Ahmadi, Farshid Farnood; Ebadi, Hamid
2009-01-01
3D spatial data acquired from aerial and remote sensing images by photogrammetric techniques is one of the most accurate and economic data sources for GIS, map production, and spatial data updating. However, there are still many problems concerning storage, structuring and appropriate management of spatial data obtained using these techniques. According to the capabilities of spatial database management systems (SDBMSs); direct integration of photogrammetric and spatial database management systems can save time and cost of producing and updating digital maps. This integration is accomplished by replacing digital maps with a single spatial database. Applying spatial databases overcomes the problem of managing spatial and attributes data in a coupled approach. This management approach is one of the main problems in GISs for using map products of photogrammetric workstations. Also by the means of these integrated systems, providing structured spatial data, based on OGC (Open GIS Consortium) standards and topological relations between different feature classes, is possible at the time of feature digitizing process. In this paper, the integration of photogrammetric systems and SDBMSs is evaluated. Then, different levels of integration are described. Finally design, implementation and test of a software package called Integrated Photogrammetric and Oracle Spatial Systems (IPOSS) is presented.
Fuzzy logic knowledge bases in integrated landscape assessment: examples and possibilities.
Keith M. Reynolds
2001-01-01
The literature on ecosystem management has articulated the need for integration across disciplines and spatial scales, but convincing demonstrations of integrated analysis to support ecosystem management are lacking. This paper focuses on integrated ecological assessment because ecosystem management fundamentally is concerned with integrated management, which...
NASA Astrophysics Data System (ADS)
Liu, Zhijun; Zhang, Liangpei; Liu, Zhenmin; Jiao, Hongbo; Chen, Liqun
2008-12-01
In order to manage the internal resources of Gulf of Tonkin and integrate multiple-source spatial data, the establishment of region unified plan management system is needed. The data fusion and the integrated research should be carried on because there are some difficulties in the course of the system's establishment. For example, kinds of planning and the project data format are different, and data criterion is not unified. Besides, the time state property is strong, and spatial reference is inconsistent, etc. In this article the ARCGIS ENGINE is introduced as the developing platform, key technologies are researched, such as multiple-source data transformation and fusion, remote sensing data and DEM fusion and integrated, plan and project data integration, and so on. Practice shows that the system improves the working efficiency of Guangxi Gulf of Tonkin Economic Zone Management Committee significantly and promotes planning construction work of the economic zone remarkably.
Integration and management of massive remote-sensing data based on GeoSOT subdivision model
NASA Astrophysics Data System (ADS)
Li, Shuang; Cheng, Chengqi; Chen, Bo; Meng, Li
2016-07-01
Owing to the rapid development of earth observation technology, the volume of spatial information is growing rapidly; therefore, improving query retrieval speed from large, rich data sources for remote-sensing data management systems is quite urgent. A global subdivision model, geographic coordinate subdivision grid with one-dimension integer coding on 2n-tree, which we propose as a solution, has been used in data management organizations. However, because a spatial object may cover several grids, ample data redundancy will occur when data are stored in relational databases. To solve this redundancy problem, we first combined the subdivision model with the spatial array database containing the inverted index. We proposed an improved approach for integrating and managing massive remote-sensing data. By adding a spatial code column in an array format in a database, spatial information in remote-sensing metadata can be stored and logically subdivided. We implemented our method in a Kingbase Enterprise Server database system and compared the results with the Oracle platform by simulating worldwide image data. Experimental results showed that our approach performed better than Oracle in terms of data integration and time and space efficiency. Our approach also offers an efficient storage management system for existing storage centers and management systems.
The agent-based spatial information semantic grid
NASA Astrophysics Data System (ADS)
Cui, Wei; Zhu, YaQiong; Zhou, Yong; Li, Deren
2006-10-01
Analyzing the characteristic of multi-Agent and geographic Ontology, The concept of the Agent-based Spatial Information Semantic Grid (ASISG) is defined and the architecture of the ASISG is advanced. ASISG is composed with Multi-Agents and geographic Ontology. The Multi-Agent Systems are composed with User Agents, General Ontology Agent, Geo-Agents, Broker Agents, Resource Agents, Spatial Data Analysis Agents, Spatial Data Access Agents, Task Execution Agent and Monitor Agent. The architecture of ASISG have three layers, they are the fabric layer, the grid management layer and the application layer. The fabric layer what is composed with Data Access Agent, Resource Agent and Geo-Agent encapsulates the data of spatial information system so that exhibits a conceptual interface for the Grid management layer. The Grid management layer, which is composed with General Ontology Agent, Task Execution Agent and Monitor Agent and Data Analysis Agent, used a hybrid method to manage all resources that were registered in a General Ontology Agent that is described by a General Ontology System. The hybrid method is assembled by resource dissemination and resource discovery. The resource dissemination push resource from Local Ontology Agent to General Ontology Agent and the resource discovery pull resource from the General Ontology Agent to Local Ontology Agents. The Local Ontology Agent is derived from special domain and describes the semantic information of local GIS. The nature of the Local Ontology Agents can be filtrated to construct a virtual organization what could provides a global scheme. The virtual organization lightens the burdens of guests because they need not search information site by site manually. The application layer what is composed with User Agent, Geo-Agent and Task Execution Agent can apply a corresponding interface to a domain user. The functions that ASISG should provide are: 1) It integrates different spatial information systems on the semantic The Grid management layer establishes a virtual environment that integrates seamlessly all GIS notes. 2) When the resource management system searches data on different spatial information systems, it transfers the meaning of different Local Ontology Agents rather than access data directly. So the ability of search and query can be said to be on the semantic level. 3) The data access procedure is transparent to guests, that is, they could access the information from remote site as current disk because the General Ontology Agent could automatically link data by the Data Agents that link the Ontology concept to GIS data. 4) The capability of processing massive spatial data. Storing, accessing and managing massive spatial data from TB to PB; efficiently analyzing and processing spatial data to produce model, information and knowledge; and providing 3D and multimedia visualization services. 5) The capability of high performance computing and processing on spatial information. Solving spatial problems with high precision, high quality, and on a large scale; and process spatial information in real time or on time, with high-speed and high efficiency. 6) The capability of sharing spatial resources. The distributed heterogeneous spatial information resources are Shared and realizing integrated and inter-operated on semantic level, so as to make best use of spatial information resources,such as computing resources, storage devices, spatial data (integrating from GIS, RS and GPS), spatial applications and services, GIS platforms, 7) The capability of integrating legacy GIS system. A ASISG can not only be used to construct new advanced spatial application systems, but also integrate legacy GIS system, so as to keep extensibility and inheritance and guarantee investment of users. 8) The capability of collaboration. Large-scale spatial information applications and services always involve different departments in different geographic places, so remote and uniform services are needed. 9) The capability of supporting integration of heterogeneous systems. Large-scale spatial information systems are always synthetically applications, so ASISG should provide interoperation and consistency through adopting open and applied technology standards. 10) The capability of adapting dynamic changes. Business requirements, application patterns, management strategies, and IT products always change endlessly for any departments, so ASISG should be self-adaptive. Two examples are provided in this paper, those examples provide a detailed way on how you design your semantic grid based on Multi-Agent systems and Ontology. In conclusion, the semantic grid of spatial information system could improve the ability of the integration and interoperability of spatial information grid.
Integrated management of waterbirds: Beyond the conventional
Erwin, R.M.
2002-01-01
Integrated waterbird management over the past few decades has implicitly referred to methods for managing wetlands that usually attempt to enhance habitat for taxonomic groups such as shorebirds and wading birds, in addition to waterfowl, the traditional focus group. Here I describe five elements of integration in management: taxonomic, spatial, temporal, population and habitat, and multiple-use management objectives. Spatial integration simply expands the scale of management concern. Rather than emphasizing management on a very limited number of impoundments or wetlands in small refuges or wildlife management areas, the vision is beginning to shift to connectivity within larger landscapes on the order of many square kilometers as telemetry data on daily and seasonal movements for many species become available. Temporal integration refers to the potential for either simultaneous management for waterbirds and commercial "crops" (e.g., crayfish and rice) or for temporally-staggered management such as row crop production in spring-summer growing seasons and waterbird management on fallow fields in the non-growing (winter) season. Integrating population dynamics with habitats has become a major research focus over the past decade. Identifying which wetlands are "sources" or "sinks" for specific populations provides managers with critical information about effective management. Further, the applications of spatially explicit population models place heavy demands on researchers to identify use patterns for breeding and dispersing individuals by age, sex, and reproductive class. Population viability analysis models require much the same information. Finally, multiple-use management integration refers to trying to optimize the uses of wetlands, when only one (perhaps secondary) use may include waterbird management. Depending upon the ownership and primary land use of a particular parcel of land containing wetlands and/or water bodies, managing for waterbirds may be an "easy sell" (e.g., public natural resource lands) or a very contentious one, where wetlands are created for industrial, aquaculture or urban uses. In the latter case, careful planning and implementation require broad stakeholder participation and education.
Integrated management of waterbirds: Beyond the conventional
Erwin, R.M.; Parsons, Katharine C.; Brown, Stephen C.; Erwin, R. Michael; Czech, Helen A.; Coulson, John C.
2002-01-01
Integrated waterbird management over the past few decades has implicitly referred to methods for managing wetlands that usually attempt to enhance habitat for taxonomic groups such as shorebirds and wading birds, in addition to waterfowl, the traditional focus group. Here I describe five elements of integration in management: taxonomic, spatial, temporal, population and habitat, and multiple-use management objectives. Spatial integration simply expands the scale of management concern. Rather than emphasizing management on a very limited number of impoundments or wetlands in small refuges or wildlife management areas, the vision is beginning to shift to connectivity within larger landscapes on the order of many square kilometers as telemetry data on daily and seasonal movements for many species become available. Temporal integration refers to the potential for either simultaneous management for waterbirds and commercial 'crops' (e.g., crayfish and rice) or for temporally-staggered management such as row crop production in spring-summer growing seasons and waterbird management on fallow fields in the non-growing (winter) season. Integrating population dynamics with habitats has become a major research focus over the past decade. Identifying which wetlands are ?sources? or ?sinks? for specific populations provides managers with critical information about effective management. Further, the applications of spatially explicit population models place heavy demands on researchers to identify use patterns for breeding and dispersing individuals by age, sex, and reproductive class. Population viability analysis models require much the same information. Finally, multiple-use management integration refers to trying to optimize the uses of wetlands, when only one (perhaps secondary) use may include waterbird management. Depending upon the ownership and primary land use of a particular parcel of land containing wetlands and/or water bodies, managing for waterbirds may be an ?easy sell? (e.g., public natural resource lands) or a very contentious one, where wetlands are created for industrial, aquaculture or urban uses. In the latter case, careful planning and implementation require broad stakeholder participation and education.
Improving integration for integrated coastal zone management: an eight country study.
Portman, M E; Esteves, L S; Le, X Q; Khan, A Z
2012-11-15
Integrated coastal zone management (ICZM) is a widely accepted approach for sustainable management of the coastal environment. ICZM emphasizes integration across sectors, levels of government, uses, stakeholders, and spatial and temporal scales. While improving integration is central to progress in ICZM, the role of and the achievement of integration remain understudied. To further study these two points, our research analyzes the performance of specific mechanisms used to support ICZM in eight countries (Belgium, India, Israel, Italy, Portugal, Sweden, UK, and Vietnam). The assessment is based on a qualitative comparative analysis conducted through the use of two surveys. It focuses on five ICZM mechanisms (environmental impact assessment; planning hierarchy; setback lines; marine spatial planning, and regulatory commission) and their role in improving integration. Our findings indicate that certain mechanisms enhance specific types of integration more effectively than others. Environmental impact assessment enhances science-policy integration and can be useful to integrate knowledge across sectors. Planning hierarchy and regulatory commissions are effective mechanisms to integrate policies across government levels, with the latter also promoting public-government integration. Setback lines can be applied to enhance integration across landscape units. Marine spatial planning is a multi-faceted mechanism with the potential to promote all types of integration. Policy-makers should adopt the mechanisms that are suited to the type of integration needed. Results of this study also contribute to evidence-based coastal management by identifying the most common impediments related to the mechanisms of integration in the eight studied countries. Copyright © 2012 Elsevier B.V. All rights reserved.
Integrated modeling of long-term vegetation and hydrologic dynamics in Rocky Mountain watersheds
Robert Steven Ahl
2007-01-01
Changes in forest structure resulting from natural disturbances, or managed treatments, can have negative and long lasting impacts on water resources. To facilitate integrated management of forest and water resources, a System for Long-Term Integrated Management Modeling (SLIMM) was developed. By combining two spatially explicit, continuous time models, vegetation...
Integration at the round table: marine spatial planning in multi-stakeholder settings.
Olsen, Erik; Fluharty, David; Hoel, Alf Håkon; Hostens, Kristian; Maes, Frank; Pecceu, Ellen
2014-01-01
Marine spatial planning (MSP) is often considered as a pragmatic approach to implement an ecosystem based management in order to manage marine space in a sustainable way. This requires the involvement of multiple actors and stakeholders at various governmental and societal levels. Several factors affect how well the integrated management of marine waters will be achieved, such as different governance settings (division of power between central and local governments), economic activities (and related priorities), external drivers, spatial scales, incentives and objectives, varying approaches to legislation and political will. We compared MSP in Belgium, Norway and the US to illustrate how the integration of stakeholders and governmental levels differs among these countries along the factors mentioned above. Horizontal integration (between sectors) is successful in all three countries, achieved through the use of neutral 'round-table' meeting places for all actors. Vertical integration between government levels varies, with Belgium and Norway having achieved full integration while the US lacks integration of the legislature due to sharp disagreements among stakeholders and unsuccessful partisan leadership. Success factors include political will and leadership, process transparency and stakeholder participation, and should be considered in all MSP development processes.
Integration at the Round Table: Marine Spatial Planning in Multi-Stakeholder Settings
Olsen, Erik; Fluharty, David; Hoel, Alf Håkon; Hostens, Kristian; Maes, Frank; Pecceu, Ellen
2014-01-01
Marine spatial planning (MSP) is often considered as a pragmatic approach to implement an ecosystem based management in order to manage marine space in a sustainable way. This requires the involvement of multiple actors and stakeholders at various governmental and societal levels. Several factors affect how well the integrated management of marine waters will be achieved, such as different governance settings (division of power between central and local governments), economic activities (and related priorities), external drivers, spatial scales, incentives and objectives, varying approaches to legislation and political will. We compared MSP in Belgium, Norway and the US to illustrate how the integration of stakeholders and governmental levels differs among these countries along the factors mentioned above. Horizontal integration (between sectors) is successful in all three countries, achieved through the use of neutral ‘round-table’ meeting places for all actors. Vertical integration between government levels varies, with Belgium and Norway having achieved full integration while the US lacks integration of the legislature due to sharp disagreements among stakeholders and unsuccessful partisan leadership. Success factors include political will and leadership, process transparency and stakeholder participation, and should be considered in all MSP development processes. PMID:25299595
ERIC Educational Resources Information Center
Tindall-Ford, Sharon; Agostinho, Shirley; Bokosmaty, Sahar; Paas, Fred; Chandler, Paul
2015-01-01
This research investigated the viability of learning by self-managing split-attention worked examples as an alternative to learning by studying instructor-managed integrated worked examples. Secondary school students learning properties of angles on parallel lines were taught to integrate spatially separated text and diagrammatic information by…
Fagerholm, Nora; Käyhkö, Niina; Van Eetvelde, Veerle
2013-09-01
In many developing countries, political documentation acknowledges the crucial elements of participation and spatiality for effective land use planning. However, operative approaches to spatial data inclusion and representation in participatory land management are often lacking. In this paper, we apply and develop an integrated landscape characterization approach to enhance spatial knowledge generation about the complex human-nature interactions in landscapes in the context of Zanzibar, Tanzania. We apply an integrated landscape conceptualization as a theoretical framework where the expert and local knowledge can meet in spatial context. The characterization is based on combining multiple data sources in GIS, and involves local communities and their local spatial knowledge since the beginning into the process. Focusing on the expected information needs for community forest management, our characterization integrates physical landscape features and retrospective landscape change data with place-specific community knowledge collected through participatory GIS techniques. The characterization is established in a map form consisting of four themes and their synthesis. The characterization maps are designed to support intuitive interpretation, express the inherently uncertain nature of the data, and accompanied by photographs to enhance communication. Visual interpretation of the characterization mediates information about the character of areas and places in the studied local landscape, depicting the role of forest resources as part of the landscape entity. We conclude that landscape characterization applied in GIS is a highly potential tool for participatory land and resource management, where spatial argumentation, stakeholder communication, and empowerment are critical issues.
NASA Astrophysics Data System (ADS)
Fagerholm, Nora; Käyhkö, Niina; Van Eetvelde, Veerle
2013-09-01
In many developing countries, political documentation acknowledges the crucial elements of participation and spatiality for effective land use planning. However, operative approaches to spatial data inclusion and representation in participatory land management are often lacking. In this paper, we apply and develop an integrated landscape characterization approach to enhance spatial knowledge generation about the complex human-nature interactions in landscapes in the context of Zanzibar, Tanzania. We apply an integrated landscape conceptualization as a theoretical framework where the expert and local knowledge can meet in spatial context. The characterization is based on combining multiple data sources in GIS, and involves local communities and their local spatial knowledge since the beginning into the process. Focusing on the expected information needs for community forest management, our characterization integrates physical landscape features and retrospective landscape change data with place-specific community knowledge collected through participatory GIS techniques. The characterization is established in a map form consisting of four themes and their synthesis. The characterization maps are designed to support intuitive interpretation, express the inherently uncertain nature of the data, and accompanied by photographs to enhance communication. Visual interpretation of the characterization mediates information about the character of areas and places in the studied local landscape, depicting the role of forest resources as part of the landscape entity. We conclude that landscape characterization applied in GIS is a highly potential tool for participatory land and resource management, where spatial argumentation, stakeholder communication, and empowerment are critical issues.
Towards a macrosystems approach for successful coastal management
Managing coastal resources for resiliency and sustainability often requires integrative, multi-disciplinary approaches across varying spatial and temporal scales to engage stakeholders and inform decision-makers. We discuss case studies integrating wetland ecology, economics, soc...
NASA Astrophysics Data System (ADS)
Bhanumurthy, V.; Venugopala Rao, K.; Srinivasa Rao, S.; Ram Mohan Rao, K.; Chandra, P. Satya; Vidhyasagar, J.; Diwakar, P. G.; Dadhwal, V. K.
2014-11-01
Geographical Information Science (GIS) is now graduated from traditional desktop system to Internet system. Internet GIS is emerging as one of the most promising technologies for addressing Emergency Management. Web services with different privileges are playing an important role in dissemination of the emergency services to the decision makers. Spatial database is one of the most important components in the successful implementation of Emergency Management. It contains spatial data in the form of raster, vector, linked with non-spatial information. Comprehensive data is required to handle emergency situation in different phases. These database elements comprise core data, hazard specific data, corresponding attribute data, and live data coming from the remote locations. Core data sets are minimum required data including base, thematic, infrastructure layers to handle disasters. Disaster specific information is required to handle a particular disaster situation like flood, cyclone, forest fire, earth quake, land slide, drought. In addition to this Emergency Management require many types of data with spatial and temporal attributes that should be made available to the key players in the right format at right time. The vector database needs to be complemented with required resolution satellite imagery for visualisation and analysis in disaster management. Therefore, the database is interconnected and comprehensive to meet the requirement of an Emergency Management. This kind of integrated, comprehensive and structured database with appropriate information is required to obtain right information at right time for the right people. However, building spatial database for Emergency Management is a challenging task because of the key issues such as availability of data, sharing policies, compatible geospatial standards, data interoperability etc. Therefore, to facilitate using, sharing, and integrating the spatial data, there is a need to define standards to build emergency database systems. These include aspects such as i) data integration procedures namely standard coding scheme, schema, meta data format, spatial format ii) database organisation mechanism covering data management, catalogues, data models iii) database dissemination through a suitable environment, as a standard service for effective service dissemination. National Database for Emergency Management (NDEM) is such a comprehensive database for addressing disasters in India at the national level. This paper explains standards for integrating, organising the multi-scale and multi-source data with effective emergency response using customized user interfaces for NDEM. It presents standard procedure for building comprehensive emergency information systems for enabling emergency specific functions through geospatial technologies.
Walden-Schreiner, Chelsey; Leung, Yu-Fai
2013-07-01
Ecological impacts associated with nature-based recreation and tourism can compromise park and protected area goals if left unrestricted. Protected area agencies are increasingly incorporating indicator-based management frameworks into their management plans to address visitor impacts. Development of indicators requires empirical evaluation of indicator measures and examining their ecological and social relevance. This study addresses the development of the informal trail indicator in Yosemite National Park by spatially characterizing visitor use in open landscapes and integrating use patterns with informal trail condition data to examine their spatial association. Informal trail and visitor use data were collected concurrently during July and August of 2011 in three, high-use meadows of Yosemite Valley. Visitor use was clustered at statistically significant levels in all three study meadows. Spatial data integration found no statistically significant differences between use patterns and trail condition class. However, statistically significant differences were found between the distance visitors were observed from informal trails and visitor activity type with active activities occurring closer to trail corridors. Gender was also found to be significant with male visitors observed further from trail corridors. Results highlight the utility of integrated spatial analysis in supporting indicator-based monitoring and informing management of open landscapes. Additional variables for future analysis and methodological improvements are discussed.
NASA Astrophysics Data System (ADS)
Walden-Schreiner, Chelsey; Leung, Yu-Fai
2013-07-01
Ecological impacts associated with nature-based recreation and tourism can compromise park and protected area goals if left unrestricted. Protected area agencies are increasingly incorporating indicator-based management frameworks into their management plans to address visitor impacts. Development of indicators requires empirical evaluation of indicator measures and examining their ecological and social relevance. This study addresses the development of the informal trail indicator in Yosemite National Park by spatially characterizing visitor use in open landscapes and integrating use patterns with informal trail condition data to examine their spatial association. Informal trail and visitor use data were collected concurrently during July and August of 2011 in three, high-use meadows of Yosemite Valley. Visitor use was clustered at statistically significant levels in all three study meadows. Spatial data integration found no statistically significant differences between use patterns and trail condition class. However, statistically significant differences were found between the distance visitors were observed from informal trails and visitor activity type with active activities occurring closer to trail corridors. Gender was also found to be significant with male visitors observed further from trail corridors. Results highlight the utility of integrated spatial analysis in supporting indicator-based monitoring and informing management of open landscapes. Additional variables for future analysis and methodological improvements are discussed.
The research and development of water resources management information system based on ArcGIS
NASA Astrophysics Data System (ADS)
Cui, Weiqun; Gao, Xiaoli; Li, Yuzhi; Cui, Zhencai
According to that there are large amount of data, complexity of data type and format in the water resources management, we built the water resources calculation model and established the water resources management information system based on the advanced ArcGIS and Visual Studio.NET development platform. The system can integrate the spatial data and attribute data organically, and manage them uniformly. It can analyze spatial data, inquire by map and data bidirectionally, provide various charts and report forms automatically, link multimedia information, manage database etc. . So it can provide spatial and static synthetical information services for study, management and decision of water resources, regional geology and eco-environment etc..
NASA Astrophysics Data System (ADS)
Baker, Matthew R.; Hollowed, Anne B.
2014-11-01
Characterizing spatial structure and delineating meaningful spatial boundaries have useful applications to understanding regional dynamics in marine systems, and are integral to ecosystem approaches to fisheries management. Physical structure and drivers combine with biological responses and interactions to organize marine systems in unique ways at multiple scales. We apply multivariate statistical methods to define spatially coherent ecological units or ecoregions in the eastern Bering Sea. We also illustrate a practical approach to integrate data on species distribution, habitat structure and physical forcing mechanisms to distinguish areas with distinct biogeography as one means to define management units in large marine ecosystems. We use random forests to quantify the relative importance of habitat and environmental variables to the distribution of individual species, and to quantify shifts in multispecies assemblages or community composition along environmental gradients. Threshold shifts in community composition are used to identify regions with distinct physical and biological attributes, and to evaluate the relative importance of predictor variables to determining regional boundaries. Depth, bottom temperature and frontal boundaries were dominant factors delineating distinct biological communities in this system, with a latitudinal divide at approximately 60°N. Our results indicate that distinct climatic periods will shift habitat gradients and that dynamic physical variables such as temperature and stratification are important to understanding temporal stability of ecoregion boundaries. We note distinct distribution patterns among functional guilds and also evidence for resource partitioning among individual species within each guild. By integrating physical and biological data to determine spatial patterns in community composition, we partition ecosystems along ecologically significant gradients. This may provide a basis for defining spatial management units or serve as a baseline index for analyses of structural shifts in the physical environment, species abundance and distribution, and community dynamics over time.
NASA Astrophysics Data System (ADS)
Renschler, C.; Sheridan, M. F.; Patra, A. K.
2008-05-01
The impact and consequences of extreme geophysical events (hurricanes, floods, wildfires, volcanic flows, mudflows, etc.) on properties and processes should be continuously assessed by a well-coordinated interdisciplinary research and outreach approach addressing risk assessment and resilience. Communication between various involved disciplines and stakeholders is the key to a successful implementation of an integrated risk management plan. These issues become apparent at the level of decision support tools for extreme events/disaster management in natural and managed environments. The Geospatial Project Management Tool (GeoProMT) is a collaborative platform for research and training to document and communicate the fundamental steps in transforming information for extreme events at various scales for analysis and management. GeoProMT is an internet-based interface for the management of shared geo-spatial and multi-temporal information such as measurements, remotely sensed images, and other GIS data. This tool enhances collaborative research activities and the ability to assimilate data from diverse sources by integrating information management. This facilitates a better understanding of natural processes and enhances the integrated assessment of resilience against both the slow and fast onset of hazard risks. Fundamental to understanding and communicating complex natural processes are: (a) representation of spatiotemporal variability, extremes, and uncertainty of environmental properties and processes in the digital domain, (b) transformation of their spatiotemporal representation across scales (e.g. interpolation, aggregation, disaggregation.) during data processing and modeling in the digital domain, and designing and developing tools for (c) geo-spatial data management, and (d) geo-spatial process modeling and effective implementation, and (e) supporting decision- and policy-making in natural resources and hazard management at various spatial and temporal scales of interest. GeoProMT is useful for researchers, practitioners, and decision-makers, because it provides an integrated environmental system assessment and data management approach that considers the spatial and temporal scales and variability in natural processes. Particularly in the occurrence or onset of extreme events it can utilize the latest data sources that are available at variable scales, combine them with existing information, and update assessment products such as risk and vulnerability assessment maps. Because integrated geo-spatial assessment requires careful consideration of all the steps in utilizing data, modeling and decision-making formats, each step in the sequence must be assessed in terms of how information is being scaled. At the process scale various geophysical models (e.g. TITAN, LAHARZ, or many other examples) are appropriate for incorporation in the tool. Some examples that illustrate our approach include: 1) coastal parishes impacted by Hurricane Rita (Southwestern Louisiana), 2) a watershed affected by extreme rainfall induced debris-flows (Madison County, Virginia; Panabaj, Guatemala; Casita, Nicaragua), and 3) the potential for pyroclastic flows to threaten a city (Tungurahua, Ecuador). This research was supported by the National Science Foundation.
NASA Astrophysics Data System (ADS)
Salazar, Sergio; Hernández, Sebastián
2015-04-01
Only until 2010 was enacted the first national policy related to the integrated management of water resources in Colombia. In 2011 was established the Directorate for Integrated Water Resources Management within the Ministry of Environment and Sustainable Development. Between 2010 to 2013 were adopted the regulatory instruments to be developed within the hierarchical structure for spatial environmental planning around the water resources, considering both a transdisciplinary framework and a multi-ethnic and multi-participatory approach. In this context, there is a breakthrough in the development of strategic and tactic actions summarized as follows: i) technical guidelines or projects were developed for the spatial environmental planning at the macroscale river basins (i.e. Magdalena-Cauca river basin with 2.3 million hectares), meso-scale (river basins from 50.000 to 2 million hectares and aquifers) and local scale (catchments areas less than 50.000 hectares); ii) there is an advance in the knowledge of key hydrological processes in the basins of the country as well as actions to restore and preserve ecosystems essential for the regulation of water supply and ecosystem services; iii) demand characterization introducing regional talks with socio-economic stakeholders and promoting water efficiency actions; iv) water use regulation as a way for decontamination and achieving quality standards for prospective uses; v) introduction of risks analysis associated with water resources in the spatial environmental planning and establishment of mitigation and adaptation measures; vi) strengthening the monitoring network of water quality and hydrometeorological variables; vii) strengthening interactions with national and international research as well as the implementation of a national information system of water resources; viii) steps towards water governance with the introduction of socio-economic stakeholder in the spatial environmental planning and implementation of actions to a water culture and water use conflict management. With the premise that "access to information and research are crucial for the integrated water resources management", different planning tools have been implemented in several case studies, considering several hydro-climatic, bio-geographic and socio-cultural contexts. It was supported with a transdisciplinary approach (integrated visions from disciplines such as hydrology, biology, ecology, pedology, geomorphology, geology, economy and social sciences among others) with a key protagonist: the technical and scientific capacity available in the country. From this practical experiences at different spatial scales, we have identified a battery of key challenges: i) extend the spatial and temporal coverage of hydrometeorological and water quality monitoring networks at regional scale; ii) expand the knowledge base of aquatic and transition ecosystem as well as the environmental baseline from regional to local scales; iii) researches about the state of subterranean water resources and their interactions with lotic and lentic systems; iv) move towards the establishment of decision support systems that integrate policy objectives at different scales; v) strengthening technical and scientific capacity of the country expanding academic and research public offer; vi) unifying technical criteria and standards environment management policy; vii) institutional architecture redesign. If there is a political and socio-economical consensus about the urgency to move towards the key aspect summarized here, Colombian people will be giving the definitive step towards integrated water resources management as a cornerstone of spatial environmental planning and water governance. Disclaimer: The views and opinions expressed in this abstract are those of the authors and do not necessarily reflect the official position of the Colombian Ministry of Environment and Sustainable Development or any agency of the Colombian government.
NASA Astrophysics Data System (ADS)
Voisin, Nathalie; Hejazi, Mohamad I.; Leung, L. Ruby; Liu, Lu; Huang, Maoyi; Li, Hong-Yi; Tesfa, Teklu
2017-05-01
Realistic representations of sectoral water withdrawals and consumptive demands and their allocation to surface and groundwater sources are important for improving modeling of the integrated water cycle. To inform future model development, we enhance the representation of water management in a regional Earth system (ES) model with a spatially distributed allocation of sectoral water demands simulated by a regional integrated assessment (IA) model to surface and groundwater systems. The integrated modeling framework (IA-ES) is evaluated by analyzing the simulated regulated flow and sectoral supply deficit in major hydrologic regions of the conterminous U.S, which differ from ES studies looking at water storage variations. Decreases in historical supply deficit are used as metrics to evaluate IA-ES model improvement in representating the complex sectoral human activities for assessing future adaptation and mitigation strategies. We also assess the spatial changes in both regulated flow and unmet demands, for irrigation and nonirrigation sectors, resulting from the individual and combined additions of groundwater and return flow modules. Results show that groundwater use has a pronounced regional and sectoral effect by reducing water supply deficit. The effects of sectoral return flow exhibit a clear east-west contrast in the hydrologic patterns, so the return flow component combined with the IA sectoral demands is a major driver for spatial redistribution of water resources and water deficits in the US. Our analysis highlights the need for spatially distributed sectoral representation of water management to capture the regional differences in interbasin redistribution of water resources and deficits.
NASA Astrophysics Data System (ADS)
Gebhardt, Steffen; Wehrmann, Thilo; Klinger, Verena; Schettler, Ingo; Huth, Juliane; Künzer, Claudia; Dech, Stefan
2010-10-01
The German-Vietnamese water-related information system for the Mekong Delta (WISDOM) project supports business processes in Integrated Water Resources Management in Vietnam. Multiple disciplines bring together earth and ground based observation themes, such as environmental monitoring, water management, demographics, economy, information technology, and infrastructural systems. This paper introduces the components of the web-based WISDOM system including data, logic and presentation tier. It focuses on the data models upon which the database management system is built, including techniques for tagging or linking metadata with the stored information. The model also uses ordered groupings of spatial, thematic and temporal reference objects to semantically tag datasets to enable fast data retrieval, such as finding all data in a specific administrative unit belonging to a specific theme. A spatial database extension is employed by the PostgreSQL database. This object-oriented database was chosen over a relational database to tag spatial objects to tabular data, improving the retrieval of census and observational data at regional, provincial, and local areas. While the spatial database hinders processing raster data, a "work-around" was built into WISDOM to permit efficient management of both raster and vector data. The data model also incorporates styling aspects of the spatial datasets through styled layer descriptions (SLD) and web mapping service (WMS) layer specifications, allowing retrieval of rendered maps. Metadata elements of the spatial data are based on the ISO19115 standard. XML structured information of the SLD and metadata are stored in an XML database. The data models and the data management system are robust for managing the large quantity of spatial objects, sensor observations, census and document data. The operational WISDOM information system prototype contains modules for data management, automatic data integration, and web services for data retrieval, analysis, and distribution. The graphical user interfaces facilitate metadata cataloguing, data warehousing, web sensor data analysis and thematic mapping.
Eric J. Gustafson; Luke V. Rasmussen
2002-01-01
Forest management planners must develop strategies to produce timber in ways that do not compromise ecological integrity or sustainability. These strategies often involve modifications to the spatial and temporal scheduling of harvest activities, and these strategies may interact in unexpected ways. We used a timber harvest simulator (HARVEST 6.0) to determine the...
NASA Astrophysics Data System (ADS)
Condon, Laura E.; Maxwell, Reed M.
2014-03-01
Regional scale water management analysis increasingly relies on integrated modeling tools. Much recent work has focused on groundwater-surface water interactions and feedbacks. However, to our knowledge, no study has explicitly considered impacts of management operations on the temporal dynamics of the natural system. Here, we simulate twenty years of hourly moisture dependent, groundwater-fed irrigation using a three-dimensional, fully integrated, hydrologic model (ParFlow-CLM). Results highlight interconnections between irrigation demand, groundwater oscillation frequency and latent heat flux variability not previously demonstrated. Additionally, the three-dimensional model used allows for novel consideration of spatial patterns in temporal dynamics. Latent heat flux and water table depth both display spatial organization in temporal scaling, an important finding given the spatial homogeneity and weak scaling observed in atmospheric forcings. Pumping and irrigation amplify high frequency (sub-annual) variability while attenuating low frequency (inter-annual) variability. Irrigation also intensifies scaling within irrigated areas, essentially increasing temporal memory in both the surface and the subsurface. These findings demonstrate management impacts that extend beyond traditional water balance considerations to the fundamental behavior of the system itself. This is an important step to better understanding groundwater’s role as a buffer for natural variability and the impact that water management has on this capacity.
An efficient 3D R-tree spatial index method for virtual geographic environments
NASA Astrophysics Data System (ADS)
Zhu, Qing; Gong, Jun; Zhang, Yeting
A three-dimensional (3D) spatial index is required for real time applications of integrated organization and management in virtual geographic environments of above ground, underground, indoor and outdoor objects. Being one of the most promising methods, the R-tree spatial index has been paid increasing attention in 3D geospatial database management. Since the existing R-tree methods are usually limited by their weakness of low efficiency, due to the critical overlap of sibling nodes and the uneven size of nodes, this paper introduces the k-means clustering method and employs the 3D overlap volume, 3D coverage volume and the minimum bounding box shape value of nodes as the integrative grouping criteria. A new spatial cluster grouping algorithm and R-tree insertion algorithm is then proposed. Experimental analysis on comparative performance of spatial indexing shows that by the new method the overlap of R-tree sibling nodes is minimized drastically and a balance in the volumes of the nodes is maintained.
NASA Astrophysics Data System (ADS)
Gong, Jun; Zhu, Qing
2006-10-01
As the special case of VGE in the fields of AEC (architecture, engineering and construction), Virtual Building Environment (VBE) has been broadly concerned. Highly complex, large-scale 3d spatial data is main bottleneck of VBE applications, so 3d spatial data organization and management certainly becomes the core technology for VBE. This paper puts forward 3d spatial data model for VBE, and the performance to implement it is very high. Inherent storage method of CAD data makes data redundant, and doesn't concern efficient visualization, which is a practical bottleneck to integrate CAD model, so An Efficient Method to Integrate CAD Model Data is put forward. Moreover, Since the 3d spatial indices based on R-tree are usually limited by their weakness of low efficiency due to the severe overlap of sibling nodes and the uneven size of nodes, a new node-choosing algorithm of R-tree are proposed.
Young, John A.; Mahan, Carolyn G.; Forder, Melissa
2017-01-01
Many eastern forest communities depend on fire for regeneration or are enhanced by fire as a restoration practice. However, the use of prescribed fire in the mesic forested environments and the densely populated regions of the eastern United States has been limited. The objective of our research was to develop a science-based approach to prioritizing the use of prescribed fire in appropriate forest types in the eastern United States based on a set of desired management outcomes. Through a process of expert elicitation and data analysis, we assessed and integrated recent vegetation community mapping results along with other available spatial data layers into a spatial prioritization tool for prescribed fire planning at Shenandoah National Park (Virginia, USA). The integration of vegetation spatial data allowed for development of per-pixel priority rankings and exclusion areas enabling precise targeting of fire management activities on the ground, as well as a park-wide ranking of fire planning compartments. We demonstrate the use and evaluation of this approach through implementation and monitoring of a prescribed burn and show that progress is being made toward desired conditions. Integration of spatial data into the fire planning process has served as a collaborative tool for the implementation of prescribed fire projects, which assures projects will be planned in the most appropriate areas to meet objectives that are supported by current science.
ERIC Educational Resources Information Center
Palis, Florencia G.; Morin, Stephen; Hossain, Mahabub
2005-01-01
This paper aims to show the relevance of spatial proximity and social capital in accelerating the spread of agricultural technologies such as integrated pest management (IPM). The research was done in response to the problem of slow diffusion of agricultural technologies. Both quantitative and qualitative methods were used in investigating the…
Spatial fuel data products of the LANDFIRE Project
Matt Reeves; Kevin C. Ryan; Matthew G. Rollins; Thomas G. Thompson
2009-01-01
The Landscape Fire and Resource Management Planning Tools (LANDFIRE) Project is mapping wildland fuels, vegetation, and fire regime characteristics across the United States. The LANDFIRE project is unique because of its national scope, creating an integrated product suite at 30-m spatial resolution and complete spatial coverage of all lands within the 50...
Data on strategically located land and spatially integrated urban human settlements in South Africa.
Musakwa, Walter
2017-12-01
In developing countries like South Africa processed geographic information systems (GIS) data on land suitability, is often not available for land use management. Data in this article is based on a published article "The strategically located land index support system for humans settlements land reform in South Africa" (Musakwa et al., 2017) [1]. This article utilities data from Musakwa et al. (2017) [1] and it goes on a step further by presenting the top 25th percentile of areas in the country that are strategically located and suited to develop spatially integrated human settlements. Furthermore the least 25th percentile of the country that are not strategically located and spatially integrated to establish human settlements are also presented. The article also presents the processed spatial datasets that where used to develop the strategically located land index as supplementary material. The data presented is meant to stir debate on spatially integrated human settlements in South Africa.
76 FR 14375 - United States Integrated Ocean Observing System Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-16
... coastal resources; and public safety. The System is also designed to promote research to develop, test...; coastal management; fisheries management; coastal and marine spatial planning; geodesy; water levels; and...
USDA-ARS?s Scientific Manuscript database
The Earth is a complex system comprised of many interacting spatial and temporal scales. Understanding, predicting, and managing for these dynamics requires a trans-disciplinary integrated approach. Although there have been calls for this integration, a general approach is needed. We developed a Tra...
Novel GIS approaches to watershed science and management: Description, prediction, and integration
Spatial data and geographic information systems (GIS) are playing an increasingly important role in watershed science and management, particularly in the face of increasing climate uncertainty and demand for water resources. Concomitantly, scientists and managers are presented wi...
USDA-ARS?s Scientific Manuscript database
Rangeland management strategies that allow for spatial and temporal interactions between fire and herbivores can achieve multiple management goals related to livestock production and wildlife conservation in mesic grasslands and savannas. Less is known about integrated management of herbivores and f...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dale, Virginia H; Kline, Keith L; Kaffka, Stephen R
Landscape sustainability of agricultural systems considers effects of farm activities on social, economic, and ecosystem services at local and regional scales. Sustainable agriculture entails: defining sustainability, developing easily measured indicators of sustainability, moving toward integrated agricultural systems, and offering incentives or imposing regulations to affect farmer behavior. A landscape perspective is useful because landscape ecology provides theory and methods for dealing with spatial heterogeneity, scaling, integration, and complexity. To implement agricultural sustainability, we propose adopting a systems perspective, recognizing spatial heterogeneity, addressing the influences of context, and integrating landscape-design principles. Topics that need further attention at local and regional scalesmore » include (1) protocols for quantifying material and energy flows; (2) effects of management practices; (3) incentives for enhancing social, economic, and ecosystem services; (4) integrated landscape planning and management; (5) monitoring and assessment; (6) effects of societal demand; and (7) consistent and holistic policies for promoting agricultural sustainability.« less
An address geocoding method for improving rural spatial information infrastructure
NASA Astrophysics Data System (ADS)
Pan, Yuchun; Chen, Baisong; Lu, Zhou; Li, Shuhua; Zhang, Jingbo; Zhou, YanBing
2010-11-01
The transition of rural and agricultural management from divisional to integrated mode has highlighted the importance of data integration and sharing. Current data are mostly collected by specific department to satisfy their own needs and lake of considering on wider potential uses. This led to great difference in data format, semantic, and precision even in same area, which is a significant barrier for constructing an integrated rural spatial information system to support integrated management and decision-making. Considering the rural cadastral management system and postal zones, the paper designs a rural address geocoding method based on rural cadastral parcel. It puts forward a geocoding standard which consists of absolute position code, relative position code and extended code. It designs a rural geocoding database model, and addresses collection and update model. Then, based on the rural address geocoding model, it proposed a data model for rural agricultural resources management. The results show that the address coding based on postal code is stable and easy to memorize, two-dimensional coding based on the direction and distance is easy to be located and memorized, while extended code can enhance the extensibility and flexibility of address geocoding.
Gonzalez-Redin, Julen; Luque, Sandra; Poggio, Laura; Smith, Ron; Gimona, Alessandro
2016-01-01
An integrated methodology, based on linking Bayesian belief networks (BBN) with GIS, is proposed for combining available evidence to help forest managers evaluate implications and trade-offs between forest production and conservation measures to preserve biodiversity in forested habitats. A Bayesian belief network is a probabilistic graphical model that represents variables and their dependencies through specifying probabilistic relationships. In spatially explicit decision problems where it is difficult to choose appropriate combinations of interventions, the proposed integration of a BBN with GIS helped to facilitate shared understanding of the human-landscape relationships, while fostering collective management that can be incorporated into landscape planning processes. Trades-offs become more and more relevant in these landscape contexts where the participation of many and varied stakeholder groups is indispensable. With these challenges in mind, our integrated approach incorporates GIS-based data with expert knowledge to consider two different land use interests - biodiversity value for conservation and timber production potential - with the focus on a complex mountain landscape in the French Alps. The spatial models produced provided different alternatives of suitable sites that can be used by policy makers in order to support conservation priorities while addressing management options. The approach provided provide a common reasoning language among different experts from different backgrounds while helped to identify spatially explicit conflictive areas. Copyright © 2015 Elsevier Inc. All rights reserved.
Jahanishakib, Fatemeh; Mirkarimi, Seyed Hamed; Salmanmahiny, Abdolrassoul; Poodat, Fatemeh
2018-05-08
Efficient land use management requires awareness of past changes, present actions, and plans for future developments. Part of these requirements is achieved using scenarios that describe a future situation and the course of changes. This research aims to link scenario results with spatially explicit and quantitative forecasting of land use development. To develop land use scenarios, SMIC PROB-EXPERT and MORPHOL methods were used. It revealed eight scenarios as the most probable. To apply the scenarios, we considered population growth rate and used a cellular automata-Markov chain (CA-MC) model to implement the quantified changes described by each scenario. For each scenario, a set of landscape metrics was used to assess the ecological integrity of land use classes in terms of fragmentation and structural connectivity. The approach enabled us to develop spatial scenarios of land use change and detect their differences for choosing the most integrated landscape pattern in terms of landscape metrics. Finally, the comparison between paired forecasted scenarios based on landscape metrics indicates that scenarios 1-1, 2-2, 3-2, and 4-1 have a more suitable integrity. The proposed methodology for developing spatial scenarios helps executive managers to create scenarios with many repetitions and customize spatial patterns in real world applications and policies.
Review of integrated digital systems: evolution and adoption
NASA Astrophysics Data System (ADS)
Fritz, Lawrence W.
The factors that are influencing the evolution of photogrammetric and remote sensing technology to transition into fully integrated digital systems are reviewed. These factors include societal pressures for new, more timely digital products from the Spatial Information Sciencesand the adoption of rapid technological advancements in digital processing hardware and software. Current major developments in leading government mapping agencies of the USA, such as the Digital Production System (DPS) modernization programme at the Defense Mapping Agency, and the Automated Nautical Charting System II (ANCS-II) programme and Integrated Digital Photogrammetric Facility (IDPF) at NOAA/National Ocean Service, illustrate the significant benefits to be realized. These programmes are examples of different levels of integrated systems that have been designed to produce digital products. They provide insights to the management complexities to be considered for very large integrated digital systems. In recognition of computer industry trends, a knowledge-based architecture for managing the complexity of the very large spatial information systems of the future is proposed.
NASA Astrophysics Data System (ADS)
Gómez Giménez, M.; Della Peruta, R.; de Jong, R.; Keller, A.; Schaepman, M. E.
2015-12-01
Agroecosystems play an important role providing economic and ecosystem services, which directly impact society. Inappropriate land use and unsustainable agricultural management with associated nutrient cycles can jeopardize important soil functions such as food production, livestock feeding and conservation of biodiversity. The objective of this study was to integrate remotely sensed land cover information into a regional Land Management Model (LMM) to improve the assessment of spatial explicit nutrient balances for agroecosystems. Remotely sensed data as well as an optimized parameter set contributed to feed the LMM providing a better spatial allocation of agricultural data aggregated at farm level. The integration of land use information in the land allocation process relied predominantly on three factors: i) spatial resolution, ii) classification accuracy and iii) parcels definition. The best-input parameter combination resulted in two different land cover classifications with overall accuracies of 98%, improving the LMM performance by 16% as compared to using non-spatially explicit input. Firstly, the use of spatial explicit information improved the spatial allocation output resulting in a pattern that better followed parcel boundaries (Figure 1). Second, the high classification accuracies ensured consistency between the datasets used. Third, the use of a suitable spatial unit to define the parcels boundaries influenced the model in terms of computational time and the amount of farmland allocated. We conclude that the combined use of remote sensing (RS) data with the LMM has the potential to provide highly accurate information of spatial explicit nutrient balances that are crucial for policy options concerning sustainable management of agricultural soils. Figure 1. Details of the spatial pattern obtained: a) Using only the farm census data, b) using also land use information. Framed in black in the left image (a), examples of artifacts that disappeared when using land use information (right image, b). Colors represent different ownership.
NASA Astrophysics Data System (ADS)
Wu, Bin; Zheng, Yi; Wu, Xin; Tian, Yong; Han, Feng; Liu, Jie; Zheng, Chunmiao
2015-04-01
Integrated surface water-groundwater modeling can provide a comprehensive and coherent understanding on basin-scale water cycle, but its high computational cost has impeded its application in real-world management. This study developed a new surrogate-based approach, SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), to incorporate the integrated modeling into water management optimization. Its applicability and advantages were evaluated and validated through an optimization research on the conjunctive use of surface water (SW) and groundwater (GW) for irrigation in a semiarid region in northwest China. GSFLOW, an integrated SW-GW model developed by USGS, was employed. The study results show that, due to the strong and complicated SW-GW interactions, basin-scale water saving could be achieved by spatially optimizing the ratios of groundwater use in different irrigation districts. The water-saving potential essentially stems from the reduction of nonbeneficial evapotranspiration from the aqueduct system and shallow groundwater, and its magnitude largely depends on both water management schemes and hydrological conditions. Important implications for water resources management in general include: first, environmental flow regulation needs to take into account interannual variation of hydrological conditions, as well as spatial complexity of SW-GW interactions; and second, to resolve water use conflicts between upper stream and lower stream, a system approach is highly desired to reflect ecological, economic, and social concerns in water management decisions. Overall, this study highlights that surrogate-based approaches like SOIM represent a promising solution to filling the gap between complex environmental modeling and real-world management decision-making.
WILDFIRE EMISSION MODELING: INTEGRATING BLUESKY AND SMOKE
Atmospheric chemical transport models are used to simulate historic meteorological episodes for developing air quality management strategies. Wildland fire emissions need to be characterized accurately to achieve these air quality management goals. The temporal and spatial esti...
Decision support models for economically efficient integrated forest management
Hans R. Zuuring; Judy M. Troutwine; Greg J. Jones; Janet Sullivan
2005-01-01
Forest managers are challenged to fulfill conflicting social, biological, and commodity production objectives. To wisely use available, scarce resources for management activities, it is not enough to consider short term costs and effects of management (fuel reduction, planting, or other forest treatments). Long term tactical, spatial and temporal planning is needed to...
NASA Astrophysics Data System (ADS)
Demetriou, Demetris; Campagna, Michele; Racetin, Ivana; Konecny, Milan
2017-09-01
INSPIRE is the EU's authoritative Spatial Data Infrastructure (SDI) in which each Member State provides access to their spatial data across a wide spectrum of data themes to support policy making. In contrast, Volunteered Geographic Information (VGI) is one type of user-generated geographic information where volunteers use the web and mobile devices to create, assemble and disseminate spatial information. There are similarities and differences between SDIs and VGI initiatives, as well as advantages and disadvantages. Thus, the integration of these two data sources will enhance what is offered to end users to facilitate decision makers and the wider community regarding solving complex spatial problems, managing emergency situations and getting useful information for peoples' daily activities. Although some efforts towards this direction have been arisen, several key issues need to be considered and resolved. Further to this integration, the vision is the development of a global integrated GIS platform, which extends the capabilities of a typical data-hub by embedding on-line spatial and non-spatial applications, to deliver both static and dynamic outputs to support planning and decision making. In this context, this paper discusses the challenges of integrating INSPIRE with VGI and outlines a generic framework towards creating a global integrated web-based GIS platform. The tremendous high speed evolution of the Web and Geospatial technologies suggest that this "super" global Geo-system is not far away.
NASA Astrophysics Data System (ADS)
Xu, Mingzhu; Gao, Zhiqiang; Ning, Jicai
2014-10-01
To improve the access efficiency of geoscience data, efficient data model and storage solutions should be used. Geoscience data is usually classified by format or coordinate system in existing storage solutions. When data is large, it is not conducive to search the geographic features. In this study, a geographical information integration system of Shandong province, China was developed based on the technology of ArcGIS Engine, .NET, and SQL Server. It uses Geodatabase spatial data model and ArcSDE to organize and store spatial and attribute data and establishes geoscience database of Shangdong. Seven function modules were designed: map browse, database and subject management, layer control, map query, spatial analysis and map symbolization. The system's characteristics of can be browsed and managed by geoscience subjects make the system convenient for geographic researchers and decision-making departments to use the data.
Managing Spatial Selections With Contextual Snapshots
Mindek, P; Gröller, M E; Bruckner, S
2014-01-01
Spatial selections are a ubiquitous concept in visualization. By localizing particular features, they can be analysed and compared in different views. However, the semantics of such selections often depend on specific parameter settings and it can be difficult to reconstruct them without additional information. In this paper, we present the concept of contextual snapshots as an effective means for managing spatial selections in visualized data. The selections are automatically associated with the context in which they have been created. Contextual snapshots can also be used as the basis for interactive integrated and linked views, which enable in-place investigation and comparison of multiple visual representations of data. Our approach is implemented as a flexible toolkit with well-defined interfaces for integration into existing systems. We demonstrate the power and generality of our techniques by applying them to several distinct scenarios such as the visualization of simulation data, the analysis of historical documents and the display of anatomical data. PMID:25821284
Brett G. Dickson; Thomas D. Sisk; Steven E. Sesnie; Richard T. Reynolds; Steven S. Rosenstock; Christina D. Vojta; Michael F. Ingraldi; Jill M. Rundall
2014-01-01
Conservation planners and land managers are often confronted with scale-associated challenges when assessing the relationship between land management objectives and species conservation. Conservation of individual species typically involves site-level analyses of habitat, whereas land management focuses on larger spatial extents. New models are needed to more...
The Design of a High Performance Earth Imagery and Raster Data Management and Processing Platform
NASA Astrophysics Data System (ADS)
Xie, Qingyun
2016-06-01
This paper summarizes the general requirements and specific characteristics of both geospatial raster database management system and raster data processing platform from a domain-specific perspective as well as from a computing point of view. It also discusses the need of tight integration between the database system and the processing system. These requirements resulted in Oracle Spatial GeoRaster, a global scale and high performance earth imagery and raster data management and processing platform. The rationale, design, implementation, and benefits of Oracle Spatial GeoRaster are described. Basically, as a database management system, GeoRaster defines an integrated raster data model, supports image compression, data manipulation, general and spatial indices, content and context based queries and updates, versioning, concurrency, security, replication, standby, backup and recovery, multitenancy, and ETL. It provides high scalability using computer and storage clustering. As a raster data processing platform, GeoRaster provides basic operations, image processing, raster analytics, and data distribution featuring high performance computing (HPC). Specifically, HPC features include locality computing, concurrent processing, parallel processing, and in-memory computing. In addition, the APIs and the plug-in architecture are discussed.
Learning in Authentic Contexts: Projects Integrating Spatial Technologies and Fieldwork
ERIC Educational Resources Information Center
Huang, Kuo-Hung
2011-01-01
In recent years, professional practice has been an issue of concern in higher education. The purpose of this study is to design students' projects to facilitate collaborative learning in authentic contexts. Ten students majoring in Management Information Systems conducted fieldwork with spatial technologies to collect data and provided information…
Chen, Keping; Blong, Russell; Jacobson, Carol
2003-04-01
This paper develops a GIS-based integrated approach to risk assessment in natural hazards, with reference to bushfires. The challenges for undertaking this approach have three components: data integration, risk assessment tasks, and risk decision-making. First, data integration in GIS is a fundamental step for subsequent risk assessment tasks and risk decision-making. A series of spatial data integration issues within GIS such as geographical scales and data models are addressed. Particularly, the integration of both physical environmental data and socioeconomic data is examined with an example linking remotely sensed data and areal census data in GIS. Second, specific risk assessment tasks, such as hazard behavior simulation and vulnerability assessment, should be undertaken in order to understand complex hazard risks and provide support for risk decision-making. For risk assessment tasks involving heterogeneous data sources, the selection of spatial analysis units is important. Third, risk decision-making concerns spatial preferences and/or patterns, and a multicriteria evaluation (MCE)-GIS typology for risk decision-making is presented that incorporates three perspectives: spatial data types, data models, and methods development. Both conventional MCE methods and artificial intelligence-based methods with GIS are identified to facilitate spatial risk decision-making in a rational and interpretable way. Finally, the paper concludes that the integrated approach can be used to assist risk management of natural hazards, in theory and in practice.
Application GIS on university planning: building a spatial database aided spatial decision
NASA Astrophysics Data System (ADS)
Miao, Lei; Wu, Xiaofang; Wang, Kun; Nong, Yu
2007-06-01
With the development of university and its size enlarging, kinds of resource need to effective management urgently. Spacial database is the right tool to assist administrator's spatial decision. And it's ready for digital campus with integrating existing OMS. It's researched about the campus planning in detail firstly. Following instanced by south china agriculture university it is practiced that how to build the geographic database of the campus building and house for university administrator's spatial decision.
Adding a landscape ecology perspective to conservation and management planning
Kathryn E. Freemark; John R. Probst; John B. Dunning; Salllie J. Hejl
1993-01-01
We briefly review concepts in landscape ecology and discuss their relevance to the conservation and management of neotropical migrant landbirds. We then integrate a landscape perspective into a spatially-hierarchical framework for conservation and management planning for neotropical migrant landbirds (and other biota). The framework outlines a comprehensive approach by...
Proximal Association of Land Management Preferences: Evidence from Family Forest Owners
Francisco X. Aguilar; Zhen Cai; Brett Butler
2017-01-01
Individual behavior is influenced by factors intrinsic to the decision-maker but also associated with other individuals and their ownerships with such relationship intensified by geographic proximity. The land management literature is scarce in the spatially integrated analysis of biophysical and socio-economic data. Localized land management decisions are likely...
Lorenz, Marco; Fürst, Christine; Thiel, Enrico
2013-09-01
Regarding increasing pressures by global societal and climate change, the assessment of the impact of land use and land management practices on land degradation and the related decrease in sustainable provision of ecosystem services gains increasing interest. Existing approaches to assess agricultural practices focus on the assessment of single crops or statistical data because spatially explicit information on practically applied crop rotations is mostly not available. This provokes considerable uncertainties in crop production models as regional specifics have to be neglected or cannot be considered in an appropriate way. In a case study in Saxony, we developed an approach to (i) derive representative regional crop rotations by combining different data sources and expert knowledge. This includes the integration of innovative crop sequences related to bio-energy production or organic farming and different soil tillage, soil management and soil protection techniques. Furthermore, (ii) we developed a regionalization approach for transferring crop rotations and related soil management strategies on the basis of statistical data and spatially explicit data taken from so called field blocks. These field blocks are the smallest spatial entity for which agricultural practices must be reported to apply for agricultural funding within the frame of the European Agricultural Fund for Rural Development (EAFRD) program. The information was finally integrated into the spatial decision support tool GISCAME to assess and visualize in spatially explicit manner the impact of alternative agricultural land use strategies on soil erosion risk and ecosystem services provision. Objective of this paper is to present the approach how to create spatially explicit information on agricultural management practices for a study area around Dresden, the capital of the German Federal State Saxony. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Buonanno, Sabatino; Fusco, Adele; Zeni, Giovanni; Manunta, Michele; Lanari, Riccardo
2017-04-01
This work describes the implementation of an efficient system for managing, viewing, analyzing and updating remotely sensed data, with special reference to Differential Interferometric Synthetic Aperture Radar (DInSAR) data. The DInSAR products measure Earth surface deformation both in space and time, producing deformation maps and time series[1,2]. The use of these data in research or operational contexts requires tools that have to handle temporal and spatial variability with high efficiency. For this aim we present an implementation based on Spatial Data Infrastructure (SDI) for data integration, management and interchange, by using standard protocols[3]. SDI tools provide access to static datasets that operate only with spatial variability . In this paper we use the open source project GeoNode as framework to extend SDI infrastructure functionalities to ingest very efficiently DInSAR deformation maps and deformation time series. GeoNode allows to realize comprehensive and distributed infrastructure, following the standards of the Open Geospatial Consortium, Inc. - OGC, for remote sensing data management, analysis and integration [4,5]. In the current paper we explain the methodology used for manage the data complexity and data integration using the opens source project GeoNode. The solution presented in this work for the ingestion of DinSAR products is a very promising starting point for future developments of the OGC compliant implementation of a semi-automatic remote sensing data processing chain . [1] Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new Algorithm for Surface Deformation Monitoring based on Small Baseline Differential SAR Interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40, 11, pp. 2375-2383. [2] Lanari R., F. Casu, M. Manzo, G. Zeni,, P. Berardino, M. Manunta and A. Pepe (2007), An overview of the Small Baseline Subset Algorithm: a DInSAR Technique for Surface Deformation Analysis, P. Appl. Geophys., 164, doi: 10.1007/s00024-007-0192-9. [3] Nebert, D.D. (ed). 2000. Developing Spatial data Infrastructures: The SDI Cookbook. [4] Geonode (www.geonode.org) [5] Kolodziej, k. (ed). 2004. OGC OpenGIS Web Map Server Cookbook. Open Geospatial Consortium, 1.0.2 edition.
de Aranzabal, Itziar; Schmitz, María F; Pineda, Francisco D
2009-11-01
Tourism and landscape are interdependent concepts. Nature- and culture-based tourism are now quite well developed activities and can constitute an excellent way of exploiting the natural resources of certain areas, and should therefore be considered as key objectives in landscape planning and management in a growing number of countries. All of this calls for careful evaluation of the effects of tourism on the territory. This article focuses on an integrated spatial method for landscape analysis aimed at quantifying the relationship between preferences of visitors and landscape features. The spatial expression of the model relating types of leisure and recreational preferences to the potential capacity of the landscape to meet them involves a set of maps showing degrees of potential visitor satisfaction. The method constitutes a useful tool for the design of tourism planning and management strategies, with landscape conservation as a reference.
Cross-scale phenological data integration to benefit resource management and monitoring
Richardson, Andrew D.; Weltzin, Jake F.; Morisette, Jeffrey T.
2017-01-01
Climate change is presenting new challenges for natural resource managers charged with maintaining sustainable ecosystems and landscapes. Phenology, a branch of science dealing with seasonal natural phenomena (bird migration or plant flowering in response to weather changes, for example), bridges the gap between the biosphere and the climate system. Phenological processes operate across scales that span orders of magnitude—from leaf to globe and from days to seasons—making phenology ideally suited to multiscale, multiplatform data integration and delivery of information at spatial and temporal scales suitable to inform resource management decisions.A workshop report: Workshop held June 2016 to investigate opportunities and challenges facing multi-scale, multi-platform integration of phenological data to support natural resource management decision-making.
Linking climate change and fish conservation efforts using spatially explicit decision support tools
Douglas P. Peterson; Seth J. Wenger; Bruce E. Rieman; Daniel J. Isaak
2013-01-01
Fisheries professionals are increasingly tasked with incorporating climate change projections into their decisions. Here we demonstrate how a structured decision framework, coupled with analytical tools and spatial data sets, can help integrate climate and biological information to evaluate management alternatives. We present examples that link downscaled climate...
Integrating resource selection into spatial capture-recapture models for large carnivores
K. M. Proffitt; J. F. Goldberg; M. Hebblewhite; R. Russell; B. S. Jimenez; H. S. Robinson; Kristine Pilgrim; Michael Schwartz
2015-01-01
Wildlife managers need reliable methods to estimate large carnivore densities and population trends; yet large carnivores are elusive, difficult to detect, and occur at low densities making traditional approaches intractable. Recent advances in spatial capture-recapture (SCR) models have provided new approaches for monitoring trends in wildlife abundance and...
Bridging the Gap Between Surveyors and the Geo-Spatial Society
NASA Astrophysics Data System (ADS)
Müller, H.
2016-06-01
For many years FIG, the International Association of Surveyors, has been trying to bridge the gap between surveyors and the geospatial society as a whole, with the geospatial industries in particular. Traditionally the surveying profession contributed to the good of society by creating and maintaining highly precise and accurate geospatial data bases, based on an in-depth knowledge of spatial reference frameworks. Furthermore in many countries surveyors may be entitled to make decisions about land divisions and boundaries. By managing information spatially surveyors today develop into the role of geo-data managers, the longer the more. Job assignments in this context include data entry management, data and process quality management, design of formal and informal systems, information management, consultancy, land management, all that in close cooperation with many different stakeholders. Future tasks will include the integration of geospatial information into e-government and e-commerce systems. The list of professional tasks underpins the capabilities of surveyors to contribute to a high quality geospatial data and information management. In that way modern surveyors support the needs of a geo-spatial society. The paper discusses several approaches to define the role of the surveyor within the modern geospatial society.
Wallace, Bryan P.; DiMatteo, Andrew D.; Hurley, Brendan J.; Finkbeiner, Elena M.; Bolten, Alan B.; Chaloupka, Milani Y.; Hutchinson, Brian J.; Abreu-Grobois, F. Alberto; Amorocho, Diego; Bjorndal, Karen A.; Bourjea, Jerome; Bowen, Brian W.; Dueñas, Raquel Briseño; Casale, Paolo; Choudhury, B. C.; Costa, Alice; Dutton, Peter H.; Fallabrino, Alejandro; Girard, Alexandre; Girondot, Marc; Godfrey, Matthew H.; Hamann, Mark; López-Mendilaharsu, Milagros; Marcovaldi, Maria Angela; Mortimer, Jeanne A.; Musick, John A.; Nel, Ronel; Pilcher, Nicolas J.; Seminoff, Jeffrey A.; Troëng, Sebastian; Witherington, Blair; Mast, Roderic B.
2010-01-01
Background Resolving threats to widely distributed marine megafauna requires definition of the geographic distributions of both the threats as well as the population unit(s) of interest. In turn, because individual threats can operate on varying spatial scales, their impacts can affect different segments of a population of the same species. Therefore, integration of multiple tools and techniques — including site-based monitoring, genetic analyses, mark-recapture studies and telemetry — can facilitate robust definitions of population segments at multiple biological and spatial scales to address different management and research challenges. Methodology/Principal Findings To address these issues for marine turtles, we collated all available studies on marine turtle biogeography, including nesting sites, population abundances and trends, population genetics, and satellite telemetry. We georeferenced this information to generate separate layers for nesting sites, genetic stocks, and core distributions of population segments of all marine turtle species. We then spatially integrated this information from fine- to coarse-spatial scales to develop nested envelope models, or Regional Management Units (RMUs), for marine turtles globally. Conclusions/Significance The RMU framework is a solution to the challenge of how to organize marine turtles into units of protection above the level of nesting populations, but below the level of species, within regional entities that might be on independent evolutionary trajectories. Among many potential applications, RMUs provide a framework for identifying data gaps, assessing high diversity areas for multiple species and genetic stocks, and evaluating conservation status of marine turtles. Furthermore, RMUs allow for identification of geographic barriers to gene flow, and can provide valuable guidance to marine spatial planning initiatives that integrate spatial distributions of protected species and human activities. In addition, the RMU framework — including maps and supporting metadata — will be an iterative, user-driven tool made publicly available in an online application for comments, improvements, download and analysis. PMID:21253007
Secure and Resilient Functional Modeling for Navy Cyber-Physical Systems
2017-05-24
Functional Modeling Compiler (SCCT) FM Compiler and Key Performance Indicators (KPI) May 2018 Pending. Model Management Backbone (SCCT) MMB Demonstration...implement the agent- based distributed runtime. - KPIs for single/multicore controllers and temporal/spatial domains. - Integration of the model management ...Distributed Runtime (UCI) Not started. Model Management Backbone (SCCT) Not started. Siemens Corporation Corporate Technology Unrestricted
Although it is routine for watershed management programs to coincide the monitoring of land use impacts and water quality at different spatial scales, rarely are the data collected in a manner to elucidate the linkages among ecological systems across a drainage network. There rem...
Forecasting timber, biomass, and tree carbon pools with the output of state and transition models
Xiaoping Zhou; Miles A. Hemstrom
2012-01-01
The Integrated Landscape Assessment Project (ILAP) uses spatial vegetation data and state and transition models (STM) to forecast future vegetation conditions and the interacting effects of natural disturbances and management activities. Results from ILAP will help land managers, planners, and policymakers evaluate management strategies that reduce fire risk, improve...
Managing the Web-Enhanced Geographic Information Service.
ERIC Educational Resources Information Center
Stephens, Denise
1997-01-01
Examines key management issues involved in delivering geographic information services on the World Wide Web, using the Geographic Information Center (GIC) program at the University of Virginia Library as a reference. Highlights include integrating the Web into services; building collections for Web delivery; and evaluating spatial information…
NASA Astrophysics Data System (ADS)
Ifimov, Gabriela; Pigeau, Grace; Arroyo-Mora, J. Pablo; Soffer, Raymond; Leblanc, George
2017-10-01
In this study the development and implementation of a geospatial database model for the management of multiscale datasets encompassing airborne imagery and associated metadata is presented. To develop the multi-source geospatial database we have used a Relational Database Management System (RDBMS) on a Structure Query Language (SQL) server which was then integrated into ArcGIS and implemented as a geodatabase. The acquired datasets were compiled, standardized, and integrated into the RDBMS, where logical associations between different types of information were linked (e.g. location, date, and instrument). Airborne data, at different processing levels (digital numbers through geocorrected reflectance), were implemented in the geospatial database where the datasets are linked spatially and temporally. An example dataset consisting of airborne hyperspectral imagery, collected for inter and intra-annual vegetation characterization and detection of potential hydrocarbon seepage events over pipeline areas, is presented. Our work provides a model for the management of airborne imagery, which is a challenging aspect of data management in remote sensing, especially when large volumes of data are collected.
Matching spatial property rights fisheries with scales of fish dispersal.
White, Crow; Costello, Christopher
2011-03-01
Regulation of fisheries using spatial property rights can alleviate competition for high-value patches that hinders economic efficiency in quota-based, rights-based, and open-access management programs. However, efficiency gains erode when delineation of spatial rights constitutes incomplete ownership of the resource, thereby degrading its local value and promoting overexploitation. Incomplete ownership may be particularly prevalent in the spatial management of mobile fishery species. We developed a game-theoretic bioeconomic model of spatial property rights representing territorial user rights fisheries (TURF) management of nearshore marine fish and invertebrate species with mobile adult and larval life history stages. Strategic responses by fisheries in neighboring management units result in overexploitation of the stock and reduced yields for each fishery compared with those attainable without resource mobility or with coordination or sole control in fishing effort. High dispersal potential of the larval stage, a common trait among nearshore fishery species, coupled with scaling of management units to only capture adult mobility, a common characteristic of many nearshore TURF programs, in particular substantially reduced stock levels and yields. In a case study of hypothetical TURF programs of nearshore fish and invertebrate species, management units needed to be tens of kilometers in alongshore length to minimize larval export and generate reasonable returns to fisheries. Cooperation and quota regulations represent solutions to the problem that need to be quantified in cost and integrated into the determination of the acceptability of spatial property rights management of fisheries.
The Method of Multiple Spatial Planning Basic Map
NASA Astrophysics Data System (ADS)
Zhang, C.; Fang, C.
2018-04-01
The "Provincial Space Plan Pilot Program" issued in December 2016 pointed out that the existing space management and control information management platforms of various departments were integrated, and a spatial planning information management platform was established to integrate basic data, target indicators, space coordinates, and technical specifications. The planning and preparation will provide supportive decision support, digital monitoring and evaluation of the implementation of the plan, implementation of various types of investment projects and space management and control departments involved in military construction projects in parallel to approve and approve, and improve the efficiency of administrative approval. The space planning system should be set up to delimit the control limits for the development of production, life and ecological space, and the control of use is implemented. On the one hand, it is necessary to clarify the functional orientation between various kinds of planning space. On the other hand, it is necessary to achieve "multi-compliance" of various space planning. Multiple spatial planning intergration need unified and standard basic map(geographic database and technical specificaton) to division of urban, agricultural, ecological three types of space and provide technical support for the refinement of the space control zoning for the relevant planning. The article analysis the main space datum, the land use classification standards, base map planning, planning basic platform main technical problems. Based on the geographic conditions, the results of the census preparation of spatial planning map, and Heilongjiang, Hainan many rules combined with a pilot application.
Scribner, Kim T.; Lowe, Winsor H.; Landguth, Erin L.; Luikart, Gordon; Infante, Dana M.; Whelan, Gary; Muhlfeld, Clint C.
2015-01-01
Environmental variation and landscape features affect ecological processes in fluvial systems; however, assessing effects at management-relevant temporal and spatial scales is challenging. Genetic data can be used with landscape models and traditional ecological assessment data to identify biodiversity hotspots, predict ecosystem responses to anthropogenic effects, and detect impairments to underlying processes. We show that by combining taxonomic, demographic, and genetic data of species in complex riverscapes, managers can better understand the spatial and temporal scales over which environmental processes and disturbance influence biodiversity. We describe how population genetic models using empirical or simulated genetic data quantify effects of environmental processes affecting species diversity and distribution. Our summary shows that aquatic assessment initiatives that use standardized data sets to direct management actions can benefit from integration of genetic data to improve the predictability of disturbance–response relationships of river fishes and their habitats over a broad range of spatial and temporal scales.
Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce.
Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel
2013-08-01
Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS - a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive.
Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce
Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel
2013-01-01
Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS – a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive. PMID:24187650
An integrated approach to mapping forest conditions in the Southern Appalachians (North Carolina)
Weimin Xi; Lei Wang; Andrew G Birt; Maria D. Tchakerian; Robert N. Coulson; Kier D. Klepzig
2009-01-01
Accurate and continuous forest cover information is essential for forest management and restoration (SAMAB 1996, Xi et al. 2007). Ground-truthed, spatially explicit forest data, however, are often limited to federally managed land or large-scale commercial forestry operations where forest inventories are regularly collected. Moreover,...
NASA Astrophysics Data System (ADS)
Ryżyński, Grzegorz; Nałęcz, Tomasz
2016-10-01
The efficient geological data management in Poland is necessary to support multilevel decision processes for government and local authorities in case of spatial planning, mineral resources and groundwater supply and the rational use of subsurface. Vast amount of geological information gathered in the digital archives and databases of Polish Geological Survey (PGS) is a basic resource for multi-scale national subsurface management. Data integration is the key factor to allow development of GIS and web tools for decision makers, however the main barrier for efficient geological information management is the heterogeneity of data in the resources of the Polish Geological Survey. Engineering-geological database is the first PGS thematic domain applied in the whole data integration plan. The solutions developed within this area will facilitate creation of procedures and standards for multilevel data management in PGS. Twenty years of experience in delivering digital engineering-geological mapping in 1:10 000 scale and archival geotechnical reports acquisition and digitisation allowed gathering of more than 300 thousands engineering-geological boreholes database as well as set of 10 thematic spatial layers (including foundation conditions map, depth to the first groundwater level, bedrock level, geohazards). Historically, the desktop approach was the source form of the geological-engineering data storage, resulting in multiple non-correlated interbase datasets. The need for creation of domain data model emerged and an object-oriented modelling (UML) scheme has been developed. The aim of the aforementioned development was to merge all datasets in one centralised Oracle server and prepare the unified spatial data structure for efficient web presentation and applications development. The presented approach will be the milestone toward creation of the Polish national standard for engineering-geological information management. The paper presents the approach and methodology of data unification, thematic vocabularies harmonisation, assumptions and results of data modelling as well as process of the integration of domain model with enterprise architecture implemented in PGS. Currently, there is no geological data standard in Poland. Lack of guidelines for borehole and spatial data management results in an increasing data dispersion as well as in growing barrier for multilevel data management and implementation of efficient decision support tools. Building the national geological data standard makes geotechnical information accessible to multiple institutions, universities, administration and research organisations and gather their data in the same, unified digital form according to the presented data model. Such approach is compliant with current digital trends and the idea of Spatial Data Infrastructure. Efficient geological data management is essential to support the sustainable development and the economic growth, as they allow implementation of geological information to assist the idea of Smart Cites, deliver information for Building Information Management (BIM) and support modern spatial planning. The engineering-geological domain data model presented in the paper is a scalable solution. Future implementation of developed procedures on other domains of PGS geological data is possible.
Steven P. Norman; Danny C. Lee; Sandra Jacobson; Christine Damiani
2010-01-01
The tradeoffs that surround forest management are inherently complex, often involving multiple temporal and spatial scales. For example, conflicts may result when fuel treatments are designed to mediate long-term fuel hazards, but activities could impair sensitive aquatic habitat or degrade wildlife habitat in the short term. This complexity makes it hard for managers...
NASA Astrophysics Data System (ADS)
Han, Bangshuai; Benner, Shawn G.; Bolte, John P.; Vache, Kellie B.; Flores, Alejandro N.
2017-07-01
Humans have significantly altered the redistribution of water in intensively managed hydrologic systems, shifting the spatiotemporal patterns of surface water. Evaluating water availability requires integration of hydrologic processes and associated human influences. In this study, we summarize the development and evaluation of an extensible hydrologic model that explicitly integrates water rights to spatially distribute irrigation waters in a semi-arid agricultural region in the western US, using the Envision integrated modeling platform. The model captures both human and biophysical systems, particularly the diversion of water from the Boise River, which is the main water source that supports irrigated agriculture in this region. In agricultural areas, water demand is estimated as a function of crop type and local environmental conditions. Surface water to meet crop demand is diverted from the stream reaches, constrained by the amount of water available in the stream, the water-rights-appropriated amount, and the priority dates associated with particular places of use. Results, measured by flow rates at gaged stream and canal locations within the study area, suggest that the impacts of irrigation activities on the magnitude and timing of flows through this intensively managed system are well captured. The multi-year averaged diverted water from the Boise River matches observations well, reflecting the appropriation of water according to the water rights database. Because of the spatially explicit implementation of surface water diversion, the model can help diagnose places and times where water resources are likely insufficient to meet agricultural water demands, and inform future water management decisions.
The Potential for Spatial Distribution Indices to Signal Thresholds in Marine Fish Biomass
Reuchlin-Hugenholtz, Emilie
2015-01-01
The frequently observed positive relationship between fish population abundance and spatial distribution suggests that changes in distribution can be indicative of trends in abundance. If contractions in spatial distribution precede declines in spawning stock biomass (SSB), spatial distribution reference points could complement the SSB reference points that are commonly used in marine conservation biology and fisheries management. When relevant spatial distribution information is integrated into fisheries management and recovery plans, risks and uncertainties associated with a plan based solely on the SSB criterion would be reduced. To assess the added value of spatial distribution data, we examine the relationship between SSB and four metrics of spatial distribution intended to reflect changes in population range, concentration, and density for 10 demersal populations (9 species) inhabiting the Scotian Shelf, Northwest Atlantic. Our primary purpose is to assess their potential to serve as indices of SSB, using fisheries independent survey data. We find that metrics of density offer the best correlate of spawner biomass. A decline in the frequency of encountering high density areas is associated with, and in a few cases preceded by, rapid declines in SSB in 6 of 10 populations. Density-based indices have considerable potential to serve both as an indicator of SSB and as spatially based reference points in fisheries management. PMID:25789624
Rebecca McLain; Melissa R. Poe; Kelly Biedenweg; Lee K. Cerveny; Diane Besser; Dale J. Blahna
2013-01-01
Ecosystem-based planning and management have stimulated the need to gather sociocultural values and human uses of land in formats accessible to diverse planners and researchers. Human Ecology Mapping (HEM) approaches offer promising spatial data gathering and analytical tools, while also addressing important questions about human-landscape connections. This article...
Evaluating critical uncertainty thresholds in a spatial model of forest pest invasion risk
Frank H. Koch; Denys Yemshanov; Daniel W. McKenney; William D. Smith
2009-01-01
Pest risk maps can provide useful decision support in invasive species management, but most do not adequately consider the uncertainty associated with predicted risk values. This study explores how increased uncertainty in a risk modelâs numeric assumptions might affect the resultant risk map. We used a spatial stochastic model, integrating components for...
Distributions of soil phosphorus in China's densely populated village landscapes
Jiaguo Jiao; Erle C. Ellis; Ian Yesilonis; Junxi Wu; Hongqing Wang; Huixin Li; Linzhang Yang
2010-01-01
Purpose Village landscapes, which integrate small-scale agriculture with housing, forestry and a host of other land use practices, cover more than 2x106 km2 across China. Village lands tend to be managed at very fine spatial scales (≤30 m), with managers altering soil fertility and even terrain by terracing,...
Richard W. Haynes; Russell T. Graham; Thomas M. Quigley
1996-01-01
A framework for ecosystem management is proposed. This framework assumes the purpose of ecosystem management is to maintain the integrity of ecosystems over time and space. It is based on four ecosystem principles: ecosystems are dynamic, can be viewed as hierarchies with temporal and spatial dimensions, have limits, and are relatively unpredictable. This approach...
NASA Astrophysics Data System (ADS)
Kalantari, Z.
2015-12-01
In Sweden, spatially explicit approaches have been applied in various disciplines such as landslide modelling based on soil type data and flood risk modelling for large rivers. Regarding flood mapping, most previous studies have focused on complex hydrological modelling on a small scale whereas just a few studies have used a robust GIS-based approach integrating most physical catchment descriptor (PCD) aspects on a larger scale. This study was built on a conceptual framework for looking at SedInConnect model, topography, land use, soil data and other PCDs and climate change in an integrated way to pave the way for more integrated policy making. The aim of the present study was to develop methodology for predicting the spatial probability of flooding on a general large scale. This framework can provide a region with an effective tool to inform a broad range of watershed planning activities within a region. Regional planners, decision-makers, etc. can utilize this tool to identify the most vulnerable points in a watershed and along roads to plan for interventions and actions to alter impacts of high flows and other extreme weather events on roads construction. The application of the model over a large scale can give a realistic spatial characterization of sediment connectivity for the optimal management of debris flow to road structures. The ability of the model to capture flooding probability was determined for different watersheds in central Sweden. Using data from this initial investigation, a method to subtract spatial data for multiple catchments and to produce soft data for statistical analysis was developed. It allowed flood probability to be predicted from spatially sparse data without compromising the significant hydrological features on the landscape. This in turn allowed objective quantification of the probability of floods at the field scale for future model development and watershed management.
Pearlstine, Leonard; Higer, Aaron; Palaseanu, Monica; Fujisaki, Ikuko; Mazzotti, Frank
2007-01-01
The Everglades Depth Estimation Network (EDEN) is an integrated network of real-time water-level monitoring, ground-elevation modeling, and water-surface modeling that provides scientists and managers with current (2000-present), online water-stage and water-depth information for the entire freshwater portion of the Greater Everglades. Continuous daily spatial interpolations of the EDEN network stage data are presented on a 400-square-meter grid spacing. EDEN offers a consistent and documented dataset that can be used by scientists and managers to (1) guide large-scale field operations, (2) integrate hydrologic and ecological responses, and (3) support biological and ecological assessments that measure ecosystem responses to the implementation of the Comprehensive Everglades Restoration Plan (CERP) The target users are biologists and ecologists examining trophic level responses to hydrodynamic changes in the Everglades.
An integrated GIS application system for soil moisture data assimilation
NASA Astrophysics Data System (ADS)
Wang, Di; Shen, Runping; Huang, Xiaolong; Shi, Chunxiang
2014-11-01
The gaps in knowledge and existing challenges in precisely describing the land surface process make it critical to represent the massive soil moisture data visually and mine the data for further research.This article introduces a comprehensive soil moisture assimilation data analysis system, which is instructed by tools of C#, IDL, ArcSDE, Visual Studio 2008 and SQL Server 2005. The system provides integrated service, management of efficient graphics visualization and analysis of land surface data assimilation. The system is not only able to improve the efficiency of data assimilation management, but also comprehensively integrate the data processing and analysis tools into GIS development environment. So analyzing the soil moisture assimilation data and accomplishing GIS spatial analysis can be realized in the same system. This system provides basic GIS map functions, massive data process and soil moisture products analysis etc. Besides,it takes full advantage of a spatial data engine called ArcSDE to effeciently manage, retrieve and store all kinds of data. In the system, characteristics of temporal and spatial pattern of soil moiture will be plotted. By analyzing the soil moisture impact factors, it is possible to acquire the correlation coefficients between soil moisture value and its every single impact factor. Daily and monthly comparative analysis of soil moisture products among observations, simulation results and assimilations can be made in this system to display the different trends of these products. Furthermore, soil moisture map production function is realized for business application.
APPLICATION OF SPATIAL INFORMATION TECHNOLOGY TO PETROLEUM RESOURCE ASSESSMENT ANALYSIS.
Miller, Betty M.; Domaratz, Michael A.
1984-01-01
Petroleum resource assessment procedures require the analysis of a large volume of spatial data. The US Geological Survey (USGS) has developed and applied spatial information handling procedures and digital cartographic techniques to a recent study involving the assessment of oil and gas resource potential for 74 million acres of designated and proposed wilderness lands in the western United States. The part of the study which dealt with the application of spatial information technology to petroleum resource assessment procedures is reviewed. A method was designed to expedite the gathering, integrating, managing, manipulating and plotting of spatial data from multiple data sources that are essential in modern resource assessment procedures.
NASA Astrophysics Data System (ADS)
Yuan, Yanbin; Zhou, You; Zhu, Yaqiong; Yuan, Xiaohui; Sælthun, N. R.
2007-11-01
Based on digital technology, flood routing simulation system development is an important component of "digital catchment". Taking QingJiang catchment as a pilot case, in-depth analysis on informatization of Qingjiang catchment management being the basis, aiming at catchment data's multi-source, - dimension, -element, -subject, -layer and -class feature, the study brings the design thought and method of "subject-point-source database" (SPSD) to design system structure in order to realize the unified management of catchments data in great quantity. Using the thought of integrated spatial information technology for reference, integrating hierarchical structure development model of digital catchment is established. The model is general framework of the flood routing simulation system analysis, design and realization. In order to satisfy the demands of flood routing three-dimensional simulation system, the object-oriented spatial data model are designed. We can analyze space-time self-adapting relation between flood routing and catchments topography, express grid data of terrain by using non-directed graph, apply breadth first search arithmetic, set up search method for the purpose of dynamically searching stream channel on the basis of simulated three-dimensional terrain. The system prototype is therefore realized. Simulation results have demonstrated that the proposed approach is feasible and effective in the application.
Integrated Spatial Modeling using Geoinformatics: A Prerequisite for Natural Resources Management
NASA Astrophysics Data System (ADS)
Katpatal, Y. B.
2014-12-01
Every natural system calls for complete visualization for its holistic and sustainable development. Many a times, especially in developing countries, the approaches deviate from this basic paradigm and results in ineffective management of the natural resources. This becomes more relevant in these countries which are witnessing heavy exodus of the rural population to urban areas increasing the pressures on the basic commodities. Spatial technologies which provide the opportunity to enhance the knowledge visualization of the policy makers and administrators which facilitates technical and scientific management of the resources. Increasing population has created negative impacts on the per capita availability of several resources, which has been well accepted in the statistical records of several developing countries. For instance, the per capita availability of water in India has decreased substantially in last decade and groundwater depletion is on the rise. There is hence a need of tool which helps in restoring the resource through visualization and evaluation temporally. Geological parameters play an important role in operation of several natural systems and earth sciences parameters may not be ignored. Spatial technologies enables application of 2D as well as 3D modeling taking into account variety of natural parameters related to diverse areas. The paper presents case studies where spatial technology has helped in not only understanding the natural systems but also providing solutions, especially in Indian context. The case studies relate to Groundwater Management, Watershed and Basin Management, Groundwater recharge, Environment sustainability using spatial technology. Key Words: Spatial model, Groundwater, Hydrogeology, Geoinformatics, Sustainable Development.
A Geospatial Information Grid Framework for Geological Survey.
Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong
2015-01-01
The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper.
A Geospatial Information Grid Framework for Geological Survey
Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong
2015-01-01
The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper. PMID:26710255
Integrated national-scale assessment of wildfire risk to human and ecological values
Matthew P. Thompson; David E. Calkin; Mark A. Finney; Alan A. Ager; Julie W. Gilbertson-Day
2011-01-01
The spatial, temporal, and social dimensions of wildfire risk are challenging U.S. federal land management agencies to meet societal needs while maintaining the health of the lands they manage. In this paper we present a quantitative, geospatial wildfire risk assessment tool, developed in response to demands for improved risk-based decision frameworks. The methodology...
NASA Technical Reports Server (NTRS)
1991-01-01
IAEMIS (Integrated Automated Emergency Management Information System) is the principal tool of an earthquake preparedness program developed by Martin Marietta and the Mid-America Remote Sensing Center (MARC). It is a two-component set of software, data and procedures to provide information enabling management personnel to make informed decisions in disaster situations. The NASA-developed program ELAS, originally used to analyze Landsat data, provides MARC with a spatially-oriented information management system. Additional MARC projects include land resources management, and development of socioeconomic data.
Morse, Wayde C; Hall, Troy E; Kruger, Linda E
2009-03-01
In this article, we examine how issues of scale affect the integration of recreation management with the management of other natural resources on public lands. We present two theories used to address scale issues in ecology and explore how they can improve the two most widely applied recreation-planning frameworks. The theory of patch dynamics and hierarchy theory are applied to the recreation opportunity spectrum (ROS) and the limits of acceptable change (LAC) recreation-planning frameworks. These frameworks have been widely adopted internationally, and improving their ability to integrate with other aspects of natural resource management has significant social and conservation implications. We propose that incorporating ecologic criteria and scale concepts into these recreation-planning frameworks will improve the foundation for integrated land management by resolving issues of incongruent boundaries, mismatched scales, and multiple-scale analysis. Specifically, we argue that whereas the spatially explicit process of the ROS facilitates integrated decision making, its lack of ecologic criteria, broad extent, and large patch size decrease its usefulness for integration at finer scales. The LAC provides explicit considerations for weighing competing values, but measurement of recreation disturbances within an LAC analysis is often done at too fine a grain and at too narrow an extent for integration with other recreation and resource concerns. We suggest that planners should perform analysis at multiple scales when making management decisions that involve trade-offs among competing values. The United States Forest Service is used as an example to discuss how resource-management agencies can improve this integration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tim, U.S.; Jolly, R.
1994-01-01
Considerable progress has been made in developing physically based, distributed parameter, hydrologic/water quality (HIWQ) models for planning and control of nonpoint-source pollution. The widespread use of these models is often constrained by the excessive and time-consuming input data demands and the lack of computing efficiencies necessary for iterative simulation of alternative management strategies. Recent developments in geographic information systems (GIS) provide techniques for handling large amounts of spatial data for modeling nonpoint-source pollution problems. Because a GIS can be used to combine information from several sources to form an array of model input data and to examine any combinations ofmore » spatial input/output data, it represents a highly effective tool for HiWQ modeling. This paper describes the integration of a distributed-parameter model (AGNPS) with a GIS (ARC/INFO) to examine nonpoint sources of pollution in an agricultural watershed. The ARC/INFO GIS provided the tools to generate and spatially organize the disparate data to support modeling, while the AGNPS model was used to predict several water quality variables including soil erosion and sedimentation within a watershed. The integrated system was used to evaluate the effectiveness of several alternative management strategies in reducing sediment pollution in a 417-ha watershed located in southern Iowa. The implementation of vegetative filter strips and contour buffer (grass) strips resulted in a 41 and 47% reduction in sediment yield at the watershed outlet, respectively. In addition, when the integrated system was used, the combination of the above management strategies resulted in a 71% reduction in sediment yield. In general, the study demonstrated the utility of integrating a simulation model with GIS for nonpoini-source pollution control and planning. Such techniques can help characterize the diffuse sources of pollution at the landscape level. 52 refs., 6 figs., 1 tab.« less
Liu, Huanjun; Huffman, Ted; Liu, Jiangui; Li, Zhe; Daneshfar, Bahram; Zhang, Xinle
2015-01-01
Understanding agricultural ecosystems and their complex interactions with the environment is important for improving agricultural sustainability and environmental protection. Developing the necessary understanding requires approaches that integrate multi-source geospatial data and interdisciplinary relationships at different spatial scales. In order to identify and delineate landscape units representing relatively homogenous biophysical properties and eco-environmental functions at different spatial scales, a hierarchical system of uniform management zones (UMZ) is proposed. The UMZ hierarchy consists of seven levels of units at different spatial scales, namely site-specific, field, local, regional, country, continent, and globe. Relatively few studies have focused on the identification of the two middle levels of units in the hierarchy, namely the local UMZ (LUMZ) and the regional UMZ (RUMZ), which prevents true eco-environmental studies from being carried out across the full range of scales. This study presents a methodology to delineate LUMZ and RUMZ spatial units using land cover, soil, and remote sensing data. A set of objective criteria were defined and applied to evaluate the within-zone homogeneity and between-zone separation of the delineated zones. The approach was applied in a farming and forestry region in southeastern Ontario, Canada, and the methodology was shown to be objective, flexible, and applicable with commonly available spatial data. The hierarchical delineation of UMZs can be used as a tool to organize the spatial structure of agricultural landscapes, to understand spatial relationships between cropping practices and natural resources, and to target areas for application of specific environmental process models and place-based policy interventions.
Integrating satellite imagery with simulation modeling to improve burn severity mapping
Eva C. Karau; Pamela G. Sikkink; Robert E. Keane; Gregory K. Dillon
2014-01-01
Both satellite imagery and spatial fire effects models are valuable tools for generating burn severity maps that are useful to fire scientists and resource managers. The purpose of this study was to test a new mapping approach that integrates imagery and modeling to create more accurate burn severity maps. We developed and assessed a statistical model that combines the...
INFOMAR - Ireland's National Seabed Mapping Programme: A Tool For Marine Spatial Planning
NASA Astrophysics Data System (ADS)
Furey, T. M.
2016-02-01
INFOMAR is Ireland's national seabed mapping programme and is a key action in the national integrated marine plan, Harnessing Our Ocean Wealth. It comprises a multi-platform approach to delivering marine integrated mapping in 2 phases, over a projected 20 year timeline (2006-2026). The programme has three work strands; Data Acquisition, Data Exchange and Integration, and Value Added Exploitation. The Data Acquisition strand includes collection of hydrographic, oceanographic, geological, habitat and heritage datasets that will underpin future sustainable development and management of Ireland's marine resource. INFOMAR outputs are delivered through the Data Exchange and Integration strand. Uses of these outputs are wide ranging and multipurpose, from management plans for fisheries, aquaculture and coastal protection works, to environmental impact assessments, ocean renewable development and integrated coastal zone management. In order to address the evolution and diversification of maritime user requirements, the programme has realigned and developed outputs and new products, in part, through an innovative research funding initiative. Development is also fostered through the Value Added Exploitation strand. INFOMAR outputs and products serve to underpin delivery of Ireland's statutory obligations and enhance compliance with EU and national legislation. This is achieved through co-operation with the agencies responsible for supporting Ireland's international obligations and for the implementation of marine spatial planning. A strategic national seabed mapping programme such as INFOMAR, provides a critical baseline dataset which underpins development of the marine economy, and improves our understanding of the response of marine systems to pressures, and the effect of cumulative impacts. This paper will focus on the evolution and scope of INFOMAR, and look at examples of outputs being harnessed to serve approaches to the management of activities having an impact on the marine environment.
A new data integration approach for AutoCAD and GIS
NASA Astrophysics Data System (ADS)
Ye, Hongmei; Li, Yuhong; Wang, Cheng; Li, Lijun
2006-10-01
GIS has its advantages both on spatial data analysis and management, particularly on the geometric and attributive information management, which has also attracted lots attentions among researchers around world. AutoCAD plays more and more important roles as one of the main data sources of GIS. Various work and achievements can be found in the related literature. However, the conventional data integration from AutoCAD to GIS is time-consuming, which also can cause the information loss both in the geometric aspects and the attributive aspects for a large system. It is necessary and urgent to sort out new approach and algorithm for the efficient high-quality data integration. In this paper, a novel data integration approach from AutoCAD to GIS will be introduced based on the spatial data mining technique through the data structure analysis both in the AutoCAD and GIS. A practicable algorithm for the data conversion from CAD to GIS will be given as well. By a designed evaluation scheme, the accuracy of the conversion both in the geometric and the attributive information will be demonstrated. Finally, the validity and feasibility of the new approach will be shown by an experimental analysis.
Fulton, Elizabeth A.; Smith, Anthony D. M.; Smith, David C.; Johnson, Penelope
2014-01-01
An ecosystem approach is widely seen as a desirable goal for fisheries management but there is little consensus on what strategies or measures are needed to achieve it. Management strategy evaluation (MSE) is a tool that has been widely used to develop and test single species fisheries management strategies and is now being extended to support ecosystem based fisheries management (EBFM). We describe the application of MSE to investigate alternative strategies for achieving EBFM goals for a complex multispecies fishery in southeastern Australia. The study was undertaken as part of a stakeholder driven process to review and improve the ecological, economic and social performance of the fishery. An integrated management strategy, involving combinations of measures including quotas, gear controls and spatial management, performed best against a wide range of objectives and this strategy was subsequently adopted in the fishery, leading to marked improvements in performance. Although particular to one fishery, the conclusion that an integrated package of measures outperforms single focus measures we argue is likely to apply widely in fisheries that aim to achieve EBFM goals. PMID:24454722
Geodata Modeling and Query in Geographic Information Systems
NASA Technical Reports Server (NTRS)
Adam, Nabil
1996-01-01
Geographic information systems (GIS) deal with collecting, modeling, man- aging, analyzing, and integrating spatial (locational) and non-spatial (attribute) data required for geographic applications. Examples of spatial data are digital maps, administrative boundaries, road networks, and those of non-spatial data are census counts, land elevations and soil characteristics. GIS shares common areas with a number of other disciplines such as computer- aided design, computer cartography, database management, and remote sensing. None of these disciplines however, can by themselves fully meet the requirements of a GIS application. Examples of such requirements include: the ability to use locational data to produce high quality plots, perform complex operations such as network analysis, enable spatial searching and overlay operations, support spatial analysis and modeling, and provide data management functions such as efficient storage, retrieval, and modification of large datasets; independence, integrity, and security of data; and concurrent access to multiple users. It is on the data management issues that we devote our discussions in this monograph. Traditionally, database management technology have been developed for business applications. Such applications require, among other things, capturing the data requirements of high-level business functions and developing machine- level implementations; supporting multiple views of data and yet providing integration that would minimize redundancy and maintain data integrity and security; providing a high-level language for data definition and manipulation; allowing concurrent access to multiple users; and processing user transactions in an efficient manner. The demands on database management systems have been for speed, reliability, efficiency, cost effectiveness, and user-friendliness. Significant progress have been made in all of these areas over the last two decades to the point that many generalized database platforms are now available for developing data intensive applications that run in real-time. While continuous improvement is still being made at a very fast-paced and competitive rate, new application areas such as computer aided design, image processing, VLSI design, and GIS have been identified by many as the next generation of database applications. These new application areas pose serious challenges to the currently available database technology. At the core of these challenges is the nature of data that is manipulated. In traditional database applications, the database objects do not have any spatial dimension, and as such, can be thought of as point data in a multi-dimensional space. For example, each instance of an entity EMPLOYEE will have a unique value corresponding to every attribute such as employee id, employee name, employee address and so on. Thus, every Employee instance can be thought of as a point in a multi-dimensional space where each dimension is represented by an attribute. Furthermore, all operations on such data are one-dimensional. Thus, users may retrieve all entities satisfying one or more constraints. Examples of such constraints include employees with addresses in a certain area code, or salaries within a certain range. Even though constraints can be specified on multiple attributes (dimensions), the search for such data is essentially orthogonal across these dimensions.
Spatial and Temporal Flood Risk Assessment for Decision Making Approach
NASA Astrophysics Data System (ADS)
Azizat, Nazirah; Omar, Wan-Mohd-Sabki Wan
2018-03-01
Heavy rainfall, adversely impacting inundation areas, depends on the magnitude of the flood. Significantly, location of settlements, infrastructure and facilities in floodplains result in many regions facing flooding risks. A problem faced by the decision maker in an assessment of flood vulnerability and evaluation of adaptation measures is recurrent flooding in the same areas. Identification of recurrent flooding areas and frequency of floods should be priorities for flood risk management. However, spatial and temporal variability become major factors of uncertainty in flood risk management. Therefore, dynamic and spatial characteristics of these changes in flood impact assessment are important in making decisions about the future of infrastructure development and community life. System dynamics (SD) simulation and hydrodynamic modelling are presented as tools for modelling the dynamic characteristics of flood risk and spatial variability. This paper discusses the integration between spatial and temporal information that is required by the decision maker for the identification of multi-criteria decision problems involving multiple stakeholders.
Devendra Amatya; Timothy Callahan; William Hansen; Carl Trettin; Artur Radecki-Pawlik; Patrick Meire
2015-01-01
Water yield, water supply and quality, wildlife habitat, and ecosystem productivity and services are important societal concerns for natural resource management in the 21st century. Watershed-scale ecohydrologic studies can provide needed context for addressing complex spatial and temporal dynamics of these functions and services. This study was...
Chiao-Ying Chou; Roy L. Hedden; Bo Song; Thomas M. Williams
2013-01-01
Many models are available for simulating the probability of southern pine beetle (Dendroctonus frontalis Zimmermann) (SPB) infestation and outbreak dynamics. However, only a few models focused on the potential spatial SPB growth. Although the integrated pest management systems are currently adopted, SPB management is still challenging because of...
Sustainability. Systems integration for global sustainability.
Liu, Jianguo; Mooney, Harold; Hull, Vanessa; Davis, Steven J; Gaskell, Joanne; Hertel, Thomas; Lubchenco, Jane; Seto, Karen C; Gleick, Peter; Kremen, Claire; Li, Shuxin
2015-02-27
Global sustainability challenges, from maintaining biodiversity to providing clean air and water, are closely interconnected yet often separately studied and managed. Systems integration—holistic approaches to integrating various components of coupled human and natural systems—is critical to understand socioeconomic and environmental interconnections and to create sustainability solutions. Recent advances include the development and quantification of integrated frameworks that incorporate ecosystem services, environmental footprints, planetary boundaries, human-nature nexuses, and telecoupling. Although systems integration has led to fundamental discoveries and practical applications, further efforts are needed to incorporate more human and natural components simultaneously, quantify spillover systems and feedbacks, integrate multiple spatial and temporal scales, develop new tools, and translate findings into policy and practice. Such efforts can help address important knowledge gaps, link seemingly unconnected challenges, and inform policy and management decisions. Copyright © 2015, American Association for the Advancement of Science.
Public health, GIS, and the internet.
Croner, Charles M
2003-01-01
Internet access and use of georeferenced public health information for GIS application will be an important and exciting development for the nation's Department of Health and Human Services and other health agencies in this new millennium. Technological progress toward public health geospatial data integration, analysis, and visualization of space-time events using the Web portends eventual robust use of GIS by public health and other sectors of the economy. Increasing Web resources from distributed spatial data portals and global geospatial libraries, and a growing suite of Web integration tools, will provide new opportunities to advance disease surveillance, control, and prevention, and insure public access and community empowerment in public health decision making. Emerging supercomputing, data mining, compression, and transmission technologies will play increasingly critical roles in national emergency, catastrophic planning and response, and risk management. Web-enabled public health GIS will be guided by Federal Geographic Data Committee spatial metadata, OpenGIS Web interoperability, and GML/XML geospatial Web content standards. Public health will become a responsive and integral part of the National Spatial Data Infrastructure.
INTEGRATED ASSESSMENTS OF ANTHROPOGENIC AND NATURAL CHANGES IN CHESAPEAKE BAY WATERSHEDS
Both natural and anthropogenic factors affect spatial and temporal patterns in ecosystem conditions. To manage environmental change and risks, distinguishing between natural variations in ecosystem conditions and anthropogenic changes becomes important. This concept is illustrate...
NASA Astrophysics Data System (ADS)
Condon, Laura E.; Maxwell, Reed M.
2014-03-01
Groundwater-fed irrigation has been shown to deplete groundwater storage, decrease surface water runoff, and increase evapotranspiration. Here we simulate soil moisture-dependent groundwater-fed irrigation with an integrated hydrologic model. This allows for direct consideration of feedbacks between irrigation demand and groundwater depth. Special attention is paid to system dynamics in order to characterized spatial variability in irrigation demand and response to increased irrigation stress. A total of 80 years of simulation are completed for the Little Washita Basin in Southwestern Oklahoma, USA spanning a range of agricultural development scenarios and management practices. Results show regionally aggregated irrigation impacts consistent with other studies. However, here a spectral analysis reveals that groundwater-fed irrigation also amplifies the annual streamflow cycle while dampening longer-term cyclical behavior with increased irrigation during climatological dry periods. Feedbacks between the managed and natural system are clearly observed with respect to both irrigation demand and utilization when water table depths are within a critical range. Although the model domain is heterogeneous with respect to both surface and subsurface parameters, relationships between irrigation demand, water table depth, and irrigation utilization are consistent across space and between scenarios. Still, significant local heterogeneities are observed both with respect to transient behavior and response to stress. Spatial analysis of transient behavior shows that farms with groundwater depths within a critical depth range are most sensitive to management changes. Differences in behavior highlight the importance of groundwater's role in system dynamics in addition to water availability.
Open Source GIS based integrated watershed management
NASA Astrophysics Data System (ADS)
Byrne, J. M.; Lindsay, J.; Berg, A. A.
2013-12-01
Optimal land and water management to address future and current resource stresses and allocation challenges requires the development of state-of-the-art geomatics and hydrological modelling tools. Future hydrological modelling tools should be of high resolution, process based with real-time capability to assess changing resource issues critical to short, medium and long-term enviromental management. The objective here is to merge two renowned, well published resource modeling programs to create an source toolbox for integrated land and water management applications. This work will facilitate a much increased efficiency in land and water resource security, management and planning. Following an 'open-source' philosophy, the tools will be computer platform independent with source code freely available, maximizing knowledge transfer and the global value of the proposed research. The envisioned set of water resource management tools will be housed within 'Whitebox Geospatial Analysis Tools'. Whitebox, is an open-source geographical information system (GIS) developed by Dr. John Lindsay at the University of Guelph. The emphasis of the Whitebox project has been to develop a user-friendly interface for advanced spatial analysis in environmental applications. The plugin architecture of the software is ideal for the tight-integration of spatially distributed models and spatial analysis algorithms such as those contained within the GENESYS suite. Open-source development extends knowledge and technology transfer to a broad range of end-users and builds Canadian capability to address complex resource management problems with better tools and expertise for managers in Canada and around the world. GENESYS (Generate Earth Systems Science input) is an innovative, efficient, high-resolution hydro- and agro-meteorological model for complex terrain watersheds developed under the direction of Dr. James Byrne. GENESYS is an outstanding research and applications tool to address challenging resource management issues in industry, government and nongovernmental agencies. Current research and analysis tools were developed to manage meteorological, climatological, and land and water resource data efficiently at high resolution in space and time. The deliverable for this work is a Whitebox-GENESYS open-source resource management capacity with routines for GIS based watershed management including water in agriculture and food production. We are adding urban water management routines through GENESYS in 2013-15 with an engineering PhD candidate. Both Whitebox-GAT and GENESYS are already well-established tools. The proposed research will combine these products to create an open-source geomatics based water resource management tool that is revolutionary in both capacity and availability to a wide array of Canadian and global users
Bio-optical data integration based on a 4 D database system approach
NASA Astrophysics Data System (ADS)
Imai, N. N.; Shimabukuro, M. H.; Carmo, A. F. C.; Alcantara, E. H.; Rodrigues, T. W. P.; Watanabe, F. S. Y.
2015-04-01
Bio-optical characterization of water bodies requires spatio-temporal data about Inherent Optical Properties and Apparent Optical Properties which allow the comprehension of underwater light field aiming at the development of models for monitoring water quality. Measurements are taken to represent optical properties along a column of water, and then the spectral data must be related to depth. However, the spatial positions of measurement may differ since collecting instruments vary. In addition, the records should not refer to the same wavelengths. Additional difficulty is that distinct instruments store data in different formats. A data integration approach is needed to make these large and multi source data sets suitable for analysis. Thus, it becomes possible, even automatically, semi-empirical models evaluation, preceded by preliminary tasks of quality control. In this work it is presented a solution, in the stated scenario, based on spatial - geographic - database approach with the adoption of an object relational Database Management System - DBMS - due to the possibilities to represent all data collected in the field, in conjunction with data obtained by laboratory analysis and Remote Sensing images that have been taken at the time of field data collection. This data integration approach leads to a 4D representation since that its coordinate system includes 3D spatial coordinates - planimetric and depth - and the time when each data was taken. It was adopted PostgreSQL DBMS extended by PostGIS module to provide abilities to manage spatial/geospatial data. It was developed a prototype which has the mainly tools an analyst needs to prepare the data sets for analysis.
Bringing ecosystem services into integrated water resources management.
Liu, Shuang; Crossman, Neville D; Nolan, Martin; Ghirmay, Hiyoba
2013-11-15
In this paper we propose an ecosystem service framework to support integrated water resource management and apply it to the Murray-Darling Basin in Australia. Water resources in the Murray-Darling Basin have been over-allocated for irrigation use with the consequent degradation of freshwater ecosystems. In line with integrated water resource management principles, Australian Government reforms are reducing the amount of water diverted for irrigation to improve ecosystem health. However, limited understanding of the broader benefits and trade-offs associated with reducing irrigation diversions has hampered the planning process supporting this reform. Ecosystem services offer an integrative framework to identify the broader benefits associated with integrated water resource management in the Murray-Darling Basin, thereby providing support for the Government to reform decision-making. We conducted a multi-criteria decision analysis for ranking regional potentials to provide ecosystem services at river basin scale. We surveyed the wider public about their understanding of, and priorities for, managing ecosystem services and then integrated the results with spatially explicit indicators of ecosystem service provision. The preliminary results of this work identified the sub-catchments with the greatest potential synergies and trade-offs of ecosystem service provision under the integrated water resources management reform process. With future development, our framework could be used as a decision support tool by those grappling with the challenge of the sustainable allocation of water between irrigation and the environment. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Wang, Lizhu; Brenden, Travis; Cao, Yong; Seelbach, Paul
2012-11-01
Identifying appropriate spatial scales is critically important for assessing health, attributing data, and guiding management actions for rivers. We describe a process for identifying a three-level hierarchy of spatial scales for Michigan rivers. Additionally, we conduct a variance decomposition of fish occurrence, abundance, and assemblage metric data to evaluate how much observed variability can be explained by the three spatial scales as a gage of their utility for water resources and fisheries management. The process involved the development of geographic information system programs, statistical models, modification by experienced biologists, and simplification to meet the needs of policy makers. Altogether, 28,889 reaches, 6,198 multiple-reach segments, and 11 segment classes were identified from Michigan river networks. The segment scale explained the greatest amount of variation in fish abundance and occurrence, followed by segment class, and reach. Segment scale also explained the greatest amount of variation in 13 of the 19 analyzed fish assemblage metrics, with segment class explaining the greatest amount of variation in the other six fish metrics. Segments appear to be a useful spatial scale/unit for measuring and synthesizing information for managing rivers and streams. Additionally, segment classes provide a useful typology for summarizing the numerous segments into a few categories. Reaches are the foundation for the identification of segments and segment classes and thus are integral elements of the overall spatial scale hierarchy despite reaches not explaining significant variation in fish assemblage data.
Identifying spatially integrated floodplains/riparian areas and wetlands
Floodplain delineation may play an important role in managing wetlands and riparian areas at multiple scales - local, state, and federal. This poster demonstrates multiple GIS-based approaches to delimiting floodplains and contrasts these with observed flooding events from a majo...
Identifying spatial priorities for protecting ecosystem services
Luck, Gary W
2012-01-01
Priorities for protecting ecosystem services must be identified to ensure future human well-being. Approaches to broad-scale spatial prioritization of ecosystem services are becoming increasingly popular and are a vital precursor to identifying locations where further detailed analyses of the management of ecosystem services is required (e.g., examining trade-offs among management actions). Prioritization approaches often examine the spatial congruence between priorities for protecting ecosystem services and priorities for protecting biodiversity; therefore, the spatial prioritization method used is crucial because it will influence the alignment of service protection and conservation goals. While spatial prioritization of ecosystem services and prioritization for conservation share similarities, such as the need to document threats and costs, the former differs substantially from the latter owing to the requirement to measure the following components: supply of services; availability of human-derived alternatives to service provision; capacity to meet beneficiary demand; and site dependency in and scale of service delivery. We review studies that identify broad-scale spatial priorities for managing ecosystem services and demonstrate that researchers have used different approaches and included various measures for identifying priorities, and most studies do not consider all of the components listed above. We describe a conceptual framework for integrating each of these components into spatial prioritization of ecosystem services and illustrate our approach using a worked example for water provision. A fuller characterization of the biophysical and social context for ecosystem services that we call for should improve future prioritization and the identification of locations where ecosystem-service management is especially important or cost effective. PMID:24555017
NASA Astrophysics Data System (ADS)
Meyer, Hanna; Authmann, Christian; Dreber, Niels; Hess, Bastian; Kellner, Klaus; Morgenthal, Theunis; Nauss, Thomas; Seeger, Bernhard; Tsvuura, Zivanai; Wiegand, Kerstin
2017-04-01
Bush encroachment is a syndrome of land degradation that occurs in many savannas including those of southern Africa. The increase in density, cover or biomass of woody vegetation often has negative effects on a range of ecosystem functions and services, which are hardly reversible. However, despite its importance, neither the causes of bush encroachment, nor the consequences of different resource management strategies to combat or mitigate related shifts in savanna states are fully understood. The project "IDESSA" (An Integrative Decision Support System for Sustainable Rangeland Management in Southern African Savannas) aims to improve the understanding of the complex interplays between land use, climate patterns and vegetation dynamics and to implement an integrative monitoring and decision-support system for the sustainable management of different savanna types. For this purpose, IDESSA follows an innovative approach that integrates local knowledge, botanical surveys, remote-sensing and machine-learning based time-series of atmospheric and land-cover dynamics, spatially explicit simulation modeling and analytical database management. The integration of the heterogeneous data will be implemented in a user oriented database infrastructure and scientific workflow system. Accessible via web-based interfaces, this database and analysis system will allow scientists to manage and analyze monitoring data and scenario computations, as well as allow stakeholders (e. g. land users, policy makers) to retrieve current ecosystem information and seasonal outlooks. We present the concept of the project and show preliminary results of the realization steps towards the integrative savanna management and decision-support system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xuesong; Izaurralde, Roberto C.; Manowitz, David H.
Accurate quantification and clear understanding of regional scale cropland carbon (C) cycling is critical for designing effective policies and management practices that can contribute toward stabilizing atmospheric CO2 concentrations. However, extrapolating site-scale observations to regional scales represents a major challenge confronting the agricultural modeling community. This study introduces a novel geospatial agricultural modeling system (GAMS) exploring the integration of the mechanistic Environmental Policy Integrated Climate model, spatially-resolved data, surveyed management data, and supercomputing functions for cropland C budgets estimates. This modeling system creates spatially-explicit modeling units at a spatial resolution consistent with remotely-sensed crop identification and assigns cropping systems tomore » each of them by geo-referencing surveyed crop management information at the county or state level. A parallel computing algorithm was also developed to facilitate the computationally intensive model runs and output post-processing and visualization. We evaluated GAMS against National Agricultural Statistics Service (NASS) reported crop yields and inventory estimated county-scale cropland C budgets averaged over 2000–2008. We observed good overall agreement, with spatial correlation of 0.89, 0.90, 0.41, and 0.87, for crop yields, Net Primary Production (NPP), Soil Organic C (SOC) change, and Net Ecosystem Exchange (NEE), respectively. However, we also detected notable differences in the magnitude of NPP and NEE, as well as in the spatial pattern of SOC change. By performing crop-specific annual comparisons, we discuss possible explanations for the discrepancies between GAMS and the inventory method, such as data requirements, representation of agroecosystem processes, completeness and accuracy of crop management data, and accuracy of crop area representation. Based on these analyses, we further discuss strategies to improve GAMS by updating input data and by designing more efficient parallel computing capability to quantitatively assess errors associated with the simulation of C budget components. The modularized design of the GAMS makes it flexible to be updated and adapted for different agricultural models so long as they require similar input data, and to be linked with socio-economic models to understand the effectiveness and implications of diverse C management practices and policies.« less
Managing harvest and habitat as integrated components
Osnas, Erik; Runge, Michael C.; Mattsson, Brady J.; Austin, Jane E.; Boomer, G. S.; Clark, R. G.; Devers, P.; Eadie, J. M.; Lonsdorf, E. V.; Tavernia, Brian G.
2014-01-01
In 2007, several important initiatives in the North American waterfowl management community called for an integrated approach to habitat and harvest management. The essence of the call for integration is that harvest and habitat management affect the same resources, yet exist as separate endeavours with very different regulatory contexts. A common modelling framework could help these management streams to better understand their mutual effects. Particularly, how does successful habitat management increase harvest potential? Also, how do regional habitat programmes and large-scale harvest strategies affect continental population sizes (a metric used to express habitat goals)? In the ensuing five years, several projects took on different aspects of these challenges. While all of these projects are still on-going, and are not yet sufficiently developed to produce guidance for management decisions, they have been influential in expanding the dialogue and producing some important emerging lessons. The first lesson has been that one of the more difficult aspects of integration is not the integration across decision contexts, but the integration across spatial and temporal scales. Habitat management occurs at local and regional scales. Harvest management decisions are made at a continental scale. How do these actions, taken at different scales, combine to influence waterfowl population dynamics at all scales? The second lesson has been that consideration of the interface of habitat and harvest management can generate important insights into the objectives underlying the decision context. Often the objectives are very complex and trade-off against one another. The third lesson follows from the second – if an understanding of the fundamental objectives is paramount, there is no escaping the need for a better understanding of human dimensions, specifically the desires of hunters and nonhunters and the role they play in conservation. In the end, the compelling question is how to better understand, guide and justify decisions about conservation investments in waterfowl management. Future efforts to integrate harvest and habitat management will include completion of the species-specific case-studies, initiation of policy discussions around how to integrate the decision contexts and governing institutions, and possible consideration of a new level of integration – integration of harvest and habitats management decisions across waterfowl stocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Muth, Jr.; K. M. Bryden; R. G. Nelson
This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform a spatially comprehensive assessment of sustainably removable agricultural residues across the conterminous United States. Soilmore » type represents the base spatial unit for this study and is modeled using a national soil survey database at the 10 – 100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time.« less
Earl, Julia E; Zollner, Patrick A
2017-09-01
Connections between ecosystems via animals (active subsidies) support ecosystem services and contribute to numerous ecological effects. Thus, the ability to predict the spatial distribution of active subsidies would be useful for ecology and conservation. Previous work modelling active subsidies focused on implicit space or static distributions, which treat passive and active subsidies similarly. Active subsidies are fundamentally different from passive subsidies, because animals can respond to the process of subsidy deposition and ecosystem changes caused by subsidy deposition. We propose addressing this disparity by integrating animal movement and ecosystem ecology to advance active subsidy investigations, make more accurate predictions of subsidy spatial distributions, and enable a mechanistic understanding of subsidy spatial distributions. We review selected quantitative techniques that could be used to accomplish integration and lead to novel insights. The ultimate objective for these types of studies is predictions of subsidy spatial distributions from characteristics of the subsidy and the movement strategy employed by animals that transport subsidies. These advances will be critical in informing the management of ecosystem services, species conservation and ecosystem degradation related to active subsidies. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Estimating migratory game-bird productivity by integrating age ratio and banding data
Zimmerman, G.S.; Link, W.A.; Conroy, M.J.; Sauer, J.R.; Richkus, K.D.; Boomer, G. Scott
2010-01-01
Implications: Several national and international management strategies for migratory game birds in North America rely on measures of productivity from harvest survey parts collections, without a justification of the estimator or providing estimates of precision. We derive an estimator of productivity with realistic measures of uncertainty that can be directly incorporated into management plans or ecological studies across large spatial scales.
Pavlacky, David C; Lukacs, Paul M; Blakesley, Jennifer A; Skorkowsky, Robert C; Klute, David S; Hahn, Beth A; Dreitz, Victoria J; George, T Luke; Hanni, David J
2017-01-01
Monitoring is an essential component of wildlife management and conservation. However, the usefulness of monitoring data is often undermined by the lack of 1) coordination across organizations and regions, 2) meaningful management and conservation objectives, and 3) rigorous sampling designs. Although many improvements to avian monitoring have been discussed, the recommendations have been slow to emerge in large-scale programs. We introduce the Integrated Monitoring in Bird Conservation Regions (IMBCR) program designed to overcome the above limitations. Our objectives are to outline the development of a statistically defensible sampling design to increase the value of large-scale monitoring data and provide example applications to demonstrate the ability of the design to meet multiple conservation and management objectives. We outline the sampling process for the IMBCR program with a focus on the Badlands and Prairies Bird Conservation Region (BCR 17). We provide two examples for the Brewer's sparrow (Spizella breweri) in BCR 17 demonstrating the ability of the design to 1) determine hierarchical population responses to landscape change and 2) estimate hierarchical habitat relationships to predict the response of the Brewer's sparrow to conservation efforts at multiple spatial scales. The collaboration across organizations and regions provided economy of scale by leveraging a common data platform over large spatial scales to promote the efficient use of monitoring resources. We designed the IMBCR program to address the information needs and core conservation and management objectives of the participating partner organizations. Although it has been argued that probabilistic sampling designs are not practical for large-scale monitoring, the IMBCR program provides a precedent for implementing a statistically defensible sampling design from local to bioregional scales. We demonstrate that integrating conservation and management objectives with rigorous statistical design and analyses ensures reliable knowledge about bird populations that is relevant and integral to bird conservation at multiple scales.
Hahn, Beth A.; Dreitz, Victoria J.; George, T. Luke
2017-01-01
Monitoring is an essential component of wildlife management and conservation. However, the usefulness of monitoring data is often undermined by the lack of 1) coordination across organizations and regions, 2) meaningful management and conservation objectives, and 3) rigorous sampling designs. Although many improvements to avian monitoring have been discussed, the recommendations have been slow to emerge in large-scale programs. We introduce the Integrated Monitoring in Bird Conservation Regions (IMBCR) program designed to overcome the above limitations. Our objectives are to outline the development of a statistically defensible sampling design to increase the value of large-scale monitoring data and provide example applications to demonstrate the ability of the design to meet multiple conservation and management objectives. We outline the sampling process for the IMBCR program with a focus on the Badlands and Prairies Bird Conservation Region (BCR 17). We provide two examples for the Brewer’s sparrow (Spizella breweri) in BCR 17 demonstrating the ability of the design to 1) determine hierarchical population responses to landscape change and 2) estimate hierarchical habitat relationships to predict the response of the Brewer’s sparrow to conservation efforts at multiple spatial scales. The collaboration across organizations and regions provided economy of scale by leveraging a common data platform over large spatial scales to promote the efficient use of monitoring resources. We designed the IMBCR program to address the information needs and core conservation and management objectives of the participating partner organizations. Although it has been argued that probabilistic sampling designs are not practical for large-scale monitoring, the IMBCR program provides a precedent for implementing a statistically defensible sampling design from local to bioregional scales. We demonstrate that integrating conservation and management objectives with rigorous statistical design and analyses ensures reliable knowledge about bird populations that is relevant and integral to bird conservation at multiple scales. PMID:29065128
Friedlander, Alan M; Stamoulis, Kostantinos A; Kittinger, John N; Drazen, Jeffrey C; Tissot, Brian N
2014-01-01
Ancient Hawaiians developed a sophisticated natural resource management system that included various forms of spatial management. Today there exists in Hawai'i a variety of spatial marine management strategies along a range of scales, with varying degrees of effectiveness. State-managed no-take areas make up less than 0.4% of nearshore waters, resulting in limited ecological and social benefits. There is increasing interest among communities and coastal stakeholders in integrating aspects of customary Hawaiian knowledge into contemporary co-management. A network of no-take reserves for aquarium fish on Hawai'i Island is a stakeholder-driven, adaptive management strategy that has been successful in achieving ecological objectives and economic benefits. A network of large-scale no-take areas for deepwater (100-400m) bottomfishes suffered from a lack of adequate data during their initiation; however, better technology, more ecological data, and stakeholder input have resulted in improvements and the ecological benefits are becoming clear. Finally, the Papahānaumokuākea Marine National Monument (PMNM) is currently the single largest conservation area in the United States, and one of the largest in the world. It is considered an unqualified success and is managed under a new model of collaborative governance. These case studies allow an examination of the effects of scale on spatial marine management in Hawai'i and beyond that illustrate the advantages and shortcomings of different management strategies. Ultimately a marine spatial planning framework should be applied that incorporates existing marine managed areas to create a holistic, regional, multi-use zoning plan engaging stakeholders at all levels in order to maximize resilience of ecosystems and communities.
Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model
NASA Astrophysics Data System (ADS)
Verburg, Peter H.; Soepboer, Welmoed; Veldkamp, A.; Limpiada, Ramil; Espaldon, Victoria; Mastura, Sharifah S. A.
2002-09-01
Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution. The model structure is based on systems theory to allow the integrated analysis of land-use change in relation to socio-economic and biophysical driving factors. The model explicitly addresses the hierarchical organization of land use systems, spatial connectivity between locations and stability. Stability is incorporated by a set of variables that define the relative elasticity of the actual land-use type to conversion. The user can specify these settings based on expert knowledge or survey data. Two applications of the model in the Philippines and Malaysia are used to illustrate the functioning of the model and its validation.
Modeling the spatial dynamics of regional land use: the CLUE-S model.
Verburg, Peter H; Soepboer, Welmoed; Veldkamp, A; Limpiada, Ramil; Espaldon, Victoria; Mastura, Sharifah S A
2002-09-01
Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution. The model structure is based on systems theory to allow the integrated analysis of land-use change in relation to socio-economic and biophysical driving factors. The model explicitly addresses the hierarchical organization of land use systems, spatial connectivity between locations and stability. Stability is incorporated by a set of variables that define the relative elasticity of the actual land-use type to conversion. The user can specify these settings based on expert knowledge or survey data. Two applications of the model in the Philippines and Malaysia are used to illustrate the functioning of the model and its validation.
AIR QUALITY MODELING AT NEIGHBORHOOD SCALES TO IMPROVE HUMAN EXPOSURE ASSESSMENT
Air quality modeling is an integral component of risk assessment and of subsequent development of effective and efficient management of air quality. Urban areas introduce of fresh sources of pollutants into regional background producing significant spatial variability of the co...
Hyperspectral imagery for mapping crop yield for precision agriculture
USDA-ARS?s Scientific Manuscript database
Crop yield is perhaps the most important piece of information for crop management in precision agriculture. It integrates the effects of various spatial variables such as soil properties, topographic attributes, tillage, plant population, fertilization, irrigation, and pest infestations. A yield map...
Development of water environment information management and water pollution accident response system
NASA Astrophysics Data System (ADS)
Zhang, J.; Ruan, H.
2009-12-01
In recent years, many water pollution accidents occurred with the rapid economical development. In this study, water environment information management and water pollution accident response system are developed based on geographic information system (GIS) techniques. The system integrated spatial database, attribute database, hydraulic model, and water quality model under a user-friendly interface in a GIS environment. System ran in both Client/Server (C/S) and Browser/Server (B/S) platform which focused on model and inquiry respectively. System provided spatial and attribute data inquiry, water quality evaluation, statics, water pollution accident response case management (opening reservoir etc) and 2D and 3D visualization function, and gave assistant information to make decision on water pollution accident response. Polluted plume in Huaihe River were selected to simulate the transport of pollutes.
Research on spatio-temporal database techniques for spatial information service
NASA Astrophysics Data System (ADS)
Zhao, Rong; Wang, Liang; Li, Yuxiang; Fan, Rongshuang; Liu, Ping; Li, Qingyuan
2007-06-01
Geographic data should be described by spatial, temporal and attribute components, but the spatio-temporal queries are difficult to be answered within current GIS. This paper describes research into the development and application of spatio-temporal data management system based upon GeoWindows GIS software platform which was developed by Chinese Academy of Surveying and Mapping (CASM). Faced the current and practical requirements of spatial information application, and based on existing GIS platform, one kind of spatio-temporal data model which integrates vector and grid data together was established firstly. Secondly, we solved out the key technique of building temporal data topology, successfully developed a suit of spatio-temporal database management system adopting object-oriented methods. The system provides the temporal data collection, data storage, data management and data display and query functions. Finally, as a case study, we explored the application of spatio-temporal data management system with the administrative region data of multi-history periods of China as the basic data. With all the efforts above, the GIS capacity of management and manipulation in aspect of time and attribute of GIS has been enhanced, and technical reference has been provided for the further development of temporal geographic information system (TGIS).
NASA Astrophysics Data System (ADS)
Li, Yangdong; Han, Zhen; Liao, Zhongping
2009-10-01
Spatiality, temporality, legality, accuracy and continuality are characteristic of cadastral information, and the cadastral management demands that the cadastral data should be accurate, integrated and updated timely. It's a good idea to build an effective GIS management system to manage the cadastral data which are characterized by spatiality and temporality. Because no sound spatio-temporal data models have been adopted, however, the spatio-temporal characteristics of cadastral data are not well expressed in the existing cadastral management systems. An event-version-based spatio-temporal modeling approach is first proposed from the angle of event and version. Then with the help of it, an event-version-based spatio-temporal cadastral data model is built to represent spatio-temporal cadastral data. At last, the previous model is used in the design and implementation of a spatio-temporal cadastral management system. The result of the application of the system shows that the event-version-based spatio-temporal data model is very suitable for the representation and organization of cadastral data.
Quantifying Spatially Integrated Floodplain and Wetland Systems for the Conterminous US
NASA Astrophysics Data System (ADS)
Lane, C.; D'Amico, E.; Wing, O.; Bates, P. D.
2017-12-01
Wetlands interact with other waters across a variable connectivity continuum, from permanent to transient, from fast to slow, and from primarily surface water to exclusively groundwater flows. Floodplain wetlands typically experience fast and frequent surface and near-surface groundwater interactions with their river networks, leading to an increasing effort to tailor management strategies for these wetlands. Management of floodplain wetlands is contingent on accurate floodplain delineation, and though this has proven challenging, multiple efforts are being made to alleviate this data gap at the conterminous scale using spatial, physical, and hydrological floodplain proxies. In this study, we derived and contrasted floodplain extents using the following nationally available approaches: 1) a geospatial-buffer floodplain proxy (Lane and D'Amico 2016, JAWRA 52(3):705-722, 2) a regionalized flood frequency analysis coupled to a 30m resolution continental-scale hydraulic model (RFFA; Smith et al. 2015, WRR 51:539-553), and 3) a soils-based floodplain analysis (Sangwan and Merwade 2015, JAWRA 51(5):1286-1304). The geospatial approach uses National Wetlands Inventory and buffered National Hydrography Datasets. RFFA estimates extreme flows based on catchment size, regional climatology and upstream annual rainfall and routes these flows through a hydraulic model built with data from USGS HydroSHEDS, NOAA, and the National Elevation Dataset. Soil-based analyses define floodplains based on attributes within the USDA soil-survey data (SSURGO). Nearly 30% (by count) of U.S. freshwater wetlands are located within floodplains with geospatial analyses, contrasted with 37% (soils-based), and 53% (RFFA-based). The dichotomies between approaches are mainly a function of input data-layer resolution, accuracy, coverage, and extent, further discussed in this presentation. Ultimately, these spatial analyses and findings will improve floodplain and integrated wetland system extent assessment. This will lead to better management of the physically, chemically, and biologically integrated floodplain wetlands affecting the integrity of downstream waterbodies at multiple scales.
Application of future remote sensing systems to irrigation
NASA Technical Reports Server (NTRS)
Miller, L. D.
1982-01-01
Area estimates of irrigated crops and knowledge of crop type are required for modeling water consumption to assist farmers, rangers, and agricultural consultants in scheduling irrigation for distributed management of crop yields. Information on canopy physiology and soil moisture status on a spatial basis is potentially available from remote sensors, so the questions to be addressed relate to: (1) timing (data frequency, instantaneous and integrated measurement); and scheduling (widely distributed spatial demands); (2) spatial resolution; (3) radiometric and geometric accuracy and geoencoding; and (4) information/data distribution. This latter should be overnight, with no central storage, onsite capture, and low cost.
Coates, Peter S.; Casazza, Michael L.; Ricca, Mark A.; Brussee, Brianne E.; Blomberg, Erik J.; Gustafson, K. Benjamin; Overton, Cory T.; Davis, Dawn M.; Niell, Lara E.; Espinosa, Shawn P.; Gardner, Scott C.; Delehanty, David J.
2016-01-01
Predictive species distributional models are a cornerstone of wildlife conservation planning. Constructing such models requires robust underpinning science that integrates formerly disparate data types to achieve effective species management. Greater sage-grouse Centrocercus urophasianus, hereafter “sage-grouse” populations are declining throughout sagebrush-steppe ecosystems in North America, particularly within the Great Basin, which heightens the need for novel management tools that maximize use of available information. Herein, we improve upon existing species distribution models by combining information about sage-grouse habitat quality, distribution, and abundance from multiple data sources. To measure habitat, we created spatially explicit maps depicting habitat selection indices (HSI) informed by > 35 500 independent telemetry locations from > 1600 sage-grouse collected over 15 years across much of the Great Basin. These indices were derived from models that accounted for selection at different spatial scales and seasons. A region-wide HSI was calculated using the HSI surfaces modelled for 12 independent subregions and then demarcated into distinct habitat quality classes. We also employed a novel index to describe landscape patterns of sage-grouse abundance and space use (AUI). The AUI is a probabilistic composite of: (i) breeding density patterns based on the spatial configuration of breeding leks and associated trends in male attendance; and (ii) year-round patterns of space use indexed by the decreasing probability of use with increasing distance to leks. The continuous AUI surface was then reclassified into two classes representing high and low/no use and abundance. Synthesis and applications. Using the example of sage-grouse, we demonstrate how the joint application of indices of habitat selection, abundance, and space use derived from multiple data sources yields a composite map that can guide effective allocation of management intensity across multiple spatial scales. As applied to sage-grouse, the composite map identifies spatially explicit management categories within sagebrush steppe that are most critical to sustaining sage-grouse populations as well as those areas where changes in land use would likely have minimal impact. Importantly, collaborative efforts among stakeholders guide which intersections of habitat selection indices and abundance and space use classes are used to define management categories. Because sage-grouse are an umbrella species, our joint-index modelling approach can help target effective conservation for other sagebrush obligate species, and can be readily applied to species in other ecosystems with similar life histories, such as central-placed breeding.
Coates, Peter S; Casazza, Michael L; Ricca, Mark A; Brussee, Brianne E; Blomberg, Erik J; Gustafson, K Benjamin; Overton, Cory T; Davis, Dawn M; Niell, Lara E; Espinosa, Shawn P; Gardner, Scott C; Delehanty, David J
2016-02-01
Predictive species distributional models are a cornerstone of wildlife conservation planning. Constructing such models requires robust underpinning science that integrates formerly disparate data types to achieve effective species management.Greater sage-grouse Centrocercus urophasianus , hereafter 'sage-grouse' populations are declining throughout sagebrush-steppe ecosystems in North America, particularly within the Great Basin, which heightens the need for novel management tools that maximize the use of available information.Herein, we improve upon existing species distribution models by combining information about sage-grouse habitat quality, distribution and abundance from multiple data sources. To measure habitat, we created spatially explicit maps depicting habitat selection indices (HSI) informed by >35 500 independent telemetry locations from >1600 sage-grouse collected over 15 years across much of the Great Basin. These indices were derived from models that accounted for selection at different spatial scales and seasons. A region-wide HSI was calculated using the HSI surfaces modelled for 12 independent subregions and then demarcated into distinct habitat quality classes.We also employed a novel index to describe landscape patterns of sage-grouse abundance and space use (AUI). The AUI is a probabilistic composite of the following: (i) breeding density patterns based on the spatial configuration of breeding leks and associated trends in male attendance; and (ii) year-round patterns of space use indexed by the decreasing probability of use with increasing distance to leks. The continuous AUI surface was then reclassified into two classes representing high and low/no use and abundance. Synthesis and application s. Using the example of sage-grouse, we demonstrate how the joint application of indices of habitat selection, abundance and space use derived from multiple data sources yields a composite map that can guide effective allocation of management intensity across multiple spatial scales. As applied to sage-grouse, the composite map identifies spatially explicit management categories within sagebrush steppe that are most critical to sustaining sage-grouse populations as well as those areas where changes in land use would likely have minimal impact. Importantly, collaborative efforts among stakeholders guide which intersections of habitat selection indices and abundance and space use classes are used to define management categories. Because sage-grouse are an umbrella species, our joint-index modelling approach can help target effective conservation for other sagebrush obligate species and can be readily applied to species in other ecosystems with similar life histories, such as central-placed breeding.
Aubertot, Jean-Noël; Peyrard, Nathalie; Sabbadin, Régis
2017-01-01
Designing management policies in ecology and agroecology is complex. Several components must be managed together while they strongly interact spatially. Decision choices must be made under uncertainty on the results of the actions and on the system dynamics. Furthermore, the objectives pursued when managing ecological systems or agroecosystems are usually long term objectives, such as biodiversity conservation or sustainable crop production. The framework of Graph-Based Markov Decision Processes (GMDP) is well adapted to the qualitative modeling of such problems of sequential decision under uncertainty. Spatial interactions are easily modeled and integrated control policies (combining several action levers) can be designed through optimization. The provided policies are adaptive, meaning that management actions are decided at each time step (for instance yearly) and the chosen actions depend on the current system state. This framework has already been successfully applied to forest management and invasive species management. However, up to now, no “easy-to-use” implementation of this framework was available. We present GMDPtoolbox, a Matlab toolbox which can be used both for the design of new management policies and for comparing policies by simulation. We provide an illustration of the use of the toolbox on a realistic crop disease management problem: the design of long term management policy of blackleg of canola using an optimal combination of three possible cultural levers. This example shows how GMDPtoolbox can be used as a tool to support expert thinking. PMID:28982151
Cros, Marie-Josée; Aubertot, Jean-Noël; Peyrard, Nathalie; Sabbadin, Régis
2017-01-01
Designing management policies in ecology and agroecology is complex. Several components must be managed together while they strongly interact spatially. Decision choices must be made under uncertainty on the results of the actions and on the system dynamics. Furthermore, the objectives pursued when managing ecological systems or agroecosystems are usually long term objectives, such as biodiversity conservation or sustainable crop production. The framework of Graph-Based Markov Decision Processes (GMDP) is well adapted to the qualitative modeling of such problems of sequential decision under uncertainty. Spatial interactions are easily modeled and integrated control policies (combining several action levers) can be designed through optimization. The provided policies are adaptive, meaning that management actions are decided at each time step (for instance yearly) and the chosen actions depend on the current system state. This framework has already been successfully applied to forest management and invasive species management. However, up to now, no "easy-to-use" implementation of this framework was available. We present GMDPtoolbox, a Matlab toolbox which can be used both for the design of new management policies and for comparing policies by simulation. We provide an illustration of the use of the toolbox on a realistic crop disease management problem: the design of long term management policy of blackleg of canola using an optimal combination of three possible cultural levers. This example shows how GMDPtoolbox can be used as a tool to support expert thinking.
Predicting and quantifying soil processes using “geomorphon” landform Classification
USDA-ARS?s Scientific Manuscript database
Soil development and behavior vary spatially at multiple observation scales. Predicting and quantifying soil properties and processes via a catena integrates predictable landscape scale variation relevant to both management decisions and soil survey. Soil maps generally convey variation as a set of ...
The challenges of marine spatial planning in the Arctic: Results from the ACCESS programme.
Edwards, Rosemary; Evans, Alan
2017-12-01
Marine spatial planning is increasingly used to manage the demands on marine areas, both spatially and temporally, where several different users may compete for resources or space, to ensure that development is as sustainable as possible. Diminishing sea-ice coverage in the Arctic will allow for potential increases in economic exploitation, and failure to plan for cross-sectoral management could have negative economic and environmental results. During the ACCESS programme, a marine spatial planning tool was developed for the Arctic, enabling the integrated study of human activities related to hydrocarbon exploitation, shipping and fisheries, and the possible environmental impacts, within the context of the next 30 years of climate change. In addition to areas under national jurisdiction, the Arctic Ocean contains a large area of high seas. Resources and ecosystems extend across political boundaries. We use three examples to highlight the need for transboundary planning and governance to be developed at a regional level.
Zhang, Yang; Shen, Jing; Li, Yu
2018-01-01
Assessing and quantifying atmospheric vulnerability is a key issue in urban environmental protection and management. This paper integrated the Analytical hierarchy process (AHP), fuzzy synthesis evaluation and Geographic Information System (GIS) spatial analysis into an Exposure-Sensitivity-Adaptive capacity (ESA) framework to quantitatively assess atmospheric environment vulnerability in the Beijing-Tianjin-Hebei (BTH) region with spatial and temporal comparisons. The elaboration of the relationships between atmospheric environment vulnerability and indices of exposure, sensitivity, and adaptive capacity supports enable analysis of the atmospheric environment vulnerability. Our findings indicate that the atmospheric environment vulnerability of 13 cities in the BTH region exhibits obvious spatial heterogeneity, which is caused by regional diversity in exposure, sensitivity, and adaptive capacity indices. The results of atmospheric environment vulnerability assessment and the cause analysis can provide guidance to pick out key control regions and recognize vulnerable indicators for study sites. The framework developed in this paper can also be replicated at different spatial and temporal scales using context-specific datasets to support environmental management. PMID:29342852
Zhang, Yang; Shen, Jing; Li, Yu
2018-01-13
Assessing and quantifying atmospheric vulnerability is a key issue in urban environmental protection and management. This paper integrated the Analytical hierarchy process (AHP), fuzzy synthesis evaluation and Geographic Information System (GIS) spatial analysis into an Exposure-Sensitivity-Adaptive capacity (ESA) framework to quantitatively assess atmospheric environment vulnerability in the Beijing-Tianjin-Hebei (BTH) region with spatial and temporal comparisons. The elaboration of the relationships between atmospheric environment vulnerability and indices of exposure, sensitivity, and adaptive capacity supports enable analysis of the atmospheric environment vulnerability. Our findings indicate that the atmospheric environment vulnerability of 13 cities in the BTH region exhibits obvious spatial heterogeneity, which is caused by regional diversity in exposure, sensitivity, and adaptive capacity indices. The results of atmospheric environment vulnerability assessment and the cause analysis can provide guidance to pick out key control regions and recognize vulnerable indicators for study sites. The framework developed in this paper can also be replicated at different spatial and temporal scales using context-specific datasets to support environmental management.
Integrated remotely sensed datasets for disaster management
NASA Astrophysics Data System (ADS)
McCarthy, Timothy; Farrell, Ronan; Curtis, Andrew; Fotheringham, A. Stewart
2008-10-01
Video imagery can be acquired from aerial, terrestrial and marine based platforms and has been exploited for a range of remote sensing applications over the past two decades. Examples include coastal surveys using aerial video, routecorridor infrastructures surveys using vehicle mounted video cameras, aerial surveys over forestry and agriculture, underwater habitat mapping and disaster management. Many of these video systems are based on interlaced, television standards such as North America's NTSC and European SECAM and PAL television systems that are then recorded using various video formats. This technology has recently being employed as a front-line, remote sensing technology for damage assessment post-disaster. This paper traces the development of spatial video as a remote sensing tool from the early 1980s to the present day. The background to a new spatial-video research initiative based at National University of Ireland, Maynooth, (NUIM) is described. New improvements are proposed and include; low-cost encoders, easy to use software decoders, timing issues and interoperability. These developments will enable specialists and non-specialists collect, process and integrate these datasets within minimal support. This integrated approach will enable decision makers to access relevant remotely sensed datasets quickly and so, carry out rapid damage assessment during and post-disaster.
Advancing the integration of spatial data to map human and natural drivers on coral reefs
Gove, Jamison M.; Walecka, Hilary R.; Donovan, Mary K.; Williams, Gareth J.; Jouffray, Jean-Baptiste; Crowder, Larry B.; Erickson, Ashley; Falinski, Kim; Friedlander, Alan M.; Kappel, Carrie V.; Kittinger, John N.; McCoy, Kaylyn; Norström, Albert; Nyström, Magnus; Oleson, Kirsten L. L.; Stamoulis, Kostantinos A.; White, Crow; Selkoe, Kimberly A.
2018-01-01
A major challenge for coral reef conservation and management is understanding how a wide range of interacting human and natural drivers cumulatively impact and shape these ecosystems. Despite the importance of understanding these interactions, a methodological framework to synthesize spatially explicit data of such drivers is lacking. To fill this gap, we established a transferable data synthesis methodology to integrate spatial data on environmental and anthropogenic drivers of coral reefs, and applied this methodology to a case study location–the Main Hawaiian Islands (MHI). Environmental drivers were derived from time series (2002–2013) of climatological ranges and anomalies of remotely sensed sea surface temperature, chlorophyll-a, irradiance, and wave power. Anthropogenic drivers were characterized using empirically derived and modeled datasets of spatial fisheries catch, sedimentation, nutrient input, new development, habitat modification, and invasive species. Within our case study system, resulting driver maps showed high spatial heterogeneity across the MHI, with anthropogenic drivers generally greatest and most widespread on O‘ahu, where 70% of the state’s population resides, while sedimentation and nutrients were dominant in less populated islands. Together, the spatial integration of environmental and anthropogenic driver data described here provides a first-ever synthetic approach to visualize how the drivers of coral reef state vary in space and demonstrates a methodological framework for implementation of this approach in other regions of the world. By quantifying and synthesizing spatial drivers of change on coral reefs, we provide an avenue for further research to understand how drivers determine reef diversity and resilience, which can ultimately inform policies to protect coral reefs. PMID:29494613
Douvere, Fanny; Ehler, Charles N
2009-01-01
Increased development pressures on the marine environment and the potential for multiple use conflicts, arising as a result of the current expansion of offshore wind energy, fishing and aquaculture, dredging, mineral extraction, shipping, and the need to meet international and national commitments to biodiversity conservation, have led to increased interest in sea use planning with particular emphasis on marine spatial planning. Several European countries, on their own initiative or driven by the European Union's Marine Strategy and Maritime Policy, the Bergen Declaration of the North Sea Conference, and the EU Recommendation on Integrated Coastal Zone Management, have taken global leadership in implementing marine spatial planning. Belgium, The Netherlands, and Germany in the North Sea, and the United Kingdom in the Irish Sea, have already completed preliminary sea use plans and zoning proposals for marine areas within their national jurisdictions. This paper discusses the nature and context of marine spatial planning, the international legal and policy framework, and the increasing need for marine spatial planning in Europe. In addition, the authors review briefly three marine spatial planning initiatives in the North Sea and conclude with some initial lessons learned from these experiences.
Gbm.auto: A software tool to simplify spatial modelling and Marine Protected Area planning
Officer, Rick; Clarke, Maurice; Reid, David G.; Brophy, Deirdre
2017-01-01
Boosted Regression Trees. Excellent for data-poor spatial management but hard to use Marine resource managers and scientists often advocate spatial approaches to manage data-poor species. Existing spatial prediction and management techniques are either insufficiently robust, struggle with sparse input data, or make suboptimal use of multiple explanatory variables. Boosted Regression Trees feature excellent performance and are well suited to modelling the distribution of data-limited species, but are extremely complicated and time-consuming to learn and use, hindering access for a wide potential user base and therefore limiting uptake and usage. BRTs automated and simplified for accessible general use with rich feature set We have built a software suite in R which integrates pre-existing functions with new tailor-made functions to automate the processing and predictive mapping of species abundance data: by automating and greatly simplifying Boosted Regression Tree spatial modelling, the gbm.auto R package suite makes this powerful statistical modelling technique more accessible to potential users in the ecological and modelling communities. The package and its documentation allow the user to generate maps of predicted abundance, visualise the representativeness of those abundance maps and to plot the relative influence of explanatory variables and their relationship to the response variables. Databases of the processed model objects and a report explaining all the steps taken within the model are also generated. The package includes a previously unavailable Decision Support Tool which combines estimated escapement biomass (the percentage of an exploited population which must be retained each year to conserve it) with the predicted abundance maps to generate maps showing the location and size of habitat that should be protected to conserve the target stocks (candidate MPAs), based on stakeholder priorities, such as the minimisation of fishing effort displacement. Gbm.auto for management in various settings By bridging the gap between advanced statistical methods for species distribution modelling and conservation science, management and policy, these tools can allow improved spatial abundance predictions, and therefore better management, decision-making, and conservation. Although this package was built to support spatial management of a data-limited marine elasmobranch fishery, it should be equally applicable to spatial abundance modelling, area protection, and stakeholder engagement in various scenarios. PMID:29216310
Spatial Data Uncertainty in a Webgis Tool Supporting Sediments Management in Wallonia
NASA Astrophysics Data System (ADS)
Stéphenne, N. R.; Beaumont, B.; Veschkens, M.; Palm, S.; Charlemagne, C.
2015-08-01
This paper describes a WebGIS prototype developed for the Walloon administration to improve the communication and the management of sediments dredging actions carried out in rivers and lakes. In Wallonia, levelling dredged sediments on banks requires an official authorization from the administration. This request refers to geospatial datasets such as the official land use map, the cadastral map or the distance to potential pollution sources. Centralising geodatabases within a web interface facilitate the management of these authorizations for the managers and the central administration. The proposed system integrates various data from disparate sources. Some issues in map scale, spatial search quality and cartographic visualisation are discussed in this paper with the solutions provided. The prototype web application is currently discussed with some potential users in order to understand in which way this tool facilitate the communication, the management and the quality of the authorisation process. The structure of the paper states the why, what, who and how of this communication tool with a special focus on errors and uncertainties.
Effective spatial database support for acquiring spatial information from remote sensing images
NASA Astrophysics Data System (ADS)
Jin, Peiquan; Wan, Shouhong; Yue, Lihua
2009-12-01
In this paper, a new approach to maintain spatial information acquiring from remote-sensing images is presented, which is based on Object-Relational DBMS. According to this approach, the detected and recognized results of targets are stored and able to be further accessed in an ORDBMS-based spatial database system, and users can access the spatial information using the standard SQL interface. This approach is different from the traditional ArcSDE-based method, because the spatial information management module is totally integrated into the DBMS and becomes one of the core modules in the DBMS. We focus on three issues, namely the general framework for the ORDBMS-based spatial database system, the definitions of the add-in spatial data types and operators, and the process to develop a spatial Datablade on Informix. The results show that the ORDBMS-based spatial database support for image-based target detecting and recognition is easy and practical to be implemented.
Wu, Dehua
2016-01-01
The spatial position and distribution of human body meridian are expressed limitedly in the decision support system (DSS) of acupuncture and moxibustion at present, which leads to the failure to give the effective quantitative analysis on the spatial range and the difficulty for the decision-maker to provide a realistic spatial decision environment. Focusing on the limit spatial expression in DSS of acupuncture and moxibustion, it was proposed that on the basis of the geographic information system, in association of DSS technology, the design idea was developed on the human body meridian spatial DSS. With the 4-layer service-oriented architecture adopted, the data center integrated development platform was taken as the system development environment. The hierarchical organization was done for the spatial data of human body meridian via the directory tree. The structured query language (SQL) server was used to achieve the unified management of spatial data and attribute data. The technologies of architecture, configuration and plug-in development model were integrated to achieve the data inquiry, buffer analysis and program evaluation of the human body meridian spatial DSS. The research results show that the human body meridian spatial DSS could reflect realistically the spatial characteristics of the spatial position and distribution of human body meridian and met the constantly changeable demand of users. It has the powerful spatial analysis function and assists with the scientific decision in clinical treatment and teaching of acupuncture and moxibustion. It is the new attempt to the informatization research of human body meridian.
GEOGRAPHICAL INFORMATION SYSTEM, DECISION SUPPORT SYSTEMS, AND URBAN STORMWATER MANAGEMENT
The full report reviews the application of Geographic Inforamtion System (GIS) technology to the field of urban stormwater modeling. The GIS literature is reviewed in the context of its use as a spatial database for urban stormwater modeling, integration of GIS and hydroloic time...
NASA Astrophysics Data System (ADS)
Delong, Michael D.; Brusven, Merlyn A.
1991-07-01
Management of riparian habitats has been recognized for its importance in reducing instream effects of agricultural nonpoint source pollution. By serving as a buffer, well structured riparian habitats can reduce nonpoint source impacts by filtering surface runoff from field to stream. A system has been developed where key characteristics of riparian habitat, vegetation type, height, width, riparian and shoreline bank slope, and land use are classified as discrete categorical units. This classification system recognizes seven riparian vegetation types, which are determined by dominant plant type. Riparian and shoreline bank slope, in addition to riparian width and height, each consist of five categories. Classification by discrete units allows for ready digitizing of information for production of spatial maps using a geographic information system (GIS). The classification system was tested for field efficiency on Tom Beall Creek watershed, an agriculturally impacted third-order stream in the Clearwater River drainage, Nez Perce County, Idaho, USA. The classification system was simple to use during field applications and provided a good inventory of riparian habitat. After successful field tests, spatial maps were produced for each component using the Professional Map Analysis Package (pMAP), a GIS program. With pMAP, a map describing general riparian habitat condition was produced by combining the maps of components of riparian habitat, and the condition map was integrated with a map of soil erosion potential in order to determine areas along the stream that are susceptible to nonpoint source pollution inputs. Integration of spatial maps of riparian classification and watershed characteristics has great potential as a tool for aiding in making management decisions for mitigating off-site impacts of agricultural nonpoint source pollution.
GIS embedded hydrological modeling: the SID&GRID project
NASA Astrophysics Data System (ADS)
Borsi, I.; Rossetto, R.; Schifani, C.
2012-04-01
The SID&GRID research project, started April 2010 and funded by Regione Toscana (Italy) under the POR FSE 2007-2013, aims to develop a Decision Support System (DSS) for water resource management and planning based on open source and public domain solutions. In order to quantitatively assess water availability in space and time and to support the planning decision processes, the SID&GRID solution consists of hydrological models (coupling 3D existing and newly developed surface- and ground-water and unsaturated zone modeling codes) embedded in a GIS interface, applications and library, where all the input and output data are managed by means of DataBase Management System (DBMS). A graphical user interface (GUI) to manage, analyze and run the SID&GRID hydrological models based on open source gvSIG GIS framework (Asociación gvSIG, 2011) and a Spatial Data Infrastructure to share and interoperate with distributed geographical data is being developed. Such a GUI is thought as a "master control panel" able to guide the user from pre-processing spatial and temporal data, running the hydrological models, and analyzing the outputs. To achieve the above-mentioned goals, the following codes have been selected and are being integrated: 1. Postgresql/PostGIS (PostGIS, 2011) for the Geo Data base Management System; 2. gvSIG with Sextante (Olaya, 2011) geo-algorithm library capabilities and Grass tools (GRASS Development Team, 2011) for the desktop GIS; 3. Geoserver and Geonetwork to share and discover spatial data on the web according to Open Geospatial Consortium; 4. new tools based on the Sextante GeoAlgorithm framework; 5. MODFLOW-2005 (Harbaugh, 2005) groundwater modeling code; 6. MODFLOW-LGR (Mehl and Hill 2005) for local grid refinement; 7. VSF (Thoms et al., 2006) for the variable saturated flow component; 8. new developed routines for overland flow; 9. new algorithms in Jython integrated in gvSIG to compute the net rainfall rate reaching the soil surface, as input for the unsaturated/saturated flow model. At this stage of the research (which will end April 2013), two primary components of the master control panel are being developed: i. a SID&GRID toolbar integrated into gvSIG map context; ii. a new Sextante set of geo-algorithm to pre- and post-process the spatial data to run the hydrological models. The groundwater part of the code has been fully integrated and tested and 3D visualization tools are being developed. The LGR capability has been extended to the 3D solution of the Richards' equation in order to solve in detail the unsaturated zone where required. To be updated about the project, please follow us at the website: http://ut11.isti.cnr.it/SIDGRID/
Dorazio, Robert; Delampady, Mohan; Dey, Soumen; Gopalaswamy, Arjun M.; Karanth, K. Ullas; Nichols, James D.
2017-01-01
Conservationists and managers are continually under pressure from the public, the media, and political policy makers to provide “tiger numbers,” not just for protected reserves, but also for large spatial scales, including landscapes, regions, states, nations, and even globally. Estimating the abundance of tigers within relatively small areas (e.g., protected reserves) is becoming increasingly tractable (see Chaps. 9 and 10), but doing so for larger spatial scales still presents a formidable challenge. Those who seek “tiger numbers” are often not satisfied by estimates of tiger occupancy alone, regardless of the reliability of the estimates (see Chaps. 4 and 5). As a result, wherever tiger conservation efforts are underway, either substantially or nominally, scientists and managers are frequently asked to provide putative large-scale tiger numbers based either on a total count or on an extrapolation of some sort (see Chaps. 1 and 2).
NASA Astrophysics Data System (ADS)
Brook, A.; Cristofani, E.; Vandewal, M.; Matheis, C.; Jonuscheit, J.; Beigang, R.
2012-05-01
The present study proposes a fully integrated, semi-automatic and near real-time mode-operated image processing methodology developed for Frequency-Modulated Continuous-Wave (FMCW) THz images with the center frequencies around: 100 GHz and 300 GHz. The quality control of aeronautics composite multi-layered materials and structures using Non-Destructive Testing is the main focus of this work. Image processing is applied on the 3-D images to extract useful information. The data is processed by extracting areas of interest. The detected areas are subjected to image analysis for more particular investigation managed by a spatial model. Finally, the post-processing stage examines and evaluates the spatial accuracy of the extracted information.
Quantifying biological integrity of California sage scrub communities using plant life-form cover.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Y.; Stow, D. A.; Franklin, J.
2010-01-01
The California sage scrub (CSS) community type in California's Mediterranean-type ecosystems supports a large number of rare, threatened, and endangered species, and is critically degraded and endangered. Monitoring ecological variables that provide information about community integrity is vital to conserving these biologically diverse communities. Fractional cover of true shrub, subshrub, herbaceous vegetation, and bare ground should fill information gaps between generalized vegetation type maps and detailed field-based plot measurements of species composition and provide an effective means for quantifying CSS community integrity. Remote sensing is the only tool available for estimating spatially comprehensive fractional cover over large extent, and fractionalmore » cover of plant life-form types is one of the measures of vegetation state that is most amenable to remote sensing. The use of remote sensing does not eliminate the need for either field surveying or vegetation type mapping; rather it will likely require a combination of approaches to reliably estimate life-form cover and to provide comprehensive information for communities. According to our review and synthesis, life-form fractional cover has strong potential for providing ecologically meaningful intermediate-scale information, which is unattainable from vegetation type maps and species-level field measurements. Thus, we strongly recommend incorporating fractional cover of true shrub, subshrub, herb, and bare ground in CSS community monitoring methods. Estimating life-form cover at a 25 m x 25 m spatial scale using remote sensing would be an appropriate approach for initial implementation. Investigation of remote sensing techniques and an appropriate spatial scale; collaboration of resource managers, biologists, and remote sensing specialists, and refinement of protocols are essential for integrating life-form fractional cover mapping into strategies for sustainable long-term CSS community management.« less
NASA Astrophysics Data System (ADS)
Deo, Ram K.
Credible spatial information characterizing the structure and site quality of forests is critical to sustainable forest management and planning, especially given the increasing demands and threats to forest products and services. Forest managers and planners are required to evaluate forest conditions over a broad range of scales, contingent on operational or reporting requirements. Traditionally, forest inventory estimates are generated via a design-based approach that involves generalizing sample plot measurements to characterize an unknown population across a larger area of interest. However, field plot measurements are costly and as a consequence spatial coverage is limited. Remote sensing technologies have shown remarkable success in augmenting limited sample plot data to generate stand- and landscape-level spatial predictions of forest inventory attributes. Further enhancement of forest inventory approaches that couple field measurements with cutting edge remotely sensed and geospatial datasets are essential to sustainable forest management. We evaluated a novel Random Forest based k Nearest Neighbors (RF-kNN) imputation approach to couple remote sensing and geospatial data with field inventory collected by different sampling methods to generate forest inventory information across large spatial extents. The forest inventory data collected by the FIA program of US Forest Service was integrated with optical remote sensing and other geospatial datasets to produce biomass distribution maps for a part of the Lake States and species-specific site index maps for the entire Lake State. Targeting small-area application of the state-of-art remote sensing, LiDAR (light detection and ranging) data was integrated with the field data collected by an inexpensive method, called variable plot sampling, in the Ford Forest of Michigan Tech to derive standing volume map in a cost-effective way. The outputs of the RF-kNN imputation were compared with independent validation datasets and extant map products based on different sampling and modeling strategies. The RF-kNN modeling approach was found to be very effective, especially for large-area estimation, and produced results statistically equivalent to the field observations or the estimates derived from secondary data sources. The models are useful to resource managers for operational and strategic purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmichael, Laurence, E-mail: Laurence.carmichael@uwe.ac.uk; Barton, Hugh; Gray, Selena
This article presents the results of a review of literature examining the barriers and facilitators in integrating health in spatial planning at the local, mainly urban level, through appraisals. Our literature review covered the UK and non UK experiences of appraisals used to consider health issues in the planning process. We were able to identify four main categories of obstacles and facilitators including first the different knowledge and conceptual understanding of health by different actors/stakeholders, second the types of governance arrangements, in particular partnerships, in place and the political context, third the way institutions work, the responsibilities they have andmore » their capacity and resources and fourth the timeliness, comprehensiveness and inclusiveness of the appraisal process. The findings allowed us to draw some lessons on the governance and policy framework regarding the integration of health impact into spatial planning, in particular considering the pros and cons of integrating health impact assessment (HIA) into other forms of impact assessment of spatial planning decisions such as environmental impact assessment (EIA) and strategic environment assessment (SEA). In addition, the research uncovered a gap in the literature that tends to focus on the mainly voluntary HIA to assess health outcomes of planning decisions and neglect the analysis of regulatory mechanisms such as EIA and SEA. - Highlights: Black-Right-Pointing-Pointer Governance and policy barriers and facilitators to the integration of health into urban planning. Black-Right-Pointing-Pointer Review of literature on impact assessment methods used across the world. Black-Right-Pointing-Pointer Knowledge, partnerships, management/resources and processes can impede integration. Black-Right-Pointing-Pointer HIA evaluations prevail uncovering research opportunities for evaluating other techniques.« less
NASA Astrophysics Data System (ADS)
Prenger-Berninghoff, Kathrin; Cortes, V. Juliette; Aye, Zar Chi; Sprague, Teresa
2013-04-01
The management of natural hazards involves, as generally known, the four stages of the risk management cycle: Prevention, preparedness, response and recovery. Accordingly, the mitigation of disasters can be performed in terms of short-term and long-term purposes. Whereas emergency management or civil protection helps to strengthen a community's capacity to be better prepared for natural hazards and to better respond in case a disaster strikes, thus addressing the short-term perspective, spatial planning serves long-term planning goals and can therefore implement long-term prevention measures. A purposefully applied risk mitigation strategy requires coordination of short-term and long-term mitigation measures and thus an effective coordination of emergency management and spatial planning. Several actors are involved in risk management and should consequently be linked throughout the whole risk management cycle. However, these actors, partly because of a historically fragmented administrative system, are hardly connected to each other, with spatial planning only having a negligible role compared to other actors1, a problem to which Young (2002) referred to as the "problem of interplay". In contrast, information transfer and decision-taking happen at the same time and are not coordinated among different actors. This applies to the prevention and preparedness phase as well as to the recovery phase, which basically constitutes the prevention phase for the next disaster2. Since investments in both risk prevention and emergency preparedness and response are considered necessary, a better coordination of the two approaches is required. In this regard, Decision Support Systems (DSS) can be useful in order to provide support in the decision-making aspect of risk management. The research work currently undertaken examines the problem of interplay in the four case study areas of the Marie Curie ITN, CHANGES3. The link between different risk management actors will be explored by means of exploratory questionnaires and interviews with government agencies, local administrations, community and research organizations on each study site. First results provided will address the general role of spatial planning in risk management. Additionally, preliminary observations are made in regard to the coordination of emergency preparedness and long-term spatial planning activities. The observations consider that integration facilitates proactive strategies that aim at preventing disaster occurrence and promote interaction between involved parties. Finally, consideration is given to the potential use of a DSS tool to cover both aspects of spatial planning and emergency management in the risk management cycle.
NASA Astrophysics Data System (ADS)
Burdon, Daryl; Boyes, Suzanne J.; Elliott, Michael; Smyth, Katie; Atkins, Jonathan P.; Barnes, Richard A.; Wurzel, Rüdiger K.
2018-02-01
The management of marine resources is a complex process driven by the dynamics of the natural system and the influence of stakeholders including policy-makers. An integration of natural and social sciences research is required by policy-makers to better understand, and manage sustainably, natural changes and anthropogenic activities within particular marine systems. Given the uncertain development of activities in the marine environment, future scenarios assessments can be used to investigate whether marine policy measures are robust and sustainable. This paper develops an interdisciplinary framework, which incorporates future scenarios assessments, and identifies four main types of evaluation needed to integrate natural and social sciences research to support the integrated management of the marine environment: environmental policy and governance assessments; ecosystem services, indicators and valuation; modelling tools for management evaluations, and risk assessment and risk management. The importance of stakeholder engagement within each evaluation method is highlighted. The paper focuses on the transnational spatial marine management of the Dogger Bank, in the central North Sea, a site which is very important ecologically, economically and politically. Current management practices are reviewed, and research tools to support future management decisions are applied and discussed in relation to two main vectors of change affecting the Dogger Bank, namely commercial fisheries and offshore wind farm developments, and in relation to the need for nature conservation. The input of local knowledge through stakeholder engagement is highlighted as a necessary requirement to produce site-specific policy recommendations for the future management of the Dogger Bank. We present wider policy recommendations to integrate natural and social sciences in a global marine context.
Great Basin Integrated Landscape Monitoring Pilot Summary Report
Finn, Sean P.; Kitchell, Kate; Baer, Lori Anne; Bedford, David R.; Brooks, Matthew L.; Flint, Alan L.; Flint, Lorraine E.; Matchett, J.R.; Mathie, Amy; Miller, David M.; Pilliod, David S.; Torregrosa, Alicia; Woodward, Andrea
2010-01-01
The Great Basin Integrated Landscape Monitoring Pilot project (GBILM) was one of four regional pilots to implement the U.S. Geological Survey (USGS) Science Thrust on Integrated Landscape Monitoring (ILM) whose goal was to observe, understand, and predict landscape change and its implications on natural resources at multiple spatial and temporal scales and address priority natural resource management and policy issues. The Great Basin is undergoing rapid environmental change stemming from interactions among global climate trends, increasing human populations, expanding and accelerating land and water uses, invasive species, and altered fire regimes. GBLIM tested concepts and developed tools to store and analyze monitoring data, understand change at multiple scales, and forecast landscape change. The GBILM endeavored to develop and test a landscape-level monitoring approach in the Great Basin that integrates USGS disciplines, addresses priority management questions, catalogs and uses existing monitoring data, evaluates change at multiple scales, and contributes to development of regional monitoring strategies. GBILM functioned as an integrative team from 2005 to 2010, producing more than 35 science and data management products that addressed pressing ecosystem drivers and resource management agency needs in the region. This report summarizes the approaches and methods of this interdisciplinary effort, identifies and describes the products generated, and provides lessons learned during the project.
NASA Astrophysics Data System (ADS)
Sui, Haigang; Xiao, Jinghuan; Wang, Qi; Li, Qian
2007-06-01
PDA (Personal Digital Assistant) is a useful tool for navigation which has many advantages such as its smallness and portability. In the meantime, digital charts have been found a wide application in past ten years, and many users are hoping for giving up the paper chart entirely and using ENC by the law. However, traditional paper chart is a nonreplaced tool for people in hydrographical survey and other application fields, and would coexist with ENC for a long time. How to manage and display integrated chart for traditional paper chart and ENC together in PDA for navigating is still an unsolved problem. Aiming at this, a new integrated spatial data model and display techniques for ENC and paper chart are presented. The core idea of the new algorithm is to build an integrated spatial data model, structure and display environment for both paper chart and ENC. Based on the above algorithms and strategies, an Integrated Electronic Chart Pocket Navigator System named PNS based on PDA was developed. It has been applied in Tianjin Marine Safety Administration Bureau and obtained a good evaluation.
INTEGRATED RESEARCH PLAN FOR LINKING BMPS AND WATERSHED WATER QUALITY IN SOUTHERN OHIO
Although it is routine for watershed management programs to coincide the monitoring of land use impacts and water quality at different spatial scales, rarely are the data collected or analyzed in such a strategic manner to be able to study the linkages among ecological systems ac...
Population dynamics of stored maize insect pests in warehouses in two districts of Ghana
USDA-ARS?s Scientific Manuscript database
Understanding what insect species are present and their temporal and spatial patterns of distribution is important for developing a successful integrated pest management strategy for food storage in warehouses. Maize in many countries in Africa is stored in bags in warehouses, but little monitoring ...
USDA-ARS?s Scientific Manuscript database
Silvopastoral management strategies seek to expand spatial and temporal boundaries of forage production and promote ecosystem integrity through a combination of tree thinning and understory pastures. We determined the effects of water extracts of leaf litter from yellow poplar, Liriodendron tulipife...
Uses of GIS for Homeland Security and Emergency Management for Higher Education Institutions
ERIC Educational Resources Information Center
Murchison, Stuart B.
2010-01-01
Geographic information systems (GIS) are a major component of the geospatial sciences, which are also composed of geostatistical analysis, remote sensing, and global positional satellite systems. These systems can be integrated into GIS for georeferencing, pattern analysis, visualization, and understanding spatial concepts that transcend…
Spatially targeted social interventions to improve BMP adoption in Maryland watersheds
USDA-ARS?s Scientific Manuscript database
The results of surveys of stakeholders knowledge and attitudes related to water resources, pollution and Best Management Practices (BMPs) are analyzed and used to develop a model of BMP adoption likelihood based on socio-economic factors. The model is integrated into a Diagnostic Decision Support Sy...
A Spatial Analysis and Modeling System (SAMS) for environment management
NASA Technical Reports Server (NTRS)
Stetina, Fran; Hill, John; Chan, Paul; Jaske, Robert; Rochon, Gilbert
1993-01-01
This is a proposal to develop a uniform global environmental data gathering and distribution system to support the calibration and validation of remotely sensed data. SAMS is based on an enhanced version of FEMA's Integrated Emergency Management Information Systems and the Department of Defense's Air land Battlefield Environment Software Systems. This system consists of state-of-the-art graphics and visualization techniques, simulation models, database management and expert systems for conducting environmental and disaster preparedness studies. This software package will be integrated into various Landsat and UNEP-GRID stations which are planned to become direct readout stations during the EOS (Earth Observing System) timeframe. This system would be implemented as a pilot program to support the Tropical Rainfall Measuring Mission (TRMM). This will be a joint NASA-FEMA-University-Industry project.
A Spatial Analysis and Modeling System (SAMS) for environment management
NASA Technical Reports Server (NTRS)
Vermillion, Charles H.; Stetina, Fran; Hill, John; Chan, Paul; Jaske, Robert; Rochon, Gilbert
1992-01-01
This is a proposal to develop a uniform global environmental data gathering and distribution system to support the calibration and validation of remotely sensed data. SAMS is based on an enhanced version of FE MA's Integrated Emergency Management Information Systems and the Department of Defense's Air Land Battlefield Environment Software Systems. This system consists of state-of-the-art graphics and visualization techniques, simulation models, database management and expert systems for conducting environmental and disaster preparedness studies. This software package will be integrated into various Landsat and UNEP-GRID stations which are planned to become direct readout stations during the EOS timeframe. This system would be implemented as a pilot program to support the Tropical Rainfall Measuring Mission (TRMM). This will be a joint NASA-FEMA-University-Industry project.
The design and implementation of hydrographical information management system (HIMS)
NASA Astrophysics Data System (ADS)
Sui, Haigang; Hua, Li; Wang, Qi; Zhang, Anming
2005-10-01
With the development of hydrographical work and information techniques, the large variety of hydrographical information including electronic charts, documents and other materials are widely used, and the traditional management mode and techniques are unsuitable for the development of the Chinese Marine Safety Administration Bureau (CMSAB). How to manage all kinds of hydrographical information has become an important and urgent problem. A lot of advanced techniques including GIS, RS, spatial database management and VR techniques are introduced for solving these problems. Some design principles and key techniques of the HIMS including the mixed mode base on B/S, C/S and stand-alone computer mode, multi-source & multi-scale data organization and management, multi-source data integration and diverse visualization of digital chart, efficient security control strategies are illustrated in detail. Based on the above ideas and strategies, an integrated system named Hydrographical Information Management System (HIMS) was developed. And the HIMS has been applied in the Shanghai Marine Safety Administration Bureau and obtained good evaluation.
Geospatial considerations for a multiorganizational, landscape-scale program
O'Donnell, Michael S.; Assal, Timothy J.; Anderson, Patrick J.; Bowen, Zachary H.
2013-01-01
Geospatial data play an increasingly important role in natural resources management, conservation, and science-based projects. The management and effective use of spatial data becomes significantly more complex when the efforts involve a myriad of landscape-scale projects combined with a multiorganizational collaboration. There is sparse literature to guide users on this daunting subject; therefore, we present a framework of considerations for working with geospatial data that will provide direction to data stewards, scientists, collaborators, and managers for developing geospatial management plans. The concepts we present apply to a variety of geospatial programs or projects, which we describe as a “scalable framework” of processes for integrating geospatial efforts with management, science, and conservation initiatives. Our framework includes five tenets of geospatial data management: (1) the importance of investing in data management and standardization, (2) the scalability of content/efforts addressed in geospatial management plans, (3) the lifecycle of a geospatial effort, (4) a framework for the integration of geographic information systems (GIS) in a landscape-scale conservation or management program, and (5) the major geospatial considerations prior to data acquisition. We conclude with a discussion of future considerations and challenges.
Groundwater regulation and integrated planning
Quevauviller, Philippe; Batelaan, Okke; Hunt, Randall J.
2016-01-01
The complex nature of groundwater and the diversity of uses and environmental interactions call for emerging groundwater problems to be addressed through integrated management and planning approaches. Planning requires different levels of integration dealing with: the hydrologic cycle (the physical process) including the temporal dimension; river basins and aquifers (spatial integration); socioeconomic considerations at regional, national and international levels; and scientific knowledge. The great natural variation in groundwater conditions obviously affects planning needs and options as well as perceptions from highly localised to regionally-based approaches. The scale at which planning is done therefore needs to be carefully evaluated against available policy choices and options in each particular setting. A solid planning approach is based on River Basin Management Planning (RBMP), which covers: (1) objectives that management planning are designed to address; (2) the way various types of measures fit into the overall management planning; and (3) the criteria against which the success or failure of specific strategies or interventions can be evaluated (e.g. compliance with environmental quality standards). A management planning framework is to be conceived as a “living” or iterated document that can be updated, refined and if necessary changed as information and experience are gained. This chapter discusses these aspects, providing an insight into European Union (EU), United States and Australia groundwater planning practices.
Iqbal, Naveed; Hossain, Faisal; Lee, Hyongki; Akhter, Gulraiz
2017-03-01
Reliable and frequent information on groundwater behavior and dynamics is very important for effective groundwater resource management at appropriate spatial scales. This information is rarely available in developing countries and thus poses a challenge for groundwater managers. The in situ data and groundwater modeling tools are limited in their ability to cover large domains. Remote sensing technology can now be used to continuously collect information on hydrological cycle in a cost-effective way. This study evaluates the effectiveness of a remote sensing integrated physical modeling approach for groundwater management in Indus Basin. The Gravity Recovery and Climate Experiment Satellite (GRACE)-based gravity anomalies from 2003 to 2010 were processed to generate monthly groundwater storage changes using the Variable Infiltration Capacity (VIC) hydrologic model. The groundwater storage is the key parameter of interest for groundwater resource management. The spatial and temporal patterns in groundwater storage (GWS) are useful for devising the appropriate groundwater management strategies. GRACE-estimated GWS information with large-scale coverage is valuable for basin-scale monitoring and decision making. This frequently available information is found useful for the identification of groundwater recharge areas, groundwater storage depletion, and pinpointing of the areas where groundwater sustainability is at risk. The GWS anomalies were found to favorably agree with groundwater model simulations from Visual MODFLOW and in situ data. Mostly, a moderate to severe GWS depletion is observed causing a vulnerable situation to the sustainability of this groundwater resource. For the sustainable groundwater management, the region needs to implement groundwater policies and adopt water conservation techniques.
NASA Astrophysics Data System (ADS)
Chen, Shaopei; Tan, Jianjun; Ray, C.; Claramunt, C.; Sun, Qinqin
2008-10-01
Diversity is one of the main characteristics of transportation data collected from multiple sources or formats, which can be extremely complex and disparate. Moreover, these multimodal transportation data are usually characterised by spatial and temporal properties. Multimodal transportation network data modelling involves both an engineering and research domain that has attracted the design of a number of spatio-temporal data models in the geographic information system (GIS). However, the application of these specific models to multimodal transportation network is still a challenging task. This research addresses this challenge from both integrated multimodal data organization and object-oriented modelling perspectives, that is, how a complex urban transportation network should be organized, represented and modeled appropriately when considering a multimodal point of view, and using object-oriented modelling method. We proposed an integrated GIS-based data model for multimodal urban transportation network that lays a foundation to enhance the multimodal transportation network analysis and management. This modelling method organizes and integrates multimodal transit network data, and supports multiple representations for spatio-temporal objects and relationship as both visual and graphic views. The data model is expressed by using a spatio-temporal object-oriented modelling method, i.e., the unified modelling language (UML) extended to spatial and temporal plug-in for visual languages (PVLs), which provides an essential support to the spatio-temporal data modelling for transportation GIS.
Passive sampling methods for contaminated sediments: Risk assessment and management
Greenberg, Marc S; Chapman, Peter M; Allan, Ian J; Anderson, Kim A; Apitz, Sabine E; Beegan, Chris; Bridges, Todd S; Brown, Steve S; Cargill, John G; McCulloch, Megan C; Menzie, Charles A; Shine, James P; Parkerton, Thomas F
2014-01-01
This paper details how activity-based passive sampling methods (PSMs), which provide information on bioavailability in terms of freely dissolved contaminant concentrations (Cfree), can be used to better inform risk management decision making at multiple points in the process of assessing and managing contaminated sediment sites. PSMs can increase certainty in site investigation and management, because Cfree is a better predictor of bioavailability than total bulk sediment concentration (Ctotal) for 4 key endpoints included in conceptual site models (benthic organism toxicity, bioaccumulation, sediment flux, and water column exposures). The use of passive sampling devices (PSDs) presents challenges with respect to representative sampling for estimating average concentrations and other metrics relevant for exposure and risk assessment. These challenges can be addressed by designing studies that account for sources of variation associated with PSMs and considering appropriate spatial scales to meet study objectives. Possible applications of PSMs include: quantifying spatial and temporal trends in bioavailable contaminants, identifying and evaluating contaminant source contributions, calibrating site-specific models, and, improving weight-of-evidence based decision frameworks. PSM data can be used to assist in delineating sediment management zones based on likelihood of exposure effects, monitor remedy effectiveness, and, evaluate risk reduction after sediment treatment, disposal, or beneficial reuse after management actions. Examples are provided illustrating why PSMs and freely dissolved contaminant concentrations (Cfree) should be incorporated into contaminated sediment investigations and study designs to better focus on and understand contaminant bioavailability, more accurately estimate exposure to sediment-associated contaminants, and better inform risk management decisions. Research and communication needs for encouraging broader use are discussed. Integr Environ Assess Manag 2014;10:224–236. © 2014 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC. PMID:24343931
Using graph approach for managing connectivity in integrative landscape modelling
NASA Astrophysics Data System (ADS)
Rabotin, Michael; Fabre, Jean-Christophe; Libres, Aline; Lagacherie, Philippe; Crevoisier, David; Moussa, Roger
2013-04-01
In cultivated landscapes, a lot of landscape elements such as field boundaries, ditches or banks strongly impact water flows, mass and energy fluxes. At the watershed scale, these impacts are strongly conditionned by the connectivity of these landscape elements. An accurate representation of these elements and of their complex spatial arrangements is therefore of great importance for modelling and predicting these impacts.We developped in the framework of the OpenFLUID platform (Software Environment for Modelling Fluxes in Landscapes) a digital landscape representation that takes into account the spatial variabilities and connectivities of diverse landscape elements through the application of the graph theory concepts. The proposed landscape representation consider spatial units connected together to represent the flux exchanges or any other information exchanges. Each spatial unit of the landscape is represented as a node of a graph and relations between units as graph connections. The connections are of two types - parent-child connection and up/downstream connection - which allows OpenFLUID to handle hierarchical graphs. Connections can also carry informations and graph evolution during simulation is possible (connections or elements modifications). This graph approach allows a better genericity on landscape representation, a management of complex connections and facilitate development of new landscape representation algorithms. Graph management is fully operational in OpenFLUID for developers or modelers ; and several graph tools are available such as graph traversal algorithms or graph displays. Graph representation can be managed i) manually by the user (for example in simple catchments) through XML-based files in easily editable and readable format or ii) by using methods of the OpenFLUID-landr library which is an OpenFLUID library relying on common open-source spatial libraries (ogr vector, geos topologic vector and gdal raster libraries). OpenFLUID-landr library has been developed in order i) to be used with no GIS expert skills needed (common gis formats can be read and simplified spatial management is provided), ii) to easily develop adapted rules of landscape discretization and graph creation to follow spatialized model requirements and iii) to allow model developers to manage dynamic and complex spatial topology. Graph management in OpenFLUID are shown with i) examples of hydrological modelizations on complex farmed landscapes and ii) the new implementation of Geo-MHYDAS tool based on the OpenFLUID-landr library, which allows to discretize a landscape and create graph structure for the MHYDAS model requirements.
Coastal Geographic Structures in Coastal-Marine Environmental Management
NASA Astrophysics Data System (ADS)
Baklanov, P. Ya.; Ganzei, K. S.; Ermoshin, V. V.
2018-01-01
It has been proposed to distinguish the coastal geographic structures consisting of a spatial combination of three interconnected and mutually conditioned parts (coastal-territorial, coastal, coastal-marine), which are interlinked with each other by the cumulative effect of real-energy flows. Distinguishing specific resource features of the coastal structures, by which they play a connecting role in the complex coastalmarine management, has been considered. The main integral resource feature of the coastal structures is their connecting functions, which form transitional parts mutually connecting the coastal-territorial and coastalmarine environmental management.
Freehafer, Douglas A.; Pierson, Oliver
2004-01-01
In the fall of 2002, the Onondaga Lake Partnership (OLP) formed a Geographic Information System (GIS) Planning Committee to begin the process of developing a comprehensive watershed geographic information system for Onondaga Lake. The goal of the Onondaga Lake Partnership geographic information system is to integrate the various types of spatial data used for scientific investigations, resource management, and planning and design of improvement projects in the Onondaga Lake Watershed. A needs-assessment survey was conducted and a spatial data framework developed to support the Onondaga Lake Partnership use of geographic information system technology. The design focused on the collection, management, and distribution of spatial data, maps, and internet mapping applications. A geographic information system library of over 100 spatial datasets and metadata links was assembled on the basis of the results of the needs assessment survey. Implementation options were presented, and the Geographic Information System Planning Committee offered recommendations for the management and distribution of spatial data belonging to Onondaga Lake Partnership members. The Onondaga Lake Partnership now has a strong foundation for building a comprehensive geographic information system for the Onondaga Lake watershed. The successful implementation of a geographic information system depends on the Onondaga Lake Partnership’s determination of: (1) the design and plan for a geographic information system, including the applications and spatial data that will be provided and to whom, (2) the level of geographic information system technology to be utilized and funded, and (3) the institutional issues of operation and maintenance of the system.
NASA Astrophysics Data System (ADS)
Tian, Y.; Zheng, Y.; Zheng, C.; Han, F., Sr.
2017-12-01
Physically based and fully-distributed integrated hydrological models (IHMs) can quantitatively depict hydrological processes, both surface and subsurface, with sufficient spatial and temporal details. However, the complexity involved in pre-processing data and setting up models seriously hindered the wider application of IHMs in scientific research and management practice. This study introduces our design and development of Visual HEIFLOW, hereafter referred to as VHF, a comprehensive graphical data processing and modeling system for integrated hydrological simulation. The current version of VHF has been structured to accommodate an IHM named HEIFLOW (Hydrological-Ecological Integrated watershed-scale FLOW model). HEIFLOW is a model being developed by the authors, which has all typical elements of physically based and fully-distributed IHMs. It is based on GSFLOW, a representative integrated surface water-groundwater model developed by USGS. HEIFLOW provides several ecological modules that enable to simulate growth cycle of general vegetation and special plants (maize and populus euphratica). VHF incorporates and streamlines all key steps of the integrated modeling, and accommodates all types of GIS data necessary to hydrological simulation. It provides a GIS-based data processing framework to prepare an IHM for simulations, and has functionalities to flexibly display and modify model features (e.g., model grids, streams, boundary conditions, observational sites, etc.) and their associated data. It enables visualization and various spatio-temporal analyses of all model inputs and outputs at different scales (i.e., computing unit, sub-basin, basin, or user-defined spatial extent). The above system features, as well as many others, can significantly reduce the difficulty and time cost of building and using a complex IHM. The case study in the Heihe River Basin demonstrated the applicability of VHF for large scale integrated SW-GW modeling. Visualization and spatial-temporal analysis of the modeling results by HEIFLOW greatly facilitates our understanding on the complicated hydrologic cycle and relationship among the hydrological and ecological variables in the study area, and provides insights into the regional water resources management.
Spatial Data Integration Using Ontology-Based Approach
NASA Astrophysics Data System (ADS)
Hasani, S.; Sadeghi-Niaraki, A.; Jelokhani-Niaraki, M.
2015-12-01
In today's world, the necessity for spatial data for various organizations is becoming so crucial that many of these organizations have begun to produce spatial data for that purpose. In some circumstances, the need to obtain real time integrated data requires sustainable mechanism to process real-time integration. Case in point, the disater management situations that requires obtaining real time data from various sources of information. One of the problematic challenges in the mentioned situation is the high degree of heterogeneity between different organizations data. To solve this issue, we introduce an ontology-based method to provide sharing and integration capabilities for the existing databases. In addition to resolving semantic heterogeneity, better access to information is also provided by our proposed method. Our approach is consisted of three steps, the first step is identification of the object in a relational database, then the semantic relationships between them are modelled and subsequently, the ontology of each database is created. In a second step, the relative ontology will be inserted into the database and the relationship of each class of ontology will be inserted into the new created column in database tables. Last step is consisted of a platform based on service-oriented architecture, which allows integration of data. This is done by using the concept of ontology mapping. The proposed approach, in addition to being fast and low cost, makes the process of data integration easy and the data remains unchanged and thus takes advantage of the legacy application provided.
NASA Astrophysics Data System (ADS)
Campo, M. A.; Perez-Ovilla, O.; Munoz-Carpena, R.; Kiker, G.; Ullman, J. L.
2012-12-01
Agricultural nonpoint source pollution cause the majority of the 1,224 different waterbodies failing to meet designated water use criteria in Washington. Although various best management practices (BMPs) are effective in mitigating agricultural pollutants, BMP placement is often haphazard and fails to address specific high-risk locations. Limited financial resources necessitate optimization of conservation efforts to meet water quality goals. Thus, there is a critical need to develop decision-making tools that target BMP implementation in order to maximize water quality protection. In addition to field parameters, it is essential to incorporate economic and social determinants in the decision-making process to encourage producer involvement. Decision-making tools that identify strategic pollution sources and integrate socio-economic factors will lead to more cost-effective water quality improvement, as well as encourage producer participation by incorporating real-world limitations. Therefore, this study examines vegetative filter strip use under different scenarios as a BMP to mitigate sediment and nutrients in the highly irrigated Yakima River Basin of central Washington. We developed QnD-VFS to integrate and visualize alternative, spatially-explicit, water management strategies and its economic impact. The QnDTM system was created as a decision education tool that incorporates management, economic, and socio- political issues in a user-friendly scenario framework. QnDTM, which incorporates elements of Multi-Criteria Decision Analysis (MCDA) and risk assessment, is written in object-oriented Java and can be deployed as a stand-alone program or a web-accessed tool. The model performs Euler numerical integration of various rate transformation and mass-balance transfer equations. The novelty of this object-oriented approach is that these differential equations are detailed in modular XML format for instantiation within the Java code. This design allows many levels of complexity to be quickly designed and rendered in QnDTM without time-consuming additions of new Java code. Thus, temporal and spatial scales used in the equations become part of model development and iteration. A salient aspect is that QnDTM links spatial components within GIS (ArcInfo Shape) files to the abiotic (e.g., climate), biotic and chemical/contaminant interactions. QnD-VFS integrates environmental, management and socio-economic/cultural factors identified through stakeholder input. Several scenarios have been studied. Thus one of the main results show that changing water management, improved irrigation, is equivalent to changing length of vegetative filter strips, with a low economic impacts for farmers. Concurrently, these interactive tools allow resource managers to identify economic and social determinants that may impede conservation efforts.
Real Time Flood Alert System (RTFAS) for Puerto Rico
Lopez-Trujillo, Dianne
2010-01-01
The Real Time Flood Alert System is a web-based computer program, developed as a data integration tool, and designed to increase the ability of emergency managers to rapidly and accurately predict flooding conditions of streams in Puerto Rico. The system includes software and a relational database to determine the spatial and temporal distribution of rainfall, water levels in streams and reservoirs, and associated storms to determine hazardous and potential flood conditions. The computer program was developed as part of a cooperative agreement between the U.S. Geological Survey Caribbean Water Science Center and the Puerto Rico Emergency Management Agency, and integrates information collected and processed by these two agencies and the National Weather Service.
Groundwater modeling in integrated water resources management--visions for 2020.
Refsgaard, Jens Christian; Højberg, Anker Lajer; Møller, Ingelise; Hansen, Martin; Søndergaard, Verner
2010-01-01
Groundwater modeling is undergoing a change from traditional stand-alone studies toward being an integrated part of holistic water resources management procedures. This is illustrated by the development in Denmark, where comprehensive national databases for geologic borehole data, groundwater-related geophysical data, geologic models, as well as a national groundwater-surface water model have been established and integrated to support water management. This has enhanced the benefits of using groundwater models. Based on insight gained from this Danish experience, a scientifically realistic scenario for the use of groundwater modeling in 2020 has been developed, in which groundwater models will be a part of sophisticated databases and modeling systems. The databases and numerical models will be seamlessly integrated, and the tasks of monitoring and modeling will be merged. Numerical models for atmospheric, surface water, and groundwater processes will be coupled in one integrated modeling system that can operate at a wide range of spatial scales. Furthermore, the management systems will be constructed with a focus on building credibility of model and data use among all stakeholders and on facilitating a learning process whereby data and models, as well as stakeholders' understanding of the system, are updated to currently available information. The key scientific challenges for achieving this are (1) developing new methodologies for integration of statistical and qualitative uncertainty; (2) mapping geological heterogeneity and developing scaling methodologies; (3) developing coupled model codes; and (4) developing integrated information systems, including quality assurance and uncertainty information that facilitate active stakeholder involvement and learning.
NASA Astrophysics Data System (ADS)
Nunes, Paulo; Correia, Anacleto; Teodoro, M. Filomena
2017-06-01
Since long ago, information is a key factor for military organizations. In military context the success of joint and combined operations depends on the accurate information and knowledge flow concerning the operational theatre: provision of resources, environment evolution, targets' location, where and when an event will occur. Modern military operations cannot be conceive without maps and geospatial information. Staffs and forces on the field request large volume of information during the planning and execution process, horizontal and vertical geospatial information integration is critical for decision cycle. Information and knowledge management are fundamental to clarify an environment full of uncertainty. Geospatial information (GI) management rises as a branch of information and knowledge management, responsible for the conversion process from raw data collect by human or electronic sensors to knowledge. Geospatial information and intelligence systems allow us to integrate all other forms of intelligence and act as a main platform to process and display geospatial-time referenced events. Combining explicit knowledge with person know-how to generate a continuous learning cycle that supports real time decisions, mitigates the influences of fog of war and provides the knowledge supremacy. This paper presents the analysis done after applying a questionnaire and interviews about the GI and intelligence management in a military organization. The study intended to identify the stakeholder's requirements for a military spatial data infrastructure as well as the requirements for a future software system development.
Road landslide information management and forecasting system base on GIS.
Wang, Wei Dong; Du, Xiang Gang; Xie, Cui Ming
2009-09-01
Take account of the characters of road geological hazard and its supervision, it is very important to develop the Road Landslides Information Management and Forecasting System based on Geographic Information System (GIS). The paper presents the system objective, function, component modules and key techniques in the procedure of system development. The system, based on the spatial information and attribute information of road geological hazard, was developed and applied in Guizhou, a province of China where there are numerous and typical landslides. The manager of communication, using the system, can visually inquire all road landslides information based on regional road network or on the monitoring network of individual landslide. Furthermore, the system, integrated with mathematical prediction models and the GIS's strongpoint on spatial analyzing, can assess and predict landslide developing procedure according to the field monitoring data. Thus, it can efficiently assists the road construction or management units in making decision to control the landslides and to reduce human vulnerability.
Stager, Ron; Chambers, Douglas; Wiatzka, Gerd; Dupre, Monica; Callough, Micah; Benson, John; Santiago, Erwin; van Veen, Walter
2017-04-01
The Port Hope Area Initiative is a project mandated and funded by the Government of Canada to remediate properties with legacy low-level radioactive waste contamination in the Town of Port Hope, Ontario. The management and use of large amounts of data from surveys of some 4800 properties is a significant task critical to the success of the project. A large amount of information is generated through the surveys, including scheduling individual field visits to the properties, capture of field data laboratory sample tracking, QA/QC, property report generation and project management reporting. Web-mapping tools were used to track and display temporal progress of various tasks and facilitated consideration of spatial associations of contamination levels. The IM system facilitated the management and integrity of the large amounts of information collected, evaluation of spatial associations, automated report reproduction and consistent application and traceable execution for this project.x. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Combining participatory and socioeconomic approaches to map fishing effort in small-scale fisheries.
Thiault, Lauric; Collin, Antoine; Chlous, Frédérique; Gelcich, Stefan; Claudet, Joachim
2017-01-01
Mapping the spatial allocation of fishing effort while including key stakeholders in the decision making process is essential for effective fisheries management but is difficult to implement in complex small-scale fisheries that are diffuse, informal and multifaceted. Here we present a standardized but flexible approach that combines participatory mapping approaches (fishers' spatial preference for fishing grounds, or fishing suitability) with socioeconomic approaches (spatial extrapolation of social surrogates, or fishing capacity) to generate a comprehensive map of predicted fishing effort. Using a real world case study, in Moorea, French Polynesia, we showed that high predicted fishing effort is not simply located in front of, or close to, main fishing villages with high dependence on marine resources; it also occurs where resource dependency is moderate and generally in near-shore areas and reef passages. The integrated approach we developed can contribute to addressing the recurrent lack of fishing effort spatial data through key stakeholders' (i.e., resource users) participation. It can be tailored to a wide range of social, ecological and data availability contexts, and should help improve place-based management of natural resources.
Combining participatory and socioeconomic approaches to map fishing effort in small-scale fisheries
Collin, Antoine; Chlous, Frédérique; Gelcich, Stefan; Claudet, Joachim
2017-01-01
Mapping the spatial allocation of fishing effort while including key stakeholders in the decision making process is essential for effective fisheries management but is difficult to implement in complex small-scale fisheries that are diffuse, informal and multifaceted. Here we present a standardized but flexible approach that combines participatory mapping approaches (fishers’ spatial preference for fishing grounds, or fishing suitability) with socioeconomic approaches (spatial extrapolation of social surrogates, or fishing capacity) to generate a comprehensive map of predicted fishing effort. Using a real world case study, in Moorea, French Polynesia, we showed that high predicted fishing effort is not simply located in front of, or close to, main fishing villages with high dependence on marine resources; it also occurs where resource dependency is moderate and generally in near-shore areas and reef passages. The integrated approach we developed can contribute to addressing the recurrent lack of fishing effort spatial data through key stakeholders' (i.e., resource users) participation. It can be tailored to a wide range of social, ecological and data availability contexts, and should help improve place-based management of natural resources. PMID:28486509
Enhancing Disaster Management: Development of a Spatial Database of Day Care Centers in the USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Nagendra; Tuttle, Mark A.; Bhaduri, Budhendra L.
Children under the age of five constitute around 7% of the total U.S. population and represent a segment of the population, which is totally dependent on others for day-to-day activities. A significant proportion of this population spends time in some form of day care arrangement while their parents are away from home. Accounting for those children during emergencies is of high priority, which requires a broad understanding of the locations of such day care centers. As concentrations of at risk population, the spatial location of day care centers is critical for any type of emergency preparedness and response (EPR). However,more » until recently, the U.S. emergency preparedness and response community did not have access to a comprehensive spatial database of day care centers at the national scale. This paper describes an approach for the development of the first comprehensive spatial database of day care center locations throughout the USA utilizing a variety of data harvesting techniques to integrate information from widely disparate data sources followed by geolocating for spatial precision. In the context of disaster management, such spatially refined demographic databases hold tremendous potential for improving high resolution population distribution and dynamics models and databases.« less
Enhancing Disaster Management: Development of a Spatial Database of Day Care Centers in the USA
Singh, Nagendra; Tuttle, Mark A.; Bhaduri, Budhendra L.
2015-07-30
Children under the age of five constitute around 7% of the total U.S. population and represent a segment of the population, which is totally dependent on others for day-to-day activities. A significant proportion of this population spends time in some form of day care arrangement while their parents are away from home. Accounting for those children during emergencies is of high priority, which requires a broad understanding of the locations of such day care centers. As concentrations of at risk population, the spatial location of day care centers is critical for any type of emergency preparedness and response (EPR). However,more » until recently, the U.S. emergency preparedness and response community did not have access to a comprehensive spatial database of day care centers at the national scale. This paper describes an approach for the development of the first comprehensive spatial database of day care center locations throughout the USA utilizing a variety of data harvesting techniques to integrate information from widely disparate data sources followed by geolocating for spatial precision. In the context of disaster management, such spatially refined demographic databases hold tremendous potential for improving high resolution population distribution and dynamics models and databases.« less
van Riper, Carena J.; Kyle, Gerard T.; Sherrouse, Ben C.; Bagstad, Kenneth J.; Sutton, Stephen G.
2016-01-01
In spatial planning and management of protected areas, increased priority is being given to research that integrates social and ecological data. However, public viewpoints of the benefits provided by ecosystems are not easily quantified and often implicitly folded into natural resource management decisions. Drawing on a spatially explicit participatory mapping exercise and a Social Values for Ecosystem Services (SolVES) analysis tool, the present study empirically examined and integrated social values for ecosystem services and environmental conditions within Channel Islands National Park, California. Specifically, a social value indicator of perceived biodiversity was examined using on-site survey data collected from a sample of people who visited the park. This information was modeled alongside eight environmental conditions including faunal species richness for six taxa, vegetation density, categories of marine and terrestrial land cover, and distance to features relevant for decision-makers. Results showed that biodiversity value points assigned to places by the pooled sample of respondents were widely and unevenly mapped, which reflected the belief that biodiversity was embodied to varying degrees by multiple locations in the park. Models generated for two survey subgroups defined by their self-reported knowledge of the Channels Islands revealed distinct spatial patterns of these perceived values. Specifically, respondents with high knowledge valued large spaces that were publicly inaccessible and unlikely to contain on-ground biodiversity, whereas respondents with low knowledge valued places that were experienced first-hand. Accessibility and infrastructure were also important considerations for anticipating how and where people valued the protected land and seascapes of Channel Islands National Park.
Aquatic ecosystem protection and restoration: Advances in methods for assessment and evaluation
Bain, M.B.; Harig, A.L.; Loucks, D.P.; Goforth, R.R.; Mills, K.E.
2000-01-01
Many methods and criteria are available to assess aquatic ecosystems, and this review focuses on a set that demonstrates advancements from community analyses to methods spanning large spatial and temporal scales. Basic methods have been extended by incorporating taxa sensitivity to different forms of stress, adding measures linked to system function, synthesizing multiple faunal groups, integrating biological and physical attributes, spanning large spatial scales, and enabling simulations through time. These tools can be customized to meet the needs of a particular assessment and ecosystem. Two case studies are presented to show how new methods were applied at the ecosystem scale for achieving practical management goals. One case used an assessment of biotic structure to demonstrate how enhanced river flows can improve habitat conditions and restore a diverse fish fauna reflective of a healthy riverine ecosystem. In the second case, multitaxonomic integrity indicators were successful in distinguishing lake ecosystems that were disturbed, healthy, and in the process of restoration. Most methods strive to address the concept of biological integrity and assessment effectiveness often can be impeded by the lack of more specific ecosystem management objectives. Scientific and policy explorations are needed to define new ways for designating a healthy system so as to allow specification of precise quality criteria that will promote further development of ecosystem analysis tools.
Integrated NDVI images for Niger 1986-1987. [Normalized Difference Vegetation Index
NASA Technical Reports Server (NTRS)
Harrington, John A., Jr.; Wylie, Bruce K.; Tucker, Compton J.
1988-01-01
Two NOAA AVHRR images are presented which provide a comparison of the geographic distribution of an integration of the normalized difference vegetation index (NDVI) for the Sahel zone in Niger for the growing seasons of 1986 and 1987. The production of the images and the application of the images for resource management are discussed. Daily large area coverage with a spatial resolution of 1.1 km at nadir were transformed to the NDVI and geographically registered to produce the images.
Three-dimensional GIS approach for management of assets
NASA Astrophysics Data System (ADS)
Lee, S. Y.; Yee, S. X.; Majid, Z.; Setan, H.
2014-02-01
Assets play an important role in human life, especially to an organization. Organizations strive and put more effort to improve its operation and assets management. The development of GIS technology has become a powerful tool in management as it is able to provide a complete inventory for managing assets with location-based information. Spatial information is one of the requirements in decision making in various areas, including asset management in the buildings. This paper describes a 3D GIS approach for management of assets. An asset management system was developed by integrating GIS concept and 3D model assets. The purposes of 3D visualization to manage assets are to facilitate the analysis and understanding in the complex environment. Behind the 3D model of assets is a database to store the asset information. A user-friendly interface was also designed for more easier to operate the application. In the application developed, location of each individual asset can be easily tracked according to the referring spatial information and 3D viewing. The 3D GIS approach described in this paper is certainly would be useful in asset management. Systematic management of assets can be carried out and this will lead to less-time consuming and cost-effective. The results in this paper will show a new approach to improve asset management.
While the spatial heterogeneity of many aquatic ecosystems is acknowledged, rivers are often mistakenly described as homogenous and well-mixed. The collection and visualization of attributes like water quality is key to our perception and management of these ecosystems. The ass...
Landscape epidemiology of emerging infectious diseases in natural and human-altered ecosystems
Ross K. Meentemeyer; Sarah E. Haas; Tomas Vaclavik
2012-01-01
A central challenge to studying emerging infectious diseases (EIDs) is a landscape dilemma: Our best empirical understanding of disease dynamics occurs at local scales, whereas pathogen invasions and management occur over broad spatial extents. The burgeoning field of landscape epidemiology integrates concepts and approaches from disease ecology with the...
Estimating ecological integrity in the interior Columbia River basin.
Thomas M. Quigley; Richard W. Haynes; Wendel J. Hann
2001-01-01
The adoption of ecosystem-based management strategies focuses attention on the need for broad scale estimates of ecological conditions; this poses two challenges for the science community: estimating broad scale ecosystem conditions from highly disparate data, often observed at different spatial scales, and interpreting these conditions relative to goals such as...
DOT National Transportation Integrated Search
2012-03-01
This report describes Phase Two enhancement of terrestrial LiDAR scanning for bridge damage : evaluation that was initially developed in Phase One. Considering the spatial and reflectivity : information contained in LiDAR scans, two detection algorit...
RESEARCH: Conceptualizing Environmental Stress: A Stress-Response Model of Coastal Sandy Barriers.
Gabriel; Kreutzwiser
2000-01-01
/ The purpose of this paper is to develop and apply a conceptual framework of environmental stress-response for a geomorphic system. Constructs and methods generated from the literature were applied in the development of an integrative stress-response framework using existing environmental assessment techniques: interaction matrices and a systems diagram. Emphasis is on the interaction between environmental stress and the geomorphic environment of a sandy barrier system. The model illustrates a number of stress concepts pertinent to modeling environmental stress-response, including those related to stress-dependency, frequency-recovery relationships, environmental heterogeneity, spatial hierarchies and linkages, and temporal change. Sandy barrier stress-response and recovery are greatly impacted by fluctuating water levels, stress intensity and frequency, as well as environmental gradients such as differences in sediment storage and supply. Aspects of these stress-response variables are articulated in terms of three main challenges to management: dynamic stability, spatial integrity, and temporal variability. These in turn form the framework for evaluative principles that may be applied to assess how policies and management practices reflect key biophysical processes and human stresses identified by the model.
NASA Astrophysics Data System (ADS)
Monteleone, M.; Lanorte, A.; Lasaponara, R.
2009-04-01
Cyberpark 2000 is a project funded by the UE Regional Operating Program of the Apulia Region (2000-2006). The main objective of the Cyberpark 2000 project is to develop a new assessment model for the management and monitoring of protected areas in Foggia Province (Apulia Region) based on Information and Communication Technologies. The results herein described are placed inside the research activities finalized to develop an environmental monitoring system knowledge based on the use of satellite time series. This study include: - A- satellite time series of high spatial resolution data for supporting the analysis of fire static risk factors through land use mapping and spectral/quantitative characterization of vegetation fuels; - B- satellite time series of MODIS for supporting fire dynamic risk evaluation of study area - Integrated fire detection by using thermal imaging cameras placed on panoramic view-points; - C - integrated high spatial and high temporal satellite time series for supporting studies in change detection factors or anomalies in vegetation covers; - D - satellite time-series for monitoring: (i) post fire vegetation recovery and (ii) spatio/temporal vegetation dynamics in unburned and burned vegetation covers.
Mills, Peter; Dehnen-Schmutz, Katharina; Ilbery, Brian; Jeger, Mike; Jones, Glyn; Little, Ruth; MacLeod, Alan; Parker, Steve; Pautasso, Marco; Pietravalle, Stephane; Maye, Damian
2011-01-01
Plant diseases threaten both food security and the botanical diversity of natural ecosystems. Substantial research effort is focused on pathogen detection and control, with detailed risk management available for many plant diseases. Risk can be assessed using analytical techniques that account for disease pressure both spatially and temporally. We suggest that such technical assessments of disease risk may not provide an adequate guide to the strategies undertaken by growers and government to manage plant disease. Instead, risk-management strategies need to account more fully for intuitive and normative responses that act to balance conflicting interests between stakeholder organizations concerned with plant diseases within the managed and natural environments. Modes of effective engagement between policy makers and stakeholders are explored in the paper, together with an assessment of such engagement in two case studies of contemporary non-indigenous diseases in one food and in one non-food sector. Finally, a model is proposed for greater integration of stakeholders in policy decisions. PMID:21624923
Mills, Peter; Dehnen-Schmutz, Katharina; Ilbery, Brian; Jeger, Mike; Jones, Glyn; Little, Ruth; MacLeod, Alan; Parker, Steve; Pautasso, Marco; Pietravalle, Stephane; Maye, Damian
2011-07-12
Plant diseases threaten both food security and the botanical diversity of natural ecosystems. Substantial research effort is focused on pathogen detection and control, with detailed risk management available for many plant diseases. Risk can be assessed using analytical techniques that account for disease pressure both spatially and temporally. We suggest that such technical assessments of disease risk may not provide an adequate guide to the strategies undertaken by growers and government to manage plant disease. Instead, risk-management strategies need to account more fully for intuitive and normative responses that act to balance conflicting interests between stakeholder organizations concerned with plant diseases within the managed and natural environments. Modes of effective engagement between policy makers and stakeholders are explored in the paper, together with an assessment of such engagement in two case studies of contemporary non-indigenous diseases in one food and in one non-food sector. Finally, a model is proposed for greater integration of stakeholders in policy decisions.
Methods for exploring uncertainty in groundwater management predictions
Guillaume, Joseph H. A.; Hunt, Randall J.; Comunian, Alessandro; Fu, Baihua; Blakers, Rachel S; Jakeman, Anthony J.; Barreteau, Olivier; Hunt, Randall J.; Rinaudo, Jean-Daniel; Ross, Andrew
2016-01-01
Models of groundwater systems help to integrate knowledge about the natural and human system covering different spatial and temporal scales, often from multiple disciplines, in order to address a range of issues of concern to various stakeholders. A model is simply a tool to express what we think we know. Uncertainty, due to lack of knowledge or natural variability, means that there are always alternative models that may need to be considered. This chapter provides an overview of uncertainty in models and in the definition of a problem to model, highlights approaches to communicating and using predictions of uncertain outcomes and summarises commonly used methods to explore uncertainty in groundwater management predictions. It is intended to raise awareness of how alternative models and hence uncertainty can be explored in order to facilitate the integration of these techniques with groundwater management.
A practical approach for active camera coordination based on a fusion-driven multi-agent system
NASA Astrophysics Data System (ADS)
Bustamante, Alvaro Luis; Molina, José M.; Patricio, Miguel A.
2014-04-01
In this paper, we propose a multi-agent system architecture to manage spatially distributed active (or pan-tilt-zoom) cameras. Traditional video surveillance algorithms are of no use for active cameras, and we have to look at different approaches. Such multi-sensor surveillance systems have to be designed to solve two related problems: data fusion and coordinated sensor-task management. Generally, architectures proposed for the coordinated operation of multiple cameras are based on the centralisation of management decisions at the fusion centre. However, the existence of intelligent sensors capable of decision making brings with it the possibility of conceiving alternative decentralised architectures. This problem is approached by means of a MAS, integrating data fusion as an integral part of the architecture for distributed coordination purposes. This paper presents the MAS architecture and system agents.
Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems.
Graham, Nicholas A J; McClanahan, Tim R; MacNeil, M Aaron; Wilson, Shaun K; Polunin, Nicholas V C; Jennings, Simon; Chabanet, Pascale; Clark, Susan; Spalding, Mark D; Letourneur, Yves; Bigot, Lionel; Galzin, René; Ohman, Marcus C; Garpe, Kajsa C; Edwards, Alasdair J; Sheppard, Charles R C
2008-08-27
Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.
NASA Remote Sensing Technologies for Improved Integrated Water Resources Management
NASA Astrophysics Data System (ADS)
Toll, D. L.; Doorn, B.; Searby, N. D.; Entin, J. K.; Lee, C. M.
2014-12-01
This presentation will emphasize NASA's water research, applications, and capacity building activities using satellites and models to contribute to water issues including water availability, transboundary water, flooding and droughts for improved Integrated Water Resources Management (IWRM). NASA's free and open exchange of Earth data observations and products helps engage and improve integrated observation networks and enables national and multi-national regional water cycle research and applications that are especially useful in data sparse regions of most developing countries. NASA satellite and modeling products provide a huge volume of valuable data extending back over 50 years across a broad range of spatial (local to global) and temporal (hourly to decadal) scales and include many products that are available in near real time (see earthdata.nasa.gov). To further accomplish these objectives NASA works to actively partner with public and private groups (e.g. federal agencies, universities, NGO's, and industry) in the U.S. and international community to ensure the broadest use of its satellites and related information and products and to collaborate with regional end users who know the regions and their needs best. Key objectives of this talk will highlight NASA's Water Resources and Capacity Building Programs with their objective to discover and demonstrate innovative uses and practical benefits of NASA's advanced system technologies for improved water management in national and international applications. The event will help demonstrate the strong partnering and the use of satellite data to provide synoptic and repetitive spatial coverage helping water managers' deal with complex issues. The presentation will also demonstrate how NASA is a major contributor to water tasks and activities in GEOSS (Global Earth Observing System of Systems) and GEO (Group on Earth Observations).
Leveraging Spatial Data to Assess Where Sewers Leak and Impinge on Urban Water Quality
NASA Astrophysics Data System (ADS)
Holden, P. A.; Roehrdanz, P.; Lee, D. G.; Feraud, M.; Maier, M.; Means, J. C.; Snyder, S.
2017-12-01
In the modern urban water environment (UWE), engineered systems provide wastewater collection, treatment, and reuse; stormwater and graywater management; and potable water treatment, distribution and conservation. Underpinning such systems are physical, private and public, infrastructures whose integrities impinge on major goals of protecting groundwater and surface water resources, managing flooding, and securing safe drinking water. Here we study sanitary sewers, i.e. the main pipes in wastewater collection systems that improve public health by reducing pathogen exposure, and that afford reclaiming water for beneficial reuse. We ask: what is the relationship between sanitary sewer integrity and nearby water quality? Research methods include acquiring spatially defined sewer metadata that are analyzed using a published pipe leakage algorithm with variables of age, depth, materials of construction, length, diameter, slope, and nature of overburden. By executing the algorithm within a geographical information system (GIS), coupled with relating leakage probabilities to shallow groundwater table proximities—also digitally assembled, from well depth data—maps of wastewater exfiltration scores were produced for a city. Field sampling shallow groundwater allowed assessing concentrations of wastewater indicator compounds including personal care products and pharmaceuticals (PCPPs), and showing positive relationships between wastewater exfiltration scores and tryptophan-like fluorescence (TLF), reactive nitrogen species, an artificial sweetener acesulfame, and a stable isotope of oxygen (δ18O). The approach is extended to surface waters, where exfiltrating wastewater may transport from leaking sanitary sewers through the unsaturated zone to nearby storm drains or to storm drains that are submerged in contaminated groundwater. Spatially assessing sewer interactions within the UWE, as such, could aid urban infrastructure management and investment.
NASA Astrophysics Data System (ADS)
Arkema, Katie K.; Verutes, Gregory; Bernhardt, Joanna R.; Clarke, Chantalle; Rosado, Samir; Canto, Maritza; Wood, Spencer A.; Ruckelshaus, Mary; Rosenthal, Amy; McField, Melanie; de Zegher, Joann
2014-11-01
Integrated coastal and ocean management requires transparent and accessible approaches for understanding the influence of human activities on marine environments. Here we introduce a model for assessing the combined risk to habitats from multiple ocean uses. We apply the model to coral reefs, mangrove forests and seagrass beds in Belize to inform the design of the country’s first Integrated Coastal Zone Management (ICZM) Plan. Based on extensive stakeholder engagement, review of existing legislation and data collected from diverse sources, we map the current distribution of coastal and ocean activities and develop three scenarios for zoning these activities in the future. We then estimate ecosystem risk under the current and three future scenarios. Current levels of risk vary spatially among the nine coastal planning regions in Belize. Empirical tests of the model are strong—three-quarters of the measured data for coral reef health lie within the 95% confidence interval of interpolated model data and 79% of the predicted mangrove occurrences are associated with observed responses. The future scenario that harmonizes conservation and development goals results in a 20% reduction in the area of high-risk habitat compared to the current scenario, while increasing the extent of several ocean uses. Our results are a component of the ICZM Plan for Belize that will undergo review by the national legislature in 2015. This application of our model to marine spatial planning in Belize illustrates an approach that can be used broadly by coastal and ocean planners to assess risk to habitats under current and future management scenarios.
Doña, Carolina; Chang, Ni-Bin; Caselles, Vicente; Sánchez, Juan M; Camacho, Antonio; Delegido, Jesús; Vannah, Benjamin W
2015-03-15
Lake eutrophication is a critical issue in the interplay of water supply, environmental management, and ecosystem conservation. Integrated sensing, monitoring, and modeling for a holistic lake water quality assessment with respect to multiple constituents is in acute need. The aim of this paper is to develop an integrated algorithm for data fusion and mining of satellite remote sensing images to generate daily estimates of some water quality parameters of interest, such as chlorophyll a concentrations and water transparency, to be applied for the assessment of the hypertrophic Albufera de Valencia. The Albufera de Valencia is the largest freshwater lake in Spain, which can often present values of chlorophyll a concentration over 200 mg m(-3) and values of transparency (Secchi Disk, SD) as low as 20 cm. Remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat Thematic Mapper (TM) and Enhance Thematic Mapper (ETM+) images were fused to carry out an integrative near-real time water quality assessment on a daily basis. Landsat images are useful to study the spatial variability of the water quality parameters, due to its spatial resolution of 30 m, in comparison to the low spatial resolution (250/500 m) of MODIS. While Landsat offers a high spatial resolution, the low temporal resolution of 16 days is a significant drawback to achieve a near real-time monitoring system. This gap may be bridged by using MODIS images that have a high temporal resolution of 1 day, in spite of its low spatial resolution. Synthetic Landsat images were fused for dates with no Landsat overpass over the study area. Finally, with a suite of ground truth data, a few genetic programming (GP) models were derived to estimate the water quality using the fused surface reflectance data as inputs. The GP model for chlorophyll a estimation yielded a R(2) of 0.94, with a Root Mean Square Error (RMSE) = 8 mg m(-3), and the GP model for water transparency estimation using Secchi disk showed a R(2) of 0.89, with an RMSE = 4 cm. With this effort, the spatiotemporal variations of water transparency and chlorophyll a concentrations may be assessed simultaneously on a daily basis throughout the lake for environmental management. Copyright © 2014 Elsevier Ltd. All rights reserved.
Operationalizing the social-ecological systems framework to assess sustainability.
Leslie, Heather M; Basurto, Xavier; Nenadovic, Mateja; Sievanen, Leila; Cavanaugh, Kyle C; Cota-Nieto, Juan José; Erisman, Brad E; Finkbeiner, Elena; Hinojosa-Arango, Gustavo; Moreno-Báez, Marcia; Nagavarapu, Sriniketh; Reddy, Sheila M W; Sánchez-Rodríguez, Alexandra; Siegel, Katherine; Ulibarria-Valenzuela, José Juan; Weaver, Amy Hudson; Aburto-Oropeza, Octavio
2015-05-12
Environmental governance is more effective when the scales of ecological processes are well matched with the human institutions charged with managing human-environment interactions. The social-ecological systems (SESs) framework provides guidance on how to assess the social and ecological dimensions that contribute to sustainable resource use and management, but rarely if ever has been operationalized for multiple localities in a spatially explicit, quantitative manner. Here, we use the case of small-scale fisheries in Baja California Sur, Mexico, to identify distinct SES regions and test key aspects of coupled SESs theory. Regions that exhibit greater potential for social-ecological sustainability in one dimension do not necessarily exhibit it in others, highlighting the importance of integrative, coupled system analyses when implementing spatial planning and other ecosystem-based strategies.
NASA Astrophysics Data System (ADS)
Vasconcelos, Vitor Vieira; Koontanakulvong, Sucharit; Suthidhummajit, Chokchai; Junior, Paulo Pereira Martins; Hadad, Renato Moreira
2017-03-01
A sustainable strategy for conjunctive water management must include information on the temporal and spatial availability of this natural resource. Because of water shortages in the dry seasons, farmers on the Upper Plain of the Chao Phraya River basin, Thailand, are increasingly using groundwater to meet their irrigation needs. To evaluate the possibilities of conjunctive water management in the area, the spatial-temporal changes in the water table of the Younger Terrace Aquifer were investigated. First, a regional geomorphological map based on field surveys, remote sensing and previous environmental studies was developed. Then, the well data were analyzed in relation to rainfall, streamflow, yield and pumpage, and the data were interpolated using geostatistical techniques. The results were analyzed via integrated zoning based on color theory as applied to multivariate visualization. The analysis results indicate areas that would be more suitable for groundwater extraction in a conjunctive management framework with regard to the natural hydrogeological processes and the effects of human interaction. The kriging results were compared with the geomorphological map, and the geomorphological areas exhibit distinct hydrogeological patterns. The western fans exhibit the best potential for the expansion of conjunctive use, whereas the borders of the northern fans exhibit the lowest potential.
Proximal Association of Land Management Preferences: Evidence from Family Forest Owners
Aguilar, Francisco X.; Cai, Zhen; Butler, Brett
2017-01-01
Individual behavior is influenced by factors intrinsic to the decision-maker but also associated with other individuals and their ownerships with such relationship intensified by geographic proximity. The land management literature is scarce in the spatially integrated analysis of biophysical and socio-economic data. Localized land management decisions are likely driven by spatially-explicit but often unobserved resource conditions, influenced by an individual’s own characteristics, proximal lands and fellow owners. This study examined stated choices over the management of family-owned forests as an example of a resource that captures strong pecuniary and non-pecuniary values with identifiable decision makers. An autoregressive model controlled for spatially autocorrelated willingness-to-harvest (WTH) responses using a sample of residential and absentee family forest owners from the U.S. State of Missouri. WTH responses were largely explained by affective, cognitive and experience variables including timber production objectives and past harvest experience. Demographic variables, including income and age, were associated with WTH and helped define socially-proximal groups. The group of closest identity was comprised of resident males over 55 years of age with annual income of at least $50,000. Spatially-explicit models showed that indirect impacts, capturing spillover associations, on average accounted for 14% of total marginal impacts among statistically significant explanatory variables. We argue that not all proximal family forest owners are equal and owners-in-absentia have discernible differences in WTH preferences with important implications for public policy and future research. PMID:28060960
Schmoldt, D.L.; Peterson, D.L.; Keane, R.E.; Lenihan, J.M.; McKenzie, D.; Weise, D.R.; Sandberg, D.V.
1999-01-01
A team of fire scientists and resource managers convened 17-19 April 1996 in Seattle, Washington, to assess the effects of fire disturbance on ecosystems. Objectives of this workshop were to develop scientific recommendations for future fire research and management activities. These recommendations included a series of numerically ranked scientific and managerial questions and responses focusing on (1) links among fire effects, fuels, and climate; (2) fire as a large-scale disturbance; (3) fire-effects modeling structures; and (4) managerial concerns, applications, and decision support. At the present time, understanding of fire effects and the ability to extrapolate fire-effects knowledge to large spatial scales are limited, because most data have been collected at small spatial scales for specific applications. Although we clearly need more large-scale fire-effects data, it will be more expedient to concentrate efforts on improving and linking existing models that simulate fire effects in a georeferenced format while integrating empirical data as they become available. A significant component of this effort should be improved communication between modelers and managers to develop modeling tools to use in a planning context. Another component of this modeling effort should improve our ability to predict the interactions of fire and potential climatic change at very large spatial scales. The priority issues and approaches described here provide a template for fire science and fire management programs in the next decade and beyond.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voisin, Nathalie; Leung, Lai-Yung R.; Hejazi, Mohamad I.
A global integrated assessment model including a water-demand model driven by socio-economics, is coupled in a one-way fashion with a land surface hydrology – routing – water resources management model. The integrated modeling framework is applied to the U.S. Upper Midwest (Missouri, Upper Mississippi, and Ohio) to advance understanding of the regional impacts of climate and socio-economic changes on integrated water resources. Implications for future flow regulation, water supply, and supply deficit are investigated using climate change projections with the B1 and A2 emission scenarios, which affect both natural flow and water demand. Changes in water demand are driven bymore » socio-economic factors, energy and food demands, global markets and prices. The framework identifies the multiple spatial scales of interactions between the drivers of changes (natural flow and water demand) and the managed water resources (regulated flow, supply and supply deficit). The contribution of the different drivers of change are quantified regionally, and also evaluated locally, using covariances. The integrated framework shows that water supply deficit is more predictable over the Missouri than the other regions in the Midwest. The predictability of the supply deficit mostly comes from long term changes in water demand although changes in runoff has a greater contribution, comparable to the contribution of changes in demand, over shorter time periods. The integrated framework also shows that spatially, water demand drives local supply deficit. Using elasticity, the sensitivity of supply deficit to drivers of change is established. The supply deficit is found to be more sensitive to changes in runoff than to changes in demand regionally. It contrasts with the covariance analysis that shows that water demand is the dominant driver of supply deficit over the analysed periods. The elasticity indicates the level of mitigation needed to control the demand in order to reduce the vulnerability of the integrated system in future periods. The elasticity analyses also emphasize the need to address uncertainty with respect to changes in natural flow in integrated assessment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carranza, E. J. M., E-mail: carranza@itc.nl; Woldai, T.; Chikambwe, E. M.
A case application of data-driven estimation of evidential belief functions (EBFs) is demonstrated to prospectivity mapping in Lundazi district (eastern Zambia). Spatial data used to represent recognition criteria of prospectivity for aquamarine-bearing pegmatites include mapped granites, mapped faults/fractures, mapped shear zones, and radioelement concentration ratios derived from gridded airborne radiometric data. Data-driven estimates EBFs take into account not only (a) spatial association between an evidential map layer and target deposits but also (b) spatial relationships between classes of evidences in an evidential map layer. Data-driven estimates of EBFs can indicate which spatial data provide positive or negative evidence of prospectivity.more » Data-driven estimates of EBFs of only spatial data providing positive evidence of prospectivity were integrated according to Dempster's rule of combination. Map of integrated degrees of belief was used to delineate zones of relative degress of prospectivity for aquamarine-bearing pegmatites. The predictive map has at least 85% prediction rate and at least 79% success rate of delineating training and validation deposits, respectively. The results illustrate usefulness of data-driven estimation of EBFs in GIS-based predictive mapping of mineral prospectivity. The results also show usefulness of EBFs in managing uncertainties associated with evidential maps.« less
McClellan, Catherine M.; Brereton, Tom; Dell'Amico, Florence; Johns, David G.; Cucknell, Anna-C.; Patrick, Samantha C.; Penrose, Rod; Ridoux, Vincent; Solandt, Jean-Luc; Stephan, Eric; Votier, Stephen C.; Williams, Ruth; Godley, Brendan J.
2014-01-01
The temperate waters of the North-Eastern Atlantic have a long history of maritime resource richness and, as a result, the European Union is endeavouring to maintain regional productivity and biodiversity. At the intersection of these aims lies potential conflict, signalling the need for integrated, cross-border management approaches. This paper focuses on the marine megafauna of the region. This guild of consumers was formerly abundant, but is now depleted and protected under various national and international legislative structures. We present a meta-analysis of available megafauna datasets using presence-only distribution models to characterise suitable habitat and identify spatially-important regions within the English Channel and southern bight of the North Sea. The integration of studies from dedicated and opportunistic observer programmes in the United Kingdom and France provide a valuable perspective on the spatial and seasonal distribution of various taxonomic groups, including large pelagic fishes and sharks, marine mammals, seabirds and marine turtles. The Western English Channel emerged as a hotspot of biodiversity for megafauna, while species richness was low in the Eastern English Channel. Spatial conservation planning is complicated by the highly mobile nature of marine megafauna, however they are important components of the marine environment and understanding their distribution is a first crucial step toward their inclusion into marine ecosystem management. PMID:24586985
GIS, remote sensing and spatial modeling for conservation of stone forest landscape in Lunan, China
NASA Astrophysics Data System (ADS)
Zhang, Chuanrong
The Lunan Stone Forest is the World's premier pinnacle karst landscape, with considerable scientific and cultural importance. Because of its inherent ecological fragility and ongoing human disruption, especially recently burgeoning tourism development, the landscape is stressed and is in danger of being destroyed. Conservation policies have been implemented by the local and national governments, but many problems remain in the national park. For example, there is no accurate detailed map and no computer system to help authorities manage the natural resources. By integrating GIS, remote sensing and spatial modeling this dissertation investigates the issue of landscape conservation and develops some methodologies to assist in management of the natural resources in the national park. Four elements are involved: (1) To help decision-makers and residents understand the scope of resource exploitation and develop appropriate protective strategies, the dissertation documents how the landscape has been changed by human activities over the past 3 decades; (2) To help authorities scientifically designate different levels of protection in the park and to let the public actively participate in conservation decision making, a web-based Spatial Decision Support System for the conservation of the landscape was developed; (3) To make data sharing and integration easy in the future, a GML-based interoperable database for the park was implemented; and (4) To acquire more information and provide the uncertainty information to landscape conservation decision-makers, spatial land use patterns were modeled and the distributional uncertainty of land cover categories was assessed using a triplex Markov chain (TMC) model approach.
Impact of Spatial Pumping Patterns on Groundwater Management
NASA Astrophysics Data System (ADS)
Yin, J.; Tsai, F. T. C.
2017-12-01
Challenges exist to manage groundwater resources while maintaining a balance between groundwater quantity and quality because of anthropogenic pumping activities as well as complex subsurface environment. In this study, to address the impact of spatial pumping pattern on groundwater management, a mixed integer nonlinear multi-objective model is formulated by integrating three objectives within a management framework to: (i) maximize total groundwater withdrawal from potential wells; (ii) minimize total electricity cost for well pumps; and (iii) attain groundwater level at selected monitoring locations as close as possible to the target level. Binary variables are used in the groundwater management model to control the operative status of pumping wells. The NSGA-II is linked with MODFLOW to solve the multi-objective problem. The proposed method is applied to a groundwater management problem in the complex Baton Rouge aquifer system, southeastern Louisiana. Results show that (a) non-dominated trade-off solutions under various spatial distributions of active pumping wells can be achieved. Each solution is optimal with regard to its corresponding objectives; (b) operative status, locations and pumping rates of pumping wells are significant to influence the distribution of hydraulic head, which in turn influence the optimization results; (c) A wide range of optimal solutions is obtained such that decision makers can select the most appropriate solution through negotiation with different stakeholders. This technique is beneficial to finding out the optimal extent to which three objectives including water supply concern, energy concern and subsidence concern can be balanced.
NASA Astrophysics Data System (ADS)
Blom-Zandstra, Margaretha; Paulissen, Maurice; Agricola, Herman; Schaap, Ben
2009-11-01
Climate change will place increasing pressure on the functioning of agricultural and natural areas in the Netherlands. Strategies to adapt these areas to stress are likely to require changes in landscape structure and management. In densely populated countries such as the Netherlands, the increased pressure of climate change on agricultural and natural areas will inevitably lead, through the necessity of spatial adaptation measures, to spatial conflicts between the sectors of agriculture and nature. An integrated approach to climate change adaptation may therefore be beneficial in limiting such sectoral conflicts. We explored the conflicting and synergistic properties of different climate adaptation strategies for agricultural and natural environments in the Netherlands. To estimate the feasibility and effectiveness of the strategies, we focussed on three case study regions with contrasting landscape structural, natural and agricultural characteristics. For each region, we estimated the expected climate-related threats and associated trade-offs for arable farming and natural areas for 2040. We describe a number of spatial and integrated adaptation strategies to mitigate these threats. Formulating adaptation strategies requires consultation of different stakeholders and deliberation between different interests. We discuss some trade-offs involved in this decision-making.
One-dimension-based spatially ordered architectures for solar energy conversion.
Liu, Siqi; Tang, Zi-Rong; Sun, Yugang; Colmenares, Juan Carlos; Xu, Yi-Jun
2015-08-07
The severe consequences of fossil fuel consumption have resulted in a need for alternative sustainable sources of energy. Conversion and storage of solar energy via a renewable method, such as photocatalysis, holds great promise as such an alternative. One-dimensional (1D) nanostructures have gained attention in solar energy conversion because they have a long axis to absorb incident sunlight yet a short radial distance for separation of photogenerated charge carriers. In particular, well-ordered spatially high dimensional architectures based on 1D nanostructures with well-defined facets or anisotropic shapes offer an exciting opportunity for bridging the gap between 1D nanostructures and the micro and macro world, providing a platform for integration of nanostructures on a larger and more manageable scale into high-performance solar energy conversion applications. In this review, we focus on the progress of photocatalytic solar energy conversion over controlled one-dimension-based spatially ordered architecture hybrids. Assembly and classification of these novel architectures are summarized, and we discuss the opportunity and future direction of integration of 1D materials into high-dimensional, spatially organized architectures, with a perspective toward improved collective performance in various artificial photoredox applications.
Integrating spatially explicit representations of landscape perceptions into land change research
Dorning, Monica; Van Berkel, Derek B.; Semmens, Darius J.
2017-01-01
Purpose of ReviewHuman perceptions of the landscape can influence land-use and land-management decisions. Recognizing the diversity of landscape perceptions across space and time is essential to understanding land change processes and emergent landscape patterns. We summarize the role of landscape perceptions in the land change process, demonstrate advances in quantifying and mapping landscape perceptions, and describe how these spatially explicit techniques have and may benefit land change research.Recent FindingsMapping landscape perceptions is becoming increasingly common, particularly in research focused on quantifying ecosystem services provision. Spatial representations of landscape perceptions, often measured in terms of landscape values and functions, provide an avenue for matching social and environmental data in land change studies. Integrating these data can provide new insights into land change processes, contribute to landscape planning strategies, and guide the design and implementation of land change models.SummaryChallenges remain in creating spatial representations of human perceptions. Maps must be accompanied by descriptions of whose perceptions are being represented and the validity and uncertainty of those representations across space. With these considerations, rapid advancements in mapping landscape perceptions hold great promise for improving representation of human dimensions in landscape ecology and land change research.
Landscape epidemiology of emerging infectious diseases in natural and human-altered ecosystems
Ross K. Meentemeyer; Sarah Haas; Tomáš Václavík
2013-01-01
A central challenge to studying emerging infectious diseases (EIDs) is a landscape dilemma: our best empirical understanding of disease dynamics occurs at local scales while pathogen invasions and management occur over broad spatial extents. The burgeoning field of landscape epidemiology integrates concepts and approaches from disease ecology with the macro-scale lens...
Maximum entropy modeling of invasive plants in the forests of Cumberland Plateau and Mountain Region
Dawn Lemke; Philip Hulme; Jennifer Brown; Wubishet. Tadesse
2011-01-01
As anthropogenic influences on the landscape change the composition of 'natural' areas, it is important that we apply spatial technology in active management to mitigate human impact. This research explores the integration of geographic information systems (GIS) and remote sensing with statistical analysis to assist in modeling the distribution of invasive...
Wildlife tracking data management: a new vision.
Urbano, Ferdinando; Cagnacci, Francesca; Calenge, Clément; Dettki, Holger; Cameron, Alison; Neteler, Markus
2010-07-27
To date, the processing of wildlife location data has relied on a diversity of software and file formats. Data management and the following spatial and statistical analyses were undertaken in multiple steps, involving many time-consuming importing/exporting phases. Recent technological advancements in tracking systems have made large, continuous, high-frequency datasets of wildlife behavioural data available, such as those derived from the global positioning system (GPS) and other animal-attached sensor devices. These data can be further complemented by a wide range of other information about the animals' environment. Management of these large and diverse datasets for modelling animal behaviour and ecology can prove challenging, slowing down analysis and increasing the probability of mistakes in data handling. We address these issues by critically evaluating the requirements for good management of GPS data for wildlife biology. We highlight that dedicated data management tools and expertise are needed. We explore current research in wildlife data management. We suggest a general direction of development, based on a modular software architecture with a spatial database at its core, where interoperability, data model design and integration with remote-sensing data sources play an important role in successful GPS data handling.
Wildlife tracking data management: a new vision
Urbano, Ferdinando; Cagnacci, Francesca; Calenge, Clément; Dettki, Holger; Cameron, Alison; Neteler, Markus
2010-01-01
To date, the processing of wildlife location data has relied on a diversity of software and file formats. Data management and the following spatial and statistical analyses were undertaken in multiple steps, involving many time-consuming importing/exporting phases. Recent technological advancements in tracking systems have made large, continuous, high-frequency datasets of wildlife behavioural data available, such as those derived from the global positioning system (GPS) and other animal-attached sensor devices. These data can be further complemented by a wide range of other information about the animals' environment. Management of these large and diverse datasets for modelling animal behaviour and ecology can prove challenging, slowing down analysis and increasing the probability of mistakes in data handling. We address these issues by critically evaluating the requirements for good management of GPS data for wildlife biology. We highlight that dedicated data management tools and expertise are needed. We explore current research in wildlife data management. We suggest a general direction of development, based on a modular software architecture with a spatial database at its core, where interoperability, data model design and integration with remote-sensing data sources play an important role in successful GPS data handling. PMID:20566495
NASA Technical Reports Server (NTRS)
Davis, Frank W.; Quattrochi, Dale A.; Ridd, Merrill K.; Lam, Nina S.-N.; Walsh, Stephen J.
1991-01-01
This paper discusses some basic scientific issues and research needs in the joint processing of remotely sensed and GIS data for environmental analysis. Two general topics are treated in detail: (1) scale dependence of geographic data and the analysis of multiscale remotely sensed and GIS data, and (2) data transformations and information flow during data processing. The discussion of scale dependence focuses on the theory and applications of spatial autocorrelation, geostatistics, and fractals for characterizing and modeling spatial variation. Data transformations during processing are described within the larger framework of geographical analysis, encompassing sampling, cartography, remote sensing, and GIS. Development of better user interfaces between image processing, GIS, database management, and statistical software is needed to expedite research on these and other impediments to integrated analysis of remotely sensed and GIS data.
Semantic Metadata for Heterogeneous Spatial Planning Documents
NASA Astrophysics Data System (ADS)
Iwaniak, A.; Kaczmarek, I.; Łukowicz, J.; Strzelecki, M.; Coetzee, S.; Paluszyński, W.
2016-09-01
Spatial planning documents contain information about the principles and rights of land use in different zones of a local authority. They are the basis for administrative decision making in support of sustainable development. In Poland these documents are published on the Web according to a prescribed non-extendable XML schema, designed for optimum presentation to humans in HTML web pages. There is no document standard, and limited functionality exists for adding references to external resources. The text in these documents is discoverable and searchable by general-purpose web search engines, but the semantics of the content cannot be discovered or queried. The spatial information in these documents is geographically referenced but not machine-readable. Major manual efforts are required to integrate such heterogeneous spatial planning documents from various local authorities for analysis, scenario planning and decision support. This article presents results of an implementation using machine-readable semantic metadata to identify relationships among regulations in the text, spatial objects in the drawings and links to external resources. A spatial planning ontology was used to annotate different sections of spatial planning documents with semantic metadata in the Resource Description Framework in Attributes (RDFa). The semantic interpretation of the content, links between document elements and links to external resources were embedded in XHTML pages. An example and use case from the spatial planning domain in Poland is presented to evaluate its efficiency and applicability. The solution enables the automated integration of spatial planning documents from multiple local authorities to assist decision makers with understanding and interpreting spatial planning information. The approach is equally applicable to legal documents from other countries and domains, such as cultural heritage and environmental management.
The new geographic information system in ETVA VI.PE.
NASA Astrophysics Data System (ADS)
Xagoraris, Zafiris; Soulis, George
2016-08-01
ETVA VI.PE. S.A. is a member of the Piraeus Bank Group of Companies and its activities include designing, developing, exploiting and managing Industrial Areas throughout Greece. Inside ETVA VI.PE.'s thirty-one Industrial Parks there are currently 2,500 manufacturing companies established, with 40,000 employees and € 2.5 billion of invested funds. In each one of the industrial areas ETVA VI.PE guarantees the companies industrial lots of land (sites) with propitious building codes and complete infrastructure networks of water supply, sewerage, paved roads, power supply, communications, cleansing services, etc. The development of Geographical Information System for ETVA VI.PE.'s Industrial Parks started at the beginning of 1992 and consists of three subsystems: Cadastre, that manages the information for the land acquisition of Industrial Areas; Street Layout - Sites, that manages the sites sold to manufacturing companies; Networks, that manages the infrastructure networks (roads, water supply, sewerage etc). The mapping of each Industrial Park is made incorporating state-of-the-art photogrammetric, cartographic and surveying methods and techniques. Passing through the phases of initial design (hybrid GIS) and system upgrade (integrated Gis solution with spatial database), the system is currently operating on a new upgrade (integrated gIS solution with spatial database) that includes redesigning and merging the system's database schemas, along with the creation of central security policies, and the development of a new web GIS application for advanced data entry, highly customisable and standard reports, and dynamic interactive maps. The new GIS bring the company to advanced levels of productivity and introduce the new era for decision making and business management.
Science of Integrated Approaches to Natural Resources Management
NASA Astrophysics Data System (ADS)
Tengberg, Anna; Valencia, Sandra
2017-04-01
To meet multiple environmental objectives, integrated programming is becoming increasingly important for the Global Environmental Facility (GEF), the financial mechanism of the multilateral environmental agreements, including the United Nations Convention to Combat Desertification (UNCCD). Integration of multiple environmental, social and economic objectives also contributes to the achievement of the Sustainable Development Goals (SDGs) in a timely and cost-effective way. However, integration is often not well defined. This paper therefore focuses on identifying key aspects of integration and assessing their implementation in natural resources management (NRM) projects. To that end, we draw on systems thinking literature, and carry out an analysis of a random sample of GEF integrated projects and in-depth case studies demonstrating lessons learned and good practices in addressing land degradation and other NRM challenges. We identify numerous challenges and opportunities of integrated approaches that need to be addressed in order to maximise the catalytic impact of the GEF during problem diagnosis, project design, implementation and governance. We highlight the need for projects to identify clearer system boundaries and main feedback mechanisms within those boundaries, in order to effectively address drivers of environmental change. We propose a theory of change for Integrated Natural Resources Management (INRM) projects, where short-term environmental and socio-economic benefits will first accrue at the local level. Implementation of improved INRM technologies and practices at the local level can be extended through spatial planning, strengthening of innovation systems, and financing and incentive mechanisms at the watershed and/or landscape/seascape level to sustain and enhance ecosystem services at larger scales and longer time spans. We conclude that the evolving scientific understanding of factors influencing social, technical and institutional innovations and transitions towards sustainable management of natural resources should be harnessed and integrated into GEF's influencing models and theory of change, and be coupled with updated approaches for learning, adaptive management and scaling up.
Construction of a Distributed-network Digital Watershed Management System with B/S Techniques
NASA Astrophysics Data System (ADS)
Zhang, W. C.; Liu, Y. M.; Fang, J.
2017-07-01
Integrated watershed assessment tools for supporting land management and hydrologic research are becoming established tools in both basic and applied research. The core of these tools are mainly spatially distributed hydrologic models as they can provide a mechanism for investigating interactions among climate, topography, vegetation, and soil. However, the extensive data requirements and the difficult task of building input parameter files for driving these distributed models, have long been an obstacle to the timely and cost-effective use of such complex models by watershed managers and policy-makers. Recently, a web based geographic information system (GIS) tool to facilitate this process has been developed for a large watersheds of Jinghe and Weihe catchments located in the loess plateau of the Huanghe River basin in north-western China. A web-based GIS provides the framework within which spatially distributed data are collected and used to prepare model input files of these two watersheds and evaluate model results as well as to provide the various clients for watershed information inquiring, visualizing and assessment analysis. This Web-based Automated Geospatial Watershed Assessment GIS (WAGWA-GIS) tool uses widely available standardized spatial datasets that can be obtained via the internet oracle databank designed with association of Map Guide platform to develop input parameter files for online simulation at different spatial and temporal scales with Xing’anjiang and TOPMODEL that integrated with web-based digital watershed. WAGWA-GIS automates the process of transforming both digital data including remote sensing data, DEM, Land use/cover, soil digital maps and meteorological and hydrological station geo-location digital maps and text files containing meteorological and hydrological data obtained from stations of the watershed into hydrological models for online simulation and geo-spatial analysis and provides a visualization tool to help the user interpret results. The utility of WAGWA-GIS in jointing hydrologic and ecological investigations has been demonstrated on such diverse landscapes as Jinhe and Weihe watersheds, and will be extended to be utilized in the other watersheds in China step by step in coming years
Development of a socio-ecological environmental justice model for watershed-based management
NASA Astrophysics Data System (ADS)
Sanchez, Georgina M.; Nejadhashemi, A. Pouyan; Zhang, Zhen; Woznicki, Sean A.; Habron, Geoffrey; Marquart-Pyatt, Sandra; Shortridge, Ashton
2014-10-01
The dynamics and relationships between society and nature are complex and difficult to predict. Anthropogenic activities affect the ecological integrity of our natural resources, specifically our streams. Further, it is well-established that the costs of these activities are born unequally by different human communities. This study considered the utility of integrating stream health metrics, based on stream health indicators, with socio-economic measures of communities, to better characterize these effects. This study used a spatial multi-factor model and bivariate mapping to produce a novel assessment for watershed management, identification of vulnerable areas, and allocation of resources. The study area is the Saginaw River watershed located in Michigan. In-stream hydrological and water quality data were used to predict fish and macroinvertebrate measures of stream health. These measures include the Index of Biological Integrity (IBI), Hilsenhoff Biotic Index (HBI), Family IBI, and total number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. Stream health indicators were then compared to spatially coincident socio-economic data, obtained from the United States Census Bureau (2010), including race, income, education, housing, and population size. Statistical analysis including spatial regression and cluster analysis were used to examine the correlation between vulnerable human populations and environmental conditions. Overall, limited correlation was observed between the socio-economic data and ecological measures of stream health, with the highest being a negative correlation of 0.18 between HBI and the social parameter household size. Clustering was observed in the datasets with urban areas representing a second order clustering effect over the watershed. Regions with the worst stream health and most vulnerable social populations were most commonly located nearby or down-stream to highly populated areas and agricultural lands.
NASA Astrophysics Data System (ADS)
Luce, C. H.; Buffington, J. M.; Rieman, B. E.; Dunham, J. B.; McKean, J. A.; Thurow, R. F.; Gutierrez-Teira, B.; Rosenberger, A. E.
2005-05-01
Conservation and restoration of freshwater stream and river habitats are important goals for land management and natural resources research. Several examples of research have emerged showing that many species are adapted to temporary habitat disruptions, but that these adaptations are sensitive to the spatial grain and extent of disturbance as well as to its duration. When viewed from this perspective, questions of timing, spatial pattern, and relevant scales emerge as critical issues. In contrast, much regulation, management, and research remains tied to pollutant loading paradigms that are insensitive to either time or space scales. It is becoming clear that research is needed to examine questions and hypotheses about how physical processes affect ecological processes. Two overarching questions concisely frame the scientific issues: 1) How do we quantify physical watershed processes in a way that is meaningful to biological and ecological processes, and 2) how does the answer to that question vary with changing spatial and temporal scales? A joint understanding of scaling characteristics of physical process and the plasticity of aquatic species will be needed to accomplish this research; hence a strong need exists for integrative and collaborative development. Considering conservation biology problems in this fashion can lead to creative and non-obvious solutions because the integrated system has important non-linearities and feedbacks related to a biological system that has responded to substantial natural variability in the past. We propose that research beginning with ecological theories and principles followed with a structured examination of each physical process as related to the specific ecological theories is a strong approach to developing the necessary science, and such an approach may form a basis for development of scaling theories of hydrologic and geomorphic process. We illustrate the approach with several examples.
Integrating GIS, Archeology, and the Internet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sera White; Brenda Ringe Pace; Randy Lee
2004-08-01
At the Idaho National Engineering and Environmental Laboratory's (INEEL) Cultural Resource Management Office, a newly developed Data Management Tool (DMT) is improving management and long-term stewardship of cultural resources. The fully integrated system links an archaeological database, a historical database, and a research database to spatial data through a customized user interface using ArcIMS and Active Server Pages. Components of the new DMT are tailored specifically to the INEEL and include automated data entry forms for historic and prehistoric archaeological sites, specialized queries and reports that address both yearly and project-specific documentation requirements, and unique field recording forms. The predictivemore » modeling component increases the DMT’s value for land use planning and long-term stewardship. The DMT enhances the efficiency of archive searches, improving customer service, oversight, and management of the large INEEL cultural resource inventory. In the future, the DMT will facilitate data sharing with regulatory agencies, tribal organizations, and the general public.« less
NASA Astrophysics Data System (ADS)
Arias, Carolina; Brovelli, Maria Antonia; Moreno, Rafael
2015-04-01
We are in an age when water resources are increasingly scarce and the impacts of human activities on them are ubiquitous. These problems don't respect administrative or political boundaries and they must be addressed integrating information from multiple sources at multiple spatial and temporal scales. Communication, coordination and data sharing are critical for addressing the water conservation and management issues of the 21st century. However, different countries, provinces, local authorities and agencies dealing with water resources have diverse organizational, socio-cultural, economic, environmental and information technology (IT) contexts that raise challenges to the creation of information systems capable of integrating and distributing information across their areas of responsibility in an efficient and timely manner. Tight and disparate financial resources, and dissimilar IT infrastructures (data, hardware, software and personnel expertise) further complicate the creation of these systems. There is a pressing need for distributed interoperable water information systems that are user friendly, easily accessible and capable of managing and sharing large volumes of spatial and non-spatial data. In a distributed system, data and processes are created and maintained in different locations each with competitive advantages to carry out specific activities. Open Data (data that can be freely distributed) is available in the water domain, and it should be further promoted across countries and organizations. Compliance with Open Specifications for data collection, storage and distribution is the first step toward the creation of systems that are capable of interacting and exchanging data in a seamlessly (interoperable) way. The features of Free and Open Source Software (FOSS) offer low access cost that facilitate scalability and long-term viability of information systems. The World Wide Web (the Web) will be the platform of choice to deploy and access these systems. Geospatial capabilities for mapping, visualization, and spatial analysis will be important components of these new generation of Web-based interoperable information systems in the water domain. The purpose of this presentation is to increase the awareness of scientists, IT personnel and agency managers about the advantages offered by the combined use of Open Data, Open Specifications for geospatial and water-related data collection, storage and sharing, as well as mature FOSS projects for the creation of interoperable Web-based information systems in the water domain. A case study is used to illustrate how these principles and technologies can be integrated to create a system with the previously mentioned characteristics for managing and responding to flood events.
Integrated farm sustainability assessment for the environmental management of rural activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stachetii Rodrigues, Geraldo, E-mail: stacheti@cnpma.embrapa.b; Aparecida Rodrigues, Izilda, E-mail: isis@cnpma.embrapa.b; Almeida Buschinelli, Claudio Cesar de, E-mail: buschi@cnpma.embrapa.b
2010-07-15
Farmers have been increasingly called upon to respond to an ongoing redefinition in consumers' demands, having as a converging theme the search for sustainable production practices. In order to satisfy this objective, instruments for the environmental management of agricultural activities have been sought out. Environmental impact assessment methods are appropriate tools to address the choice of technologies and management practices to minimize negative effects of agricultural development, while maximizing productive efficiency, sound usage of natural resources, conservation of ecological assets and equitable access to wealth generation means. The 'system for weighted environmental impact assessment of rural activities' (APOIA-NovoRural) presented inmore » this paper is organized to provide integrated farm sustainability assessment according to quantitative environmental standards and defined socio-economic benchmarks. The system integrates sixty-two objective indicators in five sustainability dimensions - (i) Landscape ecology, (ii) Environmental quality (atmosphere, water and soil), (iii) Sociocultural values, (iv) Economic values, and (v) Management and administration. Impact indices are expressed in three integration levels: (i) specific indicators, that offer a diagnostic and managerial tool for farmers and rural administrators, by pointing out particular attributes of the rural activities that may be failing to comply with defined environmental performance objectives; (ii) integrated sustainability dimensions, that show decision-makers the major contributions of the rural activities toward local sustainable development, facilitating the definition of control actions and promotion measures; and (iii) aggregated sustainability index, that can be considered a yardstick for eco-certification purposes. Nine fully documented case studies carried out with the APOIA-NovoRural system, focusing on different scales, diverse rural activities/farming systems, and contrasting spatial/territorial contexts, attest to the malleability of the method and its applicability as an integrated farm environmental management tool.« less
Gidoin, Cynthia; Avelino, Jacques; Deheuvels, Olivier; Cilas, Christian; Bieng, Marie Ange Ngo
2014-03-01
Vegetation composition and plant spatial structure affect disease intensity through resource and microclimatic variation effects. The aim of this study was to evaluate the independent effect and relative importance of host composition and plant spatial structure variables in explaining disease intensity at the plot scale. For that purpose, frosty pod rot intensity, a disease caused by Moniliophthora roreri on cacao pods, was monitored in 36 cacao agroforests in Costa Rica in order to assess the vegetation composition and spatial structure variables conducive to the disease. Hierarchical partitioning was used to identify the most causal factors. Firstly, pod production, cacao tree density and shade tree spatial structure had significant independent effects on disease intensity. In our case study, the amount of susceptible tissue was the most relevant host composition variable for explaining disease intensity by resource dilution. Indeed, cacao tree density probably affected disease intensity more by the creation of self-shading rather than by host dilution. Lastly, only regularly distributed forest trees, and not aggregated or randomly distributed forest trees, reduced disease intensity in comparison to plots with a low forest tree density. A regular spatial structure is probably crucial to the creation of moderate and uniform shade as recommended for frosty pod rot management. As pod production is an important service expected from these agroforests, shade tree spatial structure may be a lever for integrated management of frosty pod rot in cacao agroforests.
Pert, Petina L; Ens, Emilie J; Locke, John; Clarke, Philip A; Packer, Joanne M; Turpin, Gerry
2015-11-15
With growing international calls for the enhanced involvement of Indigenous peoples and their biocultural knowledge in managing conservation and the sustainable use of physical environment, it is timely to review the available literature and develop cross-cultural approaches to the management of biocultural resources. Online spatial databases are becoming common tools for educating land managers about Indigenous Biocultural Knowledge (IBK), specifically to raise a broad awareness of issues, identify knowledge gaps and opportunities, and to promote collaboration. Here we describe a novel approach to the application of internet and spatial analysis tools that provide an overview of publically available documented Australian IBK (AIBK) and outline the processes used to develop the online resource. By funding an AIBK working group, the Australian Centre for Ecological Analysis and Synthesis (ACEAS) provided a unique opportunity to bring together cross-cultural, cross-disciplinary and trans-organizational contributors who developed these resources. Without such an intentionally collaborative process, this unique tool would not have been developed. The tool developed through this process is derived from a spatial and temporal literature review, case studies and a compilation of methods, as well as other relevant AIBK papers. The online resource illustrates the depth and breadth of documented IBK and identifies opportunities for further work, partnerships and investment for the benefit of not only Indigenous Australians, but all Australians. The database currently includes links to over 1500 publically available IBK documents, of which 568 are geo-referenced and were mapped. It is anticipated that as awareness of the online resource grows, more documents will be provided through the website to build the database. It is envisaged that this will become a well-used tool, integral to future natural and cultural resource management and maintenance. Copyright © 2015. Published by Elsevier B.V.
Liu, Ye; Liu, Dan
2015-07-01
Urban metabolism is a basic theory for coping with global environmental problems, which is coherent with the aims of national environmental management. This paper analyzed the concept of urban metabolism, and pointed out the meaning for urban metabolism in physical space entities; reviewed the current methods for urban metabolism and its merits and shortages; analyzed the system boundaries, connotation, and methodologies; and summarized the advances on urban meta-bolism practices in physical space entities. At last, we made conclusions that there were shortages, including conception system, basic theory system, and interdisciplinary integrated theory system in current urban metabolism research, and the current cases studied in urban metabolism were limited and not suitable to the harmony development between society, economy, and environment. In the future, we need to strengthen comparison between different case studies from different countries, develop the prior modes of typical urban metabolism research, identify the mechanism for urban ecosystem, and strengthen the spatial decision support system of environmental management taking urban spatial entity spaces as units.
A GIS-based modeling system for petroleum waste management. Geographical information system.
Chen, Z; Huang, G H; Li, J B
2003-01-01
With an urgent need for effective management of petroleum-contaminated sites, a GIS-aided simulation (GISSIM) system is presented in this study. The GISSIM contains two components: an advanced 3D numerical model and a geographical information system (GIS), which are integrated within a general framework. The modeling component undertakes simulation for the fate of contaminants in subsurface unsaturated and saturated zones. The GIS component is used in three areas throughout the system development and implementation process: (i) managing spatial and non-spatial databases; (ii) linking inputs, model, and outputs; and (iii) providing an interface between the GISSIM and its users. The developed system is applied to a North American case study. Concentrations of benzene, toluene, and xylenes in groundwater under a petroleum-contaminated site are dynamically simulated. Reasonable outputs have been obtained and presented graphically. They provide quantitative and scientific bases for further assessment of site-contamination impacts and risks, as well as decisions on practical remediation actions.
Olowoporoku, Dotun; Hayes, Enda; Longhurst, James; Parkhurst, Graham
2012-06-30
Regardless of its intent and purposes, the first decade of the Local Air Quality Management (LAQM) framework had little or no effect in reducing traffic-related air pollution in the UK. Apart from the impact of increased traffic volumes, the major factor attributed to this failure is that of policy disconnect between the process of diagnosing air pollution and its management, thereby limiting the capability of local authorities to control traffic-related sources of air pollution. Integrating air quality management into the Local Transport Plan (LTP) process therefore presents opportunities for enabling political will, funding and joined-up policy approach to reduce this limitation. However, despite the increased access to resources for air quality measures within the LTP process, there are local institutional, political and funding constraints which reduce the impact of these policy interventions on air quality management. This paper illustrate the policy implementation gaps between central government policy intentions and the local government process by providing evidence of the deprioritisation of air quality management compared to the other shared priorities in the LTP process. We draw conclusions on the policy and practice of integrating air quality management into transport planning. The evidence thereby indicate the need for a policy shift from a solely localised hotspot management approach, in which the LAQM framework operates, to a more holistic management of vehicular emissions within wider spatial administrative areas. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, S.; Wang, Y.; Ju, H.
2017-12-01
The interprovincial terrestrial physical geographical entities are the key areas of regional integrated management. Based on toponomy dictionaries and different thematic maps, the attributes and the spatial extent of the interprovincial terrestrial physical geographical names (ITPGN, including terrain ITPGN and water ITPGN) were extracted. The coefficient of variation and Moran's I were combined together to measure the spatial variation and spatial association of ITPGN. The influencing factors of the distribution of ITPGN and the implications for the regional management were further discussed. The results showed that 11325 ITPGN were extracted, including 7082 terrain ITPGN and 4243 water ITPGN. Hunan Province had the largest number of ITPGN in China, and Shanghai had the smallest number. The spatial variance of the terrain ITPGN was larger than that of the water ITPGN, and the ITPGN showed a significant agglomeration phenomenon in the southern part of China. Further analysis showed that the number of ITPGN was positively related with the relative elevation and the population where the relative elevation was lower than 2000m and the population was less than 50 million. But the number of ITPGN showed a negative relationship with the two factors when their values became larger, indicating a large number of unnamed entities existed in complex terrain areas and a decreasing number of terrestrial physical geographical entities in densely populated area. Based on these analysis, we suggest the government take the ITPGN as management units to realize a balance development between different parts of the entities and strengthen the geographical names census and the nomination of unnamed interprovincial physical geographical entities. This study also demonstrated that the methods of literature survey, coefficient of variation and Moran's I can be combined to enhance the understanding of the spatial pattern of ITPGN.
Digital spatial soil and land information for agriculture development
NASA Astrophysics Data System (ADS)
Sharma, R. K.; Laghathe, Pankaj; Meena, Ranglal; Barman, Alok Kumar; Das, Satyendra Nath
2006-12-01
Natural resource management calls for study of natural system prevailing in the country. In India floods and droughts visit regularly, causing extensive damages of natural wealth including agriculture that are crucial for sustenance of economic growth. The Indian Sub-continent drained by many major rivers and their tributaries where watershed, the hydrological unit forms a natural system that allows management and development of land resources following natural harmony. Acquisition of various kinds and levels of soil and land characteristics using both conventional and remote sensing techniques and subsequent development of digital spatial data base are essential to evolve strategy for planning watershed development programmes, their monitoring and impact evaluation. The multi-temporal capability of remote sensing sensors helps to update the existing data base which are of dynamic in nature. The paper outlines the concept of spatial data base development, generation using remote sensing techniques, designing of data structure, standardization and integration with watershed layers and various non spatial attribute data for various applications covering watershed development planning, alternate land use planning, soil and water conservation, diversified agriculture practices, generation of soil health card, soil and land reclamation, etc. The soil and land characteristics are vital to derive various interpretative groupings or master table that helps to generate the desired level of information of various clients using the GIS platform. The digital spatial data base on soils and watersheds generated by All India Soil and Land Use Survey will act as a sub-server of the main GIS based Web Server being hoisted by the planning commission for application of spatial data for planning purposes under G2G domain. It will facilitate e-governance for natural resource management using modern technology.
Spatially explicit multi-criteria decision analysis for managing vector-borne diseases
2011-01-01
The complex epidemiology of vector-borne diseases creates significant challenges in the design and delivery of prevention and control strategies, especially in light of rapid social and environmental changes. Spatial models for predicting disease risk based on environmental factors such as climate and landscape have been developed for a number of important vector-borne diseases. The resulting risk maps have proven value for highlighting areas for targeting public health programs. However, these methods generally only offer technical information on the spatial distribution of disease risk itself, which may be incomplete for making decisions in a complex situation. In prioritizing surveillance and intervention strategies, decision-makers often also need to consider spatially explicit information on other important dimensions, such as the regional specificity of public acceptance, population vulnerability, resource availability, intervention effectiveness, and land use. There is a need for a unified strategy for supporting public health decision making that integrates available data for assessing spatially explicit disease risk, with other criteria, to implement effective prevention and control strategies. Multi-criteria decision analysis (MCDA) is a decision support tool that allows for the consideration of diverse quantitative and qualitative criteria using both data-driven and qualitative indicators for evaluating alternative strategies with transparency and stakeholder participation. Here we propose a MCDA-based approach to the development of geospatial models and spatially explicit decision support tools for the management of vector-borne diseases. We describe the conceptual framework that MCDA offers as well as technical considerations, approaches to implementation and expected outcomes. We conclude that MCDA is a powerful tool that offers tremendous potential for use in public health decision-making in general and vector-borne disease management in particular. PMID:22206355
Soil erosion risk mapping: how to explain the stakeholders what lies behind?
NASA Astrophysics Data System (ADS)
Cerdan, Olivier; Degan, Francesca; Salvador-Blanes, Sebastien
2014-05-01
Recent demographic projections of the impact of global changes point to the need of increasing food and biomass production to meet expected global demand. This issue is particularly complex as it must comply with an increasing awareness that environmental quality must be preserved. Increased production can be achieved through either an intensification of agricultural practices or an increase of cultivated areas. In both cases, significant adverse effects are expected in terms of land degradation and its ability to maintain sustainable agricultural productivity. In this context, soil degradation vulnerability assessment is becoming more and more integrated in land management planning. Soil erosion being one of the major causes of soil degradation, the demand for soil erosion risk maps is increasing. However, the 2D representation of a process that shows strong non-linear dynamics in space and time is far from trivial. Important assumptions on the way to integrate these heterogeneities in time and space have to be made. How to integrate the crop rotation calendar and the climatic seasonal variability at the yearly scale? Or, how to characterise the erosion vulnerability of a geographical space that combines areas having different erosion risks? Moreover, other important questions arise with the resolution and the uncertainties associated with the available input data. And, last but not least, the final map needs, not only to integrate all these issues, but, more importantly, to be understandable by public managers. In this paper we illustrate the different difficulties inherent to soil erosion mapping, taking an example in different catchments of the Loire valley in France and present possible options to the spatial integration of both temporal and spatial variations in erosion risk.
Tanentzap, Andrew J; Zou, James; Coomes, David A
2013-01-01
High deer populations threaten the conservation value of woodlands and grasslands, but predicting the success of deer culling, in terms of allowing vegetation to recover, is difficult. Numerical simulation modeling is one approach to gain insight into the outcomes of management scenarios. We develop a spatially explicit model to predict the responses of Betula spp. to red deer (Cervus elaphus) and land management in the Scottish Highlands. Our model integrates a Bayesian stochastic stage-based matrix model within the framework of a widely used individual-based forest simulation model, using data collected along spatial and temporal gradients in deer browsing. By initializing our model with the historical spatial locations of trees, we find that densities of juvenile trees (<3 m tall) predicted after 9–13 years closely match counts observed in the field. This is among the first tests of the accuracy of a dynamical simulation model for predicting the responses of tree regeneration to herbivores. We then test the relative importance of deer browsing, ground cover vegetation, and seed availability in facilitating landscape-level birch regeneration using simulations in which we varied these three variables. We find that deer primarily control transitions of birch to taller (>3 m) height tiers over 30 years, but regeneration also requires suitable ground cover for seedling establishment. Densities of adult seed sources did not influence regeneration, nor did an active management scenario where we altered the spatial configuration of adults by creating “woodland islets”. Our results show that managers interested in maximizing tree regeneration cannot simply reduce deer densities but must also improve ground cover for seedling establishment, and the model we develop now enables managers to quantify explicitly how much both these factors need to be altered. More broadly, our findings emphasize the need for land managers to consider the impacts of large herbivores rather than their densities. PMID:23919137
NASA Astrophysics Data System (ADS)
Hankin, S.
2004-12-01
Data management and communications within the marine environment present great challenges due in equal parts to the variety and complexity of the observations that are involved; the rapidly evolving information technology; and the complex history and relationships among community participants. At present there is no coherent Cyberinfrastructure that effectively integrates these data streams across organizations, disciplines and spatial and temporal scales. The resulting lack of integration of data denies US society important benefits, such as improved climate forecasts and more effective protection of coastal marine ecosystems. Therefore, Congress has directed the US marine science communities to come together to plan, design, and implement a sustained Integrated Ocean Observing System (IOOS). Central to the vision of the IOOS is a Data Management and Communications (DMAC) Subsystem that joins Federal, regional, state, municipal, academic and commercial partners in a seamless data sharing framework. The design of the DMAC Subsystem is made particularly challenging by three competing factors: 1) The data types to be integrated are heterogeneous and have complex structure; 2) The holdings are physically distributed and widely ranging in size and complexity; and 3) IOOS is a loose federation of many organizations, large and small, lacking a management hierarchy. Designing the DMAC Subsystem goes beyond solving problems of software engineering; the most demanding aspects of the solution lie in community behavior. An overview of the plan for the DMAC Subsystem and an outline of the next steps forward will be described.
A Comparative Study of Spatial Aggregation Methodologies under the BioEarth Framework
NASA Astrophysics Data System (ADS)
Chandrasekharan, B.; Rajagopalan, K.; Malek, K.; Stockle, C. O.; Adam, J. C.; Brady, M.
2014-12-01
The increasing probability of water resource scarcity due to climate change has highlighted the need for adopting an economic focus in modelling water resource uses. Hydro-economic models, developed by integrating economic optimization with biophysical crop models, are driven by the economic value of water, revealing it's most efficient uses and helping policymakers evaluate different water management strategies. One of the challenges in integrating biophysical models with economic models is the difference in the spatial scales in which they operate. Biophysical models that provide crop production functions typically run at smaller scale than economic models, and substantial spatial aggregation is required. However, any aggregation introduces a bias, i.e., a discrepancy between the functional value at the higher spatial scale and the value at the spatial scale of the aggregated units. The objective of this work is to study the sensitivity of net economic benefits in the Yakima River basin (YRB) to different spatial aggregation methods for crop production functions. The spatial aggregation methodologies that we compare involve agro-ecological zones (AEZs) and aggregation levels that reflect water management regimes (e.g. irrigation districts). Aggregation bias can distort the underlying data and result in extreme solutions. In order to avoid this we use an economic optimization model that incorporates the synthetic and historical crop mixes approach (Onal & Chen, 2012). This restricts the solutions between the weighted averages of historical and simulated feasible planting decisions, with the weights associated with crop mixes being treated as endogenous variables. This study is focused on 5 major irrigation districts of the YRB in the Pacific Northwest US. The biophysical modeling framework we use, BioEarth, includes the coupled hydrology and crop growth model, VIC-Cropsyst and an economic optimization model. Preliminary findings indicate that the standard approach of developing AEZs does not perform well when overlaid with irrigation districts. Moreover, net economic benefits were significantly different between the two aggregation methodologies. Therefore, while developing hydro-economic models, significant consideration should be placed on the aggregation methodology.
Li, Qi; Yu, Hongtao; Wu, Yan; Gao, Ning
2016-08-26
The integration of multiple sensory inputs is essential for perception of the external world. The spatial factor is a fundamental property of multisensory audiovisual integration. Previous studies of the spatial constraints on bimodal audiovisual integration have mainly focused on the spatial congruity of audiovisual information. However, the effect of spatial reliability within audiovisual information on bimodal audiovisual integration remains unclear. In this study, we used event-related potentials (ERPs) to examine the effect of spatial reliability of task-irrelevant sounds on audiovisual integration. Three relevant ERP components emerged: the first at 140-200ms over a wide central area, the second at 280-320ms over the fronto-central area, and a third at 380-440ms over the parieto-occipital area. Our results demonstrate that ERP amplitudes elicited by audiovisual stimuli with reliable spatial relationships are larger than those elicited by stimuli with inconsistent spatial relationships. In addition, we hypothesized that spatial reliability within an audiovisual stimulus enhances feedback projections to the primary visual cortex from multisensory integration regions. Overall, our findings suggest that the spatial linking of visual and auditory information depends on spatial reliability within an audiovisual stimulus and occurs at a relatively late stage of processing. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
S. McLaughlin; K. Percy
1999-01-01
The perceived health of forest ecosystems over large temporal and spatial scales can be strongly influenced by the frames of reference chosen to evaluate both forest condition and the functional integrity of sustaining forest processes. North American forests are diverse in range, species composition, past disturbance history, and current management practices....
David A. Buehler; Eric T. Linder; Kathleen E. Franzreb; Nathan A. Klaus; Randy Dettmers; John G. Bartlett
2005-01-01
We developed spatially-explicit bird-habitat models with a variety of site-specific and landscape parameters to predict avian species distributions on southern Appalachian National Forests to aid National Forests with bird conservation planning. These models can be used to assess the effects of different forest management alternatives on long-term population viability...
Data on distribution and abundance: Monitoring for research and management [Chapter 6
Samuel A. Cushman; Kevin S. McKelvey
2010-01-01
In the first chapter of this book we identified the interdependence of method, data and theory as an important influence on the progress of science. The first several chapters focused mostly on progress in theory, in the areas of integrating spatial and temporal complexity into ecological analysis, the emergence of landscape ecology and its transformation into a multi-...
NASA Astrophysics Data System (ADS)
Schmidt, R. D.; Taylor, R. G.; Stodick, L. D.; Contor, B. A.
2009-12-01
A recent federal interagency report on climate change and water management (Brekke et. al., 2009) describes several possible management responses to the impacts of climate change on water supply and demand. Management alternatives include changes to water supply infrastructure, reservoir system operations, and water demand policies. Water users in the Bureau of Reclamation’s Boise Project (located in the Lower Boise River basin in southwestern Idaho) would be among those impacted both hydrologically and economically by climate change. Climate change and management responses to climate change are expected to cause shifts in water supply and demand. Supply shifts would result from changes in basin precipitation patterns, and demand shifts would result from higher evapotranspiration rates and a longer growing season. The impacts would also extend to non-Project water users in the basin, since most non-Project groundwater pumpers and drain water diverters rely on hydrologic externalities created by seepage losses from Boise Project water deliveries. An integrated hydrologic-economic model was developed for the Boise basin to aid Reclamation in evaluating the hydrologic and economic impacts of various management responses to climate change. A spatial, partial-equilibrium, economic optimization model calculates spatially-distinct equilibrium water prices and quantities, and maximizes a social welfare function (the sum of consumer and producers surpluses) for all agricultural and municipal water suppliers and demanders (both Project and non-Project) in the basin. Supply-price functions and demand-price functions are exogenous inputs to the economic optimization model. On the supply side, groundwater and river/reservoir models are used to generate hydrologic responses to various management alternatives. The response data is then used to develop water supply-price functions for Project and non-Project water users. On the demand side, crop production functions incorporating crop distribution, evapotranspiration rates, irrigation efficiencies, and crop prices are used to develop water demand-price functions for agricultural water users. Demand functions for municipal and industrial water users are also developed. Recent applications of the integrated model have focused on the hydrologic and economic impacts of demand management alternatives, including large-scale canal lining conservation measures, and market-based water trading between canal diverters and groundwater pumpers. A supply management alternative being investigated involves revising reservoir rule curves to compensate for climate change impacts on timing of reservoir filling.
Applications of Geomatics in Surface Mining
NASA Astrophysics Data System (ADS)
Blachowski, Jan; Górniak-Zimroz, Justyna; Milczarek, Wojciech; Pactwa, Katarzyna
2017-12-01
In terms of method of extracting mineral from deposit, mining can be classified into: surface, underground, and borehole mining. Surface mining is a form of mining, in which the soil and the rock covering the mineral deposits are removed. Types of surface mining include mainly strip and open-cast methods, as well as quarrying. Tasks associated with surface mining of minerals include: resource estimation and deposit documentation, mine planning and deposit access, mine plant development, extraction of minerals from deposits, mineral and waste processing, reclamation and reclamation of former mining grounds. At each stage of mining, geodata describing changes occurring in space during the entire life cycle of surface mining project should be taken into consideration, i.e. collected, analysed, processed, examined, distributed. These data result from direct (e.g. geodetic) and indirect (i.e. remote or relative) measurements and observations including airborne and satellite methods, geotechnical, geological and hydrogeological data, and data from other types of sensors, e.g. located on mining equipment and infrastructure, mine plans and maps. Management of such vast sources and sets of geodata, as well as information resulting from processing, integrated analysis and examining such data can be facilitated with geomatic solutions. Geomatics is a discipline of gathering, processing, interpreting, storing and delivering spatially referenced information. Thus, geomatics integrates methods and technologies used for collecting, management, processing, visualizing and distributing spatial data. In other words, its meaning covers practically every method and tool from spatial data acquisition to distribution. In this work examples of application of geomatic solutions in surface mining on representative case studies in various stages of mine operation have been presented. These applications include: prospecting and documenting mineral deposits, assessment of land accessibility for a potential large-scale surface mining project, modelling mineral deposit (granite) management, concept of a system for management of conveyor belt network technical condition, project of a geoinformation system of former mining terrains and objects, and monitoring and control of impact of surface mining on mine surroundings with satellite radar interferometry.
Development of management information system for land in mine area based on MapInfo
NASA Astrophysics Data System (ADS)
Wang, Shi-Dong; Liu, Chuang-Hua; Wang, Xin-Chuang; Pan, Yan-Yu
2008-10-01
MapInfo is current a popular GIS software. This paper introduces characters of MapInfo and GIS second development methods offered by MapInfo, which include three ones based on MapBasic, OLE automation, and MapX control usage respectively. Taking development of land management information system in mine area for example, in the paper, the method of developing GIS applications based on MapX has been discussed, as well as development of land management information system in mine area has been introduced in detail, including development environment, overall design, design and realization of every function module, and simple application of system, etc. The system uses MapX 5.0 and Visual Basic 6.0 as development platform, takes SQL Server 2005 as back-end database, and adopts Matlab 6.5 to calculate number in back-end. On the basis of integrated design, the system develops eight modules including start-up, layer control, spatial query, spatial analysis, data editing, application model, document management, results output. The system can be used in mine area for cadastral management, land use structure optimization, land reclamation, land evaluation, analysis and forecasting for land in mine area and environmental disruption, thematic mapping, and so on.
Information gathering, management and transfering for geospacial intelligence
NASA Astrophysics Data System (ADS)
Nunes, Paulo; Correia, Anacleto; Teodoro, M. Filomena
2017-07-01
Information is a key subject in modern organization operations. The success of joint and combined operations with organizations partners depends on the accurate information and knowledge flow concerning the operations theatre: provision of resources, environment evolution, markets location, where and when an event occurred. As in the past and nowadays we cannot conceive modern operations without maps and geo-spatial information (GI). Information and knowledge management is fundamental to the success of organizational decisions in an uncertainty environment. The georeferenced information management is a process of knowledge management, it begins in the raw data and ends on generating knowledge. GI and intelligence systems allow us to integrate all other forms of intelligence and can be a main platform to process and display geo-spatial-time referenced events. Combining explicit knowledge with peoples know-how to generate a continuous learning cycle that supports real time decisions mitigates the influences of fog of everyday competition and provides the knowledge supremacy. Extending the preliminary analysis done in [1], this work applies the exploratory factor analysis to a questionnaire about the GI and intelligence management in an organization company allowing to identify future lines of action to improve information process sharing and exploration of all the potential of this important resource.
Management and assimilation of diverse, distributed watershed datasets
NASA Astrophysics Data System (ADS)
Varadharajan, C.; Faybishenko, B.; Versteeg, R.; Agarwal, D.; Hubbard, S. S.; Hendrix, V.
2016-12-01
The U.S. Department of Energy's (DOE) Watershed Function Scientific Focus Area (SFA) seeks to determine how perturbations to mountainous watersheds (e.g., floods, drought, early snowmelt) impact the downstream delivery of water, nutrients, carbon, and metals over seasonal to decadal timescales. We are building a software platform that enables integration of diverse and disparate field, laboratory, and simulation datasets, of various types including hydrological, geological, meteorological, geophysical, geochemical, ecological and genomic datasets across a range of spatial and temporal scales within the Rifle floodplain and the East River watershed, Colorado. We are using agile data management and assimilation approaches, to enable web-based integration of heterogeneous, multi-scale dataSensor-based observations of water-level, vadose zone and groundwater temperature, water quality, meteorology as well as biogeochemical analyses of soil and groundwater samples have been curated and archived in federated databases. Quality Assurance and Quality Control (QA/QC) are performed on priority datasets needed for on-going scientific analyses, and hydrological and geochemical modeling. Automated QA/QC methods are used to identify and flag issues in the datasets. Data integration is achieved via a brokering service that dynamically integrates data from distributed databases via web services, based on user queries. The integrated results are presented to users in a portal that enables intuitive search, interactive visualization and download of integrated datasets. The concepts, approaches and codes being used are shared across various data science components of various large DOE-funded projects such as the Watershed Function SFA, Next Generation Ecosystem Experiment (NGEE) Tropics, Ameriflux/FLUXNET, and Advanced Simulation Capability for Environmental Management (ASCEM), and together contribute towards DOE's cyberinfrastructure for data management and model-data integration.
Cvitanovic, C; Wilson, S K; Fulton, C J; Almany, G R; Anderson, P; Babcock, R C; Ban, N C; Beeden, R J; Beger, M; Cinner, J; Dobbs, K; Evans, L S; Farnham, A; Friedman, K J; Gale, K; Gladstone, W; Grafton, Q; Graham, N A J; Gudge, S; Harrison, P L; Holmes, T H; Johnstone, N; Jones, G P; Jordan, A; Kendrick, A J; Klein, C J; Little, L R; Malcolm, H A; Morris, D; Possingham, H P; Prescott, J; Pressey, R L; Skilleter, G A; Simpson, C; Waples, K; Wilson, D; Williamson, D H
2013-01-15
Marine protected areas (MPAs) are a primary policy instrument for managing and protecting coral reefs. Successful MPAs ultimately depend on knowledge-based decision making, where scientific research is integrated into management actions. Fourteen coral reef MPA managers and sixteen academics from eleven research, state and federal government institutions each outlined at least five pertinent research needs for improving the management of MPAs situated in Australian coral reefs. From this list of 173 key questions, we asked members of each group to rank questions in order of urgency, redundancy and importance, which allowed us to explore the extent of perceptional mismatch and overlap among the two groups. Our results suggest the mismatch among MPA managers and academics is small, with no significant difference among the groups in terms of their respective research interests, or the type of questions they pose. However, managers prioritised spatial management and monitoring as research themes, whilst academics identified climate change, resilience, spatial management, fishing and connectivity as the most important topics. Ranking of the posed questions by the two groups was also similar, although managers were less confident about the achievability of the posed research questions and whether questions represented a knowledge gap. We conclude that improved collaboration and knowledge transfer among management and academic groups can be used to achieve similar objectives and enhance the knowledge-based management of MPAs. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Romero Ramirez, Francisco J.; Navarro-Cerrillo, Rafael Mª.; Varo-Martínez, Mª. Ángeles; Quero, Jose Luis; Doerr, Stefan; Hernández-Clemente, Rocío
2018-06-01
Widespread tree mortality caused by forest decline in recent decades has raised concern among forest managers about how to assess forest fuels in these conditions. To investigate this question, we developed and tested an objective, consistent approach to the characterization of canopy fuel metrics - such as fuel load (FL), live fuel moisture content (LFMC), and live-dead ratio (LDR) - by integrating airborne laser scanning (ALS) and hyperspectral data to produce more-accurate estimates at the stand level. Regression models were developed for Pinus sylvestris and P. nigra stands representative of pine plantations in southern Spain, using field data acquired for different spatial fuel types and distributions as well as high resolution airborne hyperspectral data (AHS) and ALS datasets. Strong relationships were found between ALS and FL using a density of 2 points m-2 (R2 = 0.64) and between LFMC and Temperature/NDVI index at a spatial resolution of 5 m (R2 = 0.91). The red edge normalized index provided the highest separability (Jeffries-Matusita distance = 1.83) between types of LDR. The plot-aggregate ALS and AHS metrics performed better at spatial resolutions of 5 m and 2 points m-2 than at other scales. Cartography of the estimations of FL, LFMC, and LDR made using the empirical models from the ALS and AHS data showed a mean FL value of 65.87 Mg ha-1, an average LFMC content of 57.51%, and 30.75% of the surface classified as dead fuel (≥60% defoliation). The results suggest that our remote sensing approach could improve the estimation of canopy fuels characteristics at higher spatial resolutions as well as estimations of fuel cartography, to assist the planning and management of fuel reduction treatments.
Integration of Multiple Data Sources to Simulate the Dynamics of Land Systems
Deng, Xiangzheng; Su, Hongbo; Zhan, Jinyan
2008-01-01
In this paper we present and develop a new model, which we have called Dynamics of Land Systems (DLS). The DLS model is capable of integrating multiple data sources to simulate the dynamics of a land system. Three main modules are incorporated in DLS: a spatial regression module, to explore the relationship between land uses and influencing factors, a scenario analysis module of the land uses of a region during the simulation period and a spatial disaggregation module, to allocate land use changes from a regional level to disaggregated grid cells. A case study on Taips County in North China is incorporated in this paper to test the functionality of DLS. The simulation results under the baseline, economic priority and environmental scenarios help to understand the land system dynamics and project near future land-use trajectories of a region, in order to focus management decisions on land uses and land use planning. PMID:27879726
Socio-Spatial Integration of Older Adults in Four Types of Residential Environments in Israel.
Schorr, Adi Vitman; Iecovich, Esther; Alfasi, Nurit; Shamai, Shmuel
2017-10-01
The socio-spatial integration of older people in different types of residential environments is a key factor affecting the well-being of older people. This study, which included a convenience sample of 565 participants, examined the socio-spatial integration of older people living in two different regional areas (central and peripheral) and four different residential environments (metropolitan hub, city, and town and rural settlements) in Israel. Willing participants were asked to complete a self-administered questionnaire. Socio-spatial integration was assessed by recognition of their neighbors and sense of belonging to the residential environment. The findings show that older adults who resided in the town and in rural settlements were more socio-spatially integrated in their living environments compared with their counterparts who resided in cities. The best predictors of socio-spatial integration were a combination of personal characteristics and characteristics of the environment (perceived accessibility) except for rural settlements, where none of the variables predicted socio-spatial integration.
Multi-objective spatial tools to inform maritime spatial planning in the Adriatic Sea.
Depellegrin, Daniel; Menegon, Stefano; Farella, Giulio; Ghezzo, Michol; Gissi, Elena; Sarretta, Alessandro; Venier, Chiara; Barbanti, Andrea
2017-12-31
This research presents a set of multi-objective spatial tools for sea planning and environmental management in the Adriatic Sea Basin. The tools address four objectives: 1) assessment of cumulative impacts from anthropogenic sea uses on environmental components of marine areas; 2) analysis of sea use conflicts; 3) 3-D hydrodynamic modelling of nutrient dispersion (nitrogen and phosphorus) from riverine sources in the Adriatic Sea Basin and 4) marine ecosystem services capacity assessment from seabed habitats based on an ES matrix approach. Geospatial modelling results were illustrated, analysed and compared on country level and for three biogeographic subdivisions, Northern-Central-Southern Adriatic Sea. The paper discusses model results for their spatial implications, relevance for sea planning, limitations and concludes with an outlook towards the need for more integrated, multi-functional tools development for sea planning. Copyright © 2017. Published by Elsevier B.V.
Qin, Changbo; Jia, Yangwen; Su, Z; Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen
2008-07-29
This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems.
Qin, Changbo; Jia, Yangwen; Su, Z.(Bob); Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen
2008-01-01
This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems. PMID:27879946
Speech Cues Contribute to Audiovisual Spatial Integration
Bishop, Christopher W.; Miller, Lee M.
2011-01-01
Speech is the most important form of human communication but ambient sounds and competing talkers often degrade its acoustics. Fortunately the brain can use visual information, especially its highly precise spatial information, to improve speech comprehension in noisy environments. Previous studies have demonstrated that audiovisual integration depends strongly on spatiotemporal factors. However, some integrative phenomena such as McGurk interference persist even with gross spatial disparities, suggesting that spatial alignment is not necessary for robust integration of audiovisual place-of-articulation cues. It is therefore unclear how speech-cues interact with audiovisual spatial integration mechanisms. Here, we combine two well established psychophysical phenomena, the McGurk effect and the ventriloquist's illusion, to explore this dependency. Our results demonstrate that conflicting spatial cues may not interfere with audiovisual integration of speech, but conflicting speech-cues can impede integration in space. This suggests a direct but asymmetrical influence between ventral ‘what’ and dorsal ‘where’ pathways. PMID:21909378
NASA Astrophysics Data System (ADS)
Baeza, Andrés; Estrada-Barón, Alejandra; Serrano-Candela, Fidel; Bojórquez, Luis A.; Eakin, Hallie; Escalante, Ana E.
2018-06-01
Due to unplanned growth, large extension and limited resources, most megacities in the developing world are vulnerable to hydrological hazards and infectious diseases caused by waterborne pathogens. Here we aim to elucidate the extent of the relation between the spatial heterogeneity of physical and socio-economic factors associated with hydrological hazards (flooding and scarcity) and the spatial distribution of gastrointestinal disease in Mexico City, a megacity with more than 8 million people. We applied spatial statistics and multivariate regression analyses to high resolution records of gastrointestinal diseases during two time frames (2007–2009 and 2010–2014). Results show a pattern of significant association between water flooding events and disease incidence in the city center (lowlands). We also found that in the periphery (highlands), higher incidence is generally associated with household infrastructure deficiency. Our findings suggest the need for integrated and spatially tailored interventions by public works and public health agencies, aimed to manage socio-hydrological vulnerability in Mexico City.
Tamis, Jacqueline E; de Vries, Pepijn; Jongbloed, Ruud H; Lagerveld, Sander; Jak, Robbert G; Karman, Chris C; Van der Wal, Jan Tjalling; Slijkerman, Diana Me; Klok, Chris
2016-10-01
With a foreseen increase in maritime activities, and driven by new policies and conventions aiming at sustainable management of the marine ecosystem, spatial management at sea is of growing importance. Spatial management should ensure that the collective pressures caused by anthropogenic activities on the marine ecosystem are kept within acceptable levels. A multitude of approaches to environmental assessment are available to provide insight for sustainable management, and there is a need for a harmonized and integrated environmental assessment approach that can be used for different purposes and variable levels of detail. This article first provides an overview of the main types of environmental assessments: "environmental impact assessment" (EIA), "strategic environmental assessment" (SEA), "cumulative effect assessment" (CEA), and "environmental (or ecological) risk assessment" (ERA). Addressing the need for a conceptual "umbrella" for the fragmented approaches, a generic framework for environmental assessment is proposed: cumulative effects of offshore activities (CUMULEO). CUMULEO builds on the principle that activities cause pressures that may lead to adverse effects on the ecosystem. Basic elements and variables are defined that can be used consistently throughout sequential decision-making levels and diverse methodological implementations. This enables environmental assessment to start at a high strategic level (i.e., plan and/or program level), resulting in early environmental awareness and subsequently more informed, efficient, and focused project-level assessments, which has clear benefits for both industry and government. Its main strengths are simplicity, transparency, flexibility (allowing the use of both qualitative and quantitative data), and visualization, making it a powerful framework to support discussions with experts, stakeholders, and policymakers. Integr Environ Assess Manag 2016;12:632-642. © 2015 SETAC. © 2015 SETAC.
NASA Astrophysics Data System (ADS)
Falinski, K. A.; Oleson, K.; Htun, H.; Kappel, C.; Lecky, J.; Rowe, C.; Selkoe, K.; White, C.
2016-12-01
Faced with anthropogenic stressors and declining coral reef states, managers concerned with restoration and resilience of coral reefs are increasingly recognizing the need to take a ridge-to-reef, ecosystem-based approach. An ecosystem services framing can help managers move towards these goals, helping to illustrate trade-offs and opportunities of management actions in terms of their impacts on society. We describe a research program building a spatial ecosystem services-based decision-support tool, and being applied to guide ridge-to-reef management in a NOAA priority site in West Maui. We use multiple modeling methods to link biophysical processes to ecosystem services and their spatial flows and social values in an integrating platform. Modeled services include water availability, sediment retention, nutrient retention and carbon sequestration on land. A coral reef ecosystem service model is under development to capture the linkages between terrestrial and coastal ecosystem services. Valuation studies are underway to quantify the implications for human well-being. The tool integrates techniques from decision science to facilitate decision making. We use the sediment retention model to illustrate the types of analyses the tool can support. The case study explores the tradeoffs between road rehabilitation costs and sediment export avoided. We couple the sediment and cost models with trade-off analysis to identify optimal distributed solutions that are most cost-effective in reducing erosion, and then use those models to estimate sediment exposure to coral reefs. We find that cooperation between land owners reveals opportunities for maximizing the benefits of fixing roads and minimizes costs. This research forms the building blocks of an ecosystem service decision support tool that we intend to continue to test and apply in other Pacific Island settings.
Urban green valuation integrating biophysical and qualitative aspects.
Lang, Stefan
2018-01-01
Urban green mapping has become an operational task in city planning, urban land management, and quality of life assessments. As a multi-dimensional, integrative concept, urban green comprising several ecological, socio-economic, and policy-related aspects. In this paper, the author advances the representation of urban green by deriving scale-adapted, policy-relevant units. These so-called geons represent areas of uniform green valuation under certain size and homogeneity constraints in a spatially explicit representation. The study accompanies a regular monitoring scheme carried out by the urban municipality of the city of Salzburg, Austria, using optical satellite data. It was conducted in two stages, namely SBG_QB (10.2 km², QuickBird data from 2005) and SBG_WV (140 km², WorldView-2 data from 2010), within the functional urban area of Salzburg. The geon delineation was validated by several quantitative measures and spatial analysis techniques, as well as ground documentation, including panorama photographs and visual interpretation. The spatial association pattern was assessed by calculating Global Moran's I with incremental search distances. The final geonscape, consisting of 1083 units with an average size of 13.5 ha, was analyzed by spatial metrics. Finally, categories were derived for different types of functional geons. Future research paths and improvements to the described strategy are outlined.
OpenMP parallelization of a gridded SWAT (SWATG)
NASA Astrophysics Data System (ADS)
Zhang, Ying; Hou, Jinliang; Cao, Yongpan; Gu, Juan; Huang, Chunlin
2017-12-01
Large-scale, long-term and high spatial resolution simulation is a common issue in environmental modeling. A Gridded Hydrologic Response Unit (HRU)-based Soil and Water Assessment Tool (SWATG) that integrates grid modeling scheme with different spatial representations also presents such problems. The time-consuming problem affects applications of very high resolution large-scale watershed modeling. The OpenMP (Open Multi-Processing) parallel application interface is integrated with SWATG (called SWATGP) to accelerate grid modeling based on the HRU level. Such parallel implementation takes better advantage of the computational power of a shared memory computer system. We conducted two experiments at multiple temporal and spatial scales of hydrological modeling using SWATG and SWATGP on a high-end server. At 500-m resolution, SWATGP was found to be up to nine times faster than SWATG in modeling over a roughly 2000 km2 watershed with 1 CPU and a 15 thread configuration. The study results demonstrate that parallel models save considerable time relative to traditional sequential simulation runs. Parallel computations of environmental models are beneficial for model applications, especially at large spatial and temporal scales and at high resolutions. The proposed SWATGP model is thus a promising tool for large-scale and high-resolution water resources research and management in addition to offering data fusion and model coupling ability.
Wan, Yongshan; Qian, Yun; Migliaccio, Kati White; Li, Yuncong; Conrad, Cecilia
2014-03-01
Most studies using multivariate techniques for pollution source evaluation are conducted in free-flowing rivers with distinct point and nonpoint sources. This study expanded on previous research to a managed "canal" system discharging into the Indian River Lagoon, Florida, where water and land management is the single most important anthropogenic factor influencing water quality. Hydrometric and land use data of four drainage basins were uniquely integrated into the analysis of 25 yr of monthly water quality data collected at seven stations to determine the impact of water and land management on the spatial variability of water quality. Cluster analysis (CA) classified seven monitoring stations into four groups (CA groups). All water quality parameters identified by discriminant analysis showed distinct spatial patterns among the four CA groups. Two-step principal component analysis/factor analysis (PCA/FA) was conducted with (i) water quality data alone and (ii) water quality data in conjunction with rainfall, flow, and land use data. The results indicated that PCA/FA of water quality data alone was unable to identify factors associated with management activities. The addition of hydrometric and land use data into PCA/FA revealed close associations of nutrients and color with land management and storm-water retention in pasture and citrus lands; total suspended solids, turbidity, and NO + NO with flow and Lake Okeechobee releases; specific conductivity with supplemental irrigation supply; and dissolved O with wetland preservation. The practical implication emphasizes the importance of basin-specific land and water management for ongoing pollutant loading reduction and ecosystem restoration programs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Peltz-Lewis, L. A.; Blake-Coleman, W.; Johnston, J.; DeLoatch, I. B.
2014-12-01
The Federal Geographic Data Committee (FGDC) is designing a portfolio management process for 193 geospatial datasets contained within the 16 topical National Spatial Data Infrastructure themes managed under OMB Circular A-16 "Coordination of Geographic Information and Related Spatial Data Activities." The 193 datasets are designated as National Geospatial Data Assets (NGDA) because of their significance in implementing to the missions of multiple levels of government, partners and stakeholders. As a starting point, the data managers of these NGDAs will conduct a baseline maturity assessment of the dataset(s) for which they are responsible. The maturity is measured against benchmarks related to each of the seven stages of the data lifecycle management framework promulgated within the OMB Circular A-16 Supplemental Guidance issued by OMB in November 2010. This framework was developed by the interagency Lifecycle Management Work Group (LMWG), consisting of 16 Federal agencies, under the 2004 Presidential Initiative the Geospatial Line of Business,using OMB Circular A-130" Management of Federal Information Resources" as guidance The seven lifecycle stages are: Define, Inventory/Evaluate, Obtain, Access, Maintain, Use/Evaluate, and Archive. This paper will focus on the Lifecycle Baseline Maturity Assessment, and efforts to integration the FGDC approach with other data maturity assessments.
Peck, Steven L
2014-10-01
It is becoming clear that handling the inherent complexity found in ecological systems is an essential task for finding ways to control insect pests of tropical livestock such as tsetse flies, and old and new world screwworms. In particular, challenging multivalent management programs, such as Area Wide Integrated Pest Management (AW-IPM), face daunting problems of complexity at multiple spatial scales, ranging from landscape level processes to those of smaller scales such as the parasite loads of individual animals. Daunting temporal challenges also await resolution, such as matching management time frames to those found on ecological and even evolutionary temporal scales. How does one deal with representing processes with models that involve multiple spatial and temporal scales? Agent-based models (ABM), combined with geographic information systems (GIS), may allow for understanding, predicting and managing pest control efforts in livestock pests. This paper argues that by incorporating digital ecologies in our management efforts clearer and more informed decisions can be made. I also point out the power of these models in making better predictions in order to anticipate the range of outcomes possible or likely. Copyright © 2014 International Atomic Energy Agency 2014. Published by Elsevier B.V. All rights reserved.
Spatial organization of agricultural landscape, farming activities and hydrological risk assessment
NASA Astrophysics Data System (ADS)
Viaud, V.; Merot, P.
2003-04-01
Agriculture intensification is considered as a major cause of water pollution since it has gone both with an increasing use of fertilisers and significant changes in land-use patterns. Among the prescriptions for pollution control, the management of buffer zones at the landscape scale is supported by the environmental policies, but often without consideration of the systems of human activities they are aimed at. Agricultural landscapes, with fields potentially source of pollution and buffer zones, are spatially organized and managed by farming activities. In a perspective of sustainable management, an integrating approach of environmental issues and farming activities is thus required. This approach was applied to bocage landscapes (landscapes with cultivated fields surrounded by hedgerow systems) in Brittany (Western France). Bocage landscapes are frequently encountered, especially in Europe, and many studies put forward their hydrological and hydrochemical buffer functions. Those results provide informations on the link between spatial organization of hedgerow systems and their environmental effectiveness. They enable to design models of functional bocage landscapes. The objective of this work was to pick out, among those theoretical models, the models compatible with the farming activities. The results will be presented and the additional constraints for the farming systems created by a functional landscape, from a hydrological and hydrochemical perspective, will be discussed.
NASA Astrophysics Data System (ADS)
Riddle, E. E.; Hopson, T. M.; Gebremichael, M.; Boehnert, J.; Broman, D.; Sampson, K. M.; Rostkier-Edelstein, D.; Collins, D. C.; Harshadeep, N. R.; Burke, E.; Havens, K.
2017-12-01
While it is not yet certain how precipitation patterns will change over Africa in the future, it is clear that effectively managing the available water resources is going to be crucial in order to mitigate the effects of water shortages and floods that are likely to occur in a changing climate. One component of effective water management is the availability of state-of-the-art and easy to use rainfall forecasts across multiple spatial and temporal scales. We present a web-based system for displaying and disseminating ensemble forecast and observed precipitation data over central and eastern Africa. The system provides multi-model rainfall forecasts integrated to relevant hydrological catchments for timescales ranging from one day to three months. A zoom-in features is available to access high resolution forecasts for small-scale catchments. Time series plots and data downloads with forecasts, recent rainfall observations and climatological data are available by clicking on individual catchments. The forecasts are calibrated using a quantile regression technique and an optimal multi-model forecast is provided at each timescale. The forecast skill at the various spatial and temporal scales will discussed, as will current applications of this tool for managing water resources in Sudan and optimizing hydropower operations in Ethiopia and Tanzania.
David P. Turner; William D. Ritts; Robert E. Kennedy; Andrew N. Gray; Zhiqiang Yang
2016-01-01
Variation in climate, disturbance regime, and forest management strongly influence terrestrial carbon sources and sinks. Spatially distributed, process-based, carbon cycle simulation models provide a means to integrate information on these various influences to estimate carbon pools and flux over large domains. Here we apply the Biome-BGC model over the four-state...
Carter, Sarah K.; Carr, Natasha B.; Miller, Kevin H.; Wood, David J.A.
2017-01-19
The Bureau of Land Management (BLM) is implementing a landscape approach to resource management (hereafter, landscape approach) to more effectively work with partners and understand the effects of management decisions. A landscape approach is a set of concepts and principles used to guide resource management when multiple stakeholders are involved and goals include diverse and sustainable social, environmental, and economic outcomes. Core principles of a landscape approach include seeking meaningful participation of diverse stakeholders, considering diverse resource values in multifunctional landscapes, acknowledging the tradeoffs needed to meet diverse objectives in the context of sustainable resource management, and addressing the complexity of social and ecological processes by embracing interdisciplinarity and considering multiple and broad spatial and temporal perspectives.In chapter 1, we outline the overall goal of this report: to provide a conceptual foundation and framework for implementing a landscape approach to resource management in the BLM, focusing on the role of multiscale natural resource monitoring and assessment information. In chapter 2, we describe a landscape approach to resource management. BLM actions taken to implement a landscape approach include a major effort to compile broad-scale data on natural resource status and condition across much of the west. These broadscale data now provide a regional context for interpreting monitoring data collected at individual sites and informing decisions made for local projects. We also illustrate the utility of using multiscale data to understand potential effects of different resource management decisions, define relevant terms in landscape ecology, and identify spatial scales at which planning and management decisions may be evaluated.In chapter 3, we describe how the BLM Rapid Ecoregional Assessment program and Assessment, Inventory and Monitoring program may be integrated to provide the multiscale monitoring data needed to inform a landscape approach. We propose six core, broad-scale indicators of natural resource status and condition: the amount, spatial distribution, patch size and connectivity of ecosystems and wildlife habitats, and the pattern of existing development across the landscape. Additional supplemental broad-scale indicators may include fire return intervals, distributions of invasive species, and vulnerability of ecosystems to a changing climate. Landscape intactness is an additional derived indicator that is calculated from one or more of the core and supplemental broad-scale indicators. We then outline a process for assessing broad-scale indicators that is consistent with the overall BLM Assessment, Inventory, and Monitoring process, facilitating development of a multiscale natural resource monitoring program. Finally, we describe how broad-scale indicators of natural resource status and condition may guide field monitoring implemented through the BLM Assessment, Inventory and Monitoring program and help address complex management questions.In chapter 4, we consider the specific question of assessing the ecological integrity of rangelands across the western United States. We first define ecological integrity and its relation to land health. We then suggest that a combination of six local-scale indicators collected through field sampling at individual sites and five complementary broad-scale indicators together provide information on the composition, structure, and function of rangelands. The terrestrial monitoring indicators collected at the level of individual field sites are the amount of bare ground, vegetation composition (including invasive plants and plants of management concern), vegetation height, and the proportion of the soil surface in large intercanopy gaps. The broad-scale indicators are vegetation amount, distribution, patch size, connectivity, and productivity, along with the pattern of terrestrial development. Our suggested approach to quantifying ecological integrity focuses specifically on informing management of public lands for multiple resource uses, and illustrates how existing data collected through BLM monitoring and assessment programs may be used together to provide multiscale information on land condition across broad extents.In chapter 5, we develop a method for quantifying landscape intactness and apply this method to the western United States. Our multiscale index of landscape intactness is designed to be defensible, decomposable, and easy to understand. The foundation of the multiscale index of landscape intactness is the surface disturbance footprint of anthropogenic development, including energy and urban development, roads and railroads, cultivated croplands, surface mines and quarries, and energy transmission lines and pipelines. The index represents a gradient of anthropogenic influence as represented by development summarized at two spatial scales of analysis: 2.5 and 20 kilometers. We provide several example applications of the index, illustrating how these data may inform natural resource decisions at the spatial extent of BLM field and district offices, states, ecoregions, and the western United States. We find that 19.2 percent of lands managed by the BLM across the 17 western states of the conterminous United States had the highest landscape intactness. The largest intact areas occur on public lands at high elevations or in the Great Basin.We believe the frameworks, processes, and analyses provided in this report will improve the ability of the BLM to identify and evaluate potential direct and indirect effects of management actions (such as habitat restoration and renewable energy development), and assist the BLM in further implementing a landscape approach to resource management.
Geographic Video 3d Data Model And Retrieval
NASA Astrophysics Data System (ADS)
Han, Z.; Cui, C.; Kong, Y.; Wu, H.
2014-04-01
Geographic video includes both spatial and temporal geographic features acquired through ground-based or non-ground-based cameras. With the popularity of video capture devices such as smartphones, the volume of user-generated geographic video clips has grown significantly and the trend of this growth is quickly accelerating. Such a massive and increasing volume poses a major challenge to efficient video management and query. Most of the today's video management and query techniques are based on signal level content extraction. They are not able to fully utilize the geographic information of the videos. This paper aimed to introduce a geographic video 3D data model based on spatial information. The main idea of the model is to utilize the location, trajectory and azimuth information acquired by sensors such as GPS receivers and 3D electronic compasses in conjunction with video contents. The raw spatial information is synthesized to point, line, polygon and solid according to the camcorder parameters such as focal length and angle of view. With the video segment and video frame, we defined the three categories geometry object using the geometry model of OGC Simple Features Specification for SQL. We can query video through computing the spatial relation between query objects and three categories geometry object such as VFLocation, VSTrajectory, VSFOView and VFFovCone etc. We designed the query methods using the structured query language (SQL) in detail. The experiment indicate that the model is a multiple objective, integration, loosely coupled, flexible and extensible data model for the management of geographic stereo video.
An explicit GIS-based river basin framework for aquatic ecosystem conservation in the Amazon
NASA Astrophysics Data System (ADS)
Venticinque, Eduardo; Forsberg, Bruce; Barthem, Ronaldo; Petry, Paulo; Hess, Laura; Mercado, Armando; Cañas, Carlos; Montoya, Mariana; Durigan, Carlos; Goulding, Michael
2016-11-01
Despite large-scale infrastructure development, deforestation, mining and petroleum exploration in the Amazon Basin, relatively little attention has been paid to the management scale required for the protection of wetlands, fisheries and other aspects of aquatic ecosystems. This is due, in part, to the enormous size, multinational composition and interconnected nature of the Amazon River system, as well as to the absence of an adequate spatial model for integrating data across the entire Amazon Basin. In this data article we present a spatially uniform multi-scale GIS framework that was developed especially for the analysis, management and monitoring of various aspects of aquatic systems in the Amazon Basin. The Amazon GIS-Based River Basin Framework is accessible as an ESRI geodatabase at doi:10.5063/F1BG2KX8.
GIS based solid waste management information system for Nagpur, India.
Vijay, Ritesh; Jain, Preeti; Sharma, N; Bhattacharyya, J K; Vaidya, A N; Sohony, R A
2013-01-01
Solid waste management is one of the major problems of today's world and needs to be addressed by proper utilization of technologies and design of effective, flexible and structured information system. Therefore, the objective of this paper was to design and develop a GIS based solid waste management information system as a decision making and planning tool for regularities and municipal authorities. The system integrates geo-spatial features of the city and database of existing solid waste management. GIS based information system facilitates modules of visualization, query interface, statistical analysis, report generation and database modification. It also provides modules like solid waste estimation, collection, transportation and disposal details. The information system is user-friendly, standalone and platform independent.
Accounting for small scale heterogeneity in ecohydrologic watershed models
NASA Astrophysics Data System (ADS)
Bhaskar, A.; Fleming, B.; Hogan, D. M.
2016-12-01
Spatially distributed ecohydrologic models are inherently constrained by the spatial resolution of their smallest units, below which land and processes are assumed to be homogenous. At coarse scales, heterogeneity is often accounted for by computing store and fluxes of interest over a distribution of land cover types (or other sources of heterogeneity) within spatially explicit modeling units. However this approach ignores spatial organization and the lateral transfer of water and materials downslope. The challenge is to account both for the role of flow network topology and fine-scale heterogeneity. We present a new approach that defines two levels of spatial aggregation and that integrates spatially explicit network approach with a flexible representation of finer-scale aspatial heterogeneity. Critically, this solution does not simply increase the resolution of the smallest spatial unit, and so by comparison, results in improved computational efficiency. The approach is demonstrated by adapting Regional Hydro-Ecologic Simulation System (RHESSys), an ecohydrologic model widely used to simulate climate, land use, and land management impacts. We illustrate the utility of our approach by showing how the model can be used to better characterize forest thinning impacts on ecohydrology. Forest thinning is typically done at the scale of individual trees, and yet management responses of interest include impacts on watershed scale hydrology and on downslope riparian vegetation. Our approach allow us to characterize the variability in tree size/carbon reduction and water transfers between neighboring trees while still capturing hillslope to watershed scale effects, Our illustrative example demonstrates that accounting for these fine scale effects can substantially alter model estimates, in some cases shifting the impacts of thinning on downslope water availability from increases to decreases. We conclude by describing other use cases that may benefit from this approach including characterizing urban vegetation and storm water management features and their impact on watershed scale hydrology and biogeochemical cycling.
Accounting for small scale heterogeneity in ecohydrologic watershed models
NASA Astrophysics Data System (ADS)
Burke, W.; Tague, C.
2017-12-01
Spatially distributed ecohydrologic models are inherently constrained by the spatial resolution of their smallest units, below which land and processes are assumed to be homogenous. At coarse scales, heterogeneity is often accounted for by computing store and fluxes of interest over a distribution of land cover types (or other sources of heterogeneity) within spatially explicit modeling units. However this approach ignores spatial organization and the lateral transfer of water and materials downslope. The challenge is to account both for the role of flow network topology and fine-scale heterogeneity. We present a new approach that defines two levels of spatial aggregation and that integrates spatially explicit network approach with a flexible representation of finer-scale aspatial heterogeneity. Critically, this solution does not simply increase the resolution of the smallest spatial unit, and so by comparison, results in improved computational efficiency. The approach is demonstrated by adapting Regional Hydro-Ecologic Simulation System (RHESSys), an ecohydrologic model widely used to simulate climate, land use, and land management impacts. We illustrate the utility of our approach by showing how the model can be used to better characterize forest thinning impacts on ecohydrology. Forest thinning is typically done at the scale of individual trees, and yet management responses of interest include impacts on watershed scale hydrology and on downslope riparian vegetation. Our approach allow us to characterize the variability in tree size/carbon reduction and water transfers between neighboring trees while still capturing hillslope to watershed scale effects, Our illustrative example demonstrates that accounting for these fine scale effects can substantially alter model estimates, in some cases shifting the impacts of thinning on downslope water availability from increases to decreases. We conclude by describing other use cases that may benefit from this approach including characterizing urban vegetation and storm water management features and their impact on watershed scale hydrology and biogeochemical cycling.
Phenomapping of rangelands in South Africa using time series of RapidEye data
NASA Astrophysics Data System (ADS)
Parplies, André; Dubovyk, Olena; Tewes, Andreas; Mund, Jan-Peter; Schellberg, Jürgen
2016-12-01
Phenomapping is an approach which allows the derivation of spatial patterns of vegetation phenology and rangeland productivity based on time series of vegetation indices. In our study, we propose a new spatial mapping approach which combines phenometrics derived from high resolution (HR) satellite time series with spatial logistic regression modeling to discriminate land management systems in rangelands. From the RapidEye time series for selected rangelands in South Africa, we calculated bi-weekly noise reduced Normalized Difference Vegetation Index (NDVI) images. For the growing season of 20112012, we further derived principal phenology metrics such as start, end and length of growing season and related phenological variables such as amplitude, left derivative and small integral of the NDVI curve. We then mapped these phenometrics across two different tenure systems, communal and commercial, at the very detailed spatial resolution of 5 m. The result of a binary logistic regression (BLR) has shown that the amplitude and the left derivative of the NDVI curve were statistically significant. These indicators are useful to discriminate commercial from communal rangeland systems. We conclude that phenomapping combined with spatial modeling is a powerful tool that allows efficient aggregation of phenology and productivity metrics for spatially explicit analysis of the relationships of crop phenology with site conditions and management. This approach has particular potential for disaggregated and patchy environments such as in farming systems in semi-arid South Africa, where phenology varies considerably among and within years. Further, we see a strong perspective for phenomapping to support spatially explicit modelling of vegetation.
Assessment and management of ecological integrity: Chapter 12
Kwak, Thomas J.; Freeman, Mary C.
2010-01-01
Assessing and understanding the impacts of human activities on aquatic ecosystems has long been a focus of ecologists, water resources managers, and fisheries scientists. While traditional fisheries management focused on single-species approaches to enhance fish stocks, there is a growing emphasis on management approaches at community and ecosystem levels. Of course, as fisheries managers shift their attention from narrow (e.g., populations) to broad organizational scales (e.g., communities or ecosystems), ecological processes and management objectives become more complex. At the community level, fisheries managers may strive for a fish assemblage that is complex, persistent, and resilient to disturbance. Aquatic ecosystem level objectives may focus on management for habitat quality and ecological processes, such as nutrient dynamics, productivity, or trophic interactions, but a long-term goal of ecosystem management may be to maintain ecological integrity. However, human users and social, economic, and political demands of fisheries management often result in a reduction of ecological integrity in managed systems, and this conflict presents a principal challenge for the modern fisheries manager. The concepts of biotic integrity and ecological integrity are being applied in fisheries science, natural resource management, and environmental legislation, but explicit definitions of these terms are elusive. Biotic integrity of an ecosystem may be defined as the capability of supporting and maintaining an integrated, adaptive community of organisms having a species composition, diversity, and functional organization comparable to that of a natural habitat of the region (Karr and Dudley 1981). Following that, ecological integrity is the summation of chemical, physical, and biological integrity. Thus, the concept of ecological integrity extends beyond fish and represents a holistic approach for ecosystem management that is especially applicable to aquatic systems. The more general term, ecological condition, refers to the state of the physical, chemical, and biological characteristics of the environment and the processes and interactions that connect them. While the concept of ecological integrity may appear unambiguous, its assessment and practice are much less clear. Ecological integrity made its debut in the USA with the Clean Water Act (CWA) of 1972 (Federal Water Pollution Control Act, as amended through Public Law 107–303, November 27, 2002), which states only one objective, “to restore and maintain the chemical, physical, and biological integrity of the Nation’s waters.” This legislation compelled resource managers to focus on chemical pollution from point effluent sources, such as industrial and municipal outflows, as well as give attention to diffuse, chronic, and watershed effects on ecological integrity. Further, the CWA allowed pursuit of restoration programs in degraded water bodies and catalyzed the science and practice of restoration ecology. The term ecosystem health is often raised in discussions of ecological integrity. Perhaps it is natural to anthropomorphize our concern for personal health to ecosystems, so it becomes a useful metaphor for understanding the concept of ecological integrity. However, whether or not an ecosystem should be considered an entity, such as a superorganism, is a debate without end that began with early ecologists and continues today (Clements 1916; Suter 1993; Simon 1999a). Regardless, the ecosystem is indeed a natural unit with a level of organization and properties beyond the collection of those species that occupy it and presents the most appropriate spatial and organizational scale in which to assess and study ecological integrity. Streams and rivers serve as integrators of chemical, physical, and biological conditions across the landscape, and while the theory and practice associated with ecological integrity of aquatic systems is easily applied to flowing waters and is emphasized in this chapter, they are broadly applicable among all aquatic systems.
Distinct roles of hippocampus and medial prefrontal cortex in spatial and nonspatial memory.
Sapiurka, Maya; Squire, Larry R; Clark, Robert E
2016-12-01
In earlier work, patients with hippocampal damage successfully path integrated, apparently by maintaining spatial information in working memory. In contrast, rats with hippocampal damage were unable to path integrate, even when the paths were simple and working memory might have been expected to support performance. We considered possible ways to understand these findings. We tested rats with either hippocampal lesions or lesions of medial prefrontal cortex (mPFC) on three tasks of spatial or nonspatial memory: path integration, spatial alternation, and a nonspatial alternation task. Rats with mPFC lesions were impaired on both spatial and nonspatial alternation but performed normally on path integration. By contrast, rats with hippocampal lesions were impaired on path integration and spatial alternation but performed normally on nonspatial alternation. We propose that rodent neocortex is limited in its ability to construct a coherent spatial working memory of complex environments. Accordingly, in tasks such as path integration and spatial alternation, working memory cannot depend on neocortex alone. Rats may accomplish many spatial memory tasks by relying on long-term memory. Alternatively, they may accomplish these tasks within working memory through sustained coordination between hippocampus and other cortical brain regions such as mPFC, in the case of spatial alternation, or parietal cortex in the case of path integration. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Cheung, Weng-Fong; Lin, Tzu-Hsuan; Lin, Yu-Cheng
2018-02-02
In recent years, many studies have focused on the application of advanced technology as a way to improve management of construction safety management. A Wireless Sensor Network (WSN), one of the key technologies in Internet of Things (IoT) development, enables objects and devices to sense and communicate environmental conditions; Building Information Modeling (BIM), a revolutionary technology in construction, integrates database and geometry into a digital model which provides a visualized way in all construction lifecycle management. This paper integrates BIM and WSN into a unique system which enables the construction site to visually monitor the safety status via a spatial, colored interface and remove any hazardous gas automatically. Many wireless sensor nodes were placed on an underground construction site and to collect hazardous gas level and environmental condition (temperature and humidity) data, and in any region where an abnormal status is detected, the BIM model will alert the region and an alarm and ventilator on site will start automatically for warning and removing the hazard. The proposed system can greatly enhance the efficiency in construction safety management and provide an important reference information in rescue tasks. Finally, a case study demonstrates the applicability of the proposed system and the practical benefits, limitations, conclusions, and suggestions are summarized for further applications.
Lonsdorf, Eric V.; Thogmartin, Wayne E.; Jacobi, Sarah; Coppen, Jorge; Davis, Amélie Y.; Fox, Timothy J.; Heglund, Patricia J.; Johnson, Rex; Jones, Tim; Kenow, Kevin P.; Lyons, James E.; Luke, Kirsten E.; Still, Shannon; Tavernia, Brian G.
2016-01-01
Conserving migratory birds is made especially difficult because of movement among spatially disparate locations across the annual cycle. In light of challenges presented by the scale and ecology of migratory birds, successful conservation requires integrating objectives, management, and monitoring across scales, from local management units to ecoregional and flyway administrative boundaries. We present an integrated approach using a spatially explicit energetic-based mechanistic bird migration model useful to conservation decision-making across disparate scales and locations. This model moves a mallard-like bird (Anas platyrhynchos), through spring and fall migration as a function of caloric gains and losses across a continental scale energy landscape. We predicted with this model that fall migration, where birds moved from breeding to wintering habitat, took a mean of 27.5 days of flight with a mean seasonal survivorship of 90.5% (95% CI = 89.2%, 91.9%) whereas spring migration took a mean of 23.5 days of flight with mean seasonal survivorship of 93.6% (95% CI = 92.5%, 94.7%). Sensitivity analyses suggested that survival during migration was sensitive to flight speed, flight cost, the amount of energy the animal could carry and the spatial pattern of energy availability, but generally insensitive to total energy availability per se. Nevertheless, continental patterns in the bird-use days occurred principally in relation to wetland cover and agricultural habitat in the fall. Bird-use days were highest in both spring and fall in the Mississippi Alluvial Valley and along the coast and near-shore environments of South Carolina. Spatial sensitivity analyses suggested that locations nearer to migratory endpoints were less important to survivorship; for instance, removing energy from a 1,036 km2 stopover site at a time from the Atlantic Flyway suggested coastal areas between New Jersey and North Carolina, including Chesapeake Bay and the North Carolina piedmont, are essential locations for efficient migration and increasing survivorship during spring migration but not locations in Ontario and Massachusetts. This sort of spatially explicit information may allow decision-makers to prioritize their conservation actions toward locations most influential to migratory success. Thus, this mechanistic model of avian migration provides a decision-analytic medium integrating the potential consequences of local actions to flyway-scale phenomena.
Epanchin-Niell, Rebecca S.; Boyd, James W.; Macauley, Molly K.; Scarlett, Lynn; Shapiro, Carl D.; Williams, Byron K.
2018-05-07
Executive Summary—OverviewNatural resource managers must make decisions that affect broad-scale ecosystem processes involving large spatial areas, complex biophysical interactions, numerous competing stakeholder interests, and highly uncertain outcomes. Natural and social science information and analyses are widely recognized as important for informing effective management. Chief among the systematic approaches for improving the integration of science into natural resource management are two emergent science concepts, adaptive management and ecosystem services. Adaptive management (also referred to as “adaptive decision making”) is a deliberate process of learning by doing that focuses on reducing uncertainties about management outcomes and system responses to improve management over time. Ecosystem services is a conceptual framework that refers to the attributes and outputs of ecosystems (and their components and functions) that have value for humans.This report explores how ecosystem services can be moved from concept into practice through connection to a decision framework—adaptive management—that accounts for inherent uncertainties. Simultaneously, the report examines the value of incorporating ecosystem services framing and concepts into adaptive management efforts.Adaptive management and ecosystem services analyses have not typically been used jointly in decision making. However, as frameworks, they have a natural—but to date underexplored—affinity. Both are policy and decision oriented in that they attempt to represent the consequences of resource management choices on outcomes of interest to stakeholders. Both adaptive management and ecosystem services analysis take an empirical approach to the analysis of ecological systems. This systems orientation is a byproduct of the fact that natural resource actions affect ecosystems—and corresponding societal outcomes—often across large geographic scales. Moreover, because both frameworks focus on resource systems, both must confront the analytical challenges of systems modeling—in terms of complexity, dynamics, and uncertainty.Given this affinity, the integration of ecosystem services analysis and adaptive management poses few conceptual hurdles. In this report, we synthesize discussions from two workshops that considered ways in which adaptive management approaches and ecosystem service concepts may be complementary, such that integrating them into a common framework may lead to improved natural resource management outcomes. Although the literature on adaptive management and ecosystem services is vast and growing, the report focuses specifically on the integration of these two concepts rather than aiming to provide new definitions or an indepth review or primer of the concepts individually.Key issues considered include the bidirectional links between adaptive decision making and ecosystem services, as well as the potential benefits and inevitable challenges arising in the development and use of an integrated framework. Specifically, the workshops addressed the following questions:How can application of ecosystem service analysis within an adaptive decision process improve the outcomes of management and advance understanding of ecosystem service identification, production, and valuation?How can these concepts be integrated in concept and practice?What are the constraints and challenges to integrating adaptive management and ecosystem services?And, should the integration of these concepts be moved forward to wider application—and if so, how?
Norris, Edmund J; Coats, Joel R
2017-01-29
Every year, approximately 700,000 people die from complications associated with etiologic disease agents transmitted by mosquitoes. While insecticide-based vector control strategies are important for the management of mosquito-borne diseases, insecticide-resistance and other logistical hurdles may lower the efficacy of this approach, especially in developing countries. Repellent technologies represent another fundamental aspect of preventing mosquito-borne disease transmission. Among these technologies, spatial repellents are promising alternatives to the currently utilized contact repellents and may significantly aid in the prevention of mosquito-borne disease if properly incorporated into integrated pest management approaches. As their deployment would not rely on prohibitively expensive or impractical novel accessory technologies and resources, they have potential utility in developing countries where the burden of mosquito-borne disease is most prevalent. This review aims to describe the history of various repellent technologies, highlight the potential of repellent technologies in preventing the spread of mosquito-borne disease, and discuss currently known mechanisms that confer resistance to current contact and spatial repellents, which may lead to the failures of these repellents. In the subsequent section, current and future research projects aimed at exploring long-lasting non-pyrethroid spatial repellent molecules along with new paradigms and rationale for their development will be discussed.
Norris, Edmund J.; Coats, Joel R.
2017-01-01
Every year, approximately 700,000 people die from complications associated with etiologic disease agents transmitted by mosquitoes. While insecticide-based vector control strategies are important for the management of mosquito-borne diseases, insecticide-resistance and other logistical hurdles may lower the efficacy of this approach, especially in developing countries. Repellent technologies represent another fundamental aspect of preventing mosquito-borne disease transmission. Among these technologies, spatial repellents are promising alternatives to the currently utilized contact repellents and may significantly aid in the prevention of mosquito-borne disease if properly incorporated into integrated pest management approaches. As their deployment would not rely on prohibitively expensive or impractical novel accessory technologies and resources, they have potential utility in developing countries where the burden of mosquito-borne disease is most prevalent. This review aims to describe the history of various repellent technologies, highlight the potential of repellent technologies in preventing the spread of mosquito-borne disease, and discuss currently known mechanisms that confer resistance to current contact and spatial repellents, which may lead to the failures of these repellents. In the subsequent section, current and future research projects aimed at exploring long-lasting non-pyrethroid spatial repellent molecules along with new paradigms and rationale for their development will be discussed. PMID:28146066
NASA Astrophysics Data System (ADS)
Drouin, Ariane; Michaud, Aubert; Sylvain, Jean-Daniel; N'Dayegamiye, Adrien; Gasser, Marc-Olivier; Nolin, Michel; Perron, Isabelle; Grenon, Lucie; Beaudin, Isabelle; Desjardins, Jacques; Côté, Noémi
2013-04-01
This project aims at developing and validating an operational integrated management and localized approach at field scale using remote sensing data. It is realized in order to support the competitiveness of agricultural businesses, to ensure soil productivity in the long term and prevent diffuse contamination of surface waters. Our intention is to help agrienvironmental advisors and farmers in the consideration of spatial variability of soil properties in the management of fields. The proposed approach of soil properties recognition is based on the combination of elevation data and multispectral satellite imagery (Landsat) within statistical models. The method is based on the use of the largest possible number of satellite images to cover the widest range of soil moisture variability. Several spectral indices are calculated for each image (normalized brightness index, soil color index, organic matter index, etc.). The assignation of soils is based on a calibration procedure making use of the spatial soil database available in Canada. It includes soil profile point data associated to a database containing the information collected in the field. Three soil properties are predicted and mapped: A horizon texture, B horizon texture and drainage class. All the spectral indices, elevation data and soil data are combined in a discriminant analysis that produces discriminant functions. These are then used to produce maps of soil properties. In addition, from mapping soil properties, management zones are delineated within the field. The delineation of management zones with relatively similar soil properties is created to enable farmers to manage their fertilizers by taking greater account of their soils. This localized or precision management aims to adjust the application of fertilizer according to the real needs of soils and to reduce costs for farmers and the exports of nutrients to the stream. Mapping of soil properties will be validated in three agricultural regions in Quebec through an experimental field protocol (spatial sampling by management zones). Soils will be sampled, but crop yields under different nitrogen rates will also be assessed. Specifically, in each of the management areas defined, five different doses of nitrogen were applied (0, 50, 100, 150, 200 kg N / ha) on corn fields. In fall, the corn is harvested to assess differences in yields between the management areas and also in terms of doses of nitrogen. Ultimately, on the basis of well-established management areas, showing contrasting soil properties, the farmer will be able to ensure optimal correction of soil acidity, nitrogen fertilization, richness of soil in P and K, and improve soil drainage and physical properties. Environmentally, the principles of integrated and localized management carries significant benefits, particularly in terms of reduction of diffuse nutrient pollution.
Aeolian and fluvial processes in dryland regions: the need for integrated studies
Belnap, Jayne; Munson, Seth M.; Field, Jason P.
2011-01-01
Aeolian and fluvial processes play a fundamental role in dryland regions of the world and have important environmental and ecological consequences from local to global scales. Although both processes operate over similar spatial and temporal scales and are likely strongly coupled in many dryland systems, aeolian and fluvial processes have traditionally been studied separately, making it difficult to assess their relative importance in drylands, as well as their potential for synergistic interaction. Land degradation by accelerated wind and water erosion is a major problem throughout the world's drylands, and although recent studies suggest that these processes likely interact across broad spatial and temporal scales to amplify the transport of soil resources from and within drylands, many researchers and land managers continue to view them as separate and unrelated processes. Here, we illustrate how aeolian and fluvial sediment transport is coupled at multiple spatial and temporal scales and highlight the need for these interrelated processes to be studied from a more integrated perspective that crosses traditional disciplinary boundaries. Special attention is given to how the growing threat of climate change and land-use disturbance will influence linkages between aeolian and fluvial processes in the future. We also present emerging directions for interdisciplinary needs within the aeolian and fluvial research communities that call for better integration across a broad range of traditional disciplines such as ecology, biogeochemistry, agronomy, and soil conservation.
Study on Global GIS architecture and its key technologies
NASA Astrophysics Data System (ADS)
Cheng, Chengqi; Guan, Li; Lv, Xuefeng
2009-09-01
Global GIS (G2IS) is a system, which supports the huge data process and the global direct manipulation on global grid based on spheroid or ellipsoid surface. Based on global subdivision grid (GSG), Global GIS architecture is presented in this paper, taking advantage of computer cluster theory, the space-time integration technology and the virtual reality technology. Global GIS system architecture is composed of five layers, including data storage layer, data representation layer, network and cluster layer, data management layer and data application layer. Thereinto, it is designed that functions of four-level protocol framework and three-layer data management pattern of Global GIS based on organization, management and publication of spatial information in this architecture. Three kinds of core supportive technologies, which are computer cluster theory, the space-time integration technology and the virtual reality technology, and its application pattern in the Global GIS are introduced in detail. The primary ideas of Global GIS in this paper will be an important development tendency of GIS.
Study on Global GIS architecture and its key technologies
NASA Astrophysics Data System (ADS)
Cheng, Chengqi; Guan, Li; Lv, Xuefeng
2010-11-01
Global GIS (G2IS) is a system, which supports the huge data process and the global direct manipulation on global grid based on spheroid or ellipsoid surface. Based on global subdivision grid (GSG), Global GIS architecture is presented in this paper, taking advantage of computer cluster theory, the space-time integration technology and the virtual reality technology. Global GIS system architecture is composed of five layers, including data storage layer, data representation layer, network and cluster layer, data management layer and data application layer. Thereinto, it is designed that functions of four-level protocol framework and three-layer data management pattern of Global GIS based on organization, management and publication of spatial information in this architecture. Three kinds of core supportive technologies, which are computer cluster theory, the space-time integration technology and the virtual reality technology, and its application pattern in the Global GIS are introduced in detail. The primary ideas of Global GIS in this paper will be an important development tendency of GIS.
[Ecotourism carrying capacity of Hangzhou Xixi National Wetland Park in China].
Li, Rui; Rong, Liang
2007-10-01
In this paper, an integrated estimation on the ecotourism carrying capacity of Hangzhou Xixi National Wetland Park in China was made from the aspects of ecological carrying capacity, spatial carrying capacity, facility carrying capacity, management carrying capacity, and psychological carrying capacity. The results indicated that the tourism carrying capacity of the Park was 4 145 - 6 450 persons per day. The rational distance between man and bird was first adopted to determine the ecotourism carrying capacity of wetland, which provided an effective solution both to fully ensure bird safety and to appropriately develop wetland tourism. The estimation of psychological carrying capacity based on tourist satisfaction degree reflected more objectively the extent the tourist demands satisfied at the planning, construction and management of tour places. Such an integrated estimation method based on the distance between man and bird and the tourist satisfaction degree could be of practical and instructive significances in the planning and management of wetland parks.
Large-scale flow experiments for managing river systems
Konrad, Christopher P.; Olden, Julian D.; Lytle, David A.; Melis, Theodore S.; Schmidt, John C.; Bray, Erin N.; Freeman, Mary C.; Gido, Keith B.; Hemphill, Nina P.; Kennard, Mark J.; McMullen, Laura E.; Mims, Meryl C.; Pyron, Mark; Robinson, Christopher T.; Williams, John G.
2011-01-01
Experimental manipulations of streamflow have been used globally in recent decades to mitigate the impacts of dam operations on river systems. Rivers are challenging subjects for experimentation, because they are open systems that cannot be isolated from their social context. We identify principles to address the challenges of conducting effective large-scale flow experiments. Flow experiments have both scientific and social value when they help to resolve specific questions about the ecological action of flow with a clear nexus to water policies and decisions. Water managers must integrate new information into operating policies for large-scale experiments to be effective. Modeling and monitoring can be integrated with experiments to analyze long-term ecological responses. Experimental design should include spatially extensive observations and well-defined, repeated treatments. Large-scale flow manipulations are only a part of dam operations that affect river systems. Scientists can ensure that experimental manipulations continue to be a valuable approach for the scientifically based management of river systems.
NASA Astrophysics Data System (ADS)
Cook, R.; Michener, W.; Vieglais, D.; Budden, A.; Koskela, R.
2012-04-01
Addressing grand environmental science challenges requires unprecedented access to easily understood data that cross the breadth of temporal, spatial, and thematic scales. Tools are needed to plan management of the data, discover the relevant data, integrate heterogeneous and diverse data, and convert the data to information and knowledge. Addressing these challenges requires new approaches for the full data life cycle of managing, preserving, sharing, and analyzing data. DataONE (Observation Network for Earth) represents a virtual organization that enables new science and knowledge creation through preservation and access to data about life on Earth and the environment that sustains it. The DataONE approach is to improve data collection and management techniques; facilitate easy, secure, and persistent storage of data; continue to increase access to data and tools that improve data interoperability; disseminate integrated and user-friendly tools for data discovery and novel analyses; work with researchers to build intuitive data exploration and visualization tools; and support communities of practice via education, outreach, and stakeholder engagement.
A satellite-driven, client-server hydro-economic model prototype for agricultural water management
NASA Astrophysics Data System (ADS)
Maneta, Marco; Kimball, John; He, Mingzhu; Payton Gardner, W.
2017-04-01
Anticipating agricultural water demand, land reallocation, and impact on farm revenues associated with different policy or climate constraints is a challenge for water managers and for policy makers. While current integrated decision support systems based on programming methods provide estimates of farmer reaction to external constraints, they have important shortcomings such as the high cost of data collection surveys necessary to calibrate the model, biases associated with inadequate farm sampling, infrequent model updates and recalibration, model overfitting, or their deterministic nature, among other problems. In addition, the administration of water supplies and the generation of policies that promote sustainable agricultural regions depend on more than one bureau or office. Unfortunately, managers from local and regional agencies often use different datasets of variable quality, which complicates coordinated action. To overcome these limitations, we present a client-server, integrated hydro-economic modeling and observation framework driven by satellite remote sensing and other ancillary information from regional monitoring networks. The core of the framework is a stochastic data assimilation system that sequentially ingests remote sensing observations and corrects the parameters of the hydro-economic model at unprecedented spatial and temporal resolutions. An economic model of agricultural production, based on mathematical programming, requires information on crop type and extent, crop yield, crop transpiration and irrigation technology. A regional hydro-climatologic model provides biophysical constraints to an economic model of agricultural production with a level of detail that permits the study of the spatial impact of large- and small-scale water use decisions. Crop type and extent is obtained from the Cropland Data Layer (CDL), which is multi-sensor operational classification of crops maintained by the United States Department of Agriculture. Because this product is only available for the conterminous United States, the framework is currently only applicable in this region. To obtain information on crop phenology, productivity and transpiration at adequate spatial and temporal frequencies we blend high spatial resolution Landsat information with high temporal fidelity MODIS imagery. The result is a 30 m, 8-day fused dataset of crop greenness that is subsequently transformed into productivity and transpiration by adapting existing forest productivity and transpiration algorithms for agricultural applications. To ensure all involved agencies work with identical information and that end-users are sheltered from the computational burden of storing and processing remote sensing data, this modeling framework is integrated in a client-server architecture based on the Hydra platform (www.hydraplatform.org). Assimilation and processing of resource-intensive remote sensing information, as well as hydrologic and other ancillary data, occur on the server side. With this architecture, our decision support system becomes a light weight 'app' that connects to the server to retrieve the latest information regarding water demands, land use, yields and hydrologic information required to run different management scenarios. This architecture ensures that all agencies and teams involved in water management use the same, up-to-date information in their simulations.
A decision support system for managing forest fire casualties.
Bonazountas, Marc; Kallidromitou, Despina; Kassomenos, Pavlos; Passas, Nikos
2007-09-01
Southern Europe is exposed to anthropogenic and natural forest fires. These result in loss of lives, goods and infrastructure, but also deteriorate the natural environment and degrade ecosystems. The early detection and combating of such catastrophes requires the use of a decision support system (DSS) for emergency management. The current literature reports on a series of efforts aimed to deliver DSSs for the management of the forest fires by utilising technologies like remote sensing and geographical information systems (GIS), yet no integrated system exists. This manuscript presents the results of scientific research aiming to the development of a DSS for managing forest fires. The system provides a series of software tools for the assessment of the propagation and combating of forest fires based on Arc/Info, ArcView, Arc Spatial Analyst, Arc Avenue, and Visual C++ technologies. The system integrates GIS technologies under the same data environment and utilises a common user interface to produce an integrated computer system based on semi-automatic satellite image processing (fuel maps), socio-economic risk modelling and probabilistic models that would serve as a useful tool for forest fire prevention, planning and management. Its performance has been demonstrated via real time up-to-date accurate information on the position and evolution of the fire. The system can assist emergency assessment, management and combating of the incident. A site demonstration and validation has been accomplished for the island of Evoia, Greece, an area particularly vulnerable to forest fires due to its ecological characteristics and prevailing wind patterns.
NASA Astrophysics Data System (ADS)
Zhang, J. H.; Yang, J.; Sun, Y. S.
2015-06-01
This system combines the Mapworld platform and informationization of disabled person affairs, uses the basic information of disabled person as center frame. Based on the disabled person population database, the affairs management system and the statistical account system, the data were effectively integrated and the united information resource database was built. Though the data analysis and mining, the system provides powerful data support to the decision making, the affairs managing and the public serving. It finally realizes the rationalization, normalization and scientization of disabled person affairs management. It also makes significant contributions to the great-leap-forward development of the informationization of China Disabled Person's Federation.
Integrating observational and modelling systems for the management of the Great Barrier Reef
NASA Astrophysics Data System (ADS)
Baird, M. E.; Jones, E. M.; Margvelashvili, N.; Mongin, M.; Rizwi, F.; Robson, B.; Schroeder, T.; Skerratt, J.; Steven, A. D.; Wild-Allen, K.
2016-02-01
Observational and modelling systems provide two sources of knowledge that must be combined to provide a more complete view than either observations or models alone can provide. Here we describe the eReefs coupled hydrodynamic, sediment and biogeochemical model that has been developed for the Great Barrier Reef; and the multiple observations that are used to constrain the model. Two contrasting examples of model - observational integration are highlighted. First we explore the carbon chemistry of the waters above the reef, for which observations are accurate, but expensive and therefore sparse, while model behaviour is highly skilful. For carbon chemistry, observations are used to constrain model parameterisation and quantify model error, with the model output itself providing the most useable knowledge for management purposes. In contrast, ocean colour provides inaccurate, but cheap and spatially and temporally extensive observations. Thus observations are best combined with the model in a data assimilating framework, where a custom-designed optical model has been developed for the purposes of incorporating ocean colour observations. The future management of Great Barrier Reef water quality will be based on an integration of observing and modelling systems, providing the most robust information available.
Chicas, S D; Omine, K; Ford, J B; Sugimura, K; Yoshida, K
2017-02-01
Understanding the trans-boundary deforestation history and patterns in protected areas along the Belize-Guatemala border is of regional and global importance. To assess deforestation history and patterns in our study area along a section of the Belize-Guatemala border, we incorporated multi-temporal deforestation rate analysis and spatial metrics with survey results. This multi-faceted approach provides spatial analysis with relevant insights from local stakeholders to better understand historic deforestation dynamics, spatial characteristics and human perspectives regarding the underlying causes thereof. During the study period 1991-2014, forest cover declined in Belize's protected areas: Vaca Forest Reserve 97.88%-87.62%, Chiquibul National Park 99.36%-92.12%, Caracol Archeological Reserve 99.47%-78.10% and Colombia River Forest Reserve 89.22%-78.38% respectively. A comparison of deforestation rates and spatial metrics indices indicated that between time periods 1991-1995 and 2012-2014 deforestation and fragmentation increased in protected areas. The major underlying causes, drivers, impacts, and barriers to bi-national collaboration and solutions of deforestation along the Belize-Guatemala border were identified by community leaders and stakeholders. The Mann-Whitney U test identified significant differences between leaders and stakeholders regarding the ranking of challenges faced by management organizations in the Maya Mountain Massif, except for the lack of assessment and quantification of deforestation (LD, SH: 18.67, 23.25, U = 148, p > 0.05). The survey results indicated that failure to integrate buffer communities, coordinate among managing organizations and establish strong bi-national collaboration has resulted in continued ecological and environmental degradation. The information provided by this research should aid managing organizations in their continued aim to implement effective deforestation mitigation strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Land System representation for global assessments and land-use modeling.
van Asselen, Sanneke; Verburg, Peter H
2012-10-01
Current global scale land-change models used for integrated assessments and climate modeling are based on classifications of land cover. However, land-use management intensity and livestock keeping are also important aspects of land use, and are an integrated part of land systems. This article aims to classify, map, and to characterize Land Systems (LS) at a global scale and analyze the spatial determinants of these systems. Besides proposing such a classification, the article tests if global assessments can be based on globally uniform allocation rules. Land cover, livestock, and agricultural intensity data are used to map LS using a hierarchical classification method. Logistic regressions are used to analyze variation in spatial determinants of LS. The analysis of the spatial determinants of LS indicates strong associations between LS and a range of socioeconomic and biophysical indicators of human-environment interactions. The set of identified spatial determinants of a LS differs among regions and scales, especially for (mosaic) cropland systems, grassland systems with livestock, and settlements. (Semi-)Natural LS have more similar spatial determinants across regions and scales. Using LS in global models is expected to result in a more accurate representation of land use capturing important aspects of land systems and land architecture: the variation in land cover and the link between land-use intensity and landscape composition. Because the set of most important spatial determinants of LS varies among regions and scales, land-change models that include the human drivers of land change are best parameterized at sub-global level, where similar biophysical, socioeconomic and cultural conditions prevail in the specific regions. © 2012 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Mangiameli, M.; Mussumeci, G.
2013-01-01
A wide series of events requires immediate availability of information and field data to be provided to decision-makers. An example is the necessity of quickly transferring the information acquired from monitoring and alerting sensors or the data of the reconnaissance of damage after a disastrous event to an Emergency Operations Center. To this purpose, we developed an integrated GIS and WebGIS system to dynamically create and populate via Web a database with spatial features. In particular, this work concerns the gathering and transmission of spatial data and related information to the desktop GIS so that they can be displayed and analyzed in real time to characterize the operational scenario and to decide the rescue interventions. As basic software, we used only free and open source: QuantumGIS and Grass as Desktop GIS, Map Server with PMapper application for the Web-Gis functionality and PostGreSQL/PostGIS as Data Base Management System (DBMS). The approach has been designed, developed and successfully tested in the management of GIS-based navigation of an autonomous robot, both to map its trajectories and to assign optimal paths. This paper presents the application of our system to a simulated hydrological event that could interest the province of Catania, in Sicily. In particular, assuming that more teams draw up an inventory of the damage, we highlight the benefits of real-time transmission of the information collected from the field to headquarters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muth, David J.; Bryden, Kenneth Mark; Nelson, R. G.
This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States for bioenergy production. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform the sustainable agricultural residue removal assessment. Soil type represents the base spatialmore » unit for this study and is modeled using a national soil survey database at the 10–100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time. This biomass resource has the potential for producing over 68 billion liters of cellulosic biofuels.« less
Sherrouse, Benson C.; Semmens, Darius J.; Clement, Jessica M.
2014-01-01
Despite widespread recognition that social-value information is needed to inform stakeholders and decision makers regarding trade-offs in environmental management, it too often remains absent from ecosystem service assessments. Although quantitative indicators of social values need to be explicitly accounted for in the decision-making process, they need not be monetary. Ongoing efforts to map such values demonstrate how they can also be made spatially explicit and relatable to underlying ecological information. We originally developed Social Values for Ecosystem Services (SolVES) as a tool to assess, map, and quantify nonmarket values perceived by various groups of ecosystem stakeholders. With SolVES 2.0 we have extended the functionality by integrating SolVES with Maxent maximum entropy modeling software to generate more complete social-value maps from available value and preference survey data and to produce more robust models describing the relationship between social values and ecosystems. The current study has two objectives: (1) evaluate how effectively the value index, a quantitative, nonmonetary social-value indicator calculated by SolVES, reproduces results from more common statistical methods of social-survey data analysis and (2) examine how the spatial results produced by SolVES provide additional information that could be used by managers and stakeholders to better understand more complex relationships among stakeholder values, attitudes, and preferences. To achieve these objectives, we applied SolVES to value and preference survey data collected for three national forests, the Pike and San Isabel in Colorado and the Bridger–Teton and the Shoshone in Wyoming. Value index results were generally consistent with results found through more common statistical analyses of the survey data such as frequency, discriminant function, and correlation analyses. In addition, spatial analysis of the social-value maps produced by SolVES provided information that was useful for explaining relationships between stakeholder values and forest uses. Our results suggest that SolVES can effectively reproduce information derived from traditional statistical analyses while adding spatially explicit, social-value information that can contribute to integrated resource assessment, planning, and management of forests and other ecosystems.
NASA Astrophysics Data System (ADS)
Hao, X.; Qu, J. J.; Motha, R. P.; Stefanski, R.; Malherbe, J.
2014-12-01
Drought is one of the most complicated natural hazards, and causes serious environmental, economic and social consequences. Agricultural production systems, which are highly susceptible to weather and climate extremes, are often the first and most vulnerable sector to be affected by drought events. In Africa, crop yield potential and grazing quality are already nearing their limit of temperature sensitivity, and, rapid population growth and frequent drought episodes pose serious complications for food security. It is critical to promote sustainable agriculture development in Africa under conditions of climate extremes. Soil moisture is one of the most important indicators for agriculture drought, and is a fundamentally critical parameter for decision support in crop management, including planting, water use efficiency and irrigation. While very significant technological advances have been introduced for remote sensing of surface soil moisture from space, in-situ measurements are still critical for calibration and validation of soil moisture estimation algorithms. For operational applications, synergistic collaboration is needed to integrate measurements from different sensors at different spatial and temporal scales. In this presentation, a collaborative effort is demonstrated for drought monitoring in Africa, supported and coordinated by WMO, including surface soil moisture and crop status monitoring. In-situ measurements of soil moisture, precipitation and temperature at selected sites are provided by local partners in Africa. Measurements from the Soil Moisture and Ocean Salinity (SMOS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) are integrated with in-situ observations to derive surface soil moisture at high spatial resolution. Crop status is estimated through temporal analysis of current and historical MODIS measurements. Integrated analysis of soil moisture data and crop status provides both in-depth understanding of drought conditions and potential impacts on crop yield. This information is extremely useful in local decision support for agricultural management.
NASA Astrophysics Data System (ADS)
Hao, X.; Qu, J. J.; Motha, R. P.; Stefanski, R.; Malherbe, J.
2015-12-01
Drought is one of the most complicated natural hazards, and causes serious environmental, economic and social consequences. Agricultural production systems, which are highly susceptible to weather and climate extremes, are often the first and most vulnerable sector to be affected by drought events. In Africa, crop yield potential and grazing quality are already nearing their limit of temperature sensitivity, and, rapid population growth and frequent drought episodes pose serious complications for food security. It is critical to promote sustainable agriculture development in Africa under conditions of climate extremes. Soil moisture is one of the most important indicators for agriculture drought, and is a fundamentally critical parameter for decision support in crop management, including planting, water use efficiency and irrigation. While very significant technological advances have been introduced for remote sensing of surface soil moisture from space, in-situ measurements are still critical for calibration and validation of soil moisture estimation algorithms. For operational applications, synergistic collaboration is needed to integrate measurements from different sensors at different spatial and temporal scales. In this presentation, a collaborative effort is demonstrated for drought monitoring in Africa, supported and coordinated by WMO, including surface soil moisture and crop status monitoring. In-situ measurements of soil moisture, precipitation and temperature at selected sites are provided by local partners in Africa. Measurements from the Soil Moisture and Ocean Salinity (SMOS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) are integrated with in-situ observations to derive surface soil moisture at high spatial resolution. Crop status is estimated through temporal analysis of current and historical MODIS measurements. Integrated analysis of soil moisture data and crop status provides both in-depth understanding of drought conditions and potential impacts on crop yield. This information is extremely useful in local decision support for agricultural management.
Quantifying multiple telecouplings using an integrated suite of spatially-explicit tools
NASA Astrophysics Data System (ADS)
Tonini, F.; Liu, J.
2016-12-01
Telecoupling is an interdisciplinary research umbrella concept that enables natural and social scientists to understand and generate information for managing how humans and nature can sustainably coexist worldwide. To systematically study telecoupling, it is essential to build a comprehensive set of spatially-explicit tools for describing and quantifying multiple reciprocal socioeconomic and environmental interactions between a focal area and other areas. Here we introduce the Telecoupling Toolbox, a new free and open-source set of tools developed to map and identify the five major interrelated components of the telecoupling framework: systems, flows, agents, causes, and effects. The modular design of the toolbox allows the integration of existing tools and software (e.g. InVEST) to assess synergies and tradeoffs associated with policies and other local to global interventions. We show applications of the toolbox using a number of representative studies that address a variety of scientific and management issues related to telecouplings throughout the world. The results suggest that the toolbox can thoroughly map and quantify multiple telecouplings under various contexts while providing users with an easy-to-use interface. It provides a powerful platform to address globally important issues, such as land use and land cover change, species invasion, migration, flows of ecosystem services, and international trade of goods and products.
Palmer, Terence A; Montagna, Paul A; Chamberlain, Robert H; Doering, Peter H; Wan, Yongshan; Haunert, Kathleen M; Crean, Daniel J
2016-07-01
Florida legislation requires determining and implementing an appropriate range and frequency of freshwater inflows that will sustain a fully functional estuary. Changes in inflow dynamics to the Caloosahatchee Estuary, Florida have altered salinity regimes that, in turn, have altered the ecological integrity of the estuary. The purpose of this current project is to determine how changes in freshwater inflows affect water quality, and in turn, benthic macrofauna, spatially within the Caloosahatchee Estuary and between multiyear wet and dry periods. Thirty-four benthic species were identified as being indicator species for salinity zones, and the estuary was divided into 4 zones based on differences in community structure within the estuary. Community structure had the highest correlations with water quality parameters that were common indicators of freshwater conditions resulting from inflows. A significant relationship between salinity and diversity occurs both spatially and temporally because of increased numbers of marine species as salinities increase. A salinity-based model was used to estimate inflow during wet and dry periods for each of the macrofauna community zones. The approach used here (identifying bioindicators and community zones with corresponding inflow ranges) is generic and will be useful for developing targets for managing inflow in estuaries worldwide. Integr Environ Assess Manag 2016;12:529-539. © 2015 SETAC. © 2015 SETAC.
Ager, Alan A; Kline, Jeffrey D; Fischer, A Paige
2015-08-01
We describe recent advances in biophysical and social aspects of risk and their potential combined contribution to improve mitigation planning on fire-prone landscapes. The methods and tools provide an improved method for defining the spatial extent of wildfire risk to communities compared to current planning processes. They also propose an expanded role for social science to improve understanding of community-wide risk perceptions and to predict property owners' capacities and willingness to mitigate risk by treating hazardous fuels and reducing the susceptibility of dwellings. In particular, we identify spatial scale mismatches in wildfire mitigation planning and their potential adverse impact on risk mitigation goals. Studies in other fire-prone regions suggest that these scale mismatches are widespread and contribute to continued wildfire dwelling losses. We discuss how risk perceptions and behavior contribute to scale mismatches and how they can be minimized through integrated analyses of landscape wildfire transmission and social factors that describe the potential for collaboration among landowners and land management agencies. These concepts are then used to outline an integrated socioecological planning framework to identify optimal strategies for local community risk mitigation and improve landscape-scale prioritization of fuel management investments by government entities. © 2015 Society for Risk Analysis.
Song, Chao; Kwan, Mei-Po; Zhu, Jiping
2017-04-08
An increasing number of fires are occurring with the rapid development of cities, resulting in increased risk for human beings and the environment. This study compares geographically weighted regression-based models, including geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR), which integrates spatial and temporal effects and global linear regression models (LM) for modeling fire risk at the city scale. The results show that the road density and the spatial distribution of enterprises have the strongest influences on fire risk, which implies that we should focus on areas where roads and enterprises are densely clustered. In addition, locations with a large number of enterprises have fewer fire ignition records, probably because of strict management and prevention measures. A changing number of significant variables across space indicate that heterogeneity mainly exists in the northern and eastern rural and suburban areas of Hefei city, where human-related facilities or road construction are only clustered in the city sub-centers. GTWR can capture small changes in the spatiotemporal heterogeneity of the variables while GWR and LM cannot. An approach that integrates space and time enables us to better understand the dynamic changes in fire risk. Thus governments can use the results to manage fire safety at the city scale.
Song, Chao; Kwan, Mei-Po; Zhu, Jiping
2017-01-01
An increasing number of fires are occurring with the rapid development of cities, resulting in increased risk for human beings and the environment. This study compares geographically weighted regression-based models, including geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR), which integrates spatial and temporal effects and global linear regression models (LM) for modeling fire risk at the city scale. The results show that the road density and the spatial distribution of enterprises have the strongest influences on fire risk, which implies that we should focus on areas where roads and enterprises are densely clustered. In addition, locations with a large number of enterprises have fewer fire ignition records, probably because of strict management and prevention measures. A changing number of significant variables across space indicate that heterogeneity mainly exists in the northern and eastern rural and suburban areas of Hefei city, where human-related facilities or road construction are only clustered in the city sub-centers. GTWR can capture small changes in the spatiotemporal heterogeneity of the variables while GWR and LM cannot. An approach that integrates space and time enables us to better understand the dynamic changes in fire risk. Thus governments can use the results to manage fire safety at the city scale. PMID:28397745
Adams, Vanessa M.; Pressey, Robert L.; Stoeckl, Natalie
2014-01-01
The need to integrate social and economic factors into conservation planning has become a focus of academic discussions and has important practical implications for the implementation of conservation areas, both private and public. We conducted a survey in the Daly Catchment, Northern Territory, to inform the design and implementation of a stewardship payment program. We used a choice model to estimate the likely level of participation in two legal arrangements - conservation covenants and management agreements - based on payment level and proportion of properties required to be managed. We then spatially predicted landholders’ probability of participating at the resolution of individual properties and incorporated these predictions into conservation planning software to examine the potential for the stewardship program to meet conservation objectives. We found that the properties that were least costly, per unit area, to manage were also the least likely to participate. This highlights a tension between planning for a cost-effective program and planning for a program that targets properties with the highest probability of participation. PMID:24892520
Beltrá, A; Garcia-Marí, F; Soto, A
2013-06-01
Phlenacoccus peruvianus Granara de Willink (Hemiptera: Pseudococcidae) is an invasive mealybug of Neotropical origin. In recent years it has invaded the Mediterranean Basin causing significant damages in bougainvillea and other ornamental plants. This article examines its phenology, location on the plant and spatial distribution, and presents a sampling plan to determine P. peruvianus population density for the management of this mealybug in southern Europe. Six urban green spaces with bougainvillea plants were periodically surveyed between March 2008 and September 2010 in eastern Spain, sampling bracts, leaves, and twigs. Our results show that P. peruvianus abundance was high in spring and summer, declining to almost undetectable levels in autumn and winter. The mealybugs showed a preference for settling on bracts and there were no significant migrations between plant organs. P. peruvianus showed a highly aggregated distribution on bracts, leaves, and twigs. We recommend abinomial sampling of 200 leaves and an action threshold of 55% infested leaves for integrated pest management purposes on urban landscapes and enumerative sampling for ornamental nursery management and additional biological studies.
Balsells, M; Barroca, B; Amdal, J R; Diab, Y; Becue, V; Serre, D
2013-01-01
Recent changes in cities and their environments, caused by rapid urbanisation and climate change, have increased both flood probability and the severity of flooding. Consequently, there is a need for all cities to adapt to climate and socio-economic changes by developing new strategies for flood risk management. Following a risk paradigm shift from traditional to more integrated approaches, and considering the uncertainties of future urban development, one of the main emerging tasks for city managers becomes the development of resilient cities. However, the meaning of the resilience concept and its operability is still not clear. The goal of this research is to study how urban engineering and design disciplines can improve resilience to floods in urban neighbourhoods. This paper presents the conceptual Spatial Decision Support System (DS3) model which we consider a relevant tool to analyse and then implement resilience into neighbourhood design. Using this model, we analyse and discuss alternative stormwater management options at the neighbourhood scale in two specific areas: Rotterdam and New Orleans. The results obtained demonstrate that the DS3 model confirmed in its framework analysis that stormwater management systems can positively contribute to the improved flood resilience of a neighbourhood.
Features and functions of nonlinear spatial integration by retinal ganglion cells.
Gollisch, Tim
2013-11-01
Ganglion cells in the vertebrate retina integrate visual information over their receptive fields. They do so by pooling presynaptic excitatory inputs from typically many bipolar cells, which themselves collect inputs from several photoreceptors. In addition, inhibitory interactions mediated by horizontal cells and amacrine cells modulate the structure of the receptive field. In many models, this spatial integration is assumed to occur in a linear fashion. Yet, it has long been known that spatial integration by retinal ganglion cells also incurs nonlinear phenomena. Moreover, several recent examples have shown that nonlinear spatial integration is tightly connected to specific visual functions performed by different types of retinal ganglion cells. This work discusses these advances in understanding the role of nonlinear spatial integration and reviews recent efforts to quantitatively study the nature and mechanisms underlying spatial nonlinearities. These new insights point towards a critical role of nonlinearities within ganglion cell receptive fields for capturing responses of the cells to natural and behaviorally relevant visual stimuli. In the long run, nonlinear phenomena of spatial integration may also prove important for implementing the actual neural code of retinal neurons when designing visual prostheses for the eye. Copyright © 2012 Elsevier Ltd. All rights reserved.
Putting people on the map through an approach that integrates social data in conservation planning.
Stephanson, Sheri L; Mascia, Michael B
2014-10-01
Conservation planning is integral to strategic and effective operations of conservation organizations. Drawing upon biological sciences, conservation planning has historically made limited use of social data. We offer an approach for integrating data on social well-being into conservation planning that captures and places into context the spatial patterns and trends in human needs and capacities. This hierarchical approach provides a nested framework for characterizing and mapping data on social well-being in 5 domains: economic well-being, health, political empowerment, education, and culture. These 5 domains each have multiple attributes; each attribute may be characterized by one or more indicators. Through existing or novel data that display spatial and temporal heterogeneity in social well-being, conservation scientists, planners, and decision makers may measure, benchmark, map, and integrate these data within conservation planning processes. Selecting indicators and integrating these data into conservation planning is an iterative, participatory process tailored to the local context and planning goals. Social well-being data complement biophysical and threat-oriented social data within conservation planning processes to inform decisions regarding where and how to conserve biodiversity, provide a structure for exploring socioecological relationships, and to foster adaptive management. Building upon existing conservation planning methods and insights from multiple disciplines, this approach to putting people on the map can readily merge with current planning practices to facilitate more rigorous decision making. © 2014 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Taşkanat, Talha; İbrahim İnan, Halil
2016-04-01
Since the beginning of the 2000s, it has been conducted many projects such as Agricultural Sector Integrated Management Information System, Agriculture Information System, Agricultural Production Registry System and Farmer Registry System by the Turkish Ministry of Food, Agriculture and Livestock and the Turkish Statistical Institute in order to establish and manage better agricultural policy and produce better agricultural statistics in Turkey. Yet, it has not been carried out any study for the structuring of a system which can meet the requirements of different institutions and organizations that need similar agricultural data. It has been tried to meet required data only within the frame of the legal regulations from present systems. Whereas the developments in GIS (Geographical Information Systems) and standardization, and Turkey National GIS enterprise in this context necessitate to meet the demands of organizations that use the similar data commonly and to act in terms of a data model logic. In this study, 38 institutions or organization which produce and use agricultural data were detected, that and thanks to survey and interviews undertaken, their needs were tried to be determined. In this study which is financially supported by TUBITAK, it was worked out relationship between farmer, agricultural land and agricultural production data and all of the institutions and organizations in Turkey and in this context, it was worked upon the best detailed and effective possible data model. In the model design, UML which provides object-oriented design was used. In the data model, for the management of spatial data, sub-parcel data model was used. Thanks to this data model, declared and undeclared areas can be detected spatially, and thus declarations can be associated to sub-parcels. Within this framework, it will be able to developed agricultural policies as a result of acquiring more extensive, accurate, spatially manageable and easily updatable farmer and agricultural data throughout the country.
Beever, Erik A.; Woodward, Andrea
2011-01-01
Land ownership in Alaska includes a mosaic of federally managed units. Within its agency’s context, each unit has its own management strategy, authority, and resources of conservation concern, many of which are migratory animals. Though some units are geographically isolated, many are nevertheless linked by paths of abiotic and biotic flows, such as rivers, air masses, flyways, and terrestrial and aquatic migration routes. Furthermore, individual land units exist within the context of a larger landscape pattern of shifting conditions, requiring managers to understand at larger spatial scales the status and trends in the synchrony and spatial concurrence of species and associated suitable habitats. Results of these changes will determine the ability of Alaska lands to continue to: provide habitat for local and migratory species; absorb species whose ranges are shifting northward; and experience mitigation or exacerbation of climate change through positive and negative atmospheric feedbacks. We discuss the geographic and statutory contexts that influence development of ecological monitoring; argue for the inclusion of significant amounts of broad-scale monitoring; discuss the importance of defining clear programmatic and monitoring objectives; and draw from lessons learned from existing long-term, broad-scale monitoring programs to apply to the specific contexts relevant to high-latitude protected areas such as those in Alaska. Such areas are distinguished by their: marked seasonality; relatively large magnitudes of contemporary change in climatic parameters; and relative inaccessibility due to broad spatial extent, very low (or zero) road density, and steep and glaciated areas. For ecological monitoring to effectively support management decisions in high-latitude areas such as Alaska, a monitoring program ideally would be structured to address the actual spatial and temporal scales of relevant processes, rather than the artificial boundaries of individual land-management units. Heuristic models provide a means by which to integrate understanding of ecosystem structure, composition, and function, in the midst of numerous ecosystem drivers.
NASA Astrophysics Data System (ADS)
Liu, Y.; Zhang, W.; Yan, C.
2012-07-01
Presently, planning and assessment in maintenance, renewal and decision-making for watershed hydrology, water resource management and water quality assessment are evolving toward complex, spatially explicit regional environmental assessments. These problems have to be addressed with object-oriented spatio-temporal data models that can restore, manage, query and visualize various historic and updated basic information concerning with watershed hydrology, water resource management and water quality as well as compute and evaluate the watershed environmental conditions so as to provide online forecasting to police-makers and relevant authorities for supporting decision-making. The extensive data requirements and the difficult task of building input parameter files, however, has long been an obstacle to use of such complex models timely and effectively by resource managers. Success depends on an integrated approach that brings together scientific, education and training advances made across many individual disciplines and modified to fit the needs of the individuals and groups who must write, implement, evaluate, and adjust their watershed management plans. The centre for Hydro-science Research, Nanjing University, in cooperation with the relevant watershed management authorities, has developed a WebGIS management platform to facilitate this complex process. Improve the management of watersheds over the Huaihe basin through the development, promotion and use of a web-based, user-friendly, geospatial watershed management data and decision support system (WMDDSS) involved many difficulties for the development of this complicated System. In terms of the spatial and temporal characteristics of historic and currently available information on meteorological, hydrological, geographical, environmental and other relevant disciplines, we designed an object-oriented spatiotemporal data model that combines spatial, attribute and temporal information to implement the management system. Using this system, we can update, query and analyze environmental information as well as manage historical data, and a visualization tool was provided to help the user interpret results so as to provide scientific support for decision-making. The utility of the system has been demonstrated its values by being used in watershed management and environmental assessments.
NASA Astrophysics Data System (ADS)
Rossetto, Rudy; De Filippis, Giovanna; Borsi, Iacopo; Foglia, Laura; Toegl, Anja; Cannata, Massimiliano; Neumann, Jakob; Vazquez-Sune, Enric; Criollo, Rotman
2017-04-01
In order to achieve sustainable and participated ground-water management, innovative software built on the integration of numerical models within GIS software is a perfect candidate to provide a full characterization of quantitative and qualitative aspects of ground- and surface-water resources maintaining the time and spatial dimension. The EU H2020 FREEWAT project (FREE and open source software tools for WATer resource management; Rossetto et al., 2015) aims at simplifying the application of EU water-related Directives through an open-source and public-domain, GIS-integrated simulation platform for planning and management of ground- and surface-water resources. The FREEWAT platform allows to simulate the whole hydrological cycle, coupling the power of GIS geo-processing and post-processing tools in spatial data analysis with that of process-based simulation models. This results in a modeling environment where large spatial datasets can be stored, managed and visualized and where several simulation codes (mainly belonging to the USGS MODFLOW family) are integrated to simulate multiple hydrological, hydrochemical or economic processes. So far, the FREEWAT platform is a large plugin for the QGIS GIS desktop software and it integrates the following capabilities: • the AkvaGIS module allows to produce plots and statistics for the analysis and interpretation of hydrochemical and hydrogeological data; • the Observation Analysis Tool, to facilitate the import, analysis and visualization of time-series data and the use of these data to support model construction and calibration; • groundwater flow simulation in the saturated and unsaturated zones may be simulated using MODFLOW-2005 (Harbaugh, 2005); • multi-species advective-dispersive transport in the saturated zone can be simulated using MT3DMS (Zheng & Wang, 1999); the possibility to simulate viscosity- and density-dependent flows is further accomplished through SEAWAT (Langevin et al., 2007); • sustainable management of combined use of ground- and surface-water resources in rural environments is accomplished by the Farm Process module embedded in MODFLOW-OWHM (Hanson et al., 2014), which allows to dynamically integrate crop water demand and supply from ground- and surface-water; • UCODE_2014 (Poeter et al., 2014) is implemented to perform sensitivity analysis and parameter estimation to improve the model fit through an inverse, regression method based on the evaluation of an objective function. Through creating a common environment among water research/professionals, policy makers and implementers, FREEWAT aims at enhancing science and participatory approach and evidence-based decision making in water resource management, hence producing relevant outcomes for policy implementation. Acknowledgements This paper is presented within the framework of the project FREEWAT, which has received funding from the European Union's HORIZON 2020 research and innovation programme under Grant Agreement n. 642224. References Hanson, R.T., Boyce, S.E., Schmid, W., Hughes, J.D., Mehl, S.M., Leake, S.A., Maddock, T., Niswonger, R.G. One-Water Hydrologic Flow Model (MODFLOW-OWHM), U.S. Geological Survey, Techniques and Methods 6-A51, 2014 134 p. Harbaugh A.W. (2005) - MODFLOW-2005, The U.S. Geological Survey Modular Ground-Water Model - the Ground-Water Flow Process. U.S. Geological Survey, Techniques and Methods 6-A16, 253 p. Langevin C.D., Thorne D.T. Jr., Dausman A.M., Sukop M.C. & Guo Weixing (2007) - SEAWAT Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport. U.S. Geological Survey Techniques and Methods 6-A22, 39 pp. Poeter E.P., Hill M.C., Lu D., Tiedeman C.R. & Mehl S. (2014) - UCODE_2014, with new capabilities to define parameters unique to predictions, calculate weights using simulated values, estimate parameters with SVD, evaluate uncertainty with MCMC, and more. Integrated Groundwater Modeling Center Report Number GWMI 2014-02. Rossetto, R., Borsi, I. & Foglia, L. FREEWAT: FREE and open source software tools for WATer resource management, Rendiconti Online Società Geologica Italiana, 2015, 35, 252-255. Zheng C. & Wang P.P. (1999) - MT3DMS, A modular three-dimensional multi-species transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems. U.S. Army Engineer Research and Development Center Contract Report SERDP-99-1, Vicksburg, MS, 202 pp.
NASA Astrophysics Data System (ADS)
Guardiola-Albert, Carolina; Díez-Herrero, Andrés; Amérigo, María; García, Juan Antonio; María Bodoque, José; Fernández-Naranjo, Nuria
2017-04-01
Flash floods provoke a high average mortality as they are usually unexpected events which evolve rapidly and affect relatively small areas. The short time available for minimizing risks requires preparedness and response actions to be put into practice. Therefore, it is necessary the development of emergency response plans to evacuate and rescue people in the context of a flash-flood hazard. In this framework, risk management has to integrate the social dimension of flash-flooding and its spatial distribution by understanding the characteristics of local communities in order to enhance community resilience during a flash-flood. In this regard, the flash-flood social risk perception of the village of Navaluenga (Central Spain) has been recently assessed, as well as the level of awareness of civil protection and emergency management strategies (Bodoque et al., 2016). This has been done interviewing 254 adults, representing roughly 12% of the population census. The present study wants to go further in the analysis of the resulting questionnaires, incorporating in the analysis the location of home spatial coordinates in order to characterize the spatial distribution and possible geographical interpretation of flood risk perception. We apply geostatistical methods to analyze spatial relations of social risk perception and level of awareness with distance to the rivers (Alberche and Chorrerón) or to the flood-prone areas (50-year, 100-year and 500-year flood plains). We want to discover spatial patterns, if any, using correlation functions (variograms). Geostatistical analyses results can help to either confirm the logical pattern (i.e., less awareness further to the rivers or high return period of flooding) or reveal departures from expected. It can also be possible to identify hot spots, cold spots, and spatial outliers. The interpretation of these spatial patterns can give valuable information to define strategies to improve the awareness regarding preparedness and response actions, such as designing optimal evacuation routes during flood emergencies. Geostatistical tools also provide a set of interpolation techniques for the prediction of the variable value at unstudied similar locations, basing on the sample point values and other variables related with the measured variable. We attempt different geostatistical interpolation methods to obtain continuous surfaces of the risk perception and level of awareness in the study area. The use of these maps for future extensions and actualizations of the Civil Protection Plan is evaluated. References Bodoque, J. M., Amérigo, M., Díez-Herrero, A., García, J. A., Cortés, B., Ballesteros-Cánovas, J. A., & Olcina, J. (2016). Improvement of resilience of urban areas by integrating social perception in flash-flood risk management.Journal of Hydrology.
Meng, Qingmin
2016-09-15
Marine ecosystems are home to a host of numerous species ranging from tiny planktonic organisms, fishes, and birds, to large mammals such as the whales, manatees, and seals. However, human activities such as offshore oil and gas operations increasingly threaten marine and coastal ecosystems, for which there has been little exploration into the spatial and temporal risks of offshore oil operations. Using the Gulf of Mexico, one of the world's hottest spots of offshore oil and gas mining, as the study area, we propose a spatiotemporal approach that integrates spatial statistics and geostatistics in a geographic information system environment to provide insight to environmental management and decision making for oil and gas operators, coastal communities, local governments, and the federal government. We use the records from 1995 to 2015 of twelve types of hazards caused by offshore oil and gas operations, and analyze them spatially over a five year period. The spatial clusters of these hazards are analyzed and mapped using Getis-Ord Gi and local Moran's I statistics. We then design a spatial correlation coefficient matrix for multivariate spatial correlation, which is the ratio of the cross variogram of two types of hazards to the product of the variograms of the two hazards, showing a primary understanding of the degrees of spatial correlation among the twelve types hazards. To the best of our knowledge, it is the first application of spatiotemporal analysis methods to environmental hazards caused by offshore oil and gas operations; the proposed methods can be applied to other regions for the management and monitoring of environmental hazards caused by offshore oil operations. Copyright © 2016 Elsevier B.V. All rights reserved.
Pitting temporal against spatial integration in schizophrenic patients.
Herzog, Michael H; Brand, Andreas
2009-06-30
Schizophrenic patients show strong impairments in visual backward masking possibly caused by deficits on the early stages of visual processing. The underlying aberrant mechanisms are not clearly understood. Spatial as well as temporal processing deficits have been proposed. Here, by combining a spatial with a temporal integration paradigm, we show further evidence that temporal but not spatial processing is impaired in schizophrenic patients. Eleven schizophrenic patients and ten healthy controls were presented with sequences composed of Vernier stimuli. Patients needed significantly longer presentation times for sequentially presented Vernier stimuli to reach a performance level comparable to that of healthy controls (temporal integration deficit). When we added spatial contextual elements to some of the Vernier stimuli, performance changed in a complex but comparable manner in patients and controls (intact spatial integration). Hence, temporal but not spatial processing seems to be deficient in schizophrenia.
Soil indicators to assess the effectiveness of restoration strategies in dryland ecosystems
NASA Astrophysics Data System (ADS)
Costantini, E. A. C.; Branquinho, C.; Nunes, A.; Schwilch, G.; Stavi, I.; Valdecantos, A.; Zucca, C.
2015-12-01
Soil indicators may be used for assessing both land suitability for restoration and the effectiveness of restoration strategies in restoring ecosystem functioning and services. In this review paper, several soil indicators, which can be used to assess the effectiveness of restoration strategies in dryland ecosystems at different spatial and temporal scales, are discussed. The selected indicators represent the different viewpoints of pedology, ecology, hydrology, and land management. The recovery of soil capacity to provide ecosystem services is primarily obtained by increasing soil rooting depth and volume, and augmenting water accessibility for vegetation. Soil characteristics can be used either as indicators of suitability, that is, inherently slow-changing soil qualities, or as indicators for modifications, namely dynamic, thus "manageable" soil qualities. Soil organic matter forms, as well as biochemistry, micro- and meso-biology, are among the most utilized dynamic indicators. On broader territorial scales, the Landscape Function Analysis uses a functional approach, where the effectiveness of restoration strategies is assessed by combining the analysis of spatial pattern of vegetation with qualitative soil indicators. For more holistic and comprehensive projects, effective strategies to combat desertification should integrate soil indicators with biophysical and socio-economic evaluation and include participatory approaches. The integrated assessment protocol of Sustainable Land Management developed by the World Overview of Conservation Approaches and Technologies network is thoroughly discussed. Two overall outcomes stem from the review: (i) the success of restoration projects relies on a proper understanding of their ecology, namely the relationships between soil, plants, hydrology, climate, and land management at different scales, which is particularly complex due to the heterogeneous pattern of ecosystems functioning in drylands, and (ii) the selection of the most suitable soil indicators follows a clear identification of the different and sometimes competing ecosystem services that the project is aimed at restoring.
Participatory GIS for Soil Conservation in Phewa Watershed of Nepal
NASA Astrophysics Data System (ADS)
Bhandari, K. P.
2012-07-01
Participatory Geographic Information Systems (PGIS) can integrate participatory methodologies with geo-spatial technologies for the representation of characteristic of particular place. Over the last decade, researchers use this method to integrate the local knowledge of community within a GIS and Society conceptual framework. Participatory GIS are tailored to answer specific geographic questions at the local level and their modes of implementation vary considerably across space, ranging from field-based, qualitative approaches to more complex web-based applications. These broad ranges of techniques, PGIS are becoming an effective methodology for incorporating community local knowledge into complex spatial decision-making processes. The objective of this study is to reduce the soil erosion by formulating the general rule for the soil conservation by participation of the stakeholders. The poster was prepared by satellite image, topographic map and Arc GIS software including the local knowledge. The data were collected from the focus group discussion and the individual questionnaire for incorporate the local knowledge and use it to find the risk map on the basis of economic, social and manageable physical factors for the sensitivity analysis. The soil erosion risk map is prepared by the physical factors Rainfall-runoff erosivity, Soil erodibility, Slope length, Slope steepness, Cover-management, Conservation practice using RUSLE model. After the comparison and discussion among stakeholders, researcher and export group, and the soil erosion risk map showed that socioeconomic, social and manageable physical factors management can reduce the soil erosion. The study showed that the preparation of the poster GIS map and implement this in the watershed area could reduce the soil erosion in the study area compared to the existing national policy.
Tampa Bay Study Data and Information Management System (DIMS)
NASA Astrophysics Data System (ADS)
Edgar, N. T.; Johnston, J. B.; Yates, K.; Smith, K. E.
2005-05-01
Providing easy access to data and information is an essential component of both science and management. The Tampa Bay Data and Information Management System (DIMS) catalogs and publicizes data and products which are generated through the Tampa Bay Integrated Science Study. The publicly accessible interface consists of a Web site (http://gulfsci.usgs.gov), a digital library, and an interactive map server (IMS). The Tampa Bay Study Web site contains information from scientists involved in the study, and is also the portal site for the digital library and IMS. Study information is highlighted on the Web site according to the estuarine component: geology and geomorphology, water and sediment quality, ecosystem structure and function, and hydrodynamics. The Tampa Bay Digital Library is a web-based clearinghouse for digital products on Tampa Bay, including documents, maps, spatial and tabular data sets, presentations, etc. New developments to the digital library include new search features, 150 new products over the past year, and partnerships to expand the offering of science products. The IMS is a Web-based geographic information system (GIS) used to store, analyze and display data pertaining to Tampa Bay. Upgrades to the IMS have improved performance and speed, as well as increased the number of data sets available for mapping. The Tampa Bay DIMS is a dynamic entity and will continue to evolve with the study. Beginning in 2005, the Tampa Bay Integrated Coastal Model will have a more prominent presence within the DIMS. The Web site will feature model projects and plans; the digital library will host model products and data sets; the IMS will display spatial model data sets and analyses. These tools will be used to increase communication of USGS efforts in Tampa Bay to the public, local managers, and scientists.
Marine protected areas and the value of spatially optimized fishery management
Rassweiler, Andrew; Costello, Christopher; Siegel, David A.
2012-01-01
There is a growing focus around the world on marine spatial planning, including spatial fisheries management. Some spatial management approaches are quite blunt, as when marine protected areas (MPAs) are established to restrict fishing in specific locations. Other management tools, such as zoning or spatial user rights, will affect the distribution of fishing effort in a more nuanced manner. Considerable research has focused on the ability of MPAs to increase fishery returns, but the potential for the broader class of spatial management approaches to outperform MPAs has received far less attention. We use bioeconomic models of seven nearshore fisheries in Southern California to explore the value of optimized spatial management in which the distribution of fishing is chosen to maximize profits. We show that fully optimized spatial management can substantially increase fishery profits relative to optimal nonspatial management but that the magnitude of this increase depends on characteristics of the fishing fleet and target species. Strategically placed MPAs can also increase profits substantially compared with nonspatial management, particularly if fishing costs are low, although profit increases available through optimal MPA-based management are roughly half those from fully optimized spatial management. However, if the same total area is protected by randomly placing MPAs, starkly contrasting results emerge: most random MPA designs reduce expected profits. The high value of spatial management estimated here supports continued interest in spatially explicit fisheries regulations but emphasizes that predicted increases in profits can only be achieved if the fishery is well understood and the regulations are strategically designed. PMID:22753469
Marine protected areas and the value of spatially optimized fishery management.
Rassweiler, Andrew; Costello, Christopher; Siegel, David A
2012-07-17
There is a growing focus around the world on marine spatial planning, including spatial fisheries management. Some spatial management approaches are quite blunt, as when marine protected areas (MPAs) are established to restrict fishing in specific locations. Other management tools, such as zoning or spatial user rights, will affect the distribution of fishing effort in a more nuanced manner. Considerable research has focused on the ability of MPAs to increase fishery returns, but the potential for the broader class of spatial management approaches to outperform MPAs has received far less attention. We use bioeconomic models of seven nearshore fisheries in Southern California to explore the value of optimized spatial management in which the distribution of fishing is chosen to maximize profits. We show that fully optimized spatial management can substantially increase fishery profits relative to optimal nonspatial management but that the magnitude of this increase depends on characteristics of the fishing fleet and target species. Strategically placed MPAs can also increase profits substantially compared with nonspatial management, particularly if fishing costs are low, although profit increases available through optimal MPA-based management are roughly half those from fully optimized spatial management. However, if the same total area is protected by randomly placing MPAs, starkly contrasting results emerge: most random MPA designs reduce expected profits. The high value of spatial management estimated here supports continued interest in spatially explicit fisheries regulations but emphasizes that predicted increases in profits can only be achieved if the fishery is well understood and the regulations are strategically designed.
Co-simulation coupling spectral/finite elements for 3D soil/structure interaction problems
NASA Astrophysics Data System (ADS)
Zuchowski, Loïc; Brun, Michael; De Martin, Florent
2018-05-01
The coupling between an implicit finite elements (FE) code and an explicit spectral elements (SE) code has been explored for solving the elastic wave propagation in the case of soil/structure interaction problem. The coupling approach is based on domain decomposition methods in transient dynamics. The spatial coupling at the interface is managed by a standard coupling mortar approach, whereas the time integration is dealt with an hybrid asynchronous time integrator. An external coupling software, handling the interface problem, has been set up in order to couple the FE software Code_Aster with the SE software EFISPEC3D.
NASA Astrophysics Data System (ADS)
Inam, Azhar; Adamowski, Jan; Prasher, Shiv; Halbe, Johannes; Malard, Julien; Albano, Raffaele
2017-08-01
Effective policies, leading to sustainable management solutions for land and water resources, require a full understanding of interactions between socio-economic and physical processes. However, the complex nature of these interactions, combined with limited stakeholder engagement, hinders the incorporation of socio-economic components into physical models. The present study addresses this challenge by integrating the physical Spatial Agro Hydro Salinity Model (SAHYSMOD) with a participatory group-built system dynamics model (GBSDM) that includes socio-economic factors. A stepwise process to quantify the GBSDM is presented, along with governing equations and model assumptions. Sub-modules of the GBSDM, describing agricultural, economic, water and farm management factors, are linked together with feedbacks and finally coupled with the physically based SAHYSMOD model through commonly used tools (i.e., MS Excel and a Python script). The overall integrated model (GBSDM-SAHYSMOD) can be used to help facilitate the role of stakeholders with limited expertise and resources in model and policy development and implementation. Following the development of the integrated model, a testing methodology was used to validate the structure and behavior of the integrated model. Model robustness under different operating conditions was also assessed. The model structure was able to produce anticipated real behaviours under the tested scenarios, from which it can be concluded that the formulated structures generate the right behaviour for the right reasons.
The Spatial and Career Mobility of China’s Urban and Rural Labor Force*
Hao, Lingxin; Liang, Yucheng
2017-01-01
This paper provides a comprehensive examination of the spatial and career mobility of China’s labor population. The paper integrates theories on stratification and social change and exploits the innovative design and measurement of the China Labor-force Dynamics Survey to minimize the under-coverage problem of the rural-urban migratory experience. Our analysis provides several fresh findings: (1) at-birth rural household registration (hukou) status leads to a greater probability of spatial mobility and career advancement than at-birth urban hukou status does; (2) education and gender differentiates rural-origin people, increasing the heterogeneity of urban labor and decreasing the heterogeneity of rural labor; (3) hukou policy relaxation favors later cohorts over earlier cohorts; and (4) among demographically comparable people, having experienced spatial mobility is correlated with having career advancement experience. Work organizations are found to be the arena where the two dimensions of mobility can happen jointly. Our findings provide a rich context for understanding the management and organization of Chinese labor. PMID:29129981
Effective 3-D surface modeling for geographic information systems
NASA Astrophysics Data System (ADS)
Yüksek, K.; Alparslan, M.; Mendi, E.
2013-11-01
In this work, we propose a dynamic, flexible and interactive urban digital terrain platform (DTP) with spatial data and query processing capabilities of Geographic Information Systems (GIS), multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized Directional Replacement Policy (DRP) based buffer management scheme. Polyhedron structures are used in Digital Surface Modeling (DSM) and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g. X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.
The Spatial and Career Mobility of China's Urban and Rural Labor Force.
Hao, Lingxin; Liang, Yucheng
2016-03-01
This paper provides a comprehensive examination of the spatial and career mobility of China's labor population. The paper integrates theories on stratification and social change and exploits the innovative design and measurement of the China Labor-force Dynamics Survey to minimize the under-coverage problem of the rural-urban migratory experience. Our analysis provides several fresh findings: (1) at-birth rural household registration (hukou) status leads to a greater probability of spatial mobility and career advancement than at-birth urban hukou status does; (2) education and gender differentiates rural-origin people, increasing the heterogeneity of urban labor and decreasing the heterogeneity of rural labor; (3) hukou policy relaxation favors later cohorts over earlier cohorts; and (4) among demographically comparable people, having experienced spatial mobility is correlated with having career advancement experience. Work organizations are found to be the arena where the two dimensions of mobility can happen jointly. Our findings provide a rich context for understanding the management and organization of Chinese labor.
Effective 3-D surface modeling for geographic information systems
NASA Astrophysics Data System (ADS)
Yüksek, K.; Alparslan, M.; Mendi, E.
2016-01-01
In this work, we propose a dynamic, flexible and interactive urban digital terrain platform with spatial data and query processing capabilities of geographic information systems, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized directional replacement policy (DRP) based buffer management scheme. Polyhedron structures are used in digital surface modeling and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g., X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.
Development of a 3D GIS and its application to karst areas
NASA Astrophysics Data System (ADS)
Wu, Qiang; Xu, Hua; Zhou, Wanfang
2008-05-01
There is a growing interest in modeling and analyzing karst phenomena in three dimensions. This paper integrates geology, groundwater hydrology, geographic information system (GIS), database management system (DBMS), visualization and data mining to study karst features in Huaibei, China. The 3D geo-objects retrieved from the karst area are analyzed and mapped into different abstract levels. The spatial relationships among the objects are constructed by a dual-linker. The shapes of the 3D objects and the topological models with attributes are stored and maintained in the DBMS. Spatial analysis was then used to integrate the data in the DBMS and the 3D model to form a virtual reality (VR) to provide analytical functions such as distribution analysis, correlation query, and probability assessment. The research successfully implements 3D modeling and analyses in the karst area, and meanwhile provides an efficient tool for government policy-makers to set out restrictions on water resource development in the area.
Integrated analysis of the effects of agricultural management on nitrogen fluxes at landscape scale.
Kros, J; Frumau, K F A; Hensen, A; de Vries, W
2011-11-01
The integrated modelling system INITIATOR was applied to a landscape in the northern part of the Netherlands to assess current nitrogen fluxes to air and water and the impact of various agricultural measures on these fluxes, using spatially explicit input data on animal numbers, land use, agricultural management, meteorology and soil. Average model results on NH(3) deposition and N concentrations in surface water appear to be comparable to observations, but the deviation can be large at local scale, despite the use of high resolution data. Evaluated measures include: air scrubbers reducing NH(3) emissions from poultry and pig housing systems, low protein feeding, reduced fertilizer amounts and low-emission stables for cattle. Low protein feeding and restrictive fertilizer application had the largest effect on both N inputs and N losses, resulting in N deposition reductions on Natura 2000 sites of 10% and 12%, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.
Brierley, Gary; Reid, Helen; Fryirs, Kirstie; Trahan, Nadine
2010-04-01
Monitoring and assessment are integral components in adaptive management programmes that strive to improve the condition of river systems. Unfortunately, these procedures are generally applied with an emphasis upon biotic attributes and water quality, with limited regard for the geomorphic structure, function and evolutionary trajectory of a river system. Geomorphic principles convey an understanding of the landscape context within which ecohydrologic processes interact. Collectively, geo-eco-hydrologic understanding presents a coherent biophysical template that can be used to frame spatially and temporally rigorous approaches to monitoring that respect the inherent diversity, variability and complexity of any given river system. This understanding aids the development of management programmes that 'work with nature.' Unless an integrative perspective is used to monitor river condition, conservation and rehabilitation plans are unlikely to reach their true potential. (c) 2010 Elsevier B.V. All rights reserved.
Shandas, Vivek; Voelkel, Jackson; Rao, Meenakshi; George, Linda
2016-01-01
Reducing exposure to degraded air quality is essential for building healthy cities. Although air quality and population vary at fine spatial scales, current regulatory and public health frameworks assess human exposures using county- or city-scales. We build on a spatial analysis technique, dasymetric mapping, for allocating urban populations that, together with emerging fine-scale measurements of air pollution, addresses three objectives: (1) evaluate the role of spatial scale in estimating exposure; (2) identify urban communities that are disproportionately burdened by poor air quality; and (3) estimate reduction in mobile sources of pollutants due to local tree-planting efforts using nitrogen dioxide. Our results show a maximum value of 197% difference between cadastrally-informed dasymetric system (CIDS) and standard estimations of population exposure to degraded air quality for small spatial extent analyses, and a lack of substantial difference for large spatial extent analyses. These results provide the foundation for improving policies for managing air quality, and targeting mitigation efforts to address challenges of environmental justice. PMID:27527205
Institutional Mapping Towards Developing a Framework for Sustainable Marine Spatial Planning
NASA Astrophysics Data System (ADS)
Yatim, M. H. M.; Omar, A. H.; Abdullah, N. M.; Hashim, N. M.
2016-09-01
Within few years before, the urge to implement the marine spatial planning is due to increasing numbers of marine activities that will lead into uncertainties of rights, restrictions and responsibilities of the maritime nations. Marine authorities in this situation that deal with national rights and legislations are the government institutions that engage with marine spatial information. There are several elements to be considered when dealing with the marine spatial planning; which is institutional sustainability governance. Providing the importance of marine spatial planning towards sustainable marine spatial governance, the focus should highlight the role marine institutions towards sustainable marine plan. The iterative process of marine spatial planning among marine institutions is important as the spatial information governance is scattered from reflected rights, restrictions and responsibilities of marine government institutions. Malaysia is one of the maritime nations that conjures the initial step towards establishing the sustainable marine spatial planning. In order to have sustainable institutions in marine spatial planning process, it involves four main stages; planning phase, plan evaluation phase, implementation phase and post implementation phase. Current situation has witnessed the unclear direction and role of marine government institutions to manage the marine spatial information. This review paper is focusing on the institutional sustainability upon interaction of marine government institutions in the marine spatial planning process based on Institutional Analysis Framework. The outcome of the integration of institutional sustainability and marine spatial planning process will propose a framework of marine institutional sustainable plan.
Mapping Reef Fish and the Seascape: Using Acoustics and Spatial Modeling to Guide Coastal Management
Costa, Bryan; Taylor, J. Christopher; Kracker, Laura; Battista, Tim; Pittman, Simon
2014-01-01
Reef fish distributions are patchy in time and space with some coral reef habitats supporting higher densities (i.e., aggregations) of fish than others. Identifying and quantifying fish aggregations (particularly during spawning events) are often top priorities for coastal managers. However, the rapid mapping of these aggregations using conventional survey methods (e.g., non-technical SCUBA diving and remotely operated cameras) are limited by depth, visibility and time. Acoustic sensors (i.e., splitbeam and multibeam echosounders) are not constrained by these same limitations, and were used to concurrently map and quantify the location, density and size of reef fish along with seafloor structure in two, separate locations in the U.S. Virgin Islands. Reef fish aggregations were documented along the shelf edge, an ecologically important ecotone in the region. Fish were grouped into three classes according to body size, and relationships with the benthic seascape were modeled in one area using Boosted Regression Trees. These models were validated in a second area to test their predictive performance in locations where fish have not been mapped. Models predicting the density of large fish (≥29 cm) performed well (i.e., AUC = 0.77). Water depth and standard deviation of depth were the most influential predictors at two spatial scales (100 and 300 m). Models of small (≤11 cm) and medium (12–28 cm) fish performed poorly (i.e., AUC = 0.49 to 0.68) due to the high prevalence (45–79%) of smaller fish in both locations, and the unequal prevalence of smaller fish in the training and validation areas. Integrating acoustic sensors with spatial modeling offers a new and reliable approach to rapidly identify fish aggregations and to predict the density large fish in un-surveyed locations. This integrative approach will help coastal managers to prioritize sites, and focus their limited resources on areas that may be of higher conservation value. PMID:24454886
Zhou, Zhiyi; Bernard, Melanie R; Bonds, A B
2008-04-02
Spatiotemporal relationships among contour segments can influence synchronization of neural responses in the primary visual cortex. We performed a systematic study to dissociate the impact of spatial and temporal factors in the signaling of contour integration via synchrony. In addition, we characterized the temporal evolution of this process to clarify potential underlying mechanisms. With a 10 x 10 microelectrode array, we recorded the simultaneous activity of multiple cells in the cat primary visual cortex while stimulating with drifting sine-wave gratings. We preserved temporal integrity and systematically degraded spatial integrity of the sine-wave gratings by adding spatial noise. Neural synchronization was analyzed in the time and frequency domains by conducting cross-correlation and coherence analyses. The general association between neural spike trains depends strongly on spatial integrity, with coherence in the gamma band (35-70 Hz) showing greater sensitivity to the change of spatial structure than other frequency bands. Analysis of the temporal dynamics of synchronization in both time and frequency domains suggests that spike timing synchronization is triggered nearly instantaneously by coherent structure in the stimuli, whereas frequency-specific oscillatory components develop more slowly, presumably through network interactions. Our results suggest that, whereas temporal integrity is required for the generation of synchrony, spatial integrity is critical in triggering subsequent gamma band synchronization.
NASA Astrophysics Data System (ADS)
Weltzin, J. F.; Walls, R.; Guralnick, R. P.; Rosemartin, A.; Deck, J.; Powers, L. A.
2014-12-01
There is a wealth of biodiversity and environmental data that can provide the basis for addressing global scale questions of societal concern. However, our ability to discover, access and integrate these data for use in broader analyses is hampered by the lack of standardized languages and systems. New tools (e.g. ontologies, data standards, integration tools, unique identifiers) are being developed that enable establishment of a framework for linked and open data. Relative to other domains, these tools are nascent in biodiversity and environmental sciences and will require effort to develop, though work can capitalize on lessons learned from previous efforts. Here we discuss needed next steps to provide consistently described and formatted ecological data for immediate application in ecological analysis, focusing on integrating phenology, trait and environmental data to understand local to continental-scale biophysical processes and inform natural resource management practices. As more sources of data become available at finer spatial and temporal resolution, e.g., from national standardized earth observing systems (e.g., NEON, LTER and LTAR Networks, USA NPN), these challenges will become more acute. Here we provide an overview of the standards and ontology development landscape specifically related to phenological and trait data, and identify requirements to overcome current challenges. Second, we outline a workflow for formatting and integrating existing datasets to address key scientific and resource management questions such as: "What traits determine differential phenological responses to changing environmental conditions?" or "What is the role of granularity of observation, and of spatiotemporal scale, in controlling phenological responses to different driving variables?" Third, we discuss methods to semantically annotate datasets to greatly decrease time needed to assemble heterogeneous data for use in ecological analyses on varying spatial scales. We close by making a call to interested community members for a working group to model phenology, trait and environmental data products from continental-scale efforts (e.g. NEON, USA-NPN and others) focusing on ways to assure discoverability and interoperability.
NASA Astrophysics Data System (ADS)
Hooijer, A.; van Os, A. G.
Recent flood events and socio-economic developments have increased the awareness of the need for improved flood risk management along the Rhine and Meuse Rivers. In response to this, the IRMA-SPONGE program incorporated 13 research projects in which over 30 organisations from all 6 River Basin Countries co-operated. The pro- gram is financed partly by the European INTERREG Rhine-Meuse Activities (IRMA). The main aim of IRMA-SPONGE is defined as: "The development of methodologies and tools to assess the impact of flood risk reduction measures and of land-use and climate change scenarios. This to support the spatial planning process in establish- ing alternative strategies for an optimal realisation of the hydraulic, economical and ecological functions of the Rhine and Meuse River Basins." Further important objec- tives are to promote transboundary co-operation in flood risk management by both scientific and management organisations, and to promote public participation in flood management issues. The projects in the program are grouped in three clusters, looking at measures from different scientific angles. The results of the projects in each cluster have been evaluated to define recommendations for flood risk management; some of these outcomes call for a change to current practices, e.g.: 1. (Flood Risk and Hydrol- ogy cluster): hydrological changes due to climate change exceed those due to further land use change, and are significant enough to necessitate a change in flood risk man- agement strategies if the currently claimed protection levels are to be sustained. 2. (Flood Protection and Ecology cluster): to not only provide flood protection but also enhance the ecological quality of rivers and floodplains, new flood risk management concepts ought to integrate ecological knowledge from start to finish, with a clear perspective on the type of nature desired and the spatial and time scales considered. 3. (Flood Risk Management and Spatial Planning cluster): extreme floods can not be prevented by taking mainly upstream measures; significant and space-consuming lo- cal measures will therefore be needed in the lower Rhine and Meuse deltas. However, there is also a need for improved flood risk management upstream, which calls for better spatial planning procedures. More detailed information on the IRMA-SPONGE program can be found on our website: www.irma-sponge.org.
Cheung, Weng-Fong; Lin, Tzu-Hsuan; Lin, Yu-Cheng
2018-01-01
In recent years, many studies have focused on the application of advanced technology as a way to improve management of construction safety management. A Wireless Sensor Network (WSN), one of the key technologies in Internet of Things (IoT) development, enables objects and devices to sense and communicate environmental conditions; Building Information Modeling (BIM), a revolutionary technology in construction, integrates database and geometry into a digital model which provides a visualized way in all construction lifecycle management. This paper integrates BIM and WSN into a unique system which enables the construction site to visually monitor the safety status via a spatial, colored interface and remove any hazardous gas automatically. Many wireless sensor nodes were placed on an underground construction site and to collect hazardous gas level and environmental condition (temperature and humidity) data, and in any region where an abnormal status is detected, the BIM model will alert the region and an alarm and ventilator on site will start automatically for warning and removing the hazard. The proposed system can greatly enhance the efficiency in construction safety management and provide an important reference information in rescue tasks. Finally, a case study demonstrates the applicability of the proposed system and the practical benefits, limitations, conclusions, and suggestions are summarized for further applications. PMID:29393887
NASA Astrophysics Data System (ADS)
Yeo, I. Y.
2016-12-01
Wetlands are valuable landscape features that provide important ecosystem functions and services. The ecosystem processes in wetlands are highly dependent on the hydrology. However, hydroperiod (i.e., change dynamics in inundation extent) is highly variable spatially and temporarily, and extremely difficult to predict owing to the complexity in hydrological processes within wetlands and its interaction with surrounding areas. This study reports the challenges and progress in assessing the catchment scale benefits of wetlands to regulate hydrological regime and water quality improvement in agricultural watershed. A process-based watershed model, Soil and Water Assessment Tool (SWAT) was improved to simulate the cumulative impacts of wetlands on downstream. Newly developed remote sensing products from LiDAR intensity and time series Landsat records, which show the inter-annual changes in fraction inundation, were utilized to describe the change status of inundated areas within forested wetlands, develop spatially varying wetland parameters, and evaluate the predicted inundated areas at the landscape level. We outline the challenges on developing the time series inundation mapping products at a high spatial and temporal resolution and reconciling the catchment scale model with the moderate remote sensing products. We then highlight the importance of integrating spatialized information to model calibration and evaluation to address the issues of equi-finality and prediction uncertainty. This integrated approach was applied to the upper region of Choptank River Watershed, the agricultural watershed in the Coastal Plain of Chesapeake Bay Watershed (in US). In the Mid- Atlantic US, the provision of pollution regulation services provided by wetlands has been emphasized due to declining water quality within the Chesapeake Bay and watersheds, and the preservation and restoration of wetlands has become the top priority to manage nonpoint source water pollution.
Brian W. Smith; Jorge Botero; Jeff L. Larkin; Amanda D. Rodewald; Petra B. Wood; Patrick N. Angel; Scott E. Eggerud
2012-01-01
We monitored 15 radio-collared raccoons (Procyon lotor) on Davies Island in March 1987 - May 1988 to determine the extent to which individual tree attributes or spatial configuration of plant associations (habitat types) across the land-scape influenced den use. Of 1091 verified den sites, 428 were in tree cavities. Raccoon occurrence among 4 cover...
NASA Astrophysics Data System (ADS)
Criollo, Rotman; Velasco, Violeta; Vázquez-Suñé, Enric; Nardi, Albert; Marazuela, Miguel A.; Rossetto, Rudy; Borsi, Iacopo; Foglia, Laura; Cannata, Massimiliano; De Filippis, Giovanna
2017-04-01
Due to the general increase of water scarcity (Steduto et al., 2012), water quantity and quality must be well known to ensure a proper access to water resources in compliance with local and regional directives. This circumstance can be supported by tools which facilitate process of data management and its analysis. Such analyses have to provide research/professionals, policy makers and users with the ability to improve the management of the water resources with standard regulatory guidelines. Compliance with the established standard regulatory guidelines (with a special focus on requirement deriving from the GWD) should have an effective monitoring, evaluation, and interpretation of a large number of physical and chemical parameters. These amounts of datasets have to be assessed and interpreted: (i) integrating data from different sources and gathered with different data access techniques and formats; (ii) managing data with varying temporal and spatial extent; (iii) integrating groundwater quality information with other relevant information such as further hydrogeological data (Velasco et al., 2014) and pre-processing these data generally for the realization of groundwater models. In this context, the Hydrochemical Analysis Tools, akvaGIS Tools, has been implemented within the H2020 FREEWAT project; which aims to manage water resources by modelling water resource management in an open source GIS platform (QGIS desktop). The main goal of AkvaGIS Tools is to improve water quality analysis through different capabilities to improve the case study conceptual model managing all data related into its geospatial database (implemented in Spatialite) and a set of tools for improving the harmonization, integration, standardization, visualization and interpretation of the hydrochemical data. To achieve that, different commands cover a wide range of methodologies for querying, interpreting, and comparing groundwater quality data and facilitate the pre-processing analysis for being used in the realization of groundwater modelling. They include, ionic balance calculations, chemical time-series analysis, correlation of chemical parameters, and calculation of various common hydrochemical diagrams (Salinity, Schöeller-Berkaloff, Piper, and Stiff), among others. Furthermore, it allows the generation of maps of the spatial distributions of parameters and diagrams and thematic maps for the parameters measured and classified in the queried area. References: Rossetto R., Borsi I., Schifani C., Bonari E., Mogorovich P., Primicerio M. (2013). SID&GRID: Integrating hydrological modeling in GIS environment. Rendiconti Online Societa Geologica Italiana, Vol. 24, 282-283 Steduto, P., Faurès, J.M., Hoogeveen, J., Winpenny, J.T., Burke, J.J. (2012). Coping with water scarcity: an action framework for agriculture and food security. ISSN 1020-1203 ; 38 Velasco, V., Tubau, I., Vázquez-Suñé, E., Gogu, R., Gaitanaru, D., Alcaraz, M., Sanchez-Vila, X. (2014). GIS-based hydrogeochemical analysis tools (QUIMET). Computers & Geosciences, 70, 164-180.
NASA Astrophysics Data System (ADS)
Moulds, S.; Djordjevic, S.; Savic, D.
2017-12-01
The Global Change Assessment Model (GCAM), an integrated assessment model, provides insight into the interactions and feedbacks between physical and human systems. The land system component of GCAM, which simulates land use activities and the production of major crops, produces output at the subregional level which must be spatially downscaled in order to use with gridded impact assessment models. However, existing downscaling routines typically consider cropland as a homogeneous class and do not provide information about land use intensity or specific management practices such as irrigation and multiple cropping. This paper presents a spatial allocation procedure to downscale crop production data from GCAM to a spatial grid, producing a time series of maps which show the spatial distribution of specific crops (e.g. rice, wheat, maize) at four input levels (subsistence, low input rainfed, high input rainfed and high input irrigated). The model algorithm is constrained by available cropland at each time point and therefore implicitly balances extensification and intensification processes in order to meet global food demand. It utilises a stochastic approach such that an increase in production of a particular crop is more likely to occur in grid cells with a high biophysical suitability and neighbourhood influence, while a fall in production will occur more often in cells with lower suitability. User-supplied rules define the order in which specific crops are downscaled as well as allowable transitions. A regional case study demonstrates the ability of the model to reproduce historical trends in India by comparing the model output with district-level agricultural inventory data. Lastly, the model is used to predict the spatial distribution of crops globally under various GCAM scenarios.
Methodology and application of combined watershed and ground-water models in Kansas
Sophocleous, M.; Perkins, S.P.
2000-01-01
Increased irrigation in Kansas and other regions during the last several decades has caused serious water depletion, making the development of comprehensive strategies and tools to resolve such problems increasingly important. This paper makes the case for an intermediate complexity, quasi-distributed, comprehensive, large-watershed model, which falls between the fully distributed, physically based hydrological modeling system of the type of the SHE model and the lumped, conceptual rainfall-runoff modeling system of the type of the Stanford watershed model. This is achieved by integrating the quasi-distributed watershed model SWAT with the fully-distributed ground-water model MODFLOW. The advantage of this approach is the appreciably smaller input data requirements and the use of readily available data (compared to the fully distributed, physically based models), the statistical handling of watershed heterogeneities by employing the hydrologic-response-unit concept, and the significantly increased flexibility in handling stream-aquifer interactions, distributed well withdrawals, and multiple land uses. The mechanics of integrating the component watershed and ground-water models are outlined, and three real-world management applications of the integrated model from Kansas are briefly presented. Three different aspects of the integrated model are emphasized: (1) management applications of a Decision Support System for the integrated model (Rattlesnake Creek subbasin); (2) alternative conceptual models of spatial heterogeneity related to the presence or absence of an underlying aquifer with shallow or deep water table (Lower Republican River basin); and (3) the general nature of the integrated model linkage by employing a watershed simulator other than SWAT (Wet Walnut Creek basin). These applications demonstrate the practicality and versatility of this relatively simple and conceptually clear approach, making public acceptance of the integrated watershed modeling system much easier. This approach also enhances model calibration and thus the reliability of model results. (C) 2000 Elsevier Science B.V.Increased irrigation in Kansas and other regions during the last several decades has caused serious water depletion, making the development of comprehensive strategies and tools to resolve such problems increasingly important. This paper makes the case for an intermediate complexity, quasi-distributed, comprehensive, large-watershed model, which falls between the fully distributed, physically based hydrological modeling system of the type of the SHE model and the lumped, conceptual rainfall-runoff modeling system of the type of the Stanford watershed model. This is achieved by integrating the quasi-distributed watershed model SWAT with the fully-distributed ground-water model MODFLOW. The advantage of this approach is the appreciably smaller input data requirements and the use of readily available data (compared to the fully distributed, physically based models), the statistical handling of watershed heterogeneities by employing the hydrologic-response-unit concept, and the significantly increased flexibility in handling stream-aquifer interactions, distributed well withdrawals, and multiple land uses. The mechanics of integrating the component watershed and ground-water models are outlined, and three real-world management applications of the integrated model from Kansas are briefly presented. Three different aspects of the integrated model are emphasized: (1) management applications of a Decision Support System for the integrated model (Rattlesnake Creek subbasin); (2) alternative conceptual models of spatial heterogeneity related to the presence or absence of an underlying aquifer with shallow or deep water table (Lower Republican River basin); and (3) the general nature of the integrated model linkage by employing a watershed simulator other than SWAT (Wet Walnut Creek basin). These applications demonstrate the practicality and ve
Construction of an integrated social vulnerability index in urban areas prone to flash flooding
NASA Astrophysics Data System (ADS)
Aroca-Jimenez, Estefania; Bodoque, Jose Maria; Garcia, Juan Antonio; Diez-Herrero, Andres
2017-09-01
Among the natural hazards, flash flooding is the leading cause of weather-related deaths. Flood risk management (FRM) in this context requires a comprehensive assessment of the social risk component. In this regard, integrated social vulnerability (ISV) can incorporate spatial distribution and contribution and the combined effect of exposure, sensitivity and resilience to total vulnerability, although these components are often disregarded. ISV is defined by the demographic and socio-economic characteristics that condition a population's capacity to cope with, resist and recover from risk and can be expressed as the integrated social vulnerability index (ISVI). This study describes a methodological approach towards constructing the ISVI in urban areas prone to flash flooding in Castilla y León (Castile and León, northern central Spain, 94 223 km2, 2 478 376 inhabitants). A hierarchical segmentation analysis (HSA) was performed prior to the principal components analysis (PCA), which helped to overcome the sample size limitation inherent in PCA. ISVI was obtained from weighting vulnerability factors based on the tolerance statistic. In addition, latent class cluster analysis (LCCA) was carried out to identify spatial patterns of vulnerability within the study area. Our results show that the ISVI has high spatial variability. Moreover, the source of vulnerability in each urban area cluster can be identified from LCCA. These findings make it possible to design tailor-made strategies for FRM, thereby increasing the efficiency of plans and policies and helping to reduce the cost of mitigation measures.
NASA Astrophysics Data System (ADS)
Kienberger, S.; Lang, S.; Zeil, P.
2009-05-01
The assessment of vulnerability has moved to centre-stage of the debate between different scientific disciplines related to climate change and disaster risk management. Composed by a combination of social, economical, physical and environmental factors the assessment implies combining different domains as well as quantitative with qualitative data and makes it therefore a challenge to identify an integrated metric for vulnerability. In this paper we define vulnerability in the context of climate change, targeting the hazard "flood". The developed methodology is being tested in the Salzach river catchment in Austria, which is largely prone to floods. The proposed methodology allows the spatial quantification of vulnerability and the identification of vulnerability units. These units build upon the geon concept which acts as a framework for the regionalization of continuous spatial information according to defined parameters of homogeneity. Using geons, we are capable of transforming singular domains of information on specific systemic components to policy-relevant, conditioned information. Considering the fact that vulnerability is not directly measurable and due to its complex dimension and social construction an expert-based approach has been chosen. Established methodologies such as Multicriteria Decision Analysis, Delphi exercises and regionalization approaches are being integrated. The method not only enables the assessment of vulnerability independent from administrative boundaries, but also applies an aggregation mode which reflects homogenous vulnerability units. This supports decision makers to reflect on complex issues such as vulnerability. Next to that, the advantage is to decompose the units to their underlying domains. Feedback from disaster management experts indicates that the approach helps to improve the design of measures aimed at strengthening preparedness and mitigation. From this point of view, we reach a step closer towards validation of the proposed method, comprising critical user-oriented aspects like adequateness, practicability and usability of the provided results in general.
A hierarchical approach to forest landscape pattern characterization.
Wang, Jialing; Yang, Xiaojun
2012-01-01
Landscape spatial patterns have increasingly been considered to be essential for environmental planning and resources management. In this study, we proposed a hierarchical approach for landscape classification and evaluation by characterizing landscape spatial patterns across different hierarchical levels. The case study site is the Red Hills region of northern Florida and southwestern Georgia, well known for its biodiversity, historic resources, and scenic beauty. We used one Landsat Enhanced Thematic Mapper image to extract land-use/-cover information. Then, we employed principal-component analysis to help identify key class-level landscape metrics for forests at different hierarchical levels, namely, open pine, upland pine, and forest as a whole. We found that the key class-level landscape metrics varied across different hierarchical levels. Compared with forest as a whole, open pine forest is much more fragmented. The landscape metric, such as CONTIG_MN, which measures whether pine patches are contiguous or not, is more important to characterize the spatial pattern of pine forest than to forest as a whole. This suggests that different metric sets should be used to characterize landscape patterns at different hierarchical levels. We further used these key metrics, along with the total class area, to classify and evaluate subwatersheds through cluster analysis. This study demonstrates a promising approach that can be used to integrate spatial patterns and processes for hierarchical forest landscape planning and management.
NASA Astrophysics Data System (ADS)
Margalida, Antoni; Pérez-García, Juan Manuel; Afonso, Ivan; Moreno-Opo, Rubén
2016-10-01
Understanding the movement of threatened species is important if we are to optimize management and conservation actions. Here, we describe the age and sex specific spatial and temporal ranging patterns of 19 bearded vultures Gypaetus barbatus tracked with GPS technology. Our findings suggest that spatial asymmetries are a consequence of breeding status and age-classes. Territorial individuals exploited home ranges of about 50 km2, while non-territorial birds used areas of around 10 000 km2 (with no seasonal differences). Mean daily movements differed between territorial (23.8 km) and non-territorial birds (46.1 km), and differences were also found between sexes in non-territorial birds. Daily maximum distances travelled per day also differed between territorial (8.2 km) and non-territorial individuals (26.5 km). Territorial females moved greater distances (12 km) than males (6.6 km). Taking into account high-use core areas (K20), Supplementary Feeding Sites (SFS) do not seem to play an important role in the use of space by bearded vultures. For non-territorial and territorial individuals, 54% and 46% of their home ranges (K90), respectively, were outside protected areas. Our findings will help develop guidelines for establishing priority areas based on spatial use, and also optimize management and conservation actions for this threatened species.
Nebert, Douglas; Anderson, Dean
1987-01-01
The U. S. Geological Survey (USGS) in cooperation with the U. S. Environmental Protection Agency Office of Pesticide Programs and several State agencies in Oregon has prepared a digital spatial database at 1:500,000 scale to be used as a basis for evaluating the potential for ground-water contamination by pesticides and other agricultural chemicals. Geographic information system (GIS) software was used to assemble, analyze, and manage spatial and tabular environmental data in support of this project. Physical processes were interpreted relative to published spatial data and an integrated database to support the appraisal of regional ground-water contamination was constructed. Ground-water sampling results were reviewed relative to the environmental factors present in several agricultural areas to develop an empirical knowledge base which could be used to assist in the selection of future sampling or study areas.
Integrating biodiversity distribution knowledge: toward a global map of life.
Jetz, Walter; McPherson, Jana M; Guralnick, Robert P
2012-03-01
Global knowledge about the spatial distribution of species is orders of magnitude coarser in resolution than other geographically-structured environmental datasets such as topography or land cover. Yet such knowledge is crucial in deciphering ecological and evolutionary processes and in managing global change. In this review, we propose a conceptual and cyber-infrastructure framework for refining species distributional knowledge that is novel in its ability to mobilize and integrate diverse types of data such that their collective strengths overcome individual weaknesses. The ultimate aim is a public, online, quality-vetted 'Map of Life' that for every species integrates and visualizes available distributional knowledge, while also facilitating user feedback and dynamic biodiversity analyses. First milestones toward such an infrastructure have now been implemented. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cros, Annick; Ahamad Fatan, Nurulhuda; White, Alan; Teoh, Shwu Jiau; Tan, Stanley; Handayani, Christian; Huang, Charles; Peterson, Nate; Venegas Li, Ruben; Siry, Hendra Yusran; Fitriana, Ria; Gove, Jamison; Acoba, Tomoko; Knight, Maurice; Acosta, Renerio; Andrew, Neil; Beare, Doug
2014-01-01
In this paper we describe the construction of an online GIS database system, hosted by WorldFish, which stores bio-physical, ecological and socio-economic data for the 'Coral Triangle Area' in South-east Asia and the Pacific. The database has been built in partnership with all six (Timor-Leste, Malaysia, Indonesia, The Philippines, Solomon Islands and Papua New Guinea) of the Coral Triangle countries, and represents a valuable source of information for natural resource managers at the regional scale. Its utility is demonstrated using biophysical data, data summarising marine habitats, and data describing the extent of marine protected areas in the region.
OpenDanubia - An integrated, modular simulation system to support regional water resource management
NASA Astrophysics Data System (ADS)
Muerth, M.; Waldmann, D.; Heinzeller, C.; Hennicker, R.; Mauser, W.
2012-04-01
The already completed, multi-disciplinary research project GLOWA-Danube has developed a regional scale, integrated modeling system, which was successfully applied on the 77,000 km2 Upper Danube basin to investigate the impact of Global Change on both the natural and anthropogenic water cycle. At the end of the last project phase, the integrated modeling system was transferred into the open source project OpenDanubia, which now provides both the core system as well as all major model components to the general public. First, this will enable decision makers from government, business and management to use OpenDanubia as a tool for proactive management of water resources in the context of global change. Secondly, the model framework to support integrated simulations and all simulation models developed for OpenDanubia in the scope of GLOWA-Danube are further available for future developments and research questions. OpenDanubia allows for the investigation of water-related scenarios considering different ecological and economic aspects to support both scientists and policy makers to design policies for sustainable environmental management. OpenDanubia is designed as a framework-based, distributed system. The model system couples spatially distributed physical and socio-economic process during run-time, taking into account their mutual influence. To simulate the potential future impacts of Global Change on agriculture, industrial production, water supply, households and tourism businesses, so-called deep actor models are implemented in OpenDanubia. All important water-related fluxes and storages in the natural environment are implemented in OpenDanubia as spatially explicit, process-based modules. This includes the land surface water and energy balance, dynamic plant water uptake, ground water recharge and flow as well as river routing and reservoirs. Although the complete system is relatively demanding on data requirements and hardware requirements, the modular structure and the generic core system (Core Framework, Actor Framework) allows the application in new regions and the selection of a reduced number of modules for simulation. As part of the Open Source Initiative in GLOWA-Danube (opendanubia.glowa-danube.de) a comprehensive documentation for the system installation was created and both the program code of the framework and of all major components is licensed under the GNU General Public License. In addition, some helpful programs and scripts necessary for the operation and processing of input and result data sets are provided.
Medical knowledge discovery and management.
Prior, Fred
2009-05-01
Although the volume of medical information is growing rapidly, the ability to rapidly convert this data into "actionable insights" and new medical knowledge is lagging far behind. The first step in the knowledge discovery process is data management and integration, which logically can be accomplished through the application of data warehouse technologies. A key insight that arises from efforts in biosurveillance and the global scope of military medicine is that information must be integrated over both time (longitudinal health records) and space (spatial localization of health-related events). Once data are compiled and integrated it is essential to encode the semantics and relationships among data elements through the use of ontologies and semantic web technologies to convert data into knowledge. Medical images form a special class of health-related information. Traditionally knowledge has been extracted from images by human observation and encoded via controlled terminologies. This approach is rapidly being replaced by quantitative analyses that more reliably support knowledge extraction. The goals of knowledge discovery are the improvement of both the timeliness and accuracy of medical decision making and the identification of new procedures and therapies.
Hanser, S.E.; Leu, M.; Knick, S.T.; Aldridge, Cameron L.
2011-01-01
The Wyoming Basins are one of the remaining strongholds of the sagebrush ecosystem. However, like most sagebrush habitats, threats to this region are numerous. This book adds to current knowledge about the regional status of the sagebrush ecosystem, the distribution of habitats, the threats to the ecosystem, and the influence of threats and habitat conditions on occurrence and abundance of sagebrush associated fauna and flora in the Wyoming Basins. Comprehensive methods are outlined for use in data collection and monitoring of wildlife and plant populations. Field and spatial data are integrated into a spatially explicit analytical framework to develop models of species occurrence and abundance for the egion. This book provides significant new information on distributions, abundances, and habitat relationships for a number of species of conservation concern that depend on sagebrush in the region. The tools and models presented in this book increase our understanding of impacts from land uses and can contribute to the development of comprehensive management and conservation strategies.
NASA Astrophysics Data System (ADS)
Budy, Phaedra; Baker, Matthew; Dahle, Samuel K.
2011-10-01
Anthropogenic impairment of water bodies represents a global environmental concern, yet few attempts have successfully linked fish performance to thermal habitat suitability and fewer have distinguished co-varying water quality constraints. We interfaced fish bioenergetics, field measurements, and Thermal Remote Imaging to generate a spatially-explicit, high-resolution surface of fish growth potential, and next employed a structured hypothesis to detect relationships among measures of fish performance and co-varying water quality constraints. Our thermal surface of fish performance captured the amount and spatial-temporal arrangement of thermally-suitable habitat for three focal species in an extremely heterogeneous reservoir, but interpretation of this pattern was initially confounded by seasonal covariation of water residence time and water quality. Subsequent path analysis revealed that in terms of seasonal patterns in growth potential, catfish and walleye responded to temperature, positively and negatively, respectively; crappie and walleye responded to eutrophy (negatively). At the high eutrophy levels observed in this system, some desired fishes appear to suffer from excessive cultural eutrophication within the context of elevated temperatures whereas others appear to be largely unaffected or even enhanced. Our overall findings do not lead to the conclusion that this system is degraded by pollution; however, they do highlight the need to use a sensitive focal species in the process of determining allowable nutrient loading and as integrators of habitat suitability across multiple spatial and temporal scales. We provide an integrated approach useful for quantifying fish growth potential and identifying water quality constraints on fish performance at spatial scales appropriate for whole-system management.
NASA Astrophysics Data System (ADS)
Kline, Jeffrey D.; Moses, Alissa; Burcsu, Theresa
2010-05-01
Forest policymakers, public lands managers, and scientists in the Pacific Northwest (USA) seek ways to evaluate the landscape-level effects of policies and management through the multidisciplinary development and application of spatially explicit methods and models. The Interagency Mapping and Analysis Project (IMAP) is an ongoing effort to generate landscape-wide vegetation data and models to evaluate the integrated effects of disturbances and management activities on natural resource conditions in Oregon and Washington (USA). In this initial analysis, we characterized the spatial distribution of forest and range land development in a four-county pilot study region in central Oregon. The empirical model describes the spatial distribution of buildings and new building construction as a function of population growth, existing development, topography, land-use zoning, and other factors. We used the model to create geographic information system maps of likely future development based on human population projections to inform complementary landscape analyses underway involving vegetation, habitat, and wildfire interactions. In an example application, we use the model and resulting maps to show the potential impacts of future forest and range land development on mule deer ( Odocoileus hemionus) winter range. Results indicate significant development encroachment and habitat loss already in 2000 with development located along key migration routes and increasing through the projection period to 2040. The example application illustrates a simple way for policymakers and public lands managers to combine existing data and preliminary model outputs to begin to consider the potential effects of development on future landscape conditions.
Gong, Jie; Zhao, Cai-Xia; Xie, Yu-Chu; Gao, Yan-Jing
2014-07-01
Watershed ecological risk assessment is an important research subject of watershed ecological protection and environmental management. Research on the ecological risk focuses on addressing the influence of human activities and its spatial variation at watershed scale is vital to policy-making to control the impact of human activity and protocols for sustainable economic and societal development. A comprehensive ecological environment index, incorporating a landscape index and an assessment of ecological vulnerability, was put forward to assess the spatio-temporal characteristics of ecological risk of the Bailongjiang watershed, southern Gansu Province, Northwest China. Using ArcGIS and Fragstats software and a land use map of 2010, an ecological risk map was obtained through spatial sampling and disjunctive Kriging interpolation. The results indicated that there were some obvious spatial differences of ecological risk levels in the watershed. The ecological risk level of the north and northwest of the Bailongjiang was higher than that of the western and southern extremities of the watershed. Ecological risk index (ERI) of Wudu and Tanchang was higher than that of Wenxian and Diebu. Some measures for ecological risk management were put forward on the basis of ERI of Bailongjiang watershed. To strengthen the integrated management of human activities and land use in the watershed, to carry out the vegetation restoration and ecological reconstruction, and to reduce the ecological risks and hazards of irrational human disturbance, are vital to the realization 'multiple-win' of the economic, social and ecological protection and for the sustainable development in the hilly area in southern Gansu.
Comparison of environmental and socio-economic domains of vulnerability to flood hazards
NASA Astrophysics Data System (ADS)
Leidel, M.; Kienberger, S.; Lang, S.; Zeil, P.
2009-04-01
Socio-economic and environmental based vulnerability models have been developed within the research context of the FP6 project BRAHMATWINN. The conceptualisation of vulnerability has been defined in the project and is characterised as a function of sensitivity and adaptive capacity, where sensitivity is used to refer to systems that are susceptible to the impacts of environmental stress. Adaptive capacity is used to refer to systems or resources available to communities that could help them adapt or cope with the adverse consequences of environmental stresses in the recovery phase. In a wider context the approach reflects the wider objective and conceptualizations of the IPCC (Intergovernmental Panel on Climate Change) framework, where vulnerability is characterized as a component of overall risk. A methodology has been developed which delineates spatial units of vulnerability (VULNUS). These units share a specific common characteristic and allow the independent spatial modelling of a complex phenomena independent from administrative units and raster based approaches. An increasing detail of spatial data and complex decision problems require flexible means for scaled spatial representations, for mapping the dynamics and constant changes, and delivering the crucial information. Automated techniques of object-based image analysis (OBIA, Lang & Blaschke, 2006), capable of integrating a virtually unlimited set of spatial data sets, try to match the information extraction with our world view. To account for that, a flexible concept of manageable units is required. The term geon was proposed by Lang (2008) to describe generic spatial objects that are homogenous in terms of a varying spatial phenomena under the influence of, and partly controlled by, policy actions. The geon concept acts as a framework for the regionalization of continuous spatial information according to defined parameters of homogeneity. It is flexible in terms of a certain perception of a problem (specific policy realm, specific hazard domain, etc.). In this study, vulnerability units have been derived as a specific instance of a geon set within an area exposed to flood risk. Using geons, we are capable of transforming singular domains of information on specific systemic components to policy-relevant, conditioned information (Kienberger et al., 2008; Tiede & Lang, 2007). According to the work programme socio-economic vulnerabilities have been modelled for the Salzach catchment. A specific set of indicators has been developed with a strong stakeholder orientation. Next to that, and to allow an easier integration within the aimed development of Water Resource Response Units (WRRUs) the environmental domain of vulnerability has additionally been modelled. We present the results of the socio-economic and environmental based approach to model vulnerability. The research methodology utilises census as well as land use/land cover data to derive and assess vulnerability. As a result, spatial units have been identified which represent common characteristics of socio-economic environmental vulnerability. The results show the spatially explicit vulnerability and its underlying components sensitivity and adaptive capacity for socio-economic and environmental domains and discuss differences. Within the test area, the Salzach River catchment in Austria, primarily urban areas adjacent to water courses are highly vulnerable. It can be stated that the delineation of vulnerability units that integrates all dimensions of sustainability are a prerequisite for a holistic and thus adaptive integrated water management approach. Indeed, such units constitute the basis for future dynamic vulnerability assessments, and thus for the assessment of uncertainties due to climate change. Kienberger, S., S. Lang & D. Tiede (2008): Socio-economic vulnerability units - modelling meaningful spatial units. In: Proceedings of the GIS Research UK 16th Annual conference GISRUK 2008, Manchester. Lang, S. (2008): Object-based image analysis for remote sensing applications: modeling reality - dealing with complexity. In: Blaschke, T., S. Lang & G. Hay (eds.): Object-Based Image Analysis - Spatial concepts for knowledge-driven remote sensing applications. New York: Springer, 3-28. Lang, S. & T. Blaschke (2006) Bridging remote sensing and GIS - what are the most supportive pillars? In: S: Lang & T. Blaschke (eds.): International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences vol. XXXVI-4/C42. CD-ROM and online at www.isprs.org. Tiede D. & S .Lang (2007): Analytical 3D views and virtual globes - putting analytical results into spatial context. ISPRS, ICA, DGfK - Joint Workshop: Visualization and Exploration of Geospatial Data, Stuttgart
Spatial strategies for managing visitor impacts in National Parks
Leung, Y.-F.; Marion, J.L.
1999-01-01
Resource and social impacts caused by recreationists and tourists have become a management concern in national parks and equivalent protected areas. The need to contain visitor impacts within acceptable limits has prompted park and protected area managers to implement a wide variety of strategies and actions, many of which are spatial in nature. This paper classifies and illustrates the basic spatial strategies for managing visitor impacts in parks and protected areas. A typology of four spatial strategies was proposed based on the recreation and park management literature. Spatial segregation is a common strategy for shielding sensitive resources from visitor impacts or for separating potentially conflicting types of use. Two forms of spatial segregation are zoning and closure. A spatial containment strategy is intended to minimize the aggregate extent of visitor impacts by confining use to limited designated or established Iocations. In contrast, a spatial dispersal strategy seeks to spread visitor use, reducing the frequency of use to levels that avoid or minimize permanent resource impacts or visitor crowding and conflict. Finally, a spatial configuration strategy minimizes impacting visitor behavior though the judicious spatial arrangement of facilities. These four spatial strategics can be implemented separately or in combination at varying spatial scales within a single park. A survey of national park managers provides an empirical example of the diversity of implemented spatial strategies in managing visitor impacts. Spatial segregation is frequently applied in the form of camping restrictions or closures to protect sensitive natural or cultural resources and to separate incompatible visitor activities. Spatial containment is the most widely applied strategy for minimizing the areal extent of resource impacts. Spatial dispersal is commonly applied to reduce visitor crowding or conflicts in popular destination areas but is less frequently applied or effective in minimizing resource impacts. Spatial configuration was only minimally evaluated, as it was not included in the survey. The proposed typology of spatial strategies offers a useful means of organizing and understanding the wide variety of management strategies and actions applied in managing visitor impacts in parks and protected areas. Examples from U.S. national parks demonstrate the diversity of these basic strategies and their flexibility in implementation at various spatial scales. Documentation of these examples helps illustrate their application and inform managers of the multitude of options. Further analysis from the spatial perspective is needed Io extend the applicability of this typology to other recreational activities and management issues.
GIS-based modeling of a complex hydrogeological setting in the younger Pleistocene of NE-Germany
NASA Astrophysics Data System (ADS)
Brüning, Torben; Merz, Christoph; van Gasselt, Stephan; Steidl, Jörg
2016-04-01
The water balance of the young pleistocene landscape in northeastern Germany is exposed to strong threats by changing climate conditions. During the last two decades the landscape with its many lakes has been impacted by increasing periodic fluctuations of the climate. In addition, anthropogenic influence has been causing significant changes in the landscape in order to improve agriculture and forestry but with negative impact on the groundwater hydrology. For a sustainable ecological and economical water management it is therefore paramount to build precise groundwater data models allowing a complex spatial and multi-temporal data processing. Such models could potentially be used as sources of consistent data providing improved data sets for numerical groundwater modeling and quantitative assessments to avoid unrecoverable damage (e.g. intrusion of highly mineralised groundwater intrusion. Such assessments are cost intensive if data source are heterogeneous and not well-integrated. To allow an hydrogeologically elaborated examination of data, an effective geodata management is needed to homogenize and combine available digital and thematic map information. This work reports on a project conducted for the catchments of two streams, Quillow and Strom, located in the Uckermark, a region in northeastern Germany. The database comprises current geodatasets consisting of hydrological and hydrogeological content and old thematic maps of Quaternary geology. Available geodata, measurements and digitized map series data of this region from environmental agencies of the states Mecklenburg Western Pomerania and Brandenburg were included and homogenized considering publications and technical reports. As a result, a newly developed spatial data basis has been compiled as geodatabase using vector feature classes, raster data, TINs and relationship classes. The resulting three-dimensional image of aquifers and aquitards of the Quaternary deposits exhibit potential interfaces between different aquifers and surface hydrology. The storage formats allows to include new information of this region in an intuitive way, thereby expanding the database and increase information density without losing control over data integrity and consistency by maintaining referential integrity. This enhanced, GIS based geodatabase is of future interest for more detailed exploration campaigns and as data basis for numerical modeling in order to provide a reliable basis for an integrated, sustainable groundwater management in this region.
NASA Astrophysics Data System (ADS)
Pullanagari, Reddy; Kereszturi, Gábor; Yule, Ian J.; Ghamisi, Pedram
2017-04-01
Accurate and spatially detailed mapping of complex urban environments is essential for land managers. Classifying high spectral and spatial resolution hyperspectral images is a challenging task because of its data abundance and computational complexity. Approaches with a combination of spectral and spatial information in a single classification framework have attracted special attention because of their potential to improve the classification accuracy. We extracted multiple features from spectral and spatial domains of hyperspectral images and evaluated them with two supervised classification algorithms; support vector machines (SVM) and an artificial neural network. The spatial features considered are produced by a gray level co-occurrence matrix and extended multiattribute profiles. All of these features were stacked, and the most informative features were selected using a genetic algorithm-based SVM. After selecting the most informative features, the classification model was integrated with a segmentation map derived using a hidden Markov random field. We tested the proposed method on a real application of a hyperspectral image acquired from AisaFENIX and on widely used hyperspectral images. From the results, it can be concluded that the proposed framework significantly improves the results with different spectral and spatial resolutions over different instrumentation.
Process-driven and biological characterisation and mapping of seabed habitats sensitive to trawling.
Foveau, Aurélie; Vaz, Sandrine; Desroy, Nicolas; Kostylev, Vladimir E
2017-01-01
The increase of anthropogenic pressures on the marine environment together with the necessity of a sustainable management of marine living resources have underlined the need to map and model coastal environments, particularly for the purposes of spatial planning and for the implementation of integrated ecosystem-based management approach. The present study compares outputs of a process-driven benthic habitat sensitivity (PDS) model to the structure, composition and distribution of benthic invertebrates in the Eastern English Channel and southern part of the North Sea. Trawl disturbance indicators (TDI) computed from species biological traits and benthic community composition were produced from samples collected with a bottom trawl. The TDI was found to be highly correlated to the PDS further validating the latter's purpose to identify natural process-driven pattern of sensitivity. PDS was found to reflect an environmental potential that may no longer be fully observable in the field and difference with in situ biological observations could be partially explained by the spatial distribution of fishery pressure on the seafloor. The management implication of these findings are discussed and we suggest that, used in conjunction with TDI approaches, PDS may help monitor management effort by evaluating the difference between the current state and the presumed optimal environmental status of marine benthic habitats.
Caeiro, Sandra; Goovaerts, Pierre; Painho, Marco; Costa, M Helena
2003-09-15
The Sado Estuary is a coastal zone located in the south of Portugal where conflicts between conservation and development exist because of its location near industrialized urban zones and its designation as a natural reserve. The aim of this paper is to evaluate a set of multivariate geostatistical approaches to delineate spatially contiguous regions of sediment structure for Sado Estuary. These areas will be the supporting infrastructure of an environmental management system for this estuary. The boundaries of each homogeneous area were derived from three sediment characterization attributes through three different approaches: (1) cluster analysis of dissimilarity matrix function of geographical separation followed by indicator kriging of the cluster data, (2) discriminant analysis of kriged values of the three sediment attributes, and (3) a combination of methods 1 and 2. Final maximum likelihood classification was integrated into a geographical information system. All methods generated fairly spatially contiguous management areas that reproduce well the environment of the estuary. Map comparison techniques based on kappa statistics showed thatthe resultant three maps are similar, supporting the choice of any of the methods as appropriate for management of the Sado Estuary. However, the results of method 1 seem to be in better agreement with estuary behavior, assessment of contamination sources, and previous work conducted at this site.
Process-driven and biological characterisation and mapping of seabed habitats sensitive to trawling
Desroy, Nicolas; Kostylev, Vladimir E.
2017-01-01
The increase of anthropogenic pressures on the marine environment together with the necessity of a sustainable management of marine living resources have underlined the need to map and model coastal environments, particularly for the purposes of spatial planning and for the implementation of integrated ecosystem-based management approach. The present study compares outputs of a process-driven benthic habitat sensitivity (PDS) model to the structure, composition and distribution of benthic invertebrates in the Eastern English Channel and southern part of the North Sea. Trawl disturbance indicators (TDI) computed from species biological traits and benthic community composition were produced from samples collected with a bottom trawl. The TDI was found to be highly correlated to the PDS further validating the latter’s purpose to identify natural process-driven pattern of sensitivity. PDS was found to reflect an environmental potential that may no longer be fully observable in the field and difference with in situ biological observations could be partially explained by the spatial distribution of fishery pressure on the seafloor. The management implication of these findings are discussed and we suggest that, used in conjunction with TDI approaches, PDS may help monitor management effort by evaluating the difference between the current state and the presumed optimal environmental status of marine benthic habitats. PMID:28981504
Tangible Results and Progress in Flood Risks Management with the PACTES Initiative
NASA Astrophysics Data System (ADS)
Costes, Murielle; Abadie, Jean-Paul; Ducuing, Jean-Louis; Denier, Jean-Paul; Stéphane
The PACTES project (Prévention et Anticipation des Crues au moyen des Techniques Spatiales), initiated by CNES and the French Ministry of Research, aims at improving flood risk management, over the following three main phases : - Prevention : support and facilitate the analysis of flood risks and socio-economic impacts (risk - Forecasting and alert : improve the capability to predict and anticipate the flooding event - Crisis management : allow better situation awareness, communication and sharing of In order to achieve its ambitious objectives, PACTES: - integrates state-of-the-art techniques and systems (integration of the overall processing chains, - takes advantage of integrating recent model developments in wheather forecasting, rainfall, In this approach, space technology is thus used in three main ways : - radar and optical earth observation data are used to produce Digital Elevation Maps, land use - earth observation data are also an input to wheather forecasting, together with ground sensors; - satellite-based telecommunication and mobile positioning. Started in December 2000, the approach taken in PACTES is to work closely with users such as civil security and civil protection organisms, fire fighter brigades and city councils for requirements gathering and during the validation phase. It has lead to the development and experimentation of an integrated pre-operational demonstrator, delivered to different types of operational users. Experimentation has taken place in three watersheds representative of different types of floods (flash and plain floods). After a breaf reminder of what the PACTES project organization and aims are, the PACTES integrated pre-operational demonstrator is presented. The main scientific inputs to flood risk management are summarized. Validation studies for the three watersheds covered by PACTES (Moselle, Hérault and Thoré) are detailed. Feedback on the PACTES tangible results on flood risk management from an user point of view are given. Costs of what an operational PACTES demonstrator could be, are discussed.
Álvarez-Romero, Jorge G; Pressey, Robert L; Ban, Natalie C; Brodie, Jon
2015-01-01
Human-induced changes to river loads of nutrients and sediments pose a significant threat to marine ecosystems. Ongoing land-use change can further increase these loads, and amplify the impacts of land-based threats on vulnerable marine ecosystems. Consequently, there is a need to assess these threats and prioritise actions to mitigate their impacts. A key question regarding prioritisation is whether actions in catchments to maintain coastal-marine water quality can be spatially congruent with actions for other management objectives, such as conserving terrestrial biodiversity. In selected catchments draining into the Gulf of California, Mexico, we employed Land Change Modeller to assess the vulnerability of areas with native vegetation to conversion into crops, pasture, and urban areas. We then used SedNet, a catchment modelling tool, to map the sources and estimate pollutant loads delivered to the Gulf by these catchments. Following these analyses, we used modelled river plumes to identify marine areas likely influenced by land-based pollutants. Finally, we prioritised areas for catchment management based on objectives for conservation of terrestrial biodiversity and objectives for water quality that recognised links between pollutant sources and affected marine areas. Our objectives for coastal-marine water quality were to reduce sediment and nutrient discharges from anthropic areas, and minimise future increases in coastal sedimentation and eutrophication. Our objectives for protection of terrestrial biodiversity covered species of vertebrates. We used Marxan, a conservation planning tool, to prioritise interventions and explore spatial differences in priorities for both objectives. Notable differences in the distributions of land values for terrestrial biodiversity and coastal-marine water quality indicated the likely need for trade-offs between catchment management objectives. However, there were priority areas that contributed to both sets of objectives. Our study demonstrates a practical approach to integrating models of catchments, land-use change, and river plumes with conservation planning software to inform prioritisation of catchment management.
Álvarez-Romero, Jorge G.; Pressey, Robert L.; Ban, Natalie C.; Brodie, Jon
2015-01-01
Human-induced changes to river loads of nutrients and sediments pose a significant threat to marine ecosystems. Ongoing land-use change can further increase these loads, and amplify the impacts of land-based threats on vulnerable marine ecosystems. Consequently, there is a need to assess these threats and prioritise actions to mitigate their impacts. A key question regarding prioritisation is whether actions in catchments to maintain coastal-marine water quality can be spatially congruent with actions for other management objectives, such as conserving terrestrial biodiversity. In selected catchments draining into the Gulf of California, Mexico, we employed Land Change Modeller to assess the vulnerability of areas with native vegetation to conversion into crops, pasture, and urban areas. We then used SedNet, a catchment modelling tool, to map the sources and estimate pollutant loads delivered to the Gulf by these catchments. Following these analyses, we used modelled river plumes to identify marine areas likely influenced by land-based pollutants. Finally, we prioritised areas for catchment management based on objectives for conservation of terrestrial biodiversity and objectives for water quality that recognised links between pollutant sources and affected marine areas. Our objectives for coastal-marine water quality were to reduce sediment and nutrient discharges from anthropic areas, and minimise future increases in coastal sedimentation and eutrophication. Our objectives for protection of terrestrial biodiversity covered species of vertebrates. We used Marxan, a conservation planning tool, to prioritise interventions and explore spatial differences in priorities for both objectives. Notable differences in the distributions of land values for terrestrial biodiversity and coastal-marine water quality indicated the likely need for trade-offs between catchment management objectives. However, there were priority areas that contributed to both sets of objectives. Our study demonstrates a practical approach to integrating models of catchments, land-use change, and river plumes with conservation planning software to inform prioritisation of catchment management. PMID:26714166
Watkins, David W; de Moraes, Márcia M G Alcoforado; Asbjornsen, Heidi; Mayer, Alex S; Licata, Julian; Lopez, Jose Gutierrez; Pypker, Thomas G; Molina, Vivianna Gamez; Marques, Guilherme Fernandes; Carneiro, Ana Cristina Guimaraes; Nuñez, Hector M; Önal, Hayri; da Nobrega Germano, Bruna
2015-12-01
Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production-from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research.
NASA Astrophysics Data System (ADS)
Watkins, David W.; de Moraes, Márcia M. G. Alcoforado; Asbjornsen, Heidi; Mayer, Alex S.; Licata, Julian; Lopez, Jose Gutierrez; Pypker, Thomas G.; Molina, Vivianna Gamez; Marques, Guilherme Fernandes; Carneiro, Ana Cristina Guimaraes; Nuñez, Hector M.; Önal, Hayri; da Nobrega Germano, Bruna
2015-12-01
Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production—from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research.
Integrated Forecast-Decision Systems For River Basin Planning and Management
NASA Astrophysics Data System (ADS)
Georgakakos, A. P.
2005-12-01
A central application of climatology, meteorology, and hydrology is the generation of reliable forecasts for water resources management. In principle, effective use of forecasts could improve water resources management by providing extra protection against floods, mitigating the adverse effects of droughts, generating more hydropower, facilitating recreational activities, and minimizing the impacts of extreme events on the environment and the ecosystems. In practice, however, realization of these benefits depends on three requisite elements. First is the skill and reliability of forecasts. Second is the existence of decision support methods/systems with the ability to properly utilize forecast information. And third is the capacity of the institutional infrastructure to incorporate the information provided by the decision support systems into the decision making processes. This presentation discusses several decision support systems (DSS) using ensemble forecasting that have been developed by the Georgia Water Resources Institute for river basin management. These DSS are currently operational in Africa, Europe, and the US and address integrated water resources and energy planning and management in river basins with multiple water uses, multiple relevant temporal and spatial scales, and multiple decision makers. The article discusses the methods used and advocates that the design, development, and implementation of effective forecast-decision support systems must bring together disciplines, people, and institutions necessary to address today's complex water resources challenges.
Towards a macrosystems approach for successful coastal ...
Managing coastal resources for resiliency and sustainability often requires integrative, multi-disciplinary approaches across varying spatial and temporal scales to engage stakeholders and inform decision-makers. We discuss case studies integrating wetland ecology, economics, sociology and other disciplines to help solve management problems, especially those concerning increasing nutrient loads and climate change (e.g., accelerated sea level rise, increased flooding, warming temperatures). One goal of the macrosystems approach is to provide the science necessary to assess tradeoffs for different management, restoration, and climate adaptation actions. In the first case study we examine the conversion of a cranberry farm in New England to a freshwater wetland with connectivity to Cape Cod Bay (MA). A second example examines climate adaptation actions in coastal wetlands of the northeastern US to mitigate accelerated sea level rise. Various restoration actions (e.g., dam removal, hydrological engineering) and climate adaptation interventions (e.g., living shoreline, thin layer sediment application) are underway, and we discuss the adaptive management and macrosystems approaches for each example. One focus of management actions is the provision of select ecosystem services. For each study, we discuss tradeoffs in the provision of services from different actions. By presenting examples of how a macrosystems approach works in practice, we hope to show its transferabi
Preface: Bridging the gap between theory and practice on the upper Mississippi River
Lubinski, Kenneth S.
1995-01-01
In July 1994, the Upper Mississippi River (UMR) served as a nexus for coalescing scientific information and management issues related to worldwide floodplain river ecosystems. The objective of the conference ‘Sustaining the Ecological Integrity of Large Floodplain Rivers: Application of Ecological Knowledge to River Management’, was to provide presentations of current ideas from the scientific community. To translate the many lessons learned on other river systems to operational decisions on the UMR, a companion workshop for managers and the general public was held immediately after the conference.An immediate local need for such sharing has existed for several years, as the U.S. Corps of Engineers is currently planning commercial navigation activities that will influence the ecological integrity of the river over the next half century. Recently, other equally important management issues have surfaced, including managing the river as an element of the watershed, and assessing its ecological value as a system instead of a collection of parts (Upper Mississippi River Conservation Committee, 1993). Regional and state natural resource agencies are becoming more convinced that they need to address these issues within their own authorities, however spatially limited, rather than relying on the U.S. Corps of Engineers to manage the ecosystem as an adjunct to its purpose of navigation support.
NASA Astrophysics Data System (ADS)
Ammann, Christof; Voglmeier, Karl; Jocher, Markus
2017-04-01
Grazed pastures are considered as strong sources of the greenhouse gas nitrous oxide (N2O) with local hot-spots resulting from the uneven spatial distribution of the excretion of the grazing animals. Especially urine patches can result in a high local nitrogen (N) surplus, which can cause large deviations from average soil conditions. The strong spatial and temporal variability of the gaseous emissions represents an inherent problem for the quantification, interpretation and modelling. Micrometeorological methods integrating over a larger domain like the eddy covariance method are well suited to quantify the integrated ecosystem emissions of N2O. In contrast, chamber methods are more useful to investigate specific underlying processes and their dependences on driving parameters. We present results of a pasture experiment in western Switzerland where eddy covariance and chamber measurements of N2O fluxes have been performed using a very sensitive and fast response quantum cascade laser (QCL) instrument. Small scale emissions of N2O from dung and urine patches as well as from other "background" pasture surface areas were quantified using an optimized 'fast-box' chamber system. Variable and partly high N2O emissions of the pasture were observed during all seasons. Beside management factors (grazing phases, fertiliser application), temperature and soil moisture showed a large effect on the fluxes. Fresh urine patches from grazing cows were found to be main emission sources and their temporal dynamics was studied in detail. We present a first approach to up-scale the chamber measurements to the field-scale and compare the results with the eddy covariance measurements.
Water Quality and Quantity Modeling for Hydrologic and Policy Decision Making
NASA Astrophysics Data System (ADS)
Rubiano, J.; Giron, E.; Quintero, M.; O'Brien, R.
2004-12-01
This paper presents the results of a research project that elucidate the excesses of nitrogen and phosphorous using a spatial-temporal modeling approach. The project uses the approach of integrating biophysical and socio-economic knowledge to offer sound solution to multiple stakeholders within a watershed context. The aim is to promote rural development and solve environmental conflicts by focusing on the internalization of externalities derived from watershed management, triggering the transference of funding from urban to rural populations, making the city invest in environmental goods or services offered by rural environments. The integrated modeling is focused towards identifying causal relationships between land use and management on the one hand, and water quantity/quality and sedimentation downstream on the other. Estimation of the amount of contaminated sediments transported in the study area and its impact is also studied here. The soil runoff information within the study area is obtained considering the characteristics of erosion using a MUSLE model as a sub-model of SWAT model. Using regression analysis, mathematical relationships between rainfall and surface runoff and between land use or management practices and the measured nitrate and phosphate load are established. The methodology first integrates most of the key spatial information available for the site to facilitate envisioning different land use scenarios and their impacts upon water resources. Subsequently, selected alternatives scenarios regarding the identified externalities are analyzed using optimization models. Opportunities for and constraints to promoting co-operation among users are exposed with the aid of economic games in which more sustainable land use or management alternatives are suggested. Strategic alliances and collective action are promoted in order to implement those alternatives that are environmentally sound and economically feasible. Such options are supported by co-funding schemes designed with the private and public stakeholders having a role in the study area. The significance of this research is clearly depicted by the results of the different models applying here for the assessment of water quality parameters and for modeling upper catchments terrain surface change in the study area. Application of the methodology is presented for the Fuquene Lake Basin in Cundinamarca, Colombia. Additional research needs and limitations of the methodology are highlighted.
Matejicek, Lubos; Janour, Zbynek; Benes, Ludek; Bodnar, Tomas; Gulikova, Eva
2008-06-06
Projects focusing on spatio-temporal modelling of the living environment need to manage a wide range of terrain measurements, existing spatial data, time series, results of spatial analysis and inputs/outputs from numerical simulations. Thus, GISs are often used to manage data from remote sensors, to provide advanced spatial analysis and to integrate numerical models. In order to demonstrate the integration of spatial data, time series and methods in the framework of the GIS, we present a case study focused on the modelling of dust transport over a surface coal mining area, exploring spatial data from 3D laser scanners, GPS measurements, aerial images, time series of meteorological observations, inputs/outputs form numerical models and existing geographic resources. To achieve this, digital terrain models, layers including GPS thematic mapping, and scenes with simulation of wind flows are created to visualize and interpret coal dust transport over the mine area and a neighbouring residential zone. A temporary coal storage and sorting site, located near the residential zone, is one of the dominant sources of emissions. Using numerical simulations, the possible effects of wind flows are observed over the surface, modified by natural objects and man-made obstacles. The coal dust drifts with the wind in the direction of the residential zone and is partially deposited in this area. The simultaneous display of the digital map layers together with the location of the dominant emission source, wind flows and protected areas enables a risk assessment of the dust deposition in the area of interest to be performed. In order to obtain a more accurate simulation of wind flows over the temporary storage and sorting site, 3D laser scanning and GPS thematic mapping are used to create a more detailed digital terrain model. Thus, visualization of wind flows over the area of interest combined with 3D map layers enables the exploration of the processes of coal dust deposition at a local scale. In general, this project could be used as a template for dust-transport modelling which couples spatial data focused on the construction of digital terrain models and thematic mapping with data generated by numerical simulations based on Reynolds averaged Navier-Stokes equations.
Matejicek, Lubos; Janour, Zbynek; Benes, Ludek; Bodnar, Tomas; Gulikova, Eva
2008-01-01
Projects focusing on spatio-temporal modelling of the living environment need to manage a wide range of terrain measurements, existing spatial data, time series, results of spatial analysis and inputs/outputs from numerical simulations. Thus, GISs are often used to manage data from remote sensors, to provide advanced spatial analysis and to integrate numerical models. In order to demonstrate the integration of spatial data, time series and methods in the framework of the GIS, we present a case study focused on the modelling of dust transport over a surface coal mining area, exploring spatial data from 3D laser scanners, GPS measurements, aerial images, time series of meteorological observations, inputs/outputs form numerical models and existing geographic resources. To achieve this, digital terrain models, layers including GPS thematic mapping, and scenes with simulation of wind flows are created to visualize and interpret coal dust transport over the mine area and a neighbouring residential zone. A temporary coal storage and sorting site, located near the residential zone, is one of the dominant sources of emissions. Using numerical simulations, the possible effects of wind flows are observed over the surface, modified by natural objects and man-made obstacles. The coal dust drifts with the wind in the direction of the residential zone and is partially deposited in this area. The simultaneous display of the digital map layers together with the location of the dominant emission source, wind flows and protected areas enables a risk assessment of the dust deposition in the area of interest to be performed. In order to obtain a more accurate simulation of wind flows over the temporary storage and sorting site, 3D laser scanning and GPS thematic mapping are used to create a more detailed digital terrain model. Thus, visualization of wind flows over the area of interest combined with 3D map layers enables the exploration of the processes of coal dust deposition at a local scale. In general, this project could be used as a template for dust-transport modelling which couples spatial data focused on the construction of digital terrain models and thematic mapping with data generated by numerical simulations based on Reynolds averaged Navier-Stokes equations. PMID:27879911
Understanding relationships among ecosystem services across spatial scales and over time
NASA Astrophysics Data System (ADS)
Qiu, Jiangxiao; Carpenter, Stephen R.; Booth, Eric G.; Motew, Melissa; Zipper, Samuel C.; Kucharik, Christopher J.; Loheide, Steven P., II; Turner, Monica G.
2018-05-01
Sustaining ecosystem services (ES), mitigating their tradeoffs and avoiding unfavorable future trajectories are pressing social-environmental challenges that require enhanced understanding of their relationships across scales. Current knowledge of ES relationships is often constrained to one spatial scale or one snapshot in time. In this research, we integrated biophysical modeling with future scenarios to examine changes in relationships among eight ES indicators from 2001–2070 across three spatial scales—grid cell, subwatershed, and watershed. We focused on the Yahara Watershed (Wisconsin) in the Midwestern United States—an exemplar for many urbanizing agricultural landscapes. Relationships among ES indicators changed over time; some relationships exhibited high interannual variations (e.g. drainage vs. food production, nitrate leaching vs. net ecosystem exchange) and even reversed signs over time (e.g. perennial grass production vs. phosphorus yield). Robust patterns were detected for relationships among some regulating services (e.g. soil retention vs. water quality) across three spatial scales, but other relationships lacked simple scaling rules. This was especially true for relationships of food production vs. water quality, and drainage vs. number of days with runoff >10 mm, which differed substantially across spatial scales. Our results also showed that local tradeoffs between food production and water quality do not necessarily scale up, so reducing local tradeoffs may be insufficient to mitigate such tradeoffs at the watershed scale. We further synthesized these cross-scale patterns into a typology of factors that could drive changes in ES relationships across scales: (1) effects of biophysical connections, (2) effects of dominant drivers, (3) combined effects of biophysical linkages and dominant drivers, and (4) artificial scale effects, and concluded with management implications. Our study highlights the importance of taking a dynamic perspective and accounting for spatial scales in monitoring and management to sustain future ES.
Sherley, Richard B; Botha, Philna; Underhill, Les G; Ryan, Peter G; van Zyl, Danie; Cockcroft, Andrew C; Crawford, Robert J M; Dyer, Bruce M; Cook, Timothée R
2017-12-01
Human activities are important drivers of marine ecosystem functioning. However, separating the synergistic effects of fishing and environmental variability on the prey base of nontarget predators is difficult, often because prey availability estimates on appropriate scales are lacking. Understanding how prey abundance at different spatial scales links to population change can help integrate the needs of nontarget predators into fisheries management by defining ecologically relevant areas for spatial protection. We investigated the local population response (number of breeders) of the Bank Cormorant (Phalacrocorax neglectus), a range-restricted endangered seabird, to the availability of its prey, the heavily fished west coast rock lobster (Jasus lalandii). Using Bayesian state-space modeled cormorant counts at 3 colonies, 22 years of fisheries-independent data on local lobster abundance, and generalized additive modeling, we determined the spatial scale pertinent to these relationships in areas with different lobster availability. Cormorant numbers responded positively to lobster availability in the regions with intermediate and high abundance but not where regime shifts and fishing pressure had depleted lobster stocks. The relationships were strongest when lobsters 20-30 km offshore of the colony were considered, a distance greater than the Bank Cormorant's foraging range when breeding, and may have been influenced by prey availability for nonbreeding birds, prey switching, or prey ecology. Our results highlight the importance of considering the scale of ecological relationships in marine spatial planning and suggest that designing spatial protection around focal species can benefit marine predators across their full life cycle. We propose the precautionary implementation of small-scale marine protected areas, followed by robust assessment and adaptive-management, to confirm population-level benefits for the cormorants, their prey, and the wider ecosystem, without negative impacts on local fisheries. © 2017 Society for Conservation Biology.
A spatial assessment framework for evaluating flood risk under extreme climates.
Chen, Yun; Liu, Rui; Barrett, Damian; Gao, Lei; Zhou, Mingwei; Renzullo, Luigi; Emelyanova, Irina
2015-12-15
Australian coal mines have been facing a major challenge of increasing risk of flooding caused by intensive rainfall events in recent years. In light of growing climate change concerns and the predicted escalation of flooding, estimating flood inundation risk becomes essential for understanding sustainable mine water management in the Australian mining sector. This research develops a spatial multi-criteria decision making prototype for the evaluation of flooding risk at a regional scale using the Bowen Basin and its surroundings in Queensland as a case study. Spatial gridded data, including climate, hydrology, topography, vegetation and soils, were collected and processed in ArcGIS. Several indices were derived based on time series of observations and spatial modeling taking account of extreme rainfall, evapotranspiration, stream flow, potential soil water retention, elevation and slope generated from a digital elevation model (DEM), as well as drainage density and proximity extracted from a river network. These spatial indices were weighted using the analytical hierarchy process (AHP) and integrated in an AHP-based suitability assessment (AHP-SA) model under the spatial risk evaluation framework. A regional flooding risk map was delineated to represent likely impacts of criterion indices at different risk levels, which was verified using the maximum inundation extent detectable by a time series of remote sensing imagery. The result provides baseline information to help Bowen Basin coal mines identify and assess flooding risk when making adaptation strategies and implementing mitigation measures in future. The framework and methodology developed in this research offers the Australian mining industry, and social and environmental studies around the world, an effective way to produce reliable assessment on flood risk for managing uncertainty in water availability under climate change. Copyright © 2015. Published by Elsevier B.V.
A geo-spatial data management system for potentially active volcanoes—GEOWARN project
NASA Astrophysics Data System (ADS)
Gogu, Radu C.; Dietrich, Volker J.; Jenny, Bernhard; Schwandner, Florian M.; Hurni, Lorenz
2006-02-01
Integrated studies of active volcanic systems for the purpose of long-term monitoring and forecast and short-term eruption prediction require large numbers of data-sets from various disciplines. A modern database concept has been developed for managing and analyzing multi-disciplinary volcanological data-sets. The GEOWARN project (choosing the "Kos-Yali-Nisyros-Tilos volcanic field, Greece" and the "Campi Flegrei, Italy" as test sites) is oriented toward potentially active volcanoes situated in regions of high geodynamic unrest. This article describes the volcanological database of the spatial and temporal data acquired within the GEOWARN project. As a first step, a spatial database embedded in a Geographic Information System (GIS) environment was created. Digital data of different spatial resolution, and time-series data collected at different intervals or periods, were unified in a common, four-dimensional representation of space and time. The database scheme comprises various information layers containing geographic data (e.g. seafloor and land digital elevation model, satellite imagery, anthropogenic structures, land-use), geophysical data (e.g. from active and passive seismicity, gravity, tomography, SAR interferometry, thermal imagery, differential GPS), geological data (e.g. lithology, structural geology, oceanography), and geochemical data (e.g. from hydrothermal fluid chemistry and diffuse degassing features). As a second step based on the presented database, spatial data analysis has been performed using custom-programmed interfaces that execute query scripts resulting in a graphical visualization of data. These query tools were designed and compiled following scenarios of known "behavior" patterns of dormant volcanoes and first candidate signs of potential unrest. The spatial database and query approach is intended to facilitate scientific research on volcanic processes and phenomena, and volcanic surveillance.
Wiens, J. David; Schumaker, Nathan H.; Inman, Richard D.; Esque, Todd C.; Longshore, Kathleen M.; Nussear, Kenneth E
2017-01-01
Spatial demographic models can help guide monitoring and management activities targeting at-risk species, even in cases where baseline data are lacking. Here, we provide an example of how site-specific changes in land use and anthropogenic stressors can be incorporated into a spatial demographic model to investigate effects on population dynamics of Golden Eagles (Aquila chrysaetos). Our study focused on a population of Golden Eagles exposed to risks associated with rapid increases in renewable energy development in southern California, U.S.A. We developed a spatially explicit, individual-based simulation model that integrated empirical data on demography of Golden Eagles with spatial data on the arrangement of nesting habitats, prey resources, and planned renewable energy development sites. Our model permitted simulated eagles of different stage-classes to disperse, establish home ranges, acquire prey resources, prospect for breeding sites, and reproduce. The distribution of nesting habitats, prey resources, and threats within each individual's home range influenced movement, reproduction, and survival. We used our model to explore potential effects of alternative disturbance scenarios, and proposed conservation strategies, on the future distribution and abundance of Golden Eagles in the study region. Results from our simulations suggest that probable increases in mortality associated with renewable energy infrastructure (e.g., collisions with wind turbines and vehicles, electrocution on power poles) could have negative consequences for population trajectories, but that site-specific conservation actions could reduce the magnitude of negative effects. Our study demonstrates the use of a flexible and expandable modeling framework to incorporate spatially dependent processes when determining relative effects of proposed management options to Golden Eagles and their habitats.
Assessments of habitat preferences and quality depend on spatial scale and metrics of fitness
Chalfoun, A.D.; Martin, T.E.
2007-01-01
1. Identifying the habitat features that influence habitat selection and enhance fitness is critical for effective management. Ecological theory predicts that habitat choices should be adaptive, such that fitness is enhanced in preferred habitats. However, studies often report mismatches between habitat preferences and fitness consequences across a wide variety of taxa based on a single spatial scale and/or a single fitness component. 2. We examined whether habitat preferences of a declining shrub steppe songbird, the Brewer's sparrow Spizella breweri, were adaptive when multiple reproductive fitness components and spatial scales (landscape, territory and nest patch) were considered. 3. We found that birds settled earlier and in higher densities, together suggesting preference, in landscapes with greater shrub cover and height. Yet nest success was not higher in these landscapes; nest success was primarily determined by nest predation rates. Thus landscape preferences did not match nest predation risk. Instead, nestling mass and the number of nesting attempts per pair increased in preferred landscapes, raising the possibility that landscapes were chosen on the basis of food availability rather than safe nest sites. 4. At smaller spatial scales (territory and nest patch), birds preferred different habitat features (i.e. density of potential nest shrubs) that reduced nest predation risk and allowed greater season-long reproductive success. 5. Synthesis and applications. Habitat preferences reflect the integration of multiple environmental factors across multiple spatial scales, and individuals may have more than one option for optimizing fitness via habitat selection strategies. Assessments of habitat quality for management prescriptions should ideally include analysis of diverse fitness consequences across multiple ecologically relevant spatial scales. ?? 2007 The Authors.
Influence of forest management on headwater stream amphibians at multiple spatial scales
Stoddard, Margo; Hayes, John P.; Erickson, Janet L.
2004-01-01
Background Amphibians are important components of headwater streams in forest ecosystems of the Pacific Northwest (PNW). They comprise the highest vertebrate biomass and density in these systems and are integral to trophic dynamics both as prey and as predators. The most commonly encountered amphibians in PNW headwater streams include the Pacific giant salamander (Dicamptodon tenebrosus), the tailed frog (Ascaphus truei), the southern torrent salamander (Rhyacotriton variegatus), and the Columbia torrent salamander (R. kezeri).
Gillison, Andrew N; Asner, Gregory P; Fernandes, Erick C M; Mafalacusser, Jacinto; Banze, Aurélio; Izidine, Samira; da Fonseca, Ambrósio R; Pacate, Hermenegildo
2016-07-15
Sustainable biodiversity and land management require a cost-effective means of forecasting landscape response to environmental change. Conventional species-based, regional biodiversity assessments are rarely adequate for policy planning and decision making. We show how new ground and remotely-sensed survey methods can be coordinated to help elucidate and predict relationships between biodiversity, land use and soil properties along complex biophysical gradients that typify many similar landscapes worldwide. In the lower Zambezi valley, Mozambique we used environmental, gradient-directed transects (gradsects) to sample vascular plant species, plant functional types, vegetation structure, soil properties and land-use characteristics. Soil fertility indices were derived using novel multidimensional scaling of soil properties. To facilitate spatial analysis, we applied a probabilistic remote sensing approach, analyzing Landsat 7 satellite imagery to map photosynthetically active and inactive vegetation and bare soil along each gradsect. Despite the relatively low sample number, we found highly significant correlations between single and combined sets of specific plant, soil and remotely sensed variables that permitted testable spatial projections of biodiversity and soil fertility across the regional land-use mosaic. This integrative and rapid approach provides a low-cost, high-return and readily transferable methodology that permits the ready identification of testable biodiversity indicators for adaptive management of biodiversity and potential agricultural productivity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nitrate variability in groundwater of North Carolina using monitoring and private well data models.
Messier, Kyle P; Kane, Evan; Bolich, Rick; Serre, Marc L
2014-09-16
Nitrate (NO3-) is a widespread contaminant of groundwater and surface water across the United States that has deleterious effects to human and ecological health. This study develops a model for predicting point-level groundwater NO3- at a state scale for monitoring wells and private wells of North Carolina. A land use regression (LUR) model selection procedure is developed for determining nonlinear model explanatory variables when they are known to be correlated. Bayesian Maximum Entropy (BME) is used to integrate the LUR model to create a LUR-BME model of spatial/temporal varying groundwater NO3- concentrations. LUR-BME results in a leave-one-out cross-validation r2 of 0.74 and 0.33 for monitoring and private wells, effectively predicting within spatial covariance ranges. Results show significant differences in the spatial distribution of groundwater NO3- contamination in monitoring versus private wells; high NO3- concentrations in the southeastern plains of North Carolina; and wastewater treatment residuals and swine confined animal feeding operations as local sources of NO3- in monitoring wells. Results are of interest to agencies that regulate drinking water sources or monitor health outcomes from ingestion of drinking water. Lastly, LUR-BME model estimates can be integrated into surface water models for more accurate management of nonpoint sources of nitrogen.
Integrating population dynamics into mapping human exposure to seismic hazard
NASA Astrophysics Data System (ADS)
Freire, S.; Aubrecht, C.
2012-11-01
Disaster risk is not fully characterized without taking into account vulnerability and population exposure. Assessment of earthquake risk in urban areas would benefit from considering the variation of population distribution at more detailed spatial and temporal scales, and from a more explicit integration of this improved demographic data with existing seismic hazard maps. In the present work, "intelligent" dasymetric mapping is used to model population dynamics at high spatial resolution in order to benefit the analysis of spatio-temporal exposure to earthquake hazard in a metropolitan area. These night- and daytime-specific population densities are then classified and combined with seismic intensity levels to derive new spatially-explicit four-class-composite maps of human exposure. The presented approach enables a more thorough assessment of population exposure to earthquake hazard. Results show that there are significantly more people potentially at risk in the daytime period, demonstrating the shifting nature of population exposure in the daily cycle and the need to move beyond conventional residence-based demographic data sources to improve risk analyses. The proposed fine-scale maps of human exposure to seismic intensity are mainly aimed at benefiting visualization and communication of earthquake risk, but can be valuable in all phases of the disaster management process where knowledge of population densities is relevant for decision-making.
Aircraft Observations of Nitrous Oxide (N2O) in the San Joaquin Valley of California
NASA Astrophysics Data System (ADS)
Muto, S.; Herrera, S.; Pusede, S.
2017-12-01
Agriculture is the largest source of anthropogenic nitrous oxide (N2O) in the U.S. While it is generally known which processes produce N2O, there is considerable uncertainty in controls over N2O emissions. Factors that determine N2O fluxes, such as soil properties and manure management, are highly variable in space and time, and, as a result, it has proven difficult to upscale chamber-derived soil flux measurements to regional spatial scales. Aircraft observations provide a regional picture of the N2O spatial distribution, but, because N2O is very long-lived, it is challenging to attribute measured concentrations of N2O to distinct local sources, especially over areas with complex and integrated land use. This study takes advantage of a novel aircraft N2O dataset collected onboard the low-flying, slow-moving NASA C-23 Sherpa in the San Joaquin Valley (SJV) of California, a region with a variety of N2O sources, including dairies, feedlots, fertilized cropland, and industrial facilities. With these measurements, we link observed N2O enhancements to specific sources at sub-inventory spatial scales. We compare our results with area-weighted emission profiles obtained by integrating detailed emission inventory data, agricultural statistics, and GIS source mapping.
NASA Astrophysics Data System (ADS)
Qi, Yuan; Zhao, Hongtao
2017-04-01
China is one of few several natural disaster prone countries, which has complex geological and geographical environment and abnormal climate. On August 8, 2010, a large debris flow disaster happened in Zhouqu Country, Gansu province, resulting in more than 1700 casualties and more than 200 buildings damaged. In order to percept landslide and debris flow, an early warning system was established in the county. Spatial information technologies, such as remote sensing, GIS, and GPS, play core role in the early warning system, due to their functions in observing, analyzing, and locating geological disasters. However, all of these spatial information technologies could play an important role only guided by the emergency response mechanism. This article takes the establishment of Zhouqu Country's Disaster Emergency Response Interaction Mechanism (DERIM) as an example to discuss the risk management of country-level administrative units. The country-level risk management aims to information sharing, resources integration, integrated prevention and unified command. Then, nine subsystems support DERIM, which included disaster prevention and emergency data collection and sharing system, joint duty system, disaster verification and evaluation system, disaster consultation system, emergency warning and information release system, emergency response system, disaster reporting system, plan management system, mass prediction and prevention management system. At last, an emergency command platform in Zhouqu Country built up to realize DERIM. The core mission of the platform consists of daily management of disaster, monitoring and warning, comprehensive analysis, information release, consultation and decision-making, emergency response, etc. Five functional modules, including module of disaster information management, comprehensive monitoring module (geological monitoring, meteorological monitoring, water conservancy and hydrological monitoring), alarm management module, emergency command and disaster dispatching management module are developed on the basis of this platform. Based on the internet technology, an web-based office platform is exploited for the nodes scattered in departments and towns, which includes daily business, monitoring and warning, alarm notification, alarm recording, personnel management and update in disaster region, query and analysis of real-time observation data, etc. The platform experienced 3 years' test of the duty in flood period since 2013, and two typical disaster cases during this period fully illustrates the effectiveness of the DERIM and the emergency command platform.
Vernier, Françoise; Leccia-Phelpin, Odile; Lescot, Jean-Marie; Minette, Sébastien; Miralles, André; Barberis, Delphine; Scordia, Charlotte; Kuentz-Simonet, Vanessa; Tonneau, Jean-Philippe
2017-03-01
Non-point source pollution is a cause of major concern within the European Union. This is reflected in increasing public and political focus on a more sustainable use of pesticides, as well as a reduction in diffuse pollution. Climate change will likely to lead to an even more intensive use of pesticides in the future, affecting agriculture in many ways. At the same time, the Water Framework Directive (WFD) and associated EU policies called for a "good" ecological and chemical status to be achieved for water bodies by the end of 2015, currently delayed to 2021-2027 due to a lack of efficiency in policies and timescale of resilience for hydrosystems, especially groundwater systems. Water managers need appropriate and user-friendly tools to design agro-environmental policies. These tools should help them to evaluate the potential impacts of mitigation measures on water resources, more clearly define protected areas, and more efficiently distribute financial incentives to farmers who agree to implement alternative practices. At present, a number of reports point out that water managers do not use appropriate information from monitoring or models to make decisions and set environmental action plans. In this paper, we propose an integrated and collaborative approach to analyzing changes in land use, farming systems, and practices and to assess their effects on agricultural pressure and pesticide transfers to waters. The integrated modeling of agricultural scenario (IMAS) framework draws on a range of data and expert knowledge available within areas where a pesticide action plan can be defined to restore the water quality, French "Grenelle law" catchment areas, French Water Development and Management Plan areas, etc. A so-called "reference scenario" represents the actual soil occupation and pesticide-spraying practices used in both conventional and organic farming. A number of alternative scenarios are then defined in cooperation with stakeholders, including socio-economic conditions for developing alternative agricultural systems or targeting mitigation measures. Our integrated assessment of these scenarios combines the calculation of spatialized environmental indicators with integrated bio-economic modeling. The latter is achieved by a combined use of Soil and Water Assessment Tool (SWAT) modeling with our own purpose-built land use generator module (Generator of Land Use version 2 (GenLU2)) and an economic model developed using General Algebraic Modeling System (GAMS) for cost-effectiveness assessment. This integrated approach is applied to two embedded catchment areas (total area of 360,000 ha) within the Charente river basin (SW France). Our results show that it is possible to differentiate scenarios based on their effectiveness, represented by either evolution of pressure (agro-environmental indicators) or transport into waters (pesticide concentrations). By analyzing the implementation costs borne by farmers, it is possible to identify the most cost-effective scenarios at sub-basin and other aggregated levels (WFD hydrological entities, sensitive areas). Relevant results and indicators are fed into a specifically designed database. Data warehousing is used to provide analyses and outputs at all thematic, temporal, or spatial aggregated levels, defined by the stakeholders (type of crops, herbicides, WFD areas, years), using Spatial On-Line Analytical Processing (SOLAP) tools. The aim of this approach is to allow public policy makers to make more informed and reasoned decisions when managing sensitive areas and/or implementing mitigation measures.
Exploring the effect of the spatial scale of fishery management.
Takashina, Nao; Baskett, Marissa L
2016-02-07
For any spatially explicit management, determining the appropriate spatial scale of management decisions is critical to success at achieving a given management goal. Specifically, managers must decide how much to subdivide a given managed region: from implementing a uniform approach across the region to considering a unique approach in each of one hundred patches and everything in between. Spatially explicit approaches, such as the implementation of marine spatial planning and marine reserves, are increasingly used in fishery management. Using a spatially explicit bioeconomic model, we quantify how the management scale affects optimal fishery profit, biomass, fishery effort, and the fraction of habitat in marine reserves. We find that, if habitats are randomly distributed, the fishery profit increases almost linearly with the number of segments. However, if habitats are positively autocorrelated, then the fishery profit increases with diminishing returns. Therefore, the true optimum in management scale given cost to subdivision depends on the habitat distribution pattern. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evaluation of potential water conservation using site-specific irrigation
USDA-ARS?s Scientific Manuscript database
With the advent of site-specific variable-rate irrigation (VRI) systems, irrigation can be spatially managed within sub-field-sized zones. Spatial irrigation management can optimize spatial water use efficiency and may conserve water. Spatial VRI systems are currently being managed by consultants ...
A spatially collocated sound thrusts a flash into awareness
Aller, Máté; Giani, Anette; Conrad, Verena; Watanabe, Masataka; Noppeney, Uta
2015-01-01
To interact effectively with the environment the brain integrates signals from multiple senses. It is currently unclear to what extent spatial information can be integrated across different senses in the absence of awareness. Combining dynamic continuous flash suppression (CFS) and spatial audiovisual stimulation, the current study investigated whether a sound facilitates a concurrent visual flash to elude flash suppression and enter perceptual awareness depending on audiovisual spatial congruency. Our results demonstrate that a concurrent sound boosts unaware visual signals into perceptual awareness. Critically, this process depended on the spatial congruency of the auditory and visual signals pointing towards low level mechanisms of audiovisual integration. Moreover, the concurrent sound biased the reported location of the flash as a function of flash visibility. The spatial bias of sounds on reported flash location was strongest for flashes that were judged invisible. Our results suggest that multisensory integration is a critical mechanism that enables signals to enter conscious perception. PMID:25774126
FOODIE: Farm-Oriented Open Data in Europe
NASA Astrophysics Data System (ADS)
Ángel Esbri Palomares, Miguel; Charvat, Karel; Campos, Antonio Manuel; Palma, Raúl
2014-05-01
The agriculture sector is a unique sector due to its strategic importance for both European citizens (consumers) and European economy (regional and global) which, ideally, should make the whole sector a network of interacting organizations. Rural areas are of particular importance with respect to the agro-food sector and should be specifically addressed within this scope. The different groups of stakeholders involved in the agricultural activities have to manage many different and heterogeneous sources of information that need to be combined in order to make economically and environmentally sound decisions, which include (among others) the definition of policies (subsidies, standardisation and regulation, national strategies for rural development, climate change), valuation of ecological performances, development of sustainable agriculture, crop recollection timing and pricing, plagues detection, etc. Such processes are very labour intensive because most parts have to be executed manually and the necessary information is not always available or easily accessible. In this context, future agriculture knowledge management systems have to support not only direct profitability of agriculture or environment protection, but also activities of individuals and groups allowing effective collaboration among groups in agri-food industry, consumers, public administrations and wider stakeholders communities, especially in rural domain. To that end FOODIE project aims at building an open and interoperable agricultural specialized platform hub on the cloud for the management of spatial and non-spatial data relevant for farming production; for discovery of spatial and non-spatial agriculture related data from heterogeneous sources; integration of existing and valuable European open datasets related to agriculture; data publication and data linking of external agriculture data sources contributed by different public and private stakeholders allowing to provide specific and high-value applications and services for the support in the planning and decision-making processes of different stakeholders groups related to the agricultural and environmental domains.
Spatial Integration under Contextual Control in a Virtual Environment
ERIC Educational Resources Information Center
Molet, Mikael; Gambet, Boris; Bugallo, Mehdi; Miller, Ralph R.
2012-01-01
The role of context was examined in the selection and integration of independently learned spatial relationships. Using a dynamic 3D virtual environment, participants learned one spatial relationship between landmarks A and B which was established in one virtual context (e.g., A is left of B) and a different spatial relationship which was…
UTOOLS: microcomputer software for spatial analysis and landscape visualization.
Alan A. Ager; Robert J. McGaughey
1997-01-01
UTOOLS is a collection of programs designed to integrate various spatial data in a way that allows versatile spatial analysis and visualization. The programs were designed for watershed-scale assessments in which a wide array of resource data must be integrated, analyzed, and interpreted. UTOOLS software combines raster, attribute, and vector data into "spatial...
The role of spatial memory and frames of reference in the precision of angular path integration.
Arthur, Joeanna C; Philbeck, John W; Kleene, Nicholas J; Chichka, David
2012-09-01
Angular path integration refers to the ability to maintain an estimate of self-location after a rotational displacement by integrating internally-generated (idiothetic) self-motion signals over time. Previous work has found that non-sensory inputs, namely spatial memory, can play a powerful role in angular path integration (Arthur et al., 2007, 2009). Here we investigated the conditions under which spatial memory facilitates angular path integration. We hypothesized that the benefit of spatial memory is particularly likely in spatial updating tasks in which one's self-location estimate is referenced to external space. To test this idea, we administered passive, non-visual body rotations (ranging 40°-140°) about the yaw axis and asked participants to use verbal reports or open-loop manual pointing to indicate the magnitude of the rotation. Prior to some trials, previews of the surrounding environment were given. We found that when participants adopted an egocentric frame of reference, the previously-observed benefit of previews on within-subject response precision was not manifested, regardless of whether remembered spatial frameworks were derived from vision or spatial language. We conclude that the powerful effect of spatial memory is dependent on one's frame of reference during self-motion updating. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kokka, Alexander; Pulli, Tomi; Poikonen, Tuomas; Askola, Janne; Ikonen, Erkki
2017-08-01
This paper presents a fisheye camera method for determining spatial non-uniformity corrections in luminous flux measurements with integrating spheres. Using a fisheye camera installed into a port of an integrating sphere, the relative angular intensity distribution of the lamp under test is determined. This angular distribution is used for calculating the spatial non-uniformity correction for the lamp when combined with the spatial responsivity data of the sphere. The method was validated by comparing it to a traditional goniophotometric approach when determining spatial correction factors for 13 LED lamps with different angular spreads. The deviations between the spatial correction factors obtained using the two methods ranged from -0.15 % to 0.15%. The mean magnitude of the deviations was 0.06%. For a typical LED lamp, the expanded uncertainty (k = 2 ) for the spatial non-uniformity correction factor was evaluated to be 0.28%. The fisheye camera method removes the need for goniophotometric measurements in determining spatial non-uniformity corrections, thus resulting in considerable system simplification. Generally, no permanent modifications to existing integrating spheres are required.
Haase, Dagmar; Volk, Martin
2017-01-01
Over the 20th century, urbanization has substantially shaped the surface of Earth. With population rapidly shifting from rural locations towards the cities, urban areas have dramatically expanded on a global scale and represent crystallization points of social, cultural and economic assets and activities. This trend is estimated to persist for the next decades, and particularly the developing countries are expected to face rapid urban growth. The management of this growth will require good governance strategies and planning. By threatening the livelihoods, assets and health as foundations of human activities, another major global change contributor, climate change, became an equally important concern of stakeholders. Based on the climate trends observed over the 20th century, and a spatially explicit model of urbanization, this paper investigates the impacts of climate change in relation to different stages of development of urban areas, thus evolving a more integrated perspective on both processes. As a result, an integrative measure of climate change trends and impacts is proposed and estimated for urban areas worldwide. We show that those areas facing major urban growth are to a large extent also hotspots of climate change. Since most of these hotspots are located in the Global South, we emphasize the need for stakeholders to co-manage both drivers of global change. The presented integrative perspective is seen as a starting point to foster such co-management, and furthermore as a means to facilitate communication and knowledge exchange on climate change impacts. PMID:29232695
Scheuer, Sebastian; Haase, Dagmar; Volk, Martin
2017-01-01
Over the 20th century, urbanization has substantially shaped the surface of Earth. With population rapidly shifting from rural locations towards the cities, urban areas have dramatically expanded on a global scale and represent crystallization points of social, cultural and economic assets and activities. This trend is estimated to persist for the next decades, and particularly the developing countries are expected to face rapid urban growth. The management of this growth will require good governance strategies and planning. By threatening the livelihoods, assets and health as foundations of human activities, another major global change contributor, climate change, became an equally important concern of stakeholders. Based on the climate trends observed over the 20th century, and a spatially explicit model of urbanization, this paper investigates the impacts of climate change in relation to different stages of development of urban areas, thus evolving a more integrated perspective on both processes. As a result, an integrative measure of climate change trends and impacts is proposed and estimated for urban areas worldwide. We show that those areas facing major urban growth are to a large extent also hotspots of climate change. Since most of these hotspots are located in the Global South, we emphasize the need for stakeholders to co-manage both drivers of global change. The presented integrative perspective is seen as a starting point to foster such co-management, and furthermore as a means to facilitate communication and knowledge exchange on climate change impacts.
NASA Astrophysics Data System (ADS)
Paudyal, D. R.; McDougall, K.; Apan, A.
2014-12-01
Spatial information plays an important role in many social, environmental and economic decisions and increasingly acknowledged as a national resource essential for wider societal and environmental benefits. Natural Resource Management is one area where spatial information can be used for improved planning and decision making processes. In Australia, state government organisations are the custodians of spatial information necessary for natural resource management and regional NRM bodies are responsible to regional delivery of NRM activities. The access and sharing of spatial information between government agencies and regional NRM bodies is therefore as an important issue for improving natural resource management outcomes. The aim of this paper is to evaluate the current status of spatial information access, sharing and use with varying statutory arrangements and its impacts on spatial data infrastructure (SDI) development in catchment management sector in Australia. Further, it critically examined whether any trends and significant variations exist due to different institutional arrangements (statutory versus non-statutory) or not. A survey method was used to collect primary data from 56 regional natural resource management (NRM) bodies responsible for catchment management in Australia. Descriptive statistics method was used to show the similarities and differences between statutory and non-statutory arrangements. The key factors which influence sharing and access to spatial information are also explored. The results show the current statutory and administrative arrangements and regional focus for natural resource management is reasonable from a spatial information management perspective and provides an opportunity for building SDI at the catchment scale. However, effective institutional arrangements should align catchment SDI development activities with sub-national and national SDI development activities to address catchment management issues. We found minor differences in spatial information access, use and sharing due to varying institutional environment (statutory versus non-statutory). The non-statutory group appears to be more flexible and selfsufficient whilst statutory regional NRM bodies may lack flexibility in their spatial information management practices. We found spatial information access, use and sharing has significant impacts on spatial data infrastructure development in catchment management sector in Australia.
Integration of Hydrogeophysical Datasets for Improved Water Resource Management in Irrigated Systems
NASA Astrophysics Data System (ADS)
Finkenbiner, C. E.; Franz, T. E.; Heeren, D.; Gibson, J. P.; Russell, M. V.
2016-12-01
With an average irrigation water use efficiency of approximately 45% in the United States, improvements in water management can be made within agricultural systems. Advancements in precision irrigation technologies allow application rates and times to vary within a field. Current limitations in applying these technologies are often attributed to the quantification of soil spatial variability. This work aims to increase our understanding of soil hydrologic fluxes at intermediate spatial scales. Field capacity and wilting point values for a field near Sutherland, NE were downloaded from the USDA SSURGO database. Stationary and roving cosmic-ray neutron probes (CRNP) (sensor measurement volume of 300 m radius sphere and 30 cm vertical soil depth) were combined in order to characterize the spatial and temporal patterns of soil moisture at the site. We used a data merging technique to produce a statistical daily soil moisture product at a range of key spatial scales in support of current irrigation technologies: the individual sprinkler ( 102 m2) for variable rate irrigation, the individual wedge ( 103 m2) for variable speed irrigation, and the quarter section (0.82 km2) for uniform rate irrigation. The results show our CRNP "observed" field capacity was higher compared to the SSURGO products. The measured hydraulic properties from sixty-two soil cores collected from the field correlate well with our "observed" CRNP values. We hypothesize that our results, when provided to irrigators, will decrease water losses due to runoff and deep percolation as sprinkler managers can better estimate irrigation application depths and times in relation to soil moisture depletion below field capacity and above maximum allowable depletion. The incorporation of the CRNP into current irrigation practices has the potential to greatly increase agricultural water use efficiency. Moreover, the defined soil hydraulic properties at various spatial scales offers additional valuable datasets for the land surface modeling community.
Emergent Archetype Hydrological-Biogeochemical Response Patterns in Heterogeneous Catchments
NASA Astrophysics Data System (ADS)
Jawitz, J. W.; Gall, H. E.; Rao, P.
2013-12-01
What can spatiotemporally integrated patterns observed in stream hydrologic and biogeochemical signals generated in response to transient hydro-climatic and anthropogenic forcing tell us about the interactions between spatially heterogeneous soil-mediated hydrological and biogeochemical processes? We seek to understand how the spatial structure of solute sources coupled with hydrologic responses affect observed concentration-discharge (C-Q) patterns. These patterns are expressions of the spatiotemporal structure of solute loads exported from managed catchments, and their likely ecological consequences manifested in receiving water bodies (e.g., wetlands, rivers, lakes, and coastal waters). We investigated the following broad questions: (1) How does the correlation between flow-generating areas and biogeochemical source areas across a catchment evolve under stochastic hydro-climatic forcing? (2) What are the feasible hydrologic and biogeochemical responses that lead to the emergence of the observed archetype C-Q patterns? and; (3) What implications do these coupled dynamics have for catchment monitoring and implementation of management practices? We categorize the observed temporal signals into three archetypical C-Q patterns: dilution; accretion, and constant concentration. We introduce a parsimonious stochastic model of heterogeneous catchments, which act as hydrologic and biogeochemical filters, to examine the relationship between spatial heterogeneity and temporal history of solute export signals. The core concept of the modeling framework is considering the types and degree of spatial correlation between solute source zones and flow generating zones, and activation of different portions of the catchments during rainfall events. Our overarching hypothesis is that each of the archetype C-Q patterns can be generated by explicitly linking landscape-scale hydrologic responses and spatial distributions of solute source properties within a catchment. The model simulations reproduce the three major C-Q patterns observed in published data, offering valuable insight into coupled catchment processes. The findings have important implications for effective catchment management for water quality improvement, and stream monitoring strategies.
Potential for spatial management of hunted mammal populations in tropical forests
Miranda H. Mockrin; Kent H. Redford
2011-01-01
Unsustainable hunting in tropical forests threatens biodiversity and rural livelihoods, yet managing these harvests in remote forests with low scientific capacity and funding is challenging. In response, some conservationists propose managing harvests through spatial management, a system of establishing notake zones where hunting is not allowed. Spatial management was...
NASA Astrophysics Data System (ADS)
Masson, E.; Antonellini, M.; Dentinho, T.; Khattabi, A.
2009-04-01
Climate change becomes an increasing constraint in IWRM and many effects are expected in coastal watersheds like sea level rise and its consequences (i.e. beach erosion, salt water intrusion, soil salinization, groundwater and surface water pollution…) or water budget changes (i.e. seasonal and inter-annual fluctuations) and an increase of extreme events (i.e. floods, rainfalls and droughts). Beside this physical changes one can also observed the increase of water demand in coastal areas due to population growth and development of tourism activities. Both effects (e.g. physical and socio-economical) must be included into any coastal freshwater management option for a mid-term / long-term approach to set water mass/basin management plans as expected in European countries by the WDF or elsewhere in an IWRM objective. The Waterknow project funded by EraNet-Circle-Med program aims to develop a tool to help decisions makers in the implementation of IWRM plans in coastal areas that will have to cope with climate change effects and socio-economical pressures. This interdisciplinary project is applied to three basins (e.g. Fiumi Uniti Bevano, Italy; Terceira Island, Portugal and Taheddart, Morocco) and seeks to integrate and to develop research achievements in coastal hydrogeology, economical and land use modeling in each basin. In the Fiumi Uniti Bevano basin, a detailed hydrogeological survey was performed during the summer 2008. Twenty auger holes with an average spacing of 350 m where drilled with the objective of determining the top groundwater quality in the coastal aquifer. At the same time, we collected the chemical and physical parameters of the surface waters. The data collected in the field show that a fresh groundwater lens is still present in the aquifer of the backshore area below the coastal dunes and that the surface water is all brackish to salty. In the northern part of the study area, the fresh groundwater lens in the backshore zone is missing, as dunes were eroded and a series of saltwater ponds are present right behind the active dunes. The central part of the study area is characterised by the presence an active dune system and of a large pond in the innermost side of the backshore. In this case, there is a narrow freshwater lens in the aquifer of the active dunes area, whereas inland the aquifer is completely salty up to the agricultural fields. The southern area has the best preserved and tallest dunes and do not contain any pond. Here, the freshwater lens in the aquifer is wider than everywhere else and the aquifer becomes salty only where the drainage ditches are causing upcoming of deeper salty groundwater. This study has recognized the importance of coastal dunes in counteracting saltwater intrusion in the phreatic aquifer. Therefore, it is important to consider measures and interventions in order to preserve the integrity of the dunes not only for the purposes of avoiding shoreline erosion and coastal ecosystem destruction but also for freshwater resources protection. On the other hand, in low level coastal areas, drainage and the construction of ponds may enhance seawater upcoming. In this Italian case, a socio-economical modelling has to be developed to help decision making in both water and economical management to step toward an integrated water resource management. In the Terceira Island, a spatial interaction model has been developed including land and water uses combined with economical sectors related to Corine-Land-Cover (i.e. CLC) classification applied to urban areas and its surroundings. The spatial competition between different economical sectors and population pressures for land use and water use is resulting from the calibration of bid-rents. This economical model requires a dataset based on the spatial distribution of population, land uses and the calculation of distances between each economical sector including socio-economical indicators (i.e. employment, labor productivity, human consumption, land aptitude and water availability). Model results have been integrated to a GIS which has also been used for the dataset development. Climate change scenario, water uses and planning options are also included in this economical modeling tool that can already simulate future water demand for the Terceira Island. In this Portuguese case study a coastal hydrogeological analysis will be implemented within the Waterknow project to help decision making to integrate the coastal freshwater vulnerability and its seasonal fluctuations into the economical, urban and water management plans. In the Taheddart basin, both economical and hydrogeological analysis are lacking and the Waterknow project objective is to integrate and to apply the previous achievements (i.e. hydrogeological and economical spatially distributed models) to simulate water demand evolution and coastal freshwater vulnerability in the frame of climate change and sea level rise. In the Moroccan case a land use analysis is undertaken using SPOT5 images and an object oriented classification methodology. This remote sensing approach has to provide spatial data to be included in to a GIS to feed the economical model adapted from the Portuguese case study. This methodology will also be applied to both Terceira Island and Fiumi Uniti Bevano basin to update and enhance existing CLC data. In the three cases water management issues are strongly felt among the number of stakeholders and the lack of integration of both hydrological and economical knowledge. The Waterknow project tries to step forward this challenge to adapt and enhance IWRM practices to climate change issues in an interdisciplinary approach.
Green, Timothy W.; Slone, Daniel H.; Swain, Eric D.; Cherkiss, Michael S.; Lohmann, Melinda; Mazzotti, Frank J.; Rice, Kenneth G.
2010-01-01
As part of the U.S. Geological Survey Priority Ecosystems Science (PES) initiative to provide the ecological science required during Everglades restoration, we have integrated current regional hydrologic models with American crocodile (Crocodylus acutus) research and monitoring data to create a model that assesses the potential impact of Comprehensive Everglades Restoration Plan (CERP) efforts on the American crocodile. A list of indicators was created by the Restoration Coordination and Verification (RECOVER) component of CERP to help determine the success of interim restoration goals. The American crocodile was established as an indicator of the ecological condition of mangrove estuaries due to its reliance upon estuarine environments characterized by low salinity and adequate freshwater inflow. To gain a better understanding of the potential impact of CERP restoration efforts on the American crocodile, a spatially explicit crocodile population model has been created that has the ability to simulate the response of crocodiles to various management strategies for the South Florida ecosystem. The crocodile model uses output from the Tides and Inflows in the Mangroves of the Everglades (TIME) model, an application of the Flow and Transport in a Linked Overland/Aquifer Density Dependent System (FTLOADDS) simulator. TIME has the capability to link to the South Florida Water Management Model (SFWMM), which is the primary regional tool used to assess CERP restoration scenarios. A crocodile habitat suitability index and spatial parameter maps that reflect salinity, water depth, habitat, and nesting locations are used as driving functions to construct crocodile finite rate of increase maps under different management scenarios. Local stage-structured models are integrated with a spatial landscape grid to display crocodile movement behavior in response to changing environmental conditions. Restoration efforts are expected to affect salinity levels throughout the habitat of the American crocodile. This modeling effort examines how CERP restoration alternatives will affect growth and survival rates of hatchling and juvenile crocodiles, hatchling dispersal to suitable nursery habitat, and relative abundance and distribution in response to changing salinity and water depth for all stage classes of crocodiles. The response of the American crocodile to restoration efforts will provide a quantifiable measure of restoration success. By applying the crocodile model to proposed restoration alternatives and predicting population responses, we can choose alternatives that approximate historical conditions, enhance habitat for multiple species, and identify future research needs.
Hiding in Plain Sight: A Case for Cryptic Metapopulations in Brook Trout (Salvelinus fontinalis)
Kazyak, David C.; Hilderbrand, Robert H.; King, Tim L.; Keller, Stephen R.; Chhatre, Vikram E.
2016-01-01
A fundamental issue in the management and conservation of biodiversity is how to define a population. Spatially contiguous fish occupying a stream network have often been considered to represent a single, homogenous population. However, they may also represent multiple discrete populations, a single population with genetic isolation-by-distance, or a metapopulation. We used microsatellite DNA and a large-scale mark-recapture study to assess population structure in a spatially contiguous sample of Brook Trout (Salvelinus fontinalis), a species of conservation concern. We found evidence for limited genetic exchange across small spatial scales and in the absence of barriers to physical movement. Mark-recapture and stationary passive integrated transponder antenna records demonstrated that fish from two tributaries very seldom moved into the opposite tributary, but movements between the tributaries and mainstem were more common. Using Bayesian genetic clustering, we identified two genetic groups that exhibited significantly different growth rates over three years of study, yet survival rates were very similar. Our study highlights the importance of considering the possibility of multiple genetically distinct populations occurring within spatially contiguous habitats, and suggests the existence of a cryptic metapopulation: a spatially continuous distribution of organisms exhibiting metapopulation-like behaviors. PMID:26730588
Range-wide wetland associations of the King Rail: A multi-scale approach
Glisson, Wesley J.; Conway, Courtney J.; Nadeau, Christopher P.; Borgmann, Kathi L.; Laxson, Thomas A.
2015-01-01
King Rail populations have declined and identifying wetland features that influence King Rail occupancy can help prevent further population declines. We integrated continent-wide marsh bird survey data with spatial wetland data from the National Wetland Inventory (NWI) to examine wetland features that influenced King Rail occupancy throughout the species’ range. We analyzed wetland data at 7 spatial scales to examine the scale(s) at which 68 wetland features were most strongly related to King Rail occupancy. Occupancy was most strongly associated with estuarine features and brackish and tidal saltwater regimes. King Rail occupancy was positively associated with emergent and scrub-shrub wetlands and negatively associated with forested wetlands. The best spatial scale for assessing King Rail occupancy differed among wetland features; we could not identify one spatial scale (among all wetland features) that best explained variation in occupancy. Future research on King Rail habitat that includes multiple spatial scales is more likely to identify the suite of features that influence occupancy. Our results indicate that NWI data may be useful for predicting occupancy based on broad habitat features across the King Rail’s range, which may help inform management decisions for this and other wetland-dependent birds.
Hiding in Plain Sight: A Case for Cryptic Metapopulations in Brook Trout (Salvelinus fontinalis).
Kazyak, David C; Hilderbrand, Robert H; King, Tim L; Keller, Stephen R; Chhatre, Vikram E
2016-01-01
A fundamental issue in the management and conservation of biodiversity is how to define a population. Spatially contiguous fish occupying a stream network have often been considered to represent a single, homogenous population. However, they may also represent multiple discrete populations, a single population with genetic isolation-by-distance, or a metapopulation. We used microsatellite DNA and a large-scale mark-recapture study to assess population structure in a spatially contiguous sample of Brook Trout (Salvelinus fontinalis), a species of conservation concern. We found evidence for limited genetic exchange across small spatial scales and in the absence of barriers to physical movement. Mark-recapture and stationary passive integrated transponder antenna records demonstrated that fish from two tributaries very seldom moved into the opposite tributary, but movements between the tributaries and mainstem were more common. Using Bayesian genetic clustering, we identified two genetic groups that exhibited significantly different growth rates over three years of study, yet survival rates were very similar. Our study highlights the importance of considering the possibility of multiple genetically distinct populations occurring within spatially contiguous habitats, and suggests the existence of a cryptic metapopulation: a spatially continuous distribution of organisms exhibiting metapopulation-like behaviors.
Level III Ecoregions of the Mississippi Alluvial Plain
Ecoregions for the Mississippi Alluvial Plain were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. By recognizing the spatial differences in the capacities and potentials of ecosystems, ecoregions stratify the environment by its probable response to disturbance (Bryce and others, 1999). These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and non-government organizations that are responsible for different types of resources within the same geographical areas (Omernik and others, 2000). The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of the spatial patterns and the composition of biotic and abiotic phenomena that affect or reflect differences in ecosystem quality and integrity (Wiken, 1986; Omernik, 1987, 1995). These phenomena include geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another regardless of the hierarchical level. A Roman numeral hierarchical scheme has been adopted for different levels for
Level IV Ecoregions of the Mississippi Alluvial Plain
Ecoregions for the Mississippi Alluvial Plain were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. By recognizing the spatial differences in the capacities and potentials of ecosystems, ecoregions stratify the environment by its probable response to disturbance (Bryce and others, 1999). These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and non-government organizations that are responsible for different types of resources within the same geographical areas (Omernik and others, 2000). The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of the spatial patterns and the composition of biotic and abiotic phenomena that affect or reflect differences in ecosystem quality and integrity (Wiken, 1986; Omernik, 1987, 1995). These phenomena include geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another regardless of the hierarchical level. A Roman numeral hierarchical scheme has been adopted for different levels for
Thermal management in MoS2 based integrated device using near-field radiation
NASA Astrophysics Data System (ADS)
Peng, Jiebin; Zhang, Gang; Li, Baowen
2015-09-01
Recently, wafer-scale growth of monolayer MoS2 films with spatial homogeneity is realized on SiO2 substrate. Together with the latest reported high mobility, MoS2 based integrated electronic devices are expected to be fabricated in the near future. Owing to the low lattice thermal conductivity in monolayer MoS2, and the increased transistor density accompanied with the increased power density, heat dissipation will become a crucial issue for these integrated devices. In this letter, using the formalism of fluctuation electrodynamics, we explored the near-field radiative heat transfer from a monolayer MoS2 to graphene. We demonstrate that in resonance, the maximum heat transfer via near-field radiation between MoS2 and graphene can be ten times higher than the in-plane lattice thermal conduction for MoS2 sheet. Therefore, an efficient thermal management strategy for MoS2 integrated device is proposed: Graphene sheet is brought into close proximity, 10-20 nm from MoS2 device; heat energy transfer from MoS2 to graphene via near-field radiation; this amount of heat energy then be conducted to contact due to ultra-high lattice thermal conductivity of graphene. Our work sheds light for developing cooling strategy for nano devices constructing with low thermal conductivity materials.
Linking phenology and biomass productivity in South Dakota mixed-grass prairie
Rigge, Matthew; Smart, Alexander; Wylie, Bruce; Gilmanov, Tagir; Johnson, Patricia
2013-01-01
Assessing the health of rangeland ecosystems based solely on annual biomass production does not fully describe plant community condition; the phenology of production can provide inferences on species composition, successional stage, and grazing impacts. We evaluate the productivity and phenology of western South Dakota mixed-grass prairie using 2000 to 2008 Moderate Resolution Imaging Spectrometer (MODIS) normalized difference vegetation index (NDVI) satellite imagery at 250 m spatial resolution. Growing season NDVI images were integrated weekly to produce time-integrated NDVI (TIN), a proxy of total annual biomass production, and integrated seasonally to represent annual production by cool (C3) and warm (C4) season species. Additionally, a variety of phenological indicators including cool season percentage of TIN were derived from the seasonal profiles of NDVI. Cool season percentage and TIN were combined to generate vegetation classes, which served as proxies of plant community condition. TIN decreased with precipitation from east to west across the study area. Alternatively, cool season percentage increased from east to west, following patterns related to the reliability (interannual coefficient of variation [CV]) and quantity of mid-summer precipitation. Cool season TIN averaged 76.8% of total. Seasonal accumulation of TIN corresponded closely (R2 > 0.90) to that of gross photosynthesis data from a carbon flux tower. Field-collected biomass and community composition data were strongly related to the TIN and cool season percentage products. The patterns of vegetation classes were responsive to topographic, edaphic, and land management influences on plant communities. Accurate maps of biomass production, cool/warm season composition, and vegetation classes can improve the efficiency of land management by adjusting stocking rates and season of use to maximize rangeland productivity and achieve conservation objectives. Further, our results clarify the spatial and temporal dynamics of phenology and TIN in mixed-grass prairie.
Application of the Sketch Match method in Sulina coastal study area within PEGASO project
NASA Astrophysics Data System (ADS)
Marin, Eugenia; Nichersu, Iuliana; Mierla, Marian; Trifanov, Cristian; Nichersu, Iulian
2013-04-01
The Sketch Match approach for Sulina pilot case was carried out in the frame of the project "People for Ecosystem Based Governance in Assessing Sustainable Development of Ocean and Coast" - PEGASO, funded by the Seventh Framework Programme. The PEGASO project has been designed to identify common threats and solutions in relation to the long-term sustainable development and environmental protection of coastal zones bordering the Mediterranean and Black Seas in ways relevant to the implementation of the Integrated Coastal Zone Management Protocol (ICZM) for the Mediterranean. PEGASO will use the model of the existing ICZM Protocol for the Mediterranean and adjust it to the needs of the Black Sea through innovative actions, one of them being Refine and develop efficient and easy to use tools for making sustainability assessments in the coastal zone tested through a number of relevant pilot sites. Thus, for the Romania case study, the Sketch Match approach was selected, being an interactive public participation planning method, developed by the Dutch Government, and applied for Sulina area in order to stimulate support and involvement from stakeholders regarding Integrated Coastal Zone Management Protocol by consulting and involving these people in the planning process and making use of a coherent package of interactive methods. Participants were representatives of a wide range of stakeholders, varying from local fisherman to representatives of the Local and County council and Danube Delta Biosphere Reserve Authority. They participated in a two-day design session, focused on problems and potentials of the area, with the aim to work out possible solutions for an integrated coastal spatial planning, focusing on the parallel enhance of the various local functions in the spatial design (coastal area protection next to industry, tourism, nature, recreation, and other activities).
Skoulikidis, Nikolaos T; Sabater, Sergi; Datry, Thibault; Morais, Manuela M; Buffagni, Andrea; Dörflinger, Gerald; Zogaris, Stamatis; Del Mar Sánchez-Montoya, Maria; Bonada, Nuria; Kalogianni, Eleni; Rosado, Joana; Vardakas, Leonidas; De Girolamo, Anna Maria; Tockner, Klement
2017-01-15
Non-perennial rivers and streams (NPRS) cover >50% of the global river network. They are particularly predominant in Mediterranean Europe as a result of dry climate conditions, climate change and land use development. Historically, both scientists and policy makers underestimated the importance of NRPS for nature and humans alike, mainly because they have been considered as systems of low ecological and economic value. During the past decades, diminishing water resources have increased the spatial and temporal extent of artificial NPRS as well as their exposure to multiple stressors, which threatening their ecological integrity, biodiversity and ecosystem services. In this paper, we provide a comprehensive overview of the structural and functional characteristics of NPRS in the European Mediterranean, and discuss gaps and problems in their management, concerning their typology, ecological assessment, legislative and policy protection, and incorporation in River Basin Management Plans. Because NPRS comprise highly unstable ecosystems, with strong and often unpredictable temporal and spatial variability - at least as far as it is possible to assess - we outline the future research needs required to better understand, manage and conserve them as highly valuable and sensitive ecosystems. Efficient collaborative activities among multidisciplinary research groups aiming to create innovative knowledge, water managers and policy makers are urgently needed in order to establish an appropriate methodological and legislative background. The incorporation of NPRS in EU-Med River Basin Management Plans in combination with the application of ecological flows is a first step towards enhancing NPRS management and conservation in order to effectively safeguard these highly valuable albeit threatened ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Thomson, A. M.; Izaurralde, R. C.; Calvin, K.; Zhang, X.; Wise, M.; West, T. O.
2010-12-01
Climate change and food security are global issues increasingly linked through human decision making that takes place across all scales from on-farm management actions to international climate negotiations. Understanding how agricultural systems can respond to climate change, through mitigation or adaptation, while still supplying sufficient food to feed a growing global population, thus requires a multi-sector tool in a global economic framework. Integrated assessment models are one such tool, however they are typically driven by historical aggregate statistics of production in combination with exogenous assumptions of future trends in agricultural productivity; they are not yet capable of exploring agricultural management practices as climate adaptation or mitigation strategies. Yet there are agricultural models capable of detailed biophysical modeling of farm management and climate impacts on crop yield, soil erosion and C and greenhouse gas emissions, although these are typically applied at point scales that are incompatible with coarse resolution integrated assessment modeling. To combine the relative strengths of these modeling systems, we are using the agricultural model EPIC (Environmental Policy Integrated Climate), applied in a geographic data framework for regional analyses, to provide input to the global economic model GCAM (Global Change Assessment Model). The initial phase of our approach focuses on a pilot region of the Midwest United States, a highly productive agricultural area. We apply EPIC, a point based biophysical process model, at 60 m spatial resolution within this domain and aggregate the results to GCAM agriculture and land use subregions for the United States. GCAM is then initialized with multiple management options for key food and bioenergy crops. Using EPIC to distinguish these management options based on grain yield, residue yield, soil C change and cost differences, GCAM then simulates the optimum distribution of the available management options to meet demands for food and energy over the next century. The coupled models provide a new platform for evaluating future changes in agricultural management based on food demand, bioenergy demand, and changes in crop yield and soil C under a changing climate. This framework can be applied to evaluate the economically and biophysically optimal distribution of management under future climates.
Villarreal, Miguel; Labiosa, Bill; Aiello, Danielle
2017-05-23
The Puget Sound Basin, Washington, has experienced rapid urban growth in recent decades, with varying impacts to local ecosystems and natural resources. To plan for future growth, land managers often use scenarios to assess how the pattern and volume of growth may affect natural resources. Using three different land-management scenarios for the years 2000–2060, we assessed various spatial patterns of urban growth relative to maps depicting a model-based characterization of the ecological integrity and recent development pressure of individual land parcels. The three scenarios depict future trajectories of land-use change under alternative management strategies—status quo, managed growth, and unconstrained growth. The resulting analysis offers a preliminary assessment of how future growth patterns in the Puget Sound Basin may impact land targeted for conservation and how short-term metrics of land-development pressure compare to longer term growth projections.
Definition, Capabilities, and Components of a Terrestrial Carbon Monitoring System
NASA Technical Reports Server (NTRS)
West, Tristram O.; Brown, Molly E.; Duren, Riley M.; Ogle, Stephen M.; Moss, Richard H.
2013-01-01
Research efforts for effectively and consistently monitoring terrestrial carbon are increasing in number. As such, there is a need to define carbon monitoring and how it relates to carbon cycle science and carbon management. There is also a need to identify capabilities of a carbon monitoring system and the system components needed to develop the capabilities. Capabilities that enable the effective application of a carbon monitoring system for monitoring and management purposes may include: reconciling carbon stocks and fluxes, developing consistency across spatial and temporal scales, tracking horizontal movement of carbon, attribution of emissions to originating sources, cross-sectoral accounting, uncertainty quantification, redundancy and policy relevance. Focused research is needed to integrate these capabilities for sustained estimates of carbon stocks and fluxes. Additionally, if monitoring is intended to inform management decisions, management priorities should be considered prior to development of a monitoring system.
Cros, Annick; Ahamad Fatan, Nurulhuda; White, Alan; Teoh, Shwu Jiau; Tan, Stanley; Handayani, Christian; Huang, Charles; Peterson, Nate; Venegas Li, Ruben; Siry, Hendra Yusran; Fitriana, Ria; Gove, Jamison; Acoba, Tomoko; Knight, Maurice; Acosta, Renerio; Andrew, Neil; Beare, Doug
2014-01-01
In this paper we describe the construction of an online GIS database system, hosted by WorldFish, which stores bio-physical, ecological and socio-economic data for the ‘Coral Triangle Area’ in South-east Asia and the Pacific. The database has been built in partnership with all six (Timor-Leste, Malaysia, Indonesia, The Philippines, Solomon Islands and Papua New Guinea) of the Coral Triangle countries, and represents a valuable source of information for natural resource managers at the regional scale. Its utility is demonstrated using biophysical data, data summarising marine habitats, and data describing the extent of marine protected areas in the region. PMID:24941442
GIS-based Landing-Site Analysis and Passive Decision Support
NASA Astrophysics Data System (ADS)
van Gasselt, Stephan; Nass, Andrea
2016-04-01
The increase of surface coverage and the availability and accessibility of planetary data allow researchers and engineers to remotely perform detailed studies on surface processes and properties, in particular on objects such as Mars and the Moon for which Terabytes of multi-temporal data at multiple spatial resolution levels have become available during the last 15 years. Orbiters, rovers and landers have been returning information and insights into the surface evolution of the terrestrial planets in unprecedented detail. While rover- and lander-based analyses are one major research aim to obtain ground truth, resource exploration or even potential establishment of bases using autonomous platforms are others and they require detailed investigation of settings in order to identify spots on the surface that are suitable for spacecraft to land and operate safely and over a long period of time. What has been done using hardcopy material in the past is today being carried by using either in-house developments or off-the-shelf spatial information system technology which allows to manage, integrate and analyse data as well as visualize and create user-defined reports for performing assessments. Usually, such analyses can be broken down (manually) by considering scientific wishes, engineering boundary conditions, potential hazards and various tertiary constraints. We here (1) review standard tasks of landing site analyses, (2) discuss issues inherently related to the analysis using integrated spatial analysis systems and (3) demonstrate a modular analysis framework for integration of data and for the evaluation of results from individual tasks in order to support decisions for landing-site selection.
NASA Astrophysics Data System (ADS)
Kaplan, Isaac C.; Horne, Peter J.; Levin, Phillip S.
2012-09-01
End-to-end marine ecosystem models link climate and oceanography to the food web and human activities. These models can be used as forecasting tools, to strategically evaluate management options and to support ecosystem-based management. Here we report the results of such forecasts in the California Current, using an Atlantis end-to-end model. We worked collaboratively with fishery managers at NOAA’s regional offices and staff at the National Marine Sanctuaries (NMS) to explore the impact of fishery policies on management objectives at different spatial scales, from single Marine Sanctuaries to the entire Northern California Current. In addition to examining Status Quo management, we explored the consequences of several gear switching and spatial management scenarios. Of the scenarios that involved large scale management changes, no single scenario maximized all performance metrics. Any policy choice would involve trade-offs between stakeholder groups and policy goals. For example, a coast-wide 25% gear shift from trawl to pot or longline appeared to be one possible compromise between an increase in spatial management (which sacrificed revenue) and scenarios such as the one consolidating bottom impacts to deeper areas (which did not perform substantially differently from Status Quo). Judged on a coast-wide scale, most of the scenarios that involved minor or local management changes (e.g. within Monterey Bay NMS only) yielded results similar to Status Quo. When impacts did occur in these cases, they often involved local interactions that were difficult to predict a priori based solely on fishing patterns. However, judged on the local scale, deviation from Status Quo did emerge, particularly for metrics related to stationary species or variables (i.e. habitat and local metrics of landed value or bycatch). We also found that isolated management actions within Monterey Bay NMS would cause local fishers to pay a cost for conservation, in terms of reductions in landed value. However, this cost was minimal when local conservation actions were part of a concerted coast-wide plan. The simulations demonstrate the utility of using the Atlantis end-to-end ecosystem model within NOAA’s Integrated Ecosystem Assessment, by illustrating an end-to-end modeling tool that allows consideration of multiple management alternatives that are relevant to numerous state, federal and private interests.
Chappell, A; Li, Y; Yu, H Q; Zhang, Y Z; Li, X Y
2015-06-01
The caesium-137 ((137)Cs) technique for estimating net, time-integrated soil redistribution by the processes of wind, water and tillage is increasingly being used with repeated sampling to form a baseline to evaluate change over small (years to decades) timeframes. This interest stems from knowledge that since the 1950s soil redistribution has responded dynamically to different phases of land use change and management. Currently, there is no standard approach to detect change in (137)Cs-derived net soil redistribution and thereby identify the driving forces responsible for change. We outline recent advances in space-time sampling in the soil monitoring literature which provide a rigorous statistical and pragmatic approach to estimating the change over time in the spatial mean of environmental properties. We apply the space-time sampling framework, estimate the minimum detectable change of net soil redistribution and consider the information content and cost implications of different sampling designs for a study area in the Chinese Loess Plateau. Three phases (1954-1996, 1954-2012 and 1996-2012) of net soil erosion were detectable and attributed to well-documented historical change in land use and management practices in the study area and across the region. We recommend that the design for space-time sampling is considered carefully alongside cost-effective use of the spatial mean to detect and correctly attribute cause of change over time particularly across spatial scales of variation. Copyright © 2015 Elsevier Ltd. All rights reserved.
wayGoo: a platform for geolocating and managing indoor and outdoor spaces
NASA Astrophysics Data System (ADS)
Thomopoulos, Stelios C. A.; Karafylli, Christina; Karafylli, Maria; Motos, Dionysis; Lampropoulos, Vassilis; Dimitros, Kostantinos; Margonis, Christos
2016-05-01
wayGoo2 is a platform for Geolocating and Managing indoor and outdoor spaces and content with multidimensional indoor and outdoor Navigation and Guidance. Its main components are a Geographic Information System, a back-end server, front-end applications and a web-based Content Management System (CMS). It constitutes a fully integrated 2D/3D space and content management system that creates a repository that consists of a database, content components and administrative data. wayGoo can connect to any third party database and event management data-source. The platform is secure as the data is only available through a Restful web service using https security protocol in conjunction with an API key used for authentication. To enhance users experience, wayGoo makes the content available by extracting components out of the repository and constructing targeted applications. The wayGoo platform supports geo-referencing of indoor and outdoor information and use of metadata. It also allows the use of existing information such as maps and databases. The platform enables planning through integration of content that is connected either spatially, temporally or contextually, and provides immediate access to all spatial data through interfaces and interactive 2D and 3D representations. wayGoo constitutes a mean to document and preserve assets through computerized techniques and provides a system that enhances the protection of your space, people and guests when combined with wayGoo notification and alert system. It constitutes a strong marketing tool providing staff and visitors with an immersive tool for navigation in indoor spaces and allowing users to organize their agenda and to discover events through wayGoo event scheduler and recommendation system. Furthermore, the wayGoo platform can be used in Security applications and event management, e.g. CBRNE incidents, man-made and natural disasters, etc., to document and geolocate information and sensor data (off line and real time) on one end, and offer navigation capabilities in indoor and outdoor spaces. Furthermore, the wayGoo platform can be used for the creation of immersive environments and experiences in conjunction with VR/AR (Virtual and Augmented Reality) technologies.
Carlson, Abby G; Rowe, Ellen; Curby, Timothy W
2013-01-01
Recent research has established a connection between children's fine motor skills and their academic performance. Previous research has focused on fine motor skills measured prior to elementary school, while the present sample included children ages 5-18 years old, making it possible to examine whether this link remains relevant throughout childhood and adolescence. Furthermore, the majority of research linking fine motor skills and academic achievement has not determined which specific components of fine motor skill are driving this relation. The few studies that have looked at associations of separate fine motor tasks with achievement suggest that copying tasks that tap visual-spatial integration skills are most closely related to achievement. The present study examined two separate elements of fine motor skills--visual-motor coordination and visual-spatial integration--and their associations with various measures of academic achievement. Visual-motor coordination was measured using tracing tasks, while visual-spatial integration was measured using copy-a-figure tasks. After controlling for gender, socioeconomic status, IQ, and visual-motor coordination, and visual-spatial integration explained significant variance in children's math and written expression achievement. Knowing that visual-spatial integration skills are associated with these two achievement domains suggests potential avenues for targeted math and writing interventions for children of all ages.
RADSS: an integration of GIS, spatial statistics, and network service for regional data mining
NASA Astrophysics Data System (ADS)
Hu, Haitang; Bao, Shuming; Lin, Hui; Zhu, Qing
2005-10-01
Regional data mining, which aims at the discovery of knowledge about spatial patterns, clusters or association between regions, has widely applications nowadays in social science, such as sociology, economics, epidemiology, crime, and so on. Many applications in the regional or other social sciences are more concerned with the spatial relationship, rather than the precise geographical location. Based on the spatial continuity rule derived from Tobler's first law of geography: observations at two sites tend to be more similar to each other if the sites are close together than if far apart, spatial statistics, as an important means for spatial data mining, allow the users to extract the interesting and useful information like spatial pattern, spatial structure, spatial association, spatial outlier and spatial interaction, from the vast amount of spatial data or non-spatial data. Therefore, by integrating with the spatial statistical methods, the geographical information systems will become more powerful in gaining further insights into the nature of spatial structure of regional system, and help the researchers to be more careful when selecting appropriate models. However, the lack of such tools holds back the application of spatial data analysis techniques and development of new methods and models (e.g., spatio-temporal models). Herein, we make an attempt to develop such an integrated software and apply it into the complex system analysis for the Poyang Lake Basin. This paper presents a framework for integrating GIS, spatial statistics and network service in regional data mining, as well as their implementation. After discussing the spatial statistics methods involved in regional complex system analysis, we introduce RADSS (Regional Analysis and Decision Support System), our new regional data mining tool, by integrating GIS, spatial statistics and network service. RADSS includes the functions of spatial data visualization, exploratory spatial data analysis, and spatial statistics. The tool also includes some fundamental spatial and non-spatial database in regional population and environment, which can be updated by external database via CD or network. Utilizing this data mining and exploratory analytical tool, the users can easily and quickly analyse the huge mount of the interrelated regional data, and better understand the spatial patterns and trends of the regional development, so as to make a credible and scientific decision. Moreover, it can be used as an educational tool for spatial data analysis and environmental studies. In this paper, we also present a case study on Poyang Lake Basin as an application of the tool and spatial data mining in complex environmental studies. At last, several concluding remarks are discussed.
NASA Astrophysics Data System (ADS)
Wang, J.; Cai, X.
2007-12-01
A water resources system can be defined as a large-scale spatial system, within which distributed ecological system interacts with the stream network and ground water system. Water resources management, the causative factors and hence the solutions to be developed have a significant spatial dimension. This motivates a modeling analysis of water resources management within a spatial analytical framework, where data is usually geo- referenced and in the form of a map. One of the important functions of Geographic information systems (GIS) is to identify spatial patterns of environmental variables. The role of spatial patterns in water resources management has been well established in the literature particularly regarding how to design better spatial patterns for satisfying the designated objectives of water resources management. Evolutionary algorithms (EA) have been demonstrated to be successful in solving complex optimization models for water resources management due to its flexibility to incorporate complex simulation models in the optimal search procedure. The idea of combining GIS and EA motivates the development and application of spatial evolutionary algorithms (SEA). SEA assimilates spatial information into EA, and even changes the representation and operators of EA. In an EA used for water resources management, the mathematical optimization model should be modified to account the spatial patterns; however, spatial patterns are usually implicit, and it is difficult to impose appropriate patterns to spatial data. Also it is difficult to express complex spatial patterns by explicit constraints included in the EA. The GIS can help identify the spatial linkages and correlations based on the spatial knowledge of the problem. These linkages are incorporated in the fitness function for the preference of the compatible vegetation distribution. Unlike a regular GA for spatial models, the SEA employs a special hierarchical hyper-population and spatial genetic operators to represent spatial variables in a more efficient way. The hyper-population consists of a set of populations, which correspond to the spatial distributions of the individual agents (organisms). Furthermore spatial crossover and mutation operators are designed in accordance with the tree representation and then applied to both organisms and populations. This study applies the SEA to a specific problem of water resources management- maximizing the riparian vegetation coverage in accordance with the distributed groundwater system in an arid region. The vegetation coverage is impacted greatly by the nonlinear feedbacks and interactions between vegetation and groundwater and the spatial variability of groundwater. The SEA is applied to search for an optimal vegetation configuration compatible to the groundwater flow. The results from this example demonstrate the effectiveness of the SEA. Extension of the algorithm for other water resources management problems is discussed.
An Ecosystem Service Evaluation Tool to Support Ridge-to-Reef Management and Conservation in Hawaii
NASA Astrophysics Data System (ADS)
Oleson, K.; Callender, T.; Delevaux, J. M. S.; Falinski, K. A.; Htun, H.; Jin, G.
2014-12-01
Faced with increasing anthropogenic stressors and diverse stakeholders, local managers are adopting a ridge-to-reef and multi-objective management approach to restore declining coral reef health state. An ecosystem services framework, which integrates ecological indicators and stakeholder values, can foster more applied and integrated research, data collection, and modeling, and thus better inform the decision-making process and realize decision outcomes grounded in stakeholders' values. Here, we describe a research program that (i) leverages remotely sensed and empirical data to build an ecosystem services-based decision-support tool geared towards ridge-to-reef management; and (ii) applies it as part of a structured, value-based decision-making process to inform management in west Maui, a NOAA coral reef conservation priority site. The tool links terrestrial and marine biophysical models in a spatially explicit manner to quantify and map changes in ecosystem services delivery resulting from management actions, projected climate change impacts, and adaptive responses. We couple model outputs with localized valuation studies to translate ecosystem service outcomes into benefits and their associated socio-cultural and/or economic values. Managers can use this tool to run scenarios during their deliberations to evaluate trade-offs, cost-effectiveness, and equity implications of proposed policies. Ultimately, this research program aims at improving the effectiveness, efficiency, and equity outcomes of ecosystem-based management. This presentation will describe our approach, summarize initial results from the terrestrial modeling and economic valuations for west Maui, and highlight how this decision support tool benefits managers in west Maui.
NASA Astrophysics Data System (ADS)
Pontius, J.; Duncan, J.
2017-12-01
Land managers are often faced with balancing management activities to accomplish a diversity of management objectives, in systems faced with many stress agents. Advances in ecosystem modeling provide a rich source of information to inform management. Coupled with advances in decision support techniques and computing capabilities, interactive tools are now accessible for a broad audience of stakeholders. Here we present one such tool designed to capture information on how climate change may impact forested ecosystems, and how that impact varies spatially across the landscape. This tool integrates empirical models of current and future forest structure and function in a structured decision framework that allows users to customize weights for multiple management objectives and visualize suitability outcomes across the landscape. Combined with climate projections, the resulting products allow stakeholders to compare the relative success of various management objectives on a pixel by pixel basis and identify locations where management outcomes are most likely to be met. Here we demonstrate this approach with the integration of several of the preliminary models developed to map species distributions, sugar maple health, forest fragmentation risk and hemlock vulnerability to hemlock woolly adelgid under current and future climate scenarios. We compare three use case studies with objective weightings designed to: 1) Identify key parcels for sugarbush conservation and management, 2) Target state lands that may serve as hemlock refugia from hemlock woolly adelgid induced mortality, and 3) Examine how climate change may alter the success of managing for both sugarbush and hemlock across privately owned lands. This tool highlights the value of flexible models that can be easily run with customized weightings in a dynamic, integrated assessment that allows users to hone in on their potentially complex management objectives, and to visualize and prioritize locations across the landscape. It also demonstrates the importance of including climate considerations for long-term management. This merging of scientific knowledge with the diversity of stakeholder needs is an important step towards using science to inform management and policy decisions.
Design and implementation of spatial knowledge grid for integrated spatial analysis
NASA Astrophysics Data System (ADS)
Liu, Xiangnan; Guan, Li; Wang, Ping
2006-10-01
Supported by spatial information grid(SIG), the spatial knowledge grid (SKG) for integrated spatial analysis utilizes the middleware technology in constructing the spatial information grid computation environment and spatial information service system, develops spatial entity oriented spatial data organization technology, carries out the profound computation of the spatial structure and spatial process pattern on the basis of Grid GIS infrastructure, spatial data grid and spatial information grid (specialized definition). At the same time, it realizes the complex spatial pattern expression and the spatial function process simulation by taking the spatial intelligent agent as the core to establish space initiative computation. Moreover through the establishment of virtual geographical environment with man-machine interactivity and blending, complex spatial modeling, network cooperation work and spatial community decision knowledge driven are achieved. The framework of SKG is discussed systematically in this paper. Its implement flow and the key technology with examples of overlay analysis are proposed as well.
Blodgett, David L.
2013-01-01
The increasing availability of downscaled climate projections and other data products that summarize or predict climate conditions, is making climate data use more common in research and management. Scientists and decisionmakers often need to construct ensembles and compare climate hindcasts and future projections for particular spatial areas. These tasks generally require an investigator to procure all datasets of interest en masse, integrate the various data formats and representations into commonly accessible and comparable formats, and then extract the subsets of the datasets that are actually of interest. This process can be challenging and time intensive due to data-transfer, -storage, and(or) -processing limits, or unfamiliarity with methods of accessing climate data. Data management for modeling and assessing the impacts of future climate conditions is also becoming increasingly expensive due to the size of the datasets. The Climate Geo Data Portal (http://cida.usgs.gov/climate/gdp/) addresses these limitations, making access to numerous climate datasets for particular areas of interest a simple and efficient task.
Huang, Jinliang; Huang, Yaling; Zhang, Zhenyu
2014-01-01
Surface water samples of baseflow were collected from 20 headwater sub-watersheds which were classified into three types of watersheds (natural, urban and agricultural) in the flood, dry and transition seasons during three consecutive years (2010–2012) within a coastal watershed of Southeast China. Integrating spatial statistics with multivariate statistical techniques, river water quality variations and their interactions with natural and anthropogenic controls were examined to identify the causal factors and underlying mechanisms governing spatiotemporal patterns of water quality. Anthropogenic input related to industrial effluents and domestic wastewater, agricultural activities associated with the precipitation-induced surface runoff, and natural weathering process were identified as the potential important factors to drive the seasonal variations in stream water quality for the transition, flood and dry seasons, respectively. All water quality indicators except SRP had the highest mean concentrations in the dry and transition seasons. Anthropogenic activities and watershed characteristics led to the spatial variations in stream water quality in three types of watersheds. Concentrations of NH4 +-N, SRP, K+, CODMn, and Cl− were generally highest in urban watersheds. NO3 –N Concentration was generally highest in agricultural watersheds. Mg2+ concentration in natural watersheds was significantly higher than that in agricultural watersheds. Spatial autocorrelations analysis showed similar levels of water pollution between the neighboring sub-watersheds exhibited in the dry and transition seasons while non-point source pollution contributed to the significant variations in water quality between neighboring sub-watersheds. Spatial regression analysis showed anthropogenic controls played critical roles in variations of water quality in the JRW. Management implications were further discussed for water resource management. This research demonstrates that the coupled effects of natural and anthropogenic controls involved in watershed processes, contribute to the seasonal and spatial variation of headwater stream water quality in a coastal watershed with high spatial variability and intensive anthropogenic activities. PMID:24618771
Multi-Scale Approach for Predicting Fish Species Distributions across Coral Reef Seascapes
Pittman, Simon J.; Brown, Kerry A.
2011-01-01
Two of the major limitations to effective management of coral reef ecosystems are a lack of information on the spatial distribution of marine species and a paucity of data on the interacting environmental variables that drive distributional patterns. Advances in marine remote sensing, together with the novel integration of landscape ecology and advanced niche modelling techniques provide an unprecedented opportunity to reliably model and map marine species distributions across many kilometres of coral reef ecosystems. We developed a multi-scale approach using three-dimensional seafloor morphology and across-shelf location to predict spatial distributions for five common Caribbean fish species. Seascape topography was quantified from high resolution bathymetry at five spatial scales (5–300 m radii) surrounding fish survey sites. Model performance and map accuracy was assessed for two high performing machine-learning algorithms: Boosted Regression Trees (BRT) and Maximum Entropy Species Distribution Modelling (MaxEnt). The three most important predictors were geographical location across the shelf, followed by a measure of topographic complexity. Predictor contribution differed among species, yet rarely changed across spatial scales. BRT provided ‘outstanding’ model predictions (AUC = >0.9) for three of five fish species. MaxEnt provided ‘outstanding’ model predictions for two of five species, with the remaining three models considered ‘excellent’ (AUC = 0.8–0.9). In contrast, MaxEnt spatial predictions were markedly more accurate (92% map accuracy) than BRT (68% map accuracy). We demonstrate that reliable spatial predictions for a range of key fish species can be achieved by modelling the interaction between the geographical location across the shelf and the topographic heterogeneity of seafloor structure. This multi-scale, analytic approach is an important new cost-effective tool to accurately delineate essential fish habitat and support conservation prioritization in marine protected area design, zoning in marine spatial planning, and ecosystem-based fisheries management. PMID:21637787
Multi-scale approach for predicting fish species distributions across coral reef seascapes.
Pittman, Simon J; Brown, Kerry A
2011-01-01
Two of the major limitations to effective management of coral reef ecosystems are a lack of information on the spatial distribution of marine species and a paucity of data on the interacting environmental variables that drive distributional patterns. Advances in marine remote sensing, together with the novel integration of landscape ecology and advanced niche modelling techniques provide an unprecedented opportunity to reliably model and map marine species distributions across many kilometres of coral reef ecosystems. We developed a multi-scale approach using three-dimensional seafloor morphology and across-shelf location to predict spatial distributions for five common Caribbean fish species. Seascape topography was quantified from high resolution bathymetry at five spatial scales (5-300 m radii) surrounding fish survey sites. Model performance and map accuracy was assessed for two high performing machine-learning algorithms: Boosted Regression Trees (BRT) and Maximum Entropy Species Distribution Modelling (MaxEnt). The three most important predictors were geographical location across the shelf, followed by a measure of topographic complexity. Predictor contribution differed among species, yet rarely changed across spatial scales. BRT provided 'outstanding' model predictions (AUC = >0.9) for three of five fish species. MaxEnt provided 'outstanding' model predictions for two of five species, with the remaining three models considered 'excellent' (AUC = 0.8-0.9). In contrast, MaxEnt spatial predictions were markedly more accurate (92% map accuracy) than BRT (68% map accuracy). We demonstrate that reliable spatial predictions for a range of key fish species can be achieved by modelling the interaction between the geographical location across the shelf and the topographic heterogeneity of seafloor structure. This multi-scale, analytic approach is an important new cost-effective tool to accurately delineate essential fish habitat and support conservation prioritization in marine protected area design, zoning in marine spatial planning, and ecosystem-based fisheries management.
Azandémè-Hounmalon, Ginette Y.; Fellous, Simon; Kreiter, Serge; Fiaboe, Komi K. M.; Subramanian, Sevgan; Kungu, Miriam; Martin, Thibaud
2014-01-01
Studying distribution is necessary to understand and manage the dynamics of species with spatially structured populations. Here we studied the distribution in Tetranychus evansi and T. urticae, two mite pests of tomato, in the scope of evaluating factors that can influence the effectiveness of Integrated Pest Management strategies. We found greater positive density-dependent distribution with T. evansi than T. urticae when assayed on single, detached tomato leaves. Indeed, T. evansi distribution among leaflets increased with initial population density while it was high even at low T. urticae densities. Intensity and rate of damage to whole plants was higher with T. evansi than T. urticae. We further studied the circadian migration of T. evansi within plant. When T. evansi density was high the distribution behavior peaked between 8 am and 3 pm and between 8 pm and 3 am local time of Kenya. Over 24 h the total number of mites ascending and descending was always similar and close to the total population size. The gregarious behavior of T. evansi combined with its rapid population growth rate, may explain why few tomato plants can be severely damaged by T. evansi and how suddenly all the crop can be highly infested. However the localisation and elimination of the first infested plants damaged by T. evansi could reduce the risk of outbreaks in the entire crop. These findings suggest also that an acaricide treated net placed on the first infested plants could be very effective to control T. evansi. Moreover circadian migration would therefore accentuate the efficiency of an acaricide treated net covering the infested plants. PMID:24743580
Steyaert, Louis T.; Loveland, Thomas R.; Brown, Jesslyn F.; Reed, Bradley C.
1993-01-01
Environmental modelers are testing and evaluating a prototype land cover characteristics database for the conterminous United States developed by the EROS Data Center of the U.S. Geological Survey and the University of Nebraska Center for Advanced Land Management Information Technologies. This database was developed from multi temporal, 1-kilometer advanced very high resolution radiometer (AVHRR) data for 1990 and various ancillary data sets such as elevation, ecological regions, and selected climatic normals. Several case studies using this database were analyzed to illustrate the integration of satellite remote sensing and geographic information systems technologies with land-atmosphere interactions models at a variety of spatial and temporal scales. The case studies are representative of contemporary environmental simulation modeling at local to regional levels in global change research, land and water resource management, and environmental simulation modeling at local to regional levels in global change research, land and water resource management and environmental risk assessment. The case studies feature land surface parameterizations for atmospheric mesoscale and global climate models; biogenic-hydrocarbons emissions models; distributed parameter watershed and other hydrological models; and various ecological models such as ecosystem, dynamics, biogeochemical cycles, ecotone variability, and equilibrium vegetation models. The case studies demonstrate the important of multi temporal AVHRR data to develop to develop and maintain a flexible, near-realtime land cover characteristics database. Moreover, such a flexible database is needed to derive various vegetation classification schemes, to aggregate data for nested models, to develop remote sensing algorithms, and to provide data on dynamic landscape characteristics. The case studies illustrate how such a database supports research on spatial heterogeneity, land use, sensitivity analysis, and scaling issues involving regional extrapolations and parameterizations of dynamic land processes within simulation models.
Measuring Global Water Security Towards Sustainable Development Goals
NASA Technical Reports Server (NTRS)
Gain, Animesh K.; Giupponi, Carlo; Wada, Yoshihide
2016-01-01
Water plays an important role in underpinning equitable, stable and productive societies and ecosystems. Hence, United Nations recognized ensuring water security as one (Goal 6) of the seventeen sustainable development goals (SDGs). Many international river basins are likely to experience 'low water security' over the coming decades. Water security is rooted not only in the physical availability of freshwater resources relative to water demand, but also on social and economic factors (e.g. sound water planning and management approaches, institutional capacity to provide water services, sustainable economic policies). Until recently, advanced tools and methods are available for the assessment of water scarcity. However, quantitative and integrated-physical and socio-economic-approaches for spatial analysis of water security at global level are not available yet. In this study, we present a spatial multi-criteria analysis framework to provide a global assessment of water security. The selected indicators are based on Goal 6 of SDGs. The term 'security' is conceptualized as a function of 'availability', 'accessibility to services', 'safety and quality', and 'management'. The proposed global water security index (GWSI) is calculated by aggregating indicator values on a pixel-by-pixel basis, using the ordered weighted average method, which allows for the exploration of the sensitivity of final maps to different attitudes of hypothetical policy makers. Our assessment suggests that countries of Africa, South Asia and Middle East experience very low water security. Other areas of high water scarcity, such as some parts of United States, Australia and Southern Europe, show better GWSI values, due to good performance of management, safety and quality, and accessibility. The GWSI maps show the areas of the world in which integrated strategies are needed to achieve water related targets of the SDGs particularly in the African and Asian continents.
AEGIS: a wildfire prevention and management information system
NASA Astrophysics Data System (ADS)
Kalabokidis, K.; Ager, A.; Finney, M.; Athanasis, N.; Palaiologou, P.; Vasilakos, C.
2015-10-01
A Web-GIS wildfire prevention and management platform (AEGIS) was developed as an integrated and easy-to-use decision support tool (http://aegis.aegean.gr). The AEGIS platform assists with early fire warning, fire planning, fire control and coordination of firefighting forces by providing access to information that is essential for wildfire management. Databases were created with spatial and non-spatial data to support key system functionalities. Updated land use/land cover maps were produced by combining field inventory data with high resolution multispectral satellite images (RapidEye) to be used as inputs in fire propagation modeling with the Minimum Travel Time algorithm. End users provide a minimum number of inputs such as fire duration, ignition point and weather information to conduct a fire simulation. AEGIS offers three types of simulations; i.e. single-fire propagations, conditional burn probabilities and at the landscape-level, similar to the FlamMap fire behavior modeling software. Artificial neural networks (ANN) were utilized for wildfire ignition risk assessment based on various parameters, training methods, activation functions, pre-processing methods and network structures. The combination of ANNs and expected burned area maps produced an integrated output map for fire danger prediction. The system also incorporates weather measurements from remote automatic weather stations and weather forecast maps. The structure of the algorithms relies on parallel processing techniques (i.e. High Performance Computing and Cloud Computing) that ensure computational power and speed. All AEGIS functionalities are accessible to authorized end users through a web-based graphical user interface. An innovative mobile application, AEGIS App, acts as a complementary tool to the web-based version of the system.
Aquatic biodiversity in forests: A weak link in ecosystem services resilience
Penaluna, Brooke E.; Olson, Deanna H.; Flitcroft, Rebecca L; Weber, Matthew A.; Bellmore, J. Ryan; Wondzell, Steven M.; Dunham, Jason B.; Johnson, Sherri L.; Reeves, Gordon H.
2017-01-01
The diversity of aquatic ecosystems is being quickly reduced on many continents, warranting a closer examination of the consequences for ecological integrity and ecosystem services. Here we describe intermediate and final ecosystem services derived from aquatic biodiversity in forests. We include a summary of the factors framing the assembly of aquatic biodiversity in forests in natural systems and how they change with a variety of natural disturbances and human-derived stressors. We consider forested aquatic ecosystems as a multi-state portfolio, with diverse assemblages and life-history strategies occurring at local scales as a consequence of a mosaic of habitat conditions and past disturbances and stressors. Maintaining this multi-state portfolio of assemblages requires a broad perspective of ecosystem structure, various functions, services, and management implications relative to contemporary stressors. Because aquatic biodiversity provides multiple ecosystem services to forests, activities that compromise aquatic ecosystems and biodiversity could be an issue for maintaining forest ecosystem integrity. We illustrate these concepts with examples of aquatic biodiversity and ecosystem services in forests of northwestern North America, also known as Northeast Pacific Rim. Encouraging management planning at broad as well as local spatial scales to recognize multi-state ecosystem management goals has promise for maintaining valuable ecosystem services. Ultimately, integration of information from socio-ecological ecosystems will be needed to maintain ecosystem services derived directly and indirectly from forest aquatic biota.
An Integrated Assessment Framework for land subsidence in Delta cities
NASA Astrophysics Data System (ADS)
Bucx, T.; van Ruiten, K.; Erkens, G.
2013-12-01
In many delta cities land subsidence exceeds absolute sea level rise up to a factor of ten. Without change, parts of Jakarta, Ho Chi Minh City, Bangkok and numerous other delta (and coastal) cities will sink below sea level. Increased flooding and also other wide¬spread impacts of land subsidence result already in damage of billions of dollars per year to roads, embankments, subsurface infrastructure and housing. Moreover the potential damage caused by increased flood risk is around the same amount of money. A major cause for severe land subsidence is excessive groundwater extraction related to rapid urbanization and population growth. A major rethink is needed to resolve the ';hidden' but urgent threat of subsidence in a multi-sectoral perspective. A comprehensive approach is presented to address land subsidence for more sustainable and resilient urban development. Land subsidence is an issue that involves many policy fields, complex technical aspects and governance. There is a need for an integrated approach in order to manage subsidence and to develop appropriate strategies and measures that are effective and efficient on both the short and long term. Urban (ground)water management, adaptive flood risk management and related spatial planning strategies should be taken into account. This presentation will introduce and illustrate an Integrated Assessment Framework (IAF) for land subsidence that has been developed in the European FP7 project Subcoast. This framework is based on an integrated (multi-sectoral) approach and can be used to gain insight in the complex aspects of subsidence, to raise awareness and to support decision making on appropriate adaptation strategies and measures. The IAF is addressing all aspects of subsidence: from primary causes, vulnerability, impacts and risks towards responses and solutions. It will also take into account the three spatial layers (Occupation, Network and Base layer), governance aspects and several scenarios (economic and/or climate change). Main questions to be addressed in an integrated approach: what are the main causes, how much is the current subsidence rate and what are future scenarios (and interaction with other major environmental issues), where are the vulnerable areas, what are the impacts and risks, how can adverse impacts can be mitigated or compensated for, and who is involved and responsible to act? In five case studies a quick-assessment of land subsidence is performed based on this Integrated Assessment Framework. The case studies involve the following mega-cities: Jakarta, Ho Chi Minh City, Dhaka, New Orleans and Bangkok. Results of these case studies will be presented in order to further develop and support a (generic) approach how to deal with subsidence in current and future subsidence-prone areas. Integrated Assessment Framework by Deltares
NASA Astrophysics Data System (ADS)
Boyes, G. A.; Ellul, C.; Irwin, D.
2017-10-01
The use of 3D information models within collaborative working environments and the practice of Building Information Modelling (BIM) are becoming more commonplace within infrastructure projects. Currently used predominantly during the design and construction phase, the use of BIM is capable in theory of providing the information at handover that will satisfy the Asset Information Requirements (AIRs) of the future Infrastructure Manager (IM). One particular challenge is establishing a link between existing construction-centric information and the asset-centric information needed for future operations. Crossrail, a project to build a new high-frequency railway underneath London, is handling many such challenges as they prepare to handover their digital information to the future operator, in particular the need to provide a two-way link between a federated 3D CAD model and an object-relational Asset Information Management System (AIMS). This paper focusses on the potential for improved Asset Management (AM) by integrating BIM and GIS systems and practices, and makes a preliminary report on how 3D spatial queries can be used to establish a two-way relational link between two information systems (3D geometry and asset lists), as well as the challenges being overcome to transform the data to be suitable for AM.
Integration of fisheries into marine spatial planning: Quo vadis?
NASA Astrophysics Data System (ADS)
Janßen, Holger; Bastardie, Francois; Eero, Margit; Hamon, Katell G.; Hinrichsen, Hans-Harald; Marchal, Paul; Nielsen, J. Rasmus; Le Pape, Olivier; Schulze, Torsten; Simons, Sarah; Teal, Lorna R.; Tidd, Alex
2018-02-01
The relationship between fisheries and marine spatial planning (MSP) is still widely unsettled. While several scientific studies highlight the strong relation between fisheries and MSP, as well as ways in which fisheries could be included in MSP, the actual integration of fisheries into MSP often fails. In this article, we review the state of the art and latest progress in research on various challenges in the integration of fisheries into MSP. The reviewed studies address a wide range of integration challenges, starting with techniques to analyse where fishermen actually fish, assessing the drivers for fishermen's behaviour, seasonal dynamics and long-term spatial changes of commercial fish species under various anthropogenic pressures along their successive life stages, the effects of spatial competition on fisheries and projections on those spaces that might become important fishing areas in the future, and finally, examining how fisheries could benefit from MSP. This paper gives an overview of the latest developments on concepts, tools, and methods. It becomes apparent that the spatial and temporal dynamics of fish and fisheries, as well as the definition of spatial preferences, remain major challenges, but that an integration of fisheries is already possible today.
Translating climate data for business decisions
NASA Astrophysics Data System (ADS)
Steinberg, N.
2015-12-01
Businesses are bound to play an integral role in global and local climate change adaptation efforts, and integrating climate science into business decision-making can help protect companies' bottom-line and the communities which they depend upon. Yet many companies do not have good means to measure and manage climate risks. There are inherent limiting factors to incorporating climate data into existing operations and sourcing strategies. Spatial and temporal incongruities between climate and business models can make integration cumbersome. Even when such incongruities are resolved, raw climate data must undergo multiple transformations until the data is deemed actionable or otherwise translatable in dollar terms. However, the predictability of future impacts is advancing along with the use of second-order variables such as Cooling Degree Days and Water-Limited Crop productivity, helping business managers make better decisions about future energy and water demand requirements under the prospect of rising temperatures and more variable rainfall. This presentation will discuss the methods and opportunities for transforming raw climate data into business metrics. Results for the 2015 Corporate Adaptation Survey, led by Four Twenty Seven and in partnership with Notre Dame Global Adaptation Index, will also be presented to illustrate existing gaps between climate science and its application in the business context.
A DBMS architecture for global change research
NASA Astrophysics Data System (ADS)
Hachem, Nabil I.; Gennert, Michael A.; Ward, Matthew O.
1993-08-01
The goal of this research is the design and development of an integrated system for the management of very large scientific databases, cartographic/geographic information processing, and exploratory scientific data analysis for global change research. The system will represent both spatial and temporal knowledge about natural and man-made entities on the eath's surface, following an object-oriented paradigm. A user will be able to derive, modify, and apply, procedures to perform operations on the data, including comparison, derivation, prediction, validation, and visualization. This work represents an effort to extend the database technology with an intrinsic class of operators, which is extensible and responds to the growing needs of scientific research. Of significance is the integration of many diverse forms of data into the database, including cartography, geography, hydrography, hypsography, images, and urban planning data. Equally important is the maintenance of metadata, that is, data about the data, such as coordinate transformation parameters, map scales, and audit trails of previous processing operations. This project will impact the fields of geographical information systems and global change research as well as the database community. It will provide an integrated database management testbed for scientific research, and a testbed for the development of analysis tools to understand and predict global change.
Characterization and Remediation of Contaminated Sites:Modeling, Measurement and Assessment
NASA Astrophysics Data System (ADS)
Basu, N. B.; Rao, P. C.; Poyer, I. C.; Christ, J. A.; Zhang, C. Y.; Jawitz, J. W.; Werth, C. J.; Annable, M. D.; Hatfield, K.
2008-05-01
The complexity of natural systems makes it impossible to estimate parameters at the required level of spatial and temporal detail. Thus, it becomes necessary to transition from spatially distributed parameters to spatially integrated parameters that are capable of adequately capturing the system dynamics, without always accounting for local process behavior. Contaminant flux across the source control plane is proposed as an integrated metric that captures source behavior and links it to plume dynamics. Contaminant fluxes were measured using an innovative technology, the passive flux meter at field sites contaminated with dense non-aqueous phase liquids or DNAPLs in the US and Australia. Flux distributions were observed to be positively or negatively correlated with the conductivity distribution, depending on the source characteristics of the site. The impact of partial source depletion on the mean contaminant flux and flux architecture was investigated in three-dimensional complex heterogeneous settings using the multiphase transport code UTCHEM and the reactive transport code ISCO3D. Source mass depletion reduced the mean contaminant flux approximately linearly, while the contaminant flux standard deviation reduced proportionally with the mean (i.e., coefficient of variation of flux distribution is constant with time). Similar analysis was performed using data from field sites, and the results confirmed the numerical simulations. The linearity of the mass depletion-flux reduction relationship indicates the ability to design remediation systems that deplete mass to achieve target reduction in source strength. Stability of the flux distribution indicates the ability to characterize the distributions in time once the initial distribution is known. Lagrangian techniques were used to predict contaminant flux behavior during source depletion in terms of the statistics of the hydrodynamic and DNAPL distribution. The advantage of the Lagrangian techniques lies in their small computation time and their inclusion of spatially integrated parameters that can be measured in the field using tracer tests. Analytical models that couple source depletion to plume transport were used for optimization of source and plume treatment. These models are being used for the development of decision and management tools (for DNAPL sites) that consider uncertainty assessments as an integral part of the decision-making process for contaminated site remediation.
Developing a bivariate spatial association measure: An integration of Pearson's r and Moran's I
NASA Astrophysics Data System (ADS)
Lee, Sang-Il
This research is concerned with developing a bivariate spatial association measure or spatial correlation coefficient, which is intended to capture spatial association among observations in terms of their point-to-point relationships across two spatial patterns. The need for parameterization of the bivariate spatial dependence is precipitated by the realization that aspatial bivariate association measures, such as Pearson's correlation coefficient, do not recognize spatial distributional aspects of data sets. This study devises an L statistic by integrating Pearson's r as an aspatial bivariate association measure and Moran's I as a univariate spatial association measure. The concept of a spatial smoothing scalar (SSS) plays a pivotal role in this task.
The Modular Modeling System (MMS): A toolbox for water- and environmental-resources management
Leavesley, G.H.; Markstrom, S.L.; Viger, R.J.; Hay, L.E.; ,
2005-01-01
The increasing complexity of water- and environmental-resource problems require modeling approaches that incorporate knowledge from a broad range of scientific and software disciplines. To address this need, the U.S. Geological Survey (USGS) has developed the Modular Modeling System (MMS). MMS is an integrated system of computer software for model development, integration, and application. Its modular design allows a high level of flexibility and adaptability to enable modelers to incorporate their own software into a rich array of built-in models and modeling tools. These include individual process models, tightly coupled models, loosely coupled models, and fully- integrated decision support systems. A geographic information system (GIS) interface, the USGS GIS Weasel, has been integrated with MMS to enable spatial delineation and characterization of basin and ecosystem features, and to provide objective parameter-estimation methods for models using available digital data. MMS provides optimization and sensitivity-analysis tools to analyze model parameters and evaluate the extent to which uncertainty in model parameters affects uncertainty in simulation results. MMS has been coupled with the Bureau of Reclamation object-oriented reservoir and river-system modeling framework, RiverWare, to develop models to evaluate and apply optimal resource-allocation and management strategies to complex, operational decisions on multipurpose reservoir systems and watersheds. This decision support system approach has been developed, tested, and implemented in the Gunnison, Yakima, San Joaquin, Rio Grande, and Truckee River basins of the western United States. MMS is currently being coupled with the U.S. Forest Service model SIMulating Patterns and Processes at Landscape Scales (SIMPPLLE) to assess the effects of alternative vegetation-management strategies on a variety of hydrological and ecological responses. Initial development and testing of the MMS-SIMPPLLE integration is being conducted on the Colorado Plateau region of the western United Sates.
What Is the Evidence for Inter-laminar Integration in a Prefrontal Cortical Minicolumn?
Opris, Ioan; Chang, Stephano; Noga, Brian R
2017-01-01
The objective of this perspective article is to examine columnar inter-laminar integration during the executive control of behavior. The integration hypothesis posits that perceptual and behavioral signals are integrated within the prefrontal cortical inter-laminar microcircuits. Inter-laminar minicolumnar activity previously recorded from the dorsolateral prefrontal cortex (dlPFC) of nonhuman primates, trained in a visual delay match-to-sample (DMS) task, was re-assessed from an integrative perspective. Biomorphic multielectrode arrays (MEAs) played a unique role in the in vivo recording of columnar cell firing in the dlPFC layers 2/3 and 5/6. Several integrative aspects stem from these experiments: 1. Functional integration of perceptual and behavioral signals across cortical layers during executive control. The integrative effect of dlPFC minicolumns was shown by: (i) increased correlated firing on correct vs. error trials; (ii) decreased correlated firing when the number of non-matching images increased; and (iii) similar spatial firing preference across cortical-striatal cells during spatial-trials, and less on object-trials. 2. Causal relations to integration of cognitive signals by the minicolumnar turbo-engines. The inter-laminar integration between the perceptual and executive circuits was facilitated by stimulating the infra-granular layers with firing patterns obtained from supra-granular layers that enhanced spatial preference of percent correct performance on spatial trials. 3. Integration across hierarchical levels of the brain. The integration of intention signals (visual spatial, direction) with movement preparation (timing, velocity) in striatum and with the motor command and posture in midbrain is also discussed. These findings provide evidence for inter-laminar integration of executive control signals within brain's prefrontal cortical microcircuits.
Castrignanò, Annamaria; Quarto, Ruggiero; Vitti, Carolina; Langella, Giuliano; Terribile, Fabio
2017-01-01
To assess spatial variability at the very fine scale required by Precision Agriculture, different proximal and remote sensors have been used. They provide large amounts and different types of data which need to be combined. An integrated approach, using multivariate geostatistical data-fusion techniques and multi-source geophysical sensor data to determine simple summary scale-dependent indices, is described here. These indices can be used to delineate management zones to be submitted to differential management. Such a data fusion approach with geophysical sensors was applied in a soil of an agronomic field cropped with tomato. The synthetic regionalized factors determined, contributed to split the 3D edaphic environment into two main horizontal structures with different hydraulic properties and to disclose two main horizons in the 0–1.0-m depth with a discontinuity probably occurring between 0.40 m and 0.70 m. Comparing this partition with the soil properties measured with a shallow sampling, it was possible to verify the coherence in the topsoil between the dielectric properties and other properties more directly related to agronomic management. These results confirm the advantages of using proximal sensing as a preliminary step in the application of site-specific management. Combining disparate spatial data (data fusion) is not at all a naive problem and novel and powerful methods need to be developed. PMID:29207510
Castrignanò, Annamaria; Buttafuoco, Gabriele; Quarto, Ruggiero; Vitti, Carolina; Langella, Giuliano; Terribile, Fabio; Venezia, Accursio
2017-12-03
To assess spatial variability at the very fine scale required by Precision Agriculture, different proximal and remote sensors have been used. They provide large amounts and different types of data which need to be combined. An integrated approach, using multivariate geostatistical data-fusion techniques and multi-source geophysical sensor data to determine simple summary scale-dependent indices, is described here. These indices can be used to delineate management zones to be submitted to differential management. Such a data fusion approach with geophysical sensors was applied in a soil of an agronomic field cropped with tomato. The synthetic regionalized factors determined, contributed to split the 3D edaphic environment into two main horizontal structures with different hydraulic properties and to disclose two main horizons in the 0-1.0-m depth with a discontinuity probably occurring between 0.40 m and 0.70 m. Comparing this partition with the soil properties measured with a shallow sampling, it was possible to verify the coherence in the topsoil between the dielectric properties and other properties more directly related to agronomic management. These results confirm the advantages of using proximal sensing as a preliminary step in the application of site-specific management. Combining disparate spatial data (data fusion) is not at all a naive problem and novel and powerful methods need to be developed.
Linking river management to species conservation using dynamic landscape scale models
Freeman, Mary C.; Buell, Gary R.; Hay, Lauren E.; Hughes, W. Brian; Jacobson, Robert B.; Jones, John W.; Jones, S.A.; LaFontaine, Jacob H.; Odom, Kenneth R.; Peterson, James T.; Riley, Jeffrey W.; Schindler, J. Stephen; Shea, C.; Weaver, J.D.
2013-01-01
Efforts to conserve stream and river biota could benefit from tools that allow managers to evaluate landscape-scale changes in species distributions in response to water management decisions. We present a framework and methods for integrating hydrology, geographic context and metapopulation processes to simulate effects of changes in streamflow on fish occupancy dynamics across a landscape of interconnected stream segments. We illustrate this approach using a 482 km2 catchment in the southeastern US supporting 50 or more stream fish species. A spatially distributed, deterministic and physically based hydrologic model is used to simulate daily streamflow for sub-basins composing the catchment. We use geographic data to characterize stream segments with respect to channel size, confinement, position and connectedness within the stream network. Simulated streamflow dynamics are then applied to model fish metapopulation dynamics in stream segments, using hypothesized effects of streamflow magnitude and variability on population processes, conditioned by channel characteristics. The resulting time series simulate spatially explicit, annual changes in species occurrences or assemblage metrics (e.g. species richness) across the catchment as outcomes of management scenarios. Sensitivity analyses using alternative, plausible links between streamflow components and metapopulation processes, or allowing for alternative modes of fish dispersal, demonstrate large effects of ecological uncertainty on model outcomes and highlight needed research and monitoring. Nonetheless, with uncertainties explicitly acknowledged, dynamic, landscape-scale simulations may prove useful for quantitatively comparing river management alternatives with respect to species conservation.
Human Impacts on the Hydrologic Cycle: Comparing Global Climate Change and Local Water Management
NASA Astrophysics Data System (ADS)
Ferguson, I. M.; Maxwell, R. M.
2010-12-01
Anthropogenic climate change is significantly altering the hydrologic cycle at global and regional scales, with potentially devastating impacts on water resources. Recent studies demonstrate that hydrologic response to climate change will depend on local-scale feedbacks between groundwater, surface water, and land surface processes. These studies suggest that local water management practices that alter the quantity and distribution of water in the terrestrial system—e.g., groundwater pumping and irrigation—may also feed back across the hydrologic cycle, with impacts on land-atmosphere fluxes and thus weather and climate. Here we use an integrated hydrologic model to compare the impacts of large-scale climate change and local water management practices on water and energy budgets at local and watershed scales. We consider three climate scenarios (hot, hot+wet, and hot+dry) and three management scenarios (pumping only, irrigation only, and pumping+irrigation). Results demonstrate that impacts of local water management on basin-integrated groundwater storage, evapotranspiration, and stream discharge are comparable to those of changing climate conditions. However, impacts of climate change are shown to have a smaller magnitude and greater spatial extent, while impacts of pumping and irrigation are shown to have a greater magnitude but are local to areas where pumping and irrigation occur. These results have important implications regarding the scales of human impacts on both water resources and climate and the sustainability of water resources.
NASA Astrophysics Data System (ADS)
Řezník, T.; Kepka, M.; Charvát, K.; Charvát, K., Jr.; Horáková, S.; Lukas, V.
2016-04-01
From a global perspective, agriculture is the single largest user of freshwater resources, each country using an average of 70% of all its surface water supplies. An essential proportion of agricultural water is recycled back to surface water and/or groundwater. Agriculture and water pollution is therefore the subject of (inter)national legislation, such as the Clean Water Act in the United States of America, the European Water Framework Directive, and the Law of the People's Republic of China on the Prevention and Control of Water Pollution. Regular monitoring by means of sensor networks is needed in order to provide evidence of water pollution in agriculture. This paper describes the benefits of, and open issues stemming from, regular sensor monitoring provided by an Open Farm Management Information System. Emphasis is placed on descriptions of the processes and functionalities available to users, the underlying open data model, and definitions of open and lightweight application programming interfaces for the efficient management of collected (spatial) data. The presented Open Farm Management Information System has already been successfully registered under Phase 8 of the Global Earth Observation System of Systems (GEOSS) Architecture Implementation Pilot in order to support the wide variety of demands that are primarily aimed at agriculture pollution monitoring. The final part of the paper deals with the integration of the Open Farm Management Information System into the Digital Earth framework.
Mattsson, Brady J.; Runge, M.C.; Devries, J.H.; Boomer, G.S.; Eadie, J.M.; Haukos, D.A.; Fleskes, J.P.; Koons, D.N.; Thogmartin, W.E.; Clark, R.G.
2012-01-01
We developed and evaluated the performance of a metapopulation model enabling managers to examine, for the first time, the consequences of alternative management strategies involving habitat conditions and hunting on both harvest opportunity and carrying capacity (i.e., equilibrium population size in the absence of harvest) for migratory waterfowl at a continental scale. Our focus is on the northern pintail (Anas acuta; hereafter, pintail), which serves as a useful model species to examine the potential for integrating waterfowl harvest and habitat management in North America. We developed submodel structure capturing important processes for pintail populations during breeding, fall migration, winter, and spring migration while encompassing spatial structure representing three core breeding areas and two core nonbreeding areas. A number of continental-scale predictions from our baseline parameterization (e.g., carrying capacity of 5.5 million, equilibrium population size of 2.9 million and harvest rate of 12% at maximum sustained yield [MSY]) were within 10% of those from the pintail harvest strategy under current use by the U.S. Fish and Wildlife Service. To begin investigating the interaction of harvest and habitat management, we examined equilibrium population conditions for pintail at the continental scale across a range of harvest rates while perturbing model parameters to represent: (1) a 10% increase in breeding habitat quality in the Prairie Pothole population (PR); and (2) a 10% increase in nonbreeding habitat quantity along in the Gulf Coast (GC). Based on our model and analysis, a greater increase in carrying capacity and sustainable harvest was seen when increasing a proxy for habitat quality in the Prairie Pothole population. This finding and underlying assumptions must be critically evaluated, however, before specific management recommendations can be made. To make such recommendations, we require (1) extended, refined submodels with additional parameters linking influences of habitat management and environmental conditions to key life-history parameters; (2) a formal sensitivity analysis of the revised model; (3) an integrated population model that incorporates empirical data for estimating key vital rates; and (4) cost estimates for changing these additional parameters through habitat management efforts. We foresee great utility in using an integrated modeling approach to predict habitat and harvest management influences on continental-scale population responses while explicitly considering putative effects of climate change. Such a model could be readily adapted for management of many habitat-limited species.
Spatial Patterns in Alternative States and Thresholds: A Missing Link for Management of Landscapes?
USDA-ARS?s Scientific Manuscript database
The detection of threshold dynamics (and other dynamics of interest) would benefit from explicit representations of spatial patterns of disturbance, spatial dependence in responses to disturbance, and the spatial structure of feedbacks in the design of monitoring and management strategies. Spatially...
AEGIS: a wildfire prevention and management information system
NASA Astrophysics Data System (ADS)
Kalabokidis, Kostas; Ager, Alan; Finney, Mark; Athanasis, Nikos; Palaiologou, Palaiologos; Vasilakos, Christos
2016-03-01
We describe a Web-GIS wildfire prevention and management platform (AEGIS) developed as an integrated and easy-to-use decision support tool to manage wildland fire hazards in Greece (http://aegis.aegean.gr). The AEGIS platform assists with early fire warning, fire planning, fire control and coordination of firefighting forces by providing online access to information that is essential for wildfire management. The system uses a number of spatial and non-spatial data sources to support key system functionalities. Land use/land cover maps were produced by combining field inventory data with high-resolution multispectral satellite images (RapidEye). These data support wildfire simulation tools that allow the users to examine potential fire behavior and hazard with the Minimum Travel Time fire spread algorithm. End-users provide a minimum number of inputs such as fire duration, ignition point and weather information to conduct a fire simulation. AEGIS offers three types of simulations, i.e., single-fire propagation, point-scale calculation of potential fire behavior, and burn probability analysis, similar to the FlamMap fire behavior modeling software. Artificial neural networks (ANNs) were utilized for wildfire ignition risk assessment based on various parameters, training methods, activation functions, pre-processing methods and network structures. The combination of ANNs and expected burned area maps are used to generate integrated output map of fire hazard prediction. The system also incorporates weather information obtained from remote automatic weather stations and weather forecast maps. The system and associated computation algorithms leverage parallel processing techniques (i.e., High Performance Computing and Cloud Computing) that ensure computational power required for real-time application. All AEGIS functionalities are accessible to authorized end-users through a web-based graphical user interface. An innovative smartphone application, AEGIS App, also provides mobile access to the web-based version of the system.
NASA Astrophysics Data System (ADS)
Thomas, Valerie Anne
This research models canopy-scale photosynthesis at the Groundhog River Flux Site through the integration of high-resolution airborne remote sensing data and micrometeorological measurements collected from a flux tower. Light detection and ranging (lidar) data are analysed to derive models of tree structure, including: canopy height, basal area, crown closure, and average aboveground biomass. Lidar and hyperspectral remote sensing data are used to model canopy chlorophyll (Chl) and carotenoid concentrations (known to be good indicators of photosynthesis). The integration of lidar and hyperspectral data is applied to derive spatially explicit models of the fraction of photosynthetically active radiation (fPAR) absorbed by the canopy as well as a species classification for the site. These products are integrated with flux tower meteorological measurements (i.e., air temperature and global solar radiation) collected on a continuous basis over 2004 to apply the C-Fix model of carbon exchange to the site. Results demonstrate that high resolution lidar and lidar-hyperspectral integration techniques perform well in the boreal mixedwood environment. Lidar models are well correlated with forest structure, despite the complexities introduced in the mixedwood case (e.g., r2=0.84, 0.89, 0.60, and 0.91, for mean dominant height, basal area, crown closure, and average aboveground biomass). Strong relationships are also shown for canopy scale chlorophyll/carotenoid concentration analysis using integrated lidar-hyperspectral techniques (e.g., r2=0.84, 0.84, and 0.82 for Chl(a), Chl(a+b), and Chl(b)). Examination of the spatially explicit models of fPAR reveal distinct spatial patterns which become increasingly apparent throughout the season due to the variation in species groupings (and canopy chlorophyll concentration) within the 1 km radius surrounding the flux tower. Comparison of results from the modified local-scale version of the C-Fix model to tower gross ecosystem productivity (GEP) demonstrate a good correlation to flux tower measured GEP (r2=0.70 for 10 day averages), with the largest deviations occurring in June-July. This research has direct benefits for forest inventory mapping and management practices; mapping of canopy physiology and biochemical constituents related to forest health; and scaling and direct comparison to large resolution satellite models to help bridge the gap between the local-scale measurements at flux towers and predictions derived from continental-scale carbon models.
NASA Astrophysics Data System (ADS)
Ticehurst, C. J.; Bartsch, A.; Doubkova, M.; van Dijk, A. I. J. M.
2009-11-01
Continuous flood monitoring can support emergency response, water management and environmental monitoring. Optical sensors such as MODIS allow inundation mapping with high spatial and temporal resolution (250-1000 m, twice daily) but are affected by cloud cover. Passive microwave sensors also acquire observations at high temporal resolution, but coarser spatial resolution (e.g. ca. 5-70 km for AMSR-E) and smaller footprints are also affected by cloud and/or rain. ScanSAR systems allow all-weather monitoring but require spatial resolution to be traded off against coverage and/or temporal resolution; e.g. the ENVISAT ASAR Global Mode observes at ca. 1 km over large regions about twice a week. The complementary role of the AMSR-E and ASAR GM data to that of MODIS is here introduced for three flood events and locations across Australia. Additional improvements can be made by integrating digital elevation models and stream flow gauging data.
Providing R-Tree Support for Mongodb
NASA Astrophysics Data System (ADS)
Xiang, Longgang; Shao, Xiaotian; Wang, Dehao
2016-06-01
Supporting large amounts of spatial data is a significant characteristic of modern databases. However, unlike some mature relational databases, such as Oracle and PostgreSQL, most of current burgeoning NoSQL databases are not well designed for storing geospatial data, which is becoming increasingly important in various fields. In this paper, we propose a novel method to provide R-tree index, as well as corresponding spatial range query and nearest neighbour query functions, for MongoDB, one of the most prevalent NoSQL databases. First, after in-depth analysis of MongoDB's features, we devise an efficient tabular document structure which flattens R-tree index into MongoDB collections. Further, relevant mechanisms of R-tree operations are issued, and then we discuss in detail how to integrate R-tree into MongoDB. Finally, we present the experimental results which show that our proposed method out-performs the built-in spatial index of MongoDB. Our research will greatly facilitate big data management issues with MongoDB in a variety of geospatial information applications.
The Resilience of Coral Reefs Across a Hierarchy of Spatial and Temporal scales
NASA Astrophysics Data System (ADS)
Mumby, P. J.
2016-02-01
Resilience is a dynamical property of ecosystems that integrates processes of recovery, disturbance and internal dynamics, including reinforcing feedbacks. As such, resilience is a useful framework to consider how ecosystems respond to multiple drivers occurring over multiple scales. Many insights have emerged recently including the way in which stressors can combine synergistically to deplete resilience. However, while recent advances have mapped resilience across seascapes, most studies have not captured emergent spatial dependencies and dynamics across the seascape (e.g., independent box models are run across the seascape in isolation). Here, we explore the dynamics that emerge when the seascape is `wired up' using data on larval dispersal, thereby giving a fully spatially-realistic model. We then consider how dynamics change across even larger, biogeographic scales, posing the question, `are there robust and global "rules of thumb" for the resilience of a single ecosystem?'. Answers to this question will help managers tailor their interventions and research needs for their own jurisdiction.
Soares, Marcelo de Oliveira
2018-06-01
This study aimed to determine the main anthropogenic pressures and the effectiveness of management practices in marine protected areas (MPAs) (Rocas Atoll and Fernando de Noronha Archipelago, South Atlantic). The MPAs exhibited high management effectiveness over the last 25 years due to the control of local pressures (i.e., fishing and tourism). However, the increase in regional and global pressures, such as invasive species, marine debris, and climate change stressors (sea-level rise, extreme events, range shifts of species, warming, and ocean acidification), are environmental risks that need to be considered during conservation. Strategies for large scale marine spatial planning, as well as proposals for an integrated management of MPAs (including coral reef islands and seamounts) by the articulation of a network, which reduces regional human pressures and improves ocean governance were discussed. This study provided insights into the challenges faced in the management of MPAs in a rapidly changing ocean. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mahoney, Peter J; Young, Julie K; Hersey, Kent R; Larsen, Randy T; McMillan, Brock R; Stoner, David C
2018-04-01
Predator control is often implemented with the intent of disrupting top-down regulation in sensitive prey populations. However, ambiguity surrounding the efficacy of predator management, as well as the strength of top-down effects of predators in general, is often exacerbated by the spatially implicit analytical approaches used in assessing data with explicit spatial structure. Here, we highlight the importance of considering spatial context in the case of a predator control study in south-central Utah. We assessed the spatial match between aerial removal risk in coyotes (Canis latrans) and mule deer (Odocoileus hemionus) resource selection during parturition using a spatially explicit, multi-level Bayesian model. With our model, we were able to evaluate spatial congruence between management action (i.e., coyote removal) and objective (i.e., parturient deer site selection) at two distinct scales: the level of the management unit and the individual coyote removal. In the case of the former, our results indicated substantial spatial heterogeneity in expected congruence between removal risk and parturient deer site selection across large areas, and is a reflection of logistical constraints acting on the management strategy and differences in space use between the two species. At the level of the individual removal, we demonstrated that the potential management benefits of a removed coyote were highly variable across all individuals removed and in many cases, spatially distinct from parturient deer resource selection. Our methods and results provide a means of evaluating where we might anticipate an impact of predator control, while emphasizing the need to weight individual removals based on spatial proximity to management objectives in any assessment of large-scale predator control. Although we highlight the importance of spatial context in assessments of predator control strategy, we believe our methods are readily generalizable in any management or large-scale experimental framework where spatial context is likely an important driver of outcomes. © 2018 by the Ecological Society of America.
Spatial information management platform for Dunhuang Global Geopark
NASA Astrophysics Data System (ADS)
Yan-long, YU; Fa-dong, WU; Jin-fang, HAN; Yan-Jie, WANG; Hao, CHU
2017-02-01
As a member of UNESCO Global Geoparks, Dunhuang Global Geopark has developed a great quantity of landforms formed under special geological background and extremely droughty climate, which integrate together with specific geographic location and cultural relics on the “Silk Road Economic Belt”. The main geoheritage in Dunhuang Global Geopark is Yardang landform, which is formed by loose Quaternary sediments. According to different shapes, the Yardang landform were divided into five types, namely, ridge-shaped Yardang, wall-shaped Yardang, tower-shape Yardang, column Yardang and Yardang monadnock. In order to monitor and protect the unique morphological features of Yardang landforms, a spatial information management platform is established, using SPOT 6 remote sensing image, with object oriented approach and manual interactive interpretation. Study shows that the maximum area, perimeter, length and width of Yardang were 324843.1 m2, 3447.52 m, 1508.41m, and 285.81 m, respectively. Additionally, the aspect ratio of Yardang has a certain positive correlation, with the coefficient of correlation being 0.675. Furthermore, the relationship between length and width of Yardang is calculated using formula Y=2.546X, where Y = length, X = width.
The benefits of GIS to land use planning
NASA Astrophysics Data System (ADS)
Strielko, Irina; Pereira, Paulo
2014-05-01
The development of information technologies has significantly changed the approach to land use and spatial planning, management of natural resources. GIS considerably simplifies territorial planning operating analyzing necessary data concerning their spatial relationship that allows carrying out complex assessment of the situation and creates a basis for adoption of more exact and scientifically reasonable decisions in the course of land use. To assess the current land use situation and the possibility of modeling possible future changes associated with complex of adopted measures GIS allows the integration of diverse spatial data, for example, data about soils, climate, vegetation, and other and also to visualize available information in the form of maps, graphs or charts, 3D models. For the purposes of land use GIS allow using data of remote sensing, which allows to make monitoring of anthropogenic influence in a particular area and estimate scales and rates of degradation of green cover, flora and fauna. Assessment of land use can be made in complex or componentwise, indicating the test sites depending on the goals. GIS make it easy to model spatial distribution of various types of pollution of stationary and mobile sources in soil, atmosphere and the hydrological network. Based on results of the analysis made by GIS choose the optimal solutions of land use that provide the minimum impact on environment, make optimal decisions of conflict associated with land use and control of their using. One of the major advantages of using GIS is possibility of the complex analysis in concrete existential aspect. Analytical opportunities of GIS define conditionality of spatial distribution of objects and interrelation communication between them. For a variety of land management objectives analysis method is chosen based on the parameters of the problem and parameters of use of its results.
Coates, Peter S.; Casazza, Michael L.; Brussee, Brianne E.; Ricca, Mark A.; Gustafson, K. Benjamin; Sanchez-Chopitea, Erika; Mauch, Kimberly; Niell, Lara; Gardner, Scott; Espinosa, Shawn; Delehanty, David J.
2016-05-20
Successful adaptive management hinges largely upon integrating new and improved sources of information as they become available. As a timely example of this tenet, we updated a management decision support tool that was previously developed for greater sage-grouse (Centrocercus urophasianus, hereinafter referred to as “sage-grouse”) populations in Nevada and California. Specifically, recently developed spatially explicit habitat maps derived from empirical data played a key role in the conservation of this species facing listing under the Endangered Species Act. This report provides an updated process for mapping relative habitat suitability and management categories for sage-grouse in Nevada and northeastern California (Coates and others, 2014, 2016). These updates include: (1) adding radio and GPS telemetry locations from sage-grouse monitored at multiple sites during 2014 to the original location dataset beginning in 1998; (2) integrating output from high resolution maps (1–2 m2) of sagebrush and pinyon-juniper cover as covariates in resource selection models; (3) modifying the spatial extent of the analyses to match newly available vegetation layers; (4) explicit modeling of relative habitat suitability during three seasons (spring, summer, winter) that corresponded to critical life history periods for sage-grouse (breeding, brood-rearing, over-wintering); (5) accounting for differences in habitat availability between more mesic sagebrush steppe communities in the northern part of the study area and drier Great Basin sagebrush in more southerly regions by categorizing continuous region-wide surfaces of habitat suitability index (HSI) with independent locations falling within two hydrological zones; (6) integrating the three seasonal maps into a composite map of annual relative habitat suitability; (7) deriving updated land management categories based on previously determined cut-points for intersections of habitat suitability and an updated index of sage-grouse abundance and space-use (AUI); and (8) masking urban footprints and major roadways out of the final map products.Seasonal habitat maps were generated based on model-averaged resource selection functions (RSF) derived for 10 project areas (813 sage-grouse; 14,085 locations) during the spring season, 10 during the summer season (591 sage-grouse, 11,743 locations), and 7 during the winter season (288 sage-grouse, 4,862 locations). RSF surfaces were transformed to HSIs and averaged in a GIS framework for every pixel for each season. Validation analyses of categorized HSI surfaces using a suite of independent datasets resulted in an agreement of 93–97 percent for habitat versus non-habitat on an annual basis. Spring and summer maps validated similarly well at 94–97 percent, while winter maps validated slightly less accurately at 87–93 percent.We then provide an updated example of how space use models can be integrated with habitat models to help inform conservation planning. We used updated lek count data to calculate a composite abundance and space use index (AUI) that comprised the combination of probabilistic breeding density with a non-linear probability of occurrence relative to distance to nearest lek. The AUI was then classified into two categories of use (high and low-to-no) and intersected with the HSI categories to create potential management prioritization scenarios based on information about sage-grouse occupancy coupled with habitat suitability. Compared to Coates and others (2014, 2016), the amount of area classified as habitat across the region increased by 6.5 percent (approximately 1,700,000 acres). For management categories, core increased by 7.2 percent (approximately 865,000 acres), priority increased by 9.6 percent (approximately 855,000 acres), and general increased by 9.2 percent (approximately 768,000 acres), while non-habitat decreased (that is, classified non-habitat occurring outside of areas of concentrated use) by 11.9 percent (approximately 2,500,000 acres). Importantly, seasonal and annual maps represent habitat for all age and sex classes of sage-grouse (that is, sample sizes of marked grouse were insufficient to only construct models for reproductive females). This revised sage-grouse habitat mapping product helps improve adaptive application of conservation planning tools based on intersections of spatially explicit habitat suitability, abundance, and space use indices.
Future Wildfire and Managed Fire Interactions in the Lake Tahoe Basin
NASA Astrophysics Data System (ADS)
Scheller, R.; Kretchun, A.
2017-12-01
Managing large forested landscape in the context of a changing climate and altered disturbance regimes presents new challenges and require integrated assessments of forest disturbance, management, succession, and the carbon cycle. Successful management under these circumstances will require information about trade-offs among multiple objectives and opportunities for spatially optimized landscape-scale management. Improved information about the effects of climate on forest communities, disturbance feedbacks, and the effectiveness of mitigation strategies enables actionable options for landscape managers. We evaluated the effects of fire suppression, wildfires, and forest fuel (thinning) treatments on the long-term carbon storage potential for Lake Tahoe Basin (LTB) forests under various climate futures. We simulated management scenarios that encompass fuel treatments across the larger landscape, beyond the Wildland Urban Interface. We improved upon current fire modeling under climate change via an integrated fire modeling module that, a) explicitly captures the influence of climate, fuels, topography, active fire management (e.g., fire suppression), and fuel treatments, and b) can be parameterized from available data, e.g., remote sensing, field reporting, fire databases, expert opinion. These improvements increase geographic flexibility and decrease reliance on broad historical fire regime statistics - imperfect targets for a no analog future and require minimal parameterization and calibration. We assessed the interactions among fuel treatments, prescribe fire, fire suppression, and stochastically recurring wildfires. Predicted changes in climate and ignition patterns in response to future climatic conditions, vegetation dynamics, and fuel treatments indicate larger potential long-term effects on C emissions, forest structure, and forest composition than prior studies.
Scenarios reveal pathways to sustain future ecosystem services in an agricultural landscape.
Qiu, Jiangxiao; Carpenter, Stephen R; Booth, Eric G; Motew, Melissa; Zipper, Samuel C; Kucharik, Christopher J; Chen, Xi; Loheide, Steven P; Seifert, Jenny; Turner, Monica G
2018-01-01
Sustaining food production, water quality, soil retention, flood, and climate regulation in agricultural landscapes is a pressing global challenge given accelerating environmental changes. Scenarios are stories about plausible futures, and scenarios can be integrated with biophysical simulation models to explore quantitatively how the future might unfold. However, few studies have incorporated a wide range of drivers (e.g., climate, land-use, management, population, human diet) in spatially explicit, process-based models to investigate spatial-temporal dynamics and relationships of a portfolio of ecosystem services. Here, we simulated nine ecosystem services (three provisioning and six regulating services) at 220 × 220 m from 2010 to 2070 under four contrasting scenarios in the 1,345-km 2 Yahara Watershed (Wisconsin, USA) using Agro-IBIS, a dynamic model of terrestrial ecosystem processes, biogeochemistry, water, and energy balance. We asked (1) How does ecosystem service supply vary among alternative future scenarios? (2) Where on the landscape is the provision of ecosystem services most susceptible to future social-ecological changes? (3) Among alternative future scenarios, are relationships (i.e., trade-offs, synergies) among food production, water, and biogeochemical services consistent over time? Our results showed that food production varied substantially with future land-use choices and management, and its trade-offs with water quality and soil retention persisted under most scenarios. However, pathways to mitigate or even reverse such trade-offs through technological advances and sustainable agricultural practices were apparent. Consistent relationships among regulating services were identified across scenarios (e.g., trade-offs of freshwater supply vs. flood and climate regulation, and synergies among water quality, soil retention, and climate regulation), suggesting opportunities and challenges to sustaining these services. In particular, proactive land-use changes and management may buffer water quality against undesirable future climate changes, but changing climate may overwhelm management efforts to sustain freshwater supply and flood regulation. Spatially, changes in ecosystem services were heterogeneous across the landscape, underscoring the power of local actions and fine-scale management. Our research highlights the value of embracing spatial and temporal perspectives in managing ecosystem services and their complex interactions, and provides a system-level understanding for achieving sustainability of the food-water-climate nexus in agricultural landscapes. © 2017 by the Ecological Society of America.
Estimating golden-cheeked warbler immigration: Implications for the spatial scale of conservation
Duarte, A.; Weckerly, F.W.; Schaub, M.; Hatfield, Jeffrey S.
2016-01-01
Understanding the factors that drive population dynamics is fundamental to species conservation and management. Since the golden-cheeked warbler Setophaga chrysoparia was first listed as endangered, much effort has taken place to monitor warbler abundance, occupancy, reproduction and survival. Yet, despite being directly related to local population dynamics, movement rates have not been estimated for the species. We used an integrated population model to investigate the relationship between immigration rate, fledging rate, survival probabilities and population growth rate for warblers in central Texas, USA. Furthermore, using a deterministic projection model, we examined the response required by vital rates to maintain a viable population across varying levels of immigration. Warbler abundance fluctuated with an overall positive trend across years. In the absence of immigration, the abundance would have decreased. However, the population could remain viable without immigration if both adult and juvenile survival increased by almost half or if juvenile survival more than doubled. We also investigated the response required by fledging rates across a range of immigration in order to maintain a viable population. Overall, we found that immigration was required to maintain warbler target populations, indicating that warbler conservation and management programs need to be implemented at larger spatial scales than current efforts to be effective. This study also demonstrates that by using limited data within integrated population models, biologists are able to monitor multiple key demographic parameters simultaneously to gauge the efficacy of strategies designed to maximize warbler viability in a changing landscape.
A global biogeographic classification of the mesopelagic zone
NASA Astrophysics Data System (ADS)
Sutton, Tracey T.; Clark, Malcolm R.; Dunn, Daniel C.; Halpin, Patrick N.; Rogers, Alex D.; Guinotte, John; Bograd, Steven J.; Angel, Martin V.; Perez, Jose Angel A.; Wishner, Karen; Haedrich, Richard L.; Lindsay, Dhugal J.; Drazen, Jeffrey C.; Vereshchaka, Alexander; Piatkowski, Uwe; Morato, Telmo; Błachowiak-Samołyk, Katarzyna; Robison, Bruce H.; Gjerde, Kristina M.; Pierrot-Bults, Annelies; Bernal, Patricio; Reygondeau, Gabriel; Heino, Mikko
2017-08-01
We have developed a global biogeographic classification of the mesopelagic zone to reflect the regional scales over which the ocean interior varies in terms of biodiversity and function. An integrated approach was necessary, as global gaps in information and variable sampling methods preclude strictly statistical approaches. A panel combining expertise in oceanography, geospatial mapping, and deep-sea biology convened to collate expert opinion on the distributional patterns of pelagic fauna relative to environmental proxies (temperature, salinity, and dissolved oxygen at mesopelagic depths). An iterative Delphi Method integrating additional biological and physical data was used to classify biogeographic ecoregions and to identify the location of ecoregion boundaries or inter-regions gradients. We define 33 global mesopelagic ecoregions. Of these, 20 are oceanic while 13 are 'distant neritic.' While each is driven by a complex of controlling factors, the putative primary driver of each ecoregion was identified. While work remains to be done to produce a comprehensive and robust mesopelagic biogeography (i.e., reflecting temporal variation), we believe that the classification set forth in this study will prove to be a useful and timely input to policy planning and management for conservation of deep-pelagic marine resources. In particular, it gives an indication of the spatial scale at which faunal communities are expected to be broadly similar in composition, and hence can inform application of ecosystem-based management approaches, marine spatial planning and the distribution and spacing of networks of representative protected areas.
NASA Astrophysics Data System (ADS)
Prenger-Berninghoff, K.; Cortes, V. J.; Sprague, T.; Aye, Z. C.; Greiving, S.; Głowacki, W.; Sterlacchini, S.
2014-04-01
The need for continuous adaptation to complex and unforeseen events requires enhancing the links between planning and preparedness phases to reduce future risks in the most efficient way. In this context, the legal-administrative and cultural context has to be taken into account. This is why four case study areas of the CHANGES1 project (Nehoiu Valley in Romania, Ubaye Valley in France, Val Canale in Italy, and Wieprzówka catchment in Poland) serve as examples to highlight currently implemented risk management strategies for land-use planning and emergency preparedness. The strategies described in this paper were identified by means of exploratory and informal interviews in each study site. Results reveal that a dearth or, in very few cases, a weak link exists between spatial planners and emergency managers. Management strategies could benefit from formally intensifying coordination and cooperation between emergency services and spatial planning authorities. Moreover, limited financial funds urge for a more efficient use of resources and better coordination towards long-term activities. The research indicates potential benefits to establishing or, in some cases, strengthening this link and provides suggestions for further development in the form of information and decision support systems as a key connection point. Aside from the existent information systems for emergency management, it was found that a common platform, which integrates involvement of these and other relevant actors could enhance this connection and address expressed stakeholder needs. 1 Marie Curie ITN CHANGES - Changing Hydro-meteorological Risks as Analyzed by a New Generation of European Scientists.
Effect of Variable Spatial Scales on USLE-GIS Computations
NASA Astrophysics Data System (ADS)
Patil, R. J.; Sharma, S. K.
2017-12-01
Use of appropriate spatial scale is very important in Universal Soil Loss Equation (USLE) based spatially distributed soil erosion modelling. This study aimed at assessment of annual rates of soil erosion at different spatial scales/grid sizes and analysing how changes in spatial scales affect USLE-GIS computations using simulation and statistical variabilities. Efforts have been made in this study to recommend an optimum spatial scale for further USLE-GIS computations for management and planning in the study area. The present research study was conducted in Shakkar River watershed, situated in Narsinghpur and Chhindwara districts of Madhya Pradesh, India. Remote Sensing and GIS techniques were integrated with Universal Soil Loss Equation (USLE) to predict spatial distribution of soil erosion in the study area at four different spatial scales viz; 30 m, 50 m, 100 m, and 200 m. Rainfall data, soil map, digital elevation model (DEM) and an executable C++ program, and satellite image of the area were used for preparation of the thematic maps for various USLE factors. Annual rates of soil erosion were estimated for 15 years (1992 to 2006) at four different grid sizes. The statistical analysis of four estimated datasets showed that sediment loss dataset at 30 m spatial scale has a minimum standard deviation (2.16), variance (4.68), percent deviation from observed values (2.68 - 18.91 %), and highest coefficient of determination (R2 = 0.874) among all the four datasets. Thus, it is recommended to adopt this spatial scale for USLE-GIS computations in the study area due to its minimum statistical variability and better agreement with the observed sediment loss data. This study also indicates large scope for use of finer spatial scales in spatially distributed soil erosion modelling.
Method for Assessing the Integrated Risk of Soil Pollution in Industrial and Mining Gathering Areas
Guan, Yang; Shao, Chaofeng; Gu, Qingbao; Ju, Meiting; Zhang, Qian
2015-01-01
Industrial and mining activities are recognized as major sources of soil pollution. This study proposes an index system for evaluating the inherent risk level of polluting factories and introduces an integrated risk assessment method based on human health risk. As a case study, the health risk, polluting factories and integrated risks were analyzed in a typical industrial and mining gathering area in China, namely, Binhai New Area. The spatial distribution of the risk level was determined using a Geographic Information System. The results confirmed the following: (1) Human health risk in the study area is moderate to extreme, with heavy metals posing the greatest threat; (2) Polluting factories pose a moderate to extreme inherent risk in the study area. Such factories are concentrated in industrial and urban areas, but are irregularly distributed and also occupy agricultural land, showing a lack of proper planning and management; (3) The integrated risks of soil are moderate to high in the study area. PMID:26580644
NASA Astrophysics Data System (ADS)
Hunink, Johannes E.; Bryant, Benjamin P.; Vogl, Adrian; Droogers, Peter
2015-04-01
We analyse the multiple impacts of investments in sustainable land use practices on ecosystem services in the Upper Tana basin (Kenya) to support a watershed conservation scheme (a "water fund"). We apply an integrated modelling framework, building on previous field-based and modelling studies in the basin, and link biophysical outputs to economic benefits for the main actors in the basin. The first step in the modelling workflow is the use of a high-resolution spatial prioritization tool (Resource Investment Optimization System -- RIOS) to allocate the type and location of conservation investments in the different subbasins, subject to budget constraints and stakeholder concerns. We then run the Soil and Water Assessment Tool (SWAT) using the RIOS-identified investment scenarios to produce spatially explicit scenarios that simulate changes in water yield and suspended sediment. Finally, in close collaboration with downstream water users (urban water supply and hydropower) we link those biophysical outputs to monetary metrics, including: reduced water treatment costs, increased hydropower production, and crop yield benefits for upstream farmers in the conservation area. We explore how different budgets and different spatial targeting scenarios influence the return of the investments and the effectiveness of the water fund scheme. This study is novel in that it presents an integrated analysis targeting interventions in a decision context that takes into account local environmental and socio-economic conditions, and then relies on detailed, process-based, biophysical models to demonstrate the economic return on those investments. We conclude that the approach allows for an analysis on different spatial and temporal scales, providing conclusive evidence to stakeholders and decision makers on the contribution and benefits of the land-based investments in this basin. This is serving as foundational work to support the implementation of the Upper Tana-Nairobi Water Fund, a public-private partnership to safeguard ecosystem service provision and food security.
NASA Astrophysics Data System (ADS)
Mayerle, R.; Al-Subhi, A.; Fernández Jaramillo, J.; Salama, A.; Bruss, G.; Zubier, K.; Runte, K.; Turki, A.; Hesse, K.; Jastania, H.; Ladwig, N.; Mudarris, M.
2016-04-01
This paper presents results of the development and application of a web-based information system, Jeddah CIS, for assisting decision makers in the management of Jeddah coastal waters, in Saudi Arabia. The system will support coastal planning, management of navigation and tackle pollution due to accidents. The system was developed primarily to nowcast in quasi-real time and to deliver short-term forecasts of water levels, current velocities and waves with high spatial and temporal resolution for the area near Jeddah. Therefor it will hasten response when adverse weather conditions prevail. The Jeddah-CIS integrates sensors transmitting in real time, meteorological, oceanographic and water quality parameters and operational models for flow and waves. It also provides interactive tools using advanced visualization techniques to facilitate dissemination of information. The system relies on open source software and has been designed to facilitate the integration of additional components for enhanced information processing, data evaluation and generation of higher water level, current velocity and wave for the general public. Jeddah-CIS has been operational since 2013. Extensions of the system to speed operations and improving the accuracy of the predictions to the public are currently underway.
The ecology, restoration, and management of southeastern floodplain ecosystems: A synthesis
King, S.L.; Sharitz, R.R.; Groninger, John W.; Battaglia, Loretta L.
2009-01-01
Floodplain ecosystems of the southeastern United States provide numerous services to society, but hydrologic and geomorphic alterations, agricultural practices, water quality and availability, and urban development continue to challenge restorationists and managers at multiple spatial and temporal scales. These challenges are further exacerbated by tremendous uncertainty regarding climate and land use patterns and natural variability in these systems. The symposium from which the papers in 2009 ensued was organized to provide a critical evaluation of current natural resource restoration and management practices to support the sustainability of floodplain ecosystem functions in the southeastern United States. In this paper we synthesize these concepts and evaluate restoration and conservation techniques in light of our understanding of these ecosystems. We also discuss current and future challenges and attempt to identify new approaches that may facilitate the long-term sustainability of southeastern floodplain systems. We conclude that integration of disciplines and approaches is necessary to meet the floodplain conservation challenges of the coming century. Integration will not only include purposeful dialogue between interdisciplinary natural resource professionals, but it also is necessary to sincerely engage the public about goals, objectives, and desirable outcomes of floodplain ecosystem restoration. ?? 2009, The Society of Wetland Scientists.
NASA Astrophysics Data System (ADS)
Paciello, Rossana; Coviello, Irina; Filizzola, Carolina; Genzano, Nicola; Lisi, Mariano; Mazzeo, Giuseppe; Pergola, Nicola; Sileo, Giancanio; Tramutoli, Valerio
2014-05-01
In environmental studies the integration of heterogeneous and time-varying data, is a very common requirement for investigating and possibly visualize correlations among physical parameters underlying the dynamics of complex phenomena. Datasets used in such kind of applications has often different spatial and temporal resolutions. In some case superimposition of asynchronous layers is required. Traditionally the platforms used to perform spatio-temporal visual data analyses allow to overlay spatial data, managing the time using 'snapshot' data model, each stack of layers being labeled with different time. But this kind of architecture does not incorporate the temporal indexing neither the third spatial dimension which is usually given as an independent additional layer. Conversely, the full representation of a generic environmental parameter P(x,y,z,t) in the 4D space-time domain could allow to handle asynchronous datasets as well as less traditional data-products (e.g. vertical sections, punctual time-series, etc.) . In this paper we present the 4 Dimensions Environmental Observation Platform (4-DEOS), a system based on a web services architecture Client-Broker-Server. This platform is a new open source solution for both a timely access and an easy integration and visualization of heterogeneous (maps, vertical profiles or sections, punctual time series, etc.) asynchronous, geospatial products. The innovative aspect of the 4-DEOS system is that users can analyze data/products individually moving through time, having also the possibility to stop the display of some data/products and focus on other parameters for better studying their temporal evolution. This platform gives the opportunity to choose between two distinct display modes for time interval or for single instant. Users can choose to visualize data/products in two ways: i) showing each parameter in a dedicated window or ii) visualize all parameters overlapped in a single window. A sliding time bar, allows to follow the temporal evolution of the selected data/product. With this software, users have the possibility to identify events partially correlated each other not only in the spatial dimension but also in the time domain even at different time lags.
Zhang, Xiao-Bo; Li, Meng; Wang, Hui; Guo, Lan-Ping; Huang, Lu-Qi
2017-11-01
In literature, there are many information on the distribution of Chinese herbal medicine. Limited by the technical methods, the origin of Chinese herbal medicine or distribution of information in ancient literature were described roughly. It is one of the main objectives of the national census of Chinese medicine resources, which is the background information of the types and distribution of Chinese medicine resources in the region. According to the national Chinese medicine resource census technical specifications and pilot work experience, census team with "3S" technology, computer network technology, digital camera technology and other modern technology methods, can effectively collect the location information of traditional Chinese medicine resources. Detailed and specific location information, such as regional differences in resource endowment and similarity, biological characteristics and spatial distribution, the Chinese medicine resource census data access to the accuracy and objectivity evaluation work, provide technical support and data support. With the support of spatial information technology, based on location information, statistical summary and sharing of multi-source census data can be realized. The integration of traditional Chinese medicine resources and related basic data can be a spatial integration, aggregation and management of massive data, which can help for the scientific rules data mining of traditional Chinese medicine resources from the overall level and fully reveal its scientific connotation. Copyright© by the Chinese Pharmaceutical Association.
Automated management for pavement inspection system (AMPIS)
NASA Astrophysics Data System (ADS)
Chung, Hung Chi; Girardello, Roberto; Soeller, Tony; Shinozuka, Masanobu
2003-08-01
An automated in-situ road surface distress surveying and management system, AMPIS, has been developed on the basis of video images within the framework of GIS software. Video image processing techniques are introduced to acquire, process and analyze the road surface images obtained from a moving vehicle. ArcGIS platform is used to integrate the routines of image processing and spatial analysis in handling the full-scale metropolitan highway surface distress detection and data fusion/management. This makes it possible to present user-friendly interfaces in GIS and to provide efficient visualizations of surveyed results not only for the use of transportation engineers to manage road surveying documentations, data acquisition, analysis and management, but also for financial officials to plan maintenance and repair programs and further evaluate the socio-economic impacts of highway degradation and deterioration. A review performed in this study on fundamental principle of Pavement Management System (PMS) and its implementation indicates that the proposed approach of using GIS concept and its tools for PMS application will reshape PMS into a new information technology-based system providing a convenient and efficient pavement inspection and management.
GIS-based automated management of highway surface crack inspection system
NASA Astrophysics Data System (ADS)
Chung, Hung-Chi; Shinozuka, Masanobu; Soeller, Tony; Girardello, Roberto
2004-07-01
An automated in-situ road surface distress surveying and management system, AMPIS, has been developed on the basis of video images within the framework of GIS software. Video image processing techniques are introduced to acquire, process and analyze the road surface images obtained from a moving vehicle. ArcGIS platform is used to integrate the routines of image processing and spatial analysis in handling the full-scale metropolitan highway surface distress detection and data fusion/management. This makes it possible to present user-friendly interfaces in GIS and to provide efficient visualizations of surveyed results not only for the use of transportation engineers to manage road surveying documentations, data acquisition, analysis and management, but also for financial officials to plan maintenance and repair programs and further evaluate the socio-economic impacts of highway degradation and deterioration. A review performed in this study on fundamental principle of Pavement Management System (PMS) and its implementation indicates that the proposed approach of using GIS concept and its tools for PMS application will reshape PMS into a new information technology-based system that can provide convenient and efficient pavement inspection and management.
Blackbrush (Coleogyne ramosissima Torr.): State of our knowledge and future challenges
Pendleton, Rosemary L.; Pendleton, Burton K.; Meyer, Susan E.; Richardson, Bryce A.; Esque, Todd C.; Kitchen, Stanley G.
2015-01-01
Covering 130,000 square miles and a wide range of elevations from desert to alpine in Arizona, Utah, Colorado, and New Mexico, the Colorado Plateau has long fascinated researchers. The Colorado Plateau VI provides readers with a plethora of updates and insights into land conservation and management questions currently surrounding the region. The Colorado Plateau VI’s contributors show how new technologies for monitoring, spatial analysis, restoration, and collaboration improve our understanding, management, and conservation of outcomes at the appropriate landscape scale for the Colorado Plateau. The volume’s chapters fall into five major themes: monitoring as a key tool for addressing management challenges, restoration approaches to improving ecosystem condition and function, collaboration and organizational innovations to achieve conservation and management objectives, landscape-scale approaches to understanding, and managing key species and ecological communities. Focusing on the integration of science into resource management issues over the Colorado Plateau, this volume includes contributions from dozens of leading scholars of the region. The Colorado Plateau VI proves a valuable resource to all interested in the conservation management, natural history, and cultural biological resources of the Colorado Plateau.
Acoustooptic Processing of Two Dimensional Signals Using Temporal and Spatial Integration.
1987-05-29
DIMENSIONAL SIGNALS USING N TEMPORAL AND SPATIAL INTEGRATION TM 00 Demetri Psaltis, John Hong, Scott Hudson, Fai ’Mok, MNyark Neifeld, and - Nabeel Riza ELECTE...DIMENSIONAL SIGNALS USING TEMPORAL AND SPATIAL INTEGRATION Demetri Psaltis, John Hong, Scott Hudson, Fai Mok, Mark Neifeld, and Nabeel Riza DTIC ELECTE...Induced Radar Imaging, IEEE Trans. Aero. and Elect. Sys .,AES-16,2,(1980). i31 Prickett,M.J. and Chen,C.C., Principles of Inverse Synthetic Aperture Radar
Xiao, Yangfan; Yi, Shanzhen; Tang, Zhongqian
2017-12-01
Flood is the most common natural hazard in the world and has caused serious loss of life and property. Assessment of flood prone areas is of great importance for watershed management and reduction of potential loss of life and property. In this study, a framework of multi-criteria analysis (MCA) incorporating geographic information system (GIS), fuzzy analytic hierarchy process (AHP) and spatial ordered weighted averaging (OWA) method was developed for flood hazard assessment. The factors associated with geographical, hydrological and flood-resistant characteristics of the basin were selected as evaluation criteria. The relative importance of the criteria was estimated through fuzzy AHP method. The OWA method was utilized to analyze the effects of different risk attitudes of the decision maker on the assessment result. The spatial ordered weighted averaging method with spatially variable risk preference was implemented in the GIS environment to integrate the criteria. The advantage of the proposed method is that it has considered spatial heterogeneity in assigning risk preference in the decision-making process. The presented methodology has been applied to the area including Hanyang, Caidian and Hannan of Wuhan, China, where flood events occur frequently. The outcome of flood hazard distribution presents a tendency of high risk towards populated and developed areas, especially the northeast part of Hanyang city, which has suffered frequent floods in history. The result indicates where the enhancement projects should be carried out first under the condition of limited resources. Finally, sensitivity of the criteria weights was analyzed to measure the stability of results with respect to the variation of the criteria weights. The flood hazard assessment method presented in this paper is adaptable for hazard assessment of a similar basin, which is of great significance to establish counterplan to mitigate life and property losses. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Rochon, Gilbert L.
1989-01-01
A user requirements analysis (URA) was undertaken to determine and appropriate public domain Geographic Information System (GIS) software package for potential integration with NASA's LAS (Land Analysis System) 5.0 image processing system. The necessity for a public domain system was underscored due to the perceived need for source code access and flexibility in tailoring the GIS system to the needs of a heterogenous group of end-users, and to specific constraints imposed by LAS and its user interface, Transportable Applications Executive (TAE). Subsequently, a review was conducted of a variety of public domain GIS candidates, including GRASS 3.0, MOSS, IEMIS, and two university-based packages, IDRISI and KBGIS. The review method was a modified version of the GIS evaluation process, development by the Federal Interagency Coordinating Committee on Digital Cartography. One IEMIS-derivative product, the ALBE (AirLand Battlefield Environment) GIS, emerged as the most promising candidate for integration with LAS. IEMIS (Integrated Emergency Management Information System) was developed by the Federal Emergency Management Agency (FEMA). ALBE GIS is currently under development at the Pacific Northwest Laboratory under contract with the U.S. Army Corps of Engineers' Engineering Topographic Laboratory (ETL). Accordingly, recommendations are offered with respect to a potential LAS/ALBE GIS linkage and with respect to further system enhancements, including coordination with the development of the Spatial Analysis and Modeling System (SAMS) GIS in Goddard's IDM (Intelligent Data Management) developments in Goddard's National Space Science Data Center.
Integrating Water Quality and River Rehabilitation Management - A Decision-Analytical Perspective
NASA Astrophysics Data System (ADS)
Reichert, P.; Langhans, S.; Lienert, J.; Schuwirth, N.
2009-04-01
Integrative river management involves difficult decisions about alternative measures to improve their ecological state. For this reason, it seems useful to apply knowledge from the decision sciences to support river management. We discuss how decision-analytical elements can be employed for designing an integrated river management procedure. An important aspect of this procedure is to clearly separate scientific predictions of the consequences of alternatives from objectives to be achieved by river management. The key elements of the suggested procedure are (i) the quantitative elicitation of the objectives from different stakeholder groups, (ii) the compilation of the current scientific knowledge about the consequences of the effects resulting from suggested measures in the form of a probabilistic mathematical model, and (iii) the use of these predictions and valuations to prioritize alternatives, to uncover conflicting objectives, to support the design of better alternatives, and to improve the transparency of communication about the chosen management strategy. The development of this procedure led to insights regarding necessary steps to be taken for rational decision-making in river management, to guidelines about the use of decision-analytical techniques for performing these steps, but also to new insights about the application of decision-analytical techniques in general. In particular, the consideration of the spatial distribution of the effects of measures and the potential added value of connected rehabilitated river reaches leads to favoring measures that have a positive effect beyond a single river reach. As these effects only propagate within the river network, this results in a river basin oriented management concept as a consequence of a rational decision support procedure, rather than as an a priori management paradigm. There are also limitations to the support that can be expected from the decision-analytical perspective. It will not provide the societal values that are driving prioritization in river management, it will only support their elicitation and rational use. This is particularly important for the assessment of micro-pollutants because of severe limitations in scientific knowledge of their effects on river ecosystems. This makes the influence of pollution by micro-pollutants on prioritization of measures strongly dependent on the weight of the precautionary principle relative to other societal objectives of river management.
Automating an integrated spatial data-mining model for landfill site selection
NASA Astrophysics Data System (ADS)
Abujayyab, Sohaib K. M.; Ahamad, Mohd Sanusi S.; Yahya, Ahmad Shukri; Ahmad, Siti Zubaidah; Aziz, Hamidi Abdul
2017-10-01
An integrated programming environment represents a robust approach to building a valid model for landfill site selection. One of the main challenges in the integrated model is the complicated processing and modelling due to the programming stages and several limitations. An automation process helps avoid the limitations and improve the interoperability between integrated programming environments. This work targets the automation of a spatial data-mining model for landfill site selection by integrating between spatial programming environment (Python-ArcGIS) and non-spatial environment (MATLAB). The model was constructed using neural networks and is divided into nine stages distributed between Matlab and Python-ArcGIS. A case study was taken from the north part of Peninsular Malaysia. 22 criteria were selected to utilise as input data and to build the training and testing datasets. The outcomes show a high-performance accuracy percentage of 98.2% in the testing dataset using 10-fold cross validation. The automated spatial data mining model provides a solid platform for decision makers to performing landfill site selection and planning operations on a regional scale.
Distributed spatial information integration based on web service
NASA Astrophysics Data System (ADS)
Tong, Hengjian; Zhang, Yun; Shao, Zhenfeng
2008-10-01
Spatial information systems and spatial information in different geographic locations usually belong to different organizations. They are distributed and often heterogeneous and independent from each other. This leads to the fact that many isolated spatial information islands are formed, reducing the efficiency of information utilization. In order to address this issue, we present a method for effective spatial information integration based on web service. The method applies asynchronous invocation of web service and dynamic invocation of web service to implement distributed, parallel execution of web map services. All isolated information islands are connected by the dispatcher of web service and its registration database to form a uniform collaborative system. According to the web service registration database, the dispatcher of web services can dynamically invoke each web map service through an asynchronous delegating mechanism. All of the web map services can be executed at the same time. When each web map service is done, an image will be returned to the dispatcher. After all of the web services are done, all images are transparently overlaid together in the dispatcher. Thus, users can browse and analyze the integrated spatial information. Experiments demonstrate that the utilization rate of spatial information resources is significantly raised thought the proposed method of distributed spatial information integration.
Distributed spatial information integration based on web service
NASA Astrophysics Data System (ADS)
Tong, Hengjian; Zhang, Yun; Shao, Zhenfeng
2009-10-01
Spatial information systems and spatial information in different geographic locations usually belong to different organizations. They are distributed and often heterogeneous and independent from each other. This leads to the fact that many isolated spatial information islands are formed, reducing the efficiency of information utilization. In order to address this issue, we present a method for effective spatial information integration based on web service. The method applies asynchronous invocation of web service and dynamic invocation of web service to implement distributed, parallel execution of web map services. All isolated information islands are connected by the dispatcher of web service and its registration database to form a uniform collaborative system. According to the web service registration database, the dispatcher of web services can dynamically invoke each web map service through an asynchronous delegating mechanism. All of the web map services can be executed at the same time. When each web map service is done, an image will be returned to the dispatcher. After all of the web services are done, all images are transparently overlaid together in the dispatcher. Thus, users can browse and analyze the integrated spatial information. Experiments demonstrate that the utilization rate of spatial information resources is significantly raised thought the proposed method of distributed spatial information integration.
Morzaria-Luna, Hem Nalini; Ainsworth, Cameron H.; Kaplan, Isaac C.; Levin, Phillip S.; Fulton, Elizabeth A.
2013-01-01
High bycatch of non-target species and species of conservation concern often drives the implementation of fisheries policies. However, species- or fishery-specific policies may lead to indirect consequences, positive or negative, for other species or fisheries. We use an Atlantis ecosystem model of the Northern Gulf of California to evaluate the effects of fisheries policies directed at reducing bycatch of vaquita (Phocoena sinus) on other species of conservation concern, priority target species, and metrics of ecosystem function and structure. Vaquita, a Critically Endangered porpoise endemic to the Upper Gulf of California, are frequently entangled by finfish gillnets and shrimp driftnets. We tested five fishery management scenarios, projected over 30 years (2008 to 2038), directed at vaquita conservation. The scenarios consider progressively larger spatial restrictions for finfish gillnets and shrimp driftnets. The most restrictive scenario resulted in the highest biomass of species of conservation concern; the scenario without any conservation measures in place resulted in the lowest. Vaquita experienced the largest population increase of any functional group; their biomass increased 2.7 times relative to initial (2008) levels under the most restrictive spatial closure scenario. Bycatch of sea lions, sea turtles, and totoaba decreased > 80% in shrimp driftnets and at least 20% in finfish gillnet fleets under spatial management. We found indirect effects on species and ecosystem function and structure as a result of vaquita management actions. Biomass and catch of forage fish declined, which could affect lower-trophic level fisheries, while other species such as skates, rays, and sharks increased in both biomass and catch. When comparing across performance metrics, we found that scenarios that increased ecosystem function and structure resulted in lower economic performance indicators, underscoring the need for management actions that consider ecological and economic tradeoffs as part of the integrated management of the Upper Gulf of California. PMID:23691155
NASA Astrophysics Data System (ADS)
Saidi, A.; Trache, M. A.; Khelfi, M. F.
2016-08-01
The social and economic activity steadily growing in our cities creates a significant waste production in constantly evolving. The management of this waste is problematic because it is the center of many issues and interests. Indeed, any action or decision to the collection, transportation, treatment and disposal of waste should be considered in the economic, social, political and especially environmental aspect. A global Geomatic solution requires implementing a GIS with powerful multidimensional spatial analysis tools that support really waste management problem. Algeria has adopted a solution of waste landfill for all urban cities. In the Oran region, it exists three Centers Controlled landfill (CET) which the most important is that of Hassi-Bounif. This center currently meeting the needs of the region is unsustainable solution at the long-term because of its rapid saturation and its geographic location, which is still far from city centers (20-30 km) implying a negative impact on the vehicle park collecting such frequent breakdowns, the rapid degradation, slow delivery time and especially the high cost of the maintenance operation. This phenomenon is aggravated by the absence of real and actual initiatives targeting the recycling and recovery of waste, which makes the CET an endpoint for all types of waste. We present in this study, the use of the ELECTRE method (Multicriteria Analysis) integrated into a GIS to characterize the impact of the implementation of transfers centers at Oran region. The results of this study will accentuate the advantages of the activation of waste warehouse closer to the city, and relieving considerably the volume of transfer towards CET. The objective of our presentation is to show the leading role of the new Geomatics tools and the multidimensional spatial analysis in the apprehension of an environmental problem such the waste management and more generally in the urban management.
A web-enabled system for integrated assessment of watershed development
Dymond, R.; Lohani, V.; Regmi, B.; Dietz, R.
2004-01-01
Researchers at Virginia Tech have put together the primary structure of a web enabled integrated modeling system that has potential to be a planning tool to help decision makers and stakeholders in making appropriate watershed management decisions. This paper describes the integrated system, including data sources, collection, analysis methods, system software and design, and issues of integrating the various component models. The integrated system has three modeling components, namely hydrology, economics, and fish health, and is accompanied by descriptive 'help files.' Since all three components have a related spatial aspect, GIS technology provides the integration platform. When completed, a user will access the integrated system over the web to choose pre-selected land development patterns to create a 'what if' scenario using an easy-to-follow interface. The hydrologic model simulates effects of the scenario on annual runoff volume, flood peaks of various return periods, and ground water recharge. The economics model evaluates tax revenue and fiscal costs as a result of a new land development scenario. The fish health model evaluates effects of new land uses in zones of influence to the health of fish populations in those areas. Copyright ASCE 2004.
Yang, Guoxiang; Best, Elly P H
2015-09-15
Best management practices (BMPs) can be used effectively to reduce nutrient loads transported from non-point sources to receiving water bodies. However, methodologies of BMP selection and placement in a cost-effective way are needed to assist watershed management planners and stakeholders. We developed a novel modeling-optimization framework that can be used to find cost-effective solutions of BMP placement to attain nutrient load reduction targets. This was accomplished by integrating a GIS-based BMP siting method, a WQM-TMDL-N modeling approach to estimate total nitrogen (TN) loading, and a multi-objective optimization algorithm. Wetland restoration and buffer strip implementation were the two BMP categories used to explore the performance of this framework, both differing greatly in complexity of spatial analysis for site identification. Minimizing TN load and BMP cost were the two objective functions for the optimization process. The performance of this framework was demonstrated in the Tippecanoe River watershed, Indiana, USA. Optimized scenario-based load reduction indicated that the wetland subset selected by the minimum scenario had the greatest N removal efficiency. Buffer strips were more effective for load removal than wetlands. The optimized solutions provided a range of trade-offs between the two objective functions for both BMPs. This framework can be expanded conveniently to a regional scale because the NHDPlus catchment serves as its spatial computational unit. The present study demonstrated the potential of this framework to find cost-effective solutions to meet a water quality target, such as a 20% TN load reduction, under different conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Che, Yue; Yang, Kai; Jin, Yan; Zhang, Weiqian; Shang, Zhaoyi; Tai, Jun
2013-12-01
The ever-growing industry of municipal solid waste (MSW) disposal appeals to the growing need for disposal facilities, and MSW treatment facilities are increasingly an environmental and public health concern. Residents living near MSW management facilities are confronted with various risk perceptions, especially odour. In this study, in an effort to assist responsible decision-makers in better planning and managing such a project, a structured questionnaire was designed and distributed to assess the nearby residents' concerns and attitudes surrounding the Laogang Landfill in Shanghai. Geographic information system techniques and relevance analysis were employed to conduct the spatial analysis of physical perceptions, especially odour annoyance. The findings of the research indicate that a significant percentage of the responding sample was aware of the negative impacts of landfills on the environment and public health, and residents in close proximity preferred to live farther from the landfill. The results from the spatial analysis demonstrated a definite degree of correlation between odour annoyance and distance to the facility and proved that the benefits of the socially disadvantaged have been neglected. The research findings also direct attention to the important role of public participation, information disclosure, transparency in management, and mutual communication to avoid conflicts and build social trust.
Bagstad, Kenneth J.; Semmens, Darius J.; Winthrop, Robert
2013-01-01
Although the number of ecosystem service modeling tools has grown in recent years, quantitative comparative studies of these tools have been lacking. In this study, we applied two leading open-source, spatially explicit ecosystem services modeling tools – Artificial Intelligence for Ecosystem Services (ARIES) and Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) – to the San Pedro River watershed in southeast Arizona, USA, and northern Sonora, Mexico. We modeled locally important services that both modeling systems could address – carbon, water, and scenic viewsheds. We then applied managerially relevant scenarios for urban growth and mesquite management to quantify ecosystem service changes. InVEST and ARIES use different modeling approaches and ecosystem services metrics; for carbon, metrics were more similar and results were more easily comparable than for viewsheds or water. However, findings demonstrate similar gains and losses of ecosystem services and conclusions when comparing effects across our scenarios. Results were more closely aligned for landscape-scale urban-growth scenarios and more divergent for a site-scale mesquite-management scenario. Follow-up studies, including testing in different geographic contexts, can improve our understanding of the strengths and weaknesses of these and other ecosystem services modeling tools as they move closer to readiness for supporting day-to-day resource management.
The role of spatial integration in the perception of surface orientation with active touch.
Giachritsis, Christos D; Wing, Alan M; Lovell, Paul G
2009-10-01
Vision research has shown that perception of line orientation, in the fovea area, improves with line length (Westheimer & Ley, 1997). This suggests that the visual system may use spatial integration to improve perception of orientation. In the present experiments, we investigated the role of spatial integration in the perception of surface orientation using kinesthetic and proprioceptive information from shoulder and elbow. With their left index fingers, participants actively explored virtual slanted surfaces of different lengths and orientations, and were asked to reproduce an orientation or discriminate between two orientations. Results showed that reproduction errors and discrimination thresholds improve with surface length. This suggests that the proprioceptive shoulder-elbow system may integrate redundant spatial information resulting from extended arm movements to improve orientation judgments.
Bayesian Integration of Spatial Information
ERIC Educational Resources Information Center
Cheng, Ken; Shettleworth, Sara J.; Huttenlocher, Janellen; Rieser, John J.
2007-01-01
Spatial judgments and actions are often based on multiple cues. The authors review a multitude of phenomena on the integration of spatial cues in diverse species to consider how nearly optimally animals combine the cues. Under the banner of Bayesian perception, cues are sometimes combined and weighted in a near optimal fashion. In other instances…
Information Requirements for Integrating Spatially Discrete, Feature-Based Earth Observations
NASA Astrophysics Data System (ADS)
Horsburgh, J. S.; Aufdenkampe, A. K.; Lehnert, K. A.; Mayorga, E.; Hsu, L.; Song, L.; Zaslavsky, I.; Valentine, D. L.
2014-12-01
Several cyberinfrastructures have emerged for sharing observational data collected at densely sampled and/or highly instrumented field sites. These include the CUAHSI Hydrologic Information System (HIS), the Critical Zone Observatory Integrated Data Management System (CZOData), the Integrated Earth Data Applications (IEDA) and EarthChem system, and the Integrated Ocean Observing System (IOOS). These systems rely on standard data encodings and, in some cases, standard semantics for classes of geoscience data. Their focus is on sharing data on the Internet via web services in domain specific encodings or markup languages. While they have made progress in making data available, it still takes investigators significant effort to discover and access datasets from multiple repositories because of inconsistencies in the way domain systems describe, encode, and share data. Yet, there are many scenarios that require efficient integration of these data types across different domains. For example, understanding a soil profile's geochemical response to extreme weather events requires integration of hydrologic and atmospheric time series with geochemical data from soil samples collected over various depth intervals from soil cores or pits at different positions on a landscape. Integrated access to and analysis of data for such studies are hindered because common characteristics of data, including time, location, provenance, methods, and units are described differently within different systems. Integration requires syntactic and semantic translations that can be manual, error-prone, and lossy. We report information requirements identified as part of our work to define an information model for a broad class of earth science data - i.e., spatially-discrete, feature-based earth observations resulting from in-situ sensors and environmental samples. We sought to answer the question: "What information must accompany observational data for them to be archivable and discoverable within a publication system as well as interpretable once retrieved from such a system for analysis and (re)use?" We also describe development of multiple functional schemas (i.e., physical implementations for data storage, transfer, and archival) for the information model that capture the requirements reported here.
NASA Astrophysics Data System (ADS)
Siuda, A. N.; Smythe, T. C.
2016-12-01
The Sargasso Sea, at the center of the North Atlantic gyre, is recognized by the United Nations Convention on Biological Diversity as a globally unique ecosystem threatened by anthropogenic activity. In its stewardship capacity, the Sargasso Sea Commission works within the current system of international organizations and treaties to secure protection for particular species or areas. Without a single governing authority to implement and enforce protective measures across the region, a coordinated management plan for the region is lacking. A research team comprised of 20 advanced undergraduate scientists participating in the spring 2015 SEA Semester: Marine Biodiversity and Conservation program of Sea Education Association (Woods Hole, MA) engaged in a groundbreaking simulated high seas marine spatial planning process resulting in A Marine Management Proposal for the Sargasso Sea. Based on natural and social science research, the interdisciplinary Proposal outlines goals, objectives and realistic strategies that encompass ecological, economic, human use, and future use considerations. Notably, the Proposal is the product of a classroom-based simulation intended to improve emerging scientists' understanding of how research is integrated into the policy process and how organizations work across disciplinary boundaries to address complex ocean management problems. Student researchers identified several discrete management areas and associated policy recommendations for those areas, as well as strategies for coordinated management across the entire Sargasso Sea region. The latter include establishment of a United Nations Regional Ocean Management Organization as well as provisions for monitoring and managing high seas traffic. To make progress toward these strategies, significant attention to the importance of high seas regions for global-scale conservation will be necessary.
NASA Astrophysics Data System (ADS)
Siuda, A. N.; Smythe, T. C.
2016-02-01
The Sargasso Sea, at the center of the North Atlantic gyre, is recognized by the United Nations Convention on Biological Diversity as a globally unique ecosystem threatened by anthropogenic activity. In its stewardship capacity, the Sargasso Sea Commission works within the current system of international organizations and treaties to secure protection for particular species or areas. Without a single governing authority to implement and enforce protective measures across the region, a coordinated management plan for the region is lacking. A research team comprised of 20 advanced undergraduate scientists participating in the spring 2015 SEA Semester: Marine Biodiversity and Conservation program of Sea Education Association (Woods Hole, MA) engaged in a groundbreaking simulated high seas marine spatial planning process resulting in A Marine Management Proposal for the Sargasso Sea. Based on natural and social science research, the interdisciplinary Proposal outlines goals, objectives and realistic strategies that encompass ecological, economic, human use, and future use considerations. Notably, the Proposal is the product of a classroom-based simulation intended to improve emerging scientists' understanding of how research is integrated into the policy process and how organizations work across disciplinary boundaries to address complex ocean management problems. Student researchers identified several discrete management areas and associated policy recommendations for those areas, as well as strategies for coordinated management across the entire Sargasso Sea region. The latter include establishment of a United Nations Regional Ocean Management Organization as well as provisions for monitoring and managing high seas traffic. To make progress toward these strategies, significant attention to the importance of high seas regions for global-scale conservation will be necessary.
2015-12-01
FINAL REPORT Integrated spatial models of non-native plant invasion, fire risk, and wildlife habitat to support conservation of military and...as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service...2. REPORT TYPE Final 3. DATES COVERED (From - To) 26/4/2010 – 25/10/2015 4. TITLE AND SUBTITLE Integrated Spatial Models of Non-Native Plant
Iseyemi, Oluwayinka O; Farris, Jerry L; Moore, Matthew T; Choi, Seo-Eun
2016-06-01
Drainage systems are integral parts of agricultural landscapes and have the ability to intercept nutrient loading from runoff to surface water. This study investigated nutrient removal efficiency within replicated experimental agricultural drainage ditches during a simulated summer runoff event. Study objectives were to examine the influence of routine mowing of vegetated ditches on nutrient mitigation and to assess spatial transformation of nutrients along ditch length. Both mowed and unmowed ditch treatments decreased NO3 (-)-N by 79 % and 94 % and PO4 (3-) by 95 % and 98 %, respectively, with no significant difference in reduction capacities between the two treatments. This suggests occasional ditch mowing as a management practice would not undermine nutrient mitigation capacity of vegetated drainage ditches.