effect transistors (MODFETs) is evaluated in order to identify failure mechanisms and validate the reliability of these devices. The transistors were exposed to thermal step-stress and characterized at ambient temperatures to indicate device reliability, especially that of the transistor ohmic contacts with and without molybdenum diffusion barriers. The devices without molybdenum exhibited important transconductance deterioration. MODFETs with molybdenum diffusion barriers were tolerant to temperatures above 300 C. This tolerance indicates that thermally activated failure mechanisms are slow at operational temperatures. Therefore, high-reliability MODFET-based circuits are possible.

  20. Overview of RICOR's reliability theoretical analysis, accelerated life demonstration test results and verification by field data

    NASA Astrophysics Data System (ADS)

    Vainshtein, Igor; Baruch, Shlomi; Regev, Itai; Segal, Victor; Filis, Avishai; Riabzev, Sergey

    2018-05-01

    The growing demand for EO applications that work around the clock 24hr/7days a week, such as in border surveillance systems, emphasizes the need for a highly reliable cryocooler having increased operational availability and optimized system's Integrated Logistic Support (ILS). In order to meet this need, RICOR developed linear and rotary cryocoolers which achieved successfully this goal. Cryocoolers MTTF was analyzed by theoretical reliability evaluation methods, demonstrated by normal and accelerated life tests at Cryocooler level and finally verified by field data analysis derived from Cryocoolers operating at system level. The following paper reviews theoretical reliability analysis methods together with analyzing reliability test results derived from standard and accelerated life demonstration tests performed at Ricor's advanced reliability laboratory. As a summary for the work process, reliability verification data will be presented as a feedback from fielded systems.

  1. The use of test structures for reliability prediction and process control of integrated circuits and photovoltaics

    NASA Astrophysics Data System (ADS)

    Trachtenberg, I.

    How a reliability model might be developed with new data from accelerated stress testing, failure mechanisms, process control monitoring, and test structure evaluations is illustrated. The effects of the acceleration of temperature on operating life is discussed. Test structures that will further accelerate the failure rate are discussed. Corrosion testing is addressed. The uncoated structure is encapsulated in a variety of mold compounds and subjected to pressure-cooker testing.

  2. Use of Model-Based Design Methods for Enhancing Resiliency Analysis of Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Knox, Lenora A.

    The most common traditional non-functional requirement analysis is reliability. With systems becoming more complex, networked, and adaptive to environmental uncertainties, system resiliency has recently become the non-functional requirement analysis of choice. Analysis of system resiliency has challenges; which include, defining resilience for domain areas, identifying resilience metrics, determining resilience modeling strategies, and understanding how to best integrate the concepts of risk and reliability into resiliency. Formal methods that integrate all of these concepts do not currently exist in specific domain areas. Leveraging RAMSoS, a model-based reliability analysis methodology for Systems of Systems (SoS), we propose an extension that accounts for resiliency analysis through evaluation of mission performance, risk, and cost using multi-criteria decision-making (MCDM) modeling and design trade study variability modeling evaluation techniques. This proposed methodology, coined RAMSoS-RESIL, is applied to a case study in the multi-agent unmanned aerial vehicle (UAV) domain to investigate the potential benefits of a mission architecture where functionality to complete a mission is disseminated across multiple UAVs (distributed) opposed to being contained in a single UAV (monolithic). The case study based research demonstrates proof of concept for the proposed model-based technique and provides sufficient preliminary evidence to conclude which architectural design (distributed vs. monolithic) is most resilient based on insight into mission resilience performance, risk, and cost in addition to the traditional analysis of reliability.

  3. [The importance of an early accompanying evaluation of new care forms for the development of indicators for quality assurance in outpatient psychiatric integrated care].

    PubMed

    Hausen, A; Glaeske, G

    2015-05-01

    Aim of this contribution is to illustrate the imp-ortance of an early accompanying evaluation of new care forms for the development of indicators. The illustration uses the experience of the accompanying evaluation of the integrated care model for optimisation of outpatient psychiatric care. For the integrated care model we could develop potential indicators by using medical-psychiatric and insured-related routine data, but all potential indicators need further development to enable reliable statements about achieved quality targets. It is shown that the development of indicators in the outpatient psychiatric integrated care is affected by many different factors such as vague target agreements in the contract and missing contractual agreements for the data. As a result it is illustrated that in this project the evaluation was introduced after implementation of this new form of care and the already established contract and the data management impeded the development of indicators. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Integration of tools for the Design and Assessment of High-Performance, Highly Reliable Computing Systems (DAHPHRS), phase 1

    NASA Technical Reports Server (NTRS)

    Scheper, C.; Baker, R.; Frank, G.; Yalamanchili, S.; Gray, G.

    1992-01-01

    Systems for Space Defense Initiative (SDI) space applications typically require both high performance and very high reliability. These requirements present the systems engineer evaluating such systems with the extremely difficult problem of conducting performance and reliability trade-offs over large design spaces. A controlled development process supported by appropriate automated tools must be used to assure that the system will meet design objectives. This report describes an investigation of methods, tools, and techniques necessary to support performance and reliability modeling for SDI systems development. Models of the JPL Hypercubes, the Encore Multimax, and the C.S. Draper Lab Fault-Tolerant Parallel Processor (FTPP) parallel-computing architectures using candidate SDI weapons-to-target assignment algorithms as workloads were built and analyzed as a means of identifying the necessary system models, how the models interact, and what experiments and analyses should be performed. As a result of this effort, weaknesses in the existing methods and tools were revealed and capabilities that will be required for both individual tools and an integrated toolset were identified.

  5. Gender counts: A systematic review of evaluations of gender-integrated health interventions in low- and middle-income countries.

    PubMed

    Schriver, Brittany; Mandal, Mahua; Muralidharan, Arundati; Nwosu, Anthony; Dayal, Radhika; Das, Madhumita; Fehringer, Jessica

    2017-11-01

    As a result of new global priorities, there is a growing need for high-quality evaluations of gender-integrated health programmes. This systematic review examined 99 peer-reviewed articles on evaluations of gender-integrated (accommodating and transformative) health programmes with regard to their theory of change (ToC), study design, gender integration in data collection, analysis, and gender measures used. Half of the evaluations explicitly described a ToC or conceptual framework (n = 50) that guided strategies for their interventions. Over half (61%) of the evaluations used quantitative methods exclusively; 11% used qualitative methods exclusively; and 28% used mixed methods. Qualitative methods were not commonly detailed. Evaluations of transformative interventions were less likely than those of accommodating interventions to employ randomised control trials. Two-thirds of the reviewed evaluations reported including at least one specific gender-related outcome (n = 18 accommodating, n = 44 transformative). To strengthen evaluations of gender-integrated programmes, we recommend use of ToCs, explicitly including gender in the ToC, use of gender-sensitive measures, mixed-method designs, in-depth descriptions of qualitative methods, and attention to gender-related factors in data collection logistics. We also recommend further research to develop valid and reliable gender measures that are globally relevant.

  6. Integrating Reliability Analysis with a Performance Tool

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Palumbo, Daniel L.; Ulrey, Michael

    1995-01-01

    A large number of commercial simulation tools support performance oriented studies of complex computer and communication systems. Reliability of these systems, when desired, must be obtained by remodeling the system in a different tool. This has obvious drawbacks: (1) substantial extra effort is required to create the reliability model; (2) through modeling error the reliability model may not reflect precisely the same system as the performance model; (3) as the performance model evolves one must continuously reevaluate the validity of assumptions made in that model. In this paper we describe an approach, and a tool that implements this approach, for integrating a reliability analysis engine into a production quality simulation based performance modeling tool, and for modeling within such an integrated tool. The integrated tool allows one to use the same modeling formalisms to conduct both performance and reliability studies. We describe how the reliability analysis engine is integrated into the performance tool, describe the extensions made to the performance tool to support the reliability analysis, and consider the tool's performance.

  7. FIA BioSum: a tool to evaluate financial costs, opportunities and effectiveness of fuel treatments.

    Treesearch

    Jeremy Fried; Glenn Christensen

    2004-01-01

    FIA BioSum, a tool developed by the USDA Forest Services Forest Inventory and Analysis (FIA) Program, generates reliable cost estimates, identifies opportunities and evaluates the effectiveness of fuel treatments in forested landscapes. BioSum is an analytic framework that integrates a suite of widely used computer models with a foundation of attribute-rich,...

  8. Differences in How Mothers and Fathers Monitor Sugar-Sweetened Beverages for Their Young Children (7-12 Years)

    ERIC Educational Resources Information Center

    Branscum, Paul; Housely, Alexandra

    2018-01-01

    The purpose of this study was to evaluate differences between how mothers and fathers monitor their children's sugar-sweetened beverages (SSBs; 7-12 years) using constructs from the integrated behavioral model (IBM). Mothers (n = 167) and fathers (n = 117) completed a valid and reliable survey evaluating the extent that they monitored their…

  9. Bibliometrics as a Performance Measurement Tool for Research Evaluation: The Case of Research Funded by the National Cancer Institute of Canada

    ERIC Educational Resources Information Center

    Campbell, David; Picard-Aitken, Michelle; Cote, Gregoire; Caruso, Julie; Valentim, Rodolfo; Edmonds, Stuart; Williams, Gregory Thomas; Macaluso, Benoit; Robitaille, Jean-Pierre; Bastien, Nicolas; Laframboise, Marie-Claude; Lebeau, Louis-Michel; Mirabel, Philippe; Lariviere, Vincent; Archambault, Eric

    2010-01-01

    As bibliometric indicators are objective, reliable, and cost-effective measures of peer-reviewed research outputs, they are expected to play an increasingly important role in research assessment/management. Recently, a bibliometric approach was developed and integrated within the evaluation framework of research funded by the National Cancer…

  10. Integrated Model to Assess Cloud Deployment Effectiveness When Developing an IT-strategy

    NASA Astrophysics Data System (ADS)

    Razumnikov, S.; Prankevich, D.

    2016-04-01

    Developing an IT-strategy of cloud deployment is a complex issue since even the stage of its formation necessitates revealing what applications will be the best possible to meet the requirements of a company business-strategy, evaluate reliability and safety of cloud providers and analyze staff satisfaction. A system of criteria, as well an integrated model to assess cloud deployment effectiveness is offered. The model makes it possible to identify what applications being at the disposal of a company, as well as new tools to be deployed are reliable and safe enough for implementation in the cloud environment. The data on practical use of the procedure to assess cloud deployment effectiveness by a provider of telecommunication services is presented. The model was used to calculate values of integral indexes of services to be assessed, then, ones, meeting the criteria and answering the business-strategy of a company, were selected.

  11. Intelligent structural health monitoring of vehicular bridges using fiber optic sensors to detect acoustic emission.

    DOT National Transportation Integrated Search

    2011-01-28

    The recent collapse of the I-35W Mississippi River Bridge in Minneapolis has spawned a growing : interest in the development of reliable techniques for evaluating the structural integrity of civil : infrastructure. Current inspection techniques tailo...

  12. Structural Integrity Evaluation of the Lear Fan 2100 Aircraft

    NASA Technical Reports Server (NTRS)

    Kan, H. P.; Dyer, T. A.

    1996-01-01

    An in-situ nondestructive inspection was conducted to detect manufacturing and assembly induced defects in the upper two wing surfaces (skin s) and upper fuselage skin of the Lear Fan 2100 aircraft E009. The effects of the defects, detected during the inspection, on the integrity of the structure was analytically evaluated. A systematic evaluation was also conducted to determine the damage tolerance capability of the upper wing skin against impact threats and assembly induced damage. The upper wing skin was divided into small regions for damage tolerance evaluations. Structural reliability, margin of safety, allowable strains, and allowable damage size were computed. The results indicated that the impact damage threat imposed on composite military aircraft structures is too severe for the Lear Fan 2100 upper wing skin. However, the structural integrity is not significantly degraded by the assembly induced damage for properly assembled structures, such as the E009 aircraft.

  13. Microgrid Controllers : Expanding Their Role and Evaluating Their Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maitra, Arindam; Pratt, Annabelle; Hubert, Tanguy

    Microgrids have long been deployed to provide power to customers in remote areas as well as critical industrial and military loads. Today, they are also being proposed as grid-interactive solutions for energy-resilient communities. Such microgrids will spend most of the time operating while synchronized with the surrounding utility grid but will also be capable of separating during contingency periods due to storms or temporary disturbances such as local grid faults. Properly designed and grid-integrated microgrids can provide the flexibility, reliability, and resiliency needs of both the future grid and critical customers. These systems can be an integral part of futuremore » power system designs that optimize investments to achieve operational goals, improved reliability, and diversification of energy sources.« less

  14. Relevance and reliability of experimental data in human health risk assessment of pesticides.

    PubMed

    Kaltenhäuser, Johanna; Kneuer, Carsten; Marx-Stoelting, Philip; Niemann, Lars; Schubert, Jens; Stein, Bernd; Solecki, Roland

    2017-08-01

    Evaluation of data relevance, reliability and contribution to uncertainty is crucial in regulatory health risk assessment if robust conclusions are to be drawn. Whether a specific study is used as key study, as additional information or not accepted depends in part on the criteria according to which its relevance and reliability are judged. In addition to GLP-compliant regulatory studies following OECD Test Guidelines, data from peer-reviewed scientific literature have to be evaluated in regulatory risk assessment of pesticide active substances. Publications should be taken into account if they are of acceptable relevance and reliability. Their contribution to the overall weight of evidence is influenced by factors including test organism, study design and statistical methods, as well as test item identification, documentation and reporting of results. Various reports make recommendations for improving the quality of risk assessments and different criteria catalogues have been published to support evaluation of data relevance and reliability. Their intention was to guide transparent decision making on the integration of the respective information into the regulatory process. This article describes an approach to assess the relevance and reliability of experimental data from guideline-compliant studies as well as from non-guideline studies published in the scientific literature in the specific context of uncertainty and risk assessment of pesticides. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Integrated HTA-FMEA/FMECA methodology for the evaluation of robotic system in urology and general surgery.

    PubMed

    Frosini, Francesco; Miniati, Roberto; Grillone, Saverio; Dori, Fabrizio; Gentili, Guido Biffi; Belardinelli, Andrea

    2016-11-14

    The following study proposes and tests an integrated methodology involving Health Technology Assessment (HTA) and Failure Modes, Effects and Criticality Analysis (FMECA) for the assessment of specific aspects related to robotic surgery involving safety, process and technology. The integrated methodology consists of the application of specific techniques coming from the HTA joined to the aid of the most typical models from reliability engineering such as FMEA/FMECA. The study has also included in-site data collection and interviews to medical personnel. The total number of robotic procedures included in the analysis was 44: 28 for urology and 16 for general surgery. The main outcomes refer to the comparative evaluation between robotic, laparoscopic and open surgery. Risk analysis and mitigation interventions come from FMECA application. The small sample size available for the study represents an important bias, especially for the clinical outcomes reliability. Despite this, the study seems to confirm the better trend for robotics' surgical times with comparison to the open technique as well as confirming the robotics' clinical benefits in urology. More complex situation is observed for general surgery, where robotics' clinical benefits directly measured are the lowest blood transfusion rate.

  16. Demonstration Advanced Avionics System (DAAS)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The feasibility of developing an integrated avionics system suitable for general aviation was determined. A design of reliable integrated avionics which provides expanded functional capability that significantly enhances the utility and safety of general aviation at a cost commensurate with the general aviation market was developed. The use of a data bus, microprocessors, electronic displays and data entry devices, and improved function capabilities were emphasized. An avionics system capable of evaluating the most critical and promising elements of an integrated system was designed, built and flight tested in a twin engine general aviation aircraft.

  17. Shuttle Upgrade Using 5-Segment Booster (FSB)

    NASA Technical Reports Server (NTRS)

    Sauvageau, Donald R.; Huppi, Hal D.; McCool, A. A. (Technical Monitor)

    2000-01-01

    In support of NASA's continuing effort to improve the over-all safety and reliability of the Shuttle system- a 5-segment booster (FSB) has been identified as an approach to satisfy that overall objective. To assess the feasibility of a 5-segment booster approach, NASA issued a feasibility study contract to evaluate the potential of a 5-segment booster to improve the overall capability of the Shuttle system, especially evaluating the potential to increase the system reliability and safety. In order to effectively evaluate the feasibility of the 5-segment concept, a four-member contractor team was established under the direction of NASA Marshall Space Flight Center (MSFC). MSFC provided the overall program oversight and integration as well as program contractual management. The contractor team consisted of Thiokol, Boeing North American Huntington Beach (BNA), Lockheed Martin Michoud Space Systems (LMMSS) and United Space Alliance (USA) and their subcontractor bd Systems (Control Dynamics Division, Huntsville, AL). United Space Alliance included the former members of United Space Booster Incorporated (USBI) who managed the booster element portion of the current Shuttle solid rocket boosters. Thiokol was responsible for the overall integration and coordination of the contractor team across all of the booster elements. They were also responsible for all of the motor modification evaluations. Boeing North American (BNA) was responsible for all systems integration analyses, generation of loads and environments. and performance and abort mode capabilities. Lockheed Martin Michoud Space Systems (LMMSS) was responsible for evaluating the impacts of any changes to the booster on the external tank (ET), and evaluating any design changes on the external tank necessary to accommodate the FSB. USA. including the former USBI contingent. was responsible for evaluating any modifications to facilities at the launch site as well as any booster component design modifications.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Zhiwen; Eichman, Josh; Kurtz, Jennifer

    This National Renewable Energy Laboratory industry-inspired Laboratory Directed Research and Development project evaluates the feasibility and economics of using fuel cell backup power systems in cell towers to provide grid services (e.g., balancing, ancillary services, demand response). The work is intended to evaluate the integration of thousands of under-utilized, clean, efficient, and reliable fuel cell systems that are already installed in cell towers for potential grid and ancillary services.

  19. A classification system for characterization of physical and non-physical work factors.

    PubMed

    Genaidy, A; Karwowski, W; Succop, P; Kwon, Y G; Alhemoud, A; Goyal, D

    2000-01-01

    A comprehensive evaluation of work-related performance factors is a prerequisite to developing integrated and long-term solutions to workplace performance improvement. This paper describes a work-factor classification system that categorizes the entire domain of workplace factors impacting performance. A questionnaire-based instrument was developed to implement this classification system in industry. Fifty jobs were evaluated in 4 different service and manufacturing companies using the proposed questionnaire-based instrument. The reliability coefficients obtained from the analyzed jobs were considered good (0.589 to 0.862). In general, the physical work factors resulted in higher reliability coefficients (0.847 to 0.862) than non-physical work factors (0.589 to 0.768).

  20. Development of a Nondestructive Evaluation Technique for Degraded Thermal Barrier Coatings Using Microwave

    NASA Astrophysics Data System (ADS)

    Sayar, M.; Ogawa, K.; Shoji, T.

    2008-02-01

    Thermal barrier coatings have been widely used in gas turbine engines in order to protect substrate metal alloy against high temperature and to enhance turbine efficiency. Currently, there are no reliable nondestructive techniques available to monitor TBC integrity over lifetime of the coating. Hence, to detect top coating (TC) and TGO thicknesses, a microwave nondestructive technique that utilizes a rectangular waveguide was developed. The phase of the reflection coefficient at the interface of TC and waveguide varies for different TGO and TC thicknesses. Therefore, measuring the phase of the reflection coefficient enables us to accurately calculate these thicknesses. Finally, a theoretical analysis was used to evaluate the reliability of the experimental results.

  1. Application of Thermo-Mechanical Measurements of Plastic Packages for Reliability Evaluation of PEMS

    NASA Technical Reports Server (NTRS)

    Sharma, Ashok K.; Teverovsky, Alexander

    2004-01-01

    Thermo-mechanical analysis (TMA) is typically employed for measurements of the glass transition temperature (Tg) and coefficients of thermal expansion (CTE) in molding compounds used in plastic encapsulated microcircuits (PEMs). Application of TMA measurements directly to PEMs allows anomalies to be revealed in deformation of packages with temperature, and thus indicates possible reliability concerns related to thermo-mechanical integrity and stability of the devices. In this work, temperature dependencies of package deformation were measured in several types of PEMs that failed environmental stress testing including temperature cycling, highly accelerated stress testing (HAST) in humid environments, and bum-in (BI) testing. Comparison of thermo-mechanical characteristics of packages and molding compounds in the failed parts allowed for explanation of the observed failures. The results indicate that TMA of plastic packages might be used for quality evaluation of PEMs intended for high-reliability applications.

  2. Criteria of Police Officer Performance.

    ERIC Educational Resources Information Center

    Baehr, Melany E.

    The indifferent success in achieving the goal of reliable and valid police officer work performance measures has been attributed to the complexity of the job. This study explored reasons for unsatisfactory police performance evaluation, reviewing and integrating previous studies and new recently collected but not yet published data. Performance…

  3. Smart Sensor Demonstration Payload

    NASA Technical Reports Server (NTRS)

    Schmalzel, John; Bracey, Andrew; Rawls, Stephen; Morris, Jon; Turowski, Mark; Franzl, Richard; Figueroa, Fernando

    2010-01-01

    Sensors are a critical element to any monitoring, control, and evaluation processes such as those needed to support ground based testing for rocket engine test. Sensor applications involve tens to thousands of sensors; their reliable performance is critical to achieving overall system goals. Many figures of merit are used to describe and evaluate sensor characteristics; for example, sensitivity and linearity. In addition, sensor selection must satisfy many trade-offs among system engineering (SE) requirements to best integrate sensors into complex systems [1]. These SE trades include the familiar constraints of power, signal conditioning, cabling, reliability, and mass, and now include considerations such as spectrum allocation and interference for wireless sensors. Our group at NASA s John C. Stennis Space Center (SSC) works in the broad area of integrated systems health management (ISHM). Core ISHM technologies include smart and intelligent sensors, anomaly detection, root cause analysis, prognosis, and interfaces to operators and other system elements [2]. Sensor technologies are the base fabric that feed data and health information to higher layers. Cost-effective operation of the complement of test stands benefits from technologies and methodologies that contribute to reductions in labor costs, improvements in efficiency, reductions in turn-around times, improved reliability, and other measures. ISHM is an active area of development at SSC because it offers the potential to achieve many of those operational goals [3-5].

  4. Coupling long and short term decisions in the design of urban water supply infrastructure for added reliability and flexibility

    NASA Astrophysics Data System (ADS)

    Marques, G.; Fraga, C. C. S.; Medellin-Azuara, J.

    2016-12-01

    The expansion and operation of urban water supply systems under growing demands, hydrologic uncertainty and water scarcity requires a strategic combination of supply sources for reliability, reduced costs and improved operational flexibility. The design and operation of such portfolio of water supply sources involves integration of long and short term planning to determine what and when to expand, and how much to use of each supply source accounting for interest rates, economies of scale and hydrologic variability. This research presents an integrated methodology coupling dynamic programming optimization with quadratic programming to optimize the expansion (long term) and operations (short term) of multiple water supply alternatives. Lagrange Multipliers produced by the short-term model provide a signal about the marginal opportunity cost of expansion to the long-term model, in an iterative procedure. A simulation model hosts the water supply infrastructure and hydrologic conditions. Results allow (a) identification of trade offs between cost and reliability of different expansion paths and water use decisions; (b) evaluation of water transfers between urban supply systems; and (c) evaluation of potential gains by reducing water system losses as a portfolio component. The latter is critical in several developing countries where water supply system losses are high and often neglected in favor of more system expansion.

  5. A probabilisitic based failure model for components fabricated from anisotropic graphite

    NASA Astrophysics Data System (ADS)

    Xiao, Chengfeng

    The nuclear moderator for high temperature nuclear reactors are fabricated from graphite. During reactor operations graphite components are subjected to complex stress states arising from structural loads, thermal gradients, neutron irradiation damage, and seismic events. Graphite is a quasi-brittle material. Two aspects of nuclear grade graphite, i.e., material anisotropy and different behavior in tension and compression, are explicitly accounted for in this effort. Fracture mechanic methods are useful for metal alloys, but they are problematic for anisotropic materials with a microstructure that makes it difficult to identify a "critical" flaw. In fact cracking in a graphite core component does not necessarily result in the loss of integrity of a nuclear graphite core assembly. A phenomenological failure criterion that does not rely on flaw detection has been derived that accounts for the material behaviors mentioned. The probability of failure of components fabricated from graphite is governed by the scatter in strength. The design protocols being proposed by international code agencies recognize that design and analysis of reactor core components must be based upon probabilistic principles. The reliability models proposed herein for isotropic graphite and graphite that can be characterized as being transversely isotropic are another set of design tools for the next generation very high temperature reactors (VHTR) as well as molten salt reactors. The work begins with a review of phenomenologically based deterministic failure criteria. A number of this genre of failure models are compared with recent multiaxial nuclear grade failure data. Aspects in each are shown to be lacking. The basic behavior of different failure strengths in tension and compression is exhibited by failure models derived for concrete, but attempts to extend these concrete models to anisotropy were unsuccessful. The phenomenological models are directly dependent on stress invariants. A set of invariants, known as an integrity basis, was developed for a non-linear elastic constitutive model. This integrity basis allowed the non-linear constitutive model to exhibit different behavior in tension and compression and moreover, the integrity basis was amenable to being augmented and extended to anisotropic behavior. This integrity basis served as the starting point in developing both an isotropic reliability model and a reliability model for transversely isotropic materials. At the heart of the reliability models is a failure function very similar in nature to the yield functions found in classic plasticity theory. The failure function is derived and presented in the context of a multiaxial stress space. States of stress inside the failure envelope denote safe operating states. States of stress on or outside the failure envelope denote failure. The phenomenological strength parameters associated with the failure function are treated as random variables. There is a wealth of failure data in the literature that supports this notion. The mathematical integration of a joint probability density function that is dependent on the random strength variables over the safe operating domain defined by the failure function provides a way to compute the reliability of a state of stress in a graphite core component fabricated from graphite. The evaluation of the integral providing the reliability associated with an operational stress state can only be carried out using a numerical method. Monte Carlo simulation with importance sampling was selected to make these calculations. The derivation of the isotropic reliability model and the extension of the reliability model to anisotropy are provided in full detail. Model parameters are cast in terms of strength parameters that can (and have been) characterized by multiaxial failure tests. Comparisons of model predictions with failure data is made and a brief comparison is made to reliability predictions called for in the ASME Boiler and Pressure Vessel Code. Future work is identified that would provide further verification and augmentation of the numerical methods used to evaluate model predictions.

  6. Validation of the Community Integration Questionnaire in the adult burn injury population.

    PubMed

    Gerrard, Paul; Kazis, Lewis E; Ryan, Colleen M; Shie, Vivian L; Holavanahalli, Radha; Lee, Austin; Jette, Alan; Fauerbach, James A; Esselman, Peter; Herndon, David; Schneider, Jeffrey C

    2015-11-01

    With improved survival, long-term effects of burn injuries on quality of life, particularly community integration, are important outcomes. This study aims to assess the Community Integration Questionnaire's psychometric properties in the adult burn population. Data were obtained from a multicenter longitudinal data set of burn survivors. The psychometric properties of the Community Integration Questionnaire (n = 492) were examined. The questionnaire items were evaluated for clinical and substantive relevance; validation procedures were conducted on different samples of the population; construct validity was assessed using exploratory factor analysis; internal consistency reliability was examined using Cronbach's α statistics; and item response theory was applied to the final models. The CIQ-15 was reduced by two questions to form the CIQ-13, with a two-factor structure, interpreted as self/family care and social integration. Item response theory testing suggests that Factor 2 captures a wider range of community integration levels. Cronbach's α was 0.80 for Factor 1, 0.77 for Factor 2, and 0.79 for the test as a whole. The CIQ-13 demonstrates validity and reliability in the adult burn survivor population addressing issues of self/family care and social integration. This instrument is useful in future research of community reintegration outcomes in the burn population.

  7. Computational toxicology using the OpenTox application programming interface and Bioclipse

    PubMed Central

    2011-01-01

    Background Toxicity is a complex phenomenon involving the potential adverse effect on a range of biological functions. Predicting toxicity involves using a combination of experimental data (endpoints) and computational methods to generate a set of predictive models. Such models rely strongly on being able to integrate information from many sources. The required integration of biological and chemical information sources requires, however, a common language to express our knowledge ontologically, and interoperating services to build reliable predictive toxicology applications. Findings This article describes progress in extending the integrative bio- and cheminformatics platform Bioclipse to interoperate with OpenTox, a semantic web framework which supports open data exchange and toxicology model building. The Bioclipse workbench environment enables functionality from OpenTox web services and easy access to OpenTox resources for evaluating toxicity properties of query molecules. Relevant cases and interfaces based on ten neurotoxins are described to demonstrate the capabilities provided to the user. The integration takes advantage of semantic web technologies, thereby providing an open and simplifying communication standard. Additionally, the use of ontologies ensures proper interoperation and reliable integration of toxicity information from both experimental and computational sources. Conclusions A novel computational toxicity assessment platform was generated from integration of two open science platforms related to toxicology: Bioclipse, that combines a rich scriptable and graphical workbench environment for integration of diverse sets of information sources, and OpenTox, a platform for interoperable toxicology data and computational services. The combination provides improved reliability and operability for handling large data sets by the use of the Open Standards from the OpenTox Application Programming Interface. This enables simultaneous access to a variety of distributed predictive toxicology databases, and algorithm and model resources, taking advantage of the Bioclipse workbench handling the technical layers. PMID:22075173

  8. 49 CFR 195.452 - Pipeline integrity management in high consequence areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... engineering evaluation and provides an equivalent level of public safety and environmental protection. (c... situations—(i) Engineering basis. An operator may be able to justify an engineering basis for a longer assessment interval on a segment of line pipe. The justification must be supported by a reliable engineering...

  9. Modeling erosion in a southern New Mexico watershed using agwa: Sensitivity to variations of input precision and scale

    USDA-ARS?s Scientific Manuscript database

    Rangeland environments are particularly susceptible to erosion due to extreme rainfall events and low vegetation cover. Landowners and managers need access to reliable erosion evaluation methods in order to protect productivity and hydrologic integrity of their rangelands and make resource allocati...

  10. Generalized approach for identification and evaluation of technology-insertion options for military avionics systems

    NASA Astrophysics Data System (ADS)

    Harkness, Linda L.; Sjoberg, Eric S.

    1996-06-01

    The Georgia Tech Research Institute, sponsored by the Warner Robins Air Logistics Center, has developed an approach for efficiently postulating and evaluating methods for extending the life of radars and other avionics systems. The technique identified specific assemblies for potential replacement and evaluates the system level impact, including performance, reliability and life-cycle cost of each action. The initial impetus for this research was the increasing obsolescence of integrated circuits contained in the AN/APG-63 system. The operational life of military electronics is typically in excess of twenty years, which encompasses several generations of IC technology. GTRI has developed a systems approach to inserting modern technology components into older systems based upon identification of those functions which limit the system's performance or reliability and which are cost drivers. The presentation will discuss the above methodology and a technique for evaluating and ranking the different potential system upgrade options.

  11. HiRel - Reliability/availability integrated workstation tool

    NASA Technical Reports Server (NTRS)

    Bavuso, Salvatore J.; Dugan, Joanne B.

    1992-01-01

    The HiRel software tool is described and demonstrated by application to the mission avionics subsystem of the Advanced System Integration Demonstrations (ASID) system that utilizes the PAVE PILLAR approach. HiRel marks another accomplishment toward the goal of producing a totally integrated computer-aided design (CAD) workstation design capability. Since a reliability engineer generally represents a reliability model graphically before it can be solved, the use of a graphical input description language increases productivity and decreases the incidence of error. The graphical postprocessor module HARPO makes it possible for reliability engineers to quickly analyze huge amounts of reliability/availability data to observe trends due to exploratory design changes. The addition of several powerful HARP modeling engines provides the user with a reliability/availability modeling capability for a wide range of system applications all integrated under a common interactive graphical input-output capability.

  12. Addressing Uniqueness and Unison of Reliability and Safety for a Better Integration

    NASA Technical Reports Server (NTRS)

    Huang, Zhaofeng; Safie, Fayssal

    2016-01-01

    Over time, it has been observed that Safety and Reliability have not been clearly differentiated, which leads to confusion, inefficiency, and, sometimes, counter-productive practices in executing each of these two disciplines. It is imperative to address this situation to help Reliability and Safety disciplines improve their effectiveness and efficiency. The paper poses an important question to address, "Safety and Reliability - Are they unique or unisonous?" To answer the question, the paper reviewed several most commonly used analyses from each of the disciplines, namely, FMEA, reliability allocation and prediction, reliability design involvement, system safety hazard analysis, Fault Tree Analysis, and Probabilistic Risk Assessment. The paper pointed out uniqueness and unison of Safety and Reliability in their respective roles, requirements, approaches, and tools, and presented some suggestions for enhancing and improving the individual disciplines, as well as promoting the integration of the two. The paper concludes that Safety and Reliability are unique, but compensating each other in many aspects, and need to be integrated. Particularly, the individual roles of Safety and Reliability need to be differentiated, that is, Safety is to ensure and assure the product meets safety requirements, goals, or desires, and Reliability is to ensure and assure maximum achievability of intended design functions. With the integration of Safety and Reliability, personnel can be shared, tools and analyses have to be integrated, and skill sets can be possessed by the same person with the purpose of providing the best value to a product development.

  13. Study on Distribution Reliability with Parallel and On-site Distributed Generation Considering Protection Miscoordination and Tie Line

    NASA Astrophysics Data System (ADS)

    Chaitusaney, Surachai; Yokoyama, Akihiko

    In distribution system, Distributed Generation (DG) is expected to improve the system reliability as its backup generation. However, DG contribution in fault current may cause the loss of the existing protection coordination, e.g. recloser-fuse coordination and breaker-breaker coordination. This problem can drastically deteriorate the system reliability, and it is more serious and complicated when there are several DG sources in the system. Hence, the above conflict in reliability aspect unavoidably needs a detailed investigation before the installation or enhancement of DG is done. The model of composite DG fault current is proposed to find the threshold beyond which existing protection coordination is lost. Cases of protection miscoordination are described, together with their consequences. Since a distribution system may be tied with another system, the issues of tie line and on-site DG are integrated into this study. Reliability indices are evaluated and compared in the distribution reliability test system RBTS Bus 2.

  14. Composing, Analyzing and Validating Software Models

    NASA Astrophysics Data System (ADS)

    Sheldon, Frederick T.

    1998-10-01

    This research has been conducted at the Computational Sciences Division of the Information Sciences Directorate at Ames Research Center (Automated Software Engineering Grp). The principle work this summer has been to review and refine the agenda that were carried forward from last summer. Formal specifications provide good support for designing a functionally correct system, however they are weak at incorporating non-functional performance requirements (like reliability). Techniques which utilize stochastic Petri nets (SPNs) are good for evaluating the performance and reliability for a system, but they may be too abstract and cumbersome from the stand point of specifying and evaluating functional behavior. Therefore, one major objective of this research is to provide an integrated approach to assist the user in specifying both functionality (qualitative: mutual exclusion and synchronization) and performance requirements (quantitative: reliability and execution deadlines). In this way, the merits of a powerful modeling technique for performability analysis (using SPNs) can be combined with a well-defined formal specification language. In doing so, we can come closer to providing a formal approach to designing a functionally correct system that meets reliability and performance goals.

  15. Composing, Analyzing and Validating Software Models

    NASA Technical Reports Server (NTRS)

    Sheldon, Frederick T.

    1998-01-01

    This research has been conducted at the Computational Sciences Division of the Information Sciences Directorate at Ames Research Center (Automated Software Engineering Grp). The principle work this summer has been to review and refine the agenda that were carried forward from last summer. Formal specifications provide good support for designing a functionally correct system, however they are weak at incorporating non-functional performance requirements (like reliability). Techniques which utilize stochastic Petri nets (SPNs) are good for evaluating the performance and reliability for a system, but they may be too abstract and cumbersome from the stand point of specifying and evaluating functional behavior. Therefore, one major objective of this research is to provide an integrated approach to assist the user in specifying both functionality (qualitative: mutual exclusion and synchronization) and performance requirements (quantitative: reliability and execution deadlines). In this way, the merits of a powerful modeling technique for performability analysis (using SPNs) can be combined with a well-defined formal specification language. In doing so, we can come closer to providing a formal approach to designing a functionally correct system that meets reliability and performance goals.

  16. Reliability history of the Apollo guidance computer

    NASA Technical Reports Server (NTRS)

    Hall, E. C.

    1972-01-01

    The Apollo guidance computer was designed to provide the computation necessary for guidance, navigation and control of the command module and the lunar landing module of the Apollo spacecraft. The computer was designed using the technology of the early 1960's and the production was completed by 1969. During the development, production, and operational phase of the program, the computer has accumulated a very interesting history which is valuable for evaluating the technology, production methods, system integration, and the reliability of the hardware. The operational experience in the Apollo guidance systems includes 17 computers which flew missions and another 26 flight type computers which are still in various phases of prelaunch activity including storage, system checkout, prelaunch spacecraft checkout, etc. These computers were manufactured and maintained under very strict quality control procedures with requirements for reporting and analyzing all indications of failure. Probably no other computer or electronic equipment with equivalent complexity has been as well documented and monitored. Since it has demonstrated a unique reliability history, it is important to evaluate the techniques and methods which have contributed to the high reliability of this computer.

  17. Investigation of low cost, high reliability sealing techniques for hybrid microcircuits, phase 1

    NASA Technical Reports Server (NTRS)

    Perkins, K. L.; Licari, J. J.

    1976-01-01

    A preliminary investigation was made to determine the feasibility of using adhesive package sealing for hybrid microcircuits. Major effort consisted of: (1) surveying representative hybrid manufacturers to assess the current use of adhesives for package sealing; (2) making a cost comparison of metallurgical versus adhesive package sealing; (3) determining the seal integrity of gold plated flatpack type packages sealed with selected adhesives, thermal shock, temperature cycling, mechanical shock, and constant acceleration test environments; and (4) defining a more comprehensive study to continue the evaluation of adhesives for package sealing. Results showed that 1.27 cm square gold plated flatpack type packages sealed with the film adhesives and the paste adhesive retained their seal integrity after all tests, and that similarly prepared 2.54 cm square packages retained their seal integrity after all tests except the 10,000 g's constant acceleration test. It is concluded that these results are encouraging, but by no means sufficient to establish the suitability of adhesives for sealing high reliability hybrid microcircuits.

  18. Tightly coupled integration of ionosphere-constrained precise point positioning and inertial navigation systems.

    PubMed

    Gao, Zhouzheng; Zhang, Hongping; Ge, Maorong; Niu, Xiaoji; Shen, Wenbin; Wickert, Jens; Schuh, Harald

    2015-03-10

    The continuity and reliability of precise GNSS positioning can be seriously limited by severe user observation environments. The Inertial Navigation System (INS) can overcome such drawbacks, but its performance is clearly restricted by INS sensor errors over time. Accordingly, the tightly coupled integration of GPS and INS can overcome the disadvantages of each individual system and together form a new navigation system with a higher accuracy, reliability and availability. Recently, ionosphere-constrained (IC) precise point positioning (PPP) utilizing raw GPS observations was proven able to improve both the convergence and positioning accuracy of the conventional PPP using ionosphere-free combined observations (LC-PPP). In this paper, a new mode of tightly coupled integration, in which the IC-PPP instead of LC-PPP is employed, is implemented to further improve the performance of the coupled system. We present the detailed mathematical model and the related algorithm of the new integration of IC-PPP and INS. To evaluate the performance of the new tightly coupled integration, data of both airborne and vehicle experiments with a geodetic GPS receiver and tactical grade inertial measurement unit are processed and the results are analyzed. The statistics show that the new approach can further improve the positioning accuracy compared with both IC-PPP and the tightly coupled integration of the conventional PPP and INS.

  19. How to measure ecosystem stability? An evaluation of the reliability of stability metrics based on remote sensing time series across the major global ecosystems.

    PubMed

    De Keersmaecker, Wanda; Lhermitte, Stef; Honnay, Olivier; Farifteh, Jamshid; Somers, Ben; Coppin, Pol

    2014-07-01

    Increasing frequency of extreme climate events is likely to impose increased stress on ecosystems and to jeopardize the services that ecosystems provide. Therefore, it is of major importance to assess the effects of extreme climate events on the temporal stability (i.e., the resistance, the resilience, and the variance) of ecosystem properties. Most time series of ecosystem properties are, however, affected by varying data characteristics, uncertainties, and noise, which complicate the comparison of ecosystem stability metrics (ESMs) between locations. Therefore, there is a strong need for a more comprehensive understanding regarding the reliability of stability metrics and how they can be used to compare ecosystem stability globally. The objective of this study was to evaluate the performance of temporal ESMs based on time series of the Moderate Resolution Imaging Spectroradiometer derived Normalized Difference Vegetation Index of 15 global land-cover types. We provide a framework (i) to assess the reliability of ESMs in function of data characteristics, uncertainties and noise and (ii) to integrate reliability estimates in future global ecosystem stability studies against climate disturbances. The performance of our framework was tested through (i) a global ecosystem comparison and (ii) an comparison of ecosystem stability in response to the 2003 drought. The results show the influence of data quality on the accuracy of ecosystem stability. White noise, biased noise, and trends have a stronger effect on the accuracy of stability metrics than the length of the time series, temporal resolution, or amount of missing values. Moreover, we demonstrate the importance of integrating reliability estimates to interpret stability metrics within confidence limits. Based on these confidence limits, other studies dealing with specific ecosystem types or locations can be put into context, and a more reliable assessment of ecosystem stability against environmental disturbances can be obtained. © 2013 John Wiley & Sons Ltd.

  20. Quantitative nondestructive evaluation: Requirements for tomorrow's reliability

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.

    1991-01-01

    Quantitative Nondestructive Evaluation (QNDE) is the technology of measurement, analysis, and prediction of the state of material/structural systems for safety, reliability, and mission assurance. QNDE has impact on everyday life from the cars we drive, the planes we fly, the buildings we work or live in, literally to the infrastructure of our world. Here, researchers highlight some of the new sciences and technologies that are part of a safer, cost effective tomorrow. Specific technologies that are discussed are thermal QNDE of aircraft structural integrity, ultrasonic QNDE for materials characterization, and technology spinoffs from aerospace to the medical sector. In each case, examples are given of how new requirements result in enabling measurement technologies, which in turn change the boundaries of design/practice.

  1. Monolithic microwave integrated circuits: Interconnections and packaging considerations

    NASA Astrophysics Data System (ADS)

    Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.

    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.

  2. Study of SEM induced current and voltage contrast modes to assess semiconductor reliability

    NASA Technical Reports Server (NTRS)

    Beall, J. R.

    1976-01-01

    The purpose of the scanning electron microscopy study was to review the failure history of existing integrated circuit technologies to identify predominant failure mechanisms, and to evaluate the feasibility of their detection using SEM application techniques. The study investigated the effects of E-beam irradiation damage and contamination deposition rates; developed the necessary methods for applying the techniques to the detection of latent defects and weaknesses in integrated circuits; and made recommendations for applying the techniques.

  3. Monolithic microwave integrated circuits: Interconnections and packaging considerations

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.

    1984-01-01

    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.

  4. HiRel: Hybrid Automated Reliability Predictor (HARP) integrated reliability tool system, (version 7.0). Volume 1: HARP introduction and user's guide

    NASA Technical Reports Server (NTRS)

    Bavuso, Salvatore J.; Rothmann, Elizabeth; Dugan, Joanne Bechta; Trivedi, Kishor S.; Mittal, Nitin; Boyd, Mark A.; Geist, Robert M.; Smotherman, Mark D.

    1994-01-01

    The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. HiRel consists of interactive graphical input/output programs and four reliability/availability modeling engines that provide analytical and simulative solutions to a wide host of reliable fault-tolerant system architectures and is also applicable to electronic systems in general. The tool system was designed to be compatible with most computing platforms and operating systems, and some programs have been beta tested, within the aerospace community for over 8 years. Volume 1 provides an introduction to the HARP program. Comprehensive information on HARP mathematical models can be found in the references.

  5. Reliability of Beam Loss Monitors System for the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2004-11-01

    The employment of superconducting magnets in high energy colliders opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particle losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data have been processed by reliability software (Isograph). The analysis ranges from the components data to the system configuration.

  6. [Reconsidering evaluation criteria regarding health care research: toward an integrative framework of quantitative and qualitative criteria].

    PubMed

    Miyata, Hiroaki; Kai, Ichiro

    2006-05-01

    Debate about the relationship between quantitative and qualitative paradigms is often muddled and confused and the clutter of terms and arguments has resulted in the concepts becoming obscure and unrecognizable. It is therefore very important to reconsider evaluation criteria regarding rigor in social science. As Lincoln & Guba have already compared quantitative paradigms (validity, reliability, neutrality, generalizability) with qualitative paradigms (credibility, dependability, confirmability, transferability), we have discuss use of evaluation criteria based on pragmatic perspective. Validity/Credibility is the paradigm concerned to observational framework, while Reliability/Dependability refer to the range of stability in observations, Neutrality/Confirmability reflect influences between observers and subjects, Generalizability/Transferability have epistemological difference in the way findings are applied. Qualitative studies, however, does not always chose the qualitative paradigms. If we assume the stability to some extent, it is better to use the quantitative paradigm (reliability). Moreover as a quantitative study can not always guarantee a perfect observational framework, with stability in all phases of observations, it is useful to use qualitative paradigms to enhance the rigor in the study.

  7. Reliability Centered Maintenance - Methodologies

    NASA Technical Reports Server (NTRS)

    Kammerer, Catherine C.

    2009-01-01

    Journal article about Reliability Centered Maintenance (RCM) methodologies used by United Space Alliance, LLC (USA) in support of the Space Shuttle Program at Kennedy Space Center. The USA Reliability Centered Maintenance program differs from traditional RCM programs because various methodologies are utilized to take advantage of their respective strengths for each application. Based on operational experience, USA has customized the traditional RCM methodology into a streamlined lean logic path and has implemented the use of statistical tools to drive the process. USA RCM has integrated many of the L6S tools into both RCM methodologies. The tools utilized in the Measure, Analyze, and Improve phases of a Lean Six Sigma project lend themselves to application in the RCM process. All USA RCM methodologies meet the requirements defined in SAE JA 1011, Evaluation Criteria for Reliability-Centered Maintenance (RCM) Processes. The proposed article explores these methodologies.

  8. NASA Applications and Lessons Learned in Reliability Engineering

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Fuller, Raymond P.

    2011-01-01

    Since the Shuttle Challenger accident in 1986, communities across NASA have been developing and extensively using quantitative reliability and risk assessment methods in their decision making process. This paper discusses several reliability engineering applications that NASA has used over the year to support the design, development, and operation of critical space flight hardware. Specifically, the paper discusses several reliability engineering applications used by NASA in areas such as risk management, inspection policies, components upgrades, reliability growth, integrated failure analysis, and physics based probabilistic engineering analysis. In each of these areas, the paper provides a brief discussion of a case study to demonstrate the value added and the criticality of reliability engineering in supporting NASA project and program decisions to fly safely. Examples of these case studies discussed are reliability based life limit extension of Shuttle Space Main Engine (SSME) hardware, Reliability based inspection policies for Auxiliary Power Unit (APU) turbine disc, probabilistic structural engineering analysis for reliability prediction of the SSME alternate turbo-pump development, impact of ET foam reliability on the Space Shuttle System risk, and reliability based Space Shuttle upgrade for safety. Special attention is given in this paper to the physics based probabilistic engineering analysis applications and their critical role in evaluating the reliability of NASA development hardware including their potential use in a research and technology development environment.

  9. New approach to weight-of-evidence assessment of ecotoxicological effects in regulatory decision-making.

    PubMed

    Hall, A Tilghman; Belanger, Scott E; Guiney, Pat D; Galay-Burgos, Malyka; Maack, Gerd; Stubblefield, William; Martin, Olwenn

    2017-07-01

    Ecological risk assessments and risk management decisions are only as sound as the underlying information and processes to integrate them. It is important to develop transparent and reproducible procedures a priori to integrate often-heterogeneous evidence. Current weight-of-evidence (WoE) approaches for effects or hazard assessment tend to conflate aspects of the assessment of the quality of the data with the strength of the body of evidence as a whole. We take forward recent developments in the critical appraisal of the reliability and relevance of individual ecotoxicological studies as part of the effect or hazard assessment of prospective risk assessments and propose a streamlined WoE approach. The aim is to avoid overlap and double accounting of criteria used in reliability and relevance with that used in current WoE methods. The protection goals, problem formulation, and evaluation process need to be clarified at the outset. The data are first integrated according to lines of evidence (LoEs), typically mechanistic insights (e.g., cellular, subcellular, genomic), in vivo experiments, and higher-tiered field or observational studies. Data are then plotted on the basis of both relevance and reliability scores or categories. This graphical approach provides a means to visually assess and communicate the credibility (reliability and relevance of available individual studies), quantity, diversity, and consistency of the evidence. In addition, the external coherence of the body of evidence needs to be considered. The final step in the process is to derive an expression of the confidence in the conclusions of integrating the information considering these 5 aspects in the context of remaining uncertainties. We suggest that this streamlined approach to WoE for the effects or hazard characterization should facilitate reproducible and transparent assessments of data across different regulatory requirements. Integr Environ Assess Manag 2017;13:573-579. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  10. The spatial reliability of task-irrelevant sounds modulates bimodal audiovisual integration: An event-related potential study.

    PubMed

    Li, Qi; Yu, Hongtao; Wu, Yan; Gao, Ning

    2016-08-26

    The integration of multiple sensory inputs is essential for perception of the external world. The spatial factor is a fundamental property of multisensory audiovisual integration. Previous studies of the spatial constraints on bimodal audiovisual integration have mainly focused on the spatial congruity of audiovisual information. However, the effect of spatial reliability within audiovisual information on bimodal audiovisual integration remains unclear. In this study, we used event-related potentials (ERPs) to examine the effect of spatial reliability of task-irrelevant sounds on audiovisual integration. Three relevant ERP components emerged: the first at 140-200ms over a wide central area, the second at 280-320ms over the fronto-central area, and a third at 380-440ms over the parieto-occipital area. Our results demonstrate that ERP amplitudes elicited by audiovisual stimuli with reliable spatial relationships are larger than those elicited by stimuli with inconsistent spatial relationships. In addition, we hypothesized that spatial reliability within an audiovisual stimulus enhances feedback projections to the primary visual cortex from multisensory integration regions. Overall, our findings suggest that the spatial linking of visual and auditory information depends on spatial reliability within an audiovisual stimulus and occurs at a relatively late stage of processing. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Train integrity detection risk analysis based on PRISM

    NASA Astrophysics Data System (ADS)

    Wen, Yuan

    2018-04-01

    GNSS based Train Integrity Monitoring System (TIMS) is an effective and low-cost detection scheme for train integrity detection. However, as an external auxiliary system of CTCS, GNSS may be influenced by external environments, such as uncertainty of wireless communication channels, which may lead to the failure of communication and positioning. In order to guarantee the reliability and safety of train operation, a risk analysis method of train integrity detection based on PRISM is proposed in this article. First, we analyze the risk factors (in GNSS communication process and the on-board communication process) and model them. Then, we evaluate the performance of the model in PRISM based on the field data. Finally, we discuss how these risk factors influence the train integrity detection process.

  12. The Development of an Instrument to Measure the Project Competences of College Students in Online Project-Based Learning

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Liang

    2018-02-01

    This study sought to develop a self-report instrument to be used in the assessment of the project competences of college students engaged in online project-based learning. Three scales of the KIPSSE instrument developed for this study, namely, the knowledge integration, project skills, and self-efficacy scales, were based on related theories and the analysis results of three project advisor interviews. Those items of knowledge integration and project skill scales focused on the integration of different disciplines and technological skills separately. Two samples of data were collected from information technology-related courses taught with an online project-based learning strategy over different semesters at a college in southern Taiwan. The validity and reliability of the KIPSSE instrument were confirmed through item analysis and confirmatory factor analysis using structural equation modeling of two samples of students' online response sets separately. The Cronbach's alpha reliability coefficient for the entire instrument was 0.931; for each scale, the alpha ranged from 0.832 to 0.907. There was also a significant correlation ( r = 0.55, p < 0.01) between the KIPSSE instrument results and the students' product evaluation scores. The findings of this study confirmed the validity and reliability of the KIPSSE instrument. The confirmation process and related implications are also discussed.

  13. Advanced Stirling Convertor Heater Head Durability and Reliability Quantification

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Shah, Ashwin R.; Korovaichuk, Igor; Kalluri, Sreeramesh

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has identified the high efficiency Advanced Stirling Radioisotope Generator (ASRG) as a candidate power source for long duration Science missions, such as lunar applications, Mars rovers, and deep space missions, that require reliable design lifetimes of up to 17 years. Resistance to creep deformation of the MarM-247 heater head (HH), a structurally critical component of the ASRG Advanced Stirling Convertor (ASC), under high temperatures (up to 850 C) is a key design driver for durability. Inherent uncertainties in the creep behavior of the thin-walled HH and the variations in the wall thickness, control temperature, and working gas pressure need to be accounted for in the life and reliability prediction. Due to the availability of very limited test data, assuring life and reliability of the HH is a challenging task. The NASA Glenn Research Center (GRC) has adopted an integrated approach combining available uniaxial MarM-247 material behavior testing, HH benchmark testing and advanced analysis in order to demonstrate the integrity, life and reliability of the HH under expected mission conditions. The proposed paper describes analytical aspects of the deterministic and probabilistic approaches and results. The deterministic approach involves development of the creep constitutive model for the MarM-247 (akin to the Oak Ridge National Laboratory master curve model used previously for Inconel 718 (Special Metals Corporation)) and nonlinear finite element analysis to predict the mean life. The probabilistic approach includes evaluation of the effect of design variable uncertainties in material creep behavior, geometry and operating conditions on life and reliability for the expected life. The sensitivity of the uncertainties in the design variables on the HH reliability is also quantified, and guidelines to improve reliability are discussed.

  14. An Evaluation of Integrated Curriculum as It Exists in Mathematics and Science SSS as Well as the Subsequent Supportive Presentation of Those Standards in Eighth Grade Mathematics and Science Textbooks

    ERIC Educational Resources Information Center

    Gill, Clara Joanne Schneberger

    2010-01-01

    This study attempted to verify points of intersection (POIs) between mathematics and science in the eighth grade Sunshine State Standards (SSS), and to develop a valid and reliable instrument to evaluate these POIs as they were presented in the respective mathematics and science textbooks approved for use in Florida public schools. Shannon and…

  15. Psychometric Properties of Scores from the Web-based LibQUAL+ Study of Perceptions of Library Service Quality.

    ERIC Educational Resources Information Center

    Cook, Colleen; Thompson, Bruce

    2001-01-01

    Investigated the psychometric integrity of scores from the LibQUAL+ evaluation of perceived library service quality conducted by ARL (Association of Research Libraries). Examines score structure, score reliability, score correlation and concurrent validity coefficients, scale means, and scale standardized norms, and considers the potential of the…

  16. Using generalizability analysis to estimate parameters for anatomy assessments: A multi-institutional study.

    PubMed

    Byram, Jessica N; Seifert, Mark F; Brooks, William S; Fraser-Cotlin, Laura; Thorp, Laura E; Williams, James M; Wilson, Adam B

    2017-03-01

    With integrated curricula and multidisciplinary assessments becoming more prevalent in medical education, there is a continued need for educational research to explore the advantages, consequences, and challenges of integration practices. This retrospective analysis investigated the number of items needed to reliably assess anatomical knowledge in the context of gross anatomy and histology. A generalizability analysis was conducted on gross anatomy and histology written and practical examination items that were administered in a discipline-based format at Indiana University School of Medicine and in an integrated fashion at the University of Alabama School of Medicine and Rush University Medical College. Examination items were analyzed using a partially nested design s×(i:o) in which items were nested within occasions (i:o) and crossed with students (s). A reliability standard of 0.80 was used to determine the minimum number of items needed across examinations (occasions) to make reliable and informed decisions about students' competence in anatomical knowledge. Decision study plots are presented to demonstrate how the number of items per examination influences the reliability of each administered assessment. Using the example of a curriculum that assesses gross anatomy knowledge over five summative written and practical examinations, the results of the decision study estimated that 30 and 25 items would be needed on each written and practical examination to reach a reliability of 0.80, respectively. This study is particularly relevant to educators who may question whether the amount of anatomy content assessed in multidisciplinary evaluations is sufficient for making judgments about the anatomical aptitude of students. Anat Sci Educ 10: 109-119. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  17. GPS/Optical/Inertial Integration for 3D Navigation Using Multi-Copter Platforms

    NASA Technical Reports Server (NTRS)

    Dill, Evan T.; Young, Steven D.; Uijt De Haag, Maarten

    2017-01-01

    In concert with the continued advancement of a UAS traffic management system (UTM), the proposed uses of autonomous unmanned aerial systems (UAS) have become more prevalent in both the public and private sectors. To facilitate this anticipated growth, a reliable three-dimensional (3D) positioning, navigation, and mapping (PNM) capability will be required to enable operation of these platforms in challenging environments where global navigation satellite systems (GNSS) may not be available continuously. Especially, when the platform's mission requires maneuvering through different and difficult environments like outdoor opensky, outdoor under foliage, outdoor-urban and indoor, and may include transitions between these environments. There may not be a single method to solve the PNM problem for all environments. The research presented in this paper is a subset of a broader research effort, described in [1]. The research is focused on combining data from dissimilar sensor technologies to create an integrated navigation and mapping method that can enable reliable operation in both an outdoor and structured indoor environment. The integrated navigation and mapping design is utilizes a Global Positioning System (GPS) receiver, an Inertial Measurement Unit (IMU), a monocular digital camera, and three short to medium range laser scanners. This paper describes specifically the techniques necessary to effectively integrate the monocular camera data within the established mechanization. To evaluate the developed algorithms a hexacopter was built, equipped with the discussed sensors, and both hand-carried and flown through representative environments. This paper highlights the effect that the monocular camera has on the aforementioned sensor integration scheme's reliability, accuracy and availability.

  18. Evaluation in undergraduate medical education: Conceptualizing and validating a novel questionnaire for assessing the quality of bedside teaching.

    PubMed

    Dreiling, Katharina; Montano, Diego; Poinstingl, Herbert; Müller, Tjark; Schiekirka-Schwake, Sarah; Anders, Sven; von Steinbüchel, Nicole; Raupach, Tobias

    2017-08-01

    Evaluation is an integral part of curriculum development in medical education. Given the peculiarities of bedside teaching, specific evaluation tools for this instructional format are needed. Development of these tools should be informed by appropriate frameworks. The purpose of this study was to develop a specific evaluation tool for bedside teaching based on the Stanford Faculty Development Program's clinical teaching framework. Based on a literature review yielding 47 evaluation items, an 18-item questionnaire was compiled and subsequently completed by undergraduate medical students at two German universities. Reliability and validity were assessed in an exploratory full information item factor analysis (study one) and a confirmatory factor analysis as well as a measurement invariance analysis (study two). The exploratory analysis involving 824 students revealed a three-factor structure. Reliability estimates of the subscales were satisfactory (α = 0.71-0.84). The model yielded satisfactory fit indices in the confirmatory factor analysis involving 1043 students. The new questionnaire is short and yet based on a widely-used framework for clinical teaching. The analyses presented here indicate good reliability and validity of the instrument. Future research needs to investigate whether feedback generated from this tool helps to improve teaching quality and student learning outcome.

  19. Evaluation of advanced microelectronics for inclusion in MIL-STD-975

    NASA Technical Reports Server (NTRS)

    Scott, W. Richard

    1991-01-01

    The approach taken by NASA and JPL (Jet Propulsion Laboratory) in the development of a MIL-STD-975 section which contains advanced technology such as Large Scale Integration and Very Large Scale Integration (LSI/VLSI) microelectronic devices is described. The parts listed in this section are recommended as satisfactory for NASA flight applications, in the absence of alternate qualified devices, based on satisfactory results of a vendor capability audit, the availability of sufficient characterization and reliability data from the manufacturers and users and negotiated detail procurement specifications. The criteria used in the selection and evaluation of the vendors and candidate parts, the preparation of procurement specifications, and the status of this activity are discussed.

  20. Reliability and precision of stress sonography of the ulnar collateral ligament.

    PubMed

    Bica, David; Armen, Joseph; Kulas, Anthony S; Youngs, Kevin; Womack, Zachary

    2015-03-01

    Musculoskeletal sonography has emerged as an additional diagnostic tool that can be used to assess medial elbow pain and laxity in overhead throwers. It provides a dynamic, rapid, and noninvasive modality in the evaluation of ligamentous structural integrity. Many studies have demonstrated the utility of dynamic sonography for medial elbow and ulnar collateral ligament (UCL) integrity. However, evaluating the reliabilityand precision of these measurements is critical if sonography is ultimately used as a clinical diagnostic tool. The purpose of this study was to evaluate the reliability and precision of stress sonography applied to the medial elbow. We conducted a cross-sectional study during the 2011 baseball off-season. Eighteen National Collegiate Athletic Association Division I pitchers were enrolled, and 36 elbows were studied. Using sonography, the medial elbow was assessed, and measurements of the UCL length and ulnohumeral joint gapping were performed twice under two conditions (unloaded and loaded) and bilaterally. Intraclass correlation coefficients (0.72-0.94) and standard errors of measurements (0.3-0.9 mm) for UCL length and ulnohumeral joint gapping were good to excellent. Mean differences between unloaded and loaded conditions for the dominant arms were 1.3 mm (gapping; P < .001) and 1.4 mm (UCL length; P < .001). Medial elbow stress sonography is a reliable and precise method for detecting changes in ulnohumeral joint gapping and UCL lengthening. Ultimately, this method may provide clinicians valuable information regarding the medial elbow's response to valgus loading and may help guide treatment options. © 2015 by the American Institute of Ultrasound in Medicine.

  1. HiRel: Hybrid Automated Reliability Predictor (HARP) integrated reliability tool system, (version 7.0). Volume 2: HARP tutorial

    NASA Technical Reports Server (NTRS)

    Rothmann, Elizabeth; Dugan, Joanne Bechta; Trivedi, Kishor S.; Mittal, Nitin; Bavuso, Salvatore J.

    1994-01-01

    The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. The Hybrid Automated Reliability Predictor (HARP) tutorial provides insight into HARP modeling techniques and the interactive textual prompting input language via a step-by-step explanation and demonstration of HARP's fault occurrence/repair model and the fault/error handling models. Example applications are worked in their entirety and the HARP tabular output data are presented for each. Simple models are presented at first with each succeeding example demonstrating greater modeling power and complexity. This document is not intended to present the theoretical and mathematical basis for HARP.

  2. Hierarchical modeling for reliability analysis using Markov models. B.S./M.S. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Fagundo, Arturo

    1994-01-01

    Markov models represent an extremely attractive tool for the reliability analysis of many systems. However, Markov model state space grows exponentially with the number of components in a given system. Thus, for very large systems Markov modeling techniques alone become intractable in both memory and CPU time. Often a particular subsystem can be found within some larger system where the dependence of the larger system on the subsystem is of a particularly simple form. This simple dependence can be used to decompose such a system into one or more subsystems. A hierarchical technique is presented which can be used to evaluate these subsystems in such a way that their reliabilities can be combined to obtain the reliability for the full system. This hierarchical approach is unique in that it allows the subsystem model to pass multiple aggregate state information to the higher level model, allowing more general systems to be evaluated. Guidelines are developed to assist in the system decomposition. An appropriate method for determining subsystem reliability is also developed. This method gives rise to some interesting numerical issues. Numerical error due to roundoff and integration are discussed at length. Once a decomposition is chosen, the remaining analysis is straightforward but tedious. However, an approach is developed for simplifying the recombination of subsystem reliabilities. Finally, a real world system is used to illustrate the use of this technique in a more practical context.

  3. a New Multi-Criteria Evaluation Model Based on the Combination of Non-Additive Fuzzy Ahp, Choquet Integral and Sugeno λ-MEASURE

    NASA Astrophysics Data System (ADS)

    Nadi, S.; Samiei, M.; Salari, H. R.; Karami, N.

    2017-09-01

    This paper proposes a new model for multi-criteria evaluation under uncertain condition. In this model we consider the interaction between criteria as one of the most challenging issues especially in the presence of uncertainty. In this case usual pairwise comparisons and weighted sum cannot be used to calculate the importance of criteria and to aggregate them. Our model is based on the combination of non-additive fuzzy linguistic preference relation AHP (FLPRAHP), Choquet integral and Sugeno λ-measure. The proposed model capture fuzzy preferences of users and fuzzy values of criteria and uses Sugeno λ -measure to determine the importance of criteria and their interaction. Then, integrating Choquet integral and FLPRAHP, all the interaction between criteria are taken in to account with least number of comparison and the final score for each alternative is determined. So we would model a comprehensive set of interactions between criteria that can lead us to more reliable result. An illustrative example presents the effectiveness and capability of the proposed model to evaluate different alternatives in a multi-criteria decision problem.

  4. Validation of the one pass measure for motivational interviewing competence.

    PubMed

    McMaster, Fiona; Resnicow, Ken

    2015-04-01

    This paper examines the psychometric properties of the OnePass coding system: a new, user-friendly tool for evaluating practitioner competence in motivational interviewing (MI). We provide data on reliability and validity with the current gold-standard: Motivational Interviewing Treatment Integrity tool (MITI). We compared scores from 27 videotaped MI sessions performed by student counselors trained in MI and simulated patients using both OnePass and MITI, with three different raters for each tool. Reliability was estimated using intra-class coefficients (ICCs), and validity was assessed using Pearson's r. OnePass had high levels of inter-rater reliability with 19/23 items found from substantial to almost perfect agreement. Taking the pair of scores with the highest inter-rater reliability on the MITI, the concurrent validity between the two measures ranged from moderate to high. Validity was highest for evocation, autonomy, direction and empathy. OnePass appears to have good inter-rater reliability while capturing similar dimensions of MI as the MITI. Despite the moderate concurrent validity with the MITI, the OnePass shows promise in evaluating both traditional and novel interpretations of MI. OnePass may be a useful tool for developing and improving practitioner competence in MI where access to MITI coders is limited. Copyright © 2015. Published by Elsevier Ireland Ltd.

  5. Compliance of LC50 and NOEC data with Benford's Law: an indication of reliability?

    PubMed

    de Vries, Pepijn; Murk, Albertinka J

    2013-12-01

    Reliability of research data is essential, especially when potentially far-reaching conclusions will be based on them. This is also, amongst others, the case for ecotoxicological data used in risk assessment. Currently, several approaches are available to classify the reliability of ecotoxicological data. The process of classification, such as using the Klimisch score, is time-consuming and focuses on the application of standardised protocols and the documentation of the study. The presence of irregularities and the integrity of the performed work, however, are not addressed. The present study shows that Benford's Law, based on the occurrence of first digits following a logarithmic scale, can be applied to ecotoxicity test data for identifying irregularities. This approach is already successfully applied in accounting. Benford's Law can be used as reliability indicator, in addition to existing reliability classifications. The law can be used to efficiently trace irregularities in large data sets of interpolated (no) effect concentrations such as LC50s (possibly the result of data manipulation), without having to evaluate the source of each individual record. Application of the law to systems in which large amounts of toxicity data are registered (e.g., European Commission Regulation concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals) can therefore be valuable. © 2013 Elsevier Inc. All rights reserved.

  6. An integration of external information for foreign stallions into the Belgian genetic evaluation for jumping horses.

    PubMed

    Vandenplas, J; Janssens, S; Buys, N; Gengler, N

    2013-06-01

    The aim of this study was to test the integration of external information, i.e. foreign estimated breeding values (EBV) and the associated reliabilities (REL), for stallions into the Belgian genetic evaluation for jumping horses. The Belgian model is a bivariate repeatability Best Linear Unbiased Prediction animal model only based on Belgian performances, while Belgian breeders import horses from neighbouring countries. Hence, use of external information is needed as prior to achieve more accurate EBV. Pedigree and performance data contained 101382 horses and 712212 performances, respectively. After conversion to the Belgian trait, external information of 98 French and 67 Dutch stallions was integrated into the Belgian evaluation. Resulting Belgian rankings of the foreign stallions were more similar to foreign rankings according to the increase of the rank correlations of at least 12%. REL of their EBV were improved of at least 2% on average. External information was partially to totally equivalent to 4 years of contemporary horses' performances or to all the stallions' own performances. All these results showed the interest to integrate external information into the Belgian evaluation. © 2012 Blackwell Verlag GmbH.

  7. Advanced reliability methods for structural evaluation

    NASA Technical Reports Server (NTRS)

    Wirsching, P. H.; Wu, Y.-T.

    1985-01-01

    Fast probability integration (FPI) methods, which can yield approximate solutions to such general structural reliability problems as the computation of the probabilities of complicated functions of random variables, are known to require one-tenth the computer time of Monte Carlo methods for a probability level of 0.001; lower probabilities yield even more dramatic differences. A strategy is presented in which a computer routine is run k times with selected perturbed values of the variables to obtain k solutions for a response variable Y. An approximating polynomial is fit to the k 'data' sets, and FPI methods are employed for this explicit form.

  8. Integrated optimization of nonlinear R/C frames with reliability constraints

    NASA Technical Reports Server (NTRS)

    Soeiro, Alfredo; Hoit, Marc

    1989-01-01

    A structural optimization algorithm was researched including global displacements as decision variables. The algorithm was applied to planar reinforced concrete frames with nonlinear material behavior submitted to static loading. The flexural performance of the elements was evaluated as a function of the actual stress-strain diagrams of the materials. Formation of rotational hinges with strain hardening were allowed and the equilibrium constraints were updated accordingly. The adequacy of the frames was guaranteed by imposing as constraints required reliability indices for the members, maximum global displacements for the structure and a maximum system probability of failure.

  9. Temporal Precision of Neuronal Information in a Rapid Perceptual Judgment

    PubMed Central

    Ghose, Geoffrey M.; Harrison, Ian T.

    2009-01-01

    In many situations, such as pedestrians crossing a busy street or prey evading predators, rapid decisions based on limited perceptual information are critical for survival. The brevity of these perceptual judgments constrains how neuronal signals are integrated or pooled over time because the underlying sequence of processes, from sensation to perceptual evaluation to motor planning and execution, all occur within several hundred milliseconds. Because most previous physiological studies of these processes have relied on tasks requiring considerably longer temporal integration, the neuronal basis of such rapid decisions remains largely unexplored. In this study, we examine the temporal precision of neuronal activity associated with a rapid perceptual judgment. We find that the activity of individual neurons over tens of milliseconds can reliably convey information about sensory events and was well correlated with the animals' judgments. There was a strong correlation between sensory reliability and the correlation with behavioral choice, suggesting that rapid decisions were preferentially based on the most reliable sensory signals. We also find that a simple model in which the responses of a small number of individual neurons (<5) are summed can completely explain behavioral performance. These results suggest that neuronal circuits are sufficiently precise to allow for cognitive decisions to be based on small numbers of action potentials from highly reliable neurons. PMID:19109454

  10. Temporal precision of neuronal information in a rapid perceptual judgment.

    PubMed

    Ghose, Geoffrey M; Harrison, Ian T

    2009-03-01

    In many situations, such as pedestrians crossing a busy street or prey evading predators, rapid decisions based on limited perceptual information are critical for survival. The brevity of these perceptual judgments constrains how neuronal signals are integrated or pooled over time because the underlying sequence of processes, from sensation to perceptual evaluation to motor planning and execution, all occur within several hundred milliseconds. Because most previous physiological studies of these processes have relied on tasks requiring considerably longer temporal integration, the neuronal basis of such rapid decisions remains largely unexplored. In this study, we examine the temporal precision of neuronal activity associated with a rapid perceptual judgment. We find that the activity of individual neurons over tens of milliseconds can reliably convey information about sensory events and was well correlated with the animals' judgments. There was a strong correlation between sensory reliability and the correlation with behavioral choice, suggesting that rapid decisions were preferentially based on the most reliable sensory signals. We also find that a simple model in which the responses of a small number of individual neurons (<5) are summed can completely explain behavioral performance. These results suggest that neuronal circuits are sufficiently precise to allow for cognitive decisions to be based on small numbers of action potentials from highly reliable neurons.

  11. Fracture mechanics methodology: Evaluation of structural components integrity

    NASA Astrophysics Data System (ADS)

    Sih, G. C.; de Oliveira Faria, L.

    1984-09-01

    The application of fracture mechanics to structural-design problems is discussed in lectures presented in the AGARD Fracture Mechanics Methodology course held in Lisbon, Portugal, in June 1981. The emphasis is on aeronautical design, and chapters are included on fatigue-life prediction for metals and composites, the fracture mechanics of engineering structural components, failure mechanics and damage evaluation of structural components, flaw-acceptance methods, and reliability in probabilistic design. Graphs, diagrams, drawings, and photographs are provided.

  12. Integrating reliability and maintainability into a concurrent engineering environment

    NASA Astrophysics Data System (ADS)

    Phillips, Clifton B.; Peterson, Robert R.

    1993-02-01

    This paper describes the results of a reliability and maintainability study conducted at the University of California, San Diego and supported by private industry. Private industry thought the study was important and provided the university access to innovative tools under cooperative agreement. The current capability of reliability and maintainability tools and how they fit into the design process is investigated. The evolution of design methodologies leading up to today's capability is reviewed for ways to enhance the design process while keeping cost under control. A method for measuring the consequences of reliability and maintainability policy for design configurations in an electronic environment is provided. The interaction of selected modern computer tool sets is described for reliability, maintainability, operations, and other elements of the engineering design process. These tools provide a robust system evaluation capability that brings life cycle performance improvement information to engineers and their managers before systems are deployed, and allow them to monitor and track performance while it is in operation.

  13. Workplace-based assessment of communication skills: A pilot project addressing feasibility, acceptance and reliability

    PubMed Central

    Weyers, Simone; Jemi, Iman; Karger, André; Raski, Bianca; Rotthoff, Thomas; Pentzek, Michael; Mortsiefer, Achim

    2016-01-01

    Background: Imparting communication skills has been given great importance in medical curricula. In addition to standardized assessments, students should communicate with real patients in actual clinical situations during workplace-based assessments and receive structured feedback on their performance. The aim of this project was to pilot a formative testing method for workplace-based assessment. Our investigation centered in particular on whether or not physicians view the method as feasible and how high acceptance is among students. In addition, we assessed the reliability of the method. Method: As part of the project, 16 students held two consultations each with chronically ill patients at the medical practice where they were completing GP training. These consultations were video-recorded. The trained mentoring physician rated the student’s performance and provided feedback immediately following the consultations using the Berlin Global Rating scale (BGR). Two impartial, trained raters also evaluated the videos using BGR. For qualitative and quantitative analysis, information on how physicians and students viewed feasibility and their levels of acceptance was collected in written form in a partially standardized manner. To test for reliability, the test-retest reliability was calculated for both of the overall evaluations given by each rater. The inter-rater reliability was determined for the three evaluations of each individual consultation. Results: The formative assessment method was rated positively by both physicians and students. It is relatively easy to integrate into daily routines. Its significant value lies in the personal, structured and recurring feedback. The two overall scores for each patient consultation given by the two impartial raters correlate moderately. The degree of uniformity among the three raters in respect to the individual consultations is low. Discussion: Within the scope of this pilot project, only a small sample of physicians and students could be surveyed to a limited extent. There are indications that the assessment can be improved by integrating more information on medical context and student self-assessments. Despite the current limitations regarding test criteria, it is clear that workplace-based assessment of communication skills in the clinical setting is a valuable addition to the communication curricula of medical schools. PMID:27990466

  14. Workplace-based assessment of communication skills: A pilot project addressing feasibility, acceptance and reliability.

    PubMed

    Weyers, Simone; Jemi, Iman; Karger, André; Raski, Bianca; Rotthoff, Thomas; Pentzek, Michael; Mortsiefer, Achim

    2016-01-01

    Background: Imparting communication skills has been given great importance in medical curricula. In addition to standardized assessments, students should communicate with real patients in actual clinical situations during workplace-based assessments and receive structured feedback on their performance. The aim of this project was to pilot a formative testing method for workplace-based assessment. Our investigation centered in particular on whether or not physicians view the method as feasible and how high acceptance is among students. In addition, we assessed the reliability of the method. Method: As part of the project, 16 students held two consultations each with chronically ill patients at the medical practice where they were completing GP training. These consultations were video-recorded. The trained mentoring physician rated the student's performance and provided feedback immediately following the consultations using the Berlin Global Rating scale (BGR). Two impartial, trained raters also evaluated the videos using BGR. For qualitative and quantitative analysis, information on how physicians and students viewed feasibility and their levels of acceptance was collected in written form in a partially standardized manner. To test for reliability, the test-retest reliability was calculated for both of the overall evaluations given by each rater. The inter-rater reliability was determined for the three evaluations of each individual consultation. Results: The formative assessment method was rated positively by both physicians and students. It is relatively easy to integrate into daily routines. Its significant value lies in the personal, structured and recurring feedback. The two overall scores for each patient consultation given by the two impartial raters correlate moderately. The degree of uniformity among the three raters in respect to the individual consultations is low. Discussion: Within the scope of this pilot project, only a small sample of physicians and students could be surveyed to a limited extent. There are indications that the assessment can be improved by integrating more information on medical context and student self-assessments. Despite the current limitations regarding test criteria, it is clear that workplace-based assessment of communication skills in the clinical setting is a valuable addition to the communication curricula of medical schools.

  15. Electric service reliability cost/worth assessment in a developing country

    NASA Astrophysics Data System (ADS)

    Pandey, Mohan Kumar

    Considerable work has been done in developed countries to optimize the reliability of electric power systems on the basis of reliability cost versus reliability worth. This has yet to be considered in most developing countries, where development plans are still based on traditional deterministic measures. The difficulty with these criteria is that they cannot be used to evaluate the economic impacts of changing reliability levels on the utility and the customers, and therefore cannot lead to an optimum expansion plan for the system. The critical issue today faced by most developing countries is that the demand for electric power is high and growth in supply is constrained by technical, environmental, and most importantly by financial impediments. Many power projects are being canceled or postponed due to a lack of resources. The investment burden associated with the electric power sector has already led some developing countries into serious debt problems. This thesis focuses on power sector issues facing by developing countries and illustrates how a basic reliability cost/worth approach can be used in a developing country to determine appropriate planning criteria and justify future power projects by application to the Nepal Integrated Electric Power System (NPS). A reliability cost/worth based system evaluation framework is proposed in this thesis. Customer surveys conducted throughout Nepal using in-person interviews with approximately 2000 sample customers are presented. The survey results indicate that the interruption cost is dependent on both customer and interruption characteristics, and it varies from one location or region to another. Assessments at both the generation and composite system levels have been performed using the customer cost data and the developed NPS reliability database. The results clearly indicate the implications of service reliability to the electricity consumers of Nepal, and show that the reliability cost/worth evaluation is both possible and practical in a developing country. The average customer interruption costs of Rs 35/kWh at Hierarchical Level I and Rs 26/kWh at Hierarchical Level II evaluated in this research work led to an optimum reserve margin of 7.5%, which is considerably lower than the traditional reserve margin of 15% used in the NPS. A similar conclusion may result in other developing countries facing difficulties in power system expansion planning using the traditional approach. A new framework for system planning is therefore recommended for developing countries which would permit an objective review of the traditional system planning approach, and the evaluation of future power projects using a new approach based on fundamental principles of power system reliability and economics.

  16. A Behaviorally-Anchored Rating System to Monitor Treatment Integrity for Community Clinicians Using the Adolescent Community Reinforcement Approach

    ERIC Educational Resources Information Center

    Smith, Jane Ellen; Gianini, Loren M.; Garner, Bryan R.; Malek, Karen L.; Godley, Susan H.

    2014-01-01

    This study evaluated a process for training raters to reliably rate clinicians delivering the Adolescent Community Reinforcement Approach (A-CRA) in a national dissemination project. The unique A-CRA coding system uses specific behavioral anchors throughout its 73 procedure components. Five randomly selected raters each rated "passing"…

  17. Commentary: Advances in Research on Sourcing-Source Credibility and Reliable Processes for Producing Knowledge Claims

    ERIC Educational Resources Information Center

    Chinn, Clark A.; Rinehart, Ronald W.

    2016-01-01

    In our commentary on this excellent set of articles on "Sourcing in the Reading Process," we endeavor to synthesize the findings from the seven articles and discuss future research. We discuss significant contributions related to source memory, source evaluation, use of sources in action and belief, integration of information from…

  18. Tightly-Coupled Integration of Multi-GNSS Single-Frequency RTK and MEMS-IMU for Enhanced Positioning Performance

    PubMed Central

    Li, Tuan; Zhang, Hongping; Niu, Xiaoji; Gao, Zhouzheng

    2017-01-01

    Dual-frequency Global Positioning System (GPS) Real-time Kinematics (RTK) has been proven in the past few years to be a reliable and efficient technique to obtain high accuracy positioning. However, there are still challenges for GPS single-frequency RTK, such as low reliability and ambiguity resolution (AR) success rate, especially in kinematic environments. Recently, multi-Global Navigation Satellite System (multi-GNSS) has been applied to enhance the RTK performance in terms of availability and reliability of AR. In order to further enhance the multi-GNSS single-frequency RTK performance in terms of reliability, continuity and accuracy, a low-cost micro-electro-mechanical system (MEMS) inertial measurement unit (IMU) is adopted in this contribution. We tightly integrate the single-frequency GPS/BeiDou/GLONASS and MEMS-IMU through the extended Kalman filter (EKF), which directly fuses the ambiguity-fixed double-differenced (DD) carrier phase observables and IMU data. A field vehicular test was carried out to evaluate the impacts of the multi-GNSS and IMU on the AR and positioning performance in different system configurations. Test results indicate that the empirical success rate of single-epoch AR for the tightly-coupled single-frequency multi-GNSS RTK/INS integration is over 99% even at an elevation cut-off angle of 40°, and the corresponding position time series is much more stable in comparison with the GPS solution. Besides, GNSS outage simulations show that continuous positioning with certain accuracy is possible due to the INS bridging capability when GNSS positioning is not available. PMID:29077070

  19. Tightly-Coupled Integration of Multi-GNSS Single-Frequency RTK and MEMS-IMU for Enhanced Positioning Performance.

    PubMed

    Li, Tuan; Zhang, Hongping; Niu, Xiaoji; Gao, Zhouzheng

    2017-10-27

    Dual-frequency Global Positioning System (GPS) Real-time Kinematics (RTK) has been proven in the past few years to be a reliable and efficient technique to obtain high accuracy positioning. However, there are still challenges for GPS single-frequency RTK, such as low reliability and ambiguity resolution (AR) success rate, especially in kinematic environments. Recently, multi-Global Navigation Satellite System (multi-GNSS) has been applied to enhance the RTK performance in terms of availability and reliability of AR. In order to further enhance the multi-GNSS single-frequency RTK performance in terms of reliability, continuity and accuracy, a low-cost micro-electro-mechanical system (MEMS) inertial measurement unit (IMU) is adopted in this contribution. We tightly integrate the single-frequency GPS/BeiDou/GLONASS and MEMS-IMU through the extended Kalman filter (EKF), which directly fuses the ambiguity-fixed double-differenced (DD) carrier phase observables and IMU data. A field vehicular test was carried out to evaluate the impacts of the multi-GNSS and IMU on the AR and positioning performance in different system configurations. Test results indicate that the empirical success rate of single-epoch AR for the tightly-coupled single-frequency multi-GNSS RTK/INS integration is over 99% even at an elevation cut-off angle of 40°, and the corresponding position time series is much more stable in comparison with the GPS solution. Besides, GNSS outage simulations show that continuous positioning with certain accuracy is possible due to the INS bridging capability when GNSS positioning is not available.

  20. Trypan blue/giemsa staining to assess sperm membrane integrity in salernitano stallions and its relationship to pregnancy rates.

    PubMed

    Serafini, R; Longobardi, V; Spadetta, M; Neri, D; Ariota, B; Gasparrini, B; Di Palo, R

    2014-02-01

    Aim of this study was to test the reliability of Trypan blue/Giemsa staining to evaluate sperm membrane integrity, acrosomal intactness and morphology in stallion to verify whether it could be applied in vitro as useful tool for sperm fertilizing ability. Fertility data on inseminated mares were collected to evaluate the relationship of sperm quality to pregnancy rates. Forty-one ejaculates were collected from 3 stallions of Salernitano Horse Breed and evaluated for gross appearance, volume, visual motility and membrane integrity with Trypan blue/Giemsa staining and thirty-five mares were inseminated during the breeding season from April to July. Differences among stallions were found in volume, sperm concentration (p < 0.05) and visual motility (p < 0.01). A decrease in sperm motility, concentration (p < 0.05) and total sperm number was found in June-July (p < 0.01). Live sperm with intact acrosome (LSIA) and proximal droplets (PD) were lower (p < 0.01) in June-July, while acrosome reacted sperm (ARS) percentage increased (p < 0.05). No fertility differences were found among stallions with an average fertility per cycle of 44.6% and a pregnancy rate of 68.6%. Higher percentages of LSIA were found in the ejaculates used to inseminate mares that became pregnant vs those used in mares not pregnant (p < 0.05). The significance of LSIA as test variable to verify the reliability of Trypan blue/Giemsa staining was confirmed by Receiver operating characteristic ROC analysis and the sensitivity of the test was 85% at a cut-off value of 48% LSIA. Trypan blue-Giemsa showed to be an accurate method that can be applied on field to evaluate sperm membrane integrity and to identify poor-quality ejaculates. © 2013 Blackwell Verlag GmbH.

  1. Structural reliability calculation method based on the dual neural network and direct integration method.

    PubMed

    Li, Haibin; He, Yun; Nie, Xiaobo

    2018-01-01

    Structural reliability analysis under uncertainty is paid wide attention by engineers and scholars due to reflecting the structural characteristics and the bearing actual situation. The direct integration method, started from the definition of reliability theory, is easy to be understood, but there are still mathematics difficulties in the calculation of multiple integrals. Therefore, a dual neural network method is proposed for calculating multiple integrals in this paper. Dual neural network consists of two neural networks. The neural network A is used to learn the integrand function, and the neural network B is used to simulate the original function. According to the derivative relationships between the network output and the network input, the neural network B is derived from the neural network A. On this basis, the performance function of normalization is employed in the proposed method to overcome the difficulty of multiple integrations and to improve the accuracy for reliability calculations. The comparisons between the proposed method and Monte Carlo simulation method, Hasofer-Lind method, the mean value first-order second moment method have demonstrated that the proposed method is an efficient and accurate reliability method for structural reliability problems.

  2. Tightly Coupled Integration of Ionosphere-Constrained Precise Point Positioning and Inertial Navigation Systems

    PubMed Central

    Gao, Zhouzheng; Zhang, Hongping; Ge, Maorong; Niu, Xiaoji; Shen, Wenbin; Wickert, Jens; Schuh, Harald

    2015-01-01

    The continuity and reliability of precise GNSS positioning can be seriously limited by severe user observation environments. The Inertial Navigation System (INS) can overcome such drawbacks, but its performance is clearly restricted by INS sensor errors over time. Accordingly, the tightly coupled integration of GPS and INS can overcome the disadvantages of each individual system and together form a new navigation system with a higher accuracy, reliability and availability. Recently, ionosphere-constrained (IC) precise point positioning (PPP) utilizing raw GPS observations was proven able to improve both the convergence and positioning accuracy of the conventional PPP using ionosphere-free combined observations (LC-PPP). In this paper, a new mode of tightly coupled integration, in which the IC-PPP instead of LC-PPP is employed, is implemented to further improve the performance of the coupled system. We present the detailed mathematical model and the related algorithm of the new integration of IC-PPP and INS. To evaluate the performance of the new tightly coupled integration, data of both airborne and vehicle experiments with a geodetic GPS receiver and tactical grade inertial measurement unit are processed and the results are analyzed. The statistics show that the new approach can further improve the positioning accuracy compared with both IC-PPP and the tightly coupled integration of the conventional PPP and INS. PMID:25763647

  3. Removing Barriers for Effective Deployment of Intermittent Renewable Generation

    NASA Astrophysics Data System (ADS)

    Arabali, Amirsaman

    The stochastic nature of intermittent renewable resources is the main barrier to effective integration of renewable generation. This problem can be studied from feeder-scale and grid-scale perspectives. Two new stochastic methods are proposed to meet the feeder-scale controllable load with a hybrid renewable generation (including wind and PV) and energy storage system. For the first method, an optimization problem is developed whose objective function is the cost of the hybrid system including the cost of renewable generation and storage subject to constraints on energy storage and shifted load. A smart-grid strategy is developed to shift the load and match the renewable energy generation and controllable load. Minimizing the cost function guarantees minimum PV and wind generation installation, as well as storage capacity selection for supplying the controllable load. A confidence coefficient is allocated to each stochastic constraint which shows to what degree the constraint is satisfied. In the second method, a stochastic framework is developed for optimal sizing and reliability analysis of a hybrid power system including renewable resources (PV and wind) and energy storage system. The hybrid power system is optimally sized to satisfy the controllable load with a specified reliability level. A load-shifting strategy is added to provide more flexibility for the system and decrease the installation cost. Load shifting strategies and their potential impacts on the hybrid system reliability/cost analysis are evaluated trough different scenarios. Using a compromise-solution method, the best compromise between the reliability and cost will be realized for the hybrid system. For the second problem, a grid-scale stochastic framework is developed to examine the storage application and its optimal placement for the social cost and transmission congestion relief of wind integration. Storage systems are optimally placed and adequately sized to minimize the sum of operation and congestion costs over a scheduling period. A technical assessment framework is developed to enhance the efficiency of wind integration and evaluate the economics of storage technologies and conventional gas-fired alternatives. The proposed method is used to carry out a cost-benefit analysis for the IEEE 24-bus system and determine the most economical technology. In order to mitigate the financial and technical concerns of renewable energy integration into the power system, a stochastic framework is proposed for transmission grid reinforcement studies in a power system with wind generation. A multi-stage multi-objective transmission network expansion planning (TNEP) methodology is developed which considers the investment cost, absorption of private investment and reliability of the system as the objective functions. A Non-dominated Sorting Genetic Algorithm (NSGA II) optimization approach is used in combination with a probabilistic optimal power flow (POPF) to determine the Pareto optimal solutions considering the power system uncertainties. Using a compromise-solution method, the best final plan is then realized based on the decision maker preferences. The proposed methodology is applied to the IEEE 24-bus Reliability Tests System (RTS) to evaluate the feasibility and practicality of the developed planning strategy.

  4. Numerical integration for ab initio many-electron self energy calculations within the GW approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fang, E-mail: fliu@lsec.cc.ac.cn; Lin, Lin, E-mail: linlin@math.berkeley.edu; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

    We present a numerical integration scheme for evaluating the convolution of a Green's function with a screened Coulomb potential on the real axis in the GW approximation of the self energy. Our scheme takes the zero broadening limit in Green's function first, replaces the numerator of the integrand with a piecewise polynomial approximation, and performs principal value integration on subintervals analytically. We give the error bound of our numerical integration scheme and show by numerical examples that it is more reliable and accurate than the standard quadrature rules such as the composite trapezoidal rule. We also discuss the benefit ofmore » using different self energy expressions to perform the numerical convolution at different frequencies.« less

  5. Comprehensive analysis and evaluation of big data for main transformer equipment based on PCA and Apriority

    NASA Astrophysics Data System (ADS)

    Guo, Lijuan; Yan, Haijun; Hao, Yongqi; Chen, Yun

    2018-01-01

    With the power supply level of urban power grid toward high reliability development, it is necessary to adopt appropriate methods for comprehensive evaluation of existing equipment. Considering the wide and multi-dimensional power system data, the method of large data mining is used to explore the potential law and value of power system equipment. Based on the monitoring data of main transformer and the records of defects and faults, this paper integrates the data of power grid equipment environment. Apriori is used as an association identification algorithm to extract the frequent correlation factors of the main transformer, and the potential dependence of the big data is analyzed by the support and confidence. Then, the integrated data is analyzed by PCA, and the integrated quantitative scoring model is constructed. It is proved to be effective by using the test set to validate the evaluation algorithm and scheme. This paper provides a new idea for data fusion of smart grid, and provides a reference for further evaluation of big data of power grid equipment.

  6. Structural Probability Concepts Adapted to Electrical Engineering

    NASA Technical Reports Server (NTRS)

    Steinberg, Eric P.; Chamis, Christos C.

    1994-01-01

    Through the use of equivalent variable analogies, the authors demonstrate how an electrical subsystem can be modeled by an equivalent structural subsystem. This allows the electrical subsystem to be probabilistically analyzed by using available structural reliability computer codes such as NESSUS. With the ability to analyze the electrical subsystem probabilistically, we can evaluate the reliability of systems that include both structural and electrical subsystems. Common examples of such systems are a structural subsystem integrated with a health-monitoring subsystem, and smart structures. Since these systems have electrical subsystems that directly affect the operation of the overall system, probabilistically analyzing them could lead to improved reliability and reduced costs. The direct effect of the electrical subsystem on the structural subsystem is of secondary order and is not considered in the scope of this work.

  7. Automation Hooks Architecture Trade Study for Flexible Test Orchestration

    NASA Technical Reports Server (NTRS)

    Lansdowne, Chatwin A.; Maclean, John R.; Graffagnino, Frank J.; McCartney, Patrick A.

    2010-01-01

    We describe the conclusions of a technology and communities survey supported by concurrent and follow-on proof-of-concept prototyping to evaluate feasibility of defining a durable, versatile, reliable, visible software interface to support strategic modularization of test software development. The objective is that test sets and support software with diverse origins, ages, and abilities can be reliably integrated into test configurations that assemble and tear down and reassemble with scalable complexity in order to conduct both parametric tests and monitored trial runs. The resulting approach is based on integration of three recognized technologies that are currently gaining acceptance within the test industry and when combined provide a simple, open and scalable test orchestration architecture that addresses the objectives of the Automation Hooks task. The technologies are automated discovery using multicast DNS Zero Configuration Networking (zeroconf), commanding and data retrieval using resource-oriented Restful Web Services, and XML data transfer formats based on Automatic Test Markup Language (ATML). This open-source standards-based approach provides direct integration with existing commercial off-the-shelf (COTS) analysis software tools.

  8. Blending forest fire smoke forecasts with observed data can improve their utility for public health applications

    NASA Astrophysics Data System (ADS)

    Yuchi, Weiran; Yao, Jiayun; McLean, Kathleen E.; Stull, Roland; Pavlovic, Radenko; Davignon, Didier; Moran, Michael D.; Henderson, Sarah B.

    2016-11-01

    Fine particulate matter (PM2.5) generated by forest fires has been associated with a wide range of adverse health outcomes, including exacerbation of respiratory diseases and increased risk of mortality. Due to the unpredictable nature of forest fires, it is challenging for public health authorities to reliably evaluate the magnitude and duration of potential exposures before they occur. Smoke forecasting tools are a promising development from the public health perspective, but their widespread adoption is limited by their inherent uncertainties. Observed measurements from air quality monitoring networks and remote sensing platforms are more reliable, but they are inherently retrospective. It would be ideal to reduce the uncertainty in smoke forecasts by integrating any available observations. This study takes spatially resolved PM2.5 estimates from an empirical model that integrates air quality measurements with satellite data, and averages them with PM2.5 predictions from two smoke forecasting systems. Two different indicators of population respiratory health are then used to evaluate whether the blending improved the utility of the smoke forecasts. Among a total of six models, including two single forecasts and four blended forecasts, the blended estimates always performed better than the forecast values alone. Integrating measured observations into smoke forecasts could improve public health preparedness for smoke events, which are becoming more frequent and intense as the climate changes.

  9. HiRel: Hybrid Automated Reliability Predictor (HARP) integrated reliability tool system, (version 7.0). Volume 3: HARP Graphics Oriented (GO) input user's guide

    NASA Technical Reports Server (NTRS)

    Bavuso, Salvatore J.; Rothmann, Elizabeth; Mittal, Nitin; Koppen, Sandra Howell

    1994-01-01

    The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. HiRel consists of interactive graphical input/output programs and four reliability/availability modeling engines that provide analytical and simulative solutions to a wide host of highly reliable fault-tolerant system architectures and is also applicable to electronic systems in general. The tool system was designed at the outset to be compatible with most computing platforms and operating systems, and some programs have been beta tested within the aerospace community for over 8 years. This document is a user's guide for the HiRel graphical preprocessor Graphics Oriented (GO) program. GO is a graphical user interface for the HARP engine that enables the drawing of reliability/availability models on a monitor. A mouse is used to select fault tree gates or Markov graphical symbols from a menu for drawing.

  10. Hybrid automated reliability predictor integrated work station (HiREL)

    NASA Technical Reports Server (NTRS)

    Bavuso, Salvatore J.

    1991-01-01

    The Hybrid Automated Reliability Predictor (HARP) integrated reliability (HiREL) workstation tool system marks another step toward the goal of producing a totally integrated computer aided design (CAD) workstation design capability. Since a reliability engineer must generally graphically represent a reliability model before he can solve it, the use of a graphical input description language increases productivity and decreases the incidence of error. The captured image displayed on a cathode ray tube (CRT) screen serves as a documented copy of the model and provides the data for automatic input to the HARP reliability model solver. The introduction of dependency gates to a fault tree notation allows the modeling of very large fault tolerant system models using a concise and visually recognizable and familiar graphical language. In addition to aiding in the validation of the reliability model, the concise graphical representation presents company management, regulatory agencies, and company customers a means of expressing a complex model that is readily understandable. The graphical postprocessor computer program HARPO (HARP Output) makes it possible for reliability engineers to quickly analyze huge amounts of reliability/availability data to observe trends due to exploratory design changes.

  11. Reliability of Beam Loss Monitor Systems for the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2005-06-01

    The increase of beam energy and beam intensity, together with the use of super conducting magnets, opens new failure scenarios and brings new criticalities for the whole accelerator protection system. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system, and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses at 7 TeV and assisted by the Fast Beam Current Decay Monitors at 450 GeV. At medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data has been processed by reliability software (Isograph). The analysis spaces from the components data to the system configuration.

  12. Evaluation of advanced microelectronic fluxless solder-bump contacts for hybrid microcircuits

    NASA Technical Reports Server (NTRS)

    Mandal, R. P.

    1976-01-01

    Technology for interconnecting monolithic integrated circuit chips with other components is investigated. The advantages and disadvantages of the current flip-chip approach as compared to other interconnection methods are outlined. A fluxless solder-bump contact technology is evaluated. Multiple solder-bump contacts were formed on silicon integrated circuit chips. The solder-bumps, comprised of a rigid nickel under layer and a compliant solder overlayer, were electroformed onto gold device pads with the aid of thick dry film photomasks. Different solder alloys and the use of conductive epoxy for bonding were explored. Fluxless solder-bump bond quality and reliability were evaluated by measuring the effects of centrifuge, thermal cycling, and high temperature storage on bond visual characteristics, bond electrical continuity, and bond shear tests. The applicability and suitability of this technology for hybrid microelectronic packaging is discussed.

  13. Reliability of Neurobehavioral Assessments from Birth to Term Equivalent Age in Preterm and Term Born Infants.

    PubMed

    Eeles, Abbey L; Olsen, Joy E; Walsh, Jennifer M; McInnes, Emma K; Molesworth, Charlotte M L; Cheong, Jeanie L Y; Doyle, Lex W; Spittle, Alicia J

    2017-02-01

    Neurobehavioral assessments provide insight into the functional integrity of the developing brain and help guide early intervention for preterm (<37 weeks' gestation) infants. In the context of shorter hospital stays, clinicians often need to assess preterm infants prior to term equivalent age. Few neurobehavioral assessments used in the preterm period have established interrater reliability. To evaluate the interrater reliability of the Hammersmith Neonatal Neurological Examination (HNNE) and the NICU Network Neurobehavioral Scale (NNNS), when used both preterm and at term (>36 weeks). Thirty-five preterm infants and 11 term controls were recruited. Five assessors double-scored the HNNE and NNNS administered either preterm or at term. A one-way random effects, absolute, single-measures interclass correlation coefficient (ICC) was calculated to determine interrater reliability. Interrater reliability for the HNNE was excellent (ICC > 0.74) for optimality scores, and good (ICC 0.60-0.74) to excellent for subtotal scores, except for 'Tone Patterns' (ICC 0.54). On the NNNS, interrater reliability was predominantly excellent for all items. Interrater agreement was generally excellent at both time points. Overall, the HNNE and NNNS neurobehavioral assessments demonstrated mostly excellent interrater reliability when used prior to term and at term.

  14. Gas-fired duplex free-piston Stirling refrigerator

    NASA Astrophysics Data System (ADS)

    Urieli, L.

    1984-03-01

    The duplex free-piston Stirling refrigerator is a potentially high efficiency, high reliability device which is ideally suited to the home appliance field, in particular as a gas-fired refrigerator. It has significant advantages over other equivalent devices including freedom from halogenated hydrocarbons, extremely low temperatures available at a high efficiency, integrated water heating, and simple burner system control. The design and development of a portable working demonstration gas-fired duplex Stirling refrigeration unit is described. A unique combination of computer aided development and experimental development was used, enabling a continued interaction between the theoretical analysis and practical testing and evaluation. A universal test rig was developed in order to separately test and evaluate major subunits, enabling a smooth system integration phase.

  15. Evaluation of multilayer printed wiring boards by metallographic techniques: An illustrated guide to the preparation and inspection of plated-through hole test coupons based on the requirements of Mil-P-55110D

    NASA Technical Reports Server (NTRS)

    Jellison, J.

    1986-01-01

    This work is an illustrated handbook containing the rationale and procedure for the evaluation of multilayer printed wiring board construction integrity with respect to plated-through holes in accordance with the requirements of MIL-P-55110D, Printed Wiring Boards. It is intended as a practical aid for those concerned with determining the construction integrity of multilayer boards for high reliability applications. Photomicrographs of cross sectioned holes illustrate defect types, acceptable and unacceptable conditions, and methods of measurement. A procedure for specimen preparation is given, and appropriate paragraphs of the military specification are included and explained.

  16. Measures of Wellness in Young Adult College Students: An Integrative Review.

    PubMed

    Nair, Julie McCulloh

    2018-04-01

    Wellness behaviors typically form during the college years, making wellness evaluation crucial during this time frame. Instruments often assess health rather than wellness. Thus, the purpose of this integrative review is to identify and evaluate instruments measuring wellness among young adult college students. Google Scholar, CINAHL, PubMed, MEDLINE, PsycINFO, ERIC, and other databases were searched yielding 350 studies initially. Seven studies met inclusion criteria and were retained for this review. Reliability and validity is reported in each study with ongoing analysis. Homogeneous samples were reported in each study, and administering concurrent instruments created feasibility issues. A summary of instruments measuring wellness in young adult college students is provided. However, few wellness instruments exist in this population. Thus, further development is needed.

  17. An Integrated Approach to Establish Validity and Reliability of Reading Tests

    ERIC Educational Resources Information Center

    Razi, Salim

    2012-01-01

    This study presents the processes of developing and establishing reliability and validity of a reading test by administering an integrative approach as conventional reliability and validity measures superficially reveals the difficulty of a reading test. In this respect, analysing vocabulary frequency of the test is regarded as a more eligible way…

  18. External validation of a forest inventory and analysis volume equation and comparisons with estimates from multiple stem-profile models

    Treesearch

    Christopher M. Oswalt; Adam M. Saunders

    2009-01-01

    Sound estimation procedures are desideratum for generating credible population estimates to evaluate the status and trends in resource conditions. As such, volume estimation is an integral component of the U.S. Department of Agriculture, Forest Service, Forest Inventory and Analysis (FIA) program's reporting. In effect, reliable volume estimation procedures are...

  19. Award-Winning CARES/Life Ceramics Durability Evaluation Software Is Making Advanced Technology Accessible

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Products made from advanced ceramics show great promise for revolutionizing aerospace and terrestrial propulsion and power generation. However, ceramic components are difficult to design because brittle materials in general have widely varying strength values. The CARES/Life software developed at the NASA Lewis Research Center eases this by providing a tool that uses probabilistic reliability analysis techniques to optimize the design and manufacture of brittle material components. CARES/Life is an integrated package that predicts the probability of a monolithic ceramic component's failure as a function of its time in service. It couples commercial finite element programs--which resolve a component's temperature and stress distribution - with reliability evaluation and fracture mechanics routines for modeling strength - limiting defects. These routines are based on calculations of the probabilistic nature of the brittle material's strength.

  20. Shuttle cryogenic supply system optimization study

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Technical information on different cryogenic supply systems is presented for selecting representative designs. Parametric data and sensitivity studies, and an evaluation of related technology status are included. An integrated mathematical model for hardware program support was developed. The life support system, power generation, and propellant supply are considered. The major study conclusions are the following: Optimum integrated systems tend towards maximizing liquid storage. Vacuum jacketing of tanks is a major effect on integrated systems. Subcritical storage advantages over supercritical storage decrease as the quantity of propellant or reactant decreases. Shuttle duty cycles are not severe. The operational mode has a significant effect on reliability. Components are available for most subsystem applications. Subsystems and components require a minimum amount of technology development.

  1. Affordable MMICs for Air Force systems

    NASA Astrophysics Data System (ADS)

    Kemerley, Robert T.; Fayette, Daniel F.

    1991-05-01

    The paper deals with a program directed at demonstrating affordable MMIC chips - the microwave/mm-wave monolithic integrated circuit (MIMIC) program. Focus is placed on experiments involving the growth and characterization of III-V materials, and the design, fabrication, and evaluation of ICs in the 1 to 60 GHz frequency range, as well as efforts related to the reliability testing, failure analysis, and generation of qualified manufacture's list procedures for GaAs MMICs and modules. Attributes associated with GaAs-technology devices, quality, reliability, and performance in select environments are discussed, including the dependence of these structures over temperature ranges, electrostatic discharge sensitivity, and susceptibility to environmental stresses.

  2. High-Precision Image Aided Inertial Navigation with Known Features: Observability Analysis and Performance Evaluation

    PubMed Central

    Jiang, Weiping; Wang, Li; Niu, Xiaoji; Zhang, Quan; Zhang, Hui; Tang, Min; Hu, Xiangyun

    2014-01-01

    A high-precision image-aided inertial navigation system (INS) is proposed as an alternative to the carrier-phase-based differential Global Navigation Satellite Systems (CDGNSSs) when satellite-based navigation systems are unavailable. In this paper, the image/INS integrated algorithm is modeled by a tightly-coupled iterative extended Kalman filter (IEKF). Tightly-coupled integration ensures that the integrated system is reliable, even if few known feature points (i.e., less than three) are observed in the images. A new global observability analysis of this tightly-coupled integration is presented to guarantee that the system is observable under the necessary conditions. The analysis conclusions were verified by simulations and field tests. The field tests also indicate that high-precision position (centimeter-level) and attitude (half-degree-level)-integrated solutions can be achieved in a global reference. PMID:25330046

  3. HiRel: Hybrid Automated Reliability Predictor (HARP) integrated reliability tool system, (version 7.0). Volume 4: HARP Output (HARPO) graphics display user's guide

    NASA Technical Reports Server (NTRS)

    Sproles, Darrell W.; Bavuso, Salvatore J.

    1994-01-01

    The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. HiRel consists of interactive graphical input/output programs and four reliability/availability modeling engines that provide analytical and simulative solutions to a wide host of highly reliable fault-tolerant system architectures and is also applicable to electronic systems in general. The tool system was designed at the outset to be compatible with most computing platforms and operating systems and some programs have been beta tested within the aerospace community for over 8 years. This document is a user's guide for the HiRel graphical postprocessor program HARPO (HARP Output). HARPO reads ASCII files generated by HARP. It provides an interactive plotting capability that can be used to display alternate model data for trade-off analyses. File data can also be imported to other commercial software programs.

  4. Probabilistic Multi-Scale, Multi-Level, Multi-Disciplinary Analysis and Optimization of Engine Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2000-01-01

    Aircraft engines are assemblies of dynamically interacting components. Engine updates to keep present aircraft flying safely and engines for new aircraft are progressively required to operate in more demanding technological and environmental requirements. Designs to effectively meet those requirements are necessarily collections of multi-scale, multi-level, multi-disciplinary analysis and optimization methods and probabilistic methods are necessary to quantify respective uncertainties. These types of methods are the only ones that can formally evaluate advanced composite designs which satisfy those progressively demanding requirements while assuring minimum cost, maximum reliability and maximum durability. Recent research activities at NASA Glenn Research Center have focused on developing multi-scale, multi-level, multidisciplinary analysis and optimization methods. Multi-scale refers to formal methods which describe complex material behavior metal or composite; multi-level refers to integration of participating disciplines to describe a structural response at the scale of interest; multidisciplinary refers to open-ended for various existing and yet to be developed discipline constructs required to formally predict/describe a structural response in engine operating environments. For example, these include but are not limited to: multi-factor models for material behavior, multi-scale composite mechanics, general purpose structural analysis, progressive structural fracture for evaluating durability and integrity, noise and acoustic fatigue, emission requirements, hot fluid mechanics, heat-transfer and probabilistic simulations. Many of these, as well as others, are encompassed in an integrated computer code identified as Engine Structures Technology Benefits Estimator (EST/BEST) or Multi-faceted/Engine Structures Optimization (MP/ESTOP). The discipline modules integrated in MP/ESTOP include: engine cycle (thermodynamics), engine weights, internal fluid mechanics, cost, mission and coupled structural/thermal, various composite property simulators and probabilistic methods to evaluate uncertainty effects (scatter ranges) in all the design parameters. The objective of the proposed paper is to briefly describe a multi-faceted design analysis and optimization capability for coupled multi-discipline engine structures optimization. Results are presented for engine and aircraft type metrics to illustrate the versatility of that capability. Results are also presented for reliability, noise and fatigue to illustrate its inclusiveness. For example, replacing metal rotors with composites reduces the engine weight by 20 percent, 15 percent noise reduction, and an order of magnitude improvement in reliability. Composite designs exist to increase fatigue life by at least two orders of magnitude compared to state-of-the-art metals.

  5. Single- and double- lumen silicone breast implant integrity: prospective evaluation of MR and US criteria.

    PubMed

    Berg, W A; Caskey, C I; Hamper, U M; Kuhlman, J E; Anderson, N D; Chang, B W; Sheth, S; Zerhouni, E A

    1995-10-01

    To evaluate the accuracy of magnetic resonance (MR) and ultrasound (US) criteria for breast implant integrity. One hundred twenty-two single-lumen silicone breast implants and 22 bilumen implants were evaluated with surface coil MR imaging and US and surgically removed. MR criteria for implant failure were a collapsed implant shell ("linguine sign"), foci of silicone outside the shell ("noose sign"), and extracapsular gel, US criteria were collapsed shell, low-level echoes within the gel, and "snowstorm" echoes of extracapsular silicone. Among single-lumen implants, MR imaging depicted 39 of 40 ruptures, 14 of 28 with minimal leakage; 49 of 54 intact implants were correctly interpreted. US depicted 26 of 40 ruptured implants, four of 28 with minimal leakage, and 30 of 54 intact implants. Among bilumen implants, MR imaging depicted four of five implants with rupture of both lumina and nine of 10 as intact; US depicted one rupture and helped identify two of 10 as intact. Mammography accurately depicted the status of 29 of 30 bilumen implants with MR imaging correlation. MR imaging depicts implant integrity more accurately than US; neither method reliably depicts minimal leakage with shell collapse. Mammography is useful in screening bilumen implant integrity.

  6. Total systems design analysis of high performance structures

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1993-01-01

    Designer-control parameters were identified at interdiscipline interfaces to optimize structural systems performance and downstream development and operations with reliability and least life-cycle cost. Interface tasks and iterations are tracked through a matrix of performance disciplines integration versus manufacturing, verification, and operations interactions for a total system design analysis. Performance integration tasks include shapes, sizes, environments, and materials. Integrity integrating tasks are reliability and recurring structural costs. Significant interface designer control parameters were noted as shapes, dimensions, probability range factors, and cost. Structural failure concept is presented, and first-order reliability and deterministic methods, benefits, and limitations are discussed. A deterministic reliability technique combining benefits of both is proposed for static structures which is also timely and economically verifiable. Though launch vehicle environments were primarily considered, the system design process is applicable to any surface system using its own unique filed environments.

  7. Social Information Is Integrated into Value and Confidence Judgments According to Its Reliability.

    PubMed

    De Martino, Benedetto; Bobadilla-Suarez, Sebastian; Nouguchi, Takao; Sharot, Tali; Love, Bradley C

    2017-06-21

    How much we like something, whether it be a bottle of wine or a new film, is affected by the opinions of others. However, the social information that we receive can be contradictory and vary in its reliability. Here, we tested whether the brain incorporates these statistics when judging value and confidence. Participants provided value judgments about consumer goods in the presence of online reviews. We found that participants updated their initial value and confidence judgments in a Bayesian fashion, taking into account both the uncertainty of their initial beliefs and the reliability of the social information. Activity in dorsomedial prefrontal cortex tracked the degree of belief update. Analogous to how lower-level perceptual information is integrated, we found that the human brain integrates social information according to its reliability when judging value and confidence. SIGNIFICANCE STATEMENT The field of perceptual decision making has shown that the sensory system integrates different sources of information according to their respective reliability, as predicted by a Bayesian inference scheme. In this work, we hypothesized that a similar coding scheme is implemented by the human brain to process social signals and guide complex, value-based decisions. We provide experimental evidence that the human prefrontal cortex's activity is consistent with a Bayesian computation that integrates social information that differs in reliability and that this integration affects the neural representation of value and confidence. Copyright © 2017 De Martino et al.

  8. Construction and validation of educational materials for the prevention of metabolic syndrome in adolescents 1

    PubMed Central

    de Moura, Ionara Holanda; da Silva, Antônia Fabiana Rodrigues; Rocha, Aparecida do Espírito Santo de Holanda; Lima, Luisa Helena de Oliveira; Moreira, Thereza Maria Magalhães; da Silva, Ana Roberta Vilarouca

    2017-01-01

    ABSTRACT Objective: To develop and validate an educational technology focused on prevention of metabolic syndrome among adolescents. Methods: This was methodological research. Using an integrative review, the available publications on the subject were analyzed. Then, this knowledge was used to describe the theoretical content and, with the help of a graphic designer, the art and layout of the pages were developed. In the third phase, the booklet was evaluated and validated by 21 specialists and 39 adolescents. Data collection included three different questionnaires, according to the focus of evaluation of each group of participants, analyzed for reliability (Cronbach’s Alpha) and agreement by Infraclass Correlation Coefficient. Results: The mean score attributed by technical content experts was 91.7%, and the content validity index, measured by experts responses, was 0.98, showing high reliability and agreement. In addition, the level of agreement of the positive responses given by adolescents was 88.4%. Conclusion: the educational booklet has proved to be a valid and reliable tool to be used for promoting adolescent health. PMID:29020125

  9. Systems Integration Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-06-01

    This fact sheet is an overview of the Systems Integration subprogram at the U.S. Department of Energy SunShot Initiative. The Systems Integration subprogram enables the widespread deployment of safe, reliable, and cost-effective solar energy technologies by addressing the associated technical and non-technical challenges. These include timely and cost-effective interconnection procedures, optimal system planning, accurate prediction of solar resources, monitoring and control of solar power, maintaining grid reliability and stability, and many more. To address the challenges associated with interconnecting and integrating hundreds of gigawatts of solar power onto the electricity grid, the Systems Integration program funds research, development, and demonstrationmore » projects in four broad, interrelated focus areas: grid performance and reliability, dispatchability, power electronics, and communications.« less

  10. Cochlear Implants:System Design, Integration and Evaluation

    PubMed Central

    Rebscher, Stephen; Harrison, William V.; Sun, Xiaoan; Feng, Haihong

    2009-01-01

    As the most successful neural prosthesis, cochlear implants have provided partial hearing to more than 120,000 persons worldwide; half of which being pediatric users who are able to develop nearly normal language. Biomedical engineers have played a central role in the design, integration and evaluation of the cochlear implant system, but the overall success is a result of collaborative work with physiologists, psychologists, physicians, educators, and entrepreneurs. This review presents broad yet in-depth academic and industrial perspectives on the underlying research and ongoing development of cochlear implants. The introduction accounts for major events and advances in cochlear implants, including dynamic interplays among engineers, scientists, physicians, and policy makers. The review takes a system approach to address critical issues from design and specifications to integration and evaluation. First, the cochlear implant system design and specifications are laid out. Second, the design goals, principles, and methods of the subsystem components are identified from the external speech processor and radio frequency transmission link to the internal receiver, stimulator and electrode arrays. Third, system integration and functional evaluation are presented with respect to safety, reliability, and challenges facing the present and future cochlear implant designers and users. Finally, issues beyond cochlear implants are discussed to address treatment options for the entire spectrum of hearing impairment as well as to use the cochlear implant as a model to design and evaluate other similar neural prostheses such as vestibular and retinal implants. PMID:19946565

  11. Probabilistic Structural Analysis and Reliability Using NESSUS With Implemented Material Strength Degradation Model

    NASA Technical Reports Server (NTRS)

    Bast, Callie C.; Jurena, Mark T.; Godines, Cody R.; Chamis, Christos C. (Technical Monitor)

    2001-01-01

    This project included both research and education objectives. The goal of this project was to advance innovative research and education objectives in theoretical and computational probabilistic structural analysis, reliability, and life prediction for improved reliability and safety of structural components of aerospace and aircraft propulsion systems. Research and education partners included Glenn Research Center (GRC) and Southwest Research Institute (SwRI) along with the University of Texas at San Antonio (UTSA). SwRI enhanced the NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) code and provided consulting support for NESSUS-related activities at UTSA. NASA funding supported three undergraduate students, two graduate students, a summer course instructor and the Principal Investigator. Matching funds from UTSA provided for the purchase of additional equipment for the enhancement of the Advanced Interactive Computational SGI Lab established during the first year of this Partnership Award to conduct the probabilistic finite element summer courses. The research portion of this report presents the cumulation of work performed through the use of the probabilistic finite element program, NESSUS, Numerical Evaluation and Structures Under Stress, and an embedded Material Strength Degradation (MSD) model. Probabilistic structural analysis provided for quantification of uncertainties associated with the design, thus enabling increased system performance and reliability. The structure examined was a Space Shuttle Main Engine (SSME) fuel turbopump blade. The blade material analyzed was Inconel 718, since the MSD model was previously calibrated for this material. Reliability analysis encompassing the effects of high temperature and high cycle fatigue, yielded a reliability value of 0.99978 using a fully correlated random field for the blade thickness. The reliability did not change significantly for a change in distribution type except for a change in distribution from Gaussian to Weibull for the centrifugal load. The sensitivity factors determined to be most dominant were the centrifugal loading and the initial strength of the material. These two sensitivity factors were influenced most by a change in distribution type from Gaussian to Weibull. The education portion of this report describes short-term and long-term educational objectives. Such objectives serve to integrate research and education components of this project resulting in opportunities for ethnic minority students, principally Hispanic. The primary vehicle to facilitate such integration was the teaching of two probabilistic finite element method courses to undergraduate engineering students in the summers of 1998 and 1999.

  12. Measuring Integrated Socioemotional Guidance at School: Factor Structure and Reliability of the Socioemotional Guidance Questionnaire (SEG-Q)

    ERIC Educational Resources Information Center

    Jacobs, Karen; Struyf, Elke

    2013-01-01

    Socioemotional guidance of students has recently become an integral part of education, however no instrument exists to measure integrated socioemotional guidance. This study therefore examines the factor structure and reliability of the Socioemotional Guidance Questionnaire. Psychometric properties of the Socioemotional Guidance Questionnaire and…

  13. Weighted integration of short-term memory and sensory signals in the oculomotor system.

    PubMed

    Deravet, Nicolas; Blohm, Gunnar; de Xivry, Jean-Jacques Orban; Lefèvre, Philippe

    2018-05-01

    Oculomotor behaviors integrate sensory and prior information to overcome sensory-motor delays and noise. After much debate about this process, reliability-based integration has recently been proposed and several models of smooth pursuit now include recurrent Bayesian integration or Kalman filtering. However, there is a lack of behavioral evidence in humans supporting these theoretical predictions. Here, we independently manipulated the reliability of visual and prior information in a smooth pursuit task. Our results show that both smooth pursuit eye velocity and catch-up saccade amplitude were modulated by visual and prior information reliability. We interpret these findings as the continuous reliability-based integration of a short-term memory of target motion with visual information, which support modeling work. Furthermore, we suggest that saccadic and pursuit systems share this short-term memory. We propose that this short-term memory of target motion is quickly built and continuously updated, and constitutes a general building block present in all sensorimotor systems.

  14. Transcriptomic resources for environmental risk assessment: a case study in the Venice lagoon.

    PubMed

    Milan, M; Pauletto, M; Boffo, L; Carrer, C; Sorrentino, F; Ferrari, G; Pavan, L; Patarnello, T; Bargelloni, L

    2015-02-01

    The development of new resources to evaluate the environmental status is becoming increasingly important representing a key challenge for ocean and coastal management. Recently, the employment of transcriptomics in aquatic toxicology has led to increasing initiatives proposing to integrate eco-toxicogenomics in the evaluation of marine ecosystem health. However, several technical issues need to be addressed before introducing genomics as a reliable tool in regulatory ecotoxicology. The Venice lagoon constitutes an excellent case, in which the assessment of environmental risks derived from the nearby industrial activities represents a crucial task. In this context, the potential role of genomics to assist environmental monitoring was investigated through the definition of reliable gene expression markers associated to chemical contamination in Manila clams, and their subsequent employment for the classification of Venice lagoon areas. Overall, the present study addresses key issues to evaluate the future outlooks of genomics in the environmental monitoring and risk assessment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Design for Reliability and Safety Approach for the NASA New Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal, M.; Weldon, Danny M.

    2007-01-01

    The United States National Aeronautics and Space Administration (NASA) is in the midst of a space exploration program intended for sending crew and cargo to the international Space Station (ISS), to the moon, and beyond. This program is called Constellation. As part of the Constellation program, NASA is developing new launch vehicles aimed at significantly increase safety and reliability, reduce the cost of accessing space, and provide a growth path for manned space exploration. Achieving these goals requires a rigorous process that addresses reliability, safety, and cost upfront and throughout all the phases of the life cycle of the program. This paper discusses the "Design for Reliability and Safety" approach for the NASA new crew launch vehicle called ARES I. The ARES I is being developed by NASA Marshall Space Flight Center (MSFC) in support of the Constellation program. The ARES I consists of three major Elements: A solid First Stage (FS), an Upper Stage (US), and liquid Upper Stage Engine (USE). Stacked on top of the ARES I is the Crew exploration vehicle (CEV). The CEV consists of a Launch Abort System (LAS), Crew Module (CM), Service Module (SM), and a Spacecraft Adapter (SA). The CEV development is being led by NASA Johnson Space Center (JSC). Designing for high reliability and safety require a good integrated working environment and a sound technical design approach. The "Design for Reliability and Safety" approach addressed in this paper discusses both the environment and the technical process put in place to support the ARES I design. To address the integrated working environment, the ARES I project office has established a risk based design group called "Operability Design and Analysis" (OD&A) group. This group is an integrated group intended to bring together the engineering, design, and safety organizations together to optimize the system design for safety, reliability, and cost. On the technical side, the ARES I project has, through the OD&A environment, implemented a probabilistic approach to analyze and evaluate design uncertainties and understand their impact on safety, reliability, and cost. This paper focuses on the use of the various probabilistic approaches that have been pursued by the ARES I project. Specifically, the paper discusses an integrated functional probabilistic analysis approach that addresses upffont some key areas to support the ARES I Design Analysis Cycle (DAC) pre Preliminary Design (PD) Phase. This functional approach is a probabilistic physics based approach that combines failure probabilities with system dynamics and engineering failure impact models to identify key system risk drivers and potential system design requirements. The paper also discusses other probabilistic risk assessment approaches planned by the ARES I project to support the PD phase and beyond.

  16. Reliability and validity of a treatment fidelity assessment for motivational interviewing targeting sexual risk behaviors in people living with HIV/AIDS.

    PubMed

    Seng, Elizabeth K; Lovejoy, Travis I

    2013-12-01

    This study psychometrically evaluates the Motivational Interviewing Treatment Integrity Code (MITI) to assess fidelity to motivational interviewing to reduce sexual risk behaviors in people living with HIV/AIDS. 74 sessions from a pilot randomized controlled trial of motivational interviewing to reduce sexual risk behaviors in people living with HIV were coded with the MITI. Participants reported sexual behavior at baseline, 3-month, and 6-months. Regarding reliability, excellent inter-rater reliability was achieved for measures of behavior frequency across the 12 sessions coded by both coders; global scales demonstrated poor intraclass correlations, but adequate percent agreement. Regarding validity, principle components analyses indicated that a two-factor model accounted for an adequate amount of variance in the data. These factors were associated with decreases in sexual risk behaviors after treatment. The MITI is a reliable and valid measurement of treatment fidelity for motivational interviewing targeting sexual risk behaviors in people living with HIV/AIDS.

  17. A reliable transmission protocol for ZigBee-based wireless patient monitoring.

    PubMed

    Chen, Shyr-Kuen; Kao, Tsair; Chan, Chia-Tai; Huang, Chih-Ning; Chiang, Chih-Yen; Lai, Chin-Yu; Tung, Tse-Hua; Wang, Pi-Chung

    2012-01-01

    Patient monitoring systems are gaining their importance as the fast-growing global elderly population increases demands for caretaking. These systems use wireless technologies to transmit vital signs for medical evaluation. In a multihop ZigBee network, the existing systems usually use broadcast or multicast schemes to increase the reliability of signals transmission; however, both the schemes lead to significantly higher network traffic and end-to-end transmission delay. In this paper, we present a reliable transmission protocol based on anycast routing for wireless patient monitoring. Our scheme automatically selects the closest data receiver in an anycast group as a destination to reduce the transmission latency as well as the control overhead. The new protocol also shortens the latency of path recovery by initiating route recovery from the intermediate routers of the original path. On the basis of a reliable transmission scheme, we implement a ZigBee device for fall monitoring, which integrates fall detection, indoor positioning, and ECG monitoring. When the triaxial accelerometer of the device detects a fall, the current position of the patient is transmitted to an emergency center through a ZigBee network. In order to clarify the situation of the fallen patient, 4-s ECG signals are also transmitted. Our transmission scheme ensures the successful transmission of these critical messages. The experimental results show that our scheme is fast and reliable. We also demonstrate that our devices can seamlessly integrate with the next generation technology of wireless wide area network, worldwide interoperability for microwave access, to achieve real-time patient monitoring.

  18. Evaluation of blocking performance in ensemble seasonal integrations

    NASA Astrophysics Data System (ADS)

    Casado, M. J.; Doblas-Reyes, F. J.; Pastor, M. A.

    2003-04-01

    EVALUATION OF BLOCKING PERFOMANCE IN ENSEMBLE SEASONAL INTEGRATIONS M. J. Casado (1), F. J. Doblas-Reyes (2), A. Pastor (1) (1) I Instituto Nacional de Meteorología, c/Leonardo Prieto Castro,8,28071 ,Madrid,Spain, mjcasado@inm.es (2) ECMWF, Shinfield Park,RG2 9AX, Reading, UK, f.doblas-reyes@ecmwf.int Climate models have shown a robust inability to reliably predict blocking onset and frequency. This systematic error has been evaluated using multi-model ensemble seasonal integrations carried out in the framework of the Prediction Of climate Variations On Seasonal and interanual Timescales (PROVOST) project and compared to a blocking features assessment of the NCEP re-analyses. The PROVOST GCMs are able to adequately reproduce the spatial NCEP teleconnection patterns over the Northern Hemisphere, being notorious the great spatial correlation coefficient with some of the corresponding NCEP patterns. In spite of that, the different models show a consistent underestimation of blocking frequency which may impact on the ability to predict the seasonal amplitude of the leading modes of variability over the Northern Hemisphere.

  19. Development of a Test Facility for Air Revitalization Technology Evaluation

    NASA Technical Reports Server (NTRS)

    Lu, Sao-Dung; Lin, Amy; Campbell, Melissa; Smith, Frederick; Curley, Su

    2007-01-01

    Development of new air revitalization system (ARS) technology can initially be performed in a subscale laboratory environment, but in order to advance the maturity level, the technology must be tested in an end-to-end integrated environment. The Air Revitalization Technology Evaluation Facility (ARTEF) at the NASA Johnson Space Center serves as a ground test bed for evaluating emerging ARS technologies in an environment representative of spacecraft atmospheres. At the center of the ARTEF is a hypobaric chamber which serves as a sealed atmospheric chamber for closed loop testing. A Human Metabolic Simulator (HMS) was custom-built to simulate the consumption of oxygen, and production of carbon dioxide, moisture and heat of up to eight persons. A multitude of gas analyzers and dew point sensors are used to monitor the chamber atmosphere upstream and downstream of a test article. A robust vacuum system is needed to simulate the vacuum of space. A reliable data acquisition and control system is required to connect all the subsystems together. This paper presents the capabilities of the integrated test facility and some of the issues encountered during the integration.

  20. Lane-Level Vehicle Positioning : Integrating Diverse Systems for Precision and Reliability

    DOT National Transportation Integrated Search

    2013-05-13

    Integrated global positioning system/inertial navigation system (GPS/INS) technology, the backbone of vehicle positioning systems, cannot provide the precision and reliability needed for vehicle-based, lane-level positioning in all driving environmen...

  1. Product assurance technology for procuring reliable, radiation-hard, custom LSI/VLSI electronics

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Allen, R. A.; Blaes, B. R.; Hicks, K. A.; Jennings, G. A.; Lin, Y.-S.; Pina, C. A.; Sayah, H. R.; Zamani, N.

    1989-01-01

    Advanced measurement methods using microelectronic test chips are described. These chips are intended to be used in acquiring the data needed to qualify Application Specific Integrated Circuits (ASIC's) for space use. Efforts were focused on developing the technology for obtaining custom IC's from CMOS/bulk silicon foundries. A series of test chips were developed: a parametric test strip, a fault chip, a set of reliability chips, and the CRRES (Combined Release and Radiation Effects Satellite) chip, a test circuit for monitoring space radiation effects. The technical accomplishments of the effort include: (1) development of a fault chip that contains a set of test structures used to evaluate the density of various process-induced defects; (2) development of new test structures and testing techniques for measuring gate-oxide capacitance, gate-overlap capacitance, and propagation delay; (3) development of a set of reliability chips that are used to evaluate failure mechanisms in CMOS/bulk: interconnect and contact electromigration and time-dependent dielectric breakdown; (4) development of MOSFET parameter extraction procedures for evaluating subthreshold characteristics; (5) evaluation of test chips and test strips on the second CRRES wafer run; (6) two dedicated fabrication runs for the CRRES chip flight parts; and (7) publication of two papers: one on the split-cross bridge resistor and another on asymmetrical SRAM (static random access memory) cells for single-event upset analysis.

  2. Effectiveness of Teamwork in an Integrated Care Setting for Patients with COPD: Development and Testing of a Self-Evaluation Instrument for Interprofessional Teams.

    PubMed

    Van Dijk-de Vries, Anneke N; Duimel-Peeters, Inge G P; Muris, Jean W; Wesseling, Geertjan J; Beusmans, George H M I; Vrijhoef, Hubertus J M

    2016-04-08

    Teamwork between healthcare providers is conditional for the delivery of integrated care. This study aimed to assess the usefulness of the conceptual framework Integrated Team Effectiveness Model for developing and testing of the Integrated Team Effectiveness Instrument. Focus groups with healthcare providers in an integrated care setting for people with chronic obstructive pulmonary disease (COPD) were conducted to examine the recognisability of the conceptual framework and to explore critical success factors for collaborative COPD practice out of this framework. The resulting items were transposed into a pilot instrument. This was reviewed by expert opinion and completed 153 times by healthcare providers. The underlying structure and internal consistency of the instrument were verified by factor analysis and Cronbach's alpha. The conceptual framework turned out to be comprehensible for discussing teamwork effectiveness. The pilot instrument measures 25 relevant aspects of teamwork in integrated COPD care. Factor analysis suggested three reliable components: teamwork effectiveness, team processes and team psychosocial traits (Cronbach's alpha between 0.76 and 0.81). The conceptual framework Integrated Team Effectiveness Model is relevant in developing a practical full-spectrum instrument to facilitate discussing teamwork effectiveness. The Integrated Team Effectiveness Instrument provides a well-founded basis to self-evaluate teamwork effectiveness in integrated COPD care by healthcare providers. Recommendations are provided for the improvement of the instrument.

  3. Behavioral health in the Department of Defense Patient-Centered Medical Home: history, finance, policy, work force development, and evaluation.

    PubMed

    Hunter, Christopher L; Goodie, Jeffrey L

    2012-09-01

    Integrating behavioral health services into the patient-centered medical home (PCMH) is an important component for meeting the goals of easy access, whole person, coordinated, and integrated care. Unlike most PCMH initiatives, the Department of Defense's (DoD) Military Health System (MHS) launched its PCMH initiative with integrated behavioral health services. This integration facilitates the MHS's goal to meet its strategic imperatives under the "Quadruple Aim" of (1) maximizing readiness, (2) improving the health of the population, (3) enhancing the patient experience of care (including quality, access, and reliability), and (4) responsibly managing per capita cost of care. The MHS experience serves as a guide to other organizations. We discuss the historical underpinnings, funding, policy, and work force development strategies that contributed to integrated behavioral healthcare being a mandated component of the MHS's PCMH.

  4. Evaluation of a UMLS Auditing Process of Semantic Type Assignments

    PubMed Central

    Gu, Huanying; Hripcsak, George; Chen, Yan; Morrey, C. Paul; Elhanan, Gai; Cimino, James J.; Geller, James; Perl, Yehoshua

    2007-01-01

    The UMLS is a terminological system that integrates many source terminologies. Each concept in the UMLS is assigned one or more semantic types from the Semantic Network, an upper level ontology for biomedicine. Due to the complexity of the UMLS, errors exist in the semantic type assignments. Finding assignment errors may unearth modeling errors. Even with sophisticated tools, discovering assignment errors requires manual review. In this paper we describe the evaluation of an auditing project of UMLS semantic type assignments. We studied the performance of the auditors who reviewed potential errors. We found that four auditors, interacting according to a multi-step protocol, identified a high rate of errors (one or more errors in 81% of concepts studied) and that results were sufficiently reliable (0.67 to 0.70) for the two most common types of errors. However, reliability was low for each individual auditor, suggesting that review of potential errors is resource-intensive. PMID:18693845

  5. Effects of computing time delay on real-time control systems

    NASA Technical Reports Server (NTRS)

    Shin, Kang G.; Cui, Xianzhong

    1988-01-01

    The reliability of a real-time digital control system depends not only on the reliability of the hardware and software used, but also on the speed in executing control algorithms. The latter is due to the negative effects of computing time delay on control system performance. For a given sampling interval, the effects of computing time delay are classified into the delay problem and the loss problem. Analysis of these two problems is presented as a means of evaluating real-time control systems. As an example, both the self-tuning predicted (STP) control and Proportional-Integral-Derivative (PID) control are applied to the problem of tracking robot trajectories, and their respective effects of computing time delay on control performance are comparatively evaluated. For this example, the STP (PID) controller is shown to outperform the PID (STP) controller in coping with the delay (loss) problem.

  6. Force Evaluation in the Lattice Boltzmann Method Involving Curved Geometry

    NASA Technical Reports Server (NTRS)

    Mei, Renwei; Yu, Dazhi; Shyy, Wei; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The present work investigates two approaches for force evaluation in the lattice Boltzmann equation: the momentum- exchange method and the stress-integration method on the surface of a body. The boundary condition for the particle distribution functions on curved geometries is handled with second order accuracy based on our recent works. The stress-integration method is computationally laborious for two-dimensional flows and in general difficult to implement for three-dimensional flows, while the momentum-exchange method is reliable, accurate, and easy to implement for both two-dimensional and three-dimensional flows. Several test cases are selected to evaluate the present methods, including: (i) two-dimensional pressure-driven channel flow; (ii) two-dimensional uniform flow past a column of cylinders; (iii) two-dimensional flow past a cylinder asymmetrically placed in a channel (with vortex shedding); (iv) three-dimensional pressure-driven flow in a circular pipe; and (v) three-dimensional flow past a sphere. The drag evaluated by using the momentum-exchange method agrees well with the exact or other published results.

  7. Real-time electron density measurements from Cotton-Mouton effect in JET machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brombin, M.; Electrical Engineering Department, Padova University, via Gradenigo 6-A, 35131 Padova; Boboc, A.

    Real-time density profile measurements are essential for advanced fusion tokamak operation and interferometry is a proven method for this task. Nevertheless, as a consequence of edge localized modes, pellet injections, fast density increases, or disruptions, the interferometer is subject to fringe jumps, which produce loss of the signal preventing reliable use of the measured density in a real-time feedback controller. An alternative method to measure the density is polarimetry based on the Cotton-Mouton effect, which is proportional to the line-integrated electron density. A new analysis approach has been implemented and tested to verify the reliability of the Cotton-Mouton measurements formore » a wide range of plasma parameters and to compare the density evaluated from polarimetry with that from interferometry. The density measurements based on polarimetry are going to be integrated in the real-time control system of JET since the difference with the interferometry is within one fringe for more than 90% of the cases.« less

  8. A reliable low cost integrated wireless sensor network for water quality monitoring and level control system in UAE

    NASA Astrophysics Data System (ADS)

    Abou-Elnour, Ali; Khaleeq, Hyder; Abou-Elnour, Ahmad

    2016-04-01

    In the present work, wireless sensor network and real-time controlling and monitoring system are integrated for efficient water quality monitoring for environmental and domestic applications. The proposed system has three main components (i) the sensor circuits, (ii) the wireless communication system, and (iii) the monitoring and controlling unit. LabView software has been used in the implementation of the monitoring and controlling system. On the other hand, ZigBee and myRIO wireless modules have been used to implement the wireless system. The water quality parameters are accurately measured by the present computer based monitoring system and the measurement results are instantaneously transmitted and published with minimum infrastructure costs and maximum flexibility in term of distance or location. The mobility and durability of the proposed system are further enhanced by fully powering via a photovoltaic system. The reliability and effectiveness of the system are evaluated under realistic operating conditions.

  9. Reliability and validity of the Japanese version of the Community Integration Measure for community-dwelling people with schizophrenia.

    PubMed

    Shioda, Ai; Tadaka, Etsuko; Okochi, Ayako

    2017-01-01

    Community integration is an essential right for people with schizophrenia that affects their well-being and quality of life, but no valid instrument exists to measure it in Japan. The aim of the present study is to develop and evaluate the reliability and validity of the Japanese version of the Community Integration Measure (CIM) for people with schizophrenia. The Japanese version of the CIM was developed as a self-administered questionnaire based on the original version of the CIM, which was developed by McColl et al. This study of the Japanese CIM had a cross-sectional design. Construct validity was determined using a confirmatory factor analysis (CFA) and data from 291 community-dwelling people with schizophrenia in Japan. Internal consistency was calculated using Cronbach's alpha. The Lubben Social Network Scale (LSNS-6), the Rosenberg Self-Esteem Scale (RSE) and the UCLA Loneliness Scale, version 3 (UCLALS) were administered to assess the criterion-related validity of the Japanese version of the CIM. The participants were 263 people with schizophrenia who provided valid responses. The Cronbach's alpha was 0.87, and CFA identified one domain with ten items that demonstrated the following values: goodness of fit index = 0.924, adjusted goodness of fit index = 0.881, comparative fit index = 0.925, and root mean square error of approximation = 0.085. The correlation coefficients were 0.43 (p < 0.001) with the LSNS-6, 0.42 (p < 0.001) with the RSE, and -0.57 (p < 0.001) with the UCLALS. The Japanese version of the CIM demonstrated adequate reliability and validity for assessing community integration for people with schizophrenia in Japan.

  10. Design of an integrated airframe/propulsion control system architecture

    NASA Technical Reports Server (NTRS)

    Cohen, Gerald C.; Lee, C. William; Strickland, Michael J.

    1990-01-01

    The design of an integrated airframe/propulsion control system architecture is described. The design is based on a prevalidation methodology that used both reliability and performance tools. An account is given of the motivation for the final design and problems associated with both reliability and performance modeling. The appendices contain a listing of the code for both the reliability and performance model used in the design.

  11. Appraising the quality of medical education research methods: the Medical Education Research Study Quality Instrument and the Newcastle-Ottawa Scale-Education.

    PubMed

    Cook, David A; Reed, Darcy A

    2015-08-01

    The Medical Education Research Study Quality Instrument (MERSQI) and the Newcastle-Ottawa Scale-Education (NOS-E) were developed to appraise methodological quality in medical education research. The study objective was to evaluate the interrater reliability, normative scores, and between-instrument correlation for these two instruments. In 2014, the authors searched PubMed and Google for articles using the MERSQI or NOS-E. They obtained or extracted data for interrater reliability-using the intraclass correlation coefficient (ICC)-and normative scores. They calculated between-scale correlation using Spearman rho. Each instrument contains items concerning sampling, controlling for confounders, and integrity of outcomes. Interrater reliability for overall scores ranged from 0.68 to 0.95. Interrater reliability was "substantial" or better (ICC > 0.60) for nearly all domain-specific items on both instruments. Most instances of low interrater reliability were associated with restriction of range, and raw agreement was usually good. Across 26 studies evaluating published research, the median overall MERSQI score was 11.3 (range 8.9-15.1, of possible 18). Across six studies, the median overall NOS-E score was 3.22 (range 2.08-3.82, of possible 6). Overall MERSQI and NOS-E scores correlated reasonably well (rho 0.49-0.72). The MERSQI and NOS-E are useful, reliable, complementary tools for appraising methodological quality of medical education research. Interpretation and use of their scores should focus on item-specific codes rather than overall scores. Normative scores should be used for relative rather than absolute judgments because different research questions require different study designs.

  12. Safety Identifying of Integral Abutment Bridges under Seismic and Thermal Loads

    PubMed Central

    Easazadeh Far, Narges; Barghian, Majid

    2014-01-01

    Integral abutment bridges (IABs) have many advantages over conventional bridges in terms of strength and maintenance cost. Due to the integrity of these structures uniform thermal and seismic loads are known important ones on the structure performance. Although all bridge design codes consider temperature and earthquake loads separately in their load combinations for conventional bridges, the thermal load is an “always on” load and, during the occurrence of an earthquake, these two important loads act on bridge simultaneously. Evaluating the safety level of IABs under combination of these loads becomes important. In this paper, the safety of IABs—designed by AASHTO LRFD bridge design code—under combination of thermal and seismic loads is studied. To fulfill this aim, first the target reliability indexes under seismic load have been calculated. Then, these analyses for the same bridge under combination of thermal and seismic loads have been repeated and the obtained reliability indexes are compared with target indexes. It is shown that, for an IAB designed by AASHTO LRFD, the indexes have been reduced under combined effects. So, the target level of safety during its design life is not provided and the code's load combination should be changed. PMID:25405232

  13. Addressing Unison and Uniqueness of Reliability and Safety for Better Integration

    NASA Technical Reports Server (NTRS)

    Huang, Zhaofeng; Safie, Fayssal

    2015-01-01

    For a long time, both in theory and in practice, safety and reliability have not been clearly differentiated, which leads to confusion, inefficiency, and sometime counter-productive practices in executing each of these two disciplines. It is imperative to address the uniqueness and the unison of these two disciplines to help both disciplines become more effective and to promote a better integration of the two for enhancing safety and reliability in our products as an overall objective. There are two purposes of this paper. First, it will investigate the uniqueness and unison of each discipline and discuss the interrelationship between the two for awareness and clarification. Second, after clearly understanding the unique roles and interrelationship between the two in a product design and development life cycle, we offer suggestions to enhance the disciplines with distinguished and focused roles, to better integrate the two, and to improve unique sets of skills and tools of reliability and safety processes. From the uniqueness aspect, the paper identifies and discusses the respective uniqueness of reliability and safety from their roles, accountability, nature of requirements, technical scopes, detailed technical approaches, and analysis boundaries. It is misleading to equate unreliable to unsafe, since a safety hazard may or may not be related to the component, sub-system, or system functions, which are primarily what reliability addresses. Similarly, failing-to-function may or may not lead to hazard events. Examples will be given in the paper from aerospace, defense, and consumer products to illustrate the uniqueness and differences between reliability and safety. From the unison aspect, the paper discusses what the commonalities between reliability and safety are, and how these two disciplines are linked, integrated, and supplemented with each other to accomplish the customer requirements and product goals. In addition to understanding the uniqueness in reliability and safety, a better understanding of unison and commonalities will further help in understanding the interaction between reliability and safety. This paper discusses the unison and uniqueness of reliability and safety. It presents some suggestions for better integration of the two disciplines in terms of technical approaches, tools, techniques, and skills to enhance the role of reliability and safety in supporting a product design and development life cycle. The paper also discusses eliminating the redundant effort and minimizing the overlap of reliability and safety analyses for an efficient implementation of the two disciplines.

  14. A modeling framework for evaluating the drought resilience of a surface water supply system under non-stationarity

    DOE PAGES

    Zhao, Gang; Gao, Huilin; Kao, Shih -Chieh; ...

    2018-05-23

    Here, the future resilience of water supply systems is unprecedentedly challenged by non-stationary processes, such as fast population growth and a changing climate. A thorough understanding of how these non-stationarities impact water supply resilience is vital to support sustainable decision making, particularly for large cities in arid and/or semi-arid regions. In this study, a novel modeling framework, which integrates hydrological processes and water management, was established over a representative water limited metropolitan area to evaluate the impacts of water availability and water demand on reservoir storage and water supply reliability. In this framework, climate change induced drought events were selectedmore » from statistically downscaled Coupled Model Intercomparison Project Phase 5 outputs under the Representative Concentration Pathway 8.5 scenario, while future water demand was estimated by the product of projected future population and per capita water use. Compared with the first half of the 21st century (2000–2049), reservoir storage and water supply reliability during the second half century (2050–2099) are projected to reduce by 16.1% and 14.2%, respectively. While both future multi-year droughts and population growth will lower water supply resilience, the uncertainty associated with future climate projection is larger than that associated with urbanization. To reduce the drought risks, a combination of mitigation strategies (e.g., additional conservation, integrating new water sources, and water use redistribution) was found to be the most efficient approach and can significantly improve water supply reliability by as much as 15.9%.« less

  15. A modeling framework for evaluating the drought resilience of a surface water supply system under non-stationarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Gang; Gao, Huilin; Kao, Shih -Chieh

    Here, the future resilience of water supply systems is unprecedentedly challenged by non-stationary processes, such as fast population growth and a changing climate. A thorough understanding of how these non-stationarities impact water supply resilience is vital to support sustainable decision making, particularly for large cities in arid and/or semi-arid regions. In this study, a novel modeling framework, which integrates hydrological processes and water management, was established over a representative water limited metropolitan area to evaluate the impacts of water availability and water demand on reservoir storage and water supply reliability. In this framework, climate change induced drought events were selectedmore » from statistically downscaled Coupled Model Intercomparison Project Phase 5 outputs under the Representative Concentration Pathway 8.5 scenario, while future water demand was estimated by the product of projected future population and per capita water use. Compared with the first half of the 21st century (2000–2049), reservoir storage and water supply reliability during the second half century (2050–2099) are projected to reduce by 16.1% and 14.2%, respectively. While both future multi-year droughts and population growth will lower water supply resilience, the uncertainty associated with future climate projection is larger than that associated with urbanization. To reduce the drought risks, a combination of mitigation strategies (e.g., additional conservation, integrating new water sources, and water use redistribution) was found to be the most efficient approach and can significantly improve water supply reliability by as much as 15.9%.« less

  16. Experimental application of OMA solutions on the model of industrial structure

    NASA Astrophysics Data System (ADS)

    Mironov, A.; Mironovs, D.

    2017-10-01

    It is very important and sometimes even vital to maintain reliability of industrial structures. High quality control during production and structural health monitoring (SHM) in exploitation provides reliable functioning of large, massive and remote structures, like wind generators, pipelines, power line posts, etc. This paper introduces a complex of technological and methodical solutions for SHM and diagnostics of industrial structures, including those that are actuated by periodic forces. Solutions were verified on a wind generator scaled model with integrated system of piezo-film deformation sensors. Simultaneous and multi-patch Operational Modal Analysis (OMA) approaches were implemented as methodical means for structural diagnostics and monitoring. Specially designed data processing algorithms provide objective evaluation of structural state modification.

  17. Comparing Resource Adequacy Metrics and Their Influence on Capacity Value: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibanez, E.; Milligan, M.

    2014-04-01

    Traditional probabilistic methods have been used to evaluate resource adequacy. The increasing presence of variable renewable generation in power systems presents a challenge to these methods because, unlike thermal units, variable renewable generation levels change over time because they are driven by meteorological events. Thus, capacity value calculations for these resources are often performed to simple rules of thumb. This paper follows the recommendations of the North American Electric Reliability Corporation?s Integration of Variable Generation Task Force to include variable generation in the calculation of resource adequacy and compares different reliability metrics. Examples are provided using the Western Interconnection footprintmore » under different variable generation penetrations.« less

  18. Wafer level reliability for high-performance VLSI design

    NASA Technical Reports Server (NTRS)

    Root, Bryan J.; Seefeldt, James D.

    1987-01-01

    As very large scale integration architecture requires higher package density, reliability of these devices has approached a critical level. Previous processing techniques allowed a large window for varying reliability. However, as scaling and higher current densities push reliability to its limit, tighter control and instant feedback becomes critical. Several test structures developed to monitor reliability at the wafer level are described. For example, a test structure was developed to monitor metal integrity in seconds as opposed to weeks or months for conventional testing. Another structure monitors mobile ion contamination at critical steps in the process. Thus the reliability jeopardy can be assessed during fabrication preventing defective devices from ever being placed in the field. Most importantly, the reliability can be assessed on each wafer as opposed to an occasional sample.

  19. Bulk electric system reliability evaluation incorporating wind power and demand side management

    NASA Astrophysics Data System (ADS)

    Huang, Dange

    Electric power systems are experiencing dramatic changes with respect to structure, operation and regulation and are facing increasing pressure due to environmental and societal constraints. Bulk electric system reliability is an important consideration in power system planning, design and operation particularly in the new competitive environment. A wide range of methods have been developed to perform bulk electric system reliability evaluation. Theoretically, sequential Monte Carlo simulation can include all aspects and contingencies in a power system and can be used to produce an informative set of reliability indices. It has become a practical and viable tool for large system reliability assessment technique due to the development of computing power and is used in the studies described in this thesis. The well-being approach used in this research provides the opportunity to integrate an accepted deterministic criterion into a probabilistic framework. This research work includes the investigation of important factors that impact bulk electric system adequacy evaluation and security constrained adequacy assessment using the well-being analysis framework. Load forecast uncertainty is an important consideration in an electrical power system. This research includes load forecast uncertainty considerations in bulk electric system reliability assessment and the effects on system, load point and well-being indices and reliability index probability distributions are examined. There has been increasing worldwide interest in the utilization of wind power as a renewable energy source over the last two decades due to enhanced public awareness of the environment. Increasing penetration of wind power has significant impacts on power system reliability, and security analyses become more uncertain due to the unpredictable nature of wind power. The effects of wind power additions in generating and bulk electric system reliability assessment considering site wind speed correlations and the interactive effects of wind power and load forecast uncertainty on system reliability are examined. The concept of the security cost associated with operating in the marginal state in the well-being framework is incorporated in the economic analyses associated with system expansion planning including wind power and load forecast uncertainty. Overall reliability cost/worth analyses including security cost concepts are applied to select an optimal wind power injection strategy in a bulk electric system. The effects of the various demand side management measures on system reliability are illustrated using the system, load point, and well-being indices, and the reliability index probability distributions. The reliability effects of demand side management procedures in a bulk electric system including wind power and load forecast uncertainty considerations are also investigated. The system reliability effects due to specific demand side management programs are quantified and examined in terms of their reliability benefits.

  20. Feasibility model of a high reliability five-year tape transport, Volume 1. [development, performance, and test results

    NASA Technical Reports Server (NTRS)

    Eshleman, R. L.; Meyers, A. P.; Davidson, W. A.; Gortowski, R. C.; Anderson, M. E.

    1973-01-01

    The development, performance, and test results for the spaceborne magnetic tape transport are discussed. An analytical model of the tape transport was used to optimize its conceptual design. Each of the subsystems was subjected to reliability analyses which included structural integrity, maintenance of system performance within acceptable bounds, and avoidance of fatigue failure. These subsystems were also compared with each other in order to evaluate reliability characteristics. The transport uses no mechanical couplings. Four drive motors, one for each reel and one for each of two capstans, are used in a differential mode. There are two hybrid, spherical, cone tapered-crown rollers for tape guidance. Storage of the magnetic tape is provided by a reel assembly which includes the reel, a reel support structure and bearings, dust seals, and a dc drive motor. A summary of transport test results on tape guidance, flutter, and skew is provided.

  1. Efficient reliability analysis of structures with the rotational quasi-symmetric point- and the maximum entropy methods

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Dang, Chao; Kong, Fan

    2017-10-01

    This paper presents a new method for efficient structural reliability analysis. In this method, a rotational quasi-symmetric point method (RQ-SPM) is proposed for evaluating the fractional moments of the performance function. Then, the derivation of the performance function's probability density function (PDF) is carried out based on the maximum entropy method in which constraints are specified in terms of fractional moments. In this regard, the probability of failure can be obtained by a simple integral over the performance function's PDF. Six examples, including a finite element-based reliability analysis and a dynamic system with strong nonlinearity, are used to illustrate the efficacy of the proposed method. All the computed results are compared with those by Monte Carlo simulation (MCS). It is found that the proposed method can provide very accurate results with low computational effort.

  2. A tutorial on the CARE III approach to reliability modeling. [of fault tolerant avionics and control systems

    NASA Technical Reports Server (NTRS)

    Trivedi, K. S.; Geist, R. M.

    1981-01-01

    The CARE 3 reliability model for aircraft avionics and control systems is described by utilizing a number of examples which frequently use state-of-the-art mathematical modeling techniques as a basis for their exposition. Behavioral decomposition followed by aggregration were used in an attempt to deal with reliability models with a large number of states. A comprehensive set of models of the fault-handling processes in a typical fault-tolerant system was used. These models were semi-Markov in nature, thus removing the usual restrictions of exponential holding times within the coverage model. The aggregate model is a non-homogeneous Markov chain, thus allowing the times to failure to posses Weibull-like distributions. Because of the departures from traditional models, the solution method employed is that of Kolmogorov integral equations, which are evaluated numerically.

  3. Formation of integrated structural units using the systematic and integrated method when implementing high-rise construction projects

    NASA Astrophysics Data System (ADS)

    Abramov, Ivan

    2018-03-01

    Development of design documentation for a future construction project gives rise to a number of issues with the main one being selection of manpower for structural units of the project's overall implementation system. Well planned and competently staffed integrated structural construction units will help achieve a high level of reliability and labor productivity and avoid negative (extraordinary) situations during the construction period eventually ensuring improved project performance. Research priorities include the development of theoretical recommendations for enhancing reliability of a structural unit staffed as an integrated construction crew. The author focuses on identification of destabilizing factors affecting formation of an integrated construction crew; assessment of these destabilizing factors; based on the developed mathematical model, highlighting the impact of these factors on the integration criterion with subsequent identification of an efficiency and reliability criterion for the structural unit in general. The purpose of this article is to develop theoretical recommendations and scientific and methodological provisions of an organizational and technological nature in order to identify a reliability criterion for a structural unit based on manpower integration and productivity criteria. With this purpose in mind, complex scientific tasks have been defined requiring special research, development of corresponding provisions and recommendations based on the system analysis findings presented herein.

  4. Damage Tolerance Assessment Branch

    NASA Technical Reports Server (NTRS)

    Walker, James L.

    2013-01-01

    The Damage Tolerance Assessment Branch evaluates the ability of a structure to perform reliably throughout its service life in the presence of a defect, crack, or other form of damage. Such assessment is fundamental to the use of structural materials and requires an integral blend of materials engineering, fracture testing and analysis, and nondestructive evaluation. The vision of the Branch is to increase the safety of manned space flight by improving the fracture control and the associated nondestructive evaluation processes through development and application of standards, guidelines, advanced test and analytical methods. The Branch also strives to assist and solve non-aerospace related NDE and damage tolerance problems, providing consultation, prototyping and inspection services.

  5. Simultaneous measurements of kinematics and fMRI: compatibility assessment and case report on recovery evaluation of one stroke patient.

    PubMed

    Casellato, Claudia; Ferrante, Simona; Gandolla, Marta; Volonterio, Nicola; Ferrigno, Giancarlo; Baselli, Giuseppe; Frattini, Tiziano; Martegani, Alberto; Molteni, Franco; Pedrocchi, Alessandra

    2010-09-23

    Correlating the features of the actual executed movement with the associated cortical activations can enhance the reliability of the functional Magnetic Resonance Imaging (fMRI) data interpretation. This is crucial for longitudinal evaluation of motor recovery in neurological patients and for investigating detailed mutual interactions between activation maps and movement parameters.Therefore, we have explored a new set-up combining fMRI with an optoelectronic motion capture system, which provides a multi-parameter quantification of the performed motor task. The cameras of the motion system were mounted inside the MR room and passive markers were placed on the subject skin, without any risk or encumbrance. The versatile set-up allows 3-dimensional multi-segment acquisitions including recording of possible mirror movements, and it guarantees a high inter-sessions repeatability.We demonstrated the integrated set-up reliability through compatibility tests. Then, an fMRI block-design protocol combined with kinematic recordings was tested on a healthy volunteer performing finger tapping and ankle dorsal- plantar-flexion. A preliminary assessment of clinical applicability and perspectives was carried out by pre- and post rehabilitation acquisitions on a hemiparetic patient performing ankle dorsal- plantar-flexion. For all sessions, the proposed method integrating kinematic data into the model design was compared with the standard analysis. Phantom acquisitions demonstrated the not-compromised image quality. Healthy subject sessions showed the protocols feasibility and the model reliability with the kinematic regressor. The patient results showed that brain activation maps were more consistent when the images analysis included in the regression model, besides the stimuli, the kinematic regressor quantifying the actual executed movement (movement timing and amplitude), proving a significant model improvement. Moreover, concerning motor recovery evaluation, after one rehabilitation month, a greater cortical area was activated during exercise, in contrast to the usual focalization associated with functional recovery. Indeed, the availability of kinematics data allows to correlate this wider area with a higher frequency and a larger amplitude of movement. The kinematic acquisitions resulted to be reliable and versatile to enrich the fMRI images information and therefore the evaluation of motor recovery in neurological patients where large differences between required and performed motion can be expected.

  6. Simultaneous measurements of kinematics and fMRI: compatibility assessment and case report on recovery evaluation of one stroke patient

    PubMed Central

    2010-01-01

    Background Correlating the features of the actual executed movement with the associated cortical activations can enhance the reliability of the functional Magnetic Resonance Imaging (fMRI) data interpretation. This is crucial for longitudinal evaluation of motor recovery in neurological patients and for investigating detailed mutual interactions between activation maps and movement parameters. Therefore, we have explored a new set-up combining fMRI with an optoelectronic motion capture system, which provides a multi-parameter quantification of the performed motor task. Methods The cameras of the motion system were mounted inside the MR room and passive markers were placed on the subject skin, without any risk or encumbrance. The versatile set-up allows 3-dimensional multi-segment acquisitions including recording of possible mirror movements, and it guarantees a high inter-sessions repeatability. We demonstrated the integrated set-up reliability through compatibility tests. Then, an fMRI block-design protocol combined with kinematic recordings was tested on a healthy volunteer performing finger tapping and ankle dorsal- plantar-flexion. A preliminary assessment of clinical applicability and perspectives was carried out by pre- and post rehabilitation acquisitions on a hemiparetic patient performing ankle dorsal- plantar-flexion. For all sessions, the proposed method integrating kinematic data into the model design was compared with the standard analysis. Results Phantom acquisitions demonstrated the not-compromised image quality. Healthy subject sessions showed the protocols feasibility and the model reliability with the kinematic regressor. The patient results showed that brain activation maps were more consistent when the images analysis included in the regression model, besides the stimuli, the kinematic regressor quantifying the actual executed movement (movement timing and amplitude), proving a significant model improvement. Moreover, concerning motor recovery evaluation, after one rehabilitation month, a greater cortical area was activated during exercise, in contrast to the usual focalization associated with functional recovery. Indeed, the availability of kinematics data allows to correlate this wider area with a higher frequency and a larger amplitude of movement. Conclusions The kinematic acquisitions resulted to be reliable and versatile to enrich the fMRI images information and therefore the evaluation of motor recovery in neurological patients where large differences between required and performed motion can be expected. PMID:20863391

  7. Defense Infrastructure: Challenges Increase Risks for Providing Timely Infrastructure Support for Army Installations Expecting Substantial Personnel Growth

    DTIC Science & Technology

    2007-09-01

    Office Why GAO Did This Study Highlights Accountability Integrity Reliability September 2007 DEFENSE INFRASTRUCTURE Challenges Increase Risks for...authority to conduct evaluations on his own initiative. It addresses (1) the challenges and associated risks the Army faces in providing for timely...but it faces several complex implementation challenges that risk late provision of needed infrastructure to adequately support incoming personnel

  8. Integrating field methodology and web-based data collection to assess the reliability of the Alcohol Use Disorders Identification Test (AUDIT).

    PubMed

    Celio, Mark A; Vetter-O'Hagen, Courtney S; Lisman, Stephen A; Johansen, Gerard E; Spear, Linda P

    2011-12-01

    Field methodologies offer a unique opportunity to collect ecologically valid data on alcohol use and its associated problems within natural drinking environments. However, limitations in follow-up data collection methods have left unanswered questions regarding the psychometric properties of field-based measures. The aim of the current study is to evaluate the reliability of self-report data collected in a naturally occurring environment - as indexed by the Alcohol Use Disorders Identification Test (AUDIT) - compared to self-report data obtained through an innovative web-based follow-up procedure. Individuals recruited outside of bars (N=170; mean age=21; range 18-32) provided a BAC sample and completed a self-administered survey packet that included the AUDIT. BAC feedback was provided anonymously through a dedicated web page. Upon sign in, follow-up participants (n=89; 52%) were again asked to complete the AUDIT before receiving their BAC feedback. Reliability analyses demonstrated that AUDIT scores - both continuous and dichotomized at the standard cut-point - were stable across field- and web-based administrations. These results suggest that self-report data obtained from acutely intoxicated individuals in naturally occurring environments are reliable when compared to web-based data obtained after a brief follow-up interval. Furthermore, the results demonstrate the feasibility, utility, and potential of integrating field methods and web-based data collection procedures. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Perceptual attraction in tool use: evidence for a reliability-based weighting mechanism.

    PubMed

    Debats, Nienke B; Ernst, Marc O; Heuer, Herbert

    2017-04-01

    Humans are well able to operate tools whereby their hand movement is linked, via a kinematic transformation, to a spatially distant object moving in a separate plane of motion. An everyday example is controlling a cursor on a computer monitor. Despite these separate reference frames, the perceived positions of the hand and the object were found to be biased toward each other. We propose that this perceptual attraction is based on the principles by which the brain integrates redundant sensory information of single objects or events, known as optimal multisensory integration. That is, 1 ) sensory information about the hand and the tool are weighted according to their relative reliability (i.e., inverse variances), and 2 ) the unisensory reliabilities sum up in the integrated estimate. We assessed whether perceptual attraction is consistent with optimal multisensory integration model predictions. We used a cursor-control tool-use task in which we manipulated the relative reliability of the unisensory hand and cursor position estimates. The perceptual biases shifted according to these relative reliabilities, with an additional bias due to contextual factors that were present in experiment 1 but not in experiment 2 The biased position judgments' variances were, however, systematically larger than the predicted optimal variances. Our findings suggest that the perceptual attraction in tool use results from a reliability-based weighting mechanism similar to optimal multisensory integration, but that certain boundary conditions for optimality might not be satisfied. NEW & NOTEWORTHY Kinematic tool use is associated with a perceptual attraction between the spatially separated hand and the effective part of the tool. We provide a formal account for this phenomenon, thereby showing that the process behind it is similar to optimal integration of sensory information relating to single objects. Copyright © 2017 the American Physiological Society.

  10. National Conference on Integrated Resource Planning: Proceedings

    NASA Astrophysics Data System (ADS)

    Until recently, state regulators have focused most of their attention on the development of least-cost or integrated resource planning (IRP) processes for electric utilities. A number of commissions are beginning to scrutinize the planning processes of local gas distribution companies (LDCs) because of the increased control that LDCs have over their purchased gas costs (as well as the associated risks) and because of questions surrounding the role and potential of gas end-use efficiency options. Traditionally, resource planning (LDCs) has concentrated on options for purchasing and storing gas. Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers' short-term and long-term energy service needs at the lowest cost. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. The National Association of Regulatory Utility Commissioners' (NARUC) Energy Conservation committee asked Lawrence Berkeley Laboratory (LBL) to survey state PUCs to determine the extent to which they have undertaken least cost planning for gas utilities. The survey included the following topics: status of state PUC least-cost planning regulations and practices for gas utilities; type and scope of natural gas DSM programs in effect, including fuel substitution; economic tests and analysis methods used to evaluate DSM programs; relationship between prudency reviews of gas utility purchasing practices and integrated resource planning; and key regulatory issues facing gas utilities during the next five years.

  11. Intelligent systems technology infrastructure for integrated systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry, Jr.

    1991-01-01

    Significant advances have occurred during the last decade in intelligent systems technologies (a.k.a. knowledge-based systems, KBS) including research, feasibility demonstrations, and technology implementations in operational environments. Evaluation and simulation data obtained to date in real-time operational environments suggest that cost-effective utilization of intelligent systems technologies can be realized for Automated Rendezvous and Capture applications. The successful implementation of these technologies involve a complex system infrastructure integrating the requirements of transportation, vehicle checkout and health management, and communication systems without compromise to systems reliability and performance. The resources that must be invoked to accomplish these tasks include remote ground operations and control, built-in system fault management and control, and intelligent robotics. To ensure long-term evolution and integration of new validated technologies over the lifetime of the vehicle, system interfaces must also be addressed and integrated into the overall system interface requirements. An approach for defining and evaluating the system infrastructures including the testbed currently being used to support the on-going evaluations for the evolutionary Space Station Freedom Data Management System is presented and discussed. Intelligent system technologies discussed include artificial intelligence (real-time replanning and scheduling), high performance computational elements (parallel processors, photonic processors, and neural networks), real-time fault management and control, and system software development tools for rapid prototyping capabilities.

  12. Homotopy perturbation method: a versatile tool to evaluate linear and nonlinear fuzzy Volterra integral equations of the second kind.

    PubMed

    Narayanamoorthy, S; Sathiyapriya, S P

    2016-01-01

    In this article, we focus on linear and nonlinear fuzzy Volterra integral equations of the second kind and we propose a numerical scheme using homotopy perturbation method (HPM) to obtain fuzzy approximate solutions to them. To facilitate the benefits of this proposal, an algorithmic form of the HPM is also designed to handle the same. In order to illustrate the potentiality of the approach, two test problems are offered and the obtained numerical results are compared with the existing exact solutions and are depicted in terms of plots to reveal its precision and reliability.

  13. Computational tools and lattice design for the PEP-II B-Factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Irwin, J.; Nosochkov, Y.

    1997-02-01

    Several accelerator codes were used to design the PEP-II lattices, ranging from matrix-based codes, such as MAD and DIMAD, to symplectic-integrator codes, such as TRACY and DESPOT. In addition to element-by-element tracking, we constructed maps to determine aberration strengths. Furthermore, we have developed a fast and reliable method (nPB tracking) to track particles with a one-turn map. This new technique allows us to evaluate performance of the lattices on the entire tune-plane. Recently, we designed and implemented an object-oriented code in C++ called LEGO which integrates and expands upon TRACY and DESPOT. {copyright} {ital 1997 American Institute of Physics.}

  14. Computational tools and lattice design for the PEP-II B-Factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Yunhai; Irwin, John; Nosochkov, Yuri

    1997-02-01

    Several accelerator codes were used to design the PEP-II lattices, ranging from matrix-based codes, such as MAD and DIMAD, to symplectic-integrator codes, such as TRACY and DESPOT. In addition to element-by-element tracking, we constructed maps to determine aberration strengths. Furthermore, we have developed a fast and reliable method (nPB tracking) to track particles with a one-turn map. This new technique allows us to evaluate performance of the lattices on the entire tune-plane. Recently, we designed and implemented an object-oriented code in C++ called LEGO which integrates and expands upon TRACY and DESPOT.

  15. Long term in vitro stability of fully integrated wireless neural interfaces based on Utah slant electrode array

    NASA Astrophysics Data System (ADS)

    Sharma, Asha; Rieth, Loren; Tathireddy, Prashant; Harrison, Reid; Solzbacher, Florian

    2010-02-01

    We herein report in vitro functional stability and recording longevity of a fully integrated wireless neural interface (INI). The INI uses biocompatible Parylene-C as an encapsulation layer, and was immersed in phosphate buffered saline (PBS) for a period of over 150 days. The full functionality (wireless radio-frequency power, command, and signal transmission) and the ability of INI to record artificial action potentials even after 150 days of PBS soaking without any change in signal/noise amplitude constitutes a major milestone in long term stability, and evaluate the encapsulation reliability, functional stability, and potential usefulness for future chronic implants.

  16. DEPEND: A simulation-based environment for system level dependability analysis

    NASA Technical Reports Server (NTRS)

    Goswami, Kumar; Iyer, Ravishankar K.

    1992-01-01

    The design and evaluation of highly reliable computer systems is a complex issue. Designers mostly develop such systems based on prior knowledge and experience and occasionally from analytical evaluations of simplified designs. A simulation-based environment called DEPEND which is especially geared for the design and evaluation of fault-tolerant architectures is presented. DEPEND is unique in that it exploits the properties of object-oriented programming to provide a flexible framework with which a user can rapidly model and evaluate various fault-tolerant systems. The key features of the DEPEND environment are described, and its capabilities are illustrated with a detailed analysis of a real design. In particular, DEPEND is used to simulate the Unix based Tandem Integrity fault-tolerance and evaluate how well it handles near-coincident errors caused by correlated and latent faults. Issues such as memory scrubbing, re-integration policies, and workload dependent repair times which affect how the system handles near-coincident errors are also evaluated. Issues such as the method used by DEPEND to simulate error latency and the time acceleration technique that provides enormous simulation speed up are also discussed. Unlike any other simulation-based dependability studies, the use of these approaches and the accuracy of the simulation model are validated by comparing the results of the simulations, with measurements obtained from fault injection experiments conducted on a production Tandem Integrity machine.

  17. Ultrasound and Functional Assessment of Transtendinous Repairs of Partial-Thickness Articular-Sided Rotator Cuff Tears.

    PubMed

    Ostrander, Roger V; Klauser, Jeffrey M; Menon, Sanjay; Hackel, Joshua G

    2017-03-01

    Partial-thickness articular-sided rotator cuff tears are a frequent source of shoulder pain. Despite conservative measures, some patients continue to be symptomatic and require surgical management. However, there is some controversy as to which surgical approach results in the best outcomes for grade 3 tears. The purpose of this study was to evaluate repair integrity and the clinical results of patients treated with transtendinous repair of high-grade partial-thickness articular-sided rotator cuff tears. Our hypothesis was that transtendinous repairs would result in reliable healing and acceptable functional outcomes. Case series; Level of evidence, 4. Twenty patients with a minimum follow-up of 2 years were included in the study. All patients underwent arthroscopic repair of high-grade partial-thickness rotator cuff tears utilizing a transtendinous technique by a single surgeon. At latest follow-up, the repair integrity was evaluated using ultrasound imaging, and functional scores were calculated. Ultrasound evaluation demonstrated that 18 of 20 patients had complete healing with a normal-appearing rotator cuff. Two patients had a minor residual partial tear. Sixteen of 20 patients had no pain on visual analog scale. Four patients complained of mild intermittent residual pain. All patients were rated as "excellent" by both the University of California at Los Angeles Shoulder Score and the Simple Shoulder Test. The transtendon technique for the repair of articular-sided high-grade partial rotator cuff tears results in reliable tendon healing and excellent functional outcomes.

  18. Mechanical System Reliability and Cost Integration Using a Sequential Linear Approximation Method

    NASA Technical Reports Server (NTRS)

    Kowal, Michael T.

    1997-01-01

    The development of new products is dependent on product designs that incorporate high levels of reliability along with a design that meets predetermined levels of system cost. Additional constraints on the product include explicit and implicit performance requirements. Existing reliability and cost prediction methods result in no direct linkage between variables affecting these two dominant product attributes. A methodology to integrate reliability and cost estimates using a sequential linear approximation method is proposed. The sequential linear approximation method utilizes probability of failure sensitivities determined from probabilistic reliability methods as well a manufacturing cost sensitivities. The application of the sequential linear approximation method to a mechanical system is demonstrated.

  19. CB4-03: An Eye on the Future: A Review of Data Virtualization Techniques to Improve Research Analytics

    PubMed Central

    Richter, Jack; McFarland, Lela; Bredfeldt, Christine

    2012-01-01

    Background/Aims Integrating data across systems can be a daunting process. The traditional method of moving data to a common location, mapping fields with different formats and meanings, and performing data cleaning activities to ensure valid and reliable integration across systems can be both expensive and extremely time consuming. As the scope of needed research data increases, the traditional methodology may not be sustainable. Data Virtualization provides an alternative to traditional methods that may reduce the effort required to integrate data across disparate systems. Objective Our goal was to survey new methods in data integration, cloud computing, enterprise data management and virtual data management for opportunities to increase the efficiency of producing VDW and similar data sets. Methods Kaiser Permanente Information Technology (KPIT), in collaboration with the Mid-Atlantic Permanente Research Institute (MAPRI) reviewed methodologies in the burgeoning field of Data Virtualization. We identified potential strengths and weaknesses of new approaches to data integration. For each method, we evaluated its potential application for producing effective research data sets. Results Data Virtualization provides opportunities to reduce the amount of data movement required to integrate data sources on different platforms in order to produce research data sets. Additionally, Data Virtualization also includes methods for managing “fuzzy” matching used to match fields known to have poor reliability such as names, addresses and social security numbers. These methods could improve the efficiency of integrating state and federal data such as patient race, death, and tumors with internal electronic health record data. Discussion The emerging field of Data Virtualization has considerable potential for increasing the efficiency of producing research data sets. An important next step will be to develop a proof of concept project that will help us understand to benefits and drawbacks of these techniques.

  20. An adaptive cubature formula for efficient reliability assessment of nonlinear structural dynamic systems

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Kong, Fan

    2018-05-01

    Extreme value distribution (EVD) evaluation is a critical topic in reliability analysis of nonlinear structural dynamic systems. In this paper, a new method is proposed to obtain the EVD. The maximum entropy method (MEM) with fractional moments as constraints is employed to derive the entire range of EVD. Then, an adaptive cubature formula is proposed for fractional moments assessment involved in MEM, which is closely related to the efficiency and accuracy for reliability analysis. Three point sets, which include a total of 2d2 + 1 integration points in the dimension d, are generated in the proposed formula. In this regard, the efficiency of the proposed formula is ensured. Besides, a "free" parameter is introduced, which makes the proposed formula adaptive with the dimension. The "free" parameter is determined by arranging one point set adjacent to the boundary of the hyper-sphere which contains the bulk of total probability. In this regard, the tail distribution may be better reproduced and the fractional moments could be evaluated with accuracy. Finally, the proposed method is applied to a ten-storey shear frame structure under seismic excitations, which exhibits strong nonlinearity. The numerical results demonstrate the efficacy of the proposed method.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Cui, Mingjian; Hodge, Bri-Mathias

    The large variability and uncertainty in wind power generation present a concern to power system operators, especially given the increasing amounts of wind power being integrated into the electric power system. Large ramps, one of the biggest concerns, can significantly influence system economics and reliability. The Wind Forecast Improvement Project (WFIP) was to improve the accuracy of forecasts and to evaluate the economic benefits of these improvements to grid operators. This paper evaluates the ramp forecasting accuracy gained by improving the performance of short-term wind power forecasting. This study focuses on the WFIP southern study region, which encompasses most ofmore » the Electric Reliability Council of Texas (ERCOT) territory, to compare the experimental WFIP forecasts to the existing short-term wind power forecasts (used at ERCOT) at multiple spatial and temporal scales. The study employs four significant wind power ramping definitions according to the power change magnitude, direction, and duration. The optimized swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental WFIP forecasts improve the accuracy of the wind power ramp forecasting. This improvement can result in substantial costs savings and power system reliability enhancements.« less

  2. Development of Equivalent Material Properties of Microbump for Simulating Chip Stacking Packaging

    PubMed Central

    Lee, Chang-Chun; Tzeng, Tzai-Liang; Huang, Pei-Chen

    2015-01-01

    A three-dimensional integrated circuit (3D-IC) structure with a significant scale mismatch causes difficulty in analytic model construction. This paper proposes a simulation technique to introduce an equivalent material composed of microbumps and their surrounding wafer level underfill (WLUF). The mechanical properties of this equivalent material, including Young’s modulus (E), Poisson’s ratio, shear modulus, and coefficient of thermal expansion (CTE), are directly obtained by applying either a tensile load or a constant displacement, and by increasing the temperature during simulations, respectively. Analytic results indicate that at least eight microbumps at the outermost region of the chip stacking structure need to be considered as an accurate stress/strain contour in the concerned region. In addition, a factorial experimental design with analysis of variance is proposed to optimize chip stacking structure reliability with four factors: chip thickness, substrate thickness, CTE, and E-value. Analytic results show that the most significant factor is CTE of WLUF. This factor affects microbump reliability and structural warpage under a temperature cycling load and high-temperature bonding process. WLUF with low CTE and high E-value are recommended to enhance the assembly reliability of the 3D-IC architecture. PMID:28793495

  3. An Evaluation Method of Equipment Reliability Configuration Management

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Feng, Weijia; Zhang, Wei; Li, Yuan

    2018-01-01

    At present, many equipment development companies have been aware of the great significance of reliability of the equipment development. But, due to the lack of effective management evaluation method, it is very difficult for the equipment development company to manage its own reliability work. Evaluation method of equipment reliability configuration management is to determine the reliability management capabilities of equipment development company. Reliability is not only designed, but also managed to achieve. This paper evaluates the reliability management capabilities by reliability configuration capability maturity model(RCM-CMM) evaluation method.

  4. Application of SAW method for multiple-criteria comparative analysis of the reliability of heat supply organizations

    NASA Astrophysics Data System (ADS)

    Akhmetova, I. G.; Chichirova, N. D.

    2016-12-01

    Heat supply is the most energy-consuming sector of the economy. Approximately 30% of all used primary fuel-and-energy resources is spent on municipal heat-supply needs. One of the key indicators of activity of heat-supply organizations is the reliability of an energy facility. The reliability index of a heat supply organization is of interest to potential investors for assessing risks when investing in projects. The reliability indices established by the federal legislation are actually reduced to a single numerical factor, which depends on the number of heat-supply outages in connection with disturbances in operation of heat networks and the volume of their resource recovery in the calculation year. This factor is rather subjective and may change in a wide range during several years. A technique is proposed for evaluating the reliability of heat-supply organizations with the use of the simple additive weighting (SAW) method. The technique for integrated-index determination satisfies the following conditions: the reliability level of the evaluated heat-supply system is represented maximum fully and objectively; the information used for the reliability-index evaluation is easily available (is located on the Internet in accordance with demands of data-disclosure standards). For reliability estimation of heat-supply organizations, the following indicators were selected: the wear of equipment of thermal energy sources, the wear of heat networks, the number of outages of supply of thermal energy (heat carrier due to technological disturbances on heat networks per 1 km of heat networks), the number of outages of supply of thermal energy (heat carrier due to technologic disturbances on thermal energy sources per 1 Gcal/h of installed power), the share of expenditures in the cost of thermal energy aimed at recovery of the resource (renewal of fixed assets), coefficient of renewal of fixed assets, and a coefficient of fixed asset retirement. A versatile program is developed and the analysis of heat-supply organizations is performed by the example of the Republic of Tatarstan. The assessment system is based on construction of comparative ratings of heat-supply organizations. A rating is the assessment of reliability of the organization, is characterized by a numerical value, and makes it possible to compare organizations engaged in the same kind of activity between each other.

  5. The assessment of fidelity in a motor speech-treatment approach

    PubMed Central

    Hayden, Deborah; Namasivayam, Aravind Kumar; Ward, Roslyn

    2015-01-01

    Objective To demonstrate the application of the constructs of treatment fidelity for research and clinical practice for motor speech disorders, using the Prompts for Restructuring Oral Muscular Phonetic Targets (PROMPT) Fidelity Measure (PFM). Treatment fidelity refers to a set of procedures used to monitor and improve the validity and reliability of behavioral intervention. While the concept of treatment fidelity has been emphasized in medical and allied health sciences, documentation of procedures for the systematic evaluation of treatment fidelity in Speech-Language Pathology is sparse. Methods The development and iterative process to improve the PFM, is discussed. Further, the PFM is evaluated against recommended measurement strategies documented in the literature. This includes evaluating the appropriateness of goals and objectives; and the training of speech–language pathologists, using direct and indirect procedures. Three expert raters scored the PFM to examine inter-rater reliability. Results Three raters, blinded to each other's scores, completed fidelity ratings on three separate occasions. Inter-rater reliability, using Krippendorff's Alpha, was >80% for the PFM on the final scoring occasion. This indicates strong inter-rater reliability. Conclusion The development of fidelity measures for the training of service providers and treatment delivery is important in specialized treatment approaches where certain ‘active ingredients’ (e.g. specific treatment targets and therapeutic techniques) must be present in order for treatment to be effective. The PFM reflects evidence-based practice by integrating treatment delivery and clinical skill as a single quantifiable metric. PFM enables researchers and clinicians to objectively measure treatment outcomes within the PROMPT approach. PMID:26213623

  6. Effectiveness of Teamwork in an Integrated Care Setting for Patients with COPD: Development and Testing of a Self-Evaluation Instrument for Interprofessional Teams

    PubMed Central

    Van Dijk-de Vries, Anneke N.; Duimel-Peeters, Inge G. P.; Muris, Jean W.; Wesseling, Geertjan J.; Beusmans, George H. M. I.

    2016-01-01

    Introduction: Teamwork between healthcare providers is conditional for the delivery of integrated care. This study aimed to assess the usefulness of the conceptual framework Integrated Team Effectiveness Model for developing and testing of the Integrated Team Effectiveness Instrument. Theory and methods: Focus groups with healthcare providers in an integrated care setting for people with chronic obstructive pulmonary disease (COPD) were conducted to examine the recognisability of the conceptual framework and to explore critical success factors for collaborative COPD practice out of this framework. The resulting items were transposed into a pilot instrument. This was reviewed by expert opinion and completed 153 times by healthcare providers. The underlying structure and internal consistency of the instrument were verified by factor analysis and Cronbach’s alpha. Results: The conceptual framework turned out to be comprehensible for discussing teamwork effectiveness. The pilot instrument measures 25 relevant aspects of teamwork in integrated COPD care. Factor analysis suggested three reliable components: teamwork effectiveness, team processes and team psychosocial traits (Cronbach’s alpha between 0.76 and 0.81). Conclusions and discussion: The conceptual framework Integrated Team Effectiveness Model is relevant in developing a practical full-spectrum instrument to facilitate discussing teamwork effectiveness. The Integrated Team Effectiveness Instrument provides a well-founded basis to self-evaluate teamwork effectiveness in integrated COPD care by healthcare providers. Recommendations are provided for the improvement of the instrument. PMID:27616953

  7. Imaging of common breast implants and implant-related complications: A pictorial essay

    PubMed Central

    Shah, Amisha T; Jankharia, Bijal B

    2016-01-01

    The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance imaging of silicone breast implants, with its high sensitivity and specificity for detecting implant rupture, is the most reliable modality to asses implant integrity. Whichever imaging modality is used, the overall aim of imaging breast implants is to provide the pertinent information about implant integrity, detect implant failures, and to detect breast conditions unrelated to the implants, such as cancer. PMID:27413269

  8. Imaging of common breast implants and implant-related complications: A pictorial essay.

    PubMed

    Shah, Amisha T; Jankharia, Bijal B

    2016-01-01

    The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance imaging of silicone breast implants, with its high sensitivity and specificity for detecting implant rupture, is the most reliable modality to asses implant integrity. Whichever imaging modality is used, the overall aim of imaging breast implants is to provide the pertinent information about implant integrity, detect implant failures, and to detect breast conditions unrelated to the implants, such as cancer.

  9. Implications of using thermocouple thermometry in 27 MHz capacitively coupled interstitial hyperthermia.

    PubMed

    Crezee, J; van der Koijk, J F; Kaatee, R S; Lagendijk, J J

    1997-04-01

    The 27 MHz Multi Electrode Current Source (MECS) interstitial hyperthermia system uses segmented electrodes, 10-20 mm long, to steer the 3D power deposition. This power control at a scale of 1-2 cm requires detailed and accurate temperature feedback data. To this end seven-point thermocouples are integrated into the probes. The aim of this work was to evaluate the feasibility and reliability of integrated thermometry in the 27 MHz MECS system, with special attention to the interference between electrode and thermometry and its effect on system performance. We investigated the impact of a seven-sensor thermocouple probe (outer diameter 150 microns) on the apparent impedance and power output of a 20 mm dual electrode (O.D. 1.5 mm) in a polyethylene catheter in a muscle equivalent medium (sigma 1 = 0.6 S m-1). The cross coupling between electrode and thermocouple was found to be small (1-2 pF) and to cause no problems in the dual-electrode mode, and only minimal problems in the single-electrode mode. Power loss into the thermometry system can be prevented using simple filters. The temperature readings are reliable and representative of the actual tissue temperature around the electrode. Self-heating effects, occurring in some catheter materials, are eliminated by sampling the temperature after a short power-off interval. We conclude that integrated thermocouple thermometry is compatible with 27 MHz capacitively coupled interstitial hyperthermia. The performance of the system is not affected and the temperatures measured are a reliable indication of the maximum tissue temperatures.

  10. Inter and intra-rater reliability of mobile device goniometer in measuring lumbar flexion range of motion.

    PubMed

    Bedekar, Nilima; Suryawanshi, Mayuri; Rairikar, Savita; Sancheti, Parag; Shyam, Ashok

    2014-01-01

    Evaluation of range of motion (ROM) is integral part of assessment of musculoskeletal system. This is required in health fitness and pathological conditions; also it is used as an objective outcome measure. Several methods are described to check spinal flexion range of motion. Different methods for measuring spine ranges have their advantages and disadvantages. Hence, a new device was introduced in this study using the method of dual inclinometer to measure lumbar spine flexion range of motion (ROM). To determine Intra and Inter-rater reliability of mobile device goniometer in measuring lumbar flexion range of motion. iPod mobile device with goniometer software was used. The part being measure i.e the back of the subject was suitably exposed. Subject was standing with feet shoulder width apart. Spinous process of second sacral vertebra S2 and T12 were located, these were used as the reference points and readings were taken. Three readings were taken for each: inter-rater reliability as well as the intra-rater reliability. Sufficient rest was given between each flexion movement. Intra-rater reliability using ICC was r=0.920 and inter-rater r=0.812 at CI 95%. Validity r=0.95. Mobile device goniometer has high intra-rater reliability. The inter-rater reliability was moderate. This device can be used to assess range of motion of spine flexion, representing uni-planar movement.

  11. Technology integration performance assessment using lean principles in health care.

    PubMed

    Rico, Florentino; Yalcin, Ali; Eikman, Edward A

    2015-01-01

    This study assesses the impact of an automated infusion system (AIS) integration at a positron emission tomography (PET) center based on "lean thinking" principles. The authors propose a systematic measurement system that evaluates improvement in terms of the "8 wastes." This adaptation to the health care context consisted of performance measurement before and after integration of AIS in terms of time, utilization of resources, amount of materials wasted/saved, system variability, distances traveled, and worker strain. The authors' observations indicate that AIS stands to be very effective in a busy PET department, such as the one in Moffitt Cancer Center, owing to its accuracy, pace, and reliability, especially after the necessary adjustments are made to reduce or eliminate the source of errors. This integration must be accompanied by a process reengineering exercise to realize the full potential of AIS in reducing waste and improving patient care and worker satisfaction. © The Author(s) 2014.

  12. Generation of 238U Covariance Matrices by Using the Integral Data Assimilation Technique of the CONRAD Code

    NASA Astrophysics Data System (ADS)

    Privas, E.; Archier, P.; Bernard, D.; De Saint Jean, C.; Destouche, C.; Leconte, P.; Noguère, G.; Peneliau, Y.; Capote, R.

    2016-02-01

    A new IAEA Coordinated Research Project (CRP) aims to test, validate and improve the IRDF library. Among the isotopes of interest, the modelisation of the 238U capture and fission cross sections represents a challenging task. A new description of the 238U neutrons induced reactions in the fast energy range is within progress in the frame of an IAEA evaluation consortium. The Nuclear Data group of Cadarache participates in this effort utilizing the 238U spectral indices measurements and Post Irradiated Experiments (PIE) carried out in the fast reactors MASURCA (CEA Cadarache) and PHENIX (CEA Marcoule). Such a collection of experimental results provides reliable integral information on the (n,γ) and (n,f) cross sections. This paper presents the Integral Data Assimilation (IDA) technique of the CONRAD code used to propagate the uncertainties of the integral data on the 238U cross sections of interest for dosimetry applications.

  13. Attention to sound improves auditory reliability in audio-tactile spatial optimal integration.

    PubMed

    Vercillo, Tiziana; Gori, Monica

    2015-01-01

    The role of attention on multisensory processing is still poorly understood. In particular, it is unclear whether directing attention toward a sensory cue dynamically reweights cue reliability during integration of multiple sensory signals. In this study, we investigated the impact of attention in combining audio-tactile signals in an optimal fashion. We used the Maximum Likelihood Estimation (MLE) model to predict audio-tactile spatial localization on the body surface. We developed a new audio-tactile device composed by several small units, each one consisting of a speaker and a tactile vibrator independently controllable by external software. We tested participants in an attentional and a non-attentional condition. In the attentional experiment, participants performed a dual task paradigm: they were required to evaluate the duration of a sound while performing an audio-tactile spatial task. Three unisensory or multisensory stimuli, conflictual or not conflictual sounds and vibrations arranged along the horizontal axis, were presented sequentially. In the primary task participants had to evaluate in a space bisection task the position of the second stimulus (the probe) with respect to the others (the standards). In the secondary task they had to report occasionally changes in duration of the second auditory stimulus. In the non-attentional task participants had only to perform the primary task (space bisection). Our results showed an enhanced auditory precision (and auditory weights) in the auditory attentional condition with respect to the control non-attentional condition. The results of this study support the idea that modality-specific attention modulates multisensory integration.

  14. Availability-Based Importance Framework for Supplier Selection

    DTIC Science & Technology

    2015-04-30

    IMA Journal of Management Math, 15(2), 161– 174. Chen, C . -T., Lin, C . -T., & Huang, S. -F. (2006). A fuzzy approach for supplier evaluation and...reliability modeling: Principles and applications. Hoboken, NJ: Wiley. Liao, C . -N., & Kao, H. -P. (2011). An integrated fuzzy TOPSIS and MCGP approach to...5307–5326. Wang, J. -W., Cheng, C . -H., & Huang, K.- C . (2009). Fuzzy hierarchical TOPSIS for supplier selection. Applied Soft Computing, 9(1), 377

  15. Reliability of nine programs of topological predictions and their application to integral membrane channel and carrier proteins.

    PubMed

    Reddy, Abhinay; Cho, Jaehoon; Ling, Sam; Reddy, Vamsee; Shlykov, Maksim; Saier, Milton H

    2014-01-01

    We evaluated topological predictions for nine different programs, HMMTOP, TMHMM, SVMTOP, DAS, SOSUI, TOPCONS, PHOBIUS, MEMSAT-SVM (hereinafter referred to as MEMSAT), and SPOCTOPUS. These programs were first evaluated using four large topologically well-defined families of secondary transporters, and the three best programs were further evaluated using topologically more diverse families of channels and carriers. In the initial studies, the order of accuracy was: SPOCTOPUS > MEMSAT > HMMTOP > TOPCONS > PHOBIUS > TMHMM > SVMTOP > DAS > SOSUI. Some families, such as the Sugar Porter Family (2.A.1.1) of the Major Facilitator Superfamily (MFS; TC #2.A.1) and the Amino Acid/Polyamine/Organocation (APC) Family (TC #2.A.3), were correctly predicted with high accuracy while others, such as the Mitochondrial Carrier (MC) (TC #2.A.29) and the K(+) transporter (Trk) families (TC #2.A.38), were predicted with much lower accuracy. For small, topologically homogeneous families, SPOCTOPUS and MEMSAT were generally most reliable, while with large, more diverse superfamilies, HMMTOP often proved to have the greatest prediction accuracy. We next developed a novel program, TM-STATS, that tabulates HMMTOP, SPOCTOPUS or MEMSAT-based topological predictions for any subdivision (class, subclass, superfamily, family, subfamily, or any combination of these) of the Transporter Classification Database (TCDB; www.tcdb.org) and examined the following subclasses: α-type channel proteins (TC subclasses 1.A and 1.E), secreted pore-forming toxins (TC subclass 1.C) and secondary carriers (subclass 2.A). Histograms were generated for each of these subclasses, and the results were analyzed according to subclass, family and protein. The results provide an update of topological predictions for integral membrane transport proteins as well as guides for the development of more reliable topological prediction programs, taking family-specific characteristics into account. © 2014 S. Karger AG, Basel.

  16. Pilot Test of a New Personal Health System Integrating Environmental and Wearable Sensors for Telemonitoring and Care of Elderly People at Home (SMARTA Project).

    PubMed

    Pigini, Lucia; Bovi, Gabriele; Panzarino, Claudia; Gower, Valerio; Ferratini, Maurizio; Andreoni, Giuseppe; Sassi, Roberto; Rivolta, Massimo W; Ferrarin, Maurizio

    2017-01-01

    The increase in life expectancy is accompanied by a growing number of elderly subjects affected by chronic comorbidities, a health issue which also implies important socioeconomic consequences. Shifting from hospital or community dwelling care towards a home personalized healthcare paradigm would promote active aging with a better quality of life, along with a reduction in healthcare-related costs. The aim of the SMARTA project was to develop and test an innovative personal health system integrating standard sensors as well as innovative wearable and environmental sensors to allow home telemonitoring of vital parameters and detection of anomalies in daily activities, thus supporting active aging through remote healthcare. A first phase of the project consisted in the definition of the health and environmental parameters to be monitored (electrocardiography and actigraphy, blood pressure and oxygen saturation, weight, ear temperature, glycemia, home interaction monitoring - water tap, refrigerator, and dishwasher), the feedbacks for the clinicians, and the reminders for the patients. It was followed by a technical feasibility analysis leading to an iterative process of prototype development, sensor integration, and testing. Once the prototype had reached an advanced stage of development, a group of 32 volunteers - including 15 healthy adult subjects, 13 elderly people with cardiac diseases, and 4 clinical operators - was recruited to test the system in a real home setting, in order to evaluate both technical reliability and user perception of the system in terms of effectiveness, usability, acceptance, and attractiveness. The testing in a real home setting showed a good perception of the SMARTA system and its functionalities both by the patients and by the clinicians, who appreciated the user interface and the clinical governance system. The moderate system reliability of 65-70% evidenced some technical issues, mainly related to sensor integration, while the patient's user interface showed excellent reliability (100%). Both elderly people and clinical operators considered the SMARTA system a promising and attractive tool for improving patients' healthcare while reducing related costs and preserving quality of life. However, the moderate reliability of the system should prompt further technical developments in terms of sensor integration and usability of the clinical operator's user interface. © 2017 S. Karger AG, Basel.

  17. On-clip high frequency reliability and failure test structures

    DOEpatents

    Snyder, Eric S.; Campbell, David V.

    1997-01-01

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer.

  18. The Requirement for Acquisition and Logistics Integration: An Examination of Reliability Management Within the Marine Corps Acquisition Process

    DTIC Science & Technology

    2002-12-01

    HMMWV family of vehicles, LVS family of vehicles, and the M198 Howitzer). The analysis is limited to an assessment of reliability management issues...AND LOGISTICS INTEGRATION: AN EXAMINATION OF RELIABILITY MANAGEMENT WITHIN THE MARINE CORPS ACQUISITION PROCESS by Marvin L. Norcross, Jr...Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction

  19. Cognitive mechanisms for explaining dynamics of aesthetic appreciation

    PubMed Central

    Carbon, Claus-Christian

    2011-01-01

    For many domains aesthetic appreciation has proven to be highly reliable. Evaluations of facial attractiveness, for instance, show high internal consistencies and impressively high inter-rater reliabilities, even across cultures. This indicates general mechanisms underlying such evaluations. It is, however, also obvious that our taste for specific objects is not always stable—in some realms such stability is hardly conceivable at all since aesthetic domains such as fashion, design, or art are inherently very dynamic. Gaining insights into the cognitive mechanisms that trigger and enable corresponding changes of aesthetic appreciation is of particular interest for psychologists as this will probably reveal essential mechanisms of aesthetic evaluations per se. The present paper develops a two-step model, dynamically adapting itself, which accounts for typical dynamics of aesthetic appreciation found in different research areas such as art history, philosophy, and psychology. The first step assumes singular creative sources creating and establishing innovative material towards which, in a second step, people adapt by integrating it into their visual habits. This inherently leads to dynamic changes of the beholders— aesthetic appreciation. PMID:23145254

  20. Reliability and cost evaluation of small isolated power systems containing photovoltaic and wind energy

    NASA Astrophysics Data System (ADS)

    Karki, Rajesh

    Renewable energy application in electric power systems is growing rapidly worldwide due to enhanced public concerns for adverse environmental impacts and escalation in energy costs associated with the use of conventional energy sources. Photovoltaics and wind energy sources are being increasingly recognized as cost effective generation sources. A comprehensive evaluation of reliability and cost is required to analyze the actual benefits of utilizing these energy sources. The reliability aspects of utilizing renewable energy sources have largely been ignored in the past due the relatively insignificant contribution of these sources in major power systems, and consequently due to the lack of appropriate techniques. Renewable energy sources have the potential to play a significant role in the electrical energy requirements of small isolated power systems which are primarily supplied by costly diesel fuel. A relatively high renewable energy penetration can significantly reduce the system fuel costs but can also have considerable impact on the system reliability. Small isolated systems routinely plan their generating facilities using deterministic adequacy methods that cannot incorporate the highly erratic behavior of renewable energy sources. The utilization of a single probabilistic risk index has not been generally accepted in small isolated system evaluation despite its utilization in most large power utilities. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy. This thesis presents an evaluation model for small isolated systems containing renewable energy sources by integrating simulation models that generate appropriate atmospheric data, evaluate chronological renewable power outputs and combine total available energy and load to provide useful system indices. A software tool SIPSREL+ has been developed which generates risk, well-being and energy based indices to provide realistic cost/reliability measures of utilizing renewable energy. The concepts presented and the examples illustrated in this thesis will help system planners to decide on appropriate installation sites, the types and mix of different energy generating sources, the optimum operating policies, and the optimum generation expansion plans required to meet increasing load demands in small isolated power systems containing photovoltaic and wind energy sources.

  1. Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ye; Karri, Naveen K.; Wang, Qi

    Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. The technology used to harvest energy from tidal current is called a tidal current turbine. Though some of the principles of wind turbine design are applicable to tidal current turbines, the design of latter ones need additional considerations like cavitation damage, corrosion etc. for the long-term reliability of such turbines. Depending up on the orientation of axis, tidal current turbines can be classified as vertical axis turbines or horizontal axis turbines. Existing studiesmore » on the vertical axis tidal current turbine focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of the vertical axis tidal current turbines. After reviewing existing methods in modeling tidal current turbines, we developed a hybrid approach that combines discrete vortex method -finite element method that can simulate the integrated hydrodynamic and structural response of a vertical axis turbine. This hybrid method was initially employed to analyze a typical three-blade vertical axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius ratios. The results indicate that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. An attempt to optimize a 3-blade vertical axis turbine design with hybrid method yielded a ratio of turbine height to radius (H/R) about 3.0 for reliable maximum power output.« less

  2. Design, implementation, and demographic differences of HEAL: a self-report health care leadership instrument

    PubMed Central

    Murphy, Kelly R; McManigle, John E; Wildman-Tobriner, Benjamin M; Little Jones, Amy; Dekker, Travis J; Little, Barrett A; Doty, Joseph P; Taylor, Dean C

    2016-01-01

    The medical community has recognized the importance of leadership skills among its members. While numerous leadership assessment tools exist at present, few are specifically tailored to the unique health care environment. The study team designed a 24-item survey (Healthcare Evaluation & Assessment of Leadership [HEAL]) to measure leadership competency based on the core competencies and core principles of the Duke Healthcare Leadership Model. A novel digital platform was created for use on handheld devices to facilitate its distribution and completion. This pilot phase involved 126 health care professionals self-assessing their leadership abilities. The study aimed to determine both the content validity of the survey and the feasibility of its implementation and use. The digital platform for survey implementation was easy to complete, and there were no technical problems with survey use or data collection. With regard to reliability, initial survey results revealed that each core leadership tenet met or exceeded the reliability cutoff of 0.7. In self-assessment of leadership, women scored themselves higher than men in questions related to patient centeredness (P=0.016). When stratified by age, younger providers rated themselves lower with regard to emotional intelligence and integrity. There were no differences in self-assessment when stratified by medical specialty. While only a pilot study, initial data suggest that HEAL is a reliable and easy-to-administer survey for health care leadership assessment. Differences in responses by sex and age with respect to patient centeredness, integrity, and emotional intelligence raise questions about how providers view themselves amid complex medical teams. As the survey is refined and further administered, HEAL will be used not only as a self-assessment tool but also in “360” evaluation formats. PMID:29355186

  3. Design, implementation, and demographic differences of HEAL: a self-report health care leadership instrument.

    PubMed

    Murphy, Kelly R; McManigle, John E; Wildman-Tobriner, Benjamin M; Little Jones, Amy; Dekker, Travis J; Little, Barrett A; Doty, Joseph P; Taylor, Dean C

    2016-01-01

    The medical community has recognized the importance of leadership skills among its members. While numerous leadership assessment tools exist at present, few are specifically tailored to the unique health care environment. The study team designed a 24-item survey (Healthcare Evaluation & Assessment of Leadership [HEAL]) to measure leadership competency based on the core competencies and core principles of the Duke Healthcare Leadership Model. A novel digital platform was created for use on handheld devices to facilitate its distribution and completion. This pilot phase involved 126 health care professionals self-assessing their leadership abilities. The study aimed to determine both the content validity of the survey and the feasibility of its implementation and use. The digital platform for survey implementation was easy to complete, and there were no technical problems with survey use or data collection. With regard to reliability, initial survey results revealed that each core leadership tenet met or exceeded the reliability cutoff of 0.7. In self-assessment of leadership, women scored themselves higher than men in questions related to patient centeredness ( P =0.016). When stratified by age, younger providers rated themselves lower with regard to emotional intelligence and integrity. There were no differences in self-assessment when stratified by medical specialty. While only a pilot study, initial data suggest that HEAL is a reliable and easy-to-administer survey for health care leadership assessment. Differences in responses by sex and age with respect to patient centeredness, integrity, and emotional intelligence raise questions about how providers view themselves amid complex medical teams. As the survey is refined and further administered, HEAL will be used not only as a self-assessment tool but also in "360" evaluation formats.

  4. Reliability-Weighted Integration of Audiovisual Signals Can Be Modulated by Top-down Attention

    PubMed Central

    Noppeney, Uta

    2018-01-01

    Abstract Behaviorally, it is well established that human observers integrate signals near-optimally weighted in proportion to their reliabilities as predicted by maximum likelihood estimation. Yet, despite abundant behavioral evidence, it is unclear how the human brain accomplishes this feat. In a spatial ventriloquist paradigm, participants were presented with auditory, visual, and audiovisual signals and reported the location of the auditory or the visual signal. Combining psychophysics, multivariate functional MRI (fMRI) decoding, and models of maximum likelihood estimation (MLE), we characterized the computational operations underlying audiovisual integration at distinct cortical levels. We estimated observers’ behavioral weights by fitting psychometric functions to participants’ localization responses. Likewise, we estimated the neural weights by fitting neurometric functions to spatial locations decoded from regional fMRI activation patterns. Our results demonstrate that low-level auditory and visual areas encode predominantly the spatial location of the signal component of a region’s preferred auditory (or visual) modality. By contrast, intraparietal sulcus forms spatial representations by integrating auditory and visual signals weighted by their reliabilities. Critically, the neural and behavioral weights and the variance of the spatial representations depended not only on the sensory reliabilities as predicted by the MLE model but also on participants’ modality-specific attention and report (i.e., visual vs. auditory). These results suggest that audiovisual integration is not exclusively determined by bottom-up sensory reliabilities. Instead, modality-specific attention and report can flexibly modulate how intraparietal sulcus integrates sensory signals into spatial representations to guide behavioral responses (e.g., localization and orienting). PMID:29527567

  5. An Adaptive Low-Cost INS/GNSS Tightly-Coupled Integration Architecture Based on Redundant Measurement Noise Covariance Estimation.

    PubMed

    Li, Zheng; Zhang, Hai; Zhou, Qifan; Che, Huan

    2017-09-05

    The main objective of the introduced study is to design an adaptive Inertial Navigation System/Global Navigation Satellite System (INS/GNSS) tightly-coupled integration system that can provide more reliable navigation solutions by making full use of an adaptive Kalman filter (AKF) and satellite selection algorithm. To achieve this goal, we develop a novel redundant measurement noise covariance estimation (RMNCE) theorem, which adaptively estimates measurement noise properties by analyzing the difference sequences of system measurements. The proposed RMNCE approach is then applied to design both a modified weighted satellite selection algorithm and a type of adaptive unscented Kalman filter (UKF) to improve the performance of the tightly-coupled integration system. In addition, an adaptive measurement noise covariance expanding algorithm is developed to mitigate outliers when facing heavy multipath and other harsh situations. Both semi-physical simulation and field experiments were conducted to evaluate the performance of the proposed architecture and were compared with state-of-the-art algorithms. The results validate that the RMNCE provides a significant improvement in the measurement noise covariance estimation and the proposed architecture can improve the accuracy and reliability of the INS/GNSS tightly-coupled systems. The proposed architecture can effectively limit positioning errors under conditions of poor GNSS measurement quality and outperforms all the compared schemes.

  6. An Adaptive Low-Cost INS/GNSS Tightly-Coupled Integration Architecture Based on Redundant Measurement Noise Covariance Estimation

    PubMed Central

    Li, Zheng; Zhang, Hai; Zhou, Qifan; Che, Huan

    2017-01-01

    The main objective of the introduced study is to design an adaptive Inertial Navigation System/Global Navigation Satellite System (INS/GNSS) tightly-coupled integration system that can provide more reliable navigation solutions by making full use of an adaptive Kalman filter (AKF) and satellite selection algorithm. To achieve this goal, we develop a novel redundant measurement noise covariance estimation (RMNCE) theorem, which adaptively estimates measurement noise properties by analyzing the difference sequences of system measurements. The proposed RMNCE approach is then applied to design both a modified weighted satellite selection algorithm and a type of adaptive unscented Kalman filter (UKF) to improve the performance of the tightly-coupled integration system. In addition, an adaptive measurement noise covariance expanding algorithm is developed to mitigate outliers when facing heavy multipath and other harsh situations. Both semi-physical simulation and field experiments were conducted to evaluate the performance of the proposed architecture and were compared with state-of-the-art algorithms. The results validate that the RMNCE provides a significant improvement in the measurement noise covariance estimation and the proposed architecture can improve the accuracy and reliability of the INS/GNSS tightly-coupled systems. The proposed architecture can effectively limit positioning errors under conditions of poor GNSS measurement quality and outperforms all the compared schemes. PMID:28872629

  7. On-clip high frequency reliability and failure test structures

    DOEpatents

    Snyder, E.S.; Campbell, D.V.

    1997-04-29

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer. 22 figs.

  8. Models and techniques for evaluating the effectiveness of aircraft computing systems

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.

    1982-01-01

    Models, measures, and techniques for evaluating the effectiveness of aircraft computing systems were developed. By "effectiveness" in this context we mean the extent to which the user, i.e., a commercial air carrier, may expect to benefit from the computational tasks accomplished by a computing system in the environment of an advanced commercial aircraft. Thus, the concept of effectiveness involves aspects of system performance, reliability, and worth (value, benefit) which are appropriately integrated in the process of evaluating system effectiveness. Specifically, the primary objectives are: the development of system models that provide a basis for the formulation and evaluation of aircraft computer system effectiveness, the formulation of quantitative measures of system effectiveness, and the development of analytic and simulation techniques for evaluating the effectiveness of a proposed or existing aircraft computer.

  9. Integrating stations from the North America Gravity Database into a local GPS-based land gravity survey

    USGS Publications Warehouse

    Shoberg, Thomas G.; Stoddard, Paul R.

    2013-01-01

    The ability to augment local gravity surveys with additional gravity stations from easily accessible national databases can greatly increase the areal coverage and spatial resolution of a survey. It is, however, necessary to integrate such data seamlessly with the local survey. One challenge to overcome in integrating data from national databases is that these data are typically of unknown quality. This study presents a procedure for the evaluation and seamless integration of gravity data of unknown quality from a national database with data from a local Global Positioning System (GPS)-based survey. The starting components include the latitude, longitude, elevation and observed gravity at each station location. Interpolated surfaces of the complete Bouguer anomaly are used as a means of quality control and comparison. The result is an integrated dataset of varying quality with many stations having GPS accuracy and other reliable stations of unknown origin, yielding a wider coverage and greater spatial resolution than either survey alone.

  10. Reliability of physical examination for diagnosis of myofascial trigger points: a systematic review of the literature.

    PubMed

    Lucas, Nicholas; Macaskill, Petra; Irwig, Les; Moran, Robert; Bogduk, Nikolai

    2009-01-01

    Trigger points are promoted as an important cause of musculoskeletal pain. There is no accepted reference standard for the diagnosis of trigger points, and data on the reliability of physical examination for trigger points are conflicting. To systematically review the literature on the reliability of physical examination for the diagnosis of trigger points. MEDLINE, EMBASE, and other sources were searched for articles reporting the reliability of physical examination for trigger points. Included studies were evaluated for their quality and applicability, and reliability estimates were extracted and reported. Nine studies were eligible for inclusion. None satisfied all quality and applicability criteria. No study specifically reported reliability for the identification of the location of active trigger points in the muscles of symptomatic participants. Reliability estimates varied widely for each diagnostic sign, for each muscle, and across each study. Reliability estimates were generally higher for subjective signs such as tenderness (kappa range, 0.22-1.0) and pain reproduction (kappa range, 0.57-1.00), and lower for objective signs such as the taut band (kappa range, -0.08-0.75) and local twitch response (kappa range, -0.05-0.57). No study to date has reported the reliability of trigger point diagnosis according to the currently proposed criteria. On the basis of the limited number of studies available, and significant problems with their design, reporting, statistical integrity, and clinical applicability, physical examination cannot currently be recommended as a reliable test for the diagnosis of trigger points. The reliability of trigger point diagnosis needs to be further investigated with studies of high quality that use current diagnostic criteria in clinically relevant patients.

  11. Lifetime Reliability Prediction of Ceramic Structures Under Transient Thermomechanical Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Jadaan, Osama J.; Gyekenyesi, John P.

    2005-01-01

    An analytical methodology is developed to predict the probability of survival (reliability) of ceramic components subjected to harsh thermomechanical loads that can vary with time (transient reliability analysis). This capability enables more accurate prediction of ceramic component integrity against fracture in situations such as turbine startup and shutdown, operational vibrations, atmospheric reentry, or other rapid heating or cooling situations (thermal shock). The transient reliability analysis methodology developed herein incorporates the following features: fast-fracture transient analysis (reliability analysis without slow crack growth, SCG); transient analysis with SCG (reliability analysis with time-dependent damage due to SCG); a computationally efficient algorithm to compute the reliability for components subjected to repeated transient loading (block loading); cyclic fatigue modeling using a combined SCG and Walker fatigue law; proof testing for transient loads; and Weibull and fatigue parameters that are allowed to vary with temperature or time. Component-to-component variation in strength (stochastic strength response) is accounted for with the Weibull distribution, and either the principle of independent action or the Batdorf theory is used to predict the effect of multiaxial stresses on reliability. The reliability analysis can be performed either as a function of the component surface (for surface-distributed flaws) or component volume (for volume-distributed flaws). The transient reliability analysis capability has been added to the NASA CARES/ Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code. CARES/Life was also updated to interface with commercially available finite element analysis software, such as ANSYS, when used to model the effects of transient load histories. Examples are provided to demonstrate the features of the methodology as implemented in the CARES/Life program.

  12. Efficient numerical evaluation of Feynman integrals

    NASA Astrophysics Data System (ADS)

    Li, Zhao; Wang, Jian; Yan, Qi-Shu; Zhao, Xiaoran

    2016-03-01

    Feynman loop integrals are a key ingredient for the calculation of higher order radiation effects, and are responsible for reliable and accurate theoretical prediction. We improve the efficiency of numerical integration in sector decomposition by implementing a quasi-Monte Carlo method associated with the CUDA/GPU technique. For demonstration we present the results of several Feynman integrals up to two loops in both Euclidean and physical kinematic regions in comparison with those obtained from FIESTA3. It is shown that both planar and non-planar two-loop master integrals in the physical kinematic region can be evaluated in less than half a minute with accuracy, which makes the direct numerical approach viable for precise investigation of higher order effects in multi-loop processes, e.g. the next-to-leading order QCD effect in Higgs pair production via gluon fusion with a finite top quark mass. Supported by the Natural Science Foundation of China (11305179 11475180), Youth Innovation Promotion Association, CAS, IHEP Innovation (Y4545170Y2), State Key Lab for Electronics and Particle Detectors, Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y4KF061CJ1), Cluster of Excellence Precision Physics, Fundamental Interactions and Structure of Matter (PRISMA-EXC 1098)

  13. Microwave evaluation of electromigration susceptibility in advanced interconnects

    NASA Astrophysics Data System (ADS)

    Sunday, Christopher E.; Veksler, Dmitry; Cheung, Kin C.; Obeng, Yaw S.

    2017-11-01

    Traditional metrology has been unable to adequately address the needs of the emerging integrated circuits (ICs) at the nano scale; thus, new metrology and techniques are needed. For example, the reliability challenges in fabrication need to be well understood and controlled to facilitate mass production of through-substrate-via (TSV) enabled three-dimensional integrated circuits (3D-ICs). This requires new approaches to the metrology. In this paper, we use the microwave propagation characteristics to study the reliability issues that precede the physical damage caused by electromigration in the Cu-filled TSVs. The pre-failure microwave insertion losses and group delay are dependent on both the device temperature and the amount of current forced through the devices-under-test. The microwave insertion losses increase with the increase in the test temperature, while the group delay increases with the increase in the forced direct current magnitude. The microwave insertion losses are attributed to the defect mobility at the Cu-TiN interface, and the group delay changes are due to resistive heating in the interconnects, which perturbs the dielectric properties of the cladding dielectrics of the copper fill in the TSVs.

  14. A novel integrated assessment methodology of urban water reuse.

    PubMed

    Listowski, A; Ngo, H H; Guo, W S; Vigneswaran, S

    2011-01-01

    Wastewater is no longer considered a waste product and water reuse needs to play a stronger part in securing urban water supply. Although treatment technologies for water reclamation have significantly improved the question that deserves further analysis is, how selection of a particular wastewater treatment technology relates to performance and sustainability? The proposed assessment model integrates; (i) technology, characterised by selected quantity and quality performance parameters; (ii) productivity, efficiency and reliability criteria; (iii) quantitative performance indicators; (iv) development of evaluation model. The challenges related to hierarchy and selections of performance indicators have been resolved through the case study analysis. The goal of this study is to validate a new assessment methodology in relation to performance of the microfiltration (MF) technology, a key element of the treatment process. Specific performance data and measurements were obtained at specific Control and Data Acquisition Points (CP) to satisfy the input-output inventory in relation to water resources, products, material flows, energy requirements, chemicals use, etc. Performance assessment process contains analysis and necessary linking across important parametric functions leading to reliable outcomes and results.

  15. Evaluate the application of modal test and analysis processes to structural fault detection in MSFC - STS project elements

    NASA Technical Reports Server (NTRS)

    Springer, William T.

    1987-01-01

    The Space Transportation System (STS) is a complex and expensive flight system intended to carry unique payloads into low Earth orbit and return. A catastrophic failure, such as STS 51-L, resulted in the loss of both human life as well as expensive and unique hardware. The impact of this incident reaffirms the need to do everything possible to ensure the integrity and reliability of STS. One means of achieving this goal is to expand the number of inspection technologies available. Reported here is the evaluation of the use of modal analysis and test techniques for the purpose of assessing the structural integrity of STS components for which Marshall Space Flight Center has responsibility. This entailed reviewing existing literature and developing a low-level experimental program determine the feasibility of using this technology for structural fault detection.

  16. Sinabro: A Smartphone-Integrated Opportunistic Electrocardiogram Monitoring System

    PubMed Central

    Kwon, Sungjun; Lee, Dongseok; Kim, Jeehoon; Lee, Youngki; Kang, Seungwoo; Seo, Sangwon; Park, Kwangsuk

    2016-01-01

    In our preliminary study, we proposed a smartphone-integrated, unobtrusive electrocardiogram (ECG) monitoring system, Sinabro, which monitors a user’s ECG opportunistically during daily smartphone use without explicit user intervention. The proposed system also monitors ECG-derived features, such as heart rate (HR) and heart rate variability (HRV), to support the pervasive healthcare apps for smartphones based on the user’s high-level contexts, such as stress and affective state levels. In this study, we have extended the Sinabro system by: (1) upgrading the sensor device; (2) improving the feature extraction process; and (3) evaluating extensions of the system. We evaluated these extensions with a good set of algorithm parameters that were suggested based on empirical analyses. The results showed that the system could capture ECG reliably and extract highly accurate ECG-derived features with a reasonable rate of data drop during the user’s daily smartphone use. PMID:26978364

  17. Sinabro: A Smartphone-Integrated Opportunistic Electrocardiogram Monitoring System.

    PubMed

    Kwon, Sungjun; Lee, Dongseok; Kim, Jeehoon; Lee, Youngki; Kang, Seungwoo; Seo, Sangwon; Park, Kwangsuk

    2016-03-11

    In our preliminary study, we proposed a smartphone-integrated, unobtrusive electrocardiogram (ECG) monitoring system, Sinabro, which monitors a user's ECG opportunistically during daily smartphone use without explicit user intervention. The proposed system also monitors ECG-derived features, such as heart rate (HR) and heart rate variability (HRV), to support the pervasive healthcare apps for smartphones based on the user's high-level contexts, such as stress and affective state levels. In this study, we have extended the Sinabro system by: (1) upgrading the sensor device; (2) improving the feature extraction process; and (3) evaluating extensions of the system. We evaluated these extensions with a good set of algorithm parameters that were suggested based on empirical analyses. The results showed that the system could capture ECG reliably and extract highly accurate ECG-derived features with a reasonable rate of data drop during the user's daily smartphone use.

  18. Spray sealing: A breakthrough in integral fuel tank sealing technology

    NASA Astrophysics Data System (ADS)

    Richardson, Martin D.; Zadarnowski, J. H.

    1989-11-01

    In a continuing effort to increase readiness, a new approach to sealing integral fuel tanks is being developed. The technique seals potential leak sources by spraying elastomeric materials inside the tank cavity. Laboratory evaluations project an increase in aircraft supportability and reliability, an improved maintainability, decreasing acquisition and life cycle costs. Increased usable fuel volume and lower weight than conventional bladders improve performance. Concept feasibility was demonstrated on sub-scale aircraft fuel tanks. Materials were selected by testing sprayable elastomers in a fuel tank environment. Chemical stability, mechanical properties, and dynamic durability of the elastomer are being evaluated at the laboratory level and in sub-scale and full scale aircraft component fatigue tests. The self sealing capability of sprayable materials is also under development. Ballistic tests show an improved aircraft survivability, due in part to the elastomer's mechanical properties and its ability to damp vibrations. New application equipment, system removal, and repair methods are being investigated.

  19. Low voltage 30-cm ion thruster development. [including performance and structural integrity (vibration) tests

    NASA Technical Reports Server (NTRS)

    King, H. J.

    1974-01-01

    The basic goal was to advance the development status of the 30-cm electron bombardment ion thruster from a laboratory model to a flight-type engineering model (EM) thruster. This advancement included the more conventional aspects of mechanical design and testing for launch loads, weight reduction, fabrication process development, reliability and quality assurance, and interface definition, as well as a relatively significant improvement in thruster total efficiency. The achievement of this goal was demonstrated by the successful completion of a series of performance and structural integrity (vibration) tests. In the course of the program, essentially every part and feature of the original 30-cm Thruster was critically evaluated. These evaluations, led to new or improved designs for the ion optical system, discharge chamber, cathode isolator vaporizer assembly, main isolator vaporizer assembly, neutralizer assembly, packaging for thermal control, electrical terminations and structure.

  20. NREL's Energy Storage and REopt Teams Awarded $525k from TCF to Study

    Science.gov Websites

    Commercial Viability of Optimal, Reliable Building-Integrated Energy Storage | News | NREL NREL's Energy Storage and REopt Teams Awarded $525k from TCF to Study Commercial Viability of Optimal Study Commercial Viability of Optimal, Reliable Building-Integrated Energy Storage November 14, 2017

  1. The measurement of patient attitudes regarding prenatal and preconception genetic carrier screening and translational behavioral medicine: an integrative review.

    PubMed

    Shiroff, Jennifer J; Gregoski, Mathew J

    2017-06-01

    Measurement of recessive carrier screening attitudes related to conception and pregnancy is necessary to determine current acceptance, and whether behavioral intervention strategies are needed in clinical practice. To evaluate quantitative survey instruments to measure patient attitudes regarding genetic carrier testing prior to conception and pregnancy databases examining patient attitudes regarding genetic screening prior to conception and pregnancy from 2003-2013 were searched yielding 344 articles; eight studies with eight instruments met criteria for inclusion. Data abstraction on theoretical framework, subjects, instrument description, scoring, method of measurement, reliability, validity, feasibility, level of evidence, and outcomes was completed. Reliability information was provided in five studies with an internal consistency of Cronbach's α >0.70. Information pertaining to validity was presented in three studies and included construct validity via factor analysis. Despite limited psychometric information, these questionnaires are self-administered and can be briefly completed, making them a feasible method of evaluation.

  2. Surgery resident selection and evaluation. A critical incident study.

    PubMed

    Edwards, J C; Currie, M L; Wade, T P; Kaminski, D L

    1993-03-01

    This article reports a study of the process of selecting and evaluating general surgery residents. In personnel psychology terms, a job analysis of general surgery was conducted using the Critical Incident Technique (CIT). The researchers collected 235 critical incidents through structured interviews with 10 general surgery faculty members and four senior residents. The researchers then directed the surgeons in a two-step process of sorting the incidents into categories and naming the categories. The final essential categories of behavior to define surgical competence were derived through discussion among the surgeons until a consensus was formed. Those categories are knowledge/self-education, clinical performance, diagnostic skills, surgical skills, communication skills, reliability, integrity, compassion, organization skills, motivation, emotional control, and personal appearance. These categories were then used to develop an interview evaluation form for selection purposes and a performance evaluation form to be used throughout residency training. Thus a continuum of evaluation was established. The categories and critical incidents were also used to structure the interview process, which has demonstrated increased interview validity and reliability in many other studies. A handbook for structuring the interviews faculty members conduct with applicants was written, and an interview training session was held with the faculty. The process of implementation of the structured selection interviews is being documented currently through qualitative research.

  3. A study of the development of the Korean version of PedsQL(TM) 3.0 cerebral palsy module and reliability and validity.

    PubMed

    Yun, Young-Ju; Shin, Yong-Beom; Kim, Soo-Yeon; Shin, Myung-Jun; Kim, Ra-Jin; Oh, Tae-Young

    2016-07-01

    [Purpose] The purpose of this study was to develop the Korean version of the PedsQL(TM) 3.0 Cerebral Palsy Module to evaluate the health-related quality of life of children with cerebral palsy and to test the reliability and validity. [Subjects and Methods] The study included 108 caregivers of children with cerebral palsy aged 2 to 4 years and 72 caregivers of children aged 5 to 7 years, who visited multiple sites between February and August 2015. The Translation Commission performed the first translation with the approval of the Mapi Research Trust Company to create a Korean-version of the PedsQL(TM). Afterwards, back-translation was performed by one translator specializing in health and medical treatment who was a native English-speaker fluent in Korean, and one native Korean-speaker fluent in English. The consistency of each question was confirmed and a translation-integrated version was created. Test components were explained to caregivers during a one-on-one interview; caregivers then completed the PedsQL(TM) questionnaire and a Pediatric Evaluation Disability Inventory (PEDI) questionnaire. Subjects contributing to test-retest measures were asked to repeat the PedsQL questionnaire one week later and return it by mail. To assess data quality for the survey question results, non-response rate, ceiling effect, and floor effect were analyzed. Test-retest reliability and internal consistency reliability were assessed. For test-retest reliability, an intraclass correlation coefficient (ICC) was calculated, and for internal consistency reliability, Cronbach's alpha was used. To test criterion-related validity, Pearson's correlation coefficient was used. [Results] The content validity of the PedsQL 3.0 Cerebral Palsy Module was high for both age groups, and demonstrated significant internal consistency (>0.7) in all areas. For test-retest reliability, both groups demonstrated a significant ICC (>0.61). Correlation with the PEDI was statistically significant in all areas except pain and hurt. [Conclusion] The Korean version of the PedsQL(TM) 3.0 Cerebral Palsy Module was found to be reliable and valid, and is expected to contribute greatly to the evaluation of the quality of life of children with cerebral palsy.

  4. GASP-PL/I Simulation of Integrated Avionic System Processor Architectures. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Brent, G. A.

    1978-01-01

    A development study sponsored by NASA was completed in July 1977 which proposed a complete integration of all aircraft instrumentation into a single modular system. Instead of using the current single-function aircraft instruments, computers compiled and displayed inflight information for the pilot. A processor architecture called the Team Architecture was proposed. This is a hardware/software approach to high-reliability computer systems. A follow-up study of the proposed Team Architecture is reported. GASP-PL/1 simulation models are used to evaluate the operating characteristics of the Team Architecture. The problem, model development, simulation programs and results at length are presented. Also included are program input formats, outputs and listings.

  5. Coming cockpit avionics

    NASA Technical Reports Server (NTRS)

    Mciver, D.; Hatfield, J. J.

    1978-01-01

    Digital and display technology combined with human factors research under development today are expected to become operational in the commercial aircraft of the 1990s. Attention is given to reducing the pilot's workload and increasing aircraft reliability through integration of electronic systems, and through multi-mode displays. Recent advances in display technology are outlined, including electroluminescent panels, beam penetration color CRTs, liquid crystal modules, and LED panels and indicators. Research cockpits are described in terms of simplification of aircraft systems evaluation and control.

  6. Some consideration for evaluation of structural integrity of aging aircraft

    NASA Astrophysics Data System (ADS)

    Terada, Hiroyuki; Asada, Hiroo

    The objective of this paper is to examine the achievement and the limitation of state-of-the-art of the methodology of damage tolerant design and the subjects to be solved for further improvement. The topics discussed are: the basic concept of full-scale fatigue testing, fracture mechanics applications, repair of detected damages, inspection technology, and determination of inspection intervals, reliability assessment for practical application, and the importance of various kinds of data acquisition.

  7. Fabrication, test and demonstration of critical environment monitoring system

    NASA Technical Reports Server (NTRS)

    Heimendinger, K. W.

    1972-01-01

    Design and performance of an analytical system for the evaluation of certain environmental constituents in critical environmental areas of the Quality Reliability and Assurance Laboratory are reported. Developed was a self-contained, integrated, minimum sized unit that detects, interrogates, and records those parameters of the environment dictated for control in large storage facilities, clean rooms, temporarily curtained enclosures, and special working benches. The system analyzes humidity, temperature, hydrocarbons particle size, and particle count within prescribed clean areas.

  8. Business Cases for Microgrids: Modeling Interactions of Technology Choice, Reliability, Cost, and Benefit

    NASA Astrophysics Data System (ADS)

    Hanna, Ryan

    Distributed energy resources (DERs), and increasingly microgrids, are becoming an integral part of modern distribution systems. Interest in microgrids--which are insular and autonomous power networks embedded within the bulk grid--stems largely from the vast array of flexibilities and benefits they can offer stakeholders. Managed well, they can improve grid reliability and resiliency, increase end-use energy efficiency by coupling electric and thermal loads, reduce transmission losses by generating power locally, and may reduce system-wide emissions, among many others. Whether these public benefits are realized, however, depends on whether private firms see a "business case", or private value, in investing. To this end, firms need models that evaluate costs, benefits, risks, and assumptions that underlie decisions to invest. The objectives of this dissertation are to assess the business case for microgrids that provide what industry analysts forecast as two primary drivers of market growth--that of providing energy services (similar to an electric utility) as well as reliability service to customers within. Prototypical first adopters are modeled--using an existing model to analyze energy services and a new model that couples that analysis with one of reliability--to explore interactions between technology choice, reliability, costs, and benefits. The new model has a bi-level hierarchy; it uses heuristic optimization to select and size DERs and analytical optimization to schedule them. It further embeds Monte Carlo simulation to evaluate reliability as well as regression models for customer damage functions to monetize reliability. It provides least-cost microgrid configurations for utility customers who seek to reduce interruption and operating costs. Lastly, the model is used to explore the impact of such adoption on system-wide greenhouse gas emissions in California. Results indicate that there are, at present, co-benefits for emissions reductions when customers adopt and operate microgrids for private benefit, though future analysis is needed as the bulk grid continues to transition toward a less carbon intensive system.

  9. Rocket engine system reliability analyses using probabilistic and fuzzy logic techniques

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.; Rapp, Douglas C.

    1994-01-01

    The reliability of rocket engine systems was analyzed by using probabilistic and fuzzy logic techniques. Fault trees were developed for integrated modular engine (IME) and discrete engine systems, and then were used with the two techniques to quantify reliability. The IRRAS (Integrated Reliability and Risk Analysis System) computer code, developed for the U.S. Nuclear Regulatory Commission, was used for the probabilistic analyses, and FUZZYFTA (Fuzzy Fault Tree Analysis), a code developed at NASA Lewis Research Center, was used for the fuzzy logic analyses. Although both techniques provided estimates of the reliability of the IME and discrete systems, probabilistic techniques emphasized uncertainty resulting from randomness in the system whereas fuzzy logic techniques emphasized uncertainty resulting from vagueness in the system. Because uncertainty can have both random and vague components, both techniques were found to be useful tools in the analysis of rocket engine system reliability.

  10. Predicting students' perceptions of academic misconduct on the Hogan Personality Inventory Reliability Scale.

    PubMed

    Stone, Thomas H; Kisamore, Jennifer L; Jawahar, I M

    2008-04-01

    Interest and research on academic misconduct has become more salient in part due to recent publicized academic and organizational scandals. The current study investigated a possible interaction between perception of the university's academic culture and personality, conceptualized as Reliability, on students' perceptions of academic misconduct. A convenience sample of 217 university business students (91 men, 126 women), whose average age was 22.3 yr. (SD = 4.4) was tested. Reliability was measured with an occupational scale included in the Hogan Personality Inventory. Two hierarchical regression analyses were conducted using Cheating Intentions and Likelihood of Reporting Cheating as criteria. Age, Reliability, Integrity Culture, and the interaction between scores on Reliability and Integrity Culture were entered as predictors. Only Age and Reliability scores were significant predictors of Cheating Intentions, while all variables were significant predictors for Likelihood of Reporting Cheating. Suggestions for practice and research are provided.

  11. Noncognitive constructs in graduate admissions: an integrative review of available instruments.

    PubMed

    Megginson, Lucy

    2009-01-01

    In the graduate admission process, both cognitive and noncognitive instruments evaluate a candidate's potential success in a program of study. Traditional cognitive measures include the Graduate Record Examination or graduate grade point average, while noncognitive constructs such as personality, attitude, and motivation are generally measured through letters of recommendation, interviews, or personality inventories. Little consensus exists as to what criteria constitute valid and effective measurements of graduate student potential. This integrative review of available tools to measure noncognitive constructs will assist graduate faculty in identifying valid and reliable instruments that will enhance a more holistic assessment of nursing graduate candidates. Finally, as evidence-based practice begins to penetrate academic processes and as graduate faculty realize the predictive significance of noncognitive attributes, faculty can use the information in this integrative review to guide future research.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennock, Kenneth; Makarov, Yuri V.; Rajagopal, Sankaran

    The need for proactive closed-loop integration of uncertainty information into system operations and probability-based controls is widely recognized, but rarely implemented in system operations. Proactive integration for this project means that the information concerning expected uncertainty ranges for net load and balancing requirements, including required balancing capacity, ramping and ramp duration characteristics, will be fed back into the generation commitment and dispatch algorithms to modify their performance so that potential shortages of these characteristics can be prevented. This basic, yet important, premise is the motivating factor for this project. The achieved project goal is to demonstrate the benefit of suchmore » a system. The project quantifies future uncertainties, predicts additional system balancing needs including the prediction intervals for capacity and ramping requirements of future dispatch intervals, evaluates the impacts of uncertainties on transmission including the risk of overloads and voltage problems, and explores opportunities for intra-hour generation adjustments helping to provide more flexibility for system operators. The resulting benefits culminate in more reliable grid operation in the face of increased system uncertainty and variability caused by solar power. The project identifies that solar power does not require special separate penetration level restrictions or penalization for its intermittency. Ultimately, the collective consideration of all sources of intermittency distributed over a wide area unified with the comprehensive evaluation of various elements of balancing process, i.e. capacity, ramping, and energy requirements, help system operators more robustly and effectively balance generation against load and interchange. This project showed that doing so can facilitate more solar and other renewable resources on the grid without compromising reliability and control performance. Efforts during the project included developing and integrating advanced probabilistic solar forecasts, including distributed PV forecasts, into closed –loop decision making processes. Additionally, new uncertainty quantifications methods and tools for the direct integration of uncertainty and variability information into grid operations at the transmission and distribution levels were developed and tested. During Phase 1, project work focused heavily on the design, development and demonstration of a set of processes and tools that could reliably and efficiently incorporate solar power into California’s grid operations. In Phase 2, connectivity between the ramping analysis tools and market applications software were completed, multiple dispatch scenarios demonstrated a successful reduction of overall uncertainty and an analysis to quantify increases in system operator reliability, and the transmission and distribution system uncertainty prediction tool was introduced to system operation engineers in a live webinar. The project met its goals, the experiments prove the advancements to methods and tools, when working together, are beneficial to not only the California Independent System Operator, but the benefits are transferable to other system operators in the United States.« less

  13. Deterministic and Probabilistic Metrics of Surface Air Temperature and Precipitation in the MiKlip Decadal Prediction System

    NASA Astrophysics Data System (ADS)

    Kadow, Christopher; Illing, Sebastian; Kunst, Oliver; Pohlmann, Holger; Müller, Wolfgang; Cubasch, Ulrich

    2014-05-01

    Decadal forecasting of climate variability is a growing need for different parts of society, industry and economy. The German initiative MiKlip (www.fona-miklip.de) focuses on the ongoing processes of medium-term climate prediction. The scientific major project funded by the Federal Ministry of Education and Research in Germany (BMBF) develops a forecast system, that aims for reliable predictions on decadal timescales. Using a single earth system model from the Max-Planck institute (MPI-ESM) and moving from the uninitialized runs on to the first initialized 'Coupled Model Intercomparison Project Phase 5' (CMIP5) hindcast experiments identified possibilities and open scientific tasks. The MiKlip decadal prediction system was improved on different aspects through new initialization techniques and datasets of the ocean and atmosphere. To accompany and emphasize such an improvement of a forecast system, a standardized evaluation system designed by the MiKlip sub-project 'Integrated data and evaluation system for decadal scale prediction' (INTEGRATION) analyzes every step of its evolution. This study aims at combining deterministic and probabilistic skill scores of this prediction system from its unitialized state to anomaly and then full-field oceanic initialization. The improved forecast skill in these different decadal hindcast experiments of surface air temperature and precipitation in the Pacific region and the complex area of the North Atlantic illustrate potential sources of skill. A standardized evaluation leads prediction systems depending on development to find its way to produce reliable forecasts. Different aspects of these research dependencies, e.g. ensemble size, resolution, initializations, etc. will be discussed.

  14. Nanoscale deformation measurements for reliability assessment of material interfaces

    NASA Astrophysics Data System (ADS)

    Keller, Jürgen; Gollhardt, Astrid; Vogel, Dietmar; Michel, Bernd

    2006-03-01

    With the development and application of micro/nano electronic mechanical systems (MEMS, NEMS) for a variety of market segments new reliability issues will arise. The understanding of material interfaces is the key for a successful design for reliability of MEMS/NEMS and sensor systems. Furthermore in the field of BIOMEMS newly developed advanced materials and well known engineering materials are combined despite of fully developed reliability concepts for such devices and components. In addition the increasing interface-to volume ratio in highly integrated systems and nanoparticle filled materials are challenges for experimental reliability evaluation. New strategies for reliability assessment on the submicron scale are essential to fulfil the needs of future devices. In this paper a nanoscale resolution experimental method for the measurement of thermo-mechanical deformation at material interfaces is introduced. The determination of displacement fields is based on scanning probe microscopy (SPM) data. In-situ SPM scans of the analyzed object (i.e. material interface) are carried out at different thermo-mechanical load states. The obtained images are compared by grayscale cross correlation algorithms. This allows the tracking of local image patterns of the analyzed surface structure. The measurement results are full-field displacement fields with nanometer resolution. With the obtained data the mixed mode type of loading at material interfaces can be analyzed with highest resolution for future needs in micro system and nanotechnology.

  15. The Effect of Epoxy Molding Compound Floor Life to Reliability Performance and mold ability for QFN Package

    NASA Astrophysics Data System (ADS)

    Peanpunga, Udom; Ugsornrat, Kessararat; Thorlor, Panakamol; Sumithpibul, Chalermsak

    2017-09-01

    This research studied about an epoxy molding compound (EMC) floor life to reliability performance of integrated circuit (IC) package. Molding is the process for protecting the die of IC package form mechanical and chemical reaction from external environment by shaping EMC. From normal manufacturing process, the EMC is stored in the frozen at 5oC and left at around room temperature for aging time or floor life before molding process. The EMC floor life effect to its properties and reliability performance of IC package. Therefore, this work interested in varied the floor life of EMC before molding process to analyze properties of EMC such as spiral flow length, gelation time, and viscosity. In experiment, the floor life of EMC was varied to check the effect of its property to reliability performance. The EMC floor life were varied from 0 hours to 60 hours with a step of 12 hours and observed wire sweep, incomplete EMC, and delamination inside the packages for 3x3, 5x5 and 8x8 mm2 of QFN packages. The evaluation showed about clearly effect of EMC floor life to IC packaging reliability. EMC floor life is not any concern for EMC property, moldabilty, and reliability from 0 hours to 48 hours for molding process of 3x3,5x5 and 8x8 mm2 QFN packaging manufacturing

  16. The development and validation of the Clinical Teaching Behavior Inventory (CTBI-23): Nurse preceptors' and new graduate nurses' perceptions of precepting.

    PubMed

    Lee-Hsieh, Jane; O'Brien, Anthony; Liu, Chieh-Yu; Cheng, Su-Fen; Lee, Yea-Wen; Kao, Yu-Hsiu

    2016-03-01

    Few studies have examined the perceptions of clinical teaching behaviors among both nurse preceptors and preceptees. To develop a Clinical Teaching Behavior Inventory (CTBI) for nurse preceptors' self-evaluation, and for new graduate nurse preceptee evaluation of preceptor clinical teaching behaviors and to test the validity and reliability of the CTBI. This study used mixed research techniques in five phases. Phase I: based on a literature review, the researchers developed an instrument to measure clinical teaching behaviors. Phase II: 17 focus group interviews were conducted with 63 preceptors and 24 new graduate nurses from five hospitals across Taiwan. Clinical teaching behavior themes were extracted from the focus group data and integrated into the domains and items of the CTBI. Phase III: two rounds of an expert Delphi study were conducted to determine the content validity of the instrument. Phase IV: a total of 290 nurse preceptors and 260 new graduate nurses were recruited voluntarily in the same five hospitals in Taiwan. Of these, 521 completed questionnaires to test the construct validity of CTBI by using confirmatory factory analysis. Phase V: the internal consistency and reliability of the instrument were tested. CTBI consists of 23 items in six domains: (1) 'Committing to Teaching'; (2) 'Building a Learning Atmosphere'; (3) 'Using Appropriate Teaching Strategies'; (4) 'Guiding Inter-professional Communication'; (5) 'Providing Feedback and Evaluation'; and (6) 'Showing Concern and Support'. The confirmatory factor analysis yielded a good fit and reliable scores for the CTBI-23 model. The CTBI-23 is a valid and reliable instrument for identifying the clinical teaching behaviors of a preceptor as perceived by preceptors and new graduate preceptees. The CTBI-23 depicts clinical teaching behaviors of nurse preceptors in Taiwan. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Interrater Reliability and Discriminative Validity of the Structural Elements of the Ayres Sensory Integration® Fidelity Measure©

    PubMed Central

    Roley, Susanne Smith; Mailloux, Zoe; Parham, L. Diane; Koomar, Jane; Schaaf, Roseann C.; Van Jaarsveld, Annamarie; Cohn, Ellen

    2014-01-01

    This study examined the reliability and validity of the structural section of the Ayres Sensory Integration® Fidelity Measure© (ASIFM), which provides a method for monitoring the extent to which an intervention was implemented as conceptualized in studies of occupational therapy using sensory integration intervention methods (OT–SI). We examined the structural elements of the measure, including content of assessment reports, availability of specific equipment and adequate space, safety monitoring, and integration of communication with parents and other team members, such as collaborative goal setting with parents or family and teacher education, into the intervention program. Analysis of self-report ratings by 259 occupational therapists from 185 different facilities indicated that the structural section of the ASIFM has acceptable interrater reliability (r ≥ .82) and significantly differentiates between settings in which therapists reportedly do and do not practice OT–SI (p < .001). PMID:25184462

  18. Conversion-Integration of MSFC Nonlinear Signal Diagnostic Analysis Algorithms for Realtime Execution of MSFC's MPP Prototype System

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    1996-01-01

    NASA's advanced propulsion system Small Scale Magnetic Disturbances/Advanced Technology Development (SSME/ATD) has been undergoing extensive flight certification and developmental testing, which involves large numbers of health monitoring measurements. To enhance engine safety and reliability, detailed analysis and evaluation of the measurement signals are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce the risk of catastrophic system failures and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. During the development of SSME, ASRI participated in the research and development of several advanced non- linear signal diagnostic methods for health monitoring and failure prediction in turbomachinery components. However, due to the intensive computational requirement associated with such advanced analysis tasks, current SSME dynamic data analysis and diagnostic evaluation is performed off-line following flight or ground test with a typical diagnostic turnaround time of one to two days. The objective of MSFC's MPP Prototype System is to eliminate such 'diagnostic lag time' by achieving signal processing and analysis in real-time. Such an on-line diagnostic system can provide sufficient lead time to initiate corrective action and also to enable efficient scheduling of inspection, maintenance and repair activities. The major objective of this project was to convert and implement a number of advanced nonlinear diagnostic DSP algorithms in a format consistent with that required for integration into the Vanderbilt Multigraph Architecture (MGA) Model Based Programming environment. This effort will allow the real-time execution of these algorithms using the MSFC MPP Prototype System. ASRI has completed the software conversion and integration of a sequence of nonlinear signal analysis techniques specified in the SOW for real-time execution on MSFC's MPP Prototype. This report documents and summarizes the results of the contract tasks; provides the complete computer source code; including all FORTRAN/C Utilities; and all other utilities/supporting software libraries that are required for operation.

  19. Program evaluation in integrated resource planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Council, C.D.

    1994-12-31

    The Western Area Power Administration along with the Southwestern and Southeastern Power Administrations joined together to develop a set of integrated resource planning (IRP) tools to help their customers development and implement an IRP process. The project has been entitled the Resource Planning Guide (RPG), and is specifically designed to help small- to mid-sized utilities analyze supply- and demand-side alternatives as part of an IRP process. The RPG project will be available in January 1994 and will include such support as: workshops, technical assistance, an RPG hotline, and an RPG User`s Group for the project. The RPG grew out ofmore » the interest shown by utility customers who wanted a user-friendly tool to aid in their application of the IRP process. The project has been field tested by 43 utilities and related organizations over the last year, has sparked interest both nationally and internationally, and is now available for public use. The program evaluation aspects of the IRP process are heightened by a requirement of the Energy Policy Act of 1992 which requires all long-term power customers of the Western Area Power Administration to develop, implement, and monitor an IRP process. The EPAct defines IRP as: A planning process for new energy resources that evaluates the full range of alternatives, including new generating capacity, power purchases, energy conservation and efficiency, cogeneration and district heating and cooling applications, and renewable energy resources, to provide adequate and reliable service to its electric customers at the lowest system cost. The process takes into account necessary features for system operation, such as diversity, reliability, dispatchability, and other factors of risk; the ability to verify energy savings achieved through energy conservation and efficiency and the projected durability of such savings measured over time; and treats demand and supply resources on a consistent and integrated basis.« less

  20. An integrated multi-label classifier with chemical-chemical interactions for prediction of chemical toxicity effects.

    PubMed

    Liu, Tao; Chen, Lei; Pan, Xiaoyong

    2018-05-31

    Chemical toxicity effect is one of the major reasons for declining candidate drugs. Detecting the toxicity effects of all chemicals can accelerate the procedures of drug discovery. However, it is time-consuming and expensive to identify the toxicity effects of a given chemical through traditional experiments. Designing quick, reliable and non-animal-involved computational methods is an alternative way. In this study, a novel integrated multi-label classifier was proposed. First, based on five types of chemical-chemical interactions retrieved from STITCH, each of which is derived from one aspect of chemicals, five individual classifiers were built. Then, several integrated classifiers were built by integrating some or all individual classifiers. By testing the integrated classifiers on a dataset with chemicals and their toxicity effects in Accelrys Toxicity database and non-toxic chemicals with their performance evaluated by jackknife test, an optimal integrated classifier was selected as the proposed classifier, which provided quite high prediction accuracies and wide applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. A reliable sewage quality abnormal event monitoring system.

    PubMed

    Li, Tianling; Winnel, Melissa; Lin, Hao; Panther, Jared; Liu, Chang; O'Halloran, Roger; Wang, Kewen; An, Taicheng; Wong, Po Keung; Zhang, Shanqing; Zhao, Huijun

    2017-09-15

    With closing water loop through purified recycled water, wastewater becomes a part of source water, requiring reliable wastewater quality monitoring system (WQMS) to manage wastewater source and mitigate potential health risks. However, the development of reliable WQMS is fatally constrained by severe contamination and biofouling of sensors due to the hostile analytical environment of wastewaters, especially raw sewages, that challenges the limit of existing sensing technologies. In this work, we report a technological solution to enable the development of WQMS for real-time abnormal event detection with high reliability and practicality. A vectored high flow hydrodynamic self-cleaning approach and a dual-sensor self-diagnostic concept are adopted for WQMS to effectively encounter vital sensor failing issues caused by contamination and biofouling and ensure the integrity of sensing data. The performance of the WQMS has been evaluated over a 3-year trial period at different sewage catchment sites across three Australian states. It has demonstrated that the developed WQMS is capable of continuously operating in raw sewage for a prolonged period up to 24 months without maintenance and failure, signifying the high reliability and practicality. The demonstrated WQMS capability to reliably acquire real-time wastewater quality information leaps forward the development of effective wastewater source management system. The reported self-cleaning and self-diagnostic concepts should be applicable to other online water quality monitoring systems, opening a new way to encounter the common reliability and stability issues caused by sensor contamination and biofouling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The insertion torque-depth curve integral as a measure of implant primary stability: An in vitro study on polyurethane foam blocks.

    PubMed

    Di Stefano, Danilo Alessio; Arosio, Paolo; Gastaldi, Giorgio; Gherlone, Enrico

    2017-07-08

    Recent research has shown that dynamic parameters correlate with insertion energy-that is, the total work needed to place an implant into its site-might convey more reliable information concerning immediate implant primary stability at insertion than the commonly used insertion torque (IT), the reverse torque (RT), or the implant stability quotient (ISQ). Yet knowledge on these dynamic parameters is still limited. The purpose of this in vitro study was to evaluate whether an energy-related parameter, the torque-depth curve integral (I), could be a reliable measure of primary stability. This was done by assessing if (I) measurement was operator-independent, by investigating its correlation with other known primary stability parameters (IT, RT, or ISQ) by quantifying the (I) average error and correlating (I), IT, RT, and ISQ variations with bone density. Five operators placed 200 implants in polyurethane foam blocks of different densities using a micromotor that calculated the (I) during implant placement. Primary implant stability was assessed by measuring the ISQ, IT, and RT. ANOVA tests were used to evaluate whether measurements were operator independent (P>.05 in all cases). A correlation analysis was performed between (I) and IT, ISQ, and RT. The (I) average error was calculated and compared with that of the other parameters by ANOVA. (I)-density, IT-density, ISQ-density, and RT-density plots were drawn, and their slopes were compared by ANCOVA. The (I) measurements were operator independent and correlated with IT, ISQ, and RT. The average error of these parameters was not significantly different (P>.05 in all cases). The (I)-density, IT-density, ISQ-density, and RT-density curves were linear in the 0.16 to 0.49 g/cm³ range, with the (I)-density curves having a significantly greater slope than those regarding the other parameters (P≤.001 in all cases). The torque-depth curve integral (I) provides a reliable assessment of primary stability and shows a greater sensitivity to density variations than other known primary stability parameters. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. Evaluating the Effect of Minimizing Screws on Stabilization of Symphysis Mandibular Fracture by 3D Finite Element Analysis.

    PubMed

    Kharmanda, Ghias; Kharma, Mohamed-Yaser

    2017-06-01

    The objective of this work is to integrate structural optimization and reliability concepts into mini-plate fixation strategy used in symphysis mandibular fractures. The structural reliability levels are next estimated when considering a single failure mode and multiple failure modes. A 3-dimensional finite element model is developed in order to evaluate the ability of reducing the negative effect due to the stabilization of the fracture. Topology optimization process is considered in the conceptual design stage to predict possible fixation layouts. In the detailed design stage, suitable mini-plates are selected taking into account the resulting topology and different anatomical considerations. Several muscle forces are considered in order to obtain realistic predictions. Since some muscles can be cut or harmed during the surgery and cannot operate at its maximum capacity, there is a strong motivation to introduce the loading uncertainties in order to obtain reliable designs. The structural reliability is carried out for a single failure mode and multiple failure modes. The different results are validated with a clinical case of a male patient with symphysis fracture. In this case while use of the upper plate fixation with four holes, only two screws were applied to protect adjacent vital structure. This behavior does not affect the stability of the fracture. The proposed strategy to optimize bone plates leads to fewer complications and second surgeries, less patient discomfort, and shorter time of healing.

  4. Quality management for space systems in ISRO

    NASA Astrophysics Data System (ADS)

    Satish, S.; Selva Raju, S.; Nanjunda Swamy, T. S.; Kulkarni, P. L.

    2009-11-01

    In a little over four decades, the Indian Space Program has carved a niche for itself with the unique application driven program oriented towards National development. The end-to-end capability approach of the space projects in the country call for innovative practices and procedures in assuring the quality and reliability of space systems. The System Reliability (SR) efforts initiated at the start of the projects continue during the entire life cycle of the project encompassing design, development, realisation, assembly, testing and integration and during launch. Even after the launch, SR groups participate in the on-orbit evaluation of transponders in communication satellites and camera systems in remote sensing satellites. SR groups play a major role in identification, evaluation and inculcating quality practices in work centres involved in the fabrication of mechanical, electronics and propulsion systems required for Indian Space Research Organization's (ISRO's) launch vehicle and spacecraft projects. Also the reliability analysis activities like prediction, assessment and demonstration as well as de-rating analysis, Failure Mode Effects and Criticality Analysis (FMECA) and worst-case analysis are carried out by SR groups during various stages of project realisation. These activities provide the basis for project management to take appropriate techno-managerial decisions to ensure that the required reliability goals are met. Extensive test facilities catering to the needs of the space program has been set up. A system for consolidating the experience and expertise gained for issue of standards called product assurance specifications to be used in all ISRO centres has also been established.

  5. Review of Reliability-Based Design Optimization Approach and Its Integration with Bayesian Method

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangnan

    2018-03-01

    A lot of uncertain factors lie in practical engineering, such as external load environment, material property, geometrical shape, initial condition, boundary condition, etc. Reliability method measures the structural safety condition and determine the optimal design parameter combination based on the probabilistic theory. Reliability-based design optimization (RBDO) is the most commonly used approach to minimize the structural cost or other performance under uncertainty variables which combines the reliability theory and optimization. However, it cannot handle the various incomplete information. The Bayesian approach is utilized to incorporate this kind of incomplete information in its uncertainty quantification. In this paper, the RBDO approach and its integration with Bayesian method are introduced.

  6. COMBINE*: An integrated opto-mechanical tool for laser performance modeling

    NASA Astrophysics Data System (ADS)

    Rehak, M.; Di Nicola, J. M.

    2015-02-01

    Accurate modeling of thermal, mechanical and optical processes is important for achieving reliable, high-performance high energy lasers such as those at the National Ignition Facility [1] (NIF). The need for this capability is even more critical for high average power, high repetition rate applications. Modeling the effects of stresses and temperature fields on optical properties allows for optimal design of optical components and more generally of the architecture of the laser system itself. Stresses change the indices of refractions and induce inhomogeneities and anisotropy. We present a modern, integrated analysis tool that efficiently produces reliable results that are used in our laser propagation tools such as VBL [5]. COMBINE is built on and supplants the existing legacy tools developed for the previous generations of lasers at LLNL but also uses commercially available mechanical finite element codes ANSYS or COMSOL (including computational fluid dynamics). The COMBINE code computes birefringence and wave front distortions due to mechanical stresses on lenses and slabs of arbitrary geometry. The stresses calculated typically originate from mounting support, vacuum load, gravity, heat absorption and/or attending cooling. Of particular importance are the depolarization and detuning effects of nonlinear crystals due to thermal loading. Results are given in the form of Jones matrices, depolarization maps and wave front distributions. An incremental evaluation of Jones matrices and ray propagation in a 3D mesh with a stress and temperature field is performed. Wavefront and depolarization maps are available at the optical aperture and at slices within the optical element. The suite is validated, user friendly, supported, documented and amenable to collaborative development. * COMBINE stands for Code for Opto-Mechanical Birefringence Integrated Numerical Evaluations.

  7. Wafer level reliability testing: An idea whose time has come

    NASA Technical Reports Server (NTRS)

    Trapp, O. D.

    1987-01-01

    Wafer level reliability testing has been nurtured in the DARPA supported workshops, held each autumn since 1982. The seeds planted in 1982 have produced an active crop of very large scale integration manufacturers applying wafer level reliability test methods. Computer Aided Reliability (CAR) is a new seed being nurtured. Users are now being awakened by the huge economic value of the wafer reliability testing technology.

  8. Effects of back posture education on elementary schoolchildren's back function.

    PubMed

    Geldhof, Elisabeth; Cardon, Greet; De Bourdeaudhuij, Ilse; Danneels, Lieven; Coorevits, Pascal; Vanderstraeten, Guy; De Clercq, Dirk

    2007-06-01

    The possible effects of back education on children's back function were never evaluated. Therefore, main aim of the present study was to evaluate the effects of back education in elementary schoolchildren on back function parameters. Since the reliability of back function measurement in children is poorly defined, another objective was to test the selected instruments for reliability in 8-11-year olds. The multi-factorial intervention lasting two school-years consisted of a back education program and the stimulation of postural dynamism in the class. Trunk muscle endurance, leg muscle capacity and spinal curvature were evaluated in a pre-post design including 41 children who received the back education program (mean age at post-test: 11.2 +/- 0.9 years) and 28 controls (mean age at post-test: 11.4 +/- 0.6 years). Besides, test-retest reliability with a 1-week interval was investigated in a separate sample. Therefore, 47 children (mean age: 10.1 +/- 0.5 years) were tested for reliability of trunk muscle endurance and 40 children (mean age: 10.2 +/- 0.7 years) for the assessment of spinal curvatures. Reliability of endurance testing was very good to good for the trunk flexors (ICC = 0.82) and trunk extensors (ICC = 0.63). The assessment of the thoracic (ICC = 0.69) and the lumbar curvature (ICC = 0.52) in seating position showed good to acceptable reliability. Low ICCs were found for the assessment of the thoracic (ICC = 0.39) and the lumbar curvature (ICC = 0.37) in stance. The effects of 2 year back education showed an increase in trunk flexor endurance in the intervention group compared to a decrease in the controls and a trend towards significance for a higher increase in trunk extensor endurance in the intervention group. For leg muscle capacity and spinal curvature no intervention effects were found. The small samples recommend cautious interpretation of intervention effects. However, the present study's findings favor the implementation of back education with focus on postural dynamism in the class as an integral part of the elementary school curriculum in the scope of optimizing spinal loading through the school environment.

  9. Assessing clinical competency in the health sciences

    NASA Astrophysics Data System (ADS)

    Panzarella, Karen Joanne

    To test the success of integrated curricula in schools of health sciences, meaningful measurements of student performance are required to assess clinical competency. This research project analyzed a new performance assessment tool, the Integrated Standardized Patient Examination (ISPE), for assessing clinical competency: specifically, to assess Doctor of Physical Therapy (DPT) students' clinical competence as the ability to integrate basic science knowledge with clinical communication skills. Thirty-four DPT students performed two ISPE cases, one of a patient who sustained a stroke and the other a patient with a herniated lumbar disc. Cases were portrayed by standardized patients (SPs) in a simulated clinical setting. Each case was scored by an expert evaluator in the exam room and then by one investigator and the students themselves via videotape. The SPs scored each student on an overall encounter rubric. Written feedback was obtained from all participants in the study. Acceptable reliability was demonstrated via inter-rater agreement as well as inter-rater correlations on items that used a dichotomous scale, whereas the items requiring the use of the 4-point rubric were somewhat less reliable. For the entire scale both cases had a significant correlation between the Expert-Investigator pair of raters, for the CVA case r = .547, p < .05 and for the HD case r = .700, p < .01. The SPs scored students higher than the other raters. Students' self-assessments were most closely aligned with the investigator. Effects were apparent due to case. Content validity was gathered in the process of developing cases and patient scenarios that were used in this study. Construct validity was obtained from the survey results analyzed from the experts and students. Future studies should examine the effect of rater training upon the reliability. Criterion or predictive validity could be further studied by comparing students' performances on the ISPE with other independent estimates of students' competence. The unique integration questions of the ISPE were judged to have good content validity from experts and students, suggestive that integration, a most crucial element of clinical competence, while done in the mind of the student, can be practiced, learned and assessed.

  10. Performance evaluation method of electric energy data acquire system based on combination of subjective and objective weights

    NASA Astrophysics Data System (ADS)

    Gao, Chen; Ding, Zhongan; Deng, Bofa; Yan, Shengteng

    2017-10-01

    According to the characteristics of electric energy data acquire system (EEDAS), considering the availability of each index data and the connection between the index integrity, establishing the performance evaluation index system of electric energy data acquire system from three aspects as master station system, communication channel, terminal equipment. To determine the comprehensive weight of each index based on triangular fuzzy number analytic hierarchy process with entropy weight method, and both subjective preference and objective attribute are taken into consideration, thus realize the performance comprehensive evaluation more reasonable and reliable. Example analysis shows that, by combination with analytic hierarchy process (AHP) and triangle fuzzy numbers (TFN) to establish comprehensive index evaluation system based on entropy method, the evaluation results not only convenient and practical, but also more objective and accurate.

  11. A System Approach to Advanced Practice Clinician Standardization and High Reliability.

    PubMed

    Okuno-Jones, Susan; Siehoff, Alice; Law, Jennifer; Juarez, Patricia

    Advanced practice clinicians (APCs) are an integral part of the health care team. Opportunities exist within Advocate Health Care to standardize and optimize APC practice across the system. To enhance the role and talents of APCs, an approach to role definition and optimization of practice and a structured approach to orientation and evaluation are shared. Although in the early stages of development, definition and standardization of accountabilities in a framework to support system changes are transforming the practice of APCs.

  12. The Assessment of Military Multitasking Performance: Validation of a Dual Task and Multitask Protocol

    DTIC Science & Technology

    2013-09-01

    collegiate football players: the NCAA Concussion Study. JAMA 2003; 290(19): 2549-55. 9. McCrea M, Iverson GL, McAllister TW, et al: An integrated review...time fol- lowing concussion in collegiate football players: the NCAA Concussion Study. JAMA. 2003;290:2556–2563. 6 Riemann BL, Guskiewicz KM. Effects of...of Soldiering for use after concussion /mild traumatic brain injury (mTBI). Task evaluation criteria including inter-rater reliability and total test

  13. Understanding carbohydrate-carbohydrate interactions by means of glyconanotechnology.

    PubMed

    de la Fuente, Jesus M; Penadés, Soledad

    2004-01-01

    Carbohydrate-carbohydrate interaction is a reliable and versatile mechanism for cell adhesion and recognition. Glycosphingolipid (GSL) clusters at the cell membrane are mainly involved in this interaction. To investigate carbohydrate-carbohydrate interaction an integrated strategy (Glyconanotechnology) was developed. This strategy includes polyvalent tools (gold glyconanoparticles) mimicking GSL clustering at the cell membrane as well as analytical techniques such as AFM, TEM, and SPR to evaluate the interactions. The results obtained by means of this strategy and current status are presented.

  14. Phase-I investigation of high-efficiency power amplifiers for 325 and 650 MHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raab, Frederick

    2018-01-27

    This Phase-I SBIR grant investigated techniques for high-efficiency power amplification for DoE particle accelerators such as Project X that operate at 325 and 650 MHz. The recommended system achieves high efficiency, high reliability, and hot-swap capability by integrating class-F power amplifiers, class-S modulators, power combiners, and a digital signal processor. Experimental evaluations demonstrate the production of 120 W per transistor with overall efficiencies from 86 percent at 325 MHz and 80 percent at 650 MHz.

  15. Advance Power Technology Experiment for the Starshine 3 Satellite

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Scheiman, David; Wilt, David; Raffaelle, Ryne; Button, Robert; Smith, Mark; Kerslake, Thomas; Miller, Thomas; Bailey, Sheila (Technical Monitor); Hepp, A. (Technical Monitor)

    2001-01-01

    The Starshine 3 satellite will carry several power technology demonstrations. Since Starshine 3 is primarily a passive experiment and does not need electrical power to successfully complete its mission, the requirement for a highly reliable power system is greatly reduced. This creates an excellent opportunity to test new power technologies. Several government and commercial interests have teamed up to provide Starshine 3 with a small power system using state-of-the-art components. Starshine 3 will also fly novel integrated microelectronic power supplies (IWS) for evaluation.

  16. Advance Power Technology Demonstration on Starshine 3

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Scheiman, David; Wilt, David; Raffaelle, Ryne; Button, Robert; Smith, Mark; Kerslake, Thomas; Miller, Thomas

    2002-01-01

    The Starshine 3 satellite will carry several power technology demonstrations. Since Starshine 3 is primarily a passive experiment and does not need electrical power to successfully complete its mission, the requirement for a highly reliable power system is greatly reduced. This creates an excellent opportunity to test new power technologies. Several government and commercial interests have teamed up to provide Starshine 3 with a small power system using state-of-the-art components. Starshine 3 will also fly novel integrated microelectronic power supplies (IMPS) for evaluation.

  17. Business intelligence modeling in launch operations

    NASA Astrophysics Data System (ADS)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.

    2005-05-01

    The future of business intelligence in space exploration will focus on the intelligent system-of-systems real-time enterprise. In present business intelligence, a number of technologies that are most relevant to space exploration are experiencing the greatest change. Emerging patterns of set of processes rather than organizational units leading to end-to-end automation is becoming a major objective of enterprise information technology. The cost element is a leading factor of future exploration systems. This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations, process models, systems and environment models, and cost models as a comprehensive disciplined enterprise analysis environment. Significant emphasis is being placed on adapting root cause from existing Shuttle operations to exploration. Technical challenges include cost model validation, integration of parametric models with discrete event process and systems simulations, and large-scale simulation integration. The enterprise architecture is required for coherent integration of systems models. It will also require a plan for evolution over the life of the program. The proposed technology will produce long-term benefits in support of the NASA objectives for simulation based acquisition, will improve the ability to assess architectural options verses safety/risk for future exploration systems, and will facilitate incorporation of operability as a systems design consideration, reducing overall life cycle cost for future systems.

  18. Business Intelligence Modeling in Launch Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.

    2005-01-01

    This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation .based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations. process models, systems and environment models, and cost models as a comprehensive disciplined enterprise analysis environment. Significant emphasis is being placed on adapting root cause from existing Shuttle operations to exploration. Technical challenges include cost model validation, integration of parametric models with discrete event process and systems simulations. and large-scale simulation integration. The enterprise architecture is required for coherent integration of systems models. It will also require a plan for evolution over the life of the program. The proposed technology will produce long-term benefits in support of the NASA objectives for simulation based acquisition, will improve the ability to assess architectural options verses safety/risk for future exploration systems, and will facilitate incorporation of operability as a systems design consideration, reducing overall life cycle cost for future systems. The future of business intelligence of space exploration will focus on the intelligent system-of-systems real-time enterprise. In present business intelligence, a number of technologies that are most relevant to space exploration are experiencing the greatest change. Emerging patterns of set of processes rather than organizational units leading to end-to-end automation is becoming a major objective of enterprise information technology. The cost element is a leading factor of future exploration systems.

  19. Cochlear implants: system design, integration, and evaluation.

    PubMed

    Zeng, Fan-Gang; Rebscher, Stephen; Harrison, William; Sun, Xiaoan; Feng, Haihong

    2008-01-01

    As the most successful neural prosthesis, cochlear implants have provided partial hearing to more than 120000 persons worldwide; half of which being pediatric users who are able to develop nearly normal language. Biomedical engineers have played a central role in the design, integration and evaluation of the cochlear implant system, but the overall success is a result of collaborative work with physiologists, psychologists, physicians, educators, and entrepreneurs. This review presents broad yet in-depth academic and industrial perspectives on the underlying research and ongoing development of cochlear implants. The introduction accounts for major events and advances in cochlear implants, including dynamic interplays among engineers, scientists, physicians, and policy makers. The review takes a system approach to address critical issues in cochlear implant research and development. First, the cochlear implant system design and specifications are laid out. Second, the design goals, principles, and methods of the subsystem components are identified from the external speech processor and radio frequency transmission link to the internal receiver, stimulator and electrode arrays. Third, system integration and functional evaluation are presented with respect to safety, reliability, and challenges facing the present and future cochlear implant designers and users. Finally, issues beyond cochlear implants are discussed to address treatment options for the entire spectrum of hearing impairment as well as to use the cochlear implant as a model to design and evaluate other similar neural prostheses such as vestibular and retinal implants.

  20. Standard high-reliability integrated circuit logic packaging. [for deep space tracking stations

    NASA Technical Reports Server (NTRS)

    Slaughter, D. W.

    1977-01-01

    A family of standard, high-reliability hardware used for packaging digital integrated circuits is described. The design transition from early prototypes to production hardware is covered and future plans are discussed. Interconnections techniques are described as well as connectors and related hardware available at both the microcircuit packaging and main-frame level. General applications information is also provided.

  1. Advanced techniques in reliability model representation and solution

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.; Nicol, David M.

    1992-01-01

    The current tendency of flight control system designs is towards increased integration of applications and increased distribution of computational elements. The reliability analysis of such systems is difficult because subsystem interactions are increasingly interdependent. Researchers at NASA Langley Research Center have been working for several years to extend the capability of Markov modeling techniques to address these problems. This effort has been focused in the areas of increased model abstraction and increased computational capability. The reliability model generator (RMG) is a software tool that uses as input a graphical object-oriented block diagram of the system. RMG uses a failure-effects algorithm to produce the reliability model from the graphical description. The ASSURE software tool is a parallel processing program that uses the semi-Markov unreliability range evaluator (SURE) solution technique and the abstract semi-Markov specification interface to the SURE tool (ASSIST) modeling language. A failure modes-effects simulation is used by ASSURE. These tools were used to analyze a significant portion of a complex flight control system. The successful combination of the power of graphical representation, automated model generation, and parallel computation leads to the conclusion that distributed fault-tolerant system architectures can now be analyzed.

  2. IRLT: Integrating Reputation and Local Trust for Trustworthy Service Recommendation in Service-Oriented Social Networks

    PubMed Central

    Liu, Zhiquan; Ma, Jianfeng; Jiang, Zhongyuan; Miao, Yinbin; Gao, Cong

    2016-01-01

    With the prevalence of Social Networks (SNs) and services, plenty of trust models for Trustworthy Service Recommendation (TSR) in Service-oriented SNs (S-SNs) have been proposed. The reputation-based schemes usually do not contain user preferences and are vulnerable to unfair rating attacks. Meanwhile, the local trust-based schemes generally have low reliability or even fail to work when the trust path is too long or does not exist. Thus it is beneficial to integrate them for TSR in S-SNs. This work improves the state-of-the-art Combining Global and Local Trust (CGLT) scheme and proposes a novel Integrating Reputation and Local Trust (IRLT) model which mainly includes four modules, namely Service Recommendation Interface (SRI) module, Local Trust-based Trust Evaluation (LTTE) module, Reputation-based Trust Evaluation (RTE) module and Aggregation Trust Evaluation (ATE) module. Besides, a synthetic S-SN based on the famous Advogato dataset is deployed and the well-known Discount Cumulative Gain (DCG) metric is employed to measure the service recommendation performance of our IRLT model with comparing to that of the excellent CGLT model. The results illustrate that our IRLT model is slightly superior to the CGLT model in honest environment and significantly outperforms the CGLT model in terms of the robustness against unfair rating attacks. PMID:26963089

  3. IRLT: Integrating Reputation and Local Trust for Trustworthy Service Recommendation in Service-Oriented Social Networks.

    PubMed

    Liu, Zhiquan; Ma, Jianfeng; Jiang, Zhongyuan; Miao, Yinbin; Gao, Cong

    2016-01-01

    With the prevalence of Social Networks (SNs) and services, plenty of trust models for Trustworthy Service Recommendation (TSR) in Service-oriented SNs (S-SNs) have been proposed. The reputation-based schemes usually do not contain user preferences and are vulnerable to unfair rating attacks. Meanwhile, the local trust-based schemes generally have low reliability or even fail to work when the trust path is too long or does not exist. Thus it is beneficial to integrate them for TSR in S-SNs. This work improves the state-of-the-art Combining Global and Local Trust (CGLT) scheme and proposes a novel Integrating Reputation and Local Trust (IRLT) model which mainly includes four modules, namely Service Recommendation Interface (SRI) module, Local Trust-based Trust Evaluation (LTTE) module, Reputation-based Trust Evaluation (RTE) module and Aggregation Trust Evaluation (ATE) module. Besides, a synthetic S-SN based on the famous Advogato dataset is deployed and the well-known Discount Cumulative Gain (DCG) metric is employed to measure the service recommendation performance of our IRLT model with comparing to that of the excellent CGLT model. The results illustrate that our IRLT model is slightly superior to the CGLT model in honest environment and significantly outperforms the CGLT model in terms of the robustness against unfair rating attacks.

  4. Energy Systems Integration Facility Videos | Energy Systems Integration

    Science.gov Websites

    Facility | NREL Energy Systems Integration Facility Videos Energy Systems Integration Facility Integration Facility NREL + SolarCity: Maximizing Solar Power on Electrical Grids Redefining What's Possible for Renewable Energy: Grid Integration Robot-Powered Reliability Testing at NREL's ESIF Microgrid

  5. Functional Capacity Evaluation Research: Report from the Second International Functional Capacity Evaluation Research Meeting.

    PubMed

    James, C L; Reneman, M F; Gross, D P

    2016-03-01

    Functional capacity evaluations are an important component of many occupational rehabilitation programs and can play a role in facilitating reintegration to work thus improving health and disability outcomes. The field of functional capacity evaluation (FCE) research has continued to develop over recent years, with growing evidence on the reliability, validity and clinical utility of FCE within different patient and healthy worker groups. The second International FCE Research Conference was held in Toronto, Canada on October 2nd 2014 adjacent to the 2014 Work Disability Prevention Integration conference. This paper describes the outcomes of the conference. Fifty-four participants from nine countries attended the conference where eleven research projects and three workshops were presented. The conference provided an opportunity to discuss FCE practice, present new research and provide a forum for discourse around the issues pertinent to FCE use. Conference presentations covered aspects of FCE use including the ICF-FCE interface, aspects of reliability and validity, consideration of specific injury populations, comparisons of FCE components and a lively debate on the merits of 'Man versus Machine' in FCE's. Researchers, clinicians, and other professionals in the FCE area have a common desire to improve the content and quality of FCE research and to collaborate to further develop research across systems, cultures and countries.

  6. Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration

    PubMed Central

    Luan, Lan; Wei, Xiaoling; Zhao, Zhengtuo; Siegel, Jennifer J.; Potnis, Ojas; Tuppen, Catherine A; Lin, Shengqing; Kazmi, Shams; Fowler, Robert A.; Holloway, Stewart; Dunn, Andrew K.; Chitwood, Raymond A.; Xie, Chong

    2017-01-01

    Implanted brain electrodes construct the only means to electrically interface with individual neurons in vivo, but their recording efficacy and biocompatibility pose limitations on scientific and clinical applications. We showed that nanoelectronic thread (NET) electrodes with subcellular dimensions, ultraflexibility, and cellular surgical footprints form reliable, glial scar–free neural integration. We demonstrated that NET electrodes reliably detected and tracked individual units for months; their impedance, noise level, single-unit recording yield, and the signal amplitude remained stable during long-term implantation. In vivo two-photon imaging and postmortem histological analysis revealed seamless, subcellular integration of NET probes with the local cellular and vasculature networks, featuring fully recovered capillaries with an intact blood-brain barrier and complete absence of chronic neuronal degradation and glial scar. PMID:28246640

  7. Integration of a satellite ground support system based on analysis of the satellite ground support domain

    NASA Technical Reports Server (NTRS)

    Pendley, R. D.; Scheidker, E. J.; Levitt, D. S.; Myers, C. R.; Werking, R. D.

    1994-01-01

    This analysis defines a complete set of ground support functions based on those practiced in real space flight operations during the on-orbit phase of a mission. These functions are mapped against ground support functions currently in use by NASA and DOD. Software components to provide these functions can be hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system. Such modular systems can be configured to provide as much ground support functionality as desired. This approach to ground systems has been widely proposed and prototyped both by government institutions and commercial vendors. The combined set of ground support functions we describe can be used as a standard to evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular, loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability.

  8. Integration of a satellite ground support system based on analysis of the satellite ground support domain

    NASA Astrophysics Data System (ADS)

    Pendley, R. D.; Scheidker, E. J.; Levitt, D. S.; Myers, C. R.; Werking, R. D.

    1994-11-01

    This analysis defines a complete set of ground support functions based on those practiced in real space flight operations during the on-orbit phase of a mission. These functions are mapped against ground support functions currently in use by NASA and DOD. Software components to provide these functions can be hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system. Such modular systems can be configured to provide as much ground support functionality as desired. This approach to ground systems has been widely proposed and prototyped both by government institutions and commercial vendors. The combined set of ground support functions we describe can be used as a standard to evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular, loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability.

  9. Independent evaluation of point source fossil fuel CO2 emissions to better than 10%

    PubMed Central

    Turnbull, Jocelyn Christine; Keller, Elizabeth D.; Norris, Margaret W.; Wiltshire, Rachael M.

    2016-01-01

    Independent estimates of fossil fuel CO2 (CO2ff) emissions are key to ensuring that emission reductions and regulations are effective and provide needed transparency and trust. Point source emissions are a key target because a small number of power plants represent a large portion of total global emissions. Currently, emission rates are known only from self-reported data. Atmospheric observations have the potential to meet the need for independent evaluation, but useful results from this method have been elusive, due to challenges in distinguishing CO2ff emissions from the large and varying CO2 background and in relating atmospheric observations to emission flux rates with high accuracy. Here we use time-integrated observations of the radiocarbon content of CO2 (14CO2) to quantify the recently added CO2ff mole fraction at surface sites surrounding a point source. We demonstrate that both fast-growing plant material (grass) and CO2 collected by absorption into sodium hydroxide solution provide excellent time-integrated records of atmospheric 14CO2. These time-integrated samples allow us to evaluate emissions over a period of days to weeks with only a modest number of measurements. Applying the same time integration in an atmospheric transport model eliminates the need to resolve highly variable short-term turbulence. Together these techniques allow us to independently evaluate point source CO2ff emission rates from atmospheric observations with uncertainties of better than 10%. This uncertainty represents an improvement by a factor of 2 over current bottom-up inventory estimates and previous atmospheric observation estimates and allows reliable independent evaluation of emissions. PMID:27573818

  10. Independent evaluation of point source fossil fuel CO2 emissions to better than 10%.

    PubMed

    Turnbull, Jocelyn Christine; Keller, Elizabeth D; Norris, Margaret W; Wiltshire, Rachael M

    2016-09-13

    Independent estimates of fossil fuel CO2 (CO2ff) emissions are key to ensuring that emission reductions and regulations are effective and provide needed transparency and trust. Point source emissions are a key target because a small number of power plants represent a large portion of total global emissions. Currently, emission rates are known only from self-reported data. Atmospheric observations have the potential to meet the need for independent evaluation, but useful results from this method have been elusive, due to challenges in distinguishing CO2ff emissions from the large and varying CO2 background and in relating atmospheric observations to emission flux rates with high accuracy. Here we use time-integrated observations of the radiocarbon content of CO2 ((14)CO2) to quantify the recently added CO2ff mole fraction at surface sites surrounding a point source. We demonstrate that both fast-growing plant material (grass) and CO2 collected by absorption into sodium hydroxide solution provide excellent time-integrated records of atmospheric (14)CO2 These time-integrated samples allow us to evaluate emissions over a period of days to weeks with only a modest number of measurements. Applying the same time integration in an atmospheric transport model eliminates the need to resolve highly variable short-term turbulence. Together these techniques allow us to independently evaluate point source CO2ff emission rates from atmospheric observations with uncertainties of better than 10%. This uncertainty represents an improvement by a factor of 2 over current bottom-up inventory estimates and previous atmospheric observation estimates and allows reliable independent evaluation of emissions.

  11. Semantic integration to identify overlapping functional modules in protein interaction networks

    PubMed Central

    Cho, Young-Rae; Hwang, Woochang; Ramanathan, Murali; Zhang, Aidong

    2007-01-01

    Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO) annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification. PMID:17650343

  12. Integrated analysis of error detection and recovery

    NASA Technical Reports Server (NTRS)

    Shin, K. G.; Lee, Y. H.

    1985-01-01

    An integrated modeling and analysis of error detection and recovery is presented. When fault latency and/or error latency exist, the system may suffer from multiple faults or error propagations which seriously deteriorate the fault-tolerant capability. Several detection models that enable analysis of the effect of detection mechanisms on the subsequent error handling operations and the overall system reliability were developed. Following detection of the faulty unit and reconfiguration of the system, the contaminated processes or tasks have to be recovered. The strategies of error recovery employed depend on the detection mechanisms and the available redundancy. Several recovery methods including the rollback recovery are considered. The recovery overhead is evaluated as an index of the capabilities of the detection and reconfiguration mechanisms.

  13. Integrated health monitoring and controls for rocket engines

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.; Musgrave, J. L.; Guo, T. H.

    1992-01-01

    Current research in intelligent control systems at the Lewis Research Center is described in the context of a functional framework. The framework is applicable to a variety of reusable space propulsion systems for existing and future launch vehicles. It provides a 'road map' technology development to enable enhanced engine performance with increased reliability, durability, and maintainability. The framework hierarchy consists of a mission coordination level, a propulsion system coordination level, and an engine control level. Each level is described in the context of the Space Shuttle Main Engine. The concept of integrating diagnostics with control is discussed within the context of the functional framework. A distributed real time simulation testbed is used to realize and evaluate the functionalities in closed loop.

  14. On-the-fly Locata/inertial navigation system integration for precise maritime application

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Li, Yong; Rizos, Chris

    2013-10-01

    The application of Global Navigation Satellite System (GNSS) technology has meant that marine navigators have greater access to a more consistent and accurate positioning capability than ever before. However, GNSS may not be able to meet all emerging navigation performance requirements for maritime applications with respect to service robustness, accuracy, integrity and availability. In particular, applications in port areas (for example automated docking) and in constricted waterways, have very stringent performance requirements. Even when an integrated inertial navigation system (INS)/GNSS device is used there may still be performance gaps. GNSS signals are easily blocked or interfered with, and sometimes the satellite geometry may not be good enough for high accuracy and high reliability applications. Furthermore, the INS accuracy degrades rapidly during GNSS outages. This paper investigates the use of a portable ground-based positioning system, known as ‘Locata’, which was integrated with an INS, to provide accurate navigation in a marine environment without reliance on GNSS signals. An ‘on-the-fly’ Locata resolution algorithm that takes advantage of geometry change via an extended Kalman filter is proposed in this paper. Single-differenced Locata carrier phase measurements are utilized to achieve accurate and reliable solutions. A ‘loosely coupled’ decentralized Locata/INS integration architecture based on the Kalman filter is used for data processing. In order to evaluate the system performance, a field trial was conducted on Sydney Harbour. A Locata network consisting of eight Locata transmitters was set up near the Sydney Harbour Bridge. The experiment demonstrated that the Locata on-the-fly (OTF) algorithm is effective and can improve the system accuracy in comparison with the conventional ‘known point initialization’ (KPI) method. After the OTF and KPI comparison, the OTF Locata/INS integration is then assessed further and its performance improvement on both stand-alone OTF Locata and INS is shown. The Locata/INS integration can achieve centimetre-level accuracy for position solutions, and centimetre-per-second accuracy for velocity determination.

  15. An Acute Retinal Model for Evaluating Blood Retinal Barrier Breach and Potential Drugs for Treatment.

    PubMed

    Wu, Hao; Rodriguez, Ana R; Spur, Bernd W; Venkataraman, Venkat

    2016-09-13

    A low-cost, easy-to-use and powerful model system is established to evaluate potential treatments that could ameliorate blood retinal barrier breach. An inflammatory factor, histamine, is demonstrated to compromise vessel integrity in the cultured retina through positive staining of IgG outside of the blood vessels. The effects of histamine itself and those of candidate drugs for potential treatments, such as lipoxin A4, are assessed using three parameters: blood vessel leakage via IgG immunostaining, activation of Müller cells via GFAP staining and change in neuronal dendrites through staining for MAP2. Furthermore, the layered organization of the retina allows a detailed analysis of the processes of Müller and ganglion cells, such as changes in width and continuity. While the data presented is with swine retinal culture, the system is applicable to multiple species. Thus, the model provides a reliable tool to investigate the early effects of compromised retinal vessel integrity on different cell types and also to evaluate potential drug candidates for treatment.

  16. Network reliability maximization for stochastic-flow network subject to correlated failures using genetic algorithm and tabu\\xA0search

    NASA Astrophysics Data System (ADS)

    Yeh, Cheng-Ta; Lin, Yi-Kuei; Yang, Jo-Yun

    2018-07-01

    Network reliability is an important performance index for many real-life systems, such as electric power systems, computer systems and transportation systems. These systems can be modelled as stochastic-flow networks (SFNs) composed of arcs and nodes. Most system supervisors respect the network reliability maximization by finding the optimal multi-state resource assignment, which is one resource to each arc. However, a disaster may cause correlated failures for the assigned resources, affecting the network reliability. This article focuses on determining the optimal resource assignment with maximal network reliability for SFNs. To solve the problem, this study proposes a hybrid algorithm integrating the genetic algorithm and tabu search to determine the optimal assignment, called the hybrid GA-TS algorithm (HGTA), and integrates minimal paths, recursive sum of disjoint products and the correlated binomial distribution to calculate network reliability. Several practical numerical experiments are adopted to demonstrate that HGTA has better computational quality than several popular soft computing algorithms.

  17. Evaluation in medical education: A topical review of target parameters, data collection tools and confounding factors.

    PubMed

    Schiekirka, Sarah; Feufel, Markus A; Herrmann-Lingen, Christoph; Raupach, Tobias

    2015-01-01

    Evaluation is an integral part of education in German medical schools. According to the quality standards set by the German Society for Evaluation, evaluation tools must provide an accurate and fair appraisal of teaching quality. Thus, data collection tools must be highly reliable and valid. This review summarises the current literature on evaluation of medical education with regard to the possible dimensions of teaching quality, the psychometric properties of survey instruments and potential confounding factors. We searched Pubmed, PsycINFO and PSYNDEX for literature on evaluation in medical education and included studies published up until June 30, 2011 as well as articles identified in the "grey literature". RESULTS are presented as a narrative review. We identified four dimensions of teaching quality: structure, process, teacher characteristics, and outcome. Student ratings are predominantly used to address the first three dimensions, and a number of reliable tools are available for this purpose. However, potential confounders of student ratings pose a threat to the validity of these instruments. Outcome is usually operationalised in terms of student performance on examinations, but methodological problems may limit the usability of these data for evaluation purposes. In addition, not all examinations at German medical schools meet current quality standards. The choice of tools for evaluating medical education should be guided by the dimension that is targeted by the evaluation. Likewise, evaluation results can only be interpreted within the context of the construct addressed by the data collection tool that was used as well as its specific confounding factors.

  18. A study on reliability of power customer in distribution network

    NASA Astrophysics Data System (ADS)

    Liu, Liyuan; Ouyang, Sen; Chen, Danling; Ma, Shaohua; Wang, Xin

    2017-05-01

    The existing power supply reliability index system is oriented to power system without considering actual electricity availability in customer side. In addition, it is unable to reflect outage or customer’s equipment shutdown caused by instantaneous interruption and power quality problem. This paper thus makes a systematic study on reliability of power customer. By comparing with power supply reliability, reliability of power customer is defined and extracted its evaluation requirements. An indexes system, consisting of seven customer indexes and two contrast indexes, are designed to describe reliability of power customer from continuity and availability. In order to comprehensively and quantitatively evaluate reliability of power customer in distribution networks, reliability evaluation method is proposed based on improved entropy method and the punishment weighting principle. Practical application has proved that reliability index system and evaluation method for power customer is reasonable and effective.

  19. Psychometric properties of the Motivational Interviewing Treatment Integrity coding system 4.2 with jail inmates.

    PubMed

    Owens, Mandy D; Rowell, Lauren N; Moyers, Theresa

    2017-10-01

    Motivational Interviewing (MI) is an evidence-based approach shown to be helpful for a variety of behaviors across many populations. Treatment fidelity is an important tool for understanding how and with whom MI may be most helpful. The Motivational Interviewing Treatment Integrity coding system was recently updated to incorporate new developments in the research and theory of MI, including the relational and technical hypotheses of MI (MITI 4.2). To date, no studies have examined the MITI 4.2 with forensic populations. In this project, twenty-two brief MI interventions with jail inmates were evaluated to test the reliability of the MITI 4.2. Validity of the instrument was explored using regression models to examine the associations between global scores (Empathy, Partnership, Cultivating Change Talk and Softening Sustain Talk) and outcomes. Reliability of this coding system with these data was strong. We found that therapists had lower ratings of Empathy with participants who had more extensive criminal histories. Both Relational and Technical global scores were associated with criminal histories as well as post-intervention ratings of motivation to decrease drug use. Findings indicate that the MITI 4.2 was reliable for coding sessions with jail inmates. Additionally, results provided information related to the relational and technical hypotheses of MI. Future studies can use the MITI 4.2 to better understand the mechanisms behind how MI works with this high-risk group. Published by Elsevier Ltd.

  20. Potential Impacts of Climate Warming on Water Supply Reliability in the Tuolumne and Merced River Basins, California

    PubMed Central

    Kiparsky, Michael; Joyce, Brian; Purkey, David; Young, Charles

    2014-01-01

    We present an integrated hydrology/water operations simulation model of the Tuolumne and Merced River Basins, California, using the Water Evaluation and Planning (WEAP) platform. The model represents hydrology as well as water operations, which together influence water supplied for agricultural, urban, and environmental uses. The model is developed for impacts assessment using scenarios for climate change and other drivers of water system behavior. In this paper, we describe the model structure, its representation of historical streamflow, agricultural and urban water demands, and water operations. We describe projected impacts of climate change on hydrology and water supply to the major irrigation districts in the area, using uniform 2°C, 4°C, and 6°C increases applied to climate inputs from the calibration period. Consistent with other studies, we find that the timing of hydrology shifts earlier in the water year in response to temperature warming (5–21 days). The integrated agricultural model responds with increased water demands 2°C (1.4–2.0%), 4°C (2.8–3.9%), and 6°C (4.2–5.8%). In this sensitivity analysis, the combination of altered hydrology and increased demands results in decreased reliability of surface water supplied for agricultural purposes, with modeled quantity-based reliability metrics decreasing from a range of 0.84–0.90 under historical conditions to 0.75–0.79 under 6°C warming scenario. PMID:24465455

  1. Fatty degeneration of the rotator cuff muscles on pre- and postoperative CT arthrography (CTA): is the Goutallier grading system reliable?

    PubMed

    Lee, Eugene; Choi, Jung-Ah; Oh, Joo Han; Ahn, Soyeon; Hong, Sung Hwan; Chai, Jee Won; Kang, Heung Sik

    2013-09-01

    To retrospectively evaluate fatty degeneration (FD) of rotator cuff muscles on CTA using Goutallier's grading system and quantitative measurements with comparison between pre- and postoperative states. IRB approval was obtained for this study. Two radiologists independently reviewed pre- and postoperative CTAs of 43 patients (24 males and 19 females, mean age, 58.1 years) with 46 shoulders confirmed as full-thickness tears with random distribution. FD of supraspinatus, infraspinatus/teres minor, and subscapularis was assessed using Goutallier's system and by quantitative measurements of Hounsfield units (HUs) on sagittal images. Changes in FD grades and HUs were compared between pre- and postoperative CTAs and analyzed with respect to preoperative tear size and postoperative cuff integrity. The correlations between qualitative grades and quantitative measurements and their inter-observer reliabilities were also assessed. There was statistically significant correlation between FD grades and HU measurements of all muscles on pre- and postoperative CTA (p < 0.05). Inter-observer reliability of fatty degeneration grades were excellent to substantial on both pre- and postoperative CTA in supraspinatus (0.8685 and 0.8535) and subscapularis muscles (0.7777 and 0.7972), but fair in infraspinatus/teres minor muscles (0.5791 and 0.5740); however, quantitative Hounsfield units measurements showed excellent reliability for all muscles (ICC: 0.7950 and 0.9346 for SST, 0.7922 and 0.8492 for SSC, and 0.9254 and 0.9052 for IST/TM). No muscle showed improvement of fatty degeneration after surgical repair on qualitative and quantitative assessments; there was no difference in changes of fatty degeneration after surgical repair according to preoperative tear size and post-operative cuff integrity (p > 0.05). The average dose-length product (DLP, mGy · cm) was 365.2 mGy · cm (range, 323.8-417.2 mGy · cm) and estimated average effective dose was 5.1 mSv. Goutallier grades correlated well with HUs of rotator cuff muscles. Reliability was excellent for both systems, except for FD grade of IST/TM muscles, which may be more reliably assessed using quantitative measurements.

  2. Microwave evaluation of electromigration susceptibility in advanced interconnects.

    PubMed

    Sunday, Christopher E; Veksler, Dmitry; Cheung, Kin C; Obeng, Yaw S

    2017-11-07

    Traditional metrology has been unable to adequately address the needs of the emerging integrated circuits (ICs) at the nano scale; thus, new metrology and techniques are needed. For example, the reliability challenges in fabrication need to be well understood and controlled to facilitate mass production of through-substrate-via (TSV) enabled three-dimensional integrated circuits (3D-ICs). This requires new approaches to the metrology. In this paper, we use the microwave propagation characteristics to study the reliability issues that precede the physical damage caused by electromigration in the Cu-filled TSVs. The pre-failure microwave insertion losses and group delay are dependent on both the device temperature and the amount of current forced through the devices-under-test. The microwave insertion losses increase with the increase in the test temperature, while the group delay increases with the increase in the forced direct current magnitude. The microwave insertion losses are attributed to the defect mobility at the Cu-TiN interface, and the group delay changes are due to resistive heating in the interconnects, which perturbs the dielectric properties of the cladding dielectrics of the copper fill in the TSVs. https://doi.org/10.1063/1.4992135.

  3. Measuring Risk Perception in Later Life: The Perceived Risk Scale.

    PubMed

    Lifshitz, Rinat; Nimrod, Galit; Bachner, Yaacov G

    2016-11-01

    Risk perception is a subjective assessment of the actual or potential threat to one's life or, more broadly, to one's psychological well-being. Given the various risks associated with later life, a valid and reliable integrative screening tool for assessing risk perception among the elderly is warranted. The study examined the psychometric properties and factor structure of a new integrative risk perception instrument, the Perceived Risk Scale. This eight-item measure refers to various risks simultaneously, including terror, health issues, traffic accidents, violence, and financial loss, and was developed specifically for older adults. An online survey was conducted with 306 participants aged 50 years and older. The scale was examined using exploratory factor analysis and concurrent validity testing. Factor analysis revealed a two-factor structure: later-life risks and terror risks A high percentage of explained variance, as well as internal consistency, was found for the entire scale and for both factors. Concurrent validity was supported by significant positive associations with participants' depression and negative correlations with their life satisfaction. These findings suggest that the Perceived Risk Scale is internally reliable, valid, and appropriate for evaluating risk perception in later life. The scale's potential applications are discussed. © The Author(s) 2016.

  4. Current medical staff governance and physician sensemaking: a formula for resistance to high reliability.

    PubMed

    Flitter, Marc A; Riesenmy, Kelly Rouse; van Stralen, Daved

    2012-01-01

    To offer a theoretical explanation for observed physician resistance and rejection of high reliability patient safety initiatives. A grounded theoretical qualitative approach, utilizing the organizational theory of sensemaking, provided the foundation for inductive and deductive reasoning employed to analyze medical staff rejection of two successfully performing high reliability programs at separate hospitals. Physician behaviors resistant to patient-centric high reliability processes were traced to provider-centric physician sensemaking. Research, conducted with the advantage that prospective studies have over the limitations of this retrospective investigation, is needed to evaluate the potential for overcoming physician resistance to innovation implementation, employing strategies based upon these findings and sensemaking theory in general. If hospitals are to emulate high reliability industries that do successfully manage environments of extreme hazard, physicians must be fully integrated into the complex teams required to accomplish this goal. Reforming health care, through high reliability organizing, with its attendant continuous focus on patient-centric processes, offers a distinct alternative to efforts directed primarily at reforming health care insurance. It is by changing how health care is provided that true cost efficiencies can be achieved. Technology and the insights of organizational science present the opportunity of replacing the current emphasis on privileged information with collective tools capable of providing quality and safety in health care. The fictions that have sustained a provider-centric health care system have been challenged. The benefits of patient-centric care should be obtainable.

  5. Neurophysiology underlying influence of stimulus reliability on audiovisual integration.

    PubMed

    Shatzer, Hannah; Shen, Stanley; Kerlin, Jess R; Pitt, Mark A; Shahin, Antoine J

    2018-01-24

    We tested the predictions of the dynamic reweighting model (DRM) of audiovisual (AV) speech integration, which posits that spectrotemporally reliable (informative) AV speech stimuli induce a reweighting of processing from low-level to high-level auditory networks. This reweighting decreases sensitivity to acoustic onsets and in turn increases tolerance to AV onset asynchronies (AVOA). EEG was recorded while subjects watched videos of a speaker uttering trisyllabic nonwords that varied in spectrotemporal reliability and asynchrony of the visual and auditory inputs. Subjects judged the stimuli as in-sync or out-of-sync. Results showed that subjects exhibited greater AVOA tolerance for non-blurred than blurred visual speech and for less than more degraded acoustic speech. Increased AVOA tolerance was reflected in reduced amplitude of the P1-P2 auditory evoked potentials, a neurophysiological indication of reduced sensitivity to acoustic onsets and successful AV integration. There was also sustained visual alpha band (8-14 Hz) suppression (desynchronization) following acoustic speech onsets for non-blurred vs. blurred visual speech, consistent with continuous engagement of the visual system as the speech unfolds. The current findings suggest that increased spectrotemporal reliability of acoustic and visual speech promotes robust AV integration, partly by suppressing sensitivity to acoustic onsets, in support of the DRM's reweighting mechanism. Increased visual signal reliability also sustains the engagement of the visual system with the auditory system to maintain alignment of information across modalities. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. An Integrated Miniature Pulse Tube Cryocooler at 80K

    NASA Astrophysics Data System (ADS)

    Chen, H. L.; Yang, L. W.; Cai, J. H.; Liang, J. T.; Zhang, L.; Zhou, Y.

    2008-03-01

    Two integrated models of coaxial miniature pulse tube coolers based on an experimental model are manufactured. Performance of the integrated models is compared to that of the experimental model. Reliability and stability of an integrated model are tested and improved.

  7. Study on evaluation of construction reliability for engineering project based on fuzzy language operator

    NASA Astrophysics Data System (ADS)

    Shi, Yu-Fang; Ma, Yi-Yi; Song, Ping-Ping

    2018-03-01

    System Reliability Theory is a research hotspot of management science and system engineering in recent years, and construction reliability is useful for quantitative evaluation of project management level. According to reliability theory and target system of engineering project management, the defination of construction reliability appears. Based on fuzzy mathematics theory and language operator, value space of construction reliability is divided into seven fuzzy subsets and correspondingly, seven membership function and fuzzy evaluation intervals are got with the operation of language operator, which provides the basis of corresponding method and parameter for the evaluation of construction reliability. This method is proved to be scientific and reasonable for construction condition and an useful attempt for theory and method research of engineering project system reliability.

  8. Could situational judgement tests be used for selection into dental foundation training?

    PubMed

    Patterson, F; Ashworth, V; Mehra, S; Falcon, H

    2012-07-13

    To pilot and evaluate a machine-markable situational judgement test (SJT) designed to select candidates into UK dental foundation training. Single centre pilot study. UK postgraduate deanery in 2010. Seventy-four candidates attending interview for dental foundation training in Oxford and Wessex Deaneries volunteered to complete the situational judgement test. The situational judgement test was developed to assess relevant professional attributes for dentistry (for example, empathy and integrity) in a machine-markable format. Test content was developed by subject matter experts working with experienced psychometricians. Evaluation of psychometric properties of the pilot situational judgement test (for example, reliability, validity and fairness). Scores in the dental foundation training selection process (short-listing and interviews) were used to examine criterion-related validity. Candidates completed an evaluation questionnaire to examine candidate reactions and face validity of the new test. Forty-six candidates were female and 28 male; mean age was 23.5-years-old (range 22-32). Situational judgement test scores were normally distributed and the test showed good internal reliability when corrected for test length (α = 0.74). Situational judgement test scores positively correlated with the management, leadership and professionalism interview (N = 50; r = 0.43, p <0.01) but not with the clinical skills interview, providing initial evidence of criterion-related validity as the situational judgement test is designed to test non-cognitive professional attributes beyond clinical knowledge. Most candidates perceived the situational judgement test as relevant to dentistry, appropriate for their training level, and fair. This initial pilot study suggests that a situational judgement test is an appropriate and innovative method to measure professional attributes (eg empathy and integrity) for selection into foundation training. Further research will explore the long-term predictive validity of the situational judgement test once candidates have entered training.

  9. An Integrative Review of Self-Efficacy Measurement Instruments in Youth with Type 1 Diabetes (T1DM)

    PubMed Central

    Rasbach, Lisa; Jenkins, Carolyn; Laffel, Lori

    2014-01-01

    Purpose The purpose of this study is to assess the extant literature on instruments used to measure self-efficacy in youth with type 1 diabetes (T1DM) and their caregivers and to critically evaluate these measurements. Methods An integrative review (2003–2013) was conducted searching PsycINFO, Cumulative Index to Nursing and Allied Health Literature (CINAHL), and U.S. National Library of Medicine PubMed service (PubMed) databases using key words diabetes, type 1 diabetes, and self-efficacy. The authors reviewed the resulting294 references for inclusion criteria of (a) sample of youth with T1DM or sample of caregivers of youth with T1DM, (b) description of the self-efficacy instrument as primary research, and (c) the instrument measured self-efficacy specifically related to diabetes management. Forty-five articles out of the initial 294 met criteria. Results Of the 45 articles, 10 different self-efficacy instruments were identified. The primary theoretical framework used was Bandura’s social cognitive theory and model of self-efficacy. Most participants were white middle class T1DM youth. Evaluations to assess validity often were not reported; however, a majority of studies reported high internal consistency of the instruments. Conclusions Sample homogeneity could limit the applicability of results to certain patient populations. Further psychometric analysis, including validity assessments, should be conducted in more diverse samples. Development of valid and reliable instruments for measuring self-efficacy that are sensitive to change across a wider caregiver base over time is necessary. While this review examined reliable and valid instruments used in research, future opportunities include evaluation of measuring self-efficacy in T1DM youth exposed to recent advances in diabetes management technologies. PMID:25216655

  10. Digital photography and 3D MRI-based multimodal imaging for individualized planning of resective neocortical epilepsy surgery.

    PubMed

    Wellmer, Jörg; von Oertzen, Joachim; Schaller, Carlo; Urbach, Horst; König, Roy; Widman, Guido; Van Roost, Dirk; Elger, Christian E

    2002-12-01

    Invasive presurgical work up of pharmacoresistant epilepsies presumes integration of multiple diagnostic modalities into a comprehensive picture of seizure onset and eloquent brain areas. During resection, reliable transfer of evaluation results to the patient's individual anatomy must be made. We investigated the value of digital photography-based grid localization in combination with preoperative three-dimensional (3D) magnetic resonance imaging (MRI) for clinical routine. Digital photographs of the exposed cortex were taken before and after grid placement. Location of electrode contacts on the cortex was identified and schematically indicated on native cortex prints. Accordingly, transfer of contact positions to a 3D MRI brain-surface rendering was carried out manually by using the rendering software. Results of the electrophysiologic evaluation were transferred to either electrode contact reproduction and co-registered with imaging-based techniques such as single-photon emission computed tomography (SPECT), positron emission tomography (PET), and functional MRI (fMRI). Digital photography allows precise and highly realistic documentation of electrode contact positions on the individual neocortical surface. Lesions underneath grids can be highlighted by semitransparent MRI surface rendering, and lobar boundaries can be identified. Because of integrating electrode contact positions into the postprocessed 3D MRI data set, imaging-based techniques can be codisplayed with the results of the electrophysiologic evaluation. Comparison with CT/MRI co-registration showed good accuracy of the method. However, grids not sewn to the dura at implantation can become subject to significant displacement. Digital photography in combination with preimplantation 3D MRI allows the generation of reliable tailored resection plans in neocortical epilepsy surgery. The method enhances surgical safety and confidence.

  11. Flight evaluation results from the general-aviation advanced avionics system program

    NASA Technical Reports Server (NTRS)

    Callas, G. P.; Denery, D. G.; Hardy, G. H.; Nedell, B. F.

    1983-01-01

    A demonstration advanced avionics system (DAAS) for general-aviation aircraft was tested at NASA Ames Research Center to provide information required for the design of reliable, low-cost, advanced avionics systems which would make general-aviation operations safer and more practicable. Guest pilots flew a DAAS-equipped NASA Cessna 402-B aircraft to evaluate the usefulness of data busing, distributed microprocessors, and shared electronic displays, and to provide data on the DAAS pilot/system interface for the design of future integrated avionics systems. Evaluation results indicate that the DAAS hardware and functional capability meet the program objective. Most pilots felt that the DAAS representative of the way avionics systems would evolve and felt the added capability would improve the safety and practicability of general-aviation operations. Flight-evaluation results compiled from questionnaires are presented, the results of the debriefings are summarized. General conclusions of the flight evaluation are included.

  12. Extreme storms, sea level rise, and coastal change: implications for infrastructure reliability in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Anarde, K.; Kameshwar, S.; Irza, N.; Lorenzo-Trueba, J.; Nittrouer, J. A.; Padgett, J.; Bedient, P. B.

    2016-12-01

    Predicting coastal infrastructure reliability during hurricane events is important for risk-based design and disaster planning, such as delineating viable emergency response routes. Previous research has focused on either infrastructure vulnerability to coastal flooding or the impact of changing sea level and landforms on surge dynamics. Here we investigate the combined impact of sea level, morphology, and coastal flooding on the reliability of highway bridges - the only access points between barrier islands and mainland communities - during future extreme storms. We forward model coastal flooding for static projections of geomorphic change using ADCIRC+SWAN. First-order parameters that are adjusted include sea level and elevation. These are varied for each storm simulation to evaluate relative impact on the reliability of bridges surrounding Freeport, TX. Simulated storms include both synthetic and historical events, which are classified by intensity using the storm's integrated kinetic energy, a metric for surge generation potential. Reliability is estimated through probability of failure - given wave and surge loads - and time inundated. Findings include that: 1) bridge reliability scales inversely with surge height, and 2) sea level rise reduces bridge reliability due to a monotonic increase in surge height. The impact of a shifting landscape on bridge reliability is more complex: barrier island rollback can increase or decrease inundation times for storms of different intensity due to changes in wind-setup and back-barrier bay interactions. Initial storm surge readily inundates the coastal landscape during large intensity storms, however the draining of inland bays following storm passage is significantly impeded by the barrier. From a coastal engineering standpoint, we determine that to protect critical infrastructure, efforts now implemented that nourish low-lying barriers may be enhanced by also armoring back-bay coastlines and elevating bridge approach ramps.

  13. Automated Speech Rate Measurement in Dysarthria.

    PubMed

    Martens, Heidi; Dekens, Tomas; Van Nuffelen, Gwen; Latacz, Lukas; Verhelst, Werner; De Bodt, Marc

    2015-06-01

    In this study, a new algorithm for automated determination of speech rate (SR) in dysarthric speech is evaluated. We investigated how reliably the algorithm calculates the SR of dysarthric speech samples when compared with calculation performed by speech-language pathologists. The new algorithm was trained and tested using Dutch speech samples of 36 speakers with no history of speech impairment and 40 speakers with mild to moderate dysarthria. We tested the algorithm under various conditions: according to speech task type (sentence reading, passage reading, and storytelling) and algorithm optimization method (speaker group optimization and individual speaker optimization). Correlations between automated and human SR determination were calculated for each condition. High correlations between automated and human SR determination were found in the various testing conditions. The new algorithm measures SR in a sufficiently reliable manner. It is currently being integrated in a clinical software tool for assessing and managing prosody in dysarthric speech. Further research is needed to fine-tune the algorithm to severely dysarthric speech, to make the algorithm less sensitive to background noise, and to evaluate how the algorithm deals with syllabic consonants.

  14. The next generation in aircraft protection against advanced MANPADS

    NASA Astrophysics Data System (ADS)

    Chapman, Stuart

    2014-10-01

    This paper discusses the advanced and novel technologies and underlying systems capabilities that Selex ES has applied during the development, test and evaluation of the twin head Miysis DIRCM System in order to ensure that it provides the requisite levels of protection against the latest, sophisticated all-aspect IR MANPADS. The importance of key performance parameters, including the fundamental need for "spherical" coverage, rapid time to energy-on-target, laser tracking performance and radiant intensity on seeker dome is covered. It also addresses the approach necessary to ensure that the equipment is suited to all air platforms from the smallest helicopters to large transports, while also ensuring that it achieves an inherent high reliability and an ease of manufacture and repair such that a step change in through-life cost in comparison to previous generation systems can be achieved. The benefits and issues associated with open architecture design are also considered. Finally, the need for extensive test and evaluation at every stage, including simulation, laboratory testing, platform and target dynamic testing in a System Integration Laboratory (SIL), flight trial, missile live-fire, environmental testing and reliability testing is also described.

  15. Evaluation of continuous air monitor placement in a plutonium facility.

    PubMed

    Whicker, J J; Rodgers, J C; Fairchild, C I; Scripsick, R C; Lopez, R C

    1997-05-01

    Department of Energy appraisers found continuous air monitors at Department of Energy plutonium facilities alarmed less than 30% of the time when integrated room plutonium air concentrations exceeded 500 DAC-hours. Without other interventions, this alarm percentage suggests the possibility that workers could be exposed to high airborne concentrations without continuous air monitor alarms. Past research has shown that placement of continuous air monitors is a critical component in rapid and reliable detection of airborne releases. At Los Alamos National Laboratory and many other Department of Energy plutonium facilities, continuous air monitors have been primarily placed at ventilation exhaust points. The purpose of this study was to evaluate and compare the effectiveness of exhaust register placement of workplace continuous air monitors with other sampling locations. Polydisperse oil aerosols were released from multiple locations in two plutonium laboratories at Los Alamos National Laboratory. An array of laser particle counters positioned in the rooms measured time-resolved aerosol dispersion. Results showed alternative placement of air samplers generally resulted in aerosol detection that was faster, often more sensitive, and equally reliable compared with samplers at exhaust registers.

  16. Active Wireless System for Structural Health Monitoring Applications.

    PubMed

    Perera, Ricardo; Pérez, Alberto; García-Diéguez, Marta; Zapico-Valle, José Luis

    2017-12-11

    The use of wireless sensors in Structural Health Monitoring (SHM) has increased significantly in the last years. Piezoelectric-based lead zirconium titanate (PZT) sensors have been on the rise in SHM due to their superior sensing abilities. They are applicable in different technologies such as electromechanical impedance (EMI)-based SHM. This work develops a flexible wireless smart sensor (WSS) framework based on the EMI method using active sensors for full-scale and autonomous SHM. In contrast to passive sensors, the self-sensing properties of the PZTs allow interrogating with or exciting a structure when desired. The system integrates the necessary software and hardware within a service-oriented architecture approach able to provide in a modular way the services suitable to satisfy the key requirements of a WSS. The framework developed in this work has been validated on different experimental applications. Initially, the reliability of the EMI method when carried out with the proposed wireless sensor system is evaluated by comparison with the wireless counterpart. Afterwards, the performance of the system is evaluated in terms of software stability and reliability of functioning.

  17. Time-of-flight-assisted Kinect camera-based people detection for intuitive human robot cooperation in the surgical operating room.

    PubMed

    Beyl, Tim; Nicolai, Philip; Comparetti, Mirko D; Raczkowsky, Jörg; De Momi, Elena; Wörn, Heinz

    2016-07-01

    Scene supervision is a major tool to make medical robots safer and more intuitive. The paper shows an approach to efficiently use 3D cameras within the surgical operating room to enable for safe human robot interaction and action perception. Additionally the presented approach aims to make 3D camera-based scene supervision more reliable and accurate. A camera system composed of multiple Kinect and time-of-flight cameras has been designed, implemented and calibrated. Calibration and object detection as well as people tracking methods have been designed and evaluated. The camera system shows a good registration accuracy of 0.05 m. The tracking of humans is reliable and accurate and has been evaluated in an experimental setup using operating clothing. The robot detection shows an error of around 0.04 m. The robustness and accuracy of the approach allow for an integration into modern operating room. The data output can be used directly for situation and workflow detection as well as collision avoidance.

  18. Spatially Regularized Machine Learning for Task and Resting-state fMRI

    PubMed Central

    Song, Xiaomu; Panych, Lawrence P.; Chen, Nan-kuei

    2015-01-01

    Background Reliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies although it has been intensively addressed in the past decades. New Method A spatially regularized support vector machine (SVM) technique was developed for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain mapping techniques, which implement supervised classifications of specific brain functional states or disorders, the proposed method performs a semi-supervised classification for the general brain function mapping where spatial correlation of fMRI is integrated into the SVM learning. The method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and identify a true boundary between active and inactive voxels, or between functionally connected and unconnected voxels in a feature space. Results The method was evaluated using synthetic and experimental data at the individual and group level. Multiple features were evaluated in terms of their contributions to the spatially regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained from individual subjects and at the group level. Comparison with Existing Methods A comparison study was performed with independent component analysis, general linear model, and correlation analysis methods. Experimental results indicate that the proposed method can provide a better or comparable mapping performance at the individual and group level. Conclusions The proposed method can provide accurate and reliable mapping of brain function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies. PMID:26470627

  19. High-resolution audiometry: an automated method for hearing threshold acquisition with quality control.

    PubMed

    Bian, Lin

    2012-01-01

    In clinical practice, hearing thresholds are measured at only five to six frequencies at octave intervals. Thus, the audiometric configuration cannot closely reflect the actual status of the auditory structures. In addition, differential diagnosis requires quantitative comparison of behavioral thresholds with physiological measures, such as otoacoustic emissions (OAEs) that are usually measured in higher resolution. The purpose of this research was to develop a method to improve the frequency resolution of the audiogram. A repeated-measure design was used in the study to evaluate the reliability of the threshold measurements. A total of 16 participants with clinically normal hearing and mild hearing loss were recruited from a population of university students. No intervention was involved in the study. Custom developed system and software were used for threshold acquisition with quality control (QC). With real-ear calibration and monitoring of test signals, the system provided accurate and individualized measure of hearing thresholds that were determined by an analysis based on signal detection theory (SDT). The reliability of the threshold measure was assessed by correlation and differences between the repeated measures. The audiometric configurations were diverse and unique to each individual ear. The accuracy, within-subject reliability, and between-test repeatability are relatively high. With QC, the high-resolution audiograms can be reliably and accurately measured. Hearing thresholds measured as ear canal sound pressures with higher frequency resolution can provide more customized hearing-aid fitting. The test system may be integrated with other physiological measures, such as OAEs, into a comprehensive evaluative tool. American Academy of Audiology.

  20. Network challenges for cyber physical systems with tiny wireless devices: a case study on reliable pipeline condition monitoring.

    PubMed

    Ali, Salman; Qaisar, Saad Bin; Saeed, Husnain; Khan, Muhammad Farhan; Naeem, Muhammad; Anpalagan, Alagan

    2015-03-25

    The synergy of computational and physical network components leading to the Internet of Things, Data and Services has been made feasible by the use of Cyber Physical Systems (CPSs). CPS engineering promises to impact system condition monitoring for a diverse range of fields from healthcare, manufacturing, and transportation to aerospace and warfare. CPS for environment monitoring applications completely transforms human-to-human, human-to-machine and machine-to-machine interactions with the use of Internet Cloud. A recent trend is to gain assistance from mergers between virtual networking and physical actuation to reliably perform all conventional and complex sensing and communication tasks. Oil and gas pipeline monitoring provides a novel example of the benefits of CPS, providing a reliable remote monitoring platform to leverage environment, strategic and economic benefits. In this paper, we evaluate the applications and technical requirements for seamlessly integrating CPS with sensor network plane from a reliability perspective and review the strategies for communicating information between remote monitoring sites and the widely deployed sensor nodes. Related challenges and issues in network architecture design and relevant protocols are also provided with classification. This is supported by a case study on implementing reliable monitoring of oil and gas pipeline installations. Network parameters like node-discovery, node-mobility, data security, link connectivity, data aggregation, information knowledge discovery and quality of service provisioning have been reviewed.

  1. Network Challenges for Cyber Physical Systems with Tiny Wireless Devices: A Case Study on Reliable Pipeline Condition Monitoring

    PubMed Central

    Ali, Salman; Qaisar, Saad Bin; Saeed, Husnain; Farhan Khan, Muhammad; Naeem, Muhammad; Anpalagan, Alagan

    2015-01-01

    The synergy of computational and physical network components leading to the Internet of Things, Data and Services has been made feasible by the use of Cyber Physical Systems (CPSs). CPS engineering promises to impact system condition monitoring for a diverse range of fields from healthcare, manufacturing, and transportation to aerospace and warfare. CPS for environment monitoring applications completely transforms human-to-human, human-to-machine and machine-to-machine interactions with the use of Internet Cloud. A recent trend is to gain assistance from mergers between virtual networking and physical actuation to reliably perform all conventional and complex sensing and communication tasks. Oil and gas pipeline monitoring provides a novel example of the benefits of CPS, providing a reliable remote monitoring platform to leverage environment, strategic and economic benefits. In this paper, we evaluate the applications and technical requirements for seamlessly integrating CPS with sensor network plane from a reliability perspective and review the strategies for communicating information between remote monitoring sites and the widely deployed sensor nodes. Related challenges and issues in network architecture design and relevant protocols are also provided with classification. This is supported by a case study on implementing reliable monitoring of oil and gas pipeline installations. Network parameters like node-discovery, node-mobility, data security, link connectivity, data aggregation, information knowledge discovery and quality of service provisioning have been reviewed. PMID:25815444

  2. Determining minimum staffing levels during snowstorms using an integrated simulation, regression, and reliability model.

    PubMed

    Kunkel, Amber; McLay, Laura A

    2013-03-01

    Emergency medical services (EMS) provide life-saving care and hospital transport to patients with severe trauma or medical conditions. Severe weather events, such as snow events, may lead to adverse patient outcomes by increasing call volumes and service times. Adequate staffing levels during such weather events are critical for ensuring that patients receive timely care. To determine staffing levels that depend on weather, we propose a model that uses a discrete event simulation of a reliability model to identify minimum staffing levels that provide timely patient care, with regression used to provide the input parameters. The system is said to be reliable if there is a high degree of confidence that ambulances can immediately respond to a given proportion of patients (e.g., 99 %). Four weather scenarios capture varying levels of snow falling and snow on the ground. An innovative feature of our approach is that we evaluate the mitigating effects of different extrinsic response policies and intrinsic system adaptation. The models use data from Hanover County, Virginia to quantify how snow reduces EMS system reliability and necessitates increasing staffing levels. The model and its analysis can assist in EMS preparedness by providing a methodology to adjust staffing levels during weather events. A key observation is that when it is snowing, intrinsic system adaptation has similar effects on system reliability as one additional ambulance.

  3. Reliable and redundant FPGA based read-out design in the ATLAS TileCal Demonstrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerstedt, Henrik; Muschter, Steffen; Drake, Gary

    The Tile Calorimeter at ATLAS [1] is a hadron calorimeter based on steel plates and scintillating tiles read out by PMTs. The current read-out system uses standard ADCs and custom ASICs to digitize and temporarily store the data on the detector. However, only a subset of the data is actually read out to the counting room. The on-detector electronics will be replaced around 2023. To achieve the required reliability the upgraded system will be highly redundant. Here the ASICs will be replaced with Kintex-7 FPGAs from Xilinx. This, in addition to the use of multiple 10 Gbps optical read-out links,more » will allow a full read-out of all detector data. Due to the higher radiation levels expected when the beam luminosity is increased, opportunities for repairs will be less frequent. The circuitry and firmware must therefore be designed for sufficiently high reliability using redundancy and radiation tolerant components. Within a year, a hybrid demonstrator including the new readout system will be installed in one slice of the ATLAS Tile Calorimeter. This will allow the proposed upgrade to be thoroughly evaluated well before the planned 2023 deployment in all slices, especially with regard to long term reliability. Different firmware strategies alongside with their integration in the demonstrator are presented in the context of high reliability protection against hardware malfunction and radiation induced errors.« less

  4. Evaluate the application of modal test and analysis processes to structural fault detection in MSFC-STS project elements

    NASA Technical Reports Server (NTRS)

    Springer, William T.

    1988-01-01

    The Space Transportation System (STS) is a very complex and expensive flight system which is intended to carry payloads into low Earth orbit and return. A catastrophic failure of the STS (such as experienced in the 51-L incident) results in the loss of both human life as well as very expensive hardware. One impact of this incident was to reaffirm the need to do everything possible to insure the integrity and reliability of the STS is sufficient to produce a safe flight. One means of achieving this goal is to expand the number of inspection technologies available for use on the STS. The purpose was to begin to evaluate the possible use of assessing the structural integrity of STS components for which Marshall Space Flight Center (MSFC) has responsibility. This entailed reviewing the available literature and determining a low-level experimental program which could be performed by MSFC and would help establish the feasibility of using this technology for structural fault detection.

  5. [Myocardial viability: update in nuclear cardiology].

    PubMed

    Vallejo, Enrique

    2007-01-01

    Evaluation of myocardial viability with the aid of radionuclides, is a technique that offers reliable, reproducible information, with an attractive cost-benefit relationship, in the study of the myocardial viability, integrating cardiac molecular, metabolic, and functional aspects. Nowadays, coronary risk stratification in post-myocardial infarction patients pretends to locate them as low-, intermediate, and high risk-subjects that can suffer cardiovascular complications in the very near future. Low-risk patients are characterized by a cardiac-related mortality below 1%, whereas high-risk mortality is greater than 3%. Because of clinical complications following a myocardial infarction are observed during the first month of evolution, clinical guidelines suggest to evaluate the cardiovascular risk before hospital discharge.

  6. Report on phase 1 of the Microprocessor Seminar. [and associated large scale integration

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Proceedings of a seminar on microprocessors and associated large scale integrated (LSI) circuits are presented. The potential for commonality of device requirements, candidate processes and mechanisms for qualifying candidate LSI technologies for high reliability applications, and specifications for testing and testability were among the topics discussed. Various programs and tentative plans of the participating organizations in the development of high reliability LSI circuits are given.

  7. Application of an Integrated HPC Reliability Prediction Framework to HMMWV Suspension System

    DTIC Science & Technology

    2010-09-13

    model number M966 (TOW Missle Carrier, Basic Armor without weapons), since they were available. Tires used for all simulations were the bias-type...vehicle fleet, including consideration of all kinds of uncertainty, especially including model uncertainty. The end result will be a tool to use...building an adequate vehicle reliability prediction framework for military vehicles is the accurate modeling of the integration of various types of

  8. Integrated IoT technology in industrial lasers for the improved user experience

    NASA Astrophysics Data System (ADS)

    Ding, Jianwu; Liu, Jinhui

    2018-02-01

    The end users' biggest concern for any industrial equipment is the reliability and the service down-time. This is especially true for industrial lasers as they are typically used in fully or semi- automated processes. Here we demonstrate how to use the integrated Internet of Things (IoT) technology in industrial lasers to address the reliability and the service down-time so to improve end users' experience.

  9. Integration of Porogen-Based Low-k Films: Influence of Capping Layer Thickness and Long Thermal Anneals on Low-k Damage and Reliability

    NASA Astrophysics Data System (ADS)

    De Roest, David; Vereecke, Bart; Huffman, Craig; Heylen, Nancy; Croes, Kristof; Arai, Hirofumi; Takamure, Noboru; Beynet, Julien; Sprey, Hessel; Matsushita, Kiyohiro; Kobayashi, Nobuyoshi; Verdonck, Patrick; Demuynck, Steven; Beyer, Gerald; Tokei, Zsolt; Struyf, Herbert

    2010-05-01

    This paper discusses integration aspects of a porous low-k film (k ˜2.45) cured with a broadband UV lamp. Different process splits are discussed which could contribute to avoid integration induced damage and improve reliability. The main factor contributing to a successful integration is the presence of a thick (protecting) cap layer partially remaining after chemical mechanical polishing (CMP), which leads to yielding structures with a keff of ˜2.6, a breakdown voltage of ˜6.9 MV/cm and time dependent dielectric breakdown (TDDB) lifetimes in the excess of 100 years. Long thermal anneals restore the k-value but degrade lifetime.

  10. A proposed analytic framework for determining the impact of an antimicrobial resistance intervention.

    PubMed

    Grohn, Yrjo T; Carson, Carolee; Lanzas, Cristina; Pullum, Laura; Stanhope, Michael; Volkova, Victoriya

    2017-06-01

    Antimicrobial use (AMU) is increasingly threatened by antimicrobial resistance (AMR). The FDA is implementing risk mitigation measures promoting prudent AMU in food animals. Their evaluation is crucial: the AMU/AMR relationship is complex; a suitable framework to analyze interventions is unavailable. Systems science analysis, depicting variables and their associations, would help integrate mathematics/epidemiology to evaluate the relationship. This would identify informative data and models to evaluate interventions. This National Institute for Mathematical and Biological Synthesis AMR Working Group's report proposes a system framework to address the methodological gap linking livestock AMU and AMR in foodborne bacteria. It could evaluate how AMU (and interventions) impact AMR. We will evaluate pharmacokinetic/dynamic modeling techniques for projecting AMR selection pressure on enteric bacteria. We study two methods to model phenotypic AMR changes in bacteria in the food supply and evolutionary genotypic analyses determining molecular changes in phenotypic AMR. Systems science analysis integrates the methods, showing how resistance in the food supply is explained by AMU and concurrent factors influencing the whole system. This process is updated with data and techniques to improve prediction and inform improvements for AMU/AMR surveillance. Our proposed framework reflects both the AMR system's complexity, and desire for simple, reliable conclusions.

  11. Demonstration of innovative monitoring technologies at the Savannah River Integrated Demonstration Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossabi, J.; Jenkins, R.A.; Wise, M.B.

    1993-12-31

    The Department of Energy`s Office of Technology Development initiated an Integrated Demonstration Program at the Savannah River Site in 1989. The objective of this program is to develop, demonstrate, and evaluate innovative technologies that can improve present-day environmental restoration methods. The Integrated Demonstration Program at SRS is entitled ``Cleanup of Organics in Soils and Groundwater at Non-Arid Sites.`` New technologies in the areas of drilling, characterization, monitoring, and remediation are being demonstrated and evaluated for their technical performance and cost effectiveness in comparison with baseline technologies. Present site characterization and monitoring methods are costly, time-consuming, overly invasive, and often imprecise.more » Better technologies are required to accurately describe the subsurface geophysical and geochemical features of a site and the nature and extent of contamination. More efficient, nonintrusive characterization and monitoring techniques are necessary for understanding and predicting subsurface transport. More reliable procedures are also needed for interpreting monitoring and characterization data. Site characterization and monitoring are key elements in preventing, identifying, and restoring contaminated sites. The remediation of a site cannot be determined without characterization data, and monitoring may be required for 30 years after site closure.« less

  12. In itinere strategic environmental assessment of an integrated provincial waste system.

    PubMed

    Federico, Giovanna; Rizzo, Gianfranco; Traverso, Marzia

    2009-06-01

    In the paper, the practical problem of analysing in an integrated way the performance of provincial waste systems is approached, in the framework of the Strategic Environmental Assessment (SEA). In particular, the in itinere phase of SEA is analysed herein. After separating out a proper group of ambits, to which the waste system is supposed to determine relevant impacts, pertinent sets of single indicators are proposed. Through the adoption of such indicators the time trend of the system is investigated, and the suitability of each indicator is critically revised. The structure of the evaluation scheme, which is essentially based on the use of ambit issues and analytical indicators, calls for the application of the method of the Dashboard of Sustainability for the integrated evaluation of the whole system. The suitability of this method is shown through the paper, together with the possibility of a comparative analysis of different scenarios of interventions. Of course, the reliability of the proposed method strongly relies on the availability of a detailed set of territorial data. The method appears to represent a useful tool for public administration in the process of optimizing the policy actions aimed at minimizing the increasing problem represented by waste production in urban areas.

  13. DEPEND - A design environment for prediction and evaluation of system dependability

    NASA Technical Reports Server (NTRS)

    Goswami, Kumar K.; Iyer, Ravishankar K.

    1990-01-01

    The development of DEPEND, an integrated simulation environment for the design and dependability analysis of fault-tolerant systems, is described. DEPEND models both hardware and software components at a functional level, and allows automatic failure injection to assess system performance and reliability. It relieves the user of the work needed to inject failures, maintain statistics, and output reports. The automatic failure injection scheme is geared toward evaluating a system under high stress (workload) conditions. The failures that are injected can affect both hardware and software components. To illustrate the capability of the simulator, a distributed system which employs a prediction-based, dynamic load-balancing heuristic is evaluated. Experiments were conducted to determine the impact of failures on system performance and to identify the failures to which the system is especially susceptible.

  14. On the integral use of foundational concepts in verifying validity during skull-photo superimposition.

    PubMed

    Jayaprakash, Paul T

    2017-09-01

    Often cited reliability test on video superimposition method integrated scaling face-images in relation to skull-images, tragus-auditory meatus relationship in addition to exocanthion-Whitnall's tubercle relationship when orientating the skull-image and wipe mode imaging in addition to mix mode imaging when obtaining skull-face image overlay and evaluating the goodness of match. However, a report that found higher false positive matches in computer assisted superimposition method transited from the above foundational concepts and relied on images of unspecified sizes that are lesser than 'life-size', frontal plane landmarks in the skull- and face- images alone for orientating the skull-image and mix images alone for evaluating the goodness of match. Recently, arguing the use of 'life-size' images as 'archaic', the authors who tested the reliability in the computer assisted superimposition method have denied any method transition. This article describes that the use of images of unspecified sizes at lesser than 'life-size' eliminates the only possibility to quantify parameters during superimposition which alone enables dynamic skull orientation when overlaying a skull-image with a face-image in an anatomically acceptable orientation. The dynamic skull orientation process mandatorily requires aligning the tragus in the 2D face-image with the auditory meatus in the 3D skull-image for anatomically orientating the skull-image in relation to the posture in the face-image, a step not mentioned by the authors describing the computer assisted superimposition method. Furthermore, mere reliance on mix type images during image overlay eliminates the possibility to assess the relationship between the leading edges of the skull- and face-image outlines as also specific area match among the corresponding craniofacial organs during superimposition. Indicating the possibility of increased false positive matches as a consequence of the above method transitions, the need for testing the reliability in the superimposition method adopting concepts that are considered safe is stressed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A SINS/SRS/GNS Autonomous Integrated Navigation System Based on Spectral Redshift Velocity Measurements.

    PubMed

    Wei, Wenhui; Gao, Zhaohui; Gao, Shesheng; Jia, Ke

    2018-04-09

    In order to meet the requirements of autonomy and reliability for the navigation system, combined with the method of measuring speed by using the spectral redshift information of the natural celestial bodies, a new scheme, consisting of Strapdown Inertial Navigation System (SINS)/Spectral Redshift (SRS)/Geomagnetic Navigation System (GNS), is designed for autonomous integrated navigation systems. The principle of this SINS/SRS/GNS autonomous integrated navigation system is explored, and the corresponding mathematical model is established. Furthermore, a robust adaptive central difference particle filtering algorithm is proposed for this autonomous integrated navigation system. The simulation experiments are conducted and the results show that the designed SINS/SRS/GNS autonomous integrated navigation system possesses good autonomy, strong robustness and high reliability, thus providing a new solution for autonomous navigation technology.

  16. Modification site localization scoring integrated into a search engine.

    PubMed

    Baker, Peter R; Trinidad, Jonathan C; Chalkley, Robert J

    2011-07-01

    Large proteomic data sets identifying hundreds or thousands of modified peptides are becoming increasingly common in the literature. Several methods for assessing the reliability of peptide identifications both at the individual peptide or data set level have become established. However, tools for measuring the confidence of modification site assignments are sparse and are not often employed. A few tools for estimating phosphorylation site assignment reliabilities have been developed, but these are not integral to a search engine, so require a particular search engine output for a second step of processing. They may also require use of a particular fragmentation method and are mostly only applicable for phosphorylation analysis, rather than post-translational modifications analysis in general. In this study, we present the performance of site assignment scoring that is directly integrated into the search engine Protein Prospector, which allows site assignment reliability to be automatically reported for all modifications present in an identified peptide. It clearly indicates when a site assignment is ambiguous (and if so, between which residues), and reports an assignment score that can be translated into a reliability measure for individual site assignments.

  17. The scientific data acquisition system of the GAMMA-400 space project

    NASA Astrophysics Data System (ADS)

    Bobkov, S. G.; Serdin, O. V.; Gorbunov, M. S.; Arkhangelskiy, A. I.; Topchiev, N. P.

    2016-02-01

    The description of scientific data acquisition system (SDAS) designed by SRISA for the GAMMA-400 space project is presented. We consider the problem of different level electronics unification: the set of reliable fault-tolerant integrated circuits fabricated on Silicon-on-Insulator 0.25 mkm CMOS technology and the high-speed interfaces and reliable modules used in the space instruments. The characteristics of reliable fault-tolerant very large scale integration (VLSI) technology designed by SRISA for the developing of computation systems for space applications are considered. The scalable net structure of SDAS based on Serial RapidIO interface including real-time operating system BAGET is described too.

  18. Developing an interactive mobile phone self-report system for self-management of hypertension. Part 2: content validity and usability.

    PubMed

    Bengtsson, Ulrika; Kjellgren, Karin; Höfer, Stefan; Taft, Charles; Ring, Lena

    2014-10-01

    Self-management support tools using technology may improve adherence to hypertension treatment. There is a need for user-friendly tools facilitating patients' understanding of the interconnections between blood pressure, wellbeing and lifestyle. This study aimed to examine comprehension, comprehensiveness and relevance of items, and further to evaluate the usability and reliability of an interactive hypertension-specific mobile phone self-report system. Areas important in supporting self-management and candidate items were derived from five focus group interviews with patients and healthcare professionals (n = 27), supplemented by a literature review. Items and response formats were drafted to meet specifications for mobile phone administration and were integrated into a mobile phone data-capture system. Content validity and usability were assessed iteratively in four rounds of cognitive interviews with patients (n = 21) and healthcare professionals (n = 4). Reliability was examined using a test-retest. Focus group analyses yielded six areas covered by 16 items. The cognitive interviews showed satisfactory item comprehension, relevance and coverage; however, one item was added. The mobile phone self-report system was reliable and perceived easy to use. The mobile phone self-report system appears efficiently to capture information relevant in patients' self-management of hypertension. Future studies need to evaluate the effectiveness of this tool in improving self-management of hypertension in clinical practice.

  19. Reference genes for reverse transcription quantitative PCR in canine brain tissue.

    PubMed

    Stassen, Quirine E M; Riemers, Frank M; Reijmerink, Hannah; Leegwater, Peter A J; Penning, Louis C

    2015-12-09

    In the last decade canine models have been used extensively to study genetic causes of neurological disorders such as epilepsy and Alzheimer's disease and unravel their pathophysiological pathways. Reverse transcription quantitative polymerase chain reaction is a sensitive and inexpensive method to study expression levels of genes involved in disease processes. Accurate normalisation with stably expressed so-called reference genes is crucial for reliable expression analysis. Following the minimum information for publication of quantitative real-time PCR experiments precise guidelines, the expression of ten frequently used reference genes, namely YWHAZ, HMBS, B2M, SDHA, GAPDH, HPRT, RPL13A, RPS5, RPS19 and GUSB was evaluated in seven brain regions (frontal lobe, parietal lobe, occipital lobe, temporal lobe, thalamus, hippocampus and cerebellum) and whole brain of healthy dogs. The stability of expression varied between different brain areas. Using the GeNorm and Normfinder software HMBS, GAPDH and HPRT were the most reliable reference genes for whole brain. Furthermore based on GeNorm calculations it was concluded that as little as two to three reference genes are sufficient to obtain reliable normalisation, irrespective the brain area. Our results amend/extend the limited previously published data on canine brain reference genes. Despite the excellent expression stability of HMBS, GAPDH and HRPT, the evaluation of expression stability of reference genes must be a standard and integral part of experimental design and subsequent data analysis.

  20. Radiographic evaluation of the ankle syndesmosis.

    PubMed

    Croft, Stephen; Furey, Andrew; Stone, Craig; Moores, Carl; Wilson, Robert

    2015-02-01

    Radiographic measurements to document ankle anatomy have been suggested in recent literature to be inadequate. Focus has been put on stress views and computed tomography; however, there are also issues with these modalities. An orthogonal view that could be used both statically and dynamically could help determine syndesmotic stability. The purpose of this study was to determine a parameter on a normal lateral ankle radiograph that will increase the reliability of standard radiography in diagnosing syndesmotic integrity. Three orthopedic surgeons reviewed 80 lateral ankle radiographs. Thirty of those radiographs were reviewed on a second occasion. Rotation of the radiographs was determined by evaluating the overlap of the talar dome. Four radiographic parameters were measured 1 cm above the tibial plafond: fibular width, tibial width, and anterior and posterior tibiofibular intervals. Seventy-two radiographs were determined by consensus to be adequate. Means and ratios were documented to determine the relationship of the fibula to the tibia. Interrater reliability ranged from moderate to near-perfect, and the intrarater reliability was documented for each ratio. The anterior tibiofibular ratio was shown to be strong to near-perfect. It demonstrates that 40% of the tibia should be seen anterior to the fibula at 1cm above the tibial plafond. The anterior tibiofibular ratio provides an orthogonal measure for the syndesmosis that, in conjunction with those parameters previously documented, could clinically and economically improve the diagnosis of syndesmotic disruptions.

  1. Systematic Evaluation of Stochastic Methods in Power System Scheduling and Dispatch with Renewable Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yishen; Zhou, Zhi; Liu, Cong

    2016-08-01

    As more wind power and other renewable resources are being integrated into the electric power grid, the forecast uncertainty brings operational challenges for the power system operators. In this report, different operational strategies for uncertainty management are presented and evaluated. A comprehensive and consistent simulation framework is developed to analyze the performance of different reserve policies and scheduling techniques under uncertainty in wind power. Numerical simulations are conducted on a modified version of the IEEE 118-bus system with a 20% wind penetration level, comparing deterministic, interval, and stochastic unit commitment strategies. The results show that stochastic unit commitment provides amore » reliable schedule without large increases in operational costs. Moreover, decomposition techniques, such as load shift factor and Benders decomposition, can help in overcoming the computational obstacles to stochastic unit commitment and enable the use of a larger scenario set to represent forecast uncertainty. In contrast, deterministic and interval unit commitment tend to give higher system costs as more reserves are being scheduled to address forecast uncertainty. However, these approaches require a much lower computational effort Choosing a proper lower bound for the forecast uncertainty is important for balancing reliability and system operational cost in deterministic and interval unit commitment. Finally, we find that the introduction of zonal reserve requirements improves reliability, but at the expense of higher operational costs.« less

  2. Reliability of IGBT in a STATCOM for Harmonic Compensation and Power Factor Correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopi Reddy, Lakshmi Reddy; Tolbert, Leon M; Ozpineci, Burak

    With smart grid integration, there is a need to characterize reliability of a power system by including reliability of power semiconductors in grid related applications. In this paper, the reliability of IGBTs in a STATCOM application is presented for two different applications, power factor correction and harmonic elimination. The STATCOM model is developed in EMTP, and analytical equations for average conduction losses in an IGBT and a diode are derived and compared with experimental data. A commonly used reliability model is used to predict reliability of IGBT.

  3. Dielectric Spectroscopic Detection of Early Failures in 3-D Integrated Circuits.

    PubMed

    Obeng, Yaw; Okoro, C A; Ahn, Jung-Joon; You, Lin; Kopanski, Joseph J

    The commercial introduction of three dimensional integrated circuits (3D-ICs) has been hindered by reliability challenges, such as stress related failures, resistivity changes, and unexplained early failures. In this paper, we discuss a new RF-based metrology, based on dielectric spectroscopy, for detecting and characterizing electrically active defects in fully integrated 3D devices. These defects are traceable to the chemistry of the insolation dielectrics used in the through silicon via (TSV) construction. We show that these defects may be responsible for some of the unexplained early reliability failures observed in TSV enabled 3D devices.

  4. Improving reliability of a residency interview process.

    PubMed

    Peeters, Michael J; Serres, Michelle L; Gundrum, Todd E

    2013-10-14

    To improve the reliability and discrimination of a pharmacy resident interview evaluation form, and thereby improve the reliability of the interview process. In phase 1 of the study, authors used a Many-Facet Rasch Measurement model to optimize an existing evaluation form for reliability and discrimination. In phase 2, interviewer pairs used the modified evaluation form within 4 separate interview stations. In phase 3, 8 interviewers individually-evaluated each candidate in one-on-one interviews. In phase 1, the evaluation form had a reliability of 0.98 with person separation of 6.56; reproducibly, the form separated applicants into 6 distinct groups. Using that form in phase 2 and 3, our largest variation source was candidates, while content specificity was the next largest variation source. The phase 2 g-coefficient was 0.787, while confirmatory phase 3 was 0.922. Process reliability improved with more stations despite fewer interviewers per station-impact of content specificity was greatly reduced with more interview stations. A more reliable, discriminating evaluation form was developed to evaluate candidates during resident interviews, and a process was designed that reduced the impact from content specificity.

  5. A Numerical Round Robin for the Reliability Prediction of Structural Ceramics

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Janosik, Lesley A.

    1993-01-01

    A round robin has been conducted on integrated fast fracture design programs for brittle materials. An informal working group (WELFEP-WEakest Link failure probability prediction by Finite Element Postprocessors) was formed to discuss and evaluate the implementation of the programs examined in the study. Results from the study have provided insight on the differences between the various programs examined. Conclusions from the study have shown that when brittle materials are used in design, analysis must understand how to apply the concepts presented herein to failure probability analysis.

  6. The Initial Development of Object Knowledge by a Learning Robot

    PubMed Central

    Modayil, Joseph; Kuipers, Benjamin

    2008-01-01

    We describe how a robot can develop knowledge of the objects in its environment directly from unsupervised sensorimotor experience. The object knowledge consists of multiple integrated representations: trackers that form spatio-temporal clusters of sensory experience, percepts that represent properties for the tracked objects, classes that support efficient generalization from past experience, and actions that reliably change object percepts. We evaluate how well this intrinsically acquired object knowledge can be used to solve externally specified tasks including object recognition and achieving goals that require both planning and continuous control. PMID:19953188

  7. Measuring acculturation among male Arab immigrants in the United States: an exploratory study.

    PubMed

    Barry, Declan T

    2005-07-01

    Given the absence of empirical measures that assess acculturation patterns among male Arab immigrants, a new acculturation instrument was developed and evaluated. One hundred and fifteen adult male Arab immigrants were administered the Male Arab Acculturation Scale (MAAS), and psychometrically established measures of ethnic identity and self-esteem. Satisfactory reliability is reported for the two acculturation scales, separation/assimilation and integration/marginalization. Ethnic identity, self-construal, personal self-esteem, and collective self-esteem appear to be differentially associated with acculturation patterns among male Arab immigrants.

  8. 3D MEMS in Standard Processes: Fabrication, Quality Assurance, and Novel Measurement Microstructures

    NASA Technical Reports Server (NTRS)

    Lin, Gisela; Lawton, Russell A.

    2000-01-01

    Three-dimensional MEMS microsystems that are commercially fabricated require minimal post-processing and are easily integrated with CMOS signal processing electronics. Measurements to evaluate the fabrication process (such as cross-sectional imaging and device performance characterization) provide much needed feedback in terms of reliability and quality assurance. MEMS technology is bringing a new class of microscale measurements to fruition. The relatively small size of MEMS microsystems offers the potential for higher fidelity recordings compared to macrosize counterparts, as illustrated in the measurement of muscle cell forces.

  9. Claims about the Reliability of Student Evaluations of Instruction: The Ecological Fallacy Rides Again

    ERIC Educational Resources Information Center

    Morley, Donald D.

    2012-01-01

    The vast majority of the research on student evaluation of instruction has assessed the reliability of groups of courses and yielded either a single reliability coefficient for the entire group, or grouped reliability coefficients for each student evaluation of teaching (SET) item. This manuscript argues that these practices constitute a form of…

  10. Cross-cultural adaptation of the US consumer form of the short Primary Care Assessment Tool (PCAT): the Korean consumer form of the short PCAT (KC PCAT) and the Korean standard form of the short PCAT (KS PCAT).

    PubMed

    Jeon, Ki-Yeob

    2011-01-01

    It is well known that countries with well-structured primary care have better health outcomes, better health equity and reduced healthcare costs. This study aimed to culturally modify and validate the US consumer form of the short Primary Care Assessment Tool (PCAT) in primary care in the Republic of Korea (hereafter referred to as Korea). The Korean consumer form of the short PCAT (KC PCAT) was cross-culturally modified from the original version using a standardised transcultural adaptation method. A pre-test version of the KC PCAT was formulated by replacement of four items and modification of a further four items from the 37 items of the original consumer form of the short PCAT at face value evaluation meetings. Pilot testing was done with a convenience sample of 15 responders at two different sites. Test-retest showed high reliability. To validate the KC PCAT, 606 clients participated in a survey carried out in Korea between February and May 2006. Internal consistency reliability, test-retest reliability and factor analysis were conducted in order to test validity. Psychometric testing was carried out on 37 items of the KC PCAT to make the KS PCAT which has 30 items and has seven principal domains: first contact utilisation, first contact accessibility, ongoing accountable care (ongoing care and coordinated rapport care), integrated care (patient-centred care with integration between primary and specialty care or between different specialties), comprehensive care, community-oriented care and culturally-oriented care. Component factors of the verified KS PCAT explained 58.28% of the total variance in the total item scores of primary care. The verified KS PCAT has been characterised by the seven classic domains of primary care with minor modifications. This may provide clues concerning differences in expectations for primary care in the Korean population as compared with that of the US. The KS PCAT is a reliable and valid tool for the evaluation of the quality of primary care in Korea. It will be used to identify any aspects of primary care linked to better or worse health outcomes, and to provide evidence-based evaluations of or recommendations for Korean healthcare policy. cross-cultural adaptation, Korean Standard Primary Care Assessment Tool, Primary Care Assessment Tool, quality of primary care.

  11. Reliability of the Test of Integrated Language and Literacy Skills (TILLS)

    ERIC Educational Resources Information Center

    Mailend, Marja-Liisa; Plante, Elena; Anderson, Michele A.; Applegate, E. Brooks; Nelson, Nickola W.

    2016-01-01

    Background: As new standardized tests become commercially available, it is critical that clinicians have access to the information about a test's psychometric properties, including aspects of reliability. Aims: The purpose of the three studies reported in this article was to investigate the reliability of a new test, the Test of Integrated…

  12. A General Approach for Estimating Scale Score Reliability for Panel Survey Data

    ERIC Educational Resources Information Center

    Biemer, Paul P.; Christ, Sharon L.; Wiesen, Christopher A.

    2009-01-01

    Scale score measures are ubiquitous in the psychological literature and can be used as both dependent and independent variables in data analysis. Poor reliability of scale score measures leads to inflated standard errors and/or biased estimates, particularly in multivariate analysis. Reliability estimation is usually an integral step to assess…

  13. The Compelling and Persistent Problem of Bipolar Disorder Disguised as Major Depression Disorder: An Integrative Review [Formula: see text].

    PubMed

    Stiles, Brandie M; Fish, Anne F; Vandermause, Roxanne; Malik, Azfar M

    2018-06-01

    Up to 40% of patients with bipolar disorder are misdiagnosed, usually with major depression disorder. The purpose was to describe the current state of the science of the misdiagnosis of bipolar disorder, with the ultimate goal of improving psychiatric diagnostic workups including screening. An integrative review was conducted using standard criteria for evaluating research articles. Forty-nine articles met the eligibility criteria. Articles explored patient-related and health care provider-related factors contributing to the misdiagnosis of bipolar disorder as well as consequences of misdiagnosis. Clinically oriented, reliable, and valid screening tools for bipolar disorder also were reviewed. Awareness of multiple, challenging patient-related factors and more comprehensive assessment and screening by health care providers may reduce misdiagnosis.

  14. The Role of Applied Epidemiology Methods in the Disaster Management Cycle

    PubMed Central

    Heumann, Michael; Perrotta, Dennis; Wolkin, Amy F.; Schnall, Amy H.; Podgornik, Michelle N.; Cruz, Miguel A.; Horney, Jennifer A.; Zane, David; Roisman, Rachel; Greenspan, Joel R.; Thoroughman, Doug; Anderson, Henry A.; Wells, Eden V.; Simms, Erin F.

    2014-01-01

    Disaster epidemiology (i.e., applied epidemiology in disaster settings) presents a source of reliable and actionable information for decision-makers and stakeholders in the disaster management cycle. However, epidemiological methods have yet to be routinely integrated into disaster response and fully communicated to response leaders. We present a framework consisting of rapid needs assessments, health surveillance, tracking and registries, and epidemiological investigations, including risk factor and health outcome studies and evaluation of interventions, which can be practiced throughout the cycle. Applying each method can result in actionable information for planners and decision-makers responsible for preparedness, response, and recovery. Disaster epidemiology, once integrated into the disaster management cycle, can provide the evidence base to inform and enhance response capability within the public health infrastructure. PMID:25211748

  15. Power source selection for neutral particle beam systems

    NASA Astrophysics Data System (ADS)

    Silverman, Sidney W.; Chi, John W. H.; Hill, Gregory

    Space based neutral particle beams (NPB) are being considered for use as an SDI weapon as well as a mid-course discriminator. These systems require a radio frequency (RF) power source. Five types of amplifiers were considered for the RF power source: the klystron, the klystrode, the tetrode, the cross field amplifier, and the solid state amplifier. A number of different types of power source systems (nuclear and non-nuclear) were considered for integration with these amplifiers. The most attractive amplifier power system concepts were identified through comparative evaluations that took into account the total masses of integrated amplifier power source systems as well as a number of other factors that consisted of development cost, technology risk, vulnerability, survivability, reliability, and impacts on spacecraft stabilization. These concepts are described and conclusions drawn.

  16. Development of a low cost integrated 15 kW A.C. solar tracking sub-array for grid connected PV power system applications

    NASA Astrophysics Data System (ADS)

    Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G.

    1997-02-01

    Utility Power Group has achieved a significant reduction in the installed cost of grid-connected PV systems. The two part technical approach focused on 1) The utilization of a large area factory assembled PV panel, and 2) The integration and packaging of all sub-array power conversion and control functions within a single factory produced enclosure. Eight engineering prototype 15kW ac single axis solar tracking sub-arrays were designed, fabricated, and installed at the Sacramento Municipal Utility District's Hedge Substation site in 1996 and are being evaluated for performance and reliability. A number of design enhancements will be implemented in 1997 and demonstrated by the field deployment and operation of over twenty advanced sub-array PV power systems.

  17. GaN-on-diamond electronic device reliability: Mechanical and thermo-mechanical integrity

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Sun, Huarui; Pomeroy, James W.; Francis, Daniel; Faili, Firooz; Twitchen, Daniel J.; Kuball, Martin

    2015-12-01

    The mechanical and thermo-mechanical integrity of GaN-on-diamond wafers used for ultra-high power microwave electronic devices was studied using a micro-pillar based in situ mechanical testing approach combined with an optical investigation of the stress and heat transfer across interfaces. We find the GaN/diamond interface to be thermo-mechanically stable, illustrating the potential for this material for reliable GaN electronic devices.

  18. Climate and water resource change impacts and adaptation potential for US power supply

    DOE PAGES

    Miara, Ariel; Macknick, Jordan E.; Vorosmarty, Charles J.; ...

    2017-10-30

    Power plants that require cooling currently (2015) provide 85% of electricity generation in the United States. These facilities need large volumes of water and sufficiently cool temperatures for optimal operations, and projected climate conditions may lower their potential power output and affect reliability. We evaluate the performance of 1,080 thermoelectric plants across the contiguous US under future climates (2035-2064) and their collective performance at 19 North American Electric Reliability Corporation (NERC) sub-regions. Joint consideration of engineering interactions with climate, hydrology and environmental regulations reveals the region-specific performance of energy systems and the need for regional energy security and climate-water adaptationmore » strategies. Despite climate-water constraints on individual plants, the current power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. Without placing climate-water impacts on individual plants in a broader power systems context, vulnerability assessments that aim to support adaptation and resilience strategies misgauge the extent to which regional energy systems are vulnerable. As a result, climate-water impacts can lower thermoelectric reserve margins, a measure of systems-level reliability, highlighting the need to integrate climate-water constraints on thermoelectric power supply into energy planning, risk assessments, and system reliability management.« less

  19. Climate and water resource change impacts and adaptation potential for US power supply

    NASA Astrophysics Data System (ADS)

    Miara, Ariel; Macknick, Jordan E.; Vörösmarty, Charles J.; Tidwell, Vincent C.; Newmark, Robin; Fekete, Balazs

    2017-11-01

    Power plants that require cooling currently (2015) provide 85% of electricity generation in the United States. These facilities need large volumes of water and sufficiently cool temperatures for optimal operations, and projected climate conditions may lower their potential power output and affect reliability. We evaluate the performance of 1,080 thermoelectric plants across the contiguous US under future climates (2035-2064) and their collective performance at 19 North American Electric Reliability Corporation (NERC) sub-regions. Joint consideration of engineering interactions with climate, hydrology and environmental regulations reveals the region-specific performance of energy systems and the need for regional energy security and climate-water adaptation strategies. Despite climate-water constraints on individual plants, the current power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. Without placing climate-water impacts on individual plants in a broader power systems context, vulnerability assessments that aim to support adaptation and resilience strategies misgauge the extent to which regional energy systems are vulnerable. Climate-water impacts can lower thermoelectric reserve margins, a measure of systems-level reliability, highlighting the need to integrate climate-water constraints on thermoelectric power supply into energy planning, risk assessments, and system reliability management.

  20. Development of a multilocus-based approach for sponge (phylum Porifera) identification: refinement and limitations.

    PubMed

    Yang, Qi; Franco, Christopher M M; Sorokin, Shirley J; Zhang, Wei

    2017-02-02

    For sponges (phylum Porifera), there is no reliable molecular protocol available for species identification. To address this gap, we developed a multilocus-based Sponge Identification Protocol (SIP) validated by a sample of 37 sponge species belonging to 10 orders from South Australia. The universal barcode COI mtDNA, 28S rRNA gene (D3-D5), and the nuclear ITS1-5.8S-ITS2 region were evaluated for their suitability and capacity for sponge identification. The highest Bit Score was applied to infer the identity. The reliability of SIP was validated by phylogenetic analysis. The 28S rRNA gene and COI mtDNA performed better than the ITS region in classifying sponges at various taxonomic levels. A major limitation is that the databases are not well populated and possess low diversity, making it difficult to conduct the molecular identification protocol. The identification is also impacted by the accuracy of the morphological classification of the sponges whose sequences have been submitted to the database. Re-examination of the morphological identification further demonstrated and improved the reliability of sponge identification by SIP. Integrated with morphological identification, the multilocus-based SIP offers an improved protocol for more reliable and effective sponge identification, by coupling the accuracy of different DNA markers.

  1. Development of a multilocus-based approach for sponge (phylum Porifera) identification: refinement and limitations

    PubMed Central

    Yang, Qi; Franco, Christopher M. M.; Sorokin, Shirley J.; Zhang, Wei

    2017-01-01

    For sponges (phylum Porifera), there is no reliable molecular protocol available for species identification. To address this gap, we developed a multilocus-based Sponge Identification Protocol (SIP) validated by a sample of 37 sponge species belonging to 10 orders from South Australia. The universal barcode COI mtDNA, 28S rRNA gene (D3–D5), and the nuclear ITS1-5.8S-ITS2 region were evaluated for their suitability and capacity for sponge identification. The highest Bit Score was applied to infer the identity. The reliability of SIP was validated by phylogenetic analysis. The 28S rRNA gene and COI mtDNA performed better than the ITS region in classifying sponges at various taxonomic levels. A major limitation is that the databases are not well populated and possess low diversity, making it difficult to conduct the molecular identification protocol. The identification is also impacted by the accuracy of the morphological classification of the sponges whose sequences have been submitted to the database. Re-examination of the morphological identification further demonstrated and improved the reliability of sponge identification by SIP. Integrated with morphological identification, the multilocus-based SIP offers an improved protocol for more reliable and effective sponge identification, by coupling the accuracy of different DNA markers. PMID:28150727

  2. Climate and water resource change impacts and adaptation potential for US power supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miara, Ariel; Macknick, Jordan E.; Vorosmarty, Charles J.

    Power plants that require cooling currently (2015) provide 85% of electricity generation in the United States. These facilities need large volumes of water and sufficiently cool temperatures for optimal operations, and projected climate conditions may lower their potential power output and affect reliability. We evaluate the performance of 1,080 thermoelectric plants across the contiguous US under future climates (2035-2064) and their collective performance at 19 North American Electric Reliability Corporation (NERC) sub-regions. Joint consideration of engineering interactions with climate, hydrology and environmental regulations reveals the region-specific performance of energy systems and the need for regional energy security and climate-water adaptationmore » strategies. Despite climate-water constraints on individual plants, the current power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. Without placing climate-water impacts on individual plants in a broader power systems context, vulnerability assessments that aim to support adaptation and resilience strategies misgauge the extent to which regional energy systems are vulnerable. As a result, climate-water impacts can lower thermoelectric reserve margins, a measure of systems-level reliability, highlighting the need to integrate climate-water constraints on thermoelectric power supply into energy planning, risk assessments, and system reliability management.« less

  3. Accurate computation of gravitational field of a tesseroid

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2018-02-01

    We developed an accurate method to compute the gravitational field of a tesseroid. The method numerically integrates a surface integral representation of the gravitational potential of the tesseroid by conditionally splitting its line integration intervals and by using the double exponential quadrature rule. Then, it evaluates the gravitational acceleration vector and the gravity gradient tensor by numerically differentiating the numerically integrated potential. The numerical differentiation is conducted by appropriately switching the central and the single-sided second-order difference formulas with a suitable choice of the test argument displacement. If necessary, the new method is extended to the case of a general tesseroid with the variable density profile, the variable surface height functions, and/or the variable intervals in longitude or in latitude. The new method is capable of computing the gravitational field of the tesseroid independently on the location of the evaluation point, namely whether outside, near the surface of, on the surface of, or inside the tesseroid. The achievable precision is 14-15 digits for the potential, 9-11 digits for the acceleration vector, and 6-8 digits for the gradient tensor in the double precision environment. The correct digits are roughly doubled if employing the quadruple precision computation. The new method provides a reliable procedure to compute the topographic gravitational field, especially that near, on, and below the surface. Also, it could potentially serve as a sure reference to complement and elaborate the existing approaches using the Gauss-Legendre quadrature or other standard methods of numerical integration.

  4. A joint-space numerical model of metabolic energy expenditure for human multibody dynamic system.

    PubMed

    Kim, Joo H; Roberts, Dustyn

    2015-09-01

    Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint-space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations inherent in experimental measurements (phase delays, steady state and task restrictions, and limited range of motion) or muscle-space models (complexities and indeterminacies from excessive DOFs, contacts and wrapping interactions, and reliance on in vitro parameters). Muscle energetic components are mapped to the joint space, in which the MEE model is formulated. A constrained multi-objective optimization algorithm is established to estimate the model parameters from experimental walking data also used for initial validation. The joint-space parameters estimated directly from active subjects provide reliable MEE estimates with a mean absolute error of 3.6 ± 3.6% relative to validation values, which can be used to evaluate MEE for complex non-periodic tasks that may not be experimentally verifiable. This model also enables real-time calculations of instantaneous MEE rate as a function of time for transient evaluations. Although experimental measurements may not be completely replaced by model evaluations, predicted quantities can be used as strong complements to increase reliability of the results and yield unique insights for various applications. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Fabrication of nano-scale Cu bond pads with seal design in 3D integration applications.

    PubMed

    Chen, K N; Tsang, C K; Wu, W W; Lee, S H; Lu, J Q

    2011-04-01

    A method to fabricate nano-scale Cu bond pads for improving bonding quality in 3D integration applications is reported. The effect of Cu bonding quality on inter-level via structural reliability for 3D integration applications is investigated. We developed a Cu nano-scale-height bond pad structure and fabrication process for improved bonding quality by recessing oxides using a combination of SiO2 CMP process and dilute HF wet etching. In addition, in order to achieve improved wafer-level bonding, we introduced a seal design concept that prevents corrosion and provides extra mechanical support. Demonstrations of these concepts and processes provide the feasibility of reliable nano-scale 3D integration applications.

  6. Evaluation of Reliability Coefficients for Two-Level Models via Latent Variable Analysis

    ERIC Educational Resources Information Center

    Raykov, Tenko; Penev, Spiridon

    2010-01-01

    A latent variable analysis procedure for evaluation of reliability coefficients for 2-level models is outlined. The method provides point and interval estimates of group means' reliability, overall reliability of means, and conditional reliability. In addition, the approach can be used to test simple hypotheses about these parameters. The…

  7. Reliability Evaluation of Machine Center Components Based on Cascading Failure Analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Zhi; Liu, Jin-Tong; Shen, Gui-Xiang; Long, Zhe; Sun, Shu-Guang

    2017-07-01

    In order to rectify the problems that the component reliability model exhibits deviation, and the evaluation result is low due to the overlook of failure propagation in traditional reliability evaluation of machine center components, a new reliability evaluation method based on cascading failure analysis and the failure influenced degree assessment is proposed. A direct graph model of cascading failure among components is established according to cascading failure mechanism analysis and graph theory. The failure influenced degrees of the system components are assessed by the adjacency matrix and its transposition, combined with the Pagerank algorithm. Based on the comprehensive failure probability function and total probability formula, the inherent failure probability function is determined to realize the reliability evaluation of the system components. Finally, the method is applied to a machine center, it shows the following: 1) The reliability evaluation values of the proposed method are at least 2.5% higher than those of the traditional method; 2) The difference between the comprehensive and inherent reliability of the system component presents a positive correlation with the failure influenced degree of the system component, which provides a theoretical basis for reliability allocation of machine center system.

  8. Assessment of technical and nontechnical skills in surgical residents.

    PubMed

    Ponton-Carss, Alicia; Kortbeek, John B; Ma, Irene W Y

    2016-11-01

    Surgical competence encompasses both technical and nontechnical skills. This study seeks to evaluate the validity evidence for a comprehensive surgical skills examination and to examine the relationship between technical and nontechnical skills. Six examination stations assessing both technical and nontechnical skills, conducted yearly for surgical trainees (n = 120) between 2010 and 2014 are included. The assessment tools demonstrated acceptable internal consistency. Interstation reliability for technical skills was low (alpha = .39). Interstation reliability for the nontechnical skills was lower (alpha range -.05 to .31). Nontechnical skills domains were strongly correlated, ranging from r = .65, P < .001 to .86, P < .001. The associations between nontechnical and technical skills were inconsistent, ranging from poor (r = -.06; P = .54) to moderate (r = .45; P < .001). Multiple samplings of integrated technical and nontechnical skills are necessary to assess overall surgical competency. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Electronics for Deep Space Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Patterson, R. L.; Hammond, A.; Dickman, J. E.; Gerber, S. S.; Elbuluk, M. E.; Overton, E.

    2002-01-01

    Deep space probes and planetary exploration missions require electrical power management and control systems that are capable of efficient and reliable operation in very cold temperature environments. Typically, in deep space probes, heating elements are used to keep the spacecraft electronics near room temperature. The utilization of power electronics designed for and operated at low temperature will contribute to increasing efficiency and improving reliability of space power systems. At NASA Glenn Research Center, commercial-off-the-shelf devices as well as developed components are being investigated for potential use at low temperatures. These devices include semiconductor switching devices, magnetics, and capacitors. Integrated circuits such as digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being evaluated. In this paper, results will be presented for selected analog-to-digital converters, oscillators, DC/DC converters, and pulse width modulation (PWM) controllers.

  10. Comparison of Two Commercial Automated Nucleic Acid Extraction and Integrated Quantitation Real-Time PCR Platforms for the Detection of Cytomegalovirus in Plasma

    PubMed Central

    Tsai, Huey-Pin; Tsai, You-Yuan; Lin, I-Ting; Kuo, Pin-Hwa; Chen, Tsai-Yun; Chang, Kung-Chao; Wang, Jen-Ren

    2016-01-01

    Quantitation of cytomegalovirus (CMV) viral load in the transplant patients has become a standard practice for monitoring the response to antiviral therapy. The cut-off values of CMV viral load assays for preemptive therapy are different due to the various assay designs employed. To establish a sensitive and reliable diagnostic assay for preemptive therapy of CMV infection, two commercial automated platforms including m2000sp extraction system integrated the Abbott RealTime (m2000rt) and the Roche COBAS AmpliPrep for extraction integrated COBAS Taqman (CAP/CTM) were evaluated using WHO international CMV standards and 110 plasma specimens from transplant patients. The performance characteristics, correlation, and workflow of the two platforms were investigated. The Abbott RealTime assay correlated well with the Roche CAP/CTM assay (R2 = 0.9379, P<0.01). The Abbott RealTime assay exhibited higher sensitivity for the detection of CMV viral load, and viral load values measured with Abbott RealTime assay were on average 0.76 log10 IU/mL higher than those measured with the Roche CAP/CTM assay (P<0.0001). Workflow analysis on a small batch size at one time, using the Roche CAP/CTM platform had a shorter hands-on time than the Abbott RealTime platform. In conclusion, these two assays can provide reliable data for different purpose in a clinical virology laboratory setting. PMID:27494707

  11. Leak localization and quantification with a small unmanned aerial system

    NASA Astrophysics Data System (ADS)

    Golston, L.; Zondlo, M. A.; Frish, M. B.; Aubut, N. F.; Yang, S.; Talbot, R. W.

    2017-12-01

    Methane emissions from oil and gas facilities are a recognized source of greenhouse gas emissions, requiring cost-effective and reliable monitoring systems to support leak detection and repair programs. We describe a set of methods for locating and quantifying natural gas leaks using a small unmanned aerial system (sUAS) equipped with a path-integrated methane sensor along with ground-based wind measurements. The algorithms are developed as part of a system for continuous well pad scale (100 m2 area) monitoring, supported by a series of over 200 methane release trials covering multiple release locations and flow rates. Test measurements include data obtained on a rotating boom platform as well as flight tests on a sUAS. The system is found throughout the trials to reliably distinguish between cases with and without a methane release down to 6 scfh (0.032 g/s). Among several methods evaluated for horizontal localization, the location corresponding to the maximum integrated methane reading have performed best with a median error of ± 1 m if two or more flights are averaged, or ± 1.2 m for individual flights. Additionally, a method of rotating the data around the estimated leak location is developed, with the leak magnitude calculated as the average crosswind integrated flux in the region near the source location. Validation of these methods will be presented, including blind test results. Sources of error, including GPS uncertainty, meteorological variables, and flight pattern coverage, will be discussed.

  12. The Integral Theory System Questionnaire: an anatomically directed questionnaire to determine pelvic floor dysfunctions in women.

    PubMed

    Wagenlehner, Florian Martin Erich; Fröhlich, Oliver; Bschleipfer, Thomas; Weidner, Wolfgang; Perletti, Gianpaolo

    2014-06-01

    Anatomical damage to pelvic floor structures may cause multiple symptoms. The Integral Theory System Questionnaire (ITSQ) is a holistic questionnaire that uses symptoms to help locate damage in specific connective tissue structures as a guide to reconstructive surgery. It is based on the integral theory, which states that pelvic floor symptoms and prolapse are both caused by lax suspensory ligaments. The aim of the present study was to psychometrically validate the ITSQ. Established psychometric properties including validity, reliability, and responsiveness were considered for evaluation. Criterion validity was assessed in a cohort of 110 women with pelvic floor dysfunctions by analyzing the correlation of questionnaire responses with objective clinical data. Test-retest was performed with questionnaires from 47 patients. Cronbach's alpha and "split-half" reliability coefficients were calculated for inner consistency analysis. Psychometric properties of ITSQ were comparable to the ones of previously validated Pelvic Floor Questionnaires. Face validity and content validity were approved by an expert group of the International Collaboration of Pelvic Floor surgeons. Convergent validity assessed using Bayesian method was at least as accurate as the expert assessment of anatomical defects. Objective data measurement in patients demonstrated significant correlations with ITSQ domains fulfilling criterion validity. Internal consistency values ranked from 0.85 to 0.89 in different scenarios. The ITSQ proofed accurate and is able to serve as a holistic Pelvic Floor Questionnaire directing symptoms to site-specific pelvic floor reconstructive surgery.

  13. Automated Collection of Real-Time Alerts of Citizens as a Useful Tool to Continuously Monitor Malodorous Emissions.

    PubMed

    Brattoli, Magda; Mazzone, Antonio; Giua, Roberto; Assennato, Giorgio; de Gennaro, Gianluigi

    2016-02-26

    The evaluation of odor emissions and dispersion is a very arduous topic to face; the real-time monitoring of odor emissions, the identification of chemical components and, with proper certainty, the source of annoyance represent a challenge for stakeholders such as local authorities. The complaints of people, often not systematic and variously distributed, in general do not allow us to quantify the perceived annoyance. Experimental research has been performed to detect and evaluate olfactory annoyance, based on field testing of an innovative monitoring methodology grounded in automatic recording of citizen alerts. It has been applied in Taranto, in the south of Italy where a relevant industrial area is located, by using Odortel(®) for automated collection of citizen alerts. To evaluate its reliability, the collection system has been integrated with automated samplers, able to sample odorous air in real time, according to the citizen alerts of annoyance and, moreover, with meteorological data (especially the wind direction) and trends in odor marker compounds, recorded by air quality monitoring stations. The results have allowed us, for the first time, to manage annoyance complaints, test their reliability, and obtain information about the distribution and entity of the odor phenomena, such that we were able to identify, with supporting evidence, the source as an oil refinery plant.

  14. Characterization of microcracks by application of digital image correlation to SPM images

    NASA Astrophysics Data System (ADS)

    Keller, Juergen; Gollhardt, Astrid; Vogel, Dietmar; Michel, Bernd

    2004-07-01

    With the development of micro- and nanotechnological products such as sensors, MEMS/NEMS and their broad application in a variety of market segments new reliability issues will arise. The increasing interface-to-volume ratio in highly integrated systems and nanoparticle filled materials and unsolved questions of size effect of nanomaterials are challenges for experimental reliability evaluation. To fulfill this needs the authors developed the nanoDAC method (nano Deformation Analysis by Correlation), which allows the determination and evaluation of 2D displacement fields based on scanning probe microscopy (SPM) data. In-situ SPM scans of the analyzed object are carried out at different thermo-mechanical load states. The obtained topography-, phase- or error-images are compared utilizing grayscale cross correlation algorithms. This allows the tracking of local image patterns of the analyzed surface structure. The measurement results of the nanoDAC method are full-field displacement and strain fields. Due to the application of SPM equipment deformations in the micro-, nanometer range can be easily detected. The method can be performed on bulk materials, thin films and on devices i.e microelectronic components, sensors or MEMS/NEMS. Furthermore, the characterization and evaluation of micro- and nanocracks or defects in bulk materials, thin layers and at material interfaces can be carried out.

  15. Flight testing the Digital Electronic Engine Control (DEEC) A unique management experience

    NASA Technical Reports Server (NTRS)

    Putnam, T. W.; Burcham, F. W., Jr.; Kock, B. M.

    1983-01-01

    The concept for the DEEC had its origin in the early 1970s. At that time it was recognized that the F100 engine performance, operability, reliability, and cost could be substantially improved by replacing the original mechanical/supervisory electronic control system with a full-authority digital control system. By 1978, the engine manufacturer had designed and initiated the procurement of flight-qualified control system hardware. As a precursor to an integrated controls program, a flight evaluation of the DEEC system on the F-15 aircraft was proposed. Questions regarding the management of the DEEC flight evaluation program are discussed along with the program elements, the technical results of the F-15 evaluation, and the impact of the flight evaluation on after-burning turbofan controls technology and its use in and application to military aircraft. The lessons learned through the conduct of the program are discussed.

  16. A SINS/SRS/GNS Autonomous Integrated Navigation System Based on Spectral Redshift Velocity Measurements

    PubMed Central

    Wei, Wenhui; Gao, Zhaohui; Gao, Shesheng; Jia, Ke

    2018-01-01

    In order to meet the requirements of autonomy and reliability for the navigation system, combined with the method of measuring speed by using the spectral redshift information of the natural celestial bodies, a new scheme, consisting of Strapdown Inertial Navigation System (SINS)/Spectral Redshift (SRS)/Geomagnetic Navigation System (GNS), is designed for autonomous integrated navigation systems. The principle of this SINS/SRS/GNS autonomous integrated navigation system is explored, and the corresponding mathematical model is established. Furthermore, a robust adaptive central difference particle filtering algorithm is proposed for this autonomous integrated navigation system. The simulation experiments are conducted and the results show that the designed SINS/SRS/GNS autonomous integrated navigation system possesses good autonomy, strong robustness and high reliability, thus providing a new solution for autonomous navigation technology. PMID:29642549

  17. Develop advanced nonlinear signal analysis topographical mapping system

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Main Engine (SSME) has been undergoing extensive flight certification and developmental testing, which involves some 250 health monitoring measurements. Under the severe temperature, pressure, and dynamic environments sustained during operation, numerous major component failures have occurred, resulting in extensive engine hardware damage and scheduling losses. To enhance SSME safety and reliability, detailed analysis and evaluation of the measurements signal are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce catastrophic system failure risks and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. The basic objective of this contract are threefold: (1) develop and validate a hierarchy of innovative signal analysis techniques for nonlinear and nonstationary time-frequency analysis. Performance evaluation will be carried out through detailed analysis of extensive SSME static firing and flight data. These techniques will be incorporated into a fully automated system; (2) develop an advanced nonlinear signal analysis topographical mapping system (ATMS) to generate a Compressed SSME TOPO Data Base (CSTDB). This ATMS system will convert tremendous amount of complex vibration signals from the entire SSME test history into a bank of succinct image-like patterns while retaining all respective phase information. High compression ratio can be achieved to allow minimal storage requirement, while providing fast signature retrieval, pattern comparison, and identification capabilities; and (3) integrate the nonlinear correlation techniques into the CSTDB data base with compatible TOPO input data format. Such integrated ATMS system will provide the large test archives necessary for quick signature comparison. This study will provide timely assessment of SSME component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. The final result of this program will yield an ATMS system of nonlinear and nonstationary spectral analysis software package integrated with the Compressed SSME TOPO Data Base (CSTDB) on the same platform. This system will allow NASA engineers to retrieve any unique defect signatures and trends associated with different failure modes and anomalous phenomena over the entire SSME test history across turbo pump families.

  18. Develop advanced nonlinear signal analysis topographical mapping system

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    1993-01-01

    The SSME has been undergoing extensive flight certification and developmental testing, which involves some 250 health monitoring measurements. Under the severe temperature pressure, and dynamic environments sustained during operation, numerous major component failures have occurred, resulting in extensive engine hardware damage and scheduling losses. To enhance SSME safety and reliability, detailed analysis and evaluation of the measurements signal are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce catastrophic system failure risks and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. The basic objective of this contract are threefold: (1) Develop and validate a hierarchy of innovative signal analysis techniques for nonlinear and nonstationary time-frequency analysis. Performance evaluation will be carried out through detailed analysis of extensive SSME static firing and flight data. These techniques will be incorporated into a fully automated system. (2) Develop an advanced nonlinear signal analysis topographical mapping system (ATMS) to generate a Compressed SSME TOPO Data Base (CSTDB). This ATMS system will convert tremendous amounts of complex vibration signals from the entire SSME test history into a bank of succinct image-like patterns while retaining all respective phase information. A high compression ratio can be achieved to allow the minimal storage requirement, while providing fast signature retrieval, pattern comparison, and identification capabilities. (3) Integrate the nonlinear correlation techniques into the CSTDB data base with compatible TOPO input data format. Such integrated ATMS system will provide the large test archives necessary for a quick signature comparison. This study will provide timely assessment of SSME component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. The final result of this program will yield an ATMS system of nonlinear and nonstationary spectral analysis software package integrated with the Compressed SSME TOPO Data Base (CSTDB) on the same platform. This system will allow NASA engineers to retrieve any unique defect signatures and trends associated with different failure modes and anomalous phenomena over the entire SSME test history across turbo pump families.

  19. A Comprehensive Histological Assessment of Osteoarthritis Lesions in Mice

    PubMed Central

    McNulty, Margaret A.; Loeser, Richard F.; Davey, Cynthia; Callahan, Michael F.; Ferguson, Cristin M.; Carlson, Cathy S.

    2011-01-01

    Objective: Accurate histological assessment of osteoarthritis (OA) is critical in studies evaluating the effects of interventions on disease severity. The purpose of the present study was to develop a histological grading scheme that comprehensively and quantitatively assesses changes in multiple tissues that are associated with OA of the stifle joint in mice. Design: Two representative midcoronal sections from 158 stifle joints, including naturally occurring and surgically induced OA, were stained with H&E and Safranin-O stains. All slides were evaluated to characterize the changes present. A grading scheme that includes both measurements and semiquantitative scores was developed, and principal components analysis (PCA) was applied to the resulting data from the medial tibial plateaus. A subset of 30 tibial plateaus representing a wide range of severity was then evaluated by 4 observers. Reliability of the results was evaluated using intraclass correlation coefficients (ICCs) and area under the receiver operating characteristic (ROC) curve. Results: Five factors were retained by PCA, accounting for 74% of the total variance. Interobserver and intraobserver reproducibilities for evaluations of articular cartilage and subchondral bone were acceptable. The articular cartilage integrity and chondrocyte viability factor scores were able to distinguish severe OA from normal, minimal, mild, and moderate disease. Conclusion: This newly developed grading scheme and resulting factors characterize a range of joint changes in mouse stifle joints that are associated with OA. Overall, the newly developed scheme is reliable and reproducible, characterizes changes in multiple tissues, and provides comprehensive information regarding a specific site in the stifle joint. PMID:26069594

  20. Improving Reliability of a Residency Interview Process

    PubMed Central

    Serres, Michelle L.; Gundrum, Todd E.

    2013-01-01

    Objective. To improve the reliability and discrimination of a pharmacy resident interview evaluation form, and thereby improve the reliability of the interview process. Methods. In phase 1 of the study, authors used a Many-Facet Rasch Measurement model to optimize an existing evaluation form for reliability and discrimination. In phase 2, interviewer pairs used the modified evaluation form within 4 separate interview stations. In phase 3, 8 interviewers individually-evaluated each candidate in one-on-one interviews. Results. In phase 1, the evaluation form had a reliability of 0.98 with person separation of 6.56; reproducibly, the form separated applicants into 6 distinct groups. Using that form in phase 2 and 3, our largest variation source was candidates, while content specificity was the next largest variation source. The phase 2 g-coefficient was 0.787, while confirmatory phase 3 was 0.922. Process reliability improved with more stations despite fewer interviewers per station—impact of content specificity was greatly reduced with more interview stations. Conclusion. A more reliable, discriminating evaluation form was developed to evaluate candidates during resident interviews, and a process was designed that reduced the impact from content specificity. PMID:24159209

  1. Data integrity, reliability and fraud in medical research.

    PubMed

    Baerlocher, Mark Otto; O'Brien, Jeremy; Newton, Marshall; Gautam, Tina; Noble, Jason

    2010-02-01

    Data reliability in original research requires collective trust from the academic community. Standards exist to ensure data integrity, but these safeguards are applied non-uniformly so errors or even fraud may still exist in the literature. To examine the prevalence and consequences of data errors, data reliability safeguards and fraudulent data among medical academics. Corresponding authors of every fourth primary research paper published in the Journal of the American Medical Association (2001-2003), Canadian Medical Association Journal (2001-2003), British Medical Journal (1998-2000), and Lancet (1998-2000) were surveyed electronically. Questions focused on each author's personal experience with data reliability, data errors and data interpretation. Sixty-five percent (127/195) of corresponding authors responded. Ninety-four percent of respondents accepted full responsibility for the integrity of the last manuscript on which they were listed as co-author; however, 21% had discovered incorrect data after publication in previous manuscripts they had co-authored. Fraudulent data was discovered by 4% of respondents in their previous work. Four percent also noted 'smudged' data. Eighty-seven percent of respondents used data reliability safeguards in their last published manuscript, typically data review by multiple authors or double data entry. Twenty-one percent were involved in a paper that was submitted despite disagreement about the interpretation of the results, although the disagreeing author commonly withdrew from authorship. Data reliability remains a difficult issue in medical literature. A significant proportion of respondents did not use data reliability safeguards. Research fraud does exist in academia; however, it was not reported to be highly prevalent. Copyright 2009 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  2. Assessment of SWE data assimilation for ensemble streamflow predictions

    NASA Astrophysics Data System (ADS)

    Franz, Kristie J.; Hogue, Terri S.; Barik, Muhammad; He, Minxue

    2014-11-01

    An assessment of data assimilation (DA) for Ensemble Streamflow Prediction (ESP) using seasonal water supply hindcasting in the North Fork of the American River Basin (NFARB) and the National Weather Service (NWS) hydrologic forecast models is undertaken. Two parameter sets, one from the California Nevada River Forecast Center (RFC) and one from the Differential Evolution Adaptive Metropolis (DREAM) algorithm, are tested. For each parameter set, hindcasts are generated using initial conditions derived with and without the inclusion of a DA scheme that integrates snow water equivalent (SWE) observations. The DREAM-DA scenario uses an Integrated Uncertainty and Ensemble-based data Assimilation (ICEA) framework that also considers model and parameter uncertainty. Hindcasts are evaluated using deterministic and probabilistic forecast verification metrics. In general, the impact of DA on the skill of the seasonal water supply predictions is mixed. For deterministic (ensemble mean) predictions, the Percent Bias (PBias) is improved with integration of the DA. DREAM-DA and the RFC-DA have the lowest biases and the RFC-DA has the lowest Root Mean Squared Error (RMSE). However, the RFC and DREAM-DA have similar RMSE scores. For the probabilistic predictions, the RFC and DREAM have the highest Continuous Ranked Probability Skill Scores (CRPSS) and the RFC has the best discrimination for low flows. Reliability results are similar between the non-DA and DA tests and the DREAM and DREAM-DA have better reliability than the RFC and RFC-DA for forecast dates February 1 and later. Despite producing improved streamflow simulations in previous studies, the hindcast analysis suggests that the DA method tested may not result in obvious improvements in streamflow forecasts. We advocate that integration of hindcasting and probabilistic metrics provides more rigorous insight on model performance for forecasting applications, such as in this study.

  3. Indices of Paraspinal Muscles Degeneration: Reliability and Association With Facet Joint Osteoarthritis: Feasibility Study.

    PubMed

    Kalichman, Leonid; Klindukhov, Alexander; Li, Ling; Linov, Lina

    2016-11-01

    A reliability and cross-sectional observational study. To introduce a scoring system for visible fat infiltration in paraspinal muscles; to evaluate intertester and intratester reliability of this system and its relationship with indices of muscle density; to evaluate the association between indices of paraspinal muscle degeneration and facet joint osteoarthritis. Current evidence suggests that the paraspinal muscles degeneration is associated with low back pain, facet joint osteoarthritis, spondylolisthesis, and degenerative disc disease. However, the evaluation of paraspinal muscles on computed tomography is not radiological routine, probably because of absence of simple and reliable indices of paraspinal degeneration. One hundred fifty consecutive computed tomography scans of the lower back (N=75) or abdomen (N=75) were evaluated. Mean radiographic density (in Hounsfield units) and SD of the density of multifidus and erector spinae were evaluated at the L4-L5 spinal level. A new index of muscle degeneration, radiographic density ratio=muscle density/SD of density, was calculated. To evaluate the visible fat infiltration in paraspinal muscles, we proposed a 3-graded scoring system. The prevalence of facet joint osteoarthritis was also evaluated. Intraclass correlation and κ statistics were used to evaluate inter-rater and intra-rater reliability. Logistic regression examined the association between paraspinal muscle indices and facet joint osteoarthritis. Intra-rater reliability for fat infiltration score (κ) ranged between 0.87 and 0.92; inter-rater reliability between 0.70 and 0.81. Intra-rater reliability (intraclass correlation) for mean density of paraspinal muscles ranged between 0.96 and 0.99, inter-rater reliability between 0.95 and 0.99; SD intra-rater reliability ranged between 0.82 and 0.91, inter-rater reliability between 0.80 and 0.89. Significant associations (P<0.01) were found between facet joint osteoarthritis, fat infiltration score, and radiographic density ratio. Two suggested indices of paraspinal muscle degeneration showed excellent reliability and were significantly associated with facet joint osteoarthritis. Additional studies are needed to evaluate the associations with other spinal degeneration features and low back pain.

  4. Improved structural integrity through advances in reliable residual stress measurement: the impact of ENGIN-X

    NASA Astrophysics Data System (ADS)

    Edwards, L.; Santisteban, J. R.

    The determination of accurate reliable residual stresses is critical to many fields of structural integrity. Neutron stress measurement is a non-destructive technique that uniquely provides insights into stress fields deep within engineering components and structures. As such, it has become an increasingly important tool within engineering, leading to improved manufacturing processes to reduce stress and distortion as well as to the definition of more precise lifing procedures. This paper describes the likely impact of the next generation of dedicated engineering stress diffractometers currently being constructed and the utility of the technique using examples of residual stresses both beneficial and detrimental to structural integrity.

  5. An investigation of the psychometric properties of the Chinese (Cantonese) version of Subjective Index of Physical and Social Outcome (SIPSO).

    PubMed

    Kwong, Patrick Wh; Ng, Shamay Sm; Ng, Gabriel Yf

    2017-11-01

    The objectives of this study were 1) to translate and make cultural adaptations to the English version of the SIPSO questionnaire to create a Chinese (Cantonese) version, 2) evaluate the internal consistency, test-retest reliability the C-SIPSO questionnaire, and 3) compare the SIPSO-C scores of stroke survivors with different demographic characteristics to establish the discriminant validity of the questionnaire Design: Translation of questionnaire, cross sectional study. University-based clinical research laboratory. Subjects Community-dwelling chronic stroke survivors. Not applicable. Subjective Index of Physical and Social Outcome, Geriatric Depression Scale, 10-metre Walk test. Two bilingual professional translators translated the SIPSO questionnaire independently. An expert panel comprising five registered physiotherapists verified the content validity of the final version (C-SIPSO). C-SIPSO demonstrated good internal consistency (Cronbach's α = 0.83) and excellent test-retest reliability (ICC 3,1 = 0.866) in ninety-two community dwelling chronic stroke survivors. Stroke survivors scored higher than 10 in the Geriatric Depression Scale ( U = 555.0, P < 0.001) and with the comfortable walking speed lower than 0.8ms -1 ( U = 726.5; P = 0.012) scored significantly lower on SIPSO-C. SIPSO-C is a reliable instrument that can be used to measure the level of community integration in community-dwelling stroke survivors in Hong Kong and southern China. Stroke survivors who were at high risk of minor depression and with limited community ambulation ability demonstrated a lower level of community integration as measured with SIPSO-C.

  6. Case-oriented computer-based-training in radiology: concept, implementation and evaluation

    PubMed Central

    Dugas, Martin; Trumm, Christoph; Stäbler, Axel; Pander, Ernst; Hundt, Walter; Scheidler, Jurgen; Brüning, Roland; Helmberger, Thomas; Waggershauser, Tobias; Matzko, Matthias; Reiser, Maximillian

    2001-01-01

    Background Providing high-quality clinical cases is important for teaching radiology. We developed, implemented and evaluated a program for a university hospital to support this task. Methods The system was built with Intranet technology and connected to the Picture Archiving and Communications System (PACS). It contains cases for every user group from students to attendants and is structured according to the ACR-code (American College of Radiology) [2]. Each department member was given an individual account, could gather his teaching cases and put the completed cases into the common database. Results During 18 months 583 cases containing 4136 images involving all radiological techniques were compiled and 350 cases put into the common case repository. Workflow integration as well as individual interest influenced the personal efforts to participate but an increasing number of cases and minor modifications of the program improved user acceptance continuously. 101 students went through an evaluation which showed a high level of acceptance and a special interest in elaborate documentation. Conclusion Electronic access to reference cases for all department members anytime anywhere is feasible. Critical success factors are workflow integration, reliability, efficient retrieval strategies and incentives for case authoring. PMID:11686856

  7. Challenges in Development of Sperm Repositories for Biomedical Fishes: Quality Control in Small-Bodied Species.

    PubMed

    Torres, Leticia; Liu, Yue; Guitreau, Amy; Yang, Huiping; Tiersch, Terrence R

    2017-12-01

    Quality control (QC) is essential for reproducible and efficient functioning of germplasm repositories. However, many biomedical fish models present significant QC challenges due to small body sizes (<5 cm) and miniscule sperm volumes (<5 μL). Using minimal volumes of sperm, we used Zebrafish to evaluate common QC endpoints as surrogates for fertilization success along sequential steps of cryopreservation. First, concentrations of calibration bead suspensions were evaluated with a Makler ® counting chamber by using different sample volumes and mixing methods. For sperm analysis, samples were initially diluted at a 1:30 ratio with Hanks' balanced salt solution (HBSS). Motility was evaluated by using different ratios of sperm and activation medium, and membrane integrity was analyzed with flow cytometry at different concentrations. Concentration and sperm motility could be confidently estimated by using volumes as small as 1 μL, whereas membrane integrity required a minimum of 2 μL (at 1 × 10 6 cells/mL). Thus, <5 μL of sperm suspension (after dilution to 30-150 μL with HBSS) was required to evaluate sperm quality by using three endpoints. Sperm quality assessment using a combination of complementary endpoints enhances QC efforts during cryopreservation, increasing reliability and reproducibility, and reducing waste of time and resources.

  8. 3D Human cartilage surface characterization by optical coherence tomography.

    PubMed

    Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven

    2015-10-07

    Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8  ×  8, 4  ×  4 and 1  ×  1 mm (width  ×  length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman's rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D surface profile parameters investigated were capable of reliably differentiating healthy from early-degenerative cartilage, while scan area sizes considerably affected parameter values. In conclusion, cartilage surface integrity may be adequately assessed by 3D surface profile parameters, which should be used in combination for the comprehensive and thorough evaluation and overall improved diagnostic performance. OCT- and image-based surface assessment could become a valuable adjunct tool to standard arthroscopy.

  9. 3D Human cartilage surface characterization by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven

    2015-10-01

    Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8  ×  8, 4  ×  4 and 1  ×  1 mm (width  ×  length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman’s rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D surface profile parameters investigated were capable of reliably differentiating healthy from early-degenerative cartilage, while scan area sizes considerably affected parameter values. In conclusion, cartilage surface integrity may be adequately assessed by 3D surface profile parameters, which should be used in combination for the comprehensive and thorough evaluation and overall improved diagnostic performance. OCT- and image-based surface assessment could become a valuable adjunct tool to standard arthroscopy.

  10. Integrated Processing of High Resolution Topographic Data for Soil Erosion Assessment Considering Data Acquisition Schemes and Surface Properties

    NASA Astrophysics Data System (ADS)

    Eltner, A.; Schneider, D.; Maas, H.-G.

    2016-06-01

    Soil erosion is a decisive earth surface process strongly influencing the fertility of arable land. Several options exist to detect soil erosion at the scale of large field plots (here 600 m²), which comprise different advantages and disadvantages depending on the applied method. In this study, the benefits of unmanned aerial vehicle (UAV) photogrammetry and terrestrial laser scanning (TLS) are exploited to quantify soil surface changes. Beforehand data combination, TLS data is co-registered to the DEMs generated with UAV photogrammetry. TLS data is used to detect global as well as local errors in the DEMs calculated from UAV images. Additionally, TLS data is considered for vegetation filtering. Complimentary, DEMs from UAV photogrammetry are utilised to detect systematic TLS errors and to further filter TLS point clouds in regard to unfavourable scan geometry (i.e. incidence angle and footprint) on gentle hillslopes. In addition, surface roughness is integrated as an important parameter to evaluate TLS point reliability because of the increasing footprints and thus area of signal reflection with increasing distance to the scanning device. The developed fusion tool allows for the estimation of reliable data points from each data source, considering the data acquisition geometry and surface properties, to finally merge both data sets into a single soil surface model. Data fusion is performed for three different field campaigns at a Mediterranean field plot. Successive DEM evaluation reveals continuous decrease of soil surface roughness, reappearance of former wheel tracks and local soil particle relocation patterns.

  11. The Role of Demand Response in Reducing Water-Related Power Plant Vulnerabilities

    NASA Astrophysics Data System (ADS)

    Macknick, J.; Brinkman, G.; Zhou, E.; O'Connell, M.; Newmark, R. L.; Miara, A.; Cohen, S. M.

    2015-12-01

    The electric sector depends on readily available water supplies for reliable and efficient operation. Elevated water temperatures or low water levels can trigger regulatory or plant-level decisions to curtail power generation, which can affect system cost and reliability. In the past decade, dozens of power plants in the U.S. have curtailed generation due to water temperatures and water shortages. Curtailments occur during the summer, when temperatures are highest and there is greatest demand for electricity. Climate change could alter the availability and temperature of water resources, exacerbating these issues. Constructing alternative cooling systems to address vulnerabilities can be capital intensive and can also affect power plant efficiencies. Demand response programs are being implemented by electric system planners and operators to reduce and shift electricity demands from peak usage periods to other times of the day. Demand response programs can also play a role in reducing water-related power sector vulnerabilities during summer months. Traditionally, production cost modeling and demand response analyses do not include water resources. In this effort, we integrate an electricity production cost modeling framework with water-related impacts on power plants in a test system to evaluate the impacts of demand response measures on power system costs and reliability. Specifically, we i) quantify the cost and reliability implications of incorporating water resources into production cost modeling, ii) evaluate the impacts of demand response measures on reducing system costs and vulnerabilities, and iii) consider sensitivity analyses with cooling systems to highlight a range of potential benefits of demand response measures. Impacts from climate change on power plant performance and water resources are discussed. Results provide key insights to policymakers and practitioners for reducing water-related power plant vulnerabilities via lower cost methods.

  12. Psychometric evaluation of a new instrument to measure disease self-management of the early stage chronic kidney disease patients.

    PubMed

    Lin, Chiu-Chu; Wu, Chia-Chen; Wu, Li-Min; Chen, Hsing-Mei; Chang, Shu-Chen

    2013-04-01

    This study aims to develop a valid and reliable chronic kidney disease self-management instrument (CKD-SM) for assessing early stage chronic kidney disease patients' self-management behaviours. Enhancing early stage chronic kidney disease patients' self-management plays a key role in delaying the progression of chronic kidney disease. Healthcare provider understanding of early stage chronic kidney disease patients' self-management behaviours can help develop effective interventions. A valid and reliable instrument for measuring chronic kidney disease patients' self-management behaviours is needed. A cross-sectional descriptive study collected data for principal components analysis with oblique rotation. Mandarin- or Taiwanese-speaking adults with chronic kidney disease (n=252) from two medical centres and one regional hospital in Southern Taiwan completed the CKD-SM. Construct validity was evaluated by exploratory factor analysis. Internal consistency and test-retest reliability were estimated by Cronbach's alpha and Pearson correlation coefficients. Four factors were extracted and labelled self-integration, problem-solving, seeking social support and adherence to recommended regimen. The four factors accounted for 60.51% of the total variance. Each factor showed acceptable internal reliability with Cronbach's alpha from 0.77-0.92. The test-retest correlations for the CKD-SM was 0.72. The psychometric quality of the CKD-SM instrument was satisfactory. Research to conduct a confirmatory factor analysis to further validate this new instrument's construct validity is recommended. The CKD-SM instrument is useful for clinicians who wish to identify the problems with self-management among chronic kidney disease patients early. Self-management assessment will be helpful to develop intervention tailored to the needs of the chronic kidney disease population. © 2013 Blackwell Publishing Ltd.

  13. Structural evaluation of a DTHR bundle divertor particle collector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prevenslik, T.V.

    1980-09-01

    The purpose of this report is to present a structural evaluation of the current bundle divertor particle collector BDPC design under a peak heat flux in relation to criteria that protect against coolant leakage into the plasma over replacement schedules planned during DTHR operation. In addition, an assessment of the BDPC structural integrity at higher heat fluxes is presented. Further, recommendations for modifications in the current BDPC design that would improve design reliability to be considered in future design studies are described. Finally, experimental test programs directed to establishing materials data necessary in providing greater confidence in subsequent structural evaluationsmore » of BDPC designs in relation to coolant leakage over planned replacement schedules are identified.« less

  14. Stirling Powered Van Progam overview

    NASA Technical Reports Server (NTRS)

    Shaltens, R. K.

    1986-01-01

    The Stirling Powered Van Program (SPVP) is a multiyear, multiphase program to evaluate the automotive Stirling engine (ASE) in Air Force vans under realistic conditions. The objective of the SPVP is to transfer to manufacturer and end user(s) (i.e., on the path to commercialization) the second-generation Mod 2 ASE upon completion of the Automotive Stirling Engine Program in 1987. In order to meet this objective, the SPVP must establish Stirling performance, integrity, reliability, durability and maintainability. The ASE program background leading to the van program is reviewed and plans for evaluating the kinematic Stirling engine in Air Force vans examined. Also discussed are the NASA technology transfers to industry that have been accomplished and those which are currently being developed.

  15. A study on the real-time reliability of on-board equipment of train control system

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Li, Shiwei

    2018-05-01

    Real-time reliability evaluation is conducive to establishing a condition based maintenance system for the purpose of guaranteeing continuous train operation. According to the inherent characteristics of the on-board equipment, the connotation of reliability evaluation of on-board equipment is defined and the evaluation index of real-time reliability is provided in this paper. From the perspective of methodology and practical application, the real-time reliability of the on-board equipment is discussed in detail, and the method of evaluating the realtime reliability of on-board equipment at component level based on Hidden Markov Model (HMM) is proposed. In this method the performance degradation data is used directly to realize the accurate perception of the hidden state transition process of on-board equipment, which can achieve a better description of the real-time reliability of the equipment.

  16. Integrated material state awareness system with self-learning symbiotic diagnostic algorithms and models

    NASA Astrophysics Data System (ADS)

    Banerjee, Sourav; Liu, Lie; Liu, S. T.; Yuan, Fuh-Gwo; Beard, Shawn

    2011-04-01

    Materials State Awareness (MSA) goes beyond traditional NDE and SHM in its challenge to characterize the current state of material damage before the onset of macro-damage such as cracks. A highly reliable, minimally invasive system for MSA of Aerospace Structures, Naval structures as well as next generation space systems is critically needed. Development of such a system will require a reliable SHM system that can detect the onset of damage well before the flaw grows to a critical size. Therefore, it is important to develop an integrated SHM system that not only detects macroscale damages in the structures but also provides an early indication of flaw precursors and microdamages. The early warning for flaw precursors and their evolution provided by an SHM system can then be used to define remedial strategies before the structural damage leads to failure, and significantly improve the safety and reliability of the structures. Thus, in this article a preliminary concept of developing the Hybrid Distributed Sensor Network Integrated with Self-learning Symbiotic Diagnostic Algorithms and Models to accurately and reliably detect the precursors to damages that occur to the structure are discussed. Experiments conducted in a laboratory environment shows potential of the proposed technique.

  17. Development of a patient safety climate survey for Chinese hospitals: cross-national adaptation and psychometric evaluation.

    PubMed

    Zhu, Junya; Li, Liping; Zhao, Hailei; Han, Guangshu; Wu, Albert W; Weingart, Saul N

    2014-10-01

    Existing patient safety climate instruments, most of which have been developed in the USA, may not accurately reflect the conditions in the healthcare systems of other countries. To develop and evaluate a patient safety climate instrument for healthcare workers in Chinese hospitals. Based on a review of existing instruments, expert panel review, focus groups and cognitive interviews, we developed items relevant to patient safety climate in Chinese hospitals. The draft instrument was distributed to 1700 hospital workers from 54 units in six hospitals in five Chinese cities between July and October 2011, and 1464 completed surveys were received. We performed exploratory and confirmatory factor analyses and estimated internal consistency reliability, within-unit agreement, between-unit variation, unit-mean reliability, correlation between multi-item composites, and association between the composites and two single items of perceived safety. The final instrument included 34 items organised into nine composites: institutional commitment to safety, unit management support for safety, organisational learning, safety system, adequacy of safety arrangements, error reporting, communication and peer support, teamwork and staffing. All composites had acceptable unit-mean reliabilities (≥0.74) and within-unit agreement (Rwg ≥0.71), and exhibited significant between-unit variation with intraclass correlation coefficients ranging from 9% to 21%. Internal consistency reliabilities ranged from 0.59 to 0.88 and were ≥0.70 for eight of the nine composites. Correlations between composites ranged from 0.27 to 0.73. All composites were positively and significantly associated with the two perceived safety items. The Chinese Hospital Survey on Patient Safety Climate demonstrates adequate dimensionality, reliability and validity. The integration of qualitative and quantitative methods is essential to produce an instrument that is culturally appropriate for Chinese hospitals. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. Comparison of different incremental analysis update schemes in a realistic assimilation system with Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Yan, Y.; Barth, A.; Beckers, J. M.; Brankart, J. M.; Brasseur, P.; Candille, G.

    2017-07-01

    In this paper, three incremental analysis update schemes (IAU 0, IAU 50 and IAU 100) are compared in the same assimilation experiments with a realistic eddy permitting primitive equation model of the North Atlantic Ocean using the Ensemble Kalman Filter. The difference between the three IAU schemes lies on the position of the increment update window. The relevance of each IAU scheme is evaluated through analyses on both thermohaline and dynamical variables. The validation of the assimilation results is performed according to both deterministic and probabilistic metrics against different sources of observations. For deterministic validation, the ensemble mean and the ensemble spread are compared to the observations. For probabilistic validation, the continuous ranked probability score (CRPS) is used to evaluate the ensemble forecast system according to reliability and resolution. The reliability is further decomposed into bias and dispersion by the reduced centred random variable (RCRV) score. The obtained results show that 1) the IAU 50 scheme has the same performance as the IAU 100 scheme 2) the IAU 50/100 schemes outperform the IAU 0 scheme in error covariance propagation for thermohaline variables in relatively stable region, while the IAU 0 scheme outperforms the IAU 50/100 schemes in dynamical variables estimation in dynamically active region 3) in case with sufficient number of observations and good error specification, the impact of IAU schemes is negligible. The differences between the IAU 0 scheme and the IAU 50/100 schemes are mainly due to different model integration time and different instability (density inversion, large vertical velocity, etc.) induced by the increment update. The longer model integration time with the IAU 50/100 schemes, especially the free model integration, on one hand, allows for better re-establishment of the equilibrium model state, on the other hand, smooths the strong gradients in dynamically active region.

  19. Avionics System Architecture for the NASA Orion Vehicle

    NASA Technical Reports Server (NTRS)

    Baggerman, Clint; McCabe, Mary; Verma, Dinesh

    2009-01-01

    It has been 30 years since the National Aeronautics and Space Administration (NASA) last developed a crewed spacecraft capable of launch, on-orbit operations, and landing. During that time, aerospace avionics technologies have greatly advanced in capability, and these technologies have enabled integrated avionics architectures for aerospace applications. The inception of NASA s Orion Crew Exploration Vehicle (CEV) spacecraft offers the opportunity to leverage the latest integrated avionics technologies into crewed space vehicle architecture. The outstanding question is to what extent to implement these advances in avionics while still meeting the unique crewed spaceflight requirements for safety, reliability and maintainability. Historically, aircraft and spacecraft have very similar avionics requirements. Both aircraft and spacecraft must have high reliability. They also must have as much computing power as possible and provide low latency between user control and effecter response while minimizing weight, volume, and power. However, there are several key differences between aircraft and spacecraft avionics. Typically, the overall spacecraft operational time is much shorter than aircraft operation time, but the typical mission time (and hence, the time between preventive maintenance) is longer for a spacecraft than an aircraft. Also, the radiation environment is typically more severe for spacecraft than aircraft. A "loss of mission" scenario (i.e. - the mission is not a success, but there are no casualties) arguably has a greater impact on a multi-million dollar spaceflight mission than a typical commercial flight. Such differences need to be weighted when determining if an aircraft-like integrated modular avionics (IMA) system is suitable for a crewed spacecraft. This paper will explore the preliminary design process of the Orion vehicle avionics system by first identifying the Orion driving requirements and the difference between Orion requirements and those of other previous crewed spacecraft avionics systems. Common systems engineering methods will be used to evaluate the value propositions, or the factors that weight most heavily in design consideration, of Orion and other aerospace systems. Then, the current Orion avionics architecture will be presented and evaluated.

  20. Point-of-care wound visioning technology: Reproducibility and accuracy of a wound measurement app

    PubMed Central

    Anderson, John A. E.; Evans, Robyn; Woo, Kevin; Beland, Benjamin; Sasseville, Denis; Moreau, Linda

    2017-01-01

    Background Current wound assessment practices are lacking on several measures. For example, the most common method for measuring wound size is using a ruler, which has been demonstrated to be crude and inaccurate. An increase in periwound temperature is a classic sign of infection but skin temperature is not always measured during wound assessments. To address this, we have developed a smartphone application that enables non-contact wound surface area and temperature measurements. Here we evaluate the inter-rater reliability and accuracy of this novel point-of-care wound assessment tool. Methods and findings The wounds of 87 patients were measured using the Swift Wound app and a ruler. The skin surface temperature of 37 patients was also measured using an infrared FLIR™ camera integrated with the Swift Wound app and using the clinically accepted reference thermometer Exergen DermaTemp 1001. Accuracy measurements were determined by assessing differences in surface area measurements of 15 plastic wounds between a digital planimeter of known accuracy and the Swift Wound app. To evaluate the impact of training on the reproducibility of the Swift Wound app measurements, three novice raters with no wound care training, measured the length, width and area of 12 plastic model wounds using the app. High inter-rater reliabilities (ICC = 0.97–1.00) and high accuracies were obtained using the Swift Wound app across raters of different levels of training in wound care. The ruler method also yielded reliable wound measurements (ICC = 0.92–0.97), albeit lower than that of the Swift Wound app. Furthermore, there was no statistical difference between the temperature differences measured using the infrared camera and the clinically tested reference thermometer. Conclusions The Swift Wound app provides highly reliable and accurate wound measurements. The FLIR™ infrared camera integrated into the Swift Wound app provides skin temperature readings equivalent to the clinically tested reference thermometer. Thus, the Swift Wound app has the advantage of being a non-contact, easy-to-use wound measurement tool that allows clinicians to image, measure, and track wound size and temperature from one visit to the next. In addition, this tool may also be used by patients and their caregivers for home monitoring. PMID:28817649

  1. Optimization Testbed Cometboards Extended into Stochastic Domain

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Pai, Shantaram S.; Coroneos, Rula M.; Patnaik, Surya N.

    2010-01-01

    COMparative Evaluation Testbed of Optimization and Analysis Routines for the Design of Structures (CometBoards) is a multidisciplinary design optimization software. It was originally developed for deterministic calculation. It has now been extended into the stochastic domain for structural design problems. For deterministic problems, CometBoards is introduced through its subproblem solution strategy as well as the approximation concept in optimization. In the stochastic domain, a design is formulated as a function of the risk or reliability. Optimum solution including the weight of a structure, is also obtained as a function of reliability. Weight versus reliability traced out an inverted-S-shaped graph. The center of the graph corresponded to 50 percent probability of success, or one failure in two samples. A heavy design with weight approaching infinity could be produced for a near-zero rate of failure that corresponded to unity for reliability. Weight can be reduced to a small value for the most failure-prone design with a compromised reliability approaching zero. The stochastic design optimization (SDO) capability for an industrial problem was obtained by combining three codes: MSC/Nastran code was the deterministic analysis tool, fast probabilistic integrator, or the FPI module of the NESSUS software, was the probabilistic calculator, and CometBoards became the optimizer. The SDO capability requires a finite element structural model, a material model, a load model, and a design model. The stochastic optimization concept is illustrated considering an academic example and a real-life airframe component made of metallic and composite materials.

  2. Interrater and intrarater reliability of FDI criteria applied to photographs of posterior tooth-colored restorations.

    PubMed

    Kim, Dohyun; Ahn, So-Yeon; Kim, Junyoung; Park, Sung-Ho

    2017-07-01

    Since 2007, the FDI World Dental Federation (FDI) criteria have been used for the clinical evaluation of dental restorations. However, the reliability of the FDI criteria has not been sufficiently addressed. The purpose of this study was to assess and compare the interrater and intrarater reliability of the FDI criteria by evaluating posterior tooth-colored restorations photographically. A total of 160 clinical photographs of posterior tooth-colored restorations were evaluated independently by 5 raters with 9 of the FDI criteria suitable for photographic evaluation. The raters recorded the score of each restoration by using 5 grades, and the score was dichotomized into the clinical evaluation scores. After 1 month, 2 of the raters reevaluated the same set of 160 photographs in random order. To estimate the interrater reliability among the 5 raters, the proportion of agreement was calculated, and the Fleiss multirater kappa statistic was used. For the intrarater reliability, the proportion of agreement was calculated, and the Cohen standard kappa statistic was used for each of the 2 raters. The interrater proportion of agreement was 0.41 to 0.57, and the kappa value was 0.09 to 0.39. Overall, the intrarater reliability was higher than the interrater reliability, and rater 1 demonstrated higher intrarater reliability than rater 2. The proportion of agreement and kappa values increased when the 5 scores were dichotomized. The reliability was relatively lower for the esthetic properties compared with the functional or biological properties. Within the limitations of this study, the FDI criteria presented slight to fair interrater reliability and fair to excellent intrarater reliability in the photographic evaluation of posterior tooth-colored restorations. The reliability was improved by simplifying the evaluation scores. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. UAS-Systems Integration, Validation, and Diagnostics Simulation Capability

    NASA Technical Reports Server (NTRS)

    Buttrill, Catherine W.; Verstynen, Harry A.

    2014-01-01

    As part of the Phase 1 efforts of NASA's UAS-in-the-NAS Project a task was initiated to explore the merits of developing a system simulation capability for UAS to address airworthiness certification requirements. The core of the capability would be a software representation of an unmanned vehicle, including all of the relevant avionics and flight control system components. The specific system elements could be replaced with hardware representations to provide Hardware-in-the-Loop (HWITL) test and evaluation capability. The UAS Systems Integration and Validation Laboratory (UAS-SIVL) was created to provide a UAS-systems integration, validation, and diagnostics hardware-in-the-loop simulation capability. This paper discusses how SIVL provides a robust and flexible simulation framework that permits the study of failure modes, effects, propagation paths, criticality, and mitigation strategies to help develop safety, reliability, and design data that can assist with the development of certification standards, means of compliance, and design best practices for civil UAS.

  4. A lunar base reference mission for the phased implementation of bioregenerative life support system components

    NASA Technical Reports Server (NTRS)

    Dittmer, Laura N.; Drews, Michael E.; Lineaweaver, Sean K.; Shipley, Derek E.; Hoehn, A.

    1991-01-01

    Previous design efforts of a cost effective and reliable regenerative life support system (RLSS) provided the foundation for the characterization of organisms or 'biological processors' in engineering terms and a methodology was developed for their integration into an engineered ecological LSS in order to minimize the mass flow imbalances between consumers and producers. These techniques for the design and the evaluation of bioregenerative LSS have now been integrated into a lunar base reference mission, emphasizing the phased implementation of components of such a BLSS. In parallel, a designers handbook was compiled from knowledge and experience gained during past design projects to aid in the design and planning of future space missions requiring advanced RLSS technologies. The lunar base reference mission addresses in particular the phased implementation and integration of BLS parts and includes the resulting infrastructure burdens and needs such as mass, power, volume, and structural requirements of the LSS. Also, operational aspects such as manpower requirements and the possible need and application of 'robotics' were addressed.

  5. Visual-haptic integration with pliers and tongs: signal “weights” take account of changes in haptic sensitivity caused by different tools

    PubMed Central

    Takahashi, Chie; Watt, Simon J.

    2014-01-01

    When we hold an object while looking at it, estimates from visual and haptic cues to size are combined in a statistically optimal fashion, whereby the “weight” given to each signal reflects their relative reliabilities. This allows object properties to be estimated more precisely than would otherwise be possible. Tools such as pliers and tongs systematically perturb the mapping between object size and the hand opening. This could complicate visual-haptic integration because it may alter the reliability of the haptic signal, thereby disrupting the determination of appropriate signal weights. To investigate this we first measured the reliability of haptic size estimates made with virtual pliers-like tools (created using a stereoscopic display and force-feedback robots) with different “gains” between hand opening and object size. Haptic reliability in tool use was straightforwardly determined by a combination of sensitivity to changes in hand opening and the effects of tool geometry. The precise pattern of sensitivity to hand opening, which violated Weber's law, meant that haptic reliability changed with tool gain. We then examined whether the visuo-motor system accounts for these reliability changes. We measured the weight given to visual and haptic stimuli when both were available, again with different tool gains, by measuring the perceived size of stimuli in which visual and haptic sizes were varied independently. The weight given to each sensory cue changed with tool gain in a manner that closely resembled the predictions of optimal sensory integration. The results are consistent with the idea that different tool geometries are modeled by the brain, allowing it to calculate not only the distal properties of objects felt with tools, but also the certainty with which those properties are known. These findings highlight the flexibility of human sensory integration and tool-use, and potentially provide an approach for optimizing the design of visual-haptic devices. PMID:24592245

  6. Multidisciplinary System Reliability Analysis

    NASA Technical Reports Server (NTRS)

    Mahadevan, Sankaran; Han, Song; Chamis, Christos C. (Technical Monitor)

    2001-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code, developed under the leadership of NASA Glenn Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multidisciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  7. Multi-Disciplinary System Reliability Analysis

    NASA Technical Reports Server (NTRS)

    Mahadevan, Sankaran; Han, Song

    1997-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code developed under the leadership of NASA Lewis Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multi-disciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  8. Are Validity and Reliability "Relevant" in Qualitative Evaluation Research?

    ERIC Educational Resources Information Center

    Goodwin, Laura D.; Goodwin, William L.

    1984-01-01

    The views of prominant qualitative methodologists on the appropriateness of validity and reliability estimation for the measurement strategies employed in qualitative evaluations are summarized. A case is made for the relevance of validity and reliability estimation. Definitions of validity and reliability for qualitative measurement are presented…

  9. Visual and haptic integration in the estimation of softness of deformable objects

    PubMed Central

    Cellini, Cristiano; Kaim, Lukas; Drewing, Knut

    2013-01-01

    Softness perception intrinsically relies on haptic information. However, through everyday experiences we learn correspondences between felt softness and the visual effects of exploratory movements that are executed to feel softness. Here, we studied how visual and haptic information is integrated to assess the softness of deformable objects. Participants discriminated between the softness of two softer or two harder objects using only-visual, only-haptic or both visual and haptic information. We assessed the reliabilities of the softness judgments using the method of constant stimuli. In visuo-haptic trials, discrepancies between the two senses' information allowed us to measure the contribution of the individual senses to the judgments. Visual information (finger movement and object deformation) was simulated using computer graphics; input in visual trials was taken from previous visuo-haptic trials. Participants were able to infer softness from vision alone, and vision considerably contributed to bisensory judgments (∼35%). The visual contribution was higher than predicted from models of optimal integration (senses are weighted according to their reliabilities). Bisensory judgments were less reliable than predicted from optimal integration. We conclude that the visuo-haptic integration of softness information is biased toward vision, rather than being optimal, and might even be guided by a fixed weighting scheme. PMID:25165510

  10. Quality assessment of integrated water vapour measurements at the St. Petersburg site, Russia: FTIR vs. MW and GPS techniques

    NASA Astrophysics Data System (ADS)

    Virolainen, Yana A.; Timofeyev, Yury M.; Kostsov, Vladimir S.; Ionov, Dmitry V.; Kalinnikov, Vladislav V.; Makarova, Maria V.; Poberovsky, Anatoly V.; Zaitsev, Nikita A.; Imhasin, Hamud H.; Polyakov, Alexander V.; Schneider, Matthias; Hase, Frank; Barthlott, Sabine; Blumenstock, Thomas

    2017-11-01

    The cross-comparison of different techniques for atmospheric integrated water vapour (IWV) measurements is the essential part of their quality assessment protocol. We inter-compare the synchronised data sets of IWV values measured by the Bruker 125 HR Fourier-transform infrared spectrometer (FTIR), RPG-HATPRO microwave radiometer (MW), and Novatel ProPak-V3 global navigation satellite system receiver (GPS) at the St. Petersburg site between August 2014 and October 2016. As the result of accurate spatial and temporal matching of different IWV measurements, all three techniques agree well with each other except for small IWV values. We show that GPS and MW data quality depends on the atmospheric conditions; in dry atmosphere (IWV smaller than 6 mm), these techniques are less reliable at the St. Petersburg site than the FTIR method. We evaluate the upper bound of statistical measurement errors for clear-sky conditions as 0.29 ± 0.02 mm (1.6 ± 0.3 %), 0.55 ± 0.02 mm (4.7 ± 0.4 %), and 0.76 ± 0.04 mm (6.3 ± 0.8 %) for FTIR, GPS, and MW methods, respectively. We propose the use of FTIR as a reference method under clear-sky conditions since it is reliable on all scales of IWV variability.

  11. RAMAN spectroscopy imaging improves the diagnosis of papillary thyroid carcinoma

    NASA Astrophysics Data System (ADS)

    Rau, Julietta V.; Graziani, Valerio; Fosca, Marco; Taffon, Chiara; Rocchia, Massimiliano; Crucitti, Pierfilippo; Pozzilli, Paolo; Onetti Muda, Andrea; Caricato, Marco; Crescenzi, Anna

    2016-10-01

    Recent investigations strongly suggest that Raman spectroscopy (RS) can be used as a clinical tool in cancer diagnosis to improve diagnostic accuracy. In this study, we evaluated the efficiency of Raman imaging microscopy to discriminate between healthy and neoplastic thyroid tissue, by analyzing main variants of Papillary Thyroid Carcinoma (PTC), the most common type of thyroid cancer. We performed Raman imaging of large tissue areas (from 100 × 100 μm2 up to 1 × 1 mm2), collecting 38 maps containing about 9000 Raman spectra. Multivariate statistical methods, including Linear Discriminant Analysis (LDA), were applied to translate Raman spectra differences between healthy and PTC tissues into diagnostically useful information for a reliable tissue classification. Our study is the first demonstration of specific biochemical features of the PTC profile, characterized by significant presence of carotenoids with respect to the healthy tissue. Moreover, this is the first evidence of Raman spectra differentiation between classical and follicular variant of PTC, discriminated by LDA with high efficiency. The combined histological and Raman microscopy analyses allow clear-cut integration of morphological and biochemical observations, with dramatic improvement of efficiency and reliability in the differential diagnosis of neoplastic thyroid nodules, paving the way to integrative findings for tumorigenesis and novel therapeutic strategies.

  12. Engineering Risk Assessment of Space Thruster Challenge Problem

    NASA Technical Reports Server (NTRS)

    Mathias, Donovan L.; Mattenberger, Christopher J.; Go, Susie

    2014-01-01

    The Engineering Risk Assessment (ERA) team at NASA Ames Research Center utilizes dynamic models with linked physics-of-failure analyses to produce quantitative risk assessments of space exploration missions. This paper applies the ERA approach to the baseline and extended versions of the PSAM Space Thruster Challenge Problem, which investigates mission risk for a deep space ion propulsion system with time-varying thruster requirements and operations schedules. The dynamic mission is modeled using a combination of discrete and continuous-time reliability elements within the commercially available GoldSim software. Loss-of-mission (LOM) probability results are generated via Monte Carlo sampling performed by the integrated model. Model convergence studies are presented to illustrate the sensitivity of integrated LOM results to the number of Monte Carlo trials. A deterministic risk model was also built for the three baseline and extended missions using the Ames Reliability Tool (ART), and results are compared to the simulation results to evaluate the relative importance of mission dynamics. The ART model did a reasonable job of matching the simulation models for the baseline case, while a hybrid approach using offline dynamic models was required for the extended missions. This study highlighted that state-of-the-art techniques can adequately adapt to a range of dynamic problems.

  13. Teaching nurses teamwork: Integrative review of competency-based team training in nursing education.

    PubMed

    Barton, Glenn; Bruce, Anne; Schreiber, Rita

    2017-12-20

    Widespread demands for high reliability healthcare teamwork have given rise to many educational initiatives aimed at building team competence. Most effort has focused on interprofessional team training however; Registered Nursing teams comprise the largest human resource delivering direct patient care in hospitals. Nurses also influence many other health team outcomes, yet little is known about the team training curricula they receive, and furthermore what specific factors help translate teamwork competency to nursing practice. The aim of this review is to critically analyse empirical published work reporting on teamwork education interventions in nursing, and identify key educational considerations enabling teamwork competency in this group. CINAHL, Web of Science, Academic Search Complete, and ERIC databases were searched and detailed inclusion-exclusion criteria applied. Studies (n = 19) were selected and evaluated using established qualitative-quantitative appraisal tools and a systematic constant comparative approach. Nursing teamwork knowledge is rooted in High Reliability Teams theory and Crew or Crisis Resource Management sources. Constructivist pedagogy is used to teach, practice, and refine teamwork competency. Nursing teamwork assessment is complex; involving integrated yet individualized determinations of knowledge, skills, and attitudes. Future initiatives need consider frontline leadership, supportive followership and skilled communication emphasis. Collective stakeholder support is required to translate teamwork competency into nursing practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Integrated Atmosphere Resource Recovery and Environmental Monitoring Technology Demonstration for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.

    2012-01-01

    Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.

  15. Informatics in radiology (infoRAD): A complete continuous-availability PACS archive server.

    PubMed

    Liu, Brent J; Huang, H K; Cao, Fei; Zhou, Michael Z; Zhang, Jianguo; Mogel, Greg

    2004-01-01

    The operational reliability of the picture archiving and communication system (PACS) server in a filmless hospital environment is always a major concern because server failure could cripple the entire PACS operation. A simple, low-cost, continuous-availability (CA) PACS archive server was designed and developed. The server makes use of a triple modular redundancy (TMR) system with a simple majority voting logic that automatically identifies a faulty module and removes it from service. The remaining two modules continue normal operation with no adverse effects on data flow or system performance. In addition, the server is integrated with two external mass storage devices for short- and long-term storage. Evaluation and testing of the server were conducted with laboratory experiments in which hardware failures were simulated to observe recovery time and the resumption of normal data flow. The server provides maximum uptime (99.999%) for end users while ensuring the transactional integrity of all clinical PACS data. Hardware failure has only minimal impact on performance, with no interruption of clinical data flow or loss of data. As hospital PACS become more widespread, the need for CA PACS solutions will increase. A TMR CA PACS archive server can reliably help achieve CA in this setting. Copyright RSNA, 2004

  16. Heat Pipes Cool Power Magnetics

    NASA Technical Reports Server (NTRS)

    Hansen, I.; Chester, M.; Luedke, E.

    1983-01-01

    Configurations originally developed for space use are effective in any orientation. Heat pipes integrated into high-power, high-frequency, highvoltage spaceflight magnetics reduce weight and improve reliability by lowering internal tempertures. Two heat pipes integrated in design of power transformer cool unit in any orientation. Electrostatic shield conducts heat from windings to heat pipe evaporator. Technology allows dramatic reductions in size and weight, while significantly improving reliability. In addition, all attitude design of heat pipes allows operation of heat pipes independent of local gravity forces.

  17. Assessing system reliability and allocating resources: a bayesian approach that integrates multi-level data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graves, Todd L; Hamada, Michael S

    2008-01-01

    Good estimates of the reliability of a system make use of test data and expert knowledge at all available levels. Furthermore, by integrating all these information sources, one can determine how best to allocate scarce testing resources to reduce uncertainty. Both of these goals are facilitated by modern Bayesian computational methods. We apply these tools to examples that were previously solvable only through the use of ingenious approximations, and use genetic algorithms to guide resource allocation.

  18. Gear Damage Detection Integrating Oil Debris and Vibration Measurement Technologies Developed

    NASA Technical Reports Server (NTRS)

    Gyekeyeski, Andrew L.; Sawicki, Jerzy T.

    2001-01-01

    The development of highly reliable health-monitoring systems is one technology area recommended for reducing the number of helicopter accidents. Helicopter transmission diagnostics are an important part of a helicopter health-monitoring system because helicopters depend on the power train for propulsion, lift, and flight maneuvering. One technique currently being tested for increasing the reliability and decreasing the false alarm rate of current transmission diagnostic tools is the replacement of simple single-sensor limits with multisensor systems integrating different measurement technologies.

  19. Validation of a New Metric for Assessing the Integration of Health Protection and Health Promotion in a Sample of Small- and Medium-Sized Employer Groups.

    PubMed

    Williams, Jessica A R; Nelson, Candace C; Cabán-Martinez, Alberto J; Katz, Jeffrey N; Wagner, Gregory R; Pronk, Nicolaas P; Sorensen, Glorian; McLellan, Deborah L

    2015-09-01

    To conduct validation analyses for a new measure of the integration of worksite health protection and health promotion approaches developed in earlier research. A survey of small- to medium-sized employers located in the United States was conducted between October 2013 and March 2014 (n = 111). Cronbach α coefficient was used to assess reliability, and Pearson correlation coefficients were used to assess convergent validity. The integration score was positively associated with the measures of occupational safety and health and health promotion activities/policies-supporting its convergent validity (Pearson correlation coefficients of 0.32 to 0.47). Cronbach α coefficient was 0.94, indicating excellent reliability. The integration score seems to be a promising tool for assessing integration of health promotion and health protection. Further work is needed to test its dimensionality and validate its use in other samples.

  20. Development of an Integrated Human Factors Toolkit

    NASA Technical Reports Server (NTRS)

    Resnick, Marc L.

    2003-01-01

    An effective integration of human abilities and limitations is crucial to the success of all NASA missions. The Integrated Human Factors Toolkit facilitates this integration by assisting system designers and analysts to select the human factors tools that are most appropriate for the needs of each project. The HF Toolkit contains information about a broad variety of human factors tools addressing human requirements in the physical, information processing and human reliability domains. Analysis of each tool includes consideration of the most appropriate design stage, the amount of expertise in human factors that is required, the amount of experience with the tool and the target job tasks that are needed, and other factors that are critical for successful use of the tool. The benefits of the Toolkit include improved safety, reliability and effectiveness of NASA systems throughout the agency. This report outlines the initial stages of development for the Integrated Human Factors Toolkit.

  1. The development of an integrated assessment instrument for measuring analytical thinking and science process skills

    NASA Astrophysics Data System (ADS)

    Irwanto, Rohaeti, Eli; LFX, Endang Widjajanti; Suyanta

    2017-05-01

    This research aims to develop instrument and determine the characteristics of an integrated assessment instrument. This research uses 4-D model, which includes define, design, develop, and disseminate. The primary product is validated by expert judgment, tested it's readability by students, and assessed it's feasibility by chemistry teachers. This research involved 246 students of grade XI of four senior high schools in Yogyakarta, Indonesia. Data collection techniques include interview, questionnaire, and test. Data collection instruments include interview guideline, item validation sheet, users' response questionnaire, instrument readability questionnaire, and essay test. The results show that the integrated assessment instrument has Aiken validity value of 0.95. Item reliability was 0.99 and person reliability was 0.69. Teachers' response to the integrated assessment instrument is very good. Therefore, the integrated assessment instrument is feasible to be applied to measure the students' analytical thinking and science process skills.

  2. Critical aspects of integrated monitoring systems for landslides risk management: strategies for a reliable approach

    NASA Astrophysics Data System (ADS)

    Castagnetti, C.; Bertacchini, E.; Capra, A.; Corsini, A.

    2012-04-01

    The use of advanced technologies for remotely monitor surface processes is a successful way for improving the knowledge of phenomena evolution. In addition, the integration of various techniques is becoming more and more common in order to implement early warning systems that can monitor the evolution of landslides in time and prevent emergencies. The reliability of those systems plays a key role when Public Administrations have to plan actions in case of disasters or for preventing an incoming emergency. To have confidence in the information given by the system is an essential condition for a successful policy aiming to protect the population. The research deals with the major critical aspects to be taken into account when implementing a reliable monitoring system for unstable slopes. The importance of those aspects is often neglected, unlike the effects of a not careful implementation and management of the system can lead to erroneous interpretations of the phenomenon itself. The case study which ruled the research and highlighted the actual need of guidelines for setting up a reliable monitoring system is the Valoria landslide, located in the Northern Italy. The system is based on the integration of an automatic Total Station (TS) measuring 45 reflectors and a master GPS, acting as the reference station for three rovers placed within the landslide. In order to monitor local disturbing effects, a bi-dimensional clinometer has been applied on the TS pillar. Topographic measurements have been also integrated with geotechnical sensors (inclinometers and piezometers) in a GIS for landslide risk management. At the very beginning, periodic measurements were carried out, while the system is now performing continuously since 2008. The system permitted to evaluate movements from few millimeter till some meters per day in most dangerous areas. A more spatially continuous description has been also provided by LiDAR and terrestrial SAR interferometry. Some of the most interesting and critical aspects that will be deeper described and analyzed are: - strategy for planning a successful integrated system for continuous monitoring. - Choice of the reference frame: local coordinate system or georeferenced one. - Stability of the site for the master unit positioning: GPS time series analysis for controlling the effective stability. Thanks to the GPS master station that are operating for over three years, atmospheric disturbances affecting the signal may be removed in order to carefully verify the stability of the area and to establish whether the site is geologically stable, as originally suggested, or not. In the latter case, the magnitude of movements may also be computed for providing corrections to TS observations. - Stability of the monumentation, both for reference points and TS pillar. This is an essential aspect for avoiding misinterpretations when analyzing displacements of prisms placed within the landslide. The results of experiences carried out by Authors over last years about different landslides will be presented in order to propose guidelines for a sort of procedure aiming to increase the reliability of the information provided by the system and the usefulness for local Agencies.

  3. Reliability of Visual and Somatosensory Feedback in Skilled Movement: The Role of the Cerebellum.

    PubMed

    Mizelle, J C; Oparah, Alexis; Wheaton, Lewis A

    2016-01-01

    The integration of vision and somatosensation is required to allow for accurate motor behavior. While both sensory systems contribute to an understanding of the state of the body through continuous updating and estimation, how the brain processes unreliable sensory information remains to be fully understood in the context of complex action. Using functional brain imaging, we sought to understand the role of the cerebellum in weighting visual and somatosensory feedback by selectively reducing the reliability of each sense individually during a tool use task. We broadly hypothesized upregulated activation of the sensorimotor and cerebellar areas during movement with reduced visual reliability, and upregulated activation of occipital brain areas during movement with reduced somatosensory reliability. As specifically compared to reduced somatosensory reliability, we expected greater activations of ipsilateral sensorimotor cerebellum for intact visual and somatosensory reliability. Further, we expected that ipsilateral posterior cognitive cerebellum would be affected with reduced visual reliability. We observed that reduced visual reliability results in a trend towards the relative consolidation of sensorimotor activation and an expansion of cerebellar activation. In contrast, reduced somatosensory reliability was characterized by the absence of cerebellar activations and a trend towards the increase of right frontal, left parietofrontal activation, and temporo-occipital areas. Our findings highlight the role of the cerebellum for specific aspects of skillful motor performance. This has relevance to understanding basic aspects of brain functions underlying sensorimotor integration, and provides a greater understanding of cerebellar function in tool use motor control.

  4. Evaluation of reliability modeling tools for advanced fault tolerant systems

    NASA Technical Reports Server (NTRS)

    Baker, Robert; Scheper, Charlotte

    1986-01-01

    The Computer Aided Reliability Estimation (CARE III) and Automated Reliability Interactice Estimation System (ARIES 82) reliability tools for application to advanced fault tolerance aerospace systems were evaluated. To determine reliability modeling requirements, the evaluation focused on the Draper Laboratories' Advanced Information Processing System (AIPS) architecture as an example architecture for fault tolerance aerospace systems. Advantages and limitations were identified for each reliability evaluation tool. The CARE III program was designed primarily for analyzing ultrareliable flight control systems. The ARIES 82 program's primary use was to support university research and teaching. Both CARE III and ARIES 82 were not suited for determining the reliability of complex nodal networks of the type used to interconnect processing sites in the AIPS architecture. It was concluded that ARIES was not suitable for modeling advanced fault tolerant systems. It was further concluded that subject to some limitations (the difficulty in modeling systems with unpowered spare modules, systems where equipment maintenance must be considered, systems where failure depends on the sequence in which faults occurred, and systems where multiple faults greater than a double near coincident faults must be considered), CARE III is best suited for evaluating the reliability of advanced tolerant systems for air transport.

  5. Proposal of a risk-factor-based analytical approach for integrating occupational health and safety into project risk evaluation.

    PubMed

    Badri, Adel; Nadeau, Sylvie; Gbodossou, André

    2012-09-01

    Excluding occupational health and safety (OHS) from project management is no longer acceptable. Numerous industrial accidents have exposed the ineffectiveness of conventional risk evaluation methods as well as negligence of risk factors having major impact on the health and safety of workers and nearby residents. Lack of reliable and complete evaluations from the beginning of a project generates bad decisions that could end up threatening the very existence of an organization. This article supports a systematic approach to the evaluation of OHS risks and proposes a new procedure based on the number of risk factors identified and their relative significance. A new concept called risk factor concentration along with weighting of risk factor categories as contributors to undesirable events are used in the analytical hierarchy process multi-criteria comparison model with Expert Choice(©) software. A case study is used to illustrate the various steps of the risk evaluation approach and the quick and simple integration of OHS at an early stage of a project. The approach allows continual reassessment of criteria over the course of the project or when new data are acquired. It was thus possible to differentiate the OHS risks from the risk of drop in quality in the case of the factory expansion project. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Development, implementation, and evaluation of an integrated multidisciplinary Objective Structured Clinical Examination (OSCE) in primary health care settings within limited resources.

    PubMed

    Abdelaziz, Adel; Hany, Mohamed; Atwa, Hani; Talaat, Wagdy; Hosny, Somaya

    2016-01-01

    In ordinary circumstances, objective structured clinical examination (OSCE) is a resource-intensive assessment method. In case of developing and implementing multidisciplinary OSCE, there is no doubt that the cost will be greater. Through this study a research project was conducted to develop, implement and evaluate a multidisciplinary OSCE model within limited resources. This research project went through the steps of blueprinting, station writing, resources reallocation, implementation and finally evaluation. The developed model was implemented in the Primary Health Care (PHC) program which is one of the pillars of the Community-Based undergraduate curriculum of the Faculty of Medicine, Suez Canal University (FOM-SCU). Data for evaluation of the implemented OSCE model were derived from two resources. First, feedback of the students and assessors through self-administered questionnaires was obtained. Second, evaluation of the OSCE psychometrics was done. The deliverables of this research project included a set of validated integrated multi-disciplinary and low cost OSCE stations with an estimated reliability index of 0.6. After having this experience, we have a critical mass of faculty members trained on blueprinting and station writing and a group of trained assessors, facilitators and role players. Also there is a state of awareness among students on how to proceed in this type of OSCE which renders future implementation more feasible.

  7. Exploring outcomes and evaluation in narrative pedagogy: An integrative review.

    PubMed

    Brady, Destiny R; Asselin, Marilyn E

    2016-10-01

    To identify narrative pedagogy learning outcomes and evaluation methods used for pre-licensure nursing students. Recommend areas for expanding narrative pedagogy research. An integrative review using a modified version of Cooper's 1998 framework, as described by Whittemore and Knafl (2005). A computer-assisted search of the literature from 1995 to 2015 was performed using the search terms narrative pedagogy and nursing. Databases included the Cumulative Index to Nursing and Allied Health Literature, Academic Search Premier, Educational Resources Information Center, Educational Research Complete, Medline, PsychArticles, PsychINFO, and the Teacher Reference Center. Ancestry searches led to the inclusion of additional articles. Twenty-six texts met the criteria for full review and were evaluated for methodological rigor and relevance to the review aims. Nine articles achieved an acceptable quality score and were used for thematic analysis. Learning outcomes associated with narrative pedagogy were grouped into five themes: thinking, empowerment, interconnectedness, learning as a process of making meaning, and ethical/moral judgment. Multiple methods of evaluation are necessary to evaluate these learning outcomes. Narrative pedagogy may be a beneficial philosophical approach to teaching. However, at this time, there is insufficient evidence to recommend its universal adoption. It is too broad in its approach to reliably measure its effectiveness. Future research should examine the effectiveness of specific teaching strategies to promote desired learning outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. NDE reliability and probability of detection (POD) evolution and paradigm shift

    NASA Astrophysics Data System (ADS)

    Singh, Surendra

    2014-02-01

    The subject of NDE Reliability and POD has gone through multiple phases since its humble beginning in the late 1960s. This was followed by several programs including the important one nicknamed "Have Cracks - Will Travel" or in short "Have Cracks" by Lockheed Georgia Company for US Air Force during 1974-1978. This and other studies ultimately led to a series of developments in the field of reliability and POD starting from the introduction of fracture mechanics and Damaged Tolerant Design (DTD) to statistical framework by Bernes and Hovey in 1981 for POD estimation to MIL-STD HDBK 1823 (1999) and 1823A (2009). During the last decade, various groups and researchers have further studied the reliability and POD using Model Assisted POD (MAPOD), Simulation Assisted POD (SAPOD), and applying Bayesian Statistics. All and each of these developments had one objective, i.e., improving accuracy of life prediction in components that to a large extent depends on the reliability and capability of NDE methods. Therefore, it is essential to have a reliable detection and sizing of large flaws in components. Currently, POD is used for studying reliability and capability of NDE methods, though POD data offers no absolute truth regarding NDE reliability, i.e., system capability, effects of flaw morphology, and quantifying the human factors. Furthermore, reliability and POD have been reported alike in meaning but POD is not NDE reliability. POD is a subset of the reliability that consists of six phases: 1) samples selection using DOE, 2) NDE equipment setup and calibration, 3) System Measurement Evaluation (SME) including Gage Repeatability &Reproducibility (Gage R&R) and Analysis Of Variance (ANOVA), 4) NDE system capability and electronic and physical saturation, 5) acquiring and fitting data to a model, and data analysis, and 6) POD estimation. This paper provides an overview of all major POD milestones for the last several decades and discuss rationale for using Integrated Computational Materials Engineering (ICME), MAPOD, SAPOD, and Bayesian statistics for studying controllable and non-controllable variables including human factors for estimating POD. Another objective is to list gaps between "hoped for" versus validated or fielded failed hardware.

  9. QUANTITATIVE ASSESSMENT OF INTEGRATED PHRENIC NERVE ACTIVITY

    PubMed Central

    Nichols, Nicole L.; Mitchell, Gordon S.

    2016-01-01

    Integrated electrical activity in the phrenic nerve is commonly used to assess within-animal changes in phrenic motor output. Because of concerns regarding the consistency of nerve recordings, activity is most often expressed as a percent change from baseline values. However, absolute values of nerve activity are necessary to assess the impact of neural injury or disease on phrenic motor output. To date, no systematic evaluations of the repeatability/reliability have been made among animals when phrenic recordings are performed by an experienced investigator using standardized methods. We performed a meta-analysis of studies reporting integrated phrenic nerve activity in many rat groups by the same experienced investigator; comparisons were made during baseline and maximal chemoreceptor stimulation in 14 wild-type Harlan and 14 Taconic Sprague Dawley groups, and in 3 pre-symptomatic and 11 end-stage SOD1G93A Taconic rat groups (an ALS model). Meta-analysis results indicate: 1) consistent measurements of integrated phrenic activity in each sub-strain of wild-type rats; 2) with bilateral nerve recordings, left-to-right integrated phrenic activity ratios are ~1.0; and 3) consistently reduced activity in end-stage SOD1G93A rats. Thus, with appropriate precautions, integrated phrenic nerve activity enables robust, quantitative comparisons among nerves or experimental groups, including differences caused by neuromuscular disease. PMID:26724605

  10. Integrity monitoring of vehicle positioning in urban environment using RTK-GNSS, IMU and speedometer

    NASA Astrophysics Data System (ADS)

    El-Mowafy, Ahmed; Kubo, Nobuaki

    2017-05-01

    Continuous and trustworthy positioning is a critical capability for advanced driver assistance systems (ADAS). To achieve continuous positioning, methods such as global navigation satellite systems real-time kinematic (RTK), Doppler-based positioning, and positioning using low-cost inertial measurement unit (IMU) with car speedometer data are combined in this study. To ensure reliable positioning, the system should have integrity monitoring above a certain level, such as 99%. Achieving this level when combining different types of measurements that have different characteristics and different types of errors is a challenge. In this study, a novel integrity monitoring approach is presented for the proposed integrated system. A threat model of the measurements of the system components is discussed, which includes both the nominal performance and possible fault modes. A new protection level is presented to bound the maximum directional position error. The proposed approach was evaluated through a kinematic test in an urban area in Japan with a focus on horizontal positioning. Test results show that by integrating RTK, Doppler with IMU/speedometer, 100% positioning availability was achieved. The integrity monitoring availability was assessed and found to meet the target value where the position errors were bounded by the protection level, which was also less than an alert level, indicating the effectiveness of the proposed approach.

  11. Blinded evaluation of interrater reliability of an operative competency assessment tool for direct laryngoscopy and rigid bronchoscopy.

    PubMed

    Ishman, Stacey L; Benke, James R; Johnson, Kaalan Erik; Zur, Karen B; Jacobs, Ian N; Thorne, Marc C; Brown, David J; Lin, Sandra Y; Bhatti, Nasir; Deutsch, Ellen S

    2012-10-01

    OBJECTIVES To confirm interrater reliability using blinded evaluation of a skills-assessment instrument to assess the surgical performance of resident and fellow trainees performing pediatric direct laryngoscopy and rigid bronchoscopy in simulated models. DESIGN Prospective, paired, blinded observational validation study. SUBJECTS Paired observers from multiple institutions simultaneously evaluated residents and fellows who were performing surgery in an animal laboratory or using high-fidelity manikins. The evaluators had no previous affiliation with the residents and fellows and did not know their year of training. INTERVENTIONS One- and 2-page versions of an objective structured assessment of technical skills (OSATS) assessment instrument composed of global and a task-specific surgical items were used to evaluate surgical performance. RESULTS Fifty-two evaluations were completed by 17 attending evaluators. The instrument agreement for the 2-page assessment was 71.4% when measured as a binary variable (ie, competent vs not competent) (κ = 0.38; P = .08). Evaluation as a continuous variable revealed a 42.9% percentage agreement (κ = 0.18; P = .14). The intraclass correlation was 0.53, considered substantial/good interrater reliability (69% reliable). For the 1-page instrument, agreement was 77.4% when measured as a binary variable (κ = 0.53, P = .0015). Agreement when evaluated as a continuous measure was 71.0% (κ = 0.54, P < .001). The intraclass correlation was 0.73, considered high interrater reliability (85% reliable). CONCLUSIONS The OSATS assessment instrument is an effective tool for evaluating surgical performance among trainees with acceptable interrater reliability in a simulator setting. Reliability was good for both the 1- and 2-page OSATS checklists, and both serve as excellent tools to provide immediate formative feedback on operational competency.

  12. Performance of an integrated approach for prediction of bond dissociation enthalpies of phenols extracted from ginger and tea

    NASA Astrophysics Data System (ADS)

    Nam, Pham Cam; Chandra, Asit K.; Nguyen, Minh Tho

    2013-01-01

    Integration of the (RO)B3LYP/6-311++G(2df,2p) with the PM6 method into a two-layer ONIOM is found to produce reasonably accurate BDE(O-H)s of phenolic compounds. The chosen ONIOM model contains only two atoms of the breaking bond as the core zone and is able to provide reliable evaluation for BDE(O-H) for phenols and tocopherol. Deviation of calculated values from experiment is ±(1-2) kcal/mol. BDE(O-H) of several curcuminoids and flavanoids extracted from ginger and tea are computed using the proposed model. The BDE(O-H) values of enol curcumin and epigallocatechin gallate are predicted to be 83.3 ± 2.0 and 76.0 ± 2.0 kcal/mol, respectively.

  13. SPSS Macros for Assessing the Reliability and Agreement of Student Evaluations of Teaching

    ERIC Educational Resources Information Center

    Morley, Donald D.

    2009-01-01

    This article reports and demonstrates two SPSS macros for calculating Krippendorff's alpha and intraclass reliability coefficients in repetitive situations where numerous coefficients are needed. Specifically, the reported SPSS macros were used to evaluate the interrater agreement and reliability of student evaluations of teaching in thousands of…

  14. Evaluation methodologies for an advanced information processing system

    NASA Technical Reports Server (NTRS)

    Schabowsky, R. S., Jr.; Gai, E.; Walker, B. K.; Lala, J. H.; Motyka, P.

    1984-01-01

    The system concept and requirements for an Advanced Information Processing System (AIPS) are briefly described, but the emphasis of this paper is on the evaluation methodologies being developed and utilized in the AIPS program. The evaluation tasks include hardware reliability, maintainability and availability, software reliability, performance, and performability. Hardware RMA and software reliability are addressed with Markov modeling techniques. The performance analysis for AIPS is based on queueing theory. Performability is a measure of merit which combines system reliability and performance measures. The probability laws of the performance measures are obtained from the Markov reliability models. Scalar functions of this law such as the mean and variance provide measures of merit in the AIPS performability evaluations.

  15. Covariate-free and Covariate-dependent Reliability.

    PubMed

    Bentler, Peter M

    2016-12-01

    Classical test theory reliability coefficients are said to be population specific. Reliability generalization, a meta-analysis method, is the main procedure for evaluating the stability of reliability coefficients across populations. A new approach is developed to evaluate the degree of invariance of reliability coefficients to population characteristics. Factor or common variance of a reliability measure is partitioned into parts that are, and are not, influenced by control variables, resulting in a partition of reliability into a covariate-dependent and a covariate-free part. The approach can be implemented in a single sample and can be applied to a variety of reliability coefficients.

  16. Remote FLS testing in the real world: ready for "prime time".

    PubMed

    Okrainec, Allan; Vassiliou, Melina; Jimenez, M Carolina; Henao, Oscar; Kaneva, Pepa; Matt Ritter, E

    2016-07-01

    Maintaining the existing FLS test centers requires considerable investment in human and financial resources. It can also be particularly challenging for those outside of North America to become certified due to the limited number of international test centers. Preliminary work suggests that it is possible to reliably score the FLS manual skills component remotely using low-cost videoconferencing technology. Significant work remains to ensure that testing procedures adhere to standards defined by SAGES for this approach to be considered equivalent to standard on-site testing. To validate the integrity and validity of the FLS manual skills examination administered remotely in a real-world environment according to FLS testing protocols and to evaluate participants' experience with the setting. Individuals with various levels of training from the University of Toronto completed a pre- and a post-test questionnaire. Participants presented to one of the two FLS testing rooms available for the study, each connected via Skype to a separate room with a FLS proctor who administered and scored the test remotely (RP). An on-site proctor (OP) was present in the room as a control. An invigilator was also present in the testing room to follow directions from the RP and ensure the integrity of test materials. Twenty-one participants were recruited, and 20 completed the test. There was no significant difference between scores by RP and OP. Interrater reliability between the RP and OP was excellent. One critical error was missed by the RP, but this would not have affected the test outcome. Participants reported being highly satisfied. We demonstrate that proctors located remotely can administer the FLS skills test in a secure and reliable fashion, with excellent interrater reliability compared to an on-site proctor. Remote proctoring of the FLS examination could become a strategy to increase certification rates while containing costs.

  17. Weighted Fuzzy Risk Priority Number Evaluation of Turbine and Compressor Blades Considering Failure Mode Correlations

    NASA Astrophysics Data System (ADS)

    Gan, Luping; Li, Yan-Feng; Zhu, Shun-Peng; Yang, Yuan-Jian; Huang, Hong-Zhong

    2014-06-01

    Failure mode, effects and criticality analysis (FMECA) and Fault tree analysis (FTA) are powerful tools to evaluate reliability of systems. Although single failure mode issue can be efficiently addressed by traditional FMECA, multiple failure modes and component correlations in complex systems cannot be effectively evaluated. In addition, correlated variables and parameters are often assumed to be precisely known in quantitative analysis. In fact, due to the lack of information, epistemic uncertainty commonly exists in engineering design. To solve these problems, the advantages of FMECA, FTA, fuzzy theory, and Copula theory are integrated into a unified hybrid method called fuzzy probability weighted geometric mean (FPWGM) risk priority number (RPN) method. The epistemic uncertainty of risk variables and parameters are characterized by fuzzy number to obtain fuzzy weighted geometric mean (FWGM) RPN for single failure mode. Multiple failure modes are connected using minimum cut sets (MCS), and Boolean logic is used to combine fuzzy risk priority number (FRPN) of each MCS. Moreover, Copula theory is applied to analyze the correlation of multiple failure modes in order to derive the failure probabilities of each MCS. Compared to the case where dependency among multiple failure modes is not considered, the Copula modeling approach eliminates the error of reliability analysis. Furthermore, for purpose of quantitative analysis, probabilities importance weight from failure probabilities are assigned to FWGM RPN to reassess the risk priority, which generalize the definition of probability weight and FRPN, resulting in a more accurate estimation than that of the traditional models. Finally, a basic fatigue analysis case drawn from turbine and compressor blades in aeroengine is used to demonstrate the effectiveness and robustness of the presented method. The result provides some important insights on fatigue reliability analysis and risk priority assessment of structural system under failure correlations.

  18. Robust Online Monitoring for Calibration Assessment of Transmitters and Instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, Pradeep; Coble, Jamie B.; Shumaker, Brent

    Robust online monitoring (OLM) technologies are expected to enable the extension or elimination of periodic sensor calibration intervals in operating and new reactors. These advances in OLM technologies will improve the safety and reliability of current and planned nuclear power systems through improved accuracy and increased reliability of sensors used to monitor key parameters. In this article, we discuss an overview of research being performed within the Nuclear Energy Enabling Technologies (NEET)/Advanced Sensors and Instrumentation (ASI) program, for the development of OLM algorithms to use sensor outputs and, in combination with other available information, 1) determine whether one or moremore » sensors are out of calibration or failing and 2) replace a failing sensor with reliable, accurate sensor outputs. Algorithm development is focused on the following OLM functions: • Signal validation • Virtual sensing • Sensor response-time assessment These algorithms incorporate, at their base, a Gaussian Process-based uncertainty quantification (UQ) method. Various plant models (using kernel regression, GP, or hierarchical models) may be used to predict sensor responses under various plant conditions. These predicted responses can then be applied in fault detection (sensor output and response time) and in computing the correct value (virtual sensing) of a failing physical sensor. The methods being evaluated in this work can compute confidence levels along with the predicted sensor responses, and as a result, may have the potential for compensating for sensor drift in real-time (online recalibration). Evaluation was conducted using data from multiple sources (laboratory flow loops and plant data). Ongoing research in this project is focused on further evaluation of the algorithms, optimization for accuracy and computational efficiency, and integration into a suite of tools for robust OLM that are applicable to monitoring sensor calibration state in nuclear power plants.« less

  19. Psychometric evaluation of the Swedish language Person-centred Climate Questionnaire-family version.

    PubMed

    Lindahl, Jeanette; Elmqvist, Carina; Thulesius, Hans; Edvardsson, David

    2015-12-01

    In a holistic view of care, the family is important for the patient as well as for the staff and integration of family members in health care is a growing trend. Yet, family participation in the care is sparsely investigated and valid assessment instruments are needed. Data were collected from 200 family members participating in an intervention study at an emergency department (ED) in Sweden. The Person-centred Climate Questionnaire-Family (PCQ-F) is a measure for how family members perceive the psychosocial climate. PCQ-F is a self-report instrument that contains 17 items assessing safety, everydayness and hospitality--three subscale dimensions that mirror the Swedish patient version of the questionnaire, the PCQ-P. The aim of this study was to evaluate the psychometric properties of the Swedish version of the PCQ-F in an ED context. The psychometric properties of the PCQ-F were evaluated using statistical estimates of validity and reliability and showed high content validity and internal consistency. Cronbach's Alpha was >0.7 and item-total correlations were >0.3 and <0.7. In terms of psychometrics, the findings in this study indicate that the PCQ-F can be used with satisfactory validity and reliability to explore to what degree family members perceive ED settings as being person-centred, safe, welcoming and hospitable within an everyday and decorated physical environment. As the PCQ already exists in a valid and reliable patient (PCQ-P) and staff (PCQ-S) version, this new family member version is a significant addition to the literature as it enables further comparative studies of how diverse care settings are perceived by different stakeholders. © 2015 Nordic College of Caring Science.

  20. Reliability-Based Stability Analysis of Rock Slopes Using Numerical Analysis and Response Surface Method

    NASA Astrophysics Data System (ADS)

    Dadashzadeh, N.; Duzgun, H. S. B.; Yesiloglu-Gultekin, N.

    2017-08-01

    While advanced numerical techniques in slope stability analysis are successfully used in deterministic studies, they have so far found limited use in probabilistic analyses due to their high computation cost. The first-order reliability method (FORM) is one of the most efficient probabilistic techniques to perform probabilistic stability analysis by considering the associated uncertainties in the analysis parameters. However, it is not possible to directly use FORM in numerical slope stability evaluations as it requires definition of a limit state performance function. In this study, an integrated methodology for probabilistic numerical modeling of rock slope stability is proposed. The methodology is based on response surface method, where FORM is used to develop an explicit performance function from the results of numerical simulations. The implementation of the proposed methodology is performed by considering a large potential rock wedge in Sumela Monastery, Turkey. The accuracy of the developed performance function to truly represent the limit state surface is evaluated by monitoring the slope behavior. The calculated probability of failure is compared with Monte Carlo simulation (MCS) method. The proposed methodology is found to be 72% more efficient than MCS, while the accuracy is decreased with an error of 24%.

  1. The fluxes of H2O2 and O2 can be used to evaluate seed germination and vigor of Caragana korshinskii.

    PubMed

    Li, Jiaguo; Wang, Yu; Pritchard, Hugh W; Wang, Xiaofeng

    2014-06-01

    Seed deterioration is detrimental to plant germplasm conservation, and predicting seed germination and vigor with reliability and sensitivity means is urgently needed for practical problems. We investigated the link between hydrogen peroxide (H2O2) flux, oxygen influx and seed vigor of Caragana korshinskii by the non-invasive micro-test technique (NMT). Some related physiological and biochemical changes in seeds were also determined to further explain the changes in the molecular fluxes. The results showed that there was a good linear relationship between germination and H2O2 flux, and that O2 influx was more suitable for assessing seed vigor. H2O2 flux changed relatively little initially, mainly affected by antioxidants (APX, CAT and GSH) and H2O2 content; afterward, the efflux increased more and more rapidly due to high membrane permeability. With the damage of mitochondrial respiration and membrane integrity, O2 influx was gradually reduced. We propose that monitoring H2O2 and O2 fluxes by NMT may be a reliable and sensitive method to evaluate seed germination and vigor.

  2. Estimation and Identifiability of Model Parameters in Human Nociceptive Processing Using Yes-No Detection Responses to Electrocutaneous Stimulation.

    PubMed

    Yang, Huan; Meijer, Hil G E; Buitenweg, Jan R; van Gils, Stephan A

    2016-01-01

    Healthy or pathological states of nociceptive subsystems determine different stimulus-response relations measured from quantitative sensory testing. In turn, stimulus-response measurements may be used to assess these states. In a recently developed computational model, six model parameters characterize activation of nerve endings and spinal neurons. However, both model nonlinearity and limited information in yes-no detection responses to electrocutaneous stimuli challenge to estimate model parameters. Here, we address the question whether and how one can overcome these difficulties for reliable parameter estimation. First, we fit the computational model to experimental stimulus-response pairs by maximizing the likelihood. To evaluate the balance between model fit and complexity, i.e., the number of model parameters, we evaluate the Bayesian Information Criterion. We find that the computational model is better than a conventional logistic model regarding the balance. Second, our theoretical analysis suggests to vary the pulse width among applied stimuli as a necessary condition to prevent structural non-identifiability. In addition, the numerically implemented profile likelihood approach reveals structural and practical non-identifiability. Our model-based approach with integration of psychophysical measurements can be useful for a reliable assessment of states of the nociceptive system.

  3. Propulsion controls

    NASA Technical Reports Server (NTRS)

    Harkney, R. D.

    1980-01-01

    Increased system requirements and functional integration with the aircraft have placed an increased demand on control system capability and reliability. To provide these at an affordable cost and weight and because of the rapid advances in electronic technology, hydromechanical systems are being phased out in favor of digital electronic systems. The transition is expected to be orderly from electronic trimming of hydromechanical controls to full authority digital electronic control. Future propulsion system controls will be highly reliable full authority digital electronic with selected component and circuit redundancy to provide the required safety and reliability. Redundancy may include a complete backup control of a different technology for single engine applications. The propulsion control will be required to communicate rapidly with the various flight and fire control avionics as part of an integrated control concept.

  4. A Review on VSC-HVDC Reliability Modeling and Evaluation Techniques

    NASA Astrophysics Data System (ADS)

    Shen, L.; Tang, Q.; Li, T.; Wang, Y.; Song, F.

    2017-05-01

    With the fast development of power electronics, voltage-source converter (VSC) HVDC technology presents cost-effective ways for bulk power transmission. An increasing number of VSC-HVDC projects has been installed worldwide. Their reliability affects the profitability of the system and therefore has a major impact on the potential investors. In this paper, an overview of the recent advances in the area of reliability evaluation for VSC-HVDC systems is provided. Taken into account the latest multi-level converter topology, the VSC-HVDC system is categorized into several sub-systems and the reliability data for the key components is discussed based on sources with academic and industrial backgrounds. The development of reliability evaluation methodologies is reviewed and the issues surrounding the different computation approaches are briefly analysed. A general VSC-HVDC reliability evaluation procedure is illustrated in this paper.

  5. CERTS: Consortium for Electric Reliability Technology Solutions - Research Highlights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eto, Joseph

    2003-07-30

    Historically, the U.S. electric power industry was vertically integrated, and utilities were responsible for system planning, operations, and reliability management. As the nation moves to a competitive market structure, these functions have been disaggregated, and no single entity is responsible for reliability management. As a result, new tools, technologies, systems, and management processes are needed to manage the reliability of the electricity grid. However, a number of simultaneous trends prevent electricity market participants from pursuing development of these reliability tools: utilities are preoccupied with restructuring their businesses, research funding has declined, and the formation of Independent System Operators (ISOs) andmore » Regional Transmission Organizations (RTOs) to operate the grid means that control of transmission assets is separate from ownership of these assets; at the same time, business uncertainty, and changing regulatory policies have created a climate in which needed investment for transmission infrastructure and tools for reliability management has dried up. To address the resulting emerging gaps in reliability R&D, CERTS has undertaken much-needed public interest research on reliability technologies for the electricity grid. CERTS' vision is to: (1) Transform the electricity grid into an intelligent network that can sense and respond automatically to changing flows of power and emerging problems; (2) Enhance reliability management through market mechanisms, including transparency of real-time information on the status of the grid; (3) Empower customers to manage their energy use and reliability needs in response to real-time market price signals; and (4) Seamlessly integrate distributed technologies--including those for generation, storage, controls, and communications--to support the reliability needs of both the grid and individual customers.« less

  6. Systems design study of the Pioneer Venus spacecraft. Volume 2. Preliminary program development plan

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The preliminary development plan for the Pioneer Venus program is presented. This preliminary plan treats only developmental aspects that would have a significant effect on program cost. These significant development areas were: master program schedule planning; test planning - both unit and system testing for probes/orbiter/ probe bus; ground support equipment; performance assurance; and science integration Various test planning options and test method techniques were evaluated in terms of achieving a low-cost program without degrading mission performance or system reliability. The approaches studied and the methodology of the selected approach are defined.

  7. A Method for Evaluating the Safety Impacts of Air Traffic Automation

    NASA Technical Reports Server (NTRS)

    Kostiuk, Peter; Shapiro, Gerald; Hanson, Dave; Kolitz, Stephan; Leong, Frank; Rosch, Gene; Bonesteel, Charles

    1998-01-01

    This report describes a methodology for analyzing the safety and operational impacts of emerging air traffic technologies. The approach integrates traditional reliability models of the system infrastructure with models that analyze the environment within which the system operates, and models of how the system responds to different scenarios. Products of the analysis include safety measures such as predicted incident rates, predicted accident statistics, and false alarm rates; and operational availability data. The report demonstrates the methodology with an analysis of the operation of the Center-TRACON Automation System at Dallas-Fort Worth International Airport.

  8. An integrated model to simulate the scattering of ultrasounds by inclusions in steels.

    PubMed

    Darmon, Michel; Calmon, Pierre; Bèle, Bertrand

    2004-04-01

    We present a study performed to model and predict the ultrasonic response of alumina inclusions in steels. The Born and the extended quasistatic approximations have been applied and modified to improve their accuracy in the framework of this application. The modified Born approximation, called "doubly distorted wave (D(2)W) Born approximation" allowing to deal with various inclusion shapes, has been selected to be implemented in the CIVA software. The model reliability has been evaluated by comparison with Ying and Truell's exact analytical solution. In parallel, measurements have been carried out upon both natural and artificial alumina inclusions.

  9. Sobol Sensitivity Analysis: A Tool to Guide the Development and Evaluation of Systems Pharmacology Models

    PubMed Central

    Trame, MN; Lesko, LJ

    2015-01-01

    A systems pharmacology model typically integrates pharmacokinetic, biochemical network, and systems biology concepts into a unifying approach. It typically consists of a large number of parameters and reaction species that are interlinked based upon the underlying (patho)physiology and the mechanism of drug action. The more complex these models are, the greater the challenge of reliably identifying and estimating respective model parameters. Global sensitivity analysis provides an innovative tool that can meet this challenge. CPT Pharmacometrics Syst. Pharmacol. (2015) 4, 69–79; doi:10.1002/psp4.6; published online 25 February 2015 PMID:27548289

  10. Demand Response Resource Quantification with Detailed Building Energy Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, Elaine; Horsey, Henry; Merket, Noel

    Demand response is a broad suite of technologies that enables changes in electrical load operations in support of power system reliability and efficiency. Although demand response is not a new concept, there is new appetite for comprehensively evaluating its technical potential in the context of renewable energy integration. The complexity of demand response makes this task difficult -- we present new methods for capturing the heterogeneity of potential responses from buildings, their time-varying nature, and metrics such as thermal comfort that help quantify likely acceptability of specific demand response actions. Computed with an automated software framework, the methods are scalable.

  11. Quantifying the process and outcomes of person-centered planning.

    PubMed

    Holburn, S; Jacobson, J W; Vietze, P M; Schwartz, A A; Sersen, E

    2000-09-01

    Although person-centered planning is a popular approach in the field of developmental disabilities, there has been little systematic assessment of its process and outcomes. To measure person-centered planning, we developed three instruments designed to assess its various aspects. We then constructed variables comprising both a Process and an Outcome Index using a combined rational-empirical method. Test-retest reliability and measures of internal consistency appeared adequate. Variable correlations and factor analysis were generally consistent with our conceptualization and resulting item and variable classifications. Practical implications for intervention integrity, program evaluation, and organizational performance are discussed.

  12. Avionics system design for requirements for the United States Coast Guard HH-65A Dolphin

    NASA Technical Reports Server (NTRS)

    Young, D. A.

    1984-01-01

    Aerospatiale Helicopter Corporation (AHC) was awarded a contract by the United States Coast Guard for a new Short Range Recovery (SRR) Helicopter on 14 June 1979. The award was based upon an overall evaluation of performance, cost, and technical suitability. In this last respect, the SRR helicopter was required to meet a wide variety of mission needs for which the integrated avionics system has a high importance. This paper illustrates the rationale for the avionics system requirements, the system architecture, its capabilities and reliability and its adaptability to a wide variety of military and commercial purposes.

  13. Safety considerations in the design and operation of large wind turbines

    NASA Technical Reports Server (NTRS)

    Reilly, D. H.

    1979-01-01

    The engineering and safety techniques used to assure the reliable and safe operation of large wind turbine generators utilizing the Mod 2 Wind Turbine System Program as an example is described. The techniques involve a careful definition of the wind turbine's natural and operating environments, use of proven structural design criteria and analysis techniques, an evaluation of potential failure modes and hazards, and use of a fail safe and redundant component engineering philosophy. The role of an effective quality assurance program, tailored to specific hardware criticality, and the checkout and validation program developed to assure system integrity are described.

  14. Anatomy of Data Integration

    PubMed Central

    Brazhnik, Olga; Jones, John F.

    2007-01-01

    Producing reliable information is the ultimate goal of data processing. The ocean of data created with the advances of science and technologies calls for integration of data coming from heterogeneous sources that are diverse in their purposes, business rules, underlying models and enabling technologies. Reference models, Semantic Web, standards, ontology, and other technologies enable fast and efficient merging of heterogeneous data, while the reliability of produced information is largely defined by how well the data represent the reality. In this paper we initiate a framework for assessing the informational value of data that includes data dimensions; aligning data quality with business practices; identifying authoritative sources and integration keys; merging models; uniting updates of varying frequency and overlapping or gapped data sets. PMID:17071142

  15. Operationally efficient propulsion system study (OEPSS) data book. Volume 9; Preliminary Development Plan for an Integrated Booster Propulsion Module (BPM)

    NASA Technical Reports Server (NTRS)

    DiBlasi, Angelo G.

    1992-01-01

    A preliminary development plan for an integrated propulsion module (IPM) is described. The IPM, similar to the Space Transportation Main engine (STME) engine, is applicable to the Advanced Launch System (ALS) baseline vehicle. The same STME development program ground rules and time schedule were assumed for the IPM. However, the unique advantages of testing an integrated engine element, in terms of reduced number of hardware and number of system and reliability tests, compared to single standalone engine and MPTA, are highlighted. The potential ability of the IPM to meet the ALS program goals for robustness, operability and reliability is emphasized.

  16. Dynamic MRI to quantify musculoskeletal motion: A systematic review of concurrent validity and reliability, and perspectives for evaluation of musculoskeletal disorders.

    PubMed

    Borotikar, Bhushan; Lempereur, Mathieu; Lelievre, Mathieu; Burdin, Valérie; Ben Salem, Douraied; Brochard, Sylvain

    2017-01-01

    To report evidence for the concurrent validity and reliability of dynamic MRI techniques to evaluate in vivo joint and muscle mechanics, and to propose recommendations for their use in the assessment of normal and impaired musculoskeletal function. The search was conducted on articles published in Web of science, PubMed, Scopus, Academic search Premier, and Cochrane Library between 1990 and August 2017. Studies that reported the concurrent validity and/or reliability of dynamic MRI techniques for in vivo evaluation of joint or muscle mechanics were included after assessment by two independent reviewers. Selected articles were assessed using an adapted quality assessment tool and a data extraction process. Results for concurrent validity and reliability were categorized as poor, moderate, or excellent. Twenty articles fulfilled the inclusion criteria with a mean quality assessment score of 66% (±10.4%). Concurrent validity and/or reliability of eight dynamic MRI techniques were reported, with the knee being the most evaluated joint (seven studies). Moderate to excellent concurrent validity and reliability were reported for seven out of eight dynamic MRI techniques. Cine phase contrast and real-time MRI appeared to be the most valid and reliable techniques to evaluate joint motion, and spin tag for muscle motion. Dynamic MRI techniques are promising for the in vivo evaluation of musculoskeletal mechanics; however results should be evaluated with caution since validity and reliability have not been determined for all joints and muscles, nor for many pathological conditions.

  17. Designing automation for human use: empirical studies and quantitative models.

    PubMed

    Parasuraman, R

    2000-07-01

    An emerging knowledge base of human performance research can provide guidelines for designing automation that can be used effectively by human operators of complex systems. Which functions should be automated and to what extent in a given system? A model for types and levels of automation that provides a framework and an objective basis for making such choices is described. The human performance consequences of particular types and levels of automation constitute primary evaluative criteria for automation design when using the model. Four human performance areas are considered--mental workload, situation awareness, complacency and skill degradation. Secondary evaluative criteria include such factors as automation reliability, the risks of decision/action consequences and the ease of systems integration. In addition to this qualitative approach, quantitative models can inform design. Several computational and formal models of human interaction with automation that have been proposed by various researchers are reviewed. An important future research need is the integration of qualitative and quantitative approaches. Application of these models provides an objective basis for designing automation for effective human use.

  18. Reliability analysis of magnetic logic interconnect wire subjected to magnet edge imperfections

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Yang, Xiaokuo; Liu, Jiahao; Li, Weiwei; Xu, Jie

    2018-02-01

    Nanomagnet logic (NML) devices have been proposed as one of the best candidates for the next generation of integrated circuits thanks to its substantial advantages of nonvolatility, radiation hardening and potentially low power. In this article, errors of nanomagnetic interconnect wire subjected to magnet edge imperfections have been evaluated for the purpose of reliable logic propagation. The missing corner defects of nanomagnet in the wire are modeled with a triangle, and the interconnect fabricated with various magnetic materials is thoroughly investigated by micromagnetic simulations under different corner defect amplitudes and device spacings. The results show that as the defect amplitude increases, the success rate of logic propagation in the interconnect decreases. More results show that from the interconnect wire fabricated with materials, iron demonstrates the best defect tolerance ability among three representative and frequently used NML materials, also logic transmission errors can be mitigated by adjusting spacing between nanomagnets. These findings can provide key technical guides for designing reliable interconnects. Project supported by the National Natural Science Foundation of China (No. 61302022) and the Scientific Research Foundation for Postdoctor of Air Force Engineering University (Nos. 2015BSKYQD03, 2016KYMZ06).

  19. Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses

    PubMed Central

    Liu, Bo; Madduri, Ravi K; Sotomayor, Borja; Chard, Kyle; Lacinski, Lukasz; Dave, Utpal J; Li, Jianqiang; Liu, Chunchen; Foster, Ian T

    2014-01-01

    Due to the upcoming data deluge of genome data, the need for storing and processing large-scale genome data, easy access to biomedical analyses tools, efficient data sharing and retrieval has presented significant challenges. The variability in data volume results in variable computing and storage requirements, therefore biomedical researchers are pursuing more reliable, dynamic and convenient methods for conducting sequencing analyses. This paper proposes a Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses, which enables reliable and highly scalable execution of sequencing analyses workflows in a fully automated manner. Our platform extends the existing Galaxy workflow system by adding data management capabilities for transferring large quantities of data efficiently and reliably (via Globus Transfer), domain-specific analyses tools preconfigured for immediate use by researchers (via user-specific tools integration), automatic deployment on Cloud for on-demand resource allocation and pay-as-you-go pricing (via Globus Provision), a Cloud provisioning tool for auto-scaling (via HTCondor scheduler), and the support for validating the correctness of workflows (via semantic verification tools). Two bioinformatics workflow use cases as well as performance evaluation are presented to validate the feasibility of the proposed approach. PMID:24462600

  20. Integrated Human-in-the-Loop Ground Testing - Value, History, and the Future

    NASA Technical Reports Server (NTRS)

    Henninger, Donald L.

    2016-01-01

    Systems for very long-duration human missions to Mars will be designed to operate reliably for many years and many of these systems will never be returned to Earth. The need for high reliability is driven by the requirement for safe functioning of remote, long-duration crewed systems and also by unsympathetic abort scenarios. Abort from a Mars mission could be as long as 450 days to return to Earth. The key to developing a human-in-the-loop architecture is a development process that allows for a logical sequence of validating successful development in a stepwise manner, with assessment of key performance parameters (KPPs) at each step; especially important are KPPs for technologies evaluated in a full systems context with human crews on Earth and on space platforms such as the ISS. This presentation will explore the implications of such an approach to technology development and validation including the roles of ground and space-based testing necessary to develop a highly reliable system for long duration human exploration missions. Historical development and systems testing from Mercury to the International Space Station (ISS) to ground testing will be reviewed. Current work as well as recommendations for future work will be described.

Top