DOE Office of Scientific and Technical Information (OSTI.GOV)
Avery, L.W.; Hunt, S.T.; Savage, S.F.
1992-04-01
The United State Marine Corps (USMC) is continuing the development and fielding of the Marine Corps Tactical Command and Control System (MTACCS), a system which exists in varying states of development, fielding, or modernization. MTACCS is currently composed of the following components: Tactical Combat Operations System (TCO) for ground command and control (C2), Intelligence Analysis System (IAS) with a Genser terminal connected to a TCO workstation for intelligence C2, Marine Integrated Personnel System (MIPS) and a TCO workstation using the Marine Combat Personnel System (MCPERS) software for personnel C2, Marine Integrated Logistics System (MILOGS) which is composed of the Landingmore » Force Asset Distribution System (LFADS), the Marine Air-Ground Task Force (MAGTF) II, and a TCO terminal using the Marine Combat Logistics System (MCLOG) for logistics C2, Marine Corps Fire Support System (MCFSS) for fire support C2, and Advanced Tactical Air Command Central (ATACC) and the Improved Direct Air Support Central for aviation C2.« less
International Space Station Payload Operations Integration Center (POIC) Overview
NASA Technical Reports Server (NTRS)
Ijames, Gayleen N.
2012-01-01
Objectives and Goals: Maintain and operate the POIC and support integrated Space Station command and control functions. Provide software and hardware systems to support ISS payloads and Shuttle for the POIF cadre, Payload Developers and International Partners. Provide design, development, independent verification &validation, configuration, operational product/system deliveries and maintenance of those systems for telemetry, commanding, database and planning. Provide Backup Control Center for MCC-H in case of shutdown. Provide certified personnel and systems to support 24x7 facility operations per ISS Program. Payloads CoFR Implementation Plan (SSP 52054) and MSFC Payload Operations CoFR Implementation Plan (POIF-1006).
How Can We Best Achieve Contracting Unity of Effort in the CENTCOM Area of Responsibility?
2013-12-01
3 2. Literature Review ................................................................................3 3. Interview Design and...2010, JCC-I/A was re- designated as the Central Command Joint Theater Support Contracting Command (C-JTSCC). Although the military has used...provision of integrated contracted support and management of contractor personnel providing that support to the joint force in a designated operational
The Challenges of Adopting Mission Command Philosophy in the Armenian Armed Forces
2017-06-09
not been identified. This thesis examines the principles of the mission command philosophy as practiced in the US Army and determines the barriers...conditions of adopting the philosophy of mission command have not been identified. This thesis examines the principles of the mission command philosophy as...different approach to the regional ethnic conflicts. While Georgia supports the principle of territorial integrity of regional ethnic conflicts (in
Relocation of the Air National Guard 176th Wing to Elmendorf AFB, Alaska
2007-09-01
originally based at Elmendorf AFB under the command of Alaskan Air Command. The next 35 years witnessed the relocation of AKANG functions to Kulis ... Kulis ANGB closure, to support future mission growth, and realize efficiencies gained through integrating the operations and support functions of...support elements would relocate from Kulis ANGB to Elmendorf AFB resulting in a complete functioning AKANG Wing embedded within Elmendorf AFB
1990-09-30
UTP 620344220 30 September 1990 Command Line form gfl MSG: Estructure closed apIcatic Figure 5-64b (AFTER) 5-132 UTP 620344220 30 September 1990 Command...620344220 30 September 1990 Comman Lineay form gf 1 MSG: Estructure 9 psted on workstation 1 at priority 1 applcatioo Figure 5-101a (BEFORE) 5-205 UTP
Improving Air Force Imagery Reconnaissance Support to Ground Commanders.
1983-06-03
reconnaissance support in Southeast Asia due to the long response times of film recovery and 26 processing capabilities and inadequate command and control...reconnaissance is an integral part of the C31 information explosion. Traditional silver halide film products, chemically processed and manually distributed are...being replaced with electronic near-real-time (NRT) imaging sensors. The term "imagery" now includes not only conventional film based products (black
Alternative Futures: United States Air Force Security Police in the Twenty-First Century
1988-04-01
34What policies should today’s Air Force leadership be pursuing to prepare for tomorrow’s combat support and security police roles?’ The monograph...Further, it addresses the capability of the Air Force to respond to its future combat support and security police missions and their integration into the...security police organizations. His most recent assignments were as the deputy commander of a combat support group and the commander of a security police
Integrated command, control, communications and computation system functional architecture
NASA Technical Reports Server (NTRS)
Cooley, C. G.; Gilbert, L. E.
1981-01-01
The functional architecture for an integrated command, control, communications, and computation system applicable to the command and control portion of the NASA End-to-End Data. System is described including the downlink data processing and analysis functions required to support the uplink processes. The functional architecture is composed of four elements: (1) the functional hierarchy which provides the decomposition and allocation of the command and control functions to the system elements; (2) the key system features which summarize the major system capabilities; (3) the operational activity threads which illustrate the interrelationahip between the system elements; and (4) the interfaces which illustrate those elements that originate or generate data and those elements that use the data. The interfaces also provide a description of the data and the data utilization and access techniques.
A natural command language for C/3/I applications
NASA Astrophysics Data System (ADS)
Mergler, J. P.
1980-03-01
The article discusses the development of a natural command language and a control and analysis console designed to simplify the task of the operator in field of Command, Control, Communications, and Intelligence. The console is based on a DEC LSI-11 microcomputer, supported by 16-K words of memory and a serial interface component. Discussion covers the language, which utilizes English and a natural syntax, and how it is integrated with the hardware. It is concluded that results have demonstrated the effectiveness of this natural command language.
Modeling and Simulation of Avionics Systems and Command, Control and Communications Systems
1980-01-01
analytical and operational talent into a cohesive study group . This group becomes our critical mass for innovative analysis. For command and control problems...that focusing small integrated groups on specific aspects of a command and control problem sucoseds best. For example, Air Force Studies and Analyses...phase so called " study groups " should define "tactical requirement-papers", These study groups will be supported by operational analyses and by
Test Telemetry And Command System (TTACS)
NASA Technical Reports Server (NTRS)
Fogel, Alvin J.
1994-01-01
The Jet Propulsion Laboratory has developed a multimission Test Telemetry and Command System (TTACS) which provides a multimission telemetry and command data system in a spacecraft test environment. TTACS reuses, in the spacecraft test environment, components of the same data system used for flight operations; no new software is developed for the spacecraft test environment. Additionally, the TTACS is transportable to any spacecraft test site, including the launch site. The TTACS is currently operational in the Galileo spacecraft testbed; it is also being provided to support the Cassini and Mars Surveyor Program projects. Minimal personnel data system training is required in the transition from pre-launch spacecraft test to post-launch flight operations since test personnel are already familiar with the data system's operation. Additionally, data system components, e.g. data display, can be reused to support spacecraft software development; and the same data system components will again be reused during the spacecraft integration and system test phases. TTACS usage also results in early availability of spacecraft data to data system development and, as a result, early data system development feedback to spacecraft system developers. The TTACS consists of a multimission spacecraft support equipment interface and components of the multimission telemetry and command software adapted for a specific project. The TTACS interfaces to the spacecraft, e.g., Command Data System (CDS), support equipment. The TTACS telemetry interface to the CDS support equipment performs serial (RS-422)-to-ethernet conversion at rates between 1 bps and 1 mbps, telemetry data blocking and header generation, guaranteed data transmission to the telemetry data system, and graphical downlink routing summary and control. The TTACS command interface to the CDS support equipment is nominally a command file transferred in non-real-time via ethernet. The CDS support equipment is responsible for metering the commands to the CDS; additionally for Galileo, TTACS includes a real-time-interface to the CDS support equipment. The TTACS provides the basic functionality of the multimission telemetry and command data system used during flight operations. TTACS telemetry capabilities include frame synchronization, Reed-Solomon decoding, packet extraction and channelization, and data storage/query. Multimission data display capabilities are also available. TTACS command capabilities include command generation verification, and storage.
Boutiques: a flexible framework to integrate command-line applications in computing platforms.
Glatard, Tristan; Kiar, Gregory; Aumentado-Armstrong, Tristan; Beck, Natacha; Bellec, Pierre; Bernard, Rémi; Bonnet, Axel; Brown, Shawn T; Camarasu-Pop, Sorina; Cervenansky, Frédéric; Das, Samir; Ferreira da Silva, Rafael; Flandin, Guillaume; Girard, Pascal; Gorgolewski, Krzysztof J; Guttmann, Charles R G; Hayot-Sasson, Valérie; Quirion, Pierre-Olivier; Rioux, Pierre; Rousseau, Marc-Étienne; Evans, Alan C
2018-05-01
We present Boutiques, a system to automatically publish, integrate, and execute command-line applications across computational platforms. Boutiques applications are installed through software containers described in a rich and flexible JSON language. A set of core tools facilitates the construction, validation, import, execution, and publishing of applications. Boutiques is currently supported by several distinct virtual research platforms, and it has been used to describe dozens of applications in the neuroinformatics domain. We expect Boutiques to improve the quality of application integration in computational platforms, to reduce redundancy of effort, to contribute to computational reproducibility, and to foster Open Science.
The Battle Command Sustainment Support System: The Army’s Command and Control System for Logistics
2009-05-21
threaten the Austrian forward element near Ulm. 3 Later in the 19 th century, railroads played a key role in the U.S. Civil War. Gauge disparities on...and accuracy of those reports played an integral role in the decisions the commander chose to make. The Army began making a concerted effort to...40 Dave Cammons, John Tisserand, Duane Williams, Alan Seise and Dough Lindsay, ―Network Centric Warfare Case Study: U.S. V Corps
Proven and Robust Ground Support Systems - GSFC Success and Lessons Learned
NASA Technical Reports Server (NTRS)
Pfarr, Barbara; Donohue, John; Lui, Ben; Greer, Greg; Green, Tom
2008-01-01
Over the past fifteen years, Goddard Space Flight Center has developed several successful science missions in-house: the Wilkinson Microwave Anisotropy Probe (WMAP), the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE), the Earth Observing 1 (EO-1) [1], and the Space Technology 5 (ST-5)[2] missions, several Small Explorers, and several balloon missions. Currently in development are the Solar Dynamics Observatory (SDO) [3] and the Lunar Reconnaissance Orbiter (LRO)[4]. What is not well known is that these missions have been supported during spacecraft and/or instrument integration and test, flight software development, and mission operations by two in house satellite Telemetry and Command (T & C) Systems, the Integrated Test and Operations System (ITOS) and the Advanced Spacecraft Integration and System Test (ASIST). The advantages of an in-house satellite Telemetry and Command system are primarily in the flexibility of management and maintenance - the developers are considered a part of the mission team, get involved early in the development process of the spacecraft and mission operations-control center, and provide on-site, on-call support that goes beyond Help Desk and simple software fixes. On the other hand, care must be taken to ensure that the system remains generic enough for cost effective re-use from one mission to the next. The software is designed such that many features are user-configurable. Where user-configurable options were impractical, features were designed so as to be easy for the development team to modify. Adding support for a new ground message header, for example, is a one-day effort because of the software framework on which that code rests. This paper will discuss the many features of the Goddard satellite Telemetry and Command systems that have contributed to the success of the missions listed above. These features include flexible user interfaces, distributed parallel commanding and telemetry decommutation, a procedure language, the interfaces and tools needed for a high degree of automation, and instantly accessible archives of spacecraft telemetry. It will discuss some of the problems overcome during development, including secure commanding over networks or the Internet, constellation support for the three satellites that comprise the ST-5 mission, and geographically distributed telemetry end users.
Boutiques: a flexible framework to integrate command-line applications in computing platforms
Glatard, Tristan; Kiar, Gregory; Aumentado-Armstrong, Tristan; Beck, Natacha; Bellec, Pierre; Bernard, Rémi; Bonnet, Axel; Brown, Shawn T; Camarasu-Pop, Sorina; Cervenansky, Frédéric; Das, Samir; Ferreira da Silva, Rafael; Flandin, Guillaume; Girard, Pascal; Gorgolewski, Krzysztof J; Guttmann, Charles R G; Hayot-Sasson, Valérie; Quirion, Pierre-Olivier; Rioux, Pierre; Rousseau, Marc-Étienne; Evans, Alan C
2018-01-01
Abstract We present Boutiques, a system to automatically publish, integrate, and execute command-line applications across computational platforms. Boutiques applications are installed through software containers described in a rich and flexible JSON language. A set of core tools facilitates the construction, validation, import, execution, and publishing of applications. Boutiques is currently supported by several distinct virtual research platforms, and it has been used to describe dozens of applications in the neuroinformatics domain. We expect Boutiques to improve the quality of application integration in computational platforms, to reduce redundancy of effort, to contribute to computational reproducibility, and to foster Open Science. PMID:29718199
78 FR 23226 - 36(b)(1) Arms Sales Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-18
..., Communication, Computer and Intelligence/Communication, Navigational and Identification (C4I/CNI); Autonomic.../ integration, aircraft ferry and tanker support, support equipment, tools and test equipment, communication... aircraft equipment includes: Electronic Warfare Systems; Command, Control, Communication, Computer and...
NASA Technical Reports Server (NTRS)
Maresca, P. A.; Lefler, R. M.
1978-01-01
The requirements of potential users were considered in the design of an integrated data base management system, developed to be independent of any specific computer or operating system, and to be used to support investigations in weather and climate. Ultimately, the system would expand to include data from the agriculture, hydrology, and related Earth resources disciplines. An overview of the system and its capabilities is presented. Aspects discussed cover the proposed interactive command language; the application program command language; storage and tabular data maintained by the regional data base management system; the handling of data files and the use of system standard formats; various control structures required to support the internal architecture of the system; and the actual system architecture with the various modules needed to implement the system. The concepts on which the relational data model is based; data integrity, consistency, and quality; and provisions for supporting concurrent access to data within the system are covered in the appendices.
75 FR 19627 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-15
... address: Delete entry and replace with ``Commander, Navy Personnel Command (PERS-31), 5720 Integrity Drive... to the Commander, Navy Personnel Command (PERS-312), 5720 Integrity Drive, Millington, TN 38055-3120... should address written inquiries to Commander, Navy Personnel Command (PERS- 312), 5720 Integrity Drive...
Marshall Space Flight Center Ground Systems Development and Integration
NASA Technical Reports Server (NTRS)
Wade, Gina
2016-01-01
Ground Systems Development and Integration performs a variety of tasks in support of the Mission Operations Laboratory (MOL) and other Center and Agency projects. These tasks include various systems engineering processes such as performing system requirements development, system architecture design, integration, verification and validation, software development, and sustaining engineering of mission operations systems that has evolved the Huntsville Operations Support Center (HOSC) into a leader in remote operations for current and future NASA space projects. The group is also responsible for developing and managing telemetry and command configuration and calibration databases. Personnel are responsible for maintaining and enhancing their disciplinary skills in the areas of project management, software engineering, software development, software process improvement, telecommunications, networking, and systems management. Domain expertise in the ground systems area is also maintained and includes detailed proficiency in the areas of real-time telemetry systems, command systems, voice, video, data networks, and mission planning systems.
1992-03-17
No. 1 Approved for Public Release; Distribution Unlimited PHILLIPS LABORATORY AIR FORCE SYSTEMS COMMAND HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731...the SWOE thermal models and the design of a new Command Interface System and User Interface System . 14. SUBJECT TERMS 15. NUMBER OF PAGES 116 BTI/SWOE...to the 3-D Tree Model 24 4.2.1 Operation Via the SWOE Command Interface System 26 4.2.2 Addition of Radiation Exchange to the Environment 26 4.2.3
DoD Freedom of Information Act Policies Need Improvement
2016-08-16
of Defense that supports the warfighter; promotes accountability , integrity, and efficiency; advises the Secretary of Defense and Congress; and...and Budget. On December 31, 2007, Congress passed the “OPEN Government Act of 2007,” which provided for greater agency transparency and accountability ...Finance and Accounting Service U.S. Special Operations Command Defense Contract Management Agency U.S. Southern Command Defense Health Agency U.S
2011-06-22
accessible by intelligence professionals and intelligence organizations frequently do not dedicate enough effort to support the process of...In every theater, Commanders have developed non-doctrinal organizations uniquely suited to their mission in an effort to integrate socio-cultural...information into military decision-making processes. A prime example of a non-traditional organization is the Stability Operations Information
NASA Astrophysics Data System (ADS)
Roy, Jean; Breton, Richard; Paradis, Stephane
2001-08-01
Situation Awareness (SAW) is essential for commanders to conduct decision-making (DM) activities. Situation Analysis (SA) is defined as a process, the examination of a situation, its elements, and their relations, to provide and maintain a product, i.e., a state of SAW for the decision maker. Operational trends in warfare put the situation analysis process under pressure. This emphasizes the need for a real-time computer-based Situation analysis Support System (SASS) to aid commanders in achieving the appropriate situation awareness, thereby supporting their response to actual or anticipated threats. Data fusion is clearly a key enabler for SA and a SASS. Since data fusion is used for SA in support of dynamic human decision-making, the exploration of the SA concepts and the design of data fusion techniques must take into account human factor aspects in order to ensure a cognitive fit of the fusion system with the decision-maker. Indeed, the tight human factor aspects in order to ensure a cognitive fit of the fusion system with the decision-maker. Indeed, the tight integration of the human element with the SA technology is essential. Regarding these issues, this paper provides a description of CODSI (Command Decision Support Interface), and operational- like human machine interface prototype for investigations in computer-based SA and command decision support. With CODSI, one objective was to apply recent developments in SA theory and information display technology to the problem of enhancing SAW quality. It thus provides a capability to adequately convey tactical information to command decision makers. It also supports the study of human-computer interactions for SA, and methodologies for SAW measurement.
Prompt comprehension in UNIX command production.
Doane, S M; McNamara, D S; Kintsch, W; Polson, P G; Clawson, D M
1992-07-01
We hypothesize that a cognitive analysis based on the construction-integration theory of comprehension (Kintsch, 1988) can predict what is difficult about generating complex composite commands in the UNIX operating system. We provide empirical support for assumptions of the Doane, Kintsch, and Polson (1989, 1990) construction-integration model for generating complex commands in UNIX. We asked users whose UNIX experience varied to produce complex UNIX commands, and then provided help prompts whenever the commands that they produced were erroneous. The help prompts were designed to assist subjects with respect to both the knowledge and the memory processes that our UNIX modeling efforts have suggested are lacking in less expert users. It appears that experts respond to different prompts than do novices. Expert performance is helped by the presentation of abstract information, whereas novice and intermediate performance is modified by presentation of concrete information. Second, while presentation of specific prompts helps less expert subjects, they do not provide sufficient information to obtain correct performance. Our analyses suggest that information about the ordering of commands is required to help the less expert with both knowledge and memory load problems in a manner consistent with skill acquisition theories.
2013-06-01
In this research, we examine the Naval Sea Logistics Command s Continuous Integrated Logistics Support Targeted Allowancing Technique (CILS TAT) and... the feasibility of program re-implementation. We conduct an analysis of this allowancing method s effectiveness onboard U.S. Navy Ballistic Missile...Defense (BMD) ships, measure the costs associated with performing a CILS TAT, and provide recommendations concerning possible improvements to the
Mattox, Kenneth L
2006-01-01
The medical support for the coordinated effort for Harris County Texas (Houston) to rescue evacuees from New Orleans following Hurricane Katrina was part of an integrated collaborative network. Both public health and operational health care was structured to custom meet the needs of the evacuees and to create an exit strategy for the clinic and shelter. Integrating local hospital and physician resources into the Joint Incident Command was essential. Outside assistance, including federal and national resources must be coordinated through the local incident command. PMID:16420647
Implementation of a low-cost, commercial orbit determination system
NASA Astrophysics Data System (ADS)
Corrigan, Jim
1994-11-01
Traditional satellite and launch control systems have consisted of custom solutions requiring significant development and maintenance costs. These systems have typically been designed to support specific program requirements and are expensive to modify and augment after delivery. The expanding role of space in today's marketplace combined with the increased sophistication and capabilities of modern satellites has created a need for more efficient, lower cost solutions to complete command and control systems. Recent technical advances have resulted in commercial-off-the-shelf products which greatly reduce the complete life-cycle costs associated with satellite launch and control system procurements. System integrators and spacecraft operators have, however, been slow to integrate these commercial based solutions into a comprehensive command and control system. This is due, in part, to a resistance to change and the fact that many available products are unable to effectively communicate with other commercial products. The United States Air Force, responsible for the health and safety of over 84 satellites via its Air Force Satellite Control Network (AFSCN), has embarked on an initiative to prove that commercial products can be used effectively to form a comprehensive command and control system. The initial version of this system is being installed at the Air Force's Center for Research Support (CERES) located at the National Test Facility in Colorado Springs, Colorado. The first stage of this initiative involved the identification of commercial products capable of satisfying each functional element of a command and control system. A significant requirement in this product selection criteria was flexibility and ability to integrate with other available commercial products. This paper discusses the functions and capabilities of the product selected to provide orbit determination functions for this comprehensive command and control system.
Implementation of a low-cost, commercial orbit determination system
NASA Technical Reports Server (NTRS)
Corrigan, Jim
1994-01-01
Traditional satellite and launch control systems have consisted of custom solutions requiring significant development and maintenance costs. These systems have typically been designed to support specific program requirements and are expensive to modify and augment after delivery. The expanding role of space in today's marketplace combined with the increased sophistication and capabilities of modern satellites has created a need for more efficient, lower cost solutions to complete command and control systems. Recent technical advances have resulted in commercial-off-the-shelf products which greatly reduce the complete life-cycle costs associated with satellite launch and control system procurements. System integrators and spacecraft operators have, however, been slow to integrate these commercial based solutions into a comprehensive command and control system. This is due, in part, to a resistance to change and the fact that many available products are unable to effectively communicate with other commercial products. The United States Air Force, responsible for the health and safety of over 84 satellites via its Air Force Satellite Control Network (AFSCN), has embarked on an initiative to prove that commercial products can be used effectively to form a comprehensive command and control system. The initial version of this system is being installed at the Air Force's Center for Research Support (CERES) located at the National Test Facility in Colorado Springs, Colorado. The first stage of this initiative involved the identification of commercial products capable of satisfying each functional element of a command and control system. A significant requirement in this product selection criteria was flexibility and ability to integrate with other available commercial products. This paper discusses the functions and capabilities of the product selected to provide orbit determination functions for this comprehensive command and control system.
1997-01-22
KENNEDY SPACE CENTER, FLA. - STS-82 crew members examine part of the Flight Support System during the Crew Equipment Integration Test (CEIT) in KSC's Vertical Processing Facility. From left are Mission Specialists Steven L. Smith and Gregory J. Harbaugh and Payload Commander Mark C. Lee. Liftoff of STS-82, the second Hubble Space Telescope (HST) servicing mission, is scheduled Feb. 11 aboard Discovery with a crew of seven.
2013-05-30
In this research, we examine the Naval Sea Logistics Command’s Continuous Integrated Logistics Support-Targeted Allowancing Technique (CILS-TAT) and... the feasibility of program re-implementation. We conduct an analysis of this allowancing method’s effectiveness onboard U.S. Navy Ballistic Missile...Defense (BMD) ships, measure the costs associated with performing a CILS-TAT, and provide recommendations concerning possible improvements to the
Requirements for an Integrated UAS CNS Architecture
NASA Technical Reports Server (NTRS)
Templin, Fred L.; Jain, Raj; Sheffield, Greg; Taboso-Ballesteros, Pedro; Ponchak, Denise
2017-01-01
Communications, Navigation and Surveillance (CNS) requirements must be developed in order to establish a CNS architecture supporting Unmanned Air Systems integration in the National Air Space (UAS in the NAS). These requirements must address cybersecurity, future communications, satellite-based navigation and APNT, and scalable surveillance and situational awareness. CNS integration, consolidation and miniaturization requirements are also important to support the explosive growth in small UAS deployment. Air Traffic Management (ATM) must also be accommodated to support critical Command and Control (C2) for Air Traffic Controllers (ATC). This document therefore presents UAS CNS requirements that will guide the architecture.
29 CFR 1952.243 - Final approval determination.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Lisburne Long Range Missile Base, Point Lay Short Range Missile Base, Eareckson Air Station on Shemya Island, Fort Greeley Missile Defense in Delta Junction, the U.S. Coast Guard Integrated Support Commands...
29 CFR 1952.243 - Final approval determination.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Lisburne Long Range Missile Base, Point Lay Short Range Missile Base, Eareckson Air Station on Shemya Island, Fort Greeley Missile Defense in Delta Junction, the U.S. Coast Guard Integrated Support Commands...
29 CFR 1952.243 - Final approval determination.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Lisburne Long Range Missile Base, Point Lay Short Range Missile Base, Eareckson Air Station on Shemya Island, Fort Greeley Missile Defense in Delta Junction, the U.S. Coast Guard Integrated Support Commands...
29 CFR 1952.243 - Final approval determination.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Lisburne Long Range Missile Base, Point Lay Short Range Missile Base, Eareckson Air Station on Shemya Island, Fort Greeley Missile Defense in Delta Junction, the U.S. Coast Guard Integrated Support Commands...
29 CFR 1952.243 - Final approval determination.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Lisburne Long Range Missile Base, Point Lay Short Range Missile Base, Eareckson Air Station on Shemya Island, Fort Greeley Missile Defense in Delta Junction, the U.S. Coast Guard Integrated Support Commands...
Unmanned ground vehicles for integrated force protection
NASA Astrophysics Data System (ADS)
Carroll, Daniel M.; Mikell, Kenneth; Denewiler, Thomas
2004-09-01
The combination of Command and Control (C2) systems with Unmanned Ground Vehicles (UGVs) provides Integrated Force Protection from the Robotic Operation Command Center. Autonomous UGVs are directed as Force Projection units. UGV payloads and fixed sensors provide situational awareness while unattended munitions provide a less-than-lethal response capability. Remote resources serve as automated interfaces to legacy physical devices such as manned response vehicles, barrier gates, fence openings, garage doors, and remote power on/off capability for unmanned systems. The Robotic Operations Command Center executes the Multiple Resource Host Architecture (MRHA) to simultaneously control heterogeneous unmanned systems. The MRHA graphically displays video, map, and status for each resource using wireless digital communications for integrated data, video, and audio. Events are prioritized and the user is prompted with audio alerts and text instructions for alarms and warnings. A control hierarchy of missions and duty rosters support autonomous operations. This paper provides an overview of the key technology enablers for Integrated Force Protection with details on a force-on-force scenario to test and demonstrate concept of operations using Unmanned Ground Vehicles. Special attention is given to development and applications for the Remote Detection Challenge and Response (REDCAR) initiative for Integrated Base Defense.
NASA Astrophysics Data System (ADS)
Ma, Jian; Hao, Yongsheng; Miao, Jian; Zhang, Jianmao
2007-11-01
This paper introduced a design proposal of tactical command system that applied to a kind of anti-tank missile carriers. The tactical command system was made up of embedded computer system based on PC104 bus, Linux operating system, digital military map, Beidou satellite communication equipments and GPS positioning equipments. The geographic coordinates was measured by the GPS receiver, the positioning data, commands and information were transmitted real-time between tactical command systems, tactical command systems and command center, by the Beidou satellite communication systems. The Beidou satellite communication equipments and GPS positioning equipments were integrated to an independent module, exchanging data with embedded computer through RS232 serial ports and USB ports. The decision support system software based on information fusion, calculates positioning data, geography information and battle field information synthetically, shows the position of allies and the position of enemy on the military map, and assesses the various threats of different enemy objects, educes a situation assessment and threat assessment.
2014-11-01
understands commands) modes are supported. By default, Julius comes with the Japanese language support. English acoustic and language models are...GUI, natura atar represent gue managem s the activitie ystem to und ry that suppo the Dialogu der to call arning (ML) learning ca r and feedb
2006-06-01
systems. Cyberspace is the electronic medium of net-centric operations, communications systems, and computers, in which horizontal integration and online...will be interoperable, more robust, responsive, and able to support faster spacecraft initialization times. This Intergrated Satellite Control... horizontally and vertically integrated information through machine-to-machine conversations enabled by a peer-based network of sensors, command
Experimental Validation: Subscale Aircraft Ground Facilities and Integrated Test Capability
NASA Technical Reports Server (NTRS)
Bailey, Roger M.; Hostetler, Robert W., Jr.; Barnes, Kevin N.; Belcastro, Celeste M.; Belcastro, Christine M.
2005-01-01
Experimental testing is an important aspect of validating complex integrated safety critical aircraft technologies. The Airborne Subscale Transport Aircraft Research (AirSTAR) Testbed is being developed at NASA Langley to validate technologies under conditions that cannot be flight validated with full-scale vehicles. The AirSTAR capability comprises a series of flying sub-scale models, associated ground-support equipment, and a base research station at NASA Langley. The subscale model capability utilizes a generic 5.5% scaled transport class vehicle known as the Generic Transport Model (GTM). The AirSTAR Ground Facilities encompass the hardware and software infrastructure necessary to provide comprehensive support services for the GTM testbed. The ground facilities support remote piloting of the GTM aircraft, and include all subsystems required for data/video telemetry, experimental flight control algorithm implementation and evaluation, GTM simulation, data recording/archiving, and audio communications. The ground facilities include a self-contained, motorized vehicle serving as a mobile research command/operations center, capable of deployment to remote sites when conducting GTM flight experiments. The ground facilities also include a laboratory based at NASA LaRC providing near identical capabilities as the mobile command/operations center, as well as the capability to receive data/video/audio from, and send data/audio to the mobile command/operations center during GTM flight experiments.
The changing paradigm for integrated simulation in support of Command and Control (C2)
NASA Astrophysics Data System (ADS)
Riecken, Mark; Hieb, Michael
2016-05-01
Modern software and network technologies are on the verge of enabling what has eluded the simulation and operational communities for more than two decades, truly integrating simulation functionality into operational Command and Control (C2) capabilities. This deep integration will benefit multiple stakeholder communities from experimentation and test to training by providing predictive and advanced analytics. There is a new opportunity to support operations with simulation once a deep integration is achieved. While it is true that doctrinal and acquisition issues remain to be addressed, nonetheless it is increasingly obvious that few technical barriers persist. How will this change the way in which common simulation and operational data is stored and accessed? As the Services move towards single networks, will there be technical and policy issues associated with sharing those operational networks with simulation data, even if the simulation data is operational in nature (e.g., associated with planning)? How will data models that have traditionally been simulation only be merged in with operational data models? How will the issues of trust be addressed?
ISLE (Image and Signal Processing LISP Environment) reference manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherwood, R.J.; Searfus, R.M.
1990-01-01
ISLE is a rapid prototyping system for performing image and signal processing. It is designed to meet the needs of a person doing development of image and signal processing algorithms in a research environment. The image and signal processing modules in ISLE form a very capable package in themselves. They also provide a rich environment for quickly and easily integrating user-written software modules into the package. ISLE is well suited to applications in which there is a need to develop a processing algorithm in an interactive manner. It is straightforward to develop the algorithms, load it into ISLE, apply themore » algorithm to an image or signal, display the results, then modify the algorithm and repeat the develop-load-apply-display cycle. ISLE consists of a collection of image and signal processing modules integrated into a cohesive package through a standard command interpreter. ISLE developer elected to concentrate their effort on developing image and signal processing software rather than developing a command interpreter. A COMMON LISP interpreter was selected for the command interpreter because it already has the features desired in a command interpreter, it supports dynamic loading of modules for customization purposes, it supports run-time parameter and argument type checking, it is very well documented, and it is a commercially supported product. This manual is intended to be a reference manual for the ISLE functions The functions are grouped into a number of categories and briefly discussed in the Function Summary chapter. The full descriptions of the functions and all their arguments are given in the Function Descriptions chapter. 6 refs.« less
2011-02-01
Command CASE Computer Aided Software Engineering CASEVAC Casualty Evacuation CASTFOREM Combined Arms And Support Task Force Evaluation Model CAT Center For...Advanced Technologies CAT Civil Affairs Team CAT Combined Arms Training CAT Crew Integration CAT Crisis Action Team CATIA Computer-Aided Three...Dimensional Interactive Application CATOX Catalytic Oxidation CATS Combined Arms Training Strategy CATT Combined Arms Tactical Trainer CATT Computer
Joint Forward Operating Base Elements of Command and Control
NASA Astrophysics Data System (ADS)
Summers, William C.
2002-01-01
Since the 1986 Goldwater-Nichols Act directed the Chairman of the Joint Chiefs of Staff to develop doctrine for the joint employment of the armed forces, tactics, techniques, and procedures have evolved at different rates depending on the competency. Whereas the command of joint air forces is well prescribed within the structure of the air operations center and its associated leadership, command of air assets at a joint forward operating base lacks guidance. Today, the United States prosecutes an air war over Afghanistan from bases in Uzbekistan, Pakistan, and Afghanistan. Elements of the United States Army, Air Force, and Marines combine at these geographically minute locations, each bringing a certain complement of support and command and control. Evidence from operations during the 1999 air war for Kosovo at Tirana Rinas Airport in Albania suggests that when these service elements meet at the airfield for the first time, there are problems associated with local procedure. At best, time is wasted creating local joint systems to overcome the difficulties. At worst, safety and mission accomplishment are jeopardized. This thesis will address the need to develop doctrine and a jointly integrated organization to support the command and control function at a forward operating base.
Cognitive Systems Modeling and Analysis of Command and Control Systems
NASA Technical Reports Server (NTRS)
Norlander, Arne
2012-01-01
Military operations, counter-terrorism operations and emergency response often oblige operators and commanders to operate within distributed organizations and systems for safe and effective mission accomplishment. Tactical commanders and operators frequently encounter violent threats and critical demands on cognitive capacity and reaction time. In the future they will make decisions in situations where operational and system characteristics are highly dynamic and non-linear, i.e. minor events, decisions or actions may have serious and irreversible consequences for the entire mission. Commanders and other decision makers must manage true real time properties at all levels; individual operators, stand-alone technical systems, higher-order integrated human-machine systems and joint operations forces alike. Coping with these conditions in performance assessment, system development and operational testing is a challenge for both practitioners and researchers. This paper reports on research from which the results led to a breakthrough: An integrated approach to information-centered systems analysis to support future command and control systems research development. This approach integrates several areas of research into a coherent framework, Action Control Theory (ACT). It comprises measurement techniques and methodological advances that facilitate a more accurate and deeper understanding of the operational environment, its agents, actors and effectors, generating new and updated models. This in turn generates theoretical advances. Some good examples of successful approaches are found in the research areas of cognitive systems engineering, systems theory, and psychophysiology, and in the fields of dynamic, distributed decision making and naturalistic decision making.
2008-04-08
decision making. It 29 identified that it is equally critical for a Command and Control system to facilitate temporal mixing (the ability to integrate...Decision Superiority. They might well be characterized as a set of stocks. It follows that a holistic appreciation, continuous monitoring of market ...retained the following working defintion of EBO: “Operations designed to influence the long- or short-term state of a system through the achievement of
22. FANTAIL DECK, SHOWING DETAIL OF DECK EXTENSION AND EXTERIOR ...
22. FANTAIL DECK, SHOWING DETAIL OF DECK EXTENSION AND EXTERIOR LOCKING MECHANISM ON HATCH DOOR TO CREW'S BERTHING. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
Integrated Nuclear Considerations: C&GSC Pre-Command Course Instructional Material.
1980-11-21
support of TFI-12’s withdrawal to PL BOB, then to countermobiltiy and survival operations in support of BPs on PL BOB with priority to sector of TF1 -12 and...BPs 11 and 12, in order. b. Be prepared to support CATK of TF1 -12 vicinity BREITENBACH. 13. S4: a. Supervise accomplishment of task in 2, above. b
2010-06-30
intelligence application package for theater battle management core system ( TBMCS ) functionality at wing and squadron levels. The automated four... TBMCS , Joint Surveillance and Target Attack Radar System (Ground Control Station), and Global Command and Control System, as well as with Allied FA...The TBMCS is a force level integrated air C2 system. TBMCS provides hardware, software, and communications interfaces to support the preparation
23. CREWS' BERTHING, SHOWING DETAIL OF INTERIOR LOCKING MECHANISM ON ...
23. CREWS' BERTHING, SHOWING DETAIL OF INTERIOR LOCKING MECHANISM ON HATCH DOOR (INTERIOR SIDE OF DOOR IN IMAGE 22). - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
41. BOW SPACES (YN OFFICES, AYN OFFICES & DECK SHOP, ...
41. BOW SPACES (YN OFFICES, AYN OFFICES & DECK SHOP, LAUNDRY & BOS'N STORES), WITH HATCH TO PAINT LOCKER AT LEFT. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
21. DECK ABOVE CREW'S BERTHING, LOOKING TOWARDS STERN, SHOWING DETAIL ...
21. DECK ABOVE CREW'S BERTHING, LOOKING TOWARDS STERN, SHOWING DETAIL OF THIS DECK THAT WAS EXTENDED IN THE 1960'S. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
Research into software executives for space operations support
NASA Technical Reports Server (NTRS)
Collier, Mark D.
1990-01-01
Research concepts pertaining to a software (workstation) executive which will support a distributed processing command and control system characterized by high-performance graphics workstations used as computing nodes are presented. Although a workstation-based distributed processing environment offers many advantages, it also introduces a number of new concerns. In order to solve these problems, allow the environment to function as an integrated system, and present a functional development environment to application programmers, it is necessary to develop an additional layer of software. This 'executive' software integrates the system, provides real-time capabilities, and provides the tools necessary to support the application requirements.
Autonomous Commanding of the WIRE Spacecraft
NASA Technical Reports Server (NTRS)
Prior, Mike; Walyus, Keith; Saylor, Rick
1999-01-01
This paper presents the end-to-end design architecture for an autonomous commanding capability to be used on the Wide Field Infrared Explorer (WIRE) mission for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented an autonomous command loading capability. This capability allows completely unattended operations over a typical two- day weekend period. The key factors driving design and implementation of this capability were: 1) Integration with already existing ground system autonomous capabilities and systems, 2) The desire to evolve autonomous operations capabilities based upon previous SMEX operations experience 3) Integration with ground station operations - both autonomous and man-tended, 4) Low cost and quick implementation, and 5) End-to-end system robustness. A trade-off study was performed to examine these factors in light of the low-cost, higher-risk SMEX mission philosophy. The study concluded that a STOL (Spacecraft Test and Operations Language) based script, highly integrated with other scripts used to perform autonomous operations, was best suited given the budget and goals of the mission. Each of these factors is discussed to provide an overview of the autonomous operations capabilities implemented for the mission. The capabilities implemented on the WIRE mission are an example of a low-cost, robust, and efficient method for autonomous command loading when implemented with other autonomous features of the ground system. They can be used as a design and implementation template by other small satellite missions interested in evolving toward autonomous and lower cost operations.
Automated Operations Development for Advanced Exploration Systems
NASA Technical Reports Server (NTRS)
Haddock, Angie; Stetson, Howard K.
2012-01-01
Automated space operations command and control software development and its implementation must be an integral part of the vehicle design effort. The software design must encompass autonomous fault detection, isolation, recovery capabilities and also provide single button intelligent functions for the crew. Development, operations and safety approval experience with the Timeliner system on-board the International Space Station (ISS), which provided autonomous monitoring with response and single command functionality of payload systems, can be built upon for future automated operations as the ISS Payload effort was the first and only autonomous command and control system to be in continuous execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven capabilities from the ISS Higher Active Logic (HAL) System [1] , along with the execution component design from within the HAL 9000 Space Operating System [2] , this design paper will detail the initial HAL System software architecture and interfaces as applied to NASA s Habitat Demonstration Unit (HDU) in support of the Advanced Exploration Systems, Autonomous Mission Operations project. The development and implementation of integrated simulators within this development effort will also be detailed and is the first step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs effectiveness. This design paper will conclude with a summary of the current development status and future development goals as it pertains to automated command and control for the HDU.
Automated Operations Development for Advanced Exploration Systems
NASA Technical Reports Server (NTRS)
Haddock, Angie T.; Stetson, Howard
2012-01-01
Automated space operations command and control software development and its implementation must be an integral part of the vehicle design effort. The software design must encompass autonomous fault detection, isolation, recovery capabilities and also provide "single button" intelligent functions for the crew. Development, operations and safety approval experience with the Timeliner system onboard the International Space Station (ISS), which provided autonomous monitoring with response and single command functionality of payload systems, can be built upon for future automated operations as the ISS Payload effort was the first and only autonomous command and control system to be in continuous execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven capabilities from the ISS Higher Active Logic (HAL) System, along with the execution component design from within the HAL 9000 Space Operating System, this design paper will detail the initial HAL System software architecture and interfaces as applied to NASA's Habitat Demonstration Unit (HDU) in support of the Advanced Exploration Systems, Autonomous Mission Operations project. The development and implementation of integrated simulators within this development effort will also be detailed and is the first step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs effectiveness. This design paper will conclude with a summary of the current development status and future development goals as it pertains to automated command and control for the HDU.
The Next Generation of Ground Operations Command and Control; Scripting in C no. and Visual Basic
NASA Technical Reports Server (NTRS)
Ritter, George; Pedoto, Ramon
2010-01-01
Scripting languages have become a common method for implementing command and control solutions in space ground operations. The Systems Test and Operations Language (STOL), the Huntsville Operations Support Center (HOSC) Scripting Language Processor (SLP), and the Spacecraft Control Language (SCL) offer script-commands that wrap tedious operations tasks into single calls. Since script-commands are interpreted, they also offer a certain amount of hands-on control that is highly valued in space ground operations. Although compiled programs seem to be unsuited for interactive user control and are more complex to develop, Marshall Space flight Center (MSFC) has developed a product called the Enhanced and Redesign Scripting (ERS) that makes use of the graphical and logical richness of a programming language while offering the hands-on and ease of control of a scripting language. ERS is currently used by the International Space Station (ISS) Payload Operations Integration Center (POIC) Cadre team members. ERS integrates spacecraft command mnemonics, telemetry measurements, and command and telemetry control procedures into a standard programming language, while making use of Microsoft's Visual Studio for developing Visual Basic (VB) or C# ground operations procedures. ERS also allows for script-style user control during procedure execution using a robust graphical user input and output feature. The availability of VB and C# programmers, and the richness of the languages and their development environment, has allowed ERS to lower our "script" development time and maintenance costs at the Marshall POIC.
NASA Astrophysics Data System (ADS)
Brauer, U.
2007-08-01
The Open Navigator Framework (ONF) was developed to provide a unified and scalable platform for user interface integration. The main objective for the framework was to raise usability of monitoring and control consoles and to provide a reuse of software components in different application areas. ONF is currently applied for the Columbus onboard crew interface, the commanding application for the Columbus Control Centre, the Columbus user facilities specialized user interfaces, the Mission Execution Crew Assistant (MECA) study and EADS Astrium internal R&D projects. ONF provides a well documented and proven middleware for GUI components (Java plugin interface, simplified concept similar to Eclipse). The overall application configuration is performed within a graphical user interface for layout and component selection. The end-user does not have to work in the underlying XML configuration files. ONF was optimized to provide harmonized user interfaces for monitoring and command consoles. It provides many convenience functions designed together with flight controllers and onboard crew: user defined workspaces, incl. support for multi screens efficient communication mechanism between the components integrated web browsing and documentation search &viewing consistent and integrated menus and shortcuts common logging and application configuration (properties) supervision interface for remote plugin GUI access (web based) A large number of operationally proven ONF components have been developed: Command Stack & History: Release of commands and follow up the command acknowledges System Message Panel: Browse, filter and search system messages/events Unified Synoptic System: Generic synoptic display system Situational Awareness : Show overall subsystem status based on monitoring of key parameters System Model Browser: Browse mission database defintions (measurements, commands, events) Flight Procedure Executor: Execute checklist and logical flow interactive procedures Web Browser : Integrated browser reference documentation and operations data Timeline Viewer: View master timeline as Gantt chart Search: Local search of operations products (e.g. documentation, procedures, displays) All GUI components access the underlying spacecraft data (commanding, reporting data, events, command history) via a common library providing adaptors for the current deployments (Columbus MCS, Columbus onboard Data Management System, Columbus Trainer raw packet protocol). New Adaptors are easy to develop. Currently an adaptor to SCOS 2000 is developed as part of a study for the ESTEC standardization section ("USS for ESTEC Reference Facility").
FootFall: A Ground Based Operations Toolset Enabling Walking for the ATHLETE Rover
NASA Technical Reports Server (NTRS)
SunSpiral, Vytas; Chavez-Clemente, Daniel; Broxton, Michael; Keely, Leslie; Mihelich, Patrick; Mittman, David; Collins, Curtis
2008-01-01
The ATHLETE (All-Terrain Hex-Limbed Extra-Terrestrial Explorer) vehicle consists of six identical, six degree of freedom limbs. FootFall is a ground tool for ATHLETE intended to provide an operator with integrated situational awareness, terrain reconstruction, stability and safety analysis, motion planning, and decision support capabilities to enable the efficient generation of flight software command sequences for walking. FootFall has been under development at NASA Ames for the last year, and having accomplished the initial integration, it is being used to generate command sequences for single footfalls. In this paper, the architecture of FootFall in its current state will be presented, results from the recent Human Robotic Systems Project?s Integrated Field Test (Moses Lake, Washington, June, 2008) will be discussed, and future plans for extending the capabilities of FootFall to enable ATHLETE to walk across a boulder field in real time will be described.
11. BUOY DECK, NEAR PILOT HOUSE SUPERSTRUCTURE, LOOKING TOWARDS HATCH ...
11. BUOY DECK, NEAR PILOT HOUSE SUPERSTRUCTURE, LOOKING TOWARDS HATCH DOOR INTO WINCH ROOM IN THE SUPERSTRUCTURE (LABELED AT PASSAGE & HYDRAULIC MACHINERY ON PLAN). - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
Marshall Space Flight Center Telescience Resource Kit
NASA Technical Reports Server (NTRS)
Wade, Gina
2016-01-01
Telescience Resource Kit (TReK) is a suite of software applications that can be used to monitor and control assets in space or on the ground. The Telescience Resource Kit was originally developed for the International Space Station program. Since then it has been used to support a variety of NASA programs and projects including the WB-57 Ascent Vehicle Experiment (WAVE) project, the Fast Affordable Science and Technology Satellite (FASTSAT) project, and the Constellation Program. The Payloads Operations Center (POC), also known as the Payload Operations Integration Center (POIC), provides the capability for payload users to operate their payloads at their home sites. In this environment, TReK provides local ground support system services and an interface to utilize remote services provided by the POC. TReK provides ground system services for local and remote payload user sites including International Partner sites, Telescience Support Centers, and U.S. Investigator sites in over 40 locations worldwide. General Capabilities: Support for various data interfaces such as User Datagram Protocol, Transmission Control Protocol, and Serial interfaces. Data Services - retrieve, process, record, playback, forward, and display data (ground based data or telemetry data). Command - create, modify, send, and track commands. Command Management - Configure one TReK system to serve as a command server/filter for other TReK systems. Database - databases are used to store telemetry and command definition information. Application Programming Interface (API) - ANSI C interface compatible with commercial products such as Visual C++, Visual Basic, LabVIEW, Borland C++, etc. The TReK API provides a bridge for users to develop software to access and extend TReK services. Environments - development, test, simulations, training, and flight. Includes standalone training simulators.
A Virtual Information-Action Workspace for Command and Control
NASA Astrophysics Data System (ADS)
Lintern, Gavan; Naikar, Neelam
2002-10-01
Information overload has become a critical challenge within military Command and Control. However, the problem is not so much one of too much information but of abundant information that is poorly organized and poorly represented. In addition, the capabilities to test the effects of decisions before they are implemented and to monitor the progress of events after a decision is implemented are primitive. A virtual information-action workspace could be designed to resolve these issues. The design of such a space would require a detailed understanding of the specific information needed to support decision making in Command and Control. That information can be obtained with the use of knowledge acquisition and knowledge representation tools from the field of applied cognitive psychology. In addition, it will be necessary to integrate forms for perception and action into a virtual space that will support access to the information and that will provide means for testing and implementing decisions. This paper presents a rationale for a virtual information-action workspace and outlines an approach to its design.
75 FR 49482 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-13
... replace with ``Incident Report Records.'' System location: Delete entry and replace with ``Command Support... may be accessed only by the Commander, Deputy Commander, Chief, Command Support Division, or other... and replace with ``Command Support Division, EU1, Defense Information Systems Agency-Europe, APO AE...
2007-06-01
or JTF air mobility operations (AFDC, 2000). As stated in the following definition, the NAMS integrates the primary functions of airlift, air...control, and communications (C3), logistics support, and aerial port functions . The goal of the en route is to minimize delays for AMC mission...process. The resulting data was used to perform a statistical analysis of AMC off-station aircraft logistic support records for AMC’s six primary
Capability Portfolio Analysis Tool (CPAT) Verification and Validation Report
2013-01-01
BFSB Battlefield Surveillance Brigade BFV Bradley Fighting Vehicle BMOD Bradley Modernization C2 (H) Command and Control (HBCT) C2 (S...Fire Infantry Fighting Vehicle (IFV); Fire Integrated Support Team (FIST); Engineer (Eng); Cavalry (CAV) BFV FOV CDD Block II - 16 Apr 2010 GCV FOV
32. PILOT HOUSE, LOOKING TOWARDS PORT, TABLE TO LEFT IS ...
32. PILOT HOUSE, LOOKING TOWARDS PORT, TABLE TO LEFT IS WHERE CHARTS ARE PLOTTED AT BACKGROUND LEFT IS TOP OF STAIRS DOWN TO MESS DECK. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
General Walton H. Walker: A Talent for Training
2011-05-19
history that enriched my understanding and appreciation of our profession. Dr. Wilson Heefner’s graciousness and kind words enabled me to conduct a more in...Support Command provided invaluable air-ground integration training by bombing tanks with flour bags and providing realistic strafing runs on troops
Mobilization Base Requirements Model (MOBREM) Study. Phases I-V.
1984-08-01
Department Health Services Command Base Mobilization Plan; DARCOM; Army Communications Command (ACC); Military Transportation Manage- ment Command...Chief of Staff. c. The major commands in CONUS are represented on the next line. FORSCOM, DARCOM, TRADOC, and Health Service Commands are the larger...specialized combat support and combat service support training. Tile general support force (GSF) units are non- deployable ’inits supporting tne CONUS
Modular, Autonomous Command and Data Handling Software with Built-In Simulation and Test
NASA Technical Reports Server (NTRS)
Cuseo, John
2012-01-01
The spacecraft system that plays the greatest role throughout the program lifecycle is the Command and Data Handling System (C&DH), along with the associated algorithms and software. The C&DH takes on this role as cost driver because it is the brains of the spacecraft and is the element of the system that is primarily responsible for the integration and interoperability of all spacecraft subsystems. During design and development, many activities associated with mission design, system engineering, and subsystem development result in products that are directly supported by the C&DH, such as interfaces, algorithms, flight software (FSW), and parameter sets. A modular system architecture has been developed that provides a means for rapid spacecraft assembly, test, and integration. This modular C&DH software architecture, which can be targeted and adapted to a wide variety of spacecraft architectures, payloads, and mission requirements, eliminates the current practice of rewriting the spacecraft software and test environment for every mission. This software allows missionspecific software and algorithms to be rapidly integrated and tested, significantly decreasing time involved in the software development cycle. Additionally, the FSW includes an Onboard Dynamic Simulation System (ODySSy) that allows the C&DH software to support rapid integration and test. With this solution, the C&DH software capabilities will encompass all phases of the spacecraft lifecycle. ODySSy is an on-board simulation capability built directly into the FSW that provides dynamic built-in test capabilities as soon as the FSW image is loaded onto the processor. It includes a six-degrees- of-freedom, high-fidelity simulation that allows complete closed-loop and hardware-in-the-loop testing of a spacecraft in a ground processing environment without any additional external stimuli. ODySSy can intercept and modify sensor inputs using mathematical sensor models, and can intercept and respond to actuator commands. ODySSy integration is unique in that it allows testing of actual mission sequences on the flight vehicle while the spacecraft is in various stages of assembly, test, and launch operations all without any external support equipment or simulators. The ODySSy component of the FSW significantly decreases the time required for integration and test by providing an automated, standardized, and modular approach to integrated avionics and component interface and functional verification. ODySSy further provides the capability for on-orbit support in the form of autonomous mission planning and fault protection.
Operating and Support Costing Guide: Army Weapon Systems
1974-12-23
First US Army 1 Commandant, US Army Logistics Management Center (Director Administration and Services) 2 Commander, US Army Management Systems Support...Army Logistics Management Center (Director, Administration and Services) Commander, US Army Management Systems Support Agency (DACS-AME) Commander
Army Logistician. Volume 36, Issue 2, March-April 2004
2004-04-01
commitment. The depots’ highly skilled and motivat- ed workforces deserve our thanks for a job well done and our appreciation of the formidable...outsourcing for logistics support. Contractors are now an integral part of the wider Department of Defense workforce that delivers combat support to the...LEANNE J. WOON IS THE OFFICER COMMANDING THE LOGISTICS MANAGEMENT SQUADRON AT ROYAL NEW ZEALAND AIR FORCE (RNZAF) BASE AUCKLAND , WHERE SHE MANAGES
Advanced Command Destruct System (ACDS) Enhanced Flight Termination System (EFTS)
NASA Technical Reports Server (NTRS)
Tow, David K.
2011-01-01
This presentation provides information on the development, integration, and operational usage of the Enhanced Flight Termination System (EFTS) at NASA Dryden Flight Research Center and Air Force Flight Test Center. The presentation will describe the efforts completed to certify the system and acquire approval for operational usage, the efforts to integrate the system into the NASA Dryden existing flight termination infrastructure, and the operational support of aircraft with EFTS at Edwards AFB.
Defense Reform: Supporting the Whole-of-Government Approach in Tomorrow’s Crisis
2017-03-29
government approach to trans-regional, multi-domain, and multi-functional threats. In addition to keeping military and political focus on broader...structure with more subordinate commands and less multi-domain and multi-functional integration, or in this case , vertical integration. Relying on ... APPROACH IN TOMORROW’S CRISIS 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Lt Col John B
ASCIIGenome: a command line genome browser for console terminals.
Beraldi, Dario
2017-05-15
Current genome browsers are designed to work via graphical user interfaces (GUIs), which, however intuitive, are not amenable to operate within console terminals and therefore are difficult to streamline or integrate in scripts. To circumvent these limitations, ASCIIGenome runs exclusively via command line interface to display genomic data directly in a terminal window. By following the same philosophy of UNIX tools, ASCIIGenome aims to be easily integrated with the command line, including batch processing of data, and therefore enables an effective exploration of the data. ASCIIGenome is written in Java. Consequently, it is a cross-platform tool and requires minimal or no installation. Some of the common genomic data types are supported and data access on remote ftp servers is possible. Speed and memory footprint are comparable to or better than those of common genome browsers. Software and source code (MIT License) are available at https://github.com/dariober/ASCIIGenome with detailed documentation at http://asciigenome.readthedocs.io . Dario.beraldi@cruk.cam.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
Using Customer Satisfaction for Measuring the Effectiveness of Integrated Product Teams.
1995-09-01
personal interviews with five major customers of ASC. The customers are Air Mobility Command, Air Combat Command, Air Education and Training Command...Air Mobility Command U.S. Army 25 Research Question 5. What characteristics of IPT performance do IPT customers perceive as most important? The...USING CUSTOMER SATISFACTION FOR MEASURING THE EFFECTIVENESS OF INTEGRATED PRODUCT TEAMS THESIS Charles H. Embs James N. Anderson Captain
2012-05-16
Regional Command RCP Route Clearance Platoon RSOI Reception, Staging, Onward Movement, Integration SBCT Stryker Brigade Combat Team TOE Table of...Point (ASPs), and field hospital platforms; prepare river crossing sites; and support port repair due to Hydraulic Excavator (HYEX), provides force...platforms, FARPS, supply routes, roads, control points, fire bases, tank ditches, ASPs, and field hospital platforms; prepare river crossing sites; and
Innovation for integrated command environments
NASA Astrophysics Data System (ADS)
Perry, Amie A.; McKneely, Jennifer A.
2000-11-01
Command environments have rarely been able to easily accommodate rapid changes in technology and mission. Yet, command personnel, by their selection criteria, experience, and very nature, tend to be extremely adaptive and flexible, and able to learn new missions and address new challenges fairly easily. Instead, the hardware and software components of the systems do no provide the needed flexibility and scalability for command personnel. How do we solve this problem? In order to even dream of keeping pace with a rapidly changing world, we must begin to think differently about the command environment and its systems. What is the correct definition of the integrated command environment system? What types of tasks must be performed in this environment, and how might they change in the next five to twenty-five years? How should the command environment be developed, maintained, and evolved to provide needed flexibility and scalability? The issues and concepts to be considered as new Integrated Command/Control Environments (ICEs) are designed following a human-centered process. A futuristic model, the Dream Integrated Command Environment (DICE) will be described which demonstrates specific ICE innovations. The major paradigm shift required to be able to think differently about this problem is to center the DICE around the command personnel from its inception. Conference participants may not agree with every concept or idea presented, but will hopefully come away with a clear understanding that to radically improve future systems, designers must focus on the end users.
NASA Technical Reports Server (NTRS)
1982-01-01
A summary of tasks performed on an integrated command, control, communication, and computation system design study is given. The Tracking and Data Relay Satellite System command and control system study, an automated real-time operations study, and image processing work are discussed.
2015-02-13
Ft Carson CO; Logistics Officer, 10th Special Forces Group ( SFG ) Airborne (A) and Combined Joint Special Operations Task Force (CJSOTF) Arabian...ENDURING FREEDOM; Commander 7th SFG (A) Group Support Battalion, Eglin AFB, FL for two years and deployed to Afghanistan twice serving as the
Fuel Characteristic Classification System version 3.0: technical documentation
Susan J. Prichard; David V. Sandberg; Roger D. Ottmar; Ellen Eberhardt; Anne Andreu; Paige Eagle; Kjell Swedin
2013-01-01
The Fuel Characteristic Classification System (FCCS) is a software module that records wildland fuel characteristics and calculates potential fire behavior and hazard potentials based on input environmental variables. The FCCS 3.0 is housed within the Integrated Fuels Treatment Decision Support System (Joint Fire Science Program 2012). It can also be run from command...
In Support of Disciplinarity in Teaching Sociology: Reflections from Ireland
ERIC Educational Resources Information Center
Haynes, Amanda
2017-01-01
This article argues for the importance of disciplinarity in the education of novice sociologists and considers the impact of the European Higher Education Area (EHEA) on opportunities for undergraduate students to achieve a command of the discipline. The promotion of modularization and generic skills integral to establishing the EHEA can be…
An Integrated Architecture to Support Hastily Formed Network (HFN)
2007-12-01
17 1. Creating Awareness of the Situation (intra-organization).............17 2. Sharing Awareness Among Organizations (inter...Convergence - Sharing a Common Goal to Achieve a Common Outcome...................................................................39 b. Interdependency and...Weaknesses, Opportunities and Threat UC Unclassified UCC Unified Command Center UHF Ultra High Frequency VHF Very High Frequency VoIP Voice over
1996-04-30
CJCS Chairman of the Joint Chiefs of Staff CMP Configuration Management Plan COTS Commercial-off-the-Shelf DA Data Administrator DASD (IM) Deputy...Staff ( CJCS ) representing the unified combatant commands. " Technical: The system can evolve (migrate) to be supported by the integrated, standards...s) (PSAs), or CJCS , having functional responsibility for the missions and functions supported by the system, with the participation of affected DoD
An Open Avionics and Software Architecture to Support Future NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Schlesinger, Adam
2017-01-01
The presentation describes an avionics and software architecture that has been developed through NASAs Advanced Exploration Systems (AES) division. The architecture is open-source, highly reliable with fault tolerance, and utilizes standard capabilities and interfaces, which are scalable and customizable to support future exploration missions. Specific focus areas of discussion will include command and data handling, software, human interfaces, communication and wireless systems, and systems engineering and integration.
Planning for Follow-On Spare Part Support by the Naval Electronic Systems Command.
1984-06-01
System Replenishment Spare Parts", by Edward J. Brost , Air Force Institute of Technology [17]_ The objective of this study was to determine the...Competition in the Acquisition of Replenishment Spare Parts, M.S. Thesis, Air Force Institute of Technology, WPAFB, Ohio, September 1983. 17. Brost ...Instruction 4000.6D, Integrated Logistic Support (ILS); policy and responsibilities. 21 July 1983. 20. Mr. George Hughes, NAVELEX Code 81234
Command Center Training Tool (C2T2)
NASA Technical Reports Server (NTRS)
Jones, Phillip; Drucker, Nich; Mathews, Reejo; Stanton, Laura; Merkle, Ed
2012-01-01
This abstract presents the training approach taken to create a management-centered, experiential learning solution for the Virginia Port Authority's Port Command Center. The resultant tool, called the Command Center Training Tool (C2T2), follows a holistic approach integrated across the training management cycle and within a single environment. The approach allows a single training manager to progress from training design through execution and AAR. The approach starts with modeling the training organization, identifying the organizational elements and their individual and collective performance requirements, including organizational-specific performance scoring ontologies. Next, the developer specifies conditions, the problems, and constructs that compose exercises and drive experiential learning. These conditions are defined by incidents, which denote a single, multi-media datum, and scenarios, which are stories told by incidents. To these layered, modular components, previously developed meta-data is attached, including associated performance requirements. The components are then stored in a searchable library An event developer can create a training event by searching the library based on metadata and then selecting and loading the resultant modular pieces. This loading process brings into the training event all the previously associated task and teamwork material as well as AAR preparation materials. The approach includes tools within an integrated management environment that places these materials at the fingertips of the event facilitator such that, in real time, the facilitator can track training audience performance and resultantly modify the training event. The approach also supports the concentrated knowledge management requirements for rapid preparation of an extensive AAR. This approach supports the integrated training cycle and allows a management-based perspective and advanced tools, through which a complex, thorough training event can be developed.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Blount Island Command and Marine... AND RESTRICTED AREA REGULATIONS § 334.515 Blount Island Command and Marine Corps Support Facility... identified as Blount Island Command and Marine Corps Support Facility-Blount Island (MCSF-BI). The three...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Blount Island Command and Marine... AND RESTRICTED AREA REGULATIONS § 334.515 Blount Island Command and Marine Corps Support Facility... identified as Blount Island Command and Marine Corps Support Facility-Blount Island (MCSF-BI). The three...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Blount Island Command and Marine... AND RESTRICTED AREA REGULATIONS § 334.515 Blount Island Command and Marine Corps Support Facility... identified as Blount Island Command and Marine Corps Support Facility-Blount Island (MCSF-BI). The three...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Blount Island Command and Marine... AND RESTRICTED AREA REGULATIONS § 334.515 Blount Island Command and Marine Corps Support Facility... identified as Blount Island Command and Marine Corps Support Facility-Blount Island (MCSF-BI). The three...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Blount Island Command and Marine... AND RESTRICTED AREA REGULATIONS § 334.515 Blount Island Command and Marine Corps Support Facility... identified as Blount Island Command and Marine Corps Support Facility-Blount Island (MCSF-BI). The three...
2008-10-24
COMMANDER, U.S. ARMY MATERIAL COMMAND LOGISTICS SUPPORT ACTIVITY Department of Defense Office of Inspector General Report No. SPO-2009...report the serial numbers of weapons it controlled to the DoD SA/LW Registry maintained by the U.S. Army Material Command Logistics Support... Material Command Logistics Support Activity assist the Combined Security Transition Command- Afghanistan in reporting serial numbers for U.S.-supplied
1996-01-01
INTENSIFICATION (AI2) ATD AERIAL SCOUT SENSORS INTEGRATION (ASSI) BISTATIC RADAR FOR WEAPONS LOCATION (BRWL) ATD CLOSE IN MAN PORTABLE MINE DETECTOR (CIMMD...MS IV PE & LINE #: 1X428010.D107 HI Operations/Support DESCRIPTION: The AN/TTC-39A Circuit Switch is a 744 line mobile , automatic ...SYNOPSIS: AN/TTC-39 IS A MOBILE , AUTOMATIC , MODULAR ELECTRONIC CIRCUIT SWITCH UNDER PROCESSOR CONTROL WITH INTEGRAL COMSEC AND MULTIPLEX EQUIPMENT. AN/TTC
Integrating the Land and Air Components in an Anti-Access/Area Denial Environment
2013-06-01
to his pursuit and bomber squadrons being already tasked to their limits, Fredendall retorted that he had lost 300 men due to enemy actions and the...190 Murray and Scales, The Iraq War, 173. 191 Author’s personal experience as a Close Air Support planner and Strike Package ...in the future the command and control structure will need to support air strike packages transitioning from interdiction and global strike missions to
The 2009 DOD Cost Research Workshop: Acquisition Reform
2010-02-01
2 ACEIT Enhancement, Help-Desk/Training, Consulting DASA-CE–3 Command, Control, Communications, Computers, Intelligence, Surveillance, and...Management Information System (OSMIS) online interactive relational database DASA-CE–2 Title: ACEIT Enhancement, Help-Desk/Training, Consulting Summary...support and training for the Automated Cost estimator Integrated Tools ( ACEIT ) software suite. ACEIT is the Army standard suite of analytical tools for
64. Photocopy of Buoy Derrick Arrangement, WAGL 543 and WAGL ...
64. Photocopy of Buoy Derrick Arrangement, WAGL 543 and WAGL 542. Puget Sound Naval Shipyard, Bremerton, Washington, Coast Guard Headquarters Drawing No. 540-WAGL-1701-20, dated April 1948. Original drawing property of the U.S. Coast Guard. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
A multimodal interface for real-time soldier-robot teaming
NASA Astrophysics Data System (ADS)
Barber, Daniel J.; Howard, Thomas M.; Walter, Matthew R.
2016-05-01
Recent research and advances in robotics have led to the development of novel platforms leveraging new sensing capabilities for semantic navigation. As these systems becoming increasingly more robust, they support highly complex commands beyond direct teleoperation and waypoint finding facilitating a transition away from robots as tools to robots as teammates. Supporting future Soldier-Robot teaming requires communication capabilities on par with human-human teams for successful integration of robots. Therefore, as robots increase in functionality, it is equally important that the interface between the Soldier and robot advances as well. Multimodal communication (MMC) enables human-robot teaming through redundancy and levels of communications more robust than single mode interaction. Commercial-off-the-shelf (COTS) technologies released in recent years for smart-phones and gaming provide tools for the creation of portable interfaces incorporating MMC through the use of speech, gestures, and visual displays. However, for multimodal interfaces to be successfully used in the military domain, they must be able to classify speech, gestures, and process natural language in real-time with high accuracy. For the present study, a prototype multimodal interface supporting real-time interactions with an autonomous robot was developed. This device integrated COTS Automated Speech Recognition (ASR), a custom gesture recognition glove, and natural language understanding on a tablet. This paper presents performance results (e.g. response times, accuracy) of the integrated device when commanding an autonomous robot to perform reconnaissance and surveillance activities in an unknown outdoor environment.
Health Hazard Assessment and Toxicity Clearances in the Army Acquisition Process
NASA Technical Reports Server (NTRS)
Macko, Joseph A., Jr.
2000-01-01
The United States Army Materiel Command, Army Acquisition Pollution Prevention Support Office (AAPPSO) is responsible for creating and managing the U.S. Army Wide Acquisition Pollution Prevention Program. They have established Integrated Process Teams (IPTs) within each of the Major Subordinate Commands of the Army Materiel Command. AAPPSO provides centralized integration, coordination, and oversight of the Army Acquisition Pollution Prevention Program (AAPPP) , and the IPTs provide the decentralized execution of the AAPPSO program. AAPPSO issues policy and guidance, provides resources and prioritizes P2 efforts. It is the policy of the (AAPPP) to require United States Army Surgeon General approval of all materials or substances that will be used as an alternative to existing hazardous materials, toxic materials and substances, and ozone-depleting substances. The Army has a formal process established to address this effort. Army Regulation 40-10 requires a Health Hazard Assessment (HHA) during the Acquisition milestones of a new Army system. Army Regulation 40-5 addresses the Toxicity Clearance (TC) process to evaluate new chemicals and materials prior to acceptance as an alternative. U.S. Army Center for Health Promotion and Preventive Medicine is the Army's matrixed medical health organization that performs the HHA and TC mission.
Integrated Ground Operations Demonstration Units Testing Plans and Status
NASA Technical Reports Server (NTRS)
Johnson, Robert G.; Notardonato, William U.; Currin, Kelly M.; Orozco-Smith, Evelyn M.
2012-01-01
Cryogenic propellant loading operations with their associated flight and ground systems are some of the most complex, critical activities in launch operations. Consequently, these systems and operations account for a sizeable portion of the life cycle costs of any launch program. NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite advances in cryogenics, system health management and command and control technologies. This project was developed to mature, integrate and demonstrate advancement in the current state of the art in these areas using two distinct integrated ground operations demonstration units (GODU): GODU Integrated Refrigeration and Storage (IRAS) and GODU Autonomous Control
NASA Astrophysics Data System (ADS)
Melton, R.; Thomas, J.
With the rapid growth in the number of space actors, there has been a marked increase in the complexity and diversity of software systems utilized to support SSA target tracking, indication, warning, and collision avoidance. Historically, most SSA software has been constructed with "closed" proprietary code, which limits interoperability, inhibits the code transparency that some SSA customers need to develop domain expertise, and prevents the rapid injection of innovative concepts into these systems. Open-source aerospace software, a rapidly emerging, alternative trend in code development, is based on open collaboration, which has the potential to bring greater transparency, interoperability, flexibility, and reduced development costs. Open-source software is easily adaptable, geared to rapidly changing mission needs, and can generally be delivered at lower costs to meet mission requirements. This paper outlines Ball's COSMOS C2 system, a fully open-source, web-enabled, command-and-control software architecture which provides several unique capabilities to move the current legacy SSA software paradigm to an open source model that effectively enables pre- and post-launch asset command and control. Among the unique characteristics of COSMOS is the ease with which it can integrate with diverse hardware. This characteristic enables COSMOS to serve as the command-and-control platform for the full life-cycle development of SSA assets, from board test, to box test, to system integration and test, to on-orbit operations. The use of a modern scripting language, Ruby, also permits automated procedures to provide highly complex decision making for the tasking of SSA assets based on both telemetry data and data received from outside sources. Detailed logging enables quick anomaly detection and resolution. Integrated real-time and offline data graphing renders the visualization of the both ground and on-orbit assets simple and straightforward.
Distributed decision support for the 21st century mission space
NASA Astrophysics Data System (ADS)
McQuay, William K.
2002-07-01
The past decade has produced significant changes in the conduct of military operations: increased humanitarian missions, asymmetric warfare, the reliance on coalitions and allies, stringent rules of engagement, concern about casualties, and the need for sustained air operations. Future mission commanders will need to assimilate a tremendous amount of information, make quick-response decisions, and quantify the effects of those decisions in the face of uncertainty. Integral to this process is creating situational assessment-understanding the mission space, simulation to analyze alternative futures, current capabilities, planning assessments, course-of-action assessments, and a common operational picture-keeping everyone on the same sheet of paper. Decision support tools in a distributed collaborative environment offer the capability of decomposing these complex multitask processes and distributing them over a dynamic set of execution assets. Decision support technologies can semi-automate activities, such as planning an operation, that have a reasonably well-defined process and provide machine-level interfaces to refine the myriad of information that is not currently fused. The marriage of information and simulation technologies provides the mission commander with a collaborative virtual environment for planning and decision support.
2006-04-01
all other results are higher than the reference population averages. One should not neglect the bias of the results due to the “ social desirability...scales applied in this paper, the hypothesis of a bias ( social desirability) is also to be taken into account, in spite of the fact that the force...the main adjustment factors are: • Social competences (interpersonal relationship capability and team integration); • Family support; • Emotional
2012-01-01
Tripp, Lionel A. Galway , Timothy L. Ramey, Mahyar A. Amouzegar, and Eric Peltz (MR-1179-AF), 2000. This report describes a vision for the combat...Postures, Lionel A. Galway , Robert S. Tripp, Timothy L. Ramey, and John G. Drew (MR-1075-AF), 2000. This report describes how alternative resourcing of...Aerospace Forces: An Integrated Strate- gic Agile Combat Support Planning Framework, Robert S. Tripp, Lionel A. Galway , Paul Killingsworth, Eric Peltz
Hitchhiker-G: A new carrier system for attached shuttle payloads
NASA Technical Reports Server (NTRS)
Goldsmith, T. C.
1987-01-01
A new carrier system has been developed for economical and quick response flight of small attached payloads on the space shuttle. Hitchhiker-G can accommodate up to 750 lb. of customer payloads in canisters or mounted to an exposed plate. The carrier connects to the orbiter's electrical systems and provides up to six customers with standard electrical services including power, real time telemetry, and commands. A transparent data and command system concept is employed to allow the customer to easily use his own ground support equipment and personnel to control his payload during integration and flight operations. The first Hitchhiker-G was successfully flown in January 1986 on STS 61C.
A Message Exchange Protocol in Command and Control Systems Integration, using the JC3IEDM
2014-06-01
19TH International Command and Control Research and Technology Symposium C2 Agility: Lessons Learned from Research and Operations. A Message...distribution unlimited 13. SUPPLEMENTARY NOTES Presented at the 18th International Command & Control Research & Technology Symposium (ICCRTS) held 16...presents approaches of integration, compares their technologies , points out their advantages, proposes requirements, and provides the design of a protocol
69. Photocopy of General Arrangement of Engine Room. Basalt Rock ...
69. Photocopy of General Arrangement of Engine Room. Basalt Rock Co. Inc., Shipbuilding Division, Napa, California. Coast Guard Headquarters Drawing No. 540-WAGL-4000-2 (right side), dated July 1943. Original drawing property of the U.S. Coast Guard. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
68. Photocopy of General Arrangement of Engine Room. Basalt Rock ...
68. Photocopy of General Arrangement of Engine Room. Basalt Rock Co. Inc., Shipbuilding Division, Napa, California. Coast Guard Headquarters Drawing No. 540-WAGL-4000-2 (left side), dated July 1943. Original drawing property of the U.S. Coast Guard. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
65. Photocopy of General Arrangement, Crew's Mess & Berthing Space, ...
65. Photocopy of General Arrangement, Crew's Mess & Berthing Space, Wash Room, Galley & Galley Stores. Basalt Rock Co. Inc., Shipbuilding Division, Napa, California. Coast Guard Headquarters Drawing No.540-WAGL-3306-1, dated January 1943. Original drawing property of the U.S. Coast Guard. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
61. Photocopy of Engine Room Floor Plan, White Alder. The ...
61. Photocopy of Engine Room Floor Plan, White Alder. The Niagara Shipbuilding Corp. Engineering Department, Buffalo, New York. Coast Guard Headquarters Drawing No. 540-WAGL-1604-10, dated February 1943; revised January 1963. Original drawing property of the U.S. Coast Guard. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
67. Photocopy of Rudder Bearing Quadrant, Skeg and Rudder Stops. ...
67. Photocopy of Rudder Bearing Quadrant, Skeg and Rudder Stops. Erie Concrete & Steel Supply Company, Shipbuilding Division, Erie, Pennsylvania. Coast Guard Headquarters Drawing No. 540-WAGL-2200-17 (right side), dated May 1943. Original drawing property of the U.S. Coast Guard. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
66. Photocopy of Rudder Bearing Quadrant, Skeg and Rudder Stops. ...
66. Photocopy of Rudder Bearing Quadrant, Skeg and Rudder Stops. Erie Concrete & Steel Supply Company, Shipbuilding Division, Erie, Pennsylvania. Coast Guard Headquarters Drawing No. 540-WAGL-2200-17 (left side), dated May 1943. Original drawing property of the U.S. Coast Guard. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
X-33 Integrated Test Facility Extended Range Simulation
NASA Technical Reports Server (NTRS)
Sharma, Ashley
1998-01-01
In support of the X-33 single-stage-to-orbit program, NASA Dryden Flight Research Center was selected to provide continuous range communications of the X-33 vehicle from launch at Edwards Air Force Base, California, through landing at Malmstrom Air Force Base Montana, or at Michael Army Air Field, Utah. An extensive real-time range simulation capability is being developed to ensure successful communications with the autonomous X-33 vehicle. This paper provides an overview of various levels of simulation, integration, and test being developed to support the X-33 extended range subsystems. These subsystems include the flight termination system, L-band command uplink subsystem, and S-band telemetry downlink subsystem.
2016-06-01
ARL-TR-7698 ● JUNE 2016 US Army Research Laboratory Human -Systems Integration (HSI) and the Network Integration Evaluations...ARL-TR-7698 ● JUNE 2016 US Army Research Laboratory Human -Systems Integration (HSI) and the Network Integration Evaluations (NIEs), Part 3...Mitigating Cognitive Load in Network-Enabled Mission Command by John K Hawley Human Research and Engineering Directorate, ARL Michael W
NASA Technical Reports Server (NTRS)
Ghosh, D.; Montgomery, R. C.
1987-01-01
The work being done at NASA LaRC on developing control laws for the Mini-Mast experimental facility is reviewed with particular attention given to the problems associated with the stroke limit of the reaction mass actuators used in conjunction with the LQG control. An algorithm for converting the force commands of the LQG algorithm into position command for the reaction mass devices is described. It is shown that the position command can be used as an input to a local controller so that the relative position of the reaction mass would track the commanded relative position. The stabilization of the integration scheme makes it possible to avoid the position drift arising in the direct double integration method of converting force commands to position commands.
NASA Astrophysics Data System (ADS)
Allgood, Glenn O.; Kuruganti, Phani Teja; Nutaro, James; Saffold, Jay
2009-05-01
Combat resiliency is the ability of a commander to prosecute, control, and consolidate his/her's sphere of influence in adverse and changing conditions. To support this, an infrastructure must exist that allows the commander to view the world in varying degrees of granularity with sufficient levels of detail to permit confidence estimates to be levied against decisions and course of actions. An infrastructure such as this will include the ability to effectively communicate context and relevance within and across the battle space. To achieve this will require careful thought, planning, and understanding of a network and its capacity limitations in post-event command and control. Relevance and impact on any existing infrastructure must be fully understood prior to deployment to exploit the system's full capacity and capabilities. In this view, the combat communication network is considered an integral part of or National communication network and infrastructure. This paper will describe an analytical tool set developed at ORNL and RNI incorporating complexity theory, advanced communications modeling, simulation, and visualization technologies that could be used as a pre-planning tool or post event reasoning application to support response and containment.
Assured Mission Support Space Architecture (AMSSA) study
NASA Technical Reports Server (NTRS)
Hamon, Rob
1993-01-01
The assured mission support space architecture (AMSSA) study was conducted with the overall goal of developing a long-term requirements-driven integrated space architecture to provide responsive and sustained space support to the combatant commands. Although derivation of an architecture was the focus of the study, there are three significant products from the effort. The first is a philosophy that defines the necessary attributes for the development and operation of space systems to ensure an integrated, interoperable architecture that, by design, provides a high degree of combat utility. The second is the architecture itself; based on an interoperable system-of-systems strategy, it reflects a long-range goal for space that will evolve as user requirements adapt to a changing world environment. The third product is the framework of a process that, when fully developed, will provide essential information to key decision makers for space systems acquisition in order to achieve the AMSSA goal. It is a categorical imperative that military space planners develop space systems that will act as true force multipliers. AMSSA provides the philosophy, process, and architecture that, when integrated with the DOD requirements and acquisition procedures, can yield an assured mission support capability from space to the combatant commanders. An important feature of the AMSSA initiative is the participation by every organization that has a role or interest in space systems development and operation. With continued community involvement, the concept of the AMSSA will become a reality. In summary, AMSSA offers a better way to think about space (philosophy) that can lead to the effective utilization of limited resources (process) with an infrastructure designed to meet the future space needs (architecture) of our combat forces.
Step 1: Human System Integration Simulation and Flight Test Progress Report
NASA Technical Reports Server (NTRS)
2005-01-01
The Access 5 Human Systems Integration Work Package produced simulation and flight demonstration planning products for use throughout the program. These included: Test Objectives for Command, Control, Communications; Pilot Questionnaire for Command, Control, Communications; Air Traffic Controller Questionnaire for Command, Control, Communications; Test Objectives for Collision Avoidance; Pilot Questionnaire for Collision Avoidance; Plans for Unmanned Aircraft Systems Control Station Simulations Flight Requirements for the Airspace Operations Demonstration
Liu, Xiao; Demosthenous, Andreas; Vanhoestenberghe, Anne; Jiang, Dai; Donaldson, Nick
2012-06-01
This paper presents an integrated stimulator that can be embedded in implantable electrode books for interfacing with nerve roots at the cauda equina. The Active Book overcomes the limitation of conventional nerve root stimulators which can only support a small number of stimulating electrodes due to cable count restriction through the dura. Instead, a distributed stimulation system with many tripole electrodes can be configured using several Active Books which are addressed sequentially. The stimulator was fabricated in a 0.6-μm high-voltage CMOS process and occupies a silicon area of 4.2 × 6.5 mm(2). The circuit was designed to deliver up to 8 mA stimulus current to tripole electrodes from an 18 V power supply. Input pad count is limited to five (two power and three control lines) hence requiring a specific procedure for downloading stimulation commands to the chip and extracting information from it. Supported commands include adjusting the amplitude of stimulus current, varying the current ratio at the two anodes in each channel, and measuring relative humidity inside the chip package. In addition to stimulation mode, the chip supports quiescent mode, dissipating less than 100 nA current from the power supply. The performance of the stimulator chip was verified with bench tests including measurements using tripoles in saline.
Customer Service Analysis of Air Combat Command Vehicle Maintenance Support
1993-09-01
the survey, the researchers categorized the services or variables into marketing mix components: product, price, promotion, and customer service...comparing and analyzing the variables identified in the previous three phases to determine a strategic marketing mix (46:9). After analyzing the data...service/physical distribution. Additionally, they found that customer service/physical distribution was an integral component of the marketing mix , and
Study of Attrition Documentation at the U.S. Navy Recruit Training Command
2006-03-01
offers standardized comprehensive day-to- day integrated automated classroom support that feeds corporate-level data to NITRAS II...Percent Adjustment Disorders 52 15.5 Anxiety Disorders 44 13.1 Attention Deficit Hyperactivity Disorder ( ADHD ) 38 11.3 Depressive Disorder, Not...Attention Deficit Hyperactivity Disorder ( ADHD ) 13 12.6 Depressive Disorder, Not Otherwise Specified 10 9.7 Source: Data obtained by authors from
The RITE Approach to Agile Acquisition
2013-04-01
SSCPAC. He currently provides project management and technical support to the Global Command and Control System–Joint (GCCS-J) Integrated Imagery and...the Strike Planning and Execution Systems Program Office (PMA-281). Boyce has a Bachelor of Science degree in information systems management and is...has since provided dedicated professional service to the USAF, NAVSUP, and SSCPAC. Roussel has a Bachelor of Science degree in management and a Master
37. ENGINE ROOM, FROM PORT SIDE OF CONTROL CONSOLE, LOOKING ...
37. ENGINE ROOM, FROM PORT SIDE OF CONTROL CONSOLE, LOOKING TOWARDS STERN, PORT ENGINE AT RIGHT, STARBOARD ENGINE AT LEFT, BOTH ARE DIESEL ENGINES, IN BACKGROUND IS STAIRS UP TO CREWS' BERTHING, BEYONE THE STAIRS IS THE DOOR TO AFT ENGINE ROOM & MACHINE SHOP. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
Integrating Agile Combat Support within Title 10 Wargames
2015-03-26
STAT C7 PCT TIME WAITING TO FLY D1 MANHOURS AVAILABLE D20 NMCM INDICATOR C8 ...Technology Graduate School of Engineering and Management (AFIT/ENS) 2950 Hobson Way, Building 640 WPAFB OH 45433-8865 8. PERFORMING ORGANIZATION...Branch Air Force Material Command Wright Patterson AFB, OH Email: omar.mendoza@us.af.mil 10. SPONSOR/MONITOR’S ACRONYM(S) AFMC/A4 11
Integration and Testing of LCS Software
NASA Technical Reports Server (NTRS)
Wang, John
2014-01-01
Kennedy Space Center is in the midst of developing a command and control system for the launch of the next generation manned space vehicle. The Space Launch System (SLS) will launch using the new Spaceport Command and Control System (SCCS). As a member of the Software Integration and Test (SWIT) Team, command scripts, and bash scripts were written to assist in integration and testing of the Launch Control System (LCS), which is a component of SCCS. The short term and midterm tasks are for the most part completed. The long term tasks if time permits will require a presentation and demonstration.
Joint Command Decision Support System
2011-06-01
2010 Olympics and Paralympics games , about a hundred agencies and organizations were involved with the safety and security of the games . Accordingly...Joint Task Force Games (JTFG) staff members were augmented with other Command Staff from Canada Command and Canadian Operational Support Command...CANOSCOM) to create an operational HQ. The scenario used for demonstration was based on fictitious Olympic Games (Breton and Guitouni 2008). The scenario
NASA Technical Reports Server (NTRS)
2005-01-01
The document provides the Human System Integration(HSI) high-level functional C3 HSI requirements for the interface to the pilot. Description includes (1) the information required by the pilot to have knowledge C3 system status, and (2) the control capability needed by the pilot to obtain C3 information. Fundamentally, these requirements provide the candidate C3 technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how C3 operations and functions should interface with the pilot to provide the necessary C3 functionality to the UA-pilot system. Requirements and guidelines for C3 are partitioned into three categories: (1) Pilot-Air Traffic Control (ATC) Voice Communications (2) Pilot-ATC Data Communications, and (3) command and control of the unmanned aircraft (UA). Each requirement is stated and is supported with a rationale and associated reference(s).
Combat Service Support (CSS) Enabler Functional Assessment (CEFA)
1998-07-01
CDR), Combined Arms Support Command (CASCOM) with a tool to aid decision making related to mitigating E/I peacetime (programmatic) and wartime risks...not be fielded by Fiscal Year (FY) 10. Based on their estimates, any decisions , especially reductions in manpower, which rely on the existence of the E...Support (CSS) enablers/initiatives (E/I), thereby providing the Commander (CDR), Combined Arms Support Command (CASCOM) with a tool to aid decision
NASA Technical Reports Server (NTRS)
Goldsmith, Theodore C.
1988-01-01
A carrier system has been developed for economical and quick response flight of small attached payloads on the space shuttle. Hitchhiker can accommodate up to 750 lb of customer payloads in canisters or mounted to an exposed side-mount plate, or up to 1200 lb mounted on a cross-bay structure. The carrier connects to the orbiter's electrical systems and provides up to six customers with standard electrical services including power, real time telemetry and commands. A transparent data and command system concept is employed to allow the customer to easily use his own ground support equipment and personnel to control his payload during integration and flight operations. A general description of the Hitchhiker program and the Shuttle Payload of Opportunity Carrier (SPOC) is given and future enhancements are outlined.
77 FR 8844 - Notice of Proposed Information Collection; Comment request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-15
... compliance with section 3506(c)(2)(A) of the Paperwork Reduction Act of 1995, the Navy Recruiting Command..., write to Commander, Navy Recruiting Command (00SD), 5722 Integrity Drive, Millington, TN 38054-5057, or...
Motor command inhibition and the representation of response mode during motor imagery.
Scheil, Juliane; Liefooghe, Baptist
2018-05-01
Research on motor imagery proposes that overt actions during motor imagery can be avoided by proactively signaling subthreshold motor commands to the effectors and by invoking motor-command inhibition. A recent study by Rieger, Dahm, and Koch (2017) found evidence in support of motor command inhibition, which indicates that MI cannot be completed on the sole basis of subthreshold motor commands. However, during motor imagery, participants know in advance when a covert response is to be made and it is thus surprising such additional motor-command inhibition is needed. Accordingly, the present study tested whether the demand to perform an action covertly can be proactively integrated by investigating the formation of task-specific action rules during motor imagery. These task-specific action rules relate the decision rules of a task to the mode in which these rules need to be applied (e.g., if smaller than 5, press the left key covertly). To this end, an experiment was designed in which participants had to switch between two numerical judgement tasks and two response modes: covert responding and overt responding. First, we observed markers of motor command inhibition and replicated the findings of Rieger and colleagues. Second, we observed evidence suggesting that task-specific action rules are created for the overt response mode (e.g., if smaller than 5, press the left key). In contrast, for the covert response mode, no task-specific action rules are formed and decision rules do not include mode-specific information (e.g., if smaller than 5, left). Copyright © 2018 Elsevier B.V. All rights reserved.
Application of an integrated flight/propulsion control design methodology to a STOVL aircraft
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Mattern, Duane L.
1991-01-01
Results are presented from the application of an emerging Integrated Flight/Propulsion Control (IFPC) design methodology to a Short Take Off and Vertical Landing (STOVL) aircraft in transition flight. The steps in the methodology consist of designing command shaping prefilters to provide the overall desired response to pilot command inputs. A previously designed centralized controller is first validated for the integrated airframe/engine plant used. This integrated plant is derived from a different model of the engine subsystem than the one used for the centralized controller design. The centralized controller is then partitioned in a decentralized, hierarchical structure comprising of airframe lateral and longitudinal subcontrollers and an engine subcontroller. Command shaping prefilters from the pilot control effector inputs are then designed and time histories of the closed loop IFPC system response to simulated pilot commands are compared to desired responses based on handling qualities requirements. Finally, the propulsion system safety and nonlinear limited protection logic is wrapped around the engine subcontroller and the response of the closed loop integrated system is evaluated for transients that encounter the propulsion surge margin limit.
1991-04-01
African Air Forces, Middle East Air Command, based in Cairo, and RAP Malta Air Command. This, in effect, was a �theater� command in a larger sense, for...Force, under the command of AVM Sir Hugh Lloyd, and absorbed Malta Air Command and US XII Fighter Command, then under Pete Quesada, later commander...trained pilots, that exchange ratio steadily worsened for the enemy. In fact, the 5th Air Force could boast the two highest scoring American aces early
Distributed collaborative environments for predictive battlespace awareness
NASA Astrophysics Data System (ADS)
McQuay, William K.
2003-09-01
The past decade has produced significant changes in the conduct of military operations: asymmetric warfare, the reliance on dynamic coalitions, stringent rules of engagement, increased concern about collateral damage, and the need for sustained air operations. Mission commanders need to assimilate a tremendous amount of information, make quick-response decisions, and quantify the effects of those decisions in the face of uncertainty. Situational assessment is crucial in understanding the battlespace. Decision support tools in a distributed collaborative environment offer the capability of decomposing complex multitask processes and distributing them over a dynamic set of execution assets that include modeling, simulations, and analysis tools. Decision support technologies can semi-automate activities, such as analysis and planning, that have a reasonably well-defined process and provide machine-level interfaces to refine the myriad of information that the commander must fused. Collaborative environments provide the framework and integrate models, simulations, and domain specific decision support tools for the sharing and exchanging of data, information, knowledge, and actions. This paper describes ongoing AFRL research efforts in applying distributed collaborative environments to predictive battlespace awareness.
From Strategic Communication to Simply Communicate: Redefining SC in Military Communication
2011-04-10
departments and key publics. Contemporary government SC-practices were converted from private sector Integrated Marketing Communication (IMC) models... Integrated Marketing and Public Affairs for Recruiting. Position Paper for Commanding General, Marine Corps Recruiting Command, Quantico, VA: March 12...Corps. Strategic Communication Plan. Washington, DC: U.S. Marine Corps, July 2007. ,_ Devine, Christian. Integrated Marketing and Public Affairs for
Space vehicle onboard command encoder
NASA Technical Reports Server (NTRS)
1975-01-01
A flexible onboard encoder system was designed for the space shuttle. The following areas were covered: (1) implementation of the encoder design into hardware to demonstrate the various encoding algorithms/code formats, (2) modulation techniques in a single hardware package to maintain comparable reliability and link integrity of the existing link systems and to integrate the various techniques into a single design using current technology. The primary function of the command encoder is to accept input commands, generated either locally onboard the space shuttle or remotely from the ground, format and encode the commands in accordance with the payload input requirements and appropriately modulate a subcarrier for transmission by the baseband RF modulator. The following information was provided: command encoder system design, brassboard hardware design, test set hardware and system packaging, and software.
Methods and Systems for Authorizing an Effector Command in an Integrated Modular Environment
NASA Technical Reports Server (NTRS)
Sunderland, Dean E. (Inventor); Ahrendt, Terry J. (Inventor); Moore, Tim (Inventor)
2013-01-01
Methods and systems are provided for authorizing a command of an integrated modular environment in which a plurality of partitions control actions of a plurality of effectors is provided. A first identifier, a second identifier, and a third identifier are determined. The first identifier identifies a first partition of the plurality of partitions from which the command originated. The second identifier identifies a first effector of the plurality of effectors for which the command is intended. The third identifier identifies a second partition of the plurality of partitions that is responsible for controlling the first effector. The first identifier and the third identifier are compared to determine whether the first partition is the same as the second partition for authorization of the command.
2016-05-01
ARL-TR-7692•MAY 2016 US Army Research Laboratory ARL Support and Analysis to the Army Public Health Command Kabul Air Quality Data Collection (Spring...return it to the originator. ARL-TR-7692•MAY 2016 US Army Research Laboratory ARL Support and Analysis to the Army Public Health Command Kabul Air Quality ...and Analysis to the Army Public Health Command Kabul Air Quality Data Collection (Spring 2014) Alan Wetmore and Thomas DeFelice ARL-TR-7692 Approved
Operationally Responsive Space Launch for Space Situational Awareness Missions
NASA Astrophysics Data System (ADS)
Freeman, T.
The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft and in the development of constellations of spacecraft. This position is founded upon continued government investment in research and development in space technology, which is clearly reflected in the Space Situational Awareness capabilities and the longevity of these missions. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by unresponsive and relatively expensive launchers in the Expandable, Expendable Launch Vehicles (EELV). The EELV systems require an average of six to eight months from positioning on the launch table until liftoff. Access to space requires maintaining a robust space transportation capability, founded on a rigorous industrial and technology base. To assure access to space, the United States directed Air Force Space Command to develop the capability for operationally responsive access to space and use of space to support national security, including the ability to provide critical space capabilities in the event of a failure of launch or on-orbit capabilities. Under the Air Force Policy Directive, the Air Force will establish, organize, employ, and sustain space forces necessary to execute the mission and functions assigned including rapid response to the National Command Authorities and the conduct of military operations across the spectrum of conflict. Air Force Space Command executes the majority of spacelift operations for DoD satellites and other government and commercial agencies. The Command researched and identified a course of action that has maximized operationally responsive space for Low-Earth-Orbit Space Situational Awareness assets. On 1 Aug 06, Air Force Space Command activated the Space Development and Test Wing (SDTW) to perform development, test and evaluation of Air Force space systems and to execute advanced space deployment and demonstration projects to exploit new concepts and technologies, and rapidly migrate capabilities to the warfighter. The SDTW charged the Launch Test Squadron (LTS) to develop the operationally responsive spacelift capability for Low-Earth-Orbit Space Situational Awareness assets. The LTS created and executed a space enterprise strategy to place small payloads (1500 pounds), at low cost (less than 28M to 30M per launch), repeatable and rapidly into 100 - 255 nautical miles orbits. In doing so, the squadron provides scalable launch support services including program management support, engineering support, payload integration, and post-test evaluation for space systems. The Air Force, through the SDTW/LTS, will continue to evolve as the spacelift execution arm for Space Situational Awareness by creating small, less-expensive, repeatable and operationally responsive space launch capability.
Search and Determine Integrated Environment (SADIE)
NASA Astrophysics Data System (ADS)
Sabol, C.; Schumacher, P.; Segerman, A.; Coffey, S.; Hoskins, A.
2012-09-01
A new and integrated high performance computing software applications package called the Search and Determine Integrated Environment (SADIE) is being jointly developed and refined by the Air Force and Naval Research Laboratories (AFRL and NRL) to automatically resolve uncorrelated tracks (UCTs) and build a more complete space object catalog for improved Space Situational Awareness (SSA). The motivation for SADIE is to respond to very challenging needs identified and guidance received from Air Force Space Command (AFSPC) and other senior leaders to develop this technology to support the evolving Joint Space Operations Center (JSpOC) and Alternate Space Control Center (ASC2)-Dahlgren. The JSpOC and JMS SSA mission requirements and threads flow down from the United States Strategic Command (USSTRATCOM). The SADIE suite includes modification and integration of legacy applications and software components that include Search And Determine (SAD), Satellite Identification (SID), and Parallel Catalog (Parcat), as well as other utilities and scripts to enable end-to-end catalog building and maintenance in a parallel processing environment. SADIE is being developed to handle large catalog building challenges in all orbit regimes and includes the automatic processing of radar, fence, and optical data. Real data results are provided for the processing of Air Force Space Surveillance System fence observations and for the processing of Space Surveillance Telescope optical data.
The C3-System User. Volume II. Workshop Notes
1977-02-01
system that provides the means for operational direction and technical administrative support involved in the function of command and control of U.S...information systems of the Headquarters of the Military Depart- ments; the command and control systems of the Headquarters of the Service Component Commands...the Service Component Commands - Military Airlift Command - Military Sealift Command - Military Traffic Management Command - 3.2.5 Command and
70. Photocopy of 4' 10 x 3'10 Propeller, U.S. Coast ...
70. Photocopy of 4' 10 x 3'10 Propeller, U.S. Coast Guard 133 Ft. Tender. Columbian Bronze Corporation, Freeport, Long Island, New York, Coast Guard Headquarters Drawing No. 540-WAGL-4400-4, dated July 1953. Original drawing property of the U.S. Coast Guard. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
Increasing Open Source Software Integration on the Department of Defense Unclassified Desktop
2008-06-01
free and legal access to the source code grants the user or operating agency considerable power and control . Commercial, off-the-shelf (COTS...COMMAND, CONTROL AND COMMUNICATIONS (C-3)) from the NAVAL POSTGRADUATE SCHOOL June 2008 Author: Steven A. Schearer Approved...Network. This fee also entitles users to unlimited web support with a two-business-day turnaround time. The retail price for a one year, basic
Air Force Command and Control: The Path Ahead. Volume 1: Summary
2000-12-01
benefits of an integrated approach to implementation. The organization, management, and process are not in place to carry out the evolution in...critical support for successful EAF operations. 9 Air Force Space Operations Center (AFSPACE) AOC. The 14th Air Force AFSPACE AOC is an in- place ...right times and places , so that they can pass consistent data that convert to shared understanding, ultimately producing cooperative decision making
The United States Marine Corps Reserve: Reorganization for an Integrated Force
2015-04-28
ForceHeadquartersGroup/MarineCorpsI ndividualReserveSupportActivity/Definitions.aspx 23 MCRAMM,1-3 24 Edgar H . Schein , Organizational Culture and...COMMAND AND STAFF COLL QUANTICO VA, 2012. Schein , Edgar H . Organizational Culture and Leadership. The Jossey-Bass Business & Management Series. 3rd...Significant differences exist in culture among the reservists and the active duty members. Schein defines culture as “A pattern of shared basic
APOLLO-SOYUZ TEST PROJECT (ASTP) - CREWMEN - JSC
1975-07-09
S75-28361 (9 July 1975) --- These ten American astronauts compose the U.S. prime crew, the backup crew and the crew support team for the joint U.S.-USSR Apollo-Soyuz Test Project docking mission in Earth orbit. They are, left to right, Robert L. Crippen, support team; Robert F. Overmyer, support team; Richard H. Truly, support team; Karol J. Bobko, support team; Donald K. Slayton, prime crew docking module pilot; Thomas P. Stafford, prime crew commander; Vance D. Brand, prime crew command module pilot; Jack R. Lousma, backup crew docking module pilot; Ronald E. Evans, backup crew command module pilot; and Alan L. Bean, backup crew commander. They are photographed by the Apollo Mission Simulator console in Building 5 at NASA's Johnson Space Center.
Fatigue Performance under Multiaxial Loading
1990-01-01
Director, Structural Integrity Engineering Officer (N7) Subgroup ( SEA 55Y) Military Seaift Command Naval Sea Systems Command Dr. Donald Liu CDR Michael K...REPRESENTATIVES Mr. William J. Siekierka Mr. Greg D. Woods SEA 55Y3 SEA 55Y3 Naval Sea Systems Command Naval Sea Systems Command SHIP STRUCTURE...AMERICAN BUREAU OF SHIPPING NAVAL SEA SYSTEMS COMMAND Mr. Stephen G. Arntson (Chairman) Mr. Robert A. Sielski Mr. John F. Conlon Mr. Charles L. Null Mr
Telescience Resource Kit Software Capabilities and Future Enhancements
NASA Technical Reports Server (NTRS)
Schneider, Michelle
2004-01-01
The Telescience Resource Kit (TReK) is a suite of PC-based software applications that can be used to monitor and control a payload on board the International Space Station (ISS). This software provides a way for payload users to operate their payloads from their home sites. It can be used by an individual or a team of people. TReK provides both local ground support system services and an interface to utilize remote services provided by the Payload Operations Integration Center (POIC). by the POIC and to perform local data functions such as processing the data, storing it in local files, and forwarding it to other computer systems. TReK can also be used to build, send, and track payload commands. In addition to these features, work is in progress to add a new command management capability. This capability will provide a way to manage a multi- platform command environment that can include geographically distributed computers. This is intended to help those teams that need to manage a shared on-board resource such as a facility class payload. The environment can be configured such that one individual can manage all the command activities associated with that payload. This paper will provide a summary of existing TReK capabilities and a description of the new command management capability. For example, 7'ReK can be used to receive payload data distributed
An Advanced Commanding and Telemetry System
NASA Astrophysics Data System (ADS)
Hill, Maxwell G. G.
The Loral Instrumentation System 500 configured as an Advanced Commanding and Telemetry System (ACTS) supports the acquisition of multiple telemetry downlink streams, and simultaneously supports multiple uplink command streams for today's satellite vehicles. By using industry and federal standards, the system is able to support, without relying on a host computer, a true distributed dataflow architecture that is complemented by state-of-the-art RISC-based workstations and file servers.
RPD-based Hypothesis Reasoning for Cyber Situation Awareness
NASA Astrophysics Data System (ADS)
Yen, John; McNeese, Michael; Mullen, Tracy; Hall, David; Fan, Xiaocong; Liu, Peng
Intelligence workers such as analysts, commanders, and soldiers often need a hypothesis reasoning framework to gain improved situation awareness of the highly dynamic cyber space. The development of such a framework requires the integration of interdisciplinary techniques, including supports for distributed cognition (human-in-the-loop hypothesis generation), supports for team collaboration (identification of information for hypothesis evaluation), and supports for resource-constrained information collection (hypotheses competing for information collection resources). We here describe a cognitively-inspired framework that is built upon Klein’s recognition-primed decision model and integrates the three components of Endsley’s situation awareness model. The framework naturally connects the logic world of tools for cyber situation awareness with the mental world of human analysts, enabling the perception, comprehension, and prediction of cyber situations for better prevention, survival, and response to cyber attacks by adapting missions at the operational, tactical, and strategic levels.
Methods for Integrating Environmental Awareness Training into Army Programs of Instruction
1993-06-01
generations. iv NTIS CRA&I ) F -IC TAB U.a’mot’::ed El By .. . ... ....... By .......................... ...... . .. DiO t, ib., tion I CONTENTS...Training Support Package ................... E-1-E-19 Appendix F . Sample of Officer Basic Course Instructor’s Lesson Plan with Embedded Information... F -1- F -7 Appendix G. Samples of Situational Training Exercises ........... G-1-G 9 Appendix H. Samples of Pre-Command Course Guest Speaker
High Frontier: The Journal for Space and Cyberspace Professionals. Volume 7, Number 2
2011-02-01
result of data provided by the SSA Data Sharing Pro - gram, satellite owners and operators worldwide maneuvered 51 times in 2009 to avoid... increased beyond the point where the US can expect to control it. Even without counterproductive export legislation, the US would have sustainability... timely delivery of integrated SSA information and national intelligence in order to support the command and control of US space forces. It
1986-12-01
perform its mission when called upon to do so, as evidenced by the aborted Iranian hostage rescue. The scenario described has been a low point in the...National Maintenance Point , U.S. Army Security Agency Materiel Support Command, and Charles A . McCarthy, stated in 1976, that the specification for...integral Part of the acquisition process (Ref. 2]. In a memorandum dated December 4, 1984, Mr. Taft identi- fied as the point of contact for the office of
Seeing Eye Drones: How The DOD Can Transform CBM And Disaster Response In The Homeland
2016-12-01
thesis explores the possibility of integrating small unmanned aircraft systems (sUAS) with video capability and CBRN detection and identification sensors...small, unmanned aircraft systems (sUAS) with video capability and CBRN detection and identification sensors for use by National Guard civil support...CBRN) and hazardous material (HAZMAT) materials, as well as providing video to the incident commander. One of the primary benefits of providing
MicroShell Minimalist Shell for Xilinx Microprocessors
NASA Technical Reports Server (NTRS)
Werne, Thomas A.
2011-01-01
MicroShell is a lightweight shell environment for engineers and software developers working with embedded microprocessors in Xilinx FPGAs. (MicroShell has also been successfully ported to run on ARM Cortex-M1 microprocessors in Actel ProASIC3 FPGAs, but without project-integration support.) Micro Shell decreases the time spent performing initial tests of field-programmable gate array (FPGA) designs, simplifies running customizable one-time-only experiments, and provides a familiar-feeling command-line interface. The program comes with a collection of useful functions and enables the designer to add an unlimited number of custom commands, which are callable from the command-line. The commands are parameterizable (using the C-based command-line parameter idiom), so the designer can use one function to exercise hardware with different values. Also, since many hardware peripherals instantiated in FPGAs have reasonably simple register-mapped I/O interfaces, the engineer can edit and view hardware parameter settings at any time without stopping the processor. MicroShell comes with a set of support scripts that interface seamlessly with Xilinx's EDK tool. Adding an instance of MicroShell to a project is as simple as marking a check box in a library configuration dialog box and specifying a software project directory. The support scripts then examine the hardware design, build design-specific functions, conditionally include processor-specific functions, and complete the compilation process. For code-size constrained designs, most of the stock functionality can be excluded from the compiled library. When all of the configurable options are removed from the binary, MicroShell has an unoptimized memory footprint of about 4.8 kB and a size-optimized footprint of about 2.3 kB. Since MicroShell allows unfettered access to all processor-accessible memory locations, it is possible to perform live patching on a running system. This can be useful, for instance, if a bug is discovered in a routine but the system cannot be rebooted: Shell allows a skilled operator to directly edit the binary executable in memory. With some forethought, MicroShell code can be located in a different memory location from custom code, permitting the custom functionality to be overwritten at any time without stopping the controlling shell.
Human-Robot Interaction Directed Research Project
NASA Technical Reports Server (NTRS)
Rochlis, Jennifer; Ezer, Neta; Sandor, Aniko
2011-01-01
Human-robot interaction (HRI) is about understanding and shaping the interactions between humans and robots (Goodrich & Schultz, 2007). It is important to evaluate how the design of interfaces and command modalities affect the human s ability to perform tasks accurately, efficiently, and effectively (Crandall, Goodrich, Olsen Jr., & Nielsen, 2005) It is also critical to evaluate the effects of human-robot interfaces and command modalities on operator mental workload (Sheridan, 1992) and situation awareness (Endsley, Bolt , & Jones, 2003). By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed that support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for design. Because the factors associated with interfaces and command modalities in HRI are too numerous to address in 3 years of research, the proposed research concentrates on three manageable areas applicable to National Aeronautics and Space Administration (NASA) robot systems. These topic areas emerged from the Fiscal Year (FY) 2011 work that included extensive literature reviews and observations of NASA systems. The three topic areas are: 1) video overlays, 2) camera views, and 3) command modalities. Each area is described in detail below, along with relevance to existing NASA human-robot systems. In addition to studies in these three topic areas, a workshop is proposed for FY12. The workshop will bring together experts in human-robot interaction and robotics to discuss the state of the practice as applicable to research in space robotics. Studies proposed in the area of video overlays consider two factors in the implementation of augmented reality (AR) for operator displays during teleoperation. The first of these factors is the type of navigational guidance provided by AR symbology. In the proposed studies, participants performance during teleoperation of a robot arm will be compared when they are provided with command-guidance symbology (that is, directing the operator what commands to make) or situation-guidance symbology (that is, providing natural cues so that the operator can infer what commands to make). The second factor for AR symbology is the effects of overlays that are either superimposed or integrated into the external view of the world. A study is proposed in which the effects of superimposed and integrated overlays on operator task performance during teleoperated driving tasks are compared
Joint Enabling Capabilities Command
Executive Director Chief of Staff Joint Planning Support Element Joint Communications Support Element mission Joint Enabling Capabilities Command provides decisive joint communications, planning and public and responsive support for joint communications, planning and public affairs. Priorities * Deliver
Defense.gov Special Report: Unified Combatant Commands
in support of U.S. strategic objectives. Their mission is to maintain command and control of U.S coverage and more information. Unified Combatant Command strategic map U.S. Northern Command NORTHCOM U.S U.S. Strategic Command STRATCOM . Main Menu Home Today in DOD About DOD Leaders Biographies
Autonomous Satellite Command and Control through the World Wide Web: Phase 3
NASA Technical Reports Server (NTRS)
Cantwell, Brian; Twiggs, Robert
1998-01-01
NASA's New Millenium Program (NMP) has identified a variety of revolutionary technologies that will support orders of magnitude improvements in the capabilities of spacecraft missions. This program's Autonomy team has focused on science and engineering automation technologies. In doing so, it has established a clear development roadmap specifying the experiments and demonstrations required to mature these technologies. The primary developmental thrusts of this roadmap are in the areas of remote agents, PI/operator interface, planning/scheduling fault management, and smart execution architectures. Phases 1 and 2 of the ASSET Project (previously known as the WebSat project) have focused on establishing World Wide Web-based commanding and telemetry services as an advanced means of interfacing a spacecraft system with the PI and operators. Current automated capabilities include Web-based command submission, limited contact scheduling, command list generation and transfer to the ground station, spacecraft support for demonstrations experiments, data transfer from the ground station back to the ASSET system, data archiving, and Web-based telemetry distribution. Phase 2 was finished in December 1996. During January-December 1997 work was commenced on Phase 3 of the ASSET Project. Phase 3 is the subject of this report. This phase permitted SSDL and its project partners to expand the ASSET system in a variety of ways. These added capabilities included the advancement of ground station capabilities, the adaptation of spacecraft on-board software, and the expansion of capabilities of the ASSET management algorithms. Specific goals of Phase 3 were: (1) Extend Web-based goal-level commanding for both the payload PI and the spacecraft engineer; (2) Support prioritized handling of multiple PIs as well as associated payload experimenters; (3) Expand the number and types of experiments supported by the ASSET system and its associated spacecraft; (4) Implement more advanced resource management, modeling and fault management capabilities that integrate the space and ground segments of the space system hardware; (5) Implement a beacon monitoring test; (6) Implement an experimental blackboard controller for space system management; (7) Further define typical ground station developments required for Internet-based remote control and for full system automation of the PI-to-spacecraft link. Each of those goals is examined in the next section. Significant sections of this report were also published as a conference paper.
U.S. Northern Command > Newsroom > Fact Sheets
Operations Command, North U.S. Marine Forces Northern Command U.S. Fleet Forces Command Air Forces Northern U.S. Army North Joint Task Force North Joint Task Force Civil Support Joint Task Force Alaska Joint
Autonomous Command Operations of the WIRE Spacecraft
NASA Technical Reports Server (NTRS)
Walyus, Keith; Prior, Mike; Saylor, Richard
1999-01-01
This paper presents operational innovations which will be introduced on NASA's Wide Field Infrared Explorer (WIRE) mission. These innovations include an end-to-end design architecture for an autonomous commanding capability for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented all autonomous command loading capability. This capability allows completely unattended operations over a typical two-day weekend period. The key factors driving design and implementation of this capability were: 1) integration with already existing ground system autonomous capabilities and systems, 2) the desire to evolve autonomous operations capabilities based upon previous SMEX operations experience - specifically the TRACE mission, 3) integration with ground station operations - both autonomous and man-tended, 4) low cost and quick implementation, and 5) end-to-end system robustness. A trade-off study was performed to examine these factors in light of the low-cost, higher-risk SMEX mission philosophy. The study concluded that a STOL (Spacecraft Test and Operations Language) based script, highly integrated with other scripts used to perform autonomous operations, was best suited given the budget and goals of the mission. Each of these factors is discussed in addition to use of the TRACE mission as a testbed for autonomous commanding prior to implementation on WIRE. The capabilities implemented on the WIRE mission are an example of a low-cost, robust, and efficient method for autonomous command loading when implemented with other autonomous features of the ground system. They call be used as a design and implementation template by other missions interested in evolving toward autonomous and lower cost operations. Additionally, the WIRE spacecraft will be used as an operational testbed upon completion of its nominal mission later in 1999. One idea being studied is advanced on-board modeling. Advanced on-board modeling techniques will be used to more efficiently display the spacecraft state. This health and safety information could be used by engineers on the ground or could be used by tile spacecraft for its own assessments. Additionally, this same state information could also be input into the event-driven scheduling system, as the scheduling system will need to assess the spacecraft state before undertaking a new activity. Advanced modeling techniques are being evaluated for a number of NASA missions including The Next Generation Space Telescope (NGST), which is scheduled to launch in 2007.
NASA Astrophysics Data System (ADS)
Athmer, Keith; Gaughan, Chris; McDonnell, Joseph S.; Leach, Robert; Davis, Bert; Truong, Kiet; Borum, Howard; Leslie, Richard; Ma, Lein
2012-05-01
The development of an Integrated Base Defense (IBD) is a significant challenge for the Army with many analytical gaps. The IBD problem space is complex, with evolving requirements and a large stakeholder base. In order to evaluate and analyze IBD decisions, the Training & Doctrine Command (TRADOC) Maneuver Support Center of Excellence (MSCoE) led and continues to lead a series of IBD focused experiments and wargames. Modeling and Simulation (M&S) significantly contributes to this effort. To improve IBD M&S capabilities, a collaborative demonstration with the Research, Development and Engineering Command's (RDECOM's) M&S Decision Support Environment (MSDSE) was held in September 2011. The results of this demonstration provided key input to MSCoE IBD related concepts and technologies. Moreover, it established an initial M&S toolset that will significantly improve force protection in combat zones and Army installations worldwide by providing leaders a capability to conduct analysis of defense and mission rehearsals. The demonstration was executed with a "human in the loop" Battle Captain, who was aided by mission command assets such as Base Expeditionary Targeting and Surveillance Sensors-Combined (BETSS-C). The Common Operating Picture was populated and stimulated using Science & Technology (S&T) M&S, allowing for a realistic representation of physical phenomena without the need for real systems. Novel methods were used for simulation orchestration, and for initializing the simulations and Opposing Force (OPFOR) activities. Ultimately, this demonstration showed that the MSDSE is suitable to support TRADOC IBD analyses and that S&T M&S is ready to be used in a demanding simulation environment. This paper will highlight the event's outcomes and lessons identified.
Technology Integration Initiative In Support of Outage Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory Weatherby; David Gertman
2012-07-01
Plant outage management is a high priority concern for the nuclear industry from cost and safety perspectives. Often, command and control during outages is maintained in the outage control center where many of the underlying technologies supporting outage control are the same as those used in the 1980’s. This research reports on the use of advanced integrating software technologies and hand held mobile devices as a means by which to reduce cycle time, improve accuracy, and enhance transparency among outage team members. This paper reports on the first phase of research supported by the DOE Light Water Reactor Sustainability (LWRS)more » Program that is performed in close collaboration with industry to examine the introduction of newly available technology allowing for safe and efficient outage performance. It is thought that this research will result in: improved resource management among various plant stakeholder groups, reduced paper work, and enhanced overall situation awareness for the outage control center management team. A description of field data collection methods, including personnel interview data, success factors, end-user evaluation and integration of hand held devices in achieving an integrated design are also evaluated. Finally, the necessity of obtaining operations cooperation support in field studies and technology evaluation is acknowledged.« less
An intelligent planning and scheduling system for the HST servicing missions
NASA Technical Reports Server (NTRS)
Johnson, Jay; Bogovich, Lynn; Tuchman, Alan; Kispert, Andrew; Page, Brenda; Burkhardt, Christian; Littlefield, Ronald; Mclean, David; Potter, William; Ochs, William
1993-01-01
A new, intelligent planning and scheduling system has been delivered to NASA-Goddard Space Flight Center (GSFC) to provide support for the up-coming Hubble Space Telescope (HST) Servicing Missions. This new system is the Servicing Mission Planning and Replanning Tool (SM/PART). SM/PART is written in C and runs on a UNlX-based workstation (IBM RS/6000) under Motif. SM/PART effectively automates the complex task of building or rebuilding integrated timelines and command plans which are required by HST Servicing Mission personnel at their consoles during the missions. SM/PART is able to quickly build or rebuild timelines based on information stored in a Knowledge Base (KB) by using an Artificial Intelligence (AI) tool called the Planning And Resource Reasoning (PARR) shell. After a timeline has been built in the batch mode, it can be displayed and edited in an interactive mode with help from the PARR shell. Finally a detailed command plan is generated. The capability to quickly build or rebuild timelines and command plans provides an additional safety factor for the HST, Shuttle and Crew.
Automation Hooks Architecture Trade Study for Flexible Test Orchestration
NASA Technical Reports Server (NTRS)
Lansdowne, Chatwin A.; Maclean, John R.; Graffagnino, Frank J.; McCartney, Patrick A.
2010-01-01
We describe the conclusions of a technology and communities survey supported by concurrent and follow-on proof-of-concept prototyping to evaluate feasibility of defining a durable, versatile, reliable, visible software interface to support strategic modularization of test software development. The objective is that test sets and support software with diverse origins, ages, and abilities can be reliably integrated into test configurations that assemble and tear down and reassemble with scalable complexity in order to conduct both parametric tests and monitored trial runs. The resulting approach is based on integration of three recognized technologies that are currently gaining acceptance within the test industry and when combined provide a simple, open and scalable test orchestration architecture that addresses the objectives of the Automation Hooks task. The technologies are automated discovery using multicast DNS Zero Configuration Networking (zeroconf), commanding and data retrieval using resource-oriented Restful Web Services, and XML data transfer formats based on Automatic Test Markup Language (ATML). This open-source standards-based approach provides direct integration with existing commercial off-the-shelf (COTS) analysis software tools.
MSRR Rack Materials Science Research Rack
NASA Technical Reports Server (NTRS)
Reagan, Shawn
2017-01-01
The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and the European Space Agency (ESA) for materials science investigations on the International Space Station (ISS). The MSRR is managed at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The MSRR facility subsystems were manufactured by Teledyne Brown Engineering (TBE) and integrated with the ESA/EADS-Astrium developed Materials Science Laboratory (MSL) at the MSFC Space Station Integration and Test Facility (SSITF) as part of the Systems Development Operations Support (SDOS) contract. MSRR was launched on STS-128 in August 2009, and is currently installed in the U. S. Destiny Laboratory Module on the ISS. Materials science is an integral part of developing new, safer, stronger, more durable materials for use throughout everyday life. The goal of studying materials processing in space is to develop a better understanding of the chemical and physical mechanisms involved, and how they differ in the microgravity environment of space. To that end, the MSRR accommodates advanced investigations in the microgravity environment of the ISS for basic materials science research in areas such as solidification of metals and alloys. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials Science Laboratory (MSL) which accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample-Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400 C. Once an SCA is installed, the experiment can be run by automatic command or science conducted via telemetry commands from the ground. This facility is available to support materials science investigations through programs such as the US National Laboratory, Technology Development, NASA Research Announcements, and others. TBE and MSFC are currently developing NASA Sample Cartridge Assemblies (SCA's) with a planned availability for launch in 2017.
Evolving software reengineering technology for the emerging innovative-competitive era
NASA Technical Reports Server (NTRS)
Hwang, Phillip Q.; Lock, Evan; Prywes, Noah
1994-01-01
This paper reports on a multi-tool commercial/military environment combining software Domain Analysis techniques with Reusable Software and Reengineering of Legacy Software. It is based on the development of a military version for the Department of Defense (DOD). The integrated tools in the military version are: Software Specification Assistant (SSA) and Software Reengineering Environment (SRE), developed by Computer Command and Control Company (CCCC) for Naval Surface Warfare Center (NSWC) and Joint Logistics Commanders (JLC), and the Advanced Research Project Agency (ARPA) STARS Software Engineering Environment (SEE) developed by Boeing for NAVAIR PMA 205. The paper describes transitioning these integrated tools to commercial use. There is a critical need for the transition for the following reasons: First, to date, 70 percent of programmers' time is applied to software maintenance. The work of these users has not been facilitated by existing tools. The addition of Software Reengineering will also facilitate software maintenance and upgrading. In fact, the integrated tools will support the entire software life cycle. Second, the integrated tools are essential to Business Process Reengineering, which seeks radical process innovations to achieve breakthrough results. Done well, process reengineering delivers extraordinary gains in process speed, productivity and profitability. Most importantly, it discovers new opportunities for products and services in collaboration with other organizations. Legacy computer software must be changed rapidly to support innovative business processes. The integrated tools will provide commercial organizations important competitive advantages. This, in turn, will increase employment by creating new business opportunities. Third, the integrated system will produce much higher quality software than use of the tools separately. The reason for this is that producing or upgrading software requires keen understanding of extremely complex applications which is facilitated by the integrated tools. The radical savings in the time and cost associated with software, due to use of CASE tools that support combined Reuse of Software and Reengineering of Legacy Code, will add an important impetus to improving the automation of enterprises. This will be reflected in continuing operations, as well as in innovating new business processes. The proposed multi-tool software development is based on state of the art technology, which will be further advanced through the use of open systems for adding new tools and experience in their use.
The Army Public Affairs Program
2000-09-15
charge levied to defray expenses for food , beverages , and other incidentals. (2) Using bands and other ceremonial unit support at military-sponsored...command channels by the authorized cable television (CATV) franchise . g. Advise the commander on audience attitudes about and perceptions of policies...support events and activities of common interest and benefit to local, state, regional, national, or broadly represented audiences. Commanders must be
TRICCS: A proposed teleoperator/robot integrated command and control system for space applications
NASA Technical Reports Server (NTRS)
Will, R. W.
1985-01-01
Robotic systems will play an increasingly important role in space operations. An integrated command and control system based on the requirements of space-related applications and incorporating features necessary for the evolution of advanced goal-directed robotic systems is described. These features include: interaction with a world model or domain knowledge base, sensor feedback, multiple-arm capability and concurrent operations. The system makes maximum use of manual interaction at all levels for debug, monitoring, and operational reliability. It is shown that the robotic command and control system may most advantageously be implemented as packages and tasks in Ada.
NASA Technical Reports Server (NTRS)
Vos, R. G.; Beste, D. L.; Gregg, J.
1984-01-01
The User Manual for the Integrated Analysis Capability (IAC) Level 1 system is presented. The IAC system currently supports the thermal, structures, controls and system dynamics technologies, and its development is influenced by the requirements for design/analysis of large space systems. The system has many features which make it applicable to general problems in engineering, and to management of data and software. Information includes basic IAC operation, executive commands, modules, solution paths, data organization and storage, IAC utilities, and module implementation.
2013-03-01
within the Global information Grid ( GiG ) (AFDD6-0, 2011). JP 1-02 describes the GiG : 10 The GIG is the globally interconnected, end-to-end set of...to warfighters, policy makers, and support personnel. The GIG includes all owned and leased communications and computing systems and services...software (including applications), data, security services, and other 19 associated services necessary to achieve information superiority. The GIG
NASA Technical Reports Server (NTRS)
2005-01-01
This is a listing of recent unclassified RTO technical publications for January 1, 2005 through March 31, 2005 processed by the NASA Center for AeroSpace Center available on the NASA Aeronautics and Space Database. Contents include 1) Electronic Information Management; 2) Decision Support to Combined Joint Task Force and Component Commanders; 3) RTO Technical Publications : A Quarterly Listing (December 2004); 4) The Role of Humans in Intelligent and Automated Systems.
Status of the JWST Science Instrument Payload
NASA Technical Reports Server (NTRS)
Greenhouse, Matt
2016-01-01
The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) system consists of five sensors (4 science): Mid-Infrared Instrument (MIRI), Near Infrared Imager and Slitless Spectrograph (NIRISS), Fine Guidance Sensor (FGS), Near InfraRed Camera (NIRCam), Near InfraRed Spectrograph (NIRSpec); and nine instrument support systems: Optical metering structure system, Electrical Harness System; Harness Radiator System, ISIM Electronics Compartment, ISIM Remote Services Unit, Cryogenic Thermal Control System, Command and Data Handling System, Flight Software System, Operations Scripts System.
The Future of the Brigade Combat Team: Air-Ground Integration and the Operating Environment
2017-06-09
Attack Controllers (JTACs) at each level.15 There is no requirement for JTAC support at the company level or to non - maneuver battalions. However...experienced non -commissioned officer or officer. Theater Air Control System (TACS): It includes all of the command and control related capabilities...information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM
1998-10-01
of motivation , acculturation, education, training and potentially action. This is a process of years. The timelines associated with each level of...payload and approximately $5K cost). This backpack robot clearly is most suited to visual scouting of threatening environments, including inside...Organic Man Portable, Ground Vehicle Backpack , Reusable Launch Techniques Command, Telemetry, and Image Return Deployment VTOL, Ship-Capable Autonomous
1989-06-01
Science Unclassified SECURITY CLASSIFICATION OF THIS PAGE REPORT DOCUMENTATION PAGE la. REPORT SECURITY CLASS’r!CATION )b RESTRICTIVE MARKINGS UNCLASSIFIED...2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; Zb. DECLASSIFICATION I DOWNGRADING SCHEDULE...ZIP Code) 10 SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT Monterey, CA. 93943 FLEMENT NO. NO. NO ACCESSION NO. 11. TITLE (Include Security
The Integration of COTS/GOTS within NASA's HST Command and Control System
NASA Technical Reports Server (NTRS)
Pfarr, Thomas; Reis, James E.; Obenschain, Arthur F. (Technical Monitor)
2001-01-01
NASA's mission critical Hubble Space Telescope (HST) command and control system has been re-engineered with COTS/GOTS and minimal custom code. This paper focuses on the design of this new HST Control Center System (CCS) and the lessons learned throughout its development. CCS currently utilizes 31 COTS/GOTS products with an additional 12 million lines of custom glueware code; the new CCS exceeds the capabilities of the original system while significantly reducing the lines of custom code by more than 50%. The lifecycle of COTS/GOTS products will be examined including the pack-age selection process, evaluation process, and integration process. The advantages, disadvantages, issues, concerns, and lessons teamed for integrating COTS/GOTS into the NASA's mission critical HST CCS will be examined in detail. Command and control systems designed with traditional custom code development efforts will be compared with command and control systems designed with new development techniques relying heavily on COTS/COTS integration. This paper will reveal the many hidden costs of COTS/GOTS solutions when compared to traditional custom code development efforts; this paper will show the high cost of COTS/GOTS solutions including training expenses, consulting fees, and long-term maintenance expenses.
Configurable Multi-Purpose Processor
NASA Technical Reports Server (NTRS)
Valencia, J. Emilio; Forney, Chirstopher; Morrison, Robert; Birr, Richard
2010-01-01
Advancements in technology have allowed the miniaturization of systems used in aerospace vehicles. This technology is driven by the need for next-generation systems that provide reliable, responsive, and cost-effective range operations while providing increased capabilities such as simultaneous mission support, increased launch trajectories, improved launch, and landing opportunities, etc. Leveraging the newest technologies, the command and telemetry processor (CTP) concept provides for a compact, flexible, and integrated solution for flight command and telemetry systems and range systems. The CTP is a relatively small circuit board that serves as a processing platform for high dynamic, high vibration environments. The CTP can be reconfigured and reprogrammed, allowing it to be adapted for many different applications. The design is centered around a configurable field-programmable gate array (FPGA) device that contains numerous logic cells that can be used to implement traditional integrated circuits. The FPGA contains two PowerPC processors running the Vx-Works real-time operating system and are used to execute software programs specific to each application. The CTP was designed and developed specifically to provide telemetry functions; namely, the command processing, telemetry processing, and GPS metric tracking of a flight vehicle. However, it can be used as a general-purpose processor board to perform numerous functions implemented in either hardware or software using the FPGA s processors and/or logic cells. Functionally, the CTP was designed for range safety applications where it would ultimately become part of a vehicle s flight termination system. Consequently, the major functions of the CTP are to perform the forward link command processing, GPS metric tracking, return link telemetry data processing, error detection and correction, data encryption/ decryption, and initiate flight termination action commands. Also, the CTP had to be designed to survive and operate in a launch environment. Additionally, the CTP was designed to interface with the WFF (Wallops Flight Facility) custom-designed transceiver board which is used in the Low Cost TDRSS Transceiver (LCT2) also developed by WFF. The LCT2 s transceiver board demodulates commands received from the ground via the forward link and sends them to the CTP, where they are processed. The CTP inputs and processes data from the inertial measurement unit (IMU) and the GPS receiver board, generates status data, and then sends the data to the transceiver board where it is modulated and sent to the ground via the return link. Overall, the CTP has combined processing with the ability to interface to a GPS receiver, an IMU, and a pulse code modulation (PCM) communication link, while providing the capability to support common interfaces including Ethernet and serial interfaces boarding a relatively small-sized, lightweight package.
Network command processing system overview
NASA Technical Reports Server (NTRS)
Nam, Yon-Woo; Murphy, Lisa D.
1993-01-01
The Network Command Processing System (NCPS) developed for the National Aeronautics and Space Administration (NASA) Ground Network (GN) stations is a spacecraft command system utilizing a MULTIBUS I/68030 microprocessor. This system was developed and implemented at ground stations worldwide to provide a Project Operations Control Center (POCC) with command capability for support of spacecraft operations such as the LANDSAT, Shuttle, Tracking and Data Relay Satellite, and Nimbus-7. The NCPS consolidates multiple modulation schemes for supporting various manned/unmanned orbital platforms. The NCPS interacts with the POCC and a local operator to process configuration requests, generate modulated uplink sequences, and inform users of the ground command link status. This paper presents the system functional description, hardware description, and the software design.
Decision making technical support study for the US Army's Chemical Stockpile Disposal Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, D.L.; Dobson, J.E.
1990-08-01
This report examines the adequacy of current command and control systems designed to make timely decisions that would enable sufficient warning and protective response to an accident at the Edgewood area of Aberdeen Proving Ground (APG), Maryland, and at Pine Bluff Arsenal (PBA), Arkansas. Institutional procedures designed to facilitate rapid accident assessment, characterization, warning, notification, and response after the onset of an emergency and computer-assisted decision-making aids designed to provide salient information to on- and-off-post emergency responders are examined. The character of emergency decision making at APG and PBA, as well as potential needs for improvements to decision-making practices, procedures,more » and automated decision-support systems (ADSSs), are described and recommendations are offered to guide equipment acquisition and improve on- and off-post command and control relationships. We recommend that (1) a continued effort be made to integrate on- and off-post command control, and decision-making procedures to permit rapid decision making; (2) the pathways for alert and notification among on- and off-post officials be improved and that responsibilities and chain of command among off-post agencies be clarified; (3) greater attention be given to organizational and social context factors that affect the adequacy of response and the likelihood that decision-making systems will work as intended; and (4) faster improvements be made to on-post ADSSs being developed at APG and PBA, which hold considerable promise for depicting vast amounts of information. Phased development and procurement of computer-assisted decision-making tools should be undertaken to balance immediate needs against available resources and to ensure flexibility, equity among sites, and compatibility among on- and off-post systems. 112 refs., 6 tabs.« less
Integrating CLIPS applications into heterogeneous distributed systems
NASA Technical Reports Server (NTRS)
Adler, Richard M.
1991-01-01
SOCIAL is an advanced, object-oriented development tool for integrating intelligent and conventional applications across heterogeneous hardware and software platforms. SOCIAL defines a family of 'wrapper' objects called agents, which incorporate predefined capabilities for distributed communication and control. Developers embed applications within agents and establish interactions between distributed agents via non-intrusive message-based interfaces. This paper describes a predefined SOCIAL agent that is specialized for integrating C Language Integrated Production System (CLIPS)-based applications. The agent's high-level Application Programming Interface supports bidirectional flow of data, knowledge, and commands to other agents, enabling CLIPS applications to initiate interactions autonomously, and respond to requests and results from heterogeneous remote systems. The design and operation of CLIPS agents are illustrated with two distributed applications that integrate CLIPS-based expert systems with other intelligent systems for isolating and mapping problems in the Space Shuttle Launch Processing System at the NASA Kennedy Space Center.
Man's role in integrated control and information management systems
NASA Technical Reports Server (NTRS)
Nevins, J. L.; Johnson, I. S.
1972-01-01
Display control considerations associated with avionics techniques are discussed. General purpose displays and a prototype interactive display/command design featuring a pushplate CRT overlay for command input are considered.
Transforming Our SMEX Organization by Way of Innovation, Standardization, and Automation
NASA Technical Reports Server (NTRS)
Madden, Maureen; Crouse, Pat; Carry, Everett; Esposito, timothy; Parker, Jeffrey; Bradley, David
2006-01-01
NASA's Small Explorer (SMEX) Flight Operations Team (FOT) is currently tackling the challenge of supporting ground operations for several satellites that have surpassed their designed lifetime and have a dwindling budget. At Goddard Space Flight Center (GSFC), these missions are presently being reengineered into a fleet-oriented ground system. When complete, this ground system will provide command and control of four SMEX missions, and will demonstrate fleet automation and control concepts as a pathfinder for additional mission integrations. A goal of this reengineering effort is to demonstrate new ground-system technologies that show promise of supporting longer mission lifecycles and simplifying component integration. In pursuit of this goal, the SMEX organization has had to examine standardization, innovation, and automation. A core technology being demonstrated in this effort is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture focuses on providing standard interfaces for ground system applications to promote application interoperability. Building around commercial Message Oriented Middleware and providing a common messaging standard allows GMSEC to provide the capabilities necessary to support integration of new software components into existing missions and increase the level of interaction within the system. For SMS, GMSEC has become the technology platform to transform flight operations with the innovation and automation necessary to reduce operational costs. The automation technologies supported in SMEX are built upon capabilities provided by the GMSEC architecture that allows the FOT to further reduce the involvement of the console, operator. Initially, SMEX is automating only routine operations, such as safety and health monitoring, basic commanding, and system recovery. The operational concepts being developed here will reduce the need for staffed passes and are a necessity for future fleet management. As this project continues to evolve, additional innovations beyond GMSEC and automation have, and will continue to be developed. The team developed techniques for migrating ground systems of existing on-orbit assets. The tools necessary to monitor and control software failures were integrated and tailored for operational environments. All this was done with a focus of extending fleet operations to mission beyond SMU. The result of this work is the foundation for a broader fleet-capable ground system that will include several missions supported by the Space Science Mission Operations Project.
Linking the Pilot Structural Model and Pilot Workload
NASA Technical Reports Server (NTRS)
Bachelder, Edward; Hess, Ronald; Aponso, Bimal; Godfroy-Cooper, Martine
2018-01-01
Behavioral models are developed that closely reproduced pulsive control response of two pilots using markedly different control techniques while conducting a tracking task. An intriguing find was that the pilots appeared to: 1) produce a continuous, internally-generated stick signal that they integrated in time; 2) integrate the actual stick position; and 3) compare the two integrations to either issue or cease a pulse command. This suggests that the pilots utilized kinesthetic feedback in order to sense and integrate stick position, supporting the hypothesis that pilots can access and employ the proprioceptive inner feedback loop proposed by Hess's pilot Structural Model. A Pilot Cost Index was developed, whose elements include estimated workload, performance, and the degree to which the pilot employs kinesthetic feedback. Preliminary results suggest that a pilot's operating point (parameter values) may be based on control style and index minimization.
Integrating Automation into a Multi-Mission Operations Center
NASA Technical Reports Server (NTRS)
Surka, Derek M.; Jones, Lori; Crouse, Patrick; Cary, Everett A, Jr.; Esposito, Timothy C.
2007-01-01
NASA Goddard Space Flight Center's Space Science Mission Operations (SSMO) Project is currently tackling the challenge of minimizing ground operations costs for multiple satellites that have surpassed their prime mission phase and are well into extended mission. These missions are being reengineered into a multi-mission operations center built around modern information technologies and a common ground system infrastructure. The effort began with the integration of four SMEX missions into a similar architecture that provides command and control capabilities and demonstrates fleet automation and control concepts as a pathfinder for additional mission integrations. The reengineered ground system, called the Multi-Mission Operations Center (MMOC), is now undergoing a transformation to support other SSMO missions, which include SOHO, Wind, and ACE. This paper presents the automation principles and lessons learned to date for integrating automation into an existing operations environment for multiple satellites.
Using virtual reality for science mission planning: A Mars Pathfinder case
NASA Technical Reports Server (NTRS)
Kim, Jacqueline H.; Weidner, Richard J.; Sacks, Allan L.
1994-01-01
NASA's Mars Pathfinder Project requires a Ground Data System (GDS) that supports both engineering and scientific payloads with reduced mission operations staffing, and short planning schedules. Also, successful surface operation of the lander camera requires efficient mission planning and accurate pointing of the camera. To meet these challenges, a new software strategy that integrates virtual reality technology with existing navigational ancillary information and image processing capabilities. The result is an interactive workstation based applications software that provides a high resolution, 3-dimensial, stereo display of Mars as if it were viewed through the lander camera. The design, implementation strategy and parametric specification phases for the development of this software were completed, and the prototype tested. When completed, the software will allow scientists and mission planners to access simulated and actual scenes of Mars' surface. The perspective from the lander camera will enable scientists to plan activities more accurately and completely. The application will also support the sequence and command generation process and will allow testing and verification of camera pointing commands via simulation.
Contractor Support on the Battlefield -- Increased Reliance Requires Commander’s Attention
2006-05-16
combatant commander. The consequence is contractors on the battlefield are governed by contract law , which then begs the question how applicable is... contract law on the battlefield? Command and Control Command and control is critical to our success on the battlefield, yet America’s military has
Command detector SNR estimator and lock status monitor circuitry
NASA Technical Reports Server (NTRS)
Emerson, R. F.
1976-01-01
A breadboard of the command detector signal-to-noise-ratio estimator and lock status monitor was built on a wire-wrap card. The breadboard was integrated with the standard command detector, and its performance was measured. The design, design constraints, and construction of the breadboard are described. The performance is shown to agree with the theoretical model.
M1A2 Adjunct Analysis (POSNOV Volume)
1989-12-01
MD 20814-2797 Director 2 U.S. Army Materiel Systems Analysis Activity ATTN: AMXSY-CS, AMXSY-GA Aberden Proving Grounds , MD 21005-5071 U.S. Army...Leonard Wood, MO Commander U.S. Army Ordnance Center & School ATTN: ATSL-CD-CS Aberdeen Proving Ground , MD 21005 Commander 2 U.S. Army Soldier Support...NJ Commander U.S. Army Test and Evaluation Command ATrN: AMSTE-CM-R Aberdeen Proving Ground , MD 21005 Commander U.S. Army Tank Automotive Command
The Transportable Applications Environment - An interactive design-to-production development system
NASA Technical Reports Server (NTRS)
Perkins, Dorothy C.; Howell, David R.; Szczur, Martha R.
1988-01-01
An account is given of the design philosophy and architecture of the Transportable Applications Environment (TAE), an executive program binding a system of applications programs into a single, easily operable whole. TAE simplifies the job of a system developer by furnishing a stable framework for system-building; it also integrates system activities, and cooperates with the host operating system in order to perform such functions as task-scheduling and I/O. The initial TAE human/computer interface supported command and menu interfaces, data displays, parameter-prompting, error-reporting, and online help. Recent extensions support graphics workstations with a window-based, modeless user interface.
2009-10-01
WACC ); and • Joint Task Force (Games) Joint Operations Centre (GJOC). In May 2008, DRDC Toronto initiated two studies to support the workspace...Voice-over-IP WACC Whistler Area Command Centre DRDC Toronto TR 2009-100 39 Distribution list Document No.: DRDC CR 2009-028 LIST
1994-03-01
controls productivity by regulating lunch and toilet breaks as well as physical movement within the workplace . Researchers have observed that women are more...Weak Link. The Feminization of the American Military, that "the presence of women in the military inhibits male bonding, corrupts allegiance to the...assignment policies that restrict most women to "traditional" clerical and fleet- support occupational fields. I. M&SCULINE HEQGONY Then-Commandant of the
2005-10-14
of the decision-support systems that underlie and are key to these strategies. Cal Poly’s Collaborative Agent Design (CAD) Research Center is the...architect and lead developer of one of the first such systems: IMMACCS (Integrated Marine Multi- Agent Command and Control System), with JPL, SPAWAR...presented later in this document. An overview of accomplishments to date on the project follows: " Research carried out by the CADRC (Cooperative Agent
2011-12-09
traced to non-state actors it provided the impetus to the creation of Joint Task Force Computer Network Defense (JTF-CND). Since the creation of JTF...telecommunications and IT systems. One of those many efforts by the USAF has been the creation of the 24th Air Force (24th AF), also known as US Air Force...Support For Organizational Structures, Policies, Technologies and People to Improve Resilience Prior to creation of USCYBERCOM, responsibility for
2012-10-26
Reasonableness on Modifications Adequate? N62583-10-D-0343-0009 Refurbishment and upgrade of PSB Yes N/A N/A N62583-10-D-0344-0004 Fabrication...and installation of a PSB Yes N/A N/A MAC 4 – Integrated Logistics Support N62583-09-D0061-0014 Training of Caterpillar equipment No No N/A...Frequency Active ELMR Enterprise Land Mobile Radio N/A Not Applicable PSB Port Security Barrier RDC Regional Dispatch Center STAFAC South
1984-06-01
Eacn stock point is autonomous witn respect to how it implements data processing support, as long as it accommodates the Navy Supply Systems Command...has its own data elements, files, programs , transactions, users, reports, and some have additional hardware. To augment them all and not force redesign... programs are written to request session establishments among them using only logical addressing names (mailboxes) whicn are independent from physical
ASC Addresses Unit Commanders’ Concerns through LBE and Reset Programs
2008-09-01
Distribution Management Center (DMC). The DMC, based at ASC Headquarters on Rock Island Arsenal, Ilinois, has become the single ASC integrator for LBE and field-level reset in support of ARFORGEN. The reset of units returning from OEF/OIF consists of a series of actions to restore the units to a desired level of combat capability commensurate with future mission requirements. These actions include the repair of equipment, replacement of equipment lost during operations, and recapitalization of equipment where feasible and
2015-05-23
integrate with maneuver forces to meet future threats. Several former brigade combat team commanders mentioned the field artillery’s “identity crisis ” in...September 2008): 35. 5 Sean MacFarland, Michael Shields, and Jeffrey Snow, “White Paper: The King and I: The Impeding Crisis in Field Artillery’s Ability...Michael S. Coombes , “Agile Fires and Decisive Action: Achieving Pervasive Agility by Focusing On Fundamentals,” NTC Decisive Action Training
2010-03-02
triggerman is probably still close ; lately all IEDs in the area have been initiated via command-wire. The squad leader sets a cordon, ensures an IED 9...Operational Surveillance System (G-BOSS) with a Class IIIb laser pointer. This class of laser requires users to receive a laser safety class...2) The Keyhole kit of surveillance equipment. Designed to provide “snipers with an increased capability to visually detect the enemy emplacing IEDs
CCSDS Mission Operations Action Service Core Capabilities
NASA Technical Reports Server (NTRS)
Reynolds, Walter F.; Lucord, Steven A.; Stevens, John E.
2009-01-01
This slide presentation reviews the operations concepts of the command (action) services. Since the consequences of sending the wrong command are unacceptable, the command system provides a collaborative and distributed work environment for flight controllers and operators. The system prescribes a review and approval process where each command is viewed by other individuals before being sent to the vehicle. The action service needs additional capabilities to support he operations concepts of manned space flight. These are : (1) Action Service methods (2) Action attributes (3) Action parameter/argument attributes (4 ) Support for dynamically maintained action data. (5) Publish subscri be capabilities.
Skip to main content Navigate Up This page location is: Navy Personnel Command Reference Library Command > Reference Library > Publications & News > Shift Colors Top Link Bar Navy Personnel Enlisted Support & Services Expand Support & Services Organization Expand Organization Reference
2013-05-19
cyberspace, is putting increased emphasis on the need for the Joint Force Commander to employ his force to achieve Information Dominance . The information... Information Dominance is to assist in achieving Decision Superiority, Assured Command and Control, Battlespace Awareness, and Integrated Fires. Navy... Information Dominance aims to use information in cyberspace as a way and means in warfare -- as a battery in the Joint Force Commander’s arsenal. The
2008-06-13
Mobility Division AMLO Air Mobility Liaison Officer AMR Air Movement Request AO Area of Operations AOC Air and Space Operations Center BAE...those forces and by doctrine can only advise the AOC Director. Adding to this confused chain of command, the Air Mobility Liaison Officers ( AMLO ...there is not a commander of airlift forces and the AMLO typically answers to Air Mobility Command’s (AMC) 18th Air Force Commander when deployed to
Common command-and-control user interface for current force UGS
NASA Astrophysics Data System (ADS)
Stolovy, Gary H.
2009-05-01
The Current Force Unattended Ground Sensors (UGS) comprise the OmniSense, Scorpion, and Silent Watch systems. As deployed by U.S. Army Central Command in 2006, sensor reports from the three systems were integrated into a common Graphical User Interface (GUI), with three separate vendor-specific applications for Command-and-Control (C2) functions. This paper describes the requirements, system architecture, implementation, and testing of an upgrade to the Processing, Exploitation, and Dissemination back-end server to incorporate common remote Command-and-Control capabilities.
The next generation of command post computing
NASA Astrophysics Data System (ADS)
Arnold, Ross D.; Lieb, Aaron J.; Samuel, Jason M.; Burger, Mitchell A.
2015-05-01
The future of command post computing demands an innovative new solution to address a variety of challenging operational needs. The Command Post of the Future is the Army's primary command and control decision support system, providing situational awareness and collaborative tools for tactical decision making, planning, and execution management from Corps to Company level. However, as the U.S. Army moves towards a lightweight, fully networked battalion, disconnected operations, thin client architecture and mobile computing become increasingly essential. The Command Post of the Future is not designed to support these challenges in the coming decade. Therefore, research into a hybrid blend of technologies is in progress to address these issues. This research focuses on a new command and control system utilizing the rich collaboration framework afforded by Command Post of the Future coupled with a new user interface consisting of a variety of innovative workspace designs. This new system is called Tactical Applications. This paper details a brief history of command post computing, presents the challenges facing the modern Army, and explores the concepts under consideration for Tactical Applications that meet these challenges in a variety of innovative ways.
Eye-movements and Voice as Interface Modalities to Computer Systems
NASA Astrophysics Data System (ADS)
Farid, Mohsen M.; Murtagh, Fionn D.
2003-03-01
We investigate the visual and vocal modalities of interaction with computer systems. We focus our attention on the integration of visual and vocal interface as possible replacement and/or additional modalities to enhance human-computer interaction. We present a new framework for employing eye gaze as a modality of interface. While voice commands, as means of interaction with computers, have been around for a number of years, integration of both the vocal interface and the visual interface, in terms of detecting user's eye movements through an eye-tracking device, is novel and promises to open the horizons for new applications where a hand-mouse interface provides little or no apparent support to the task to be accomplished. We present an array of applications to illustrate the new framework and eye-voice integration.
Human-Robot Interaction Directed Research Project
NASA Technical Reports Server (NTRS)
Sandor, Aniko; Cross, Ernest V., II; Chang, M. L.
2014-01-01
Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces and command modalities affect the human's ability to perform tasks accurately, efficiently, and effectively when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. This DRP concentrates on three areas associated with interfaces and command modalities in HRI which are applicable to NASA robot systems: 1) Video Overlays, 2) Camera Views, and 3) Command Modalities. The first study focused on video overlays that investigated how Augmented Reality (AR) symbology can be added to the human-robot interface to improve teleoperation performance. Three types of AR symbology were explored in this study, command guidance (CG), situation guidance (SG), and both (SCG). CG symbology gives operators explicit instructions on what commands to input, whereas SG symbology gives operators implicit cues so that operators can infer the input commands. The combination of CG and SG provided operators with explicit and implicit cues allowing the operator to choose which symbology to utilize. The objective of the study was to understand how AR symbology affects the human operator's ability to align a robot arm to a target using a flight stick and the ability to allocate attention between the symbology and external views of the world. The study evaluated the effects type of symbology (CG and SG) has on operator tasks performance and attention allocation during teleoperation of a robot arm. The second study expanded on the first study by evaluating the effects of the type of navigational guidance (CG and SG) on operator task performance and attention allocation during teleoperation of a robot arm through uplinked commands. Although this study complements the first study on navigational guidance with hand controllers, it is a separate investigation due to the distinction in intended operators (i.e., crewmembers versus ground-operators). A third study looked at superimposed and integrated overlays for teleoperation of a mobile robot using a hand controller. When AR is superimposed on the external world, it appears to be fixed onto the display and internal to the operators' workstation. Unlike superimposed overlays, integrated overlays often appear as three-dimensional objects and move as if part of the external world. Studies conducted in the aviation domain show that integrated overlays can improve situation awareness and reduce the amount of deviation from the optimal path. The purpose of the study was to investigate whether these results apply to HRI tasks, such as navigation with a mobile robot. HRP GAPS This HRI research contributes to closure of HRP gaps by providing information on how display and control characteristics - those related to guidance, feedback, and command modalities - affect operator performance. The overarching goals are to improve interface usability, reduce operator error, and develop candidate guidelines to design effective human-robot interfaces.
UAV field demonstration of social media enabled tactical data link
NASA Astrophysics Data System (ADS)
Olson, Christopher C.; Xu, Da; Martin, Sean R.; Castelli, Jonathan C.; Newman, Andrew J.
2015-05-01
This paper addresses the problem of enabling Command and Control (C2) and data exfiltration functions for missions using small, unmanned, airborne surveillance and reconnaissance platforms. The authors demonstrated the feasibility of using existing commercial wireless networks as the data transmission infrastructure to support Unmanned Aerial Vehicle (UAV) autonomy functions such as transmission of commands, imagery, metadata, and multi-vehicle coordination messages. The authors developed and integrated a C2 Android application for ground users with a common smart phone, a C2 and data exfiltration Android application deployed on-board the UAVs, and a web server with database to disseminate the collected data to distributed users using standard web browsers. The authors performed a mission-relevant field test and demonstration in which operators commanded a UAV from an Android device to search and loiter; and remote users viewed imagery, video, and metadata via web server to identify and track a vehicle on the ground. Social media served as the tactical data link for all command messages, images, videos, and metadata during the field demonstration. Imagery, video, and metadata were transmitted from the UAV to the web server via multiple Twitter, Flickr, Facebook, YouTube, and similar media accounts. The web server reassembled images and video with corresponding metadata for distributed users. The UAV autopilot communicated with the on-board Android device via on-board Bluetooth network.
FIRRE command and control station (C2)
NASA Astrophysics Data System (ADS)
Laird, R. T.; Kramer, T. A.; Cruickshanks, J. R.; Curd, K. M.; Thomas, K. M.; Moneyhun, J.
2006-05-01
The Family of Integrated Rapid Response Equipment (FIRRE) is an advanced technology demonstration program intended to develop a family of affordable, scalable, modular, and logistically supportable unmanned systems to meet urgent operational force protection needs and requirements worldwide. The near-term goal is to provide the best available unmanned ground systems to the warfighter in Iraq and Afghanistan. The overarching long-term goal is to develop a fully-integrated, layered force protection system of systems for our forward deployed forces that is networked with the future force C4ISR systems architecture. The intent of the FIRRE program is to reduce manpower requirements, enhance force protection capabilities, and reduce casualties through the use of unmanned systems. FIRRE is sponsored by the Office of the Under Secretary of Defense, Acquisitions, Technology and Logistics (OUSD AT&L), and is managed by the Product Manager, Force Protection Systems (PM-FPS). The FIRRE Command and Control (C2) Station supports two operators, hosts the Joint Battlespace Command and Control Software for Manned and Unmanned Assets (JBC2S), and will be able to host Mission Planning and Rehearsal (MPR) software. The C2 Station consists of an M1152 HMMWV fitted with an S-788 TYPE I shelter. The C2 Station employs five 24" LCD monitors for display of JBC2S software [1], MPR software, and live video feeds from unmanned systems. An audio distribution system allows each operator to select between various audio sources including: AN/PRC-117F tactical radio (SINCGARS compatible), audio prompts from JBC2S software, audio from unmanned systems, audio from other operators, and audio from external sources such as an intercom in an adjacent Tactical Operations Center (TOC). A power distribution system provides battery backup for momentary outages. The Ethernet network, audio distribution system, and audio/video feeds are available for use outside the C2 Station.
Evaluation of Flight Deck-Based Interval Management Crew Procedure Feasibility
NASA Technical Reports Server (NTRS)
Wilson, Sara R.; Murdoch, Jennifer L.; Hubbs, Clay E.; Swieringa, Kurt A.
2013-01-01
Air traffic demand is predicted to increase over the next 20 years, creating a need for new technologies and procedures to support this growth in a safe and efficient manner. The National Aeronautics and Space Administration's (NASA) Air Traffic Management Technology Demonstration - 1 (ATD-1) will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies. The integration of these technologies will increase throughput, reduce delay, conserve fuel, and minimize environmental impacts. The ground-based tools include Traffic Management Advisor with Terminal Metering for precise time-based scheduling and Controller Managed Spacing decision support tools for better managing aircraft delay with speed control. The core airborne technology in ATD-1 is Flight deck-based Interval Management (FIM). FIM tools provide pilots with speed commands calculated using information from Automatic Dependent Surveillance - Broadcast. The precise merging and spacing enabled by FIM avionics and flight crew procedures will reduce excess spacing buffers and result in higher terminal throughput. This paper describes a human-in-the-loop experiment designed to assess the acceptability and feasibility of the ATD-1 procedures used in a voice communications environment. This experiment utilized the ATD-1 integrated system of ground-based and airborne technologies. Pilot participants flew a high-fidelity fixed base simulator equipped with an airborne spacing algorithm and a FIM crew interface. Experiment scenarios involved multiple air traffic flows into the Dallas-Fort Worth Terminal Radar Control airspace. Results indicate that the proposed procedures were feasible for use by flight crews in a voice communications environment. The delivery accuracy at the achieve-by point was within +/- five seconds and the delivery precision was less than five seconds. Furthermore, FIM speed commands occurred at a rate of less than one per minute, and pilots found the frequency of the speed commands to be acceptable at all times throughout the experiment scenarios.
Human-Robot Interaction Directed Research Project
NASA Technical Reports Server (NTRS)
Sandor, Aniko; Cross, Ernest V., II; Chang, Mai Lee
2014-01-01
Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces and command modalities affect the human's ability to perform tasks accurately, efficiently, and effectively when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. This DRP concentrates on three areas associated with interfaces and command modalities in HRI which are applicable to NASA robot systems: 1) Video Overlays, 2) Camera Views, and 3) Command Modalities. The first study focused on video overlays that investigated how Augmented Reality (AR) symbology can be added to the human-robot interface to improve teleoperation performance. Three types of AR symbology were explored in this study, command guidance (CG), situation guidance (SG), and both (SCG). CG symbology gives operators explicit instructions on what commands to input, whereas SG symbology gives operators implicit cues so that operators can infer the input commands. The combination of CG and SG provided operators with explicit and implicit cues allowing the operator to choose which symbology to utilize. The objective of the study was to understand how AR symbology affects the human operator's ability to align a robot arm to a target using a flight stick and the ability to allocate attention between the symbology and external views of the world. The study evaluated the effects type of symbology (CG and SG) has on operator tasks performance and attention allocation during teleoperation of a robot arm. The second study expanded on the first study by evaluating the effects of the type of navigational guidance (CG and SG) on operator task performance and attention allocation during teleoperation of a robot arm through uplinked commands. Although this study complements the first study on navigational guidance with hand controllers, it is a separate investigation due to the distinction in intended operators (i.e., crewmembers versus ground-operators). A third study looked at superimposed and integrated overlays for teleoperation of a mobile robot using a hand controller. When AR is superimposed on the external world, it appears to be fixed onto the display and internal to the operators' workstation. Unlike superimposed overlays, integrated overlays often appear as three-dimensional objects and move as if part of the external world. Studies conducted in the aviation domain show that integrated overlays can improve situation awareness and reduce the amount of deviation from the optimal path. The purpose of the study was to investigate whether these results apply to HRI tasks, such as navigation with a mobile robot.
Command History. United States Military Assistance Command, Vietnam 1965. Sanitized
1965-01-01
support elements within the ARM battalion 4 ese methods of encadrement were studied in relation to language , security, support, mutual US/ARYN acceptance...problema, and conditions and capabilities within ARYN units, Problew comn to all three methods were the language barrier, increased ewosure of US...DECCU•(ACV took the position that US assmption of command was neither feasible nor desirable, vwng to the language barrier as won as the probable non
An intelligent control and virtual display system for evolutionary space station workstation design
NASA Technical Reports Server (NTRS)
Feng, Xin; Niederjohn, Russell J.; Mcgreevy, Michael W.
1992-01-01
Research and development of the Advanced Display and Computer Augmented Control System (ADCACS) for the space station Body-Ported Cupola Virtual Workstation (BP/VCWS) were pursued. The potential applications were explored of body ported virtual display and intelligent control technology for the human-system interfacing applications is space station environment. The new system is designed to enable crew members to control and monitor a variety of space operations with greater flexibility and efficiency than existing fixed consoles. The technologies being studied include helmet mounted virtual displays, voice and special command input devices, and microprocessor based intelligent controllers. Several research topics, such as human factors, decision support expert systems, and wide field of view, color displays are being addressed. The study showed the significant advantages of this uniquely integrated display and control system, and its feasibility for human-system interfacing applications in the space station command and control environment.
Study on Spacelab software development and integration concepts
NASA Technical Reports Server (NTRS)
1974-01-01
A study was conducted to define the complexity and magnitude of the Spacelab software challenge. The study was based on current Spacelab program concepts, anticipated flight schedules, and ground operation plans. The study was primarily directed toward identifying and solving problems related to the experiment flight application and tests and checkout software executing in the Spacelab onboard command and data management subsystem (CDMS) computers and electrical ground support equipment (EGSE). The study provides a conceptual base from which it is possible to proceed into the development phase of the Software Test and Integration Laboratory (STIL) and establishes guidelines for the definition of standards which will ensure that the total Spacelab software is understood prior to entering development.
2015-05-15
ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER Major Arthur Bruggeman, USMC 5e. TASK NUMBER Paper Advisor...Commander Charles Broomfield, USN 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 8. PERFORMING...Newport, RI 02841-1207 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR
Expert Systems and Command, Control, and Communication System Acquisition
1989-03-01
Systems and Command, Control, and Communicaton System Acquisition 12 Personal Author(s) James E. Minnema 13a Type of Report 13b Time Covered 14 Date...isolated strategic planning, unstructured problems, the author feels that this category should also include problems involving the integration of...distinct operational or management control, and structured or semi-structured problem efforts. The reason for this is that integration of a number of
2003-09-01
Navy Personnel Research, Studies, and Technology Department Navy Personnel Command (NPRST/PERS-1) Millington, TN, 38055-1000 NPRST-TN-03-10... Technology 5720 Integrity Drive Millington, Tennessee 38055-1400 NPRST-TN-03-10 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES... Technology Department Navy Personnel Command 5720 Integrity Drive Millington, TN 38055-1400 www.nprst.navy.mil v Foreword Administered biennially
WARCProcessor: An Integrative Tool for Building and Management of Web Spam Corpora.
Callón, Miguel; Fdez-Glez, Jorge; Ruano-Ordás, David; Laza, Rosalía; Pavón, Reyes; Fdez-Riverola, Florentino; Méndez, Jose Ramón
2017-12-22
In this work we present the design and implementation of WARCProcessor, a novel multiplatform integrative tool aimed to build scientific datasets to facilitate experimentation in web spam research. The developed application allows the user to specify multiple criteria that change the way in which new corpora are generated whilst reducing the number of repetitive and error prone tasks related with existing corpus maintenance. For this goal, WARCProcessor supports up to six commonly used data sources for web spam research, being able to store output corpus in standard WARC format together with complementary metadata files. Additionally, the application facilitates the automatic and concurrent download of web sites from Internet, giving the possibility of configuring the deep of the links to be followed as well as the behaviour when redirected URLs appear. WARCProcessor supports both an interactive GUI interface and a command line utility for being executed in background.
Gravity Probe B data system description
NASA Astrophysics Data System (ADS)
Bennett, Norman R.
2015-11-01
The Gravity Probe B data system, developed, integrated, and tested by Lockheed Missiles & Space Company, and later Lockheed Martin Corporation, included flight and ground command, control, and communications software. The development was greatly facilitated, conceptually and by the transfer of key personnel, through Lockheed’s earlier flight and ground test software development for the Hubble Space Telescope (HST). Key design challenges included the tight mission timeline (17 months, 9 days of on-orbit operation), the need to tune the system once on-orbit, and limited 2 Kbps real-time data rates and ground asset availability. The result was a completely integrated space vehicle and Stanford mission operations center, which successfully collected and archived 97% of the ‘guide star valid’ data to support the science analysis. Lessons learned and incorporated from the HST flight software development and on-orbit support experience, and Lockheed’s independent research and development effort, will be discussed.
WARCProcessor: An Integrative Tool for Building and Management of Web Spam Corpora
Callón, Miguel; Fdez-Glez, Jorge; Ruano-Ordás, David; Laza, Rosalía; Pavón, Reyes; Méndez, Jose Ramón
2017-01-01
In this work we present the design and implementation of WARCProcessor, a novel multiplatform integrative tool aimed to build scientific datasets to facilitate experimentation in web spam research. The developed application allows the user to specify multiple criteria that change the way in which new corpora are generated whilst reducing the number of repetitive and error prone tasks related with existing corpus maintenance. For this goal, WARCProcessor supports up to six commonly used data sources for web spam research, being able to store output corpus in standard WARC format together with complementary metadata files. Additionally, the application facilitates the automatic and concurrent download of web sites from Internet, giving the possibility of configuring the deep of the links to be followed as well as the behaviour when redirected URLs appear. WARCProcessor supports both an interactive GUI interface and a command line utility for being executed in background. PMID:29271913
Use of Semi-Autonomous Tools for ISS Commanding and Monitoring
NASA Technical Reports Server (NTRS)
Brzezinski, Amy S.
2014-01-01
As the International Space Station (ISS) has moved into a utilization phase, operations have shifted to become more ground-based with fewer mission control personnel monitoring and commanding multiple ISS systems. This shift to fewer people monitoring more systems has prompted use of semi-autonomous console tools in the ISS Mission Control Center (MCC) to help flight controllers command and monitor the ISS. These console tools perform routine operational procedures while keeping the human operator "in the loop" to monitor and intervene when off-nominal events arise. Two such tools, the Pre-positioned Load (PPL) Loader and Automatic Operators Recorder Manager (AutoORM), are used by the ISS Communications RF Onboard Networks Utilization Specialist (CRONUS) flight control position. CRONUS is responsible for simultaneously commanding and monitoring the ISS Command & Data Handling (C&DH) and Communications and Tracking (C&T) systems. PPL Loader is used to uplink small pieces of frequently changed software data tables, called PPLs, to ISS computers to support different ISS operations. In order to uplink a PPL, a data load command must be built that contains multiple user-input fields. Next, a multiple step commanding and verification procedure must be performed to enable an onboard computer for software uplink, uplink the PPL, verify the PPL has incorporated correctly, and disable the computer for software uplink. PPL Loader provides different levels of automation in both building and uplinking these commands. In its manual mode, PPL Loader automatically builds the PPL data load commands but allows the flight controller to verify and save the commands for future uplink. In its auto mode, PPL Loader automatically builds the PPL data load commands for flight controller verification, but automatically performs the PPL uplink procedure by sending commands and performing verification checks while notifying CRONUS of procedure step completion. If an off-nominal condition occurs during procedure execution, PPL Loader notifies CRONUS through popup messages, allowing CRONUS to examine the situation and choose an option of how PPL loader should proceed with the procedure. The use of PPL Loader to perform frequent, routine PPL uplinks offloads CRONUS to better monitor two ISS systems. It also reduces procedure performance time and decreases risk of command errors. AutoORM identifies ISS communication outage periods and builds commands to lock, playback, and unlock ISS Operations Recorder files. Operation Recorder files are circular buffer files of continually recorded ISS telemetry data. Sections of these files can be locked from further writing, be played back to capture telemetry data that occurred during an ISS loss of signal (LOS) period, and then be unlocked for future recording use. Downlinked Operation Recorder files are used by mission support teams for data analysis, especially if failures occur during LOS. The commands to lock, playback, and unlock Operations Recorder files are encompassed in three different operational procedures and contain multiple user-input fields. AutoORM provides different levels of automation for building and uplinking the commands to lock, playback, and unlock Operations Recorder files. In its automatic mode, AutoORM automatically detects ISS LOS periods, then generates and uplinks the commands to lock, playback, and unlock Operations Recorder files when MCC regains signal with ISS. AutoORM also features semi-autonomous and manual modes which integrate CRONUS more into the command verification and uplink process. AutoORMs ability to automatically detect ISS LOS periods and build the necessary commands to preserve, playback, and release recorded telemetry data greatly offloads CRONUS to perform more high-level cognitive tasks, such as mission planning and anomaly troubleshooting. Additionally, since Operations Recorder commands contain numerical time input fields which are tedious for a human to manually build, AutoORM's ability to automatically build commands reduces operational command errors. PPL Loader and AutoORM demonstrate principles of semi-autonomous operational tools that will benefit future space mission operations. Both tools employ different levels of automation to perform simple and routine procedures, thereby offloading human operators to perform higher-level cognitive tasks. Because both tools provide procedure execution status and highlight off-nominal indications, the flight controller is able to intervene during procedure execution if needed. Semi-autonomous tools and systems that can perform routine procedures, yet keep human operators informed of execution, will be essential in future long-duration missions where the onboard crew will be solely responsible for spacecraft monitoring and control.
TRAVEL WITH COMMANDER QUALICIA
Commander Qualicia is a cartoon character created for an on-line training course that describes the quality system for the National Exposure Research Laboratory. In the training, which was developed by the QA staff and graphics/IT support contractors, Commander Qualicia and the ...
75 FR 22568 - Notice of Proposed Information Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-29
... compliance with section 3506(c)(2)(A) of the Paperwork Reduction Act of 1995, the Navy Recruiting Command... Command (00SD), 5722 Integrity Drive, Millington, TN 38054-5057, or contact Mr. Kenneth Saxion at (901...
2017-03-01
Responsibility AWS Amazon Web Services C2 Command and Control C4ISR Command, Control, Communications, Computers and Intelligence, Surveillance...and Reconnaissance C5F Commander Fifth Fleet C6F Commander Sixth Fleet C7F Commander Seventh Fleet CAMTES Computer -Assisted Maritime...capabilities. C. SCOPE AND LIMITATIONS The scope of this study is considerable and encompasses numerous agencies and classification levels. Some
Integration of an expert system into a user interface language demonstration
NASA Technical Reports Server (NTRS)
Stclair, D. C.
1986-01-01
The need for a User Interface Language (UIL) has been recognized by the Space Station Program Office as a necessary tool to aid in minimizing the cost of software generation by multiple users. Previous history in the Space Shuttle Program has shown that many different areas of software generation, such as operations, integration, testing, etc., have each used a different user command language although the types of operations being performed were similar in many respects. Since the Space Station represents a much more complex software task, a common user command language--a user interface language--is required to support the large spectrum of space station software developers and users. To assist in the selection of an appropriate set of definitions for a UIL, a series of demonstration programs was generated with which to test UIL concepts against specific Space Station scenarios using operators for the astronaut and scientific community. Because of the importance of expert system in the space station, it was decided that an expert system should be embedded in the UIL. This would not only provide insight into the UIL components required but would indicate the effectiveness with which an expert system could function in such an environment.
SCORPION II persistent surveillance system update
NASA Astrophysics Data System (ADS)
Coster, Michael; Chambers, Jon
2010-04-01
This paper updates the improvements and benefits demonstrated in the next generation Northrop Grumman SCORPION II family of persistent surveillance and target recognition systems produced by the Xetron Campus in Cincinnati, Ohio. SCORPION II reduces the size, weight, and cost of all SCORPION components in a flexible, field programmable system that is easier to conceal and enables integration of over fifty different Unattended Ground Sensor (UGS) and camera types from a variety of manufacturers, with a modular approach to supporting multiple Line of Sight (LOS) and Beyond Line of Sight (BLOS) communications interfaces. Since 1998 Northrop Grumman has been integrating best in class sensors with its proven universal modular Gateway to provide encrypted data exfiltration to Common Operational Picture (COP) systems and remote sensor command and control. In addition to feeding COP systems, SCORPION and SCORPION II data can be directly processed using a common sensor status graphical user interface (GUI) that allows for viewing and analysis of images and sensor data from up to seven hundred SCORPION system gateways on single or multiple displays. This GUI enables a large amount of sensor data and imagery to be used for actionable intelligence as well as remote sensor command and control by a minimum number of analysts.
Evolving Army Needs for Space-Based Support
2015-04-01
11 ARSSTs and one Center for Innovative Technology (CIT), which may also perform defense support to civil authorities (DSCA) missions. With the...exception of support for Hurricane Katrina recov- ery, most of the DSCA operations have been limited to Colorado, such as imagery and mapping support...through the commander, U.S. Fleet Cyber Command, and focuses on network operations, associated space-control activities, satel - lite communication
The Art of Selection: Command Selection Failures, and a Better Way to Select Army Senior Leaders
2013-04-12
and Effects ( MFE ), Force Sustainment (FS), and Operations Support (OS). Board members review board files in accordance with the instructions given to...Fires, and Effects ( MFE ), Operations Support (OS), and Force Sustainment (FS). The exact composition of a command selection board is governed by a...policy updated annually by the Military Personnel Management Directorate. For example, the MFE lieutenant colonel command board will be made up of one
Warfighter Associate: Decision Aiding and Metrics for Mission Command
2012-01-23
Distributions: highlights the Pareto Principle -- the top 20% of the mission-command staff is heavily involved in collaborations. • Our...developing “Command Web”, a web service to support thin- client functionality (Intelligent Presentation Services enables this) Thank you
Code of Federal Regulations, 2011 CFR
2011-07-01
... Authorities (DSCA). Support provided by U.S. Federal military forces, DoD civilians, DoD contract personnel... support to those authorities. Emergency Authority. A Federal military commander's authority, in.... Immediate Response Authority. A Federal military commander's, DoD Component Head's, and/or responsible DoD...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Authorities (DSCA). Support provided by U.S. Federal military forces, DoD civilians, DoD contract personnel... support to those authorities. Emergency Authority. A Federal military commander's authority, in.... Immediate Response Authority. A Federal military commander's, DoD Component Head's, and/or responsible DoD...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Authorities (DSCA). Support provided by U.S. Federal military forces, DoD civilians, DoD contract personnel... support to those authorities. Emergency Authority. A Federal military commander's authority, in.... Immediate Response Authority. A Federal military commander's, DoD Component Head's, and/or responsible DoD...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Authorities (DSCA). Support provided by U.S. Federal military forces, DoD civilians, DoD contract personnel... support to those authorities. Emergency Authority. A Federal military commander's authority, in.... Immediate Response Authority. A Federal military commander's, DoD Component Head's, and/or responsible DoD...
Cyber Power for the Joint Force Commander: An Operational Design Framework
2014-03-26
William A. Owens, Kenneth W. Dam, and Herbert S. Lin, eds, Technology, Policy, Law, and Ethics Regarding U.S. Acquisition and Use of Cyberattack...and computer systems used in carrying out a mission.” 27 George J. Franz III, "Effective Synchronization and Integration of Effects Through...2007. Franz, George J. "Effective Synchronization and Integration of Effects Through Cyberspace for the Joint Warfighter." U.S. Cyber Command
Army Networks: Opportunities Exist to Better Utilize Results from Network Integration Evaluations
2013-08-01
monitor operations; a touch screen-based mission command planning tool; and an antenna mast . The Army will field only one of these systems in capability...Office JTRS Joint Tactical Radio System NIE Network Integration Evaluation OSD Office of the Secretary of Defense SUE System under Evaluation...command systems . A robust transport layer capable of delivering voice, data, imagery, and video to the tactical edge (i.e., the forward battle lines
A Primer on Fire Support for Joint Special Operations
1993-04-15
been "a battery commander with the 99th Field Artillery (Pack) at Fort Hoyle , Maryland." 3 7 The addition of the provisional cannon company to the Force...gatherer for special operations.143 ROLE OF THE FIRE SUPPORT OFFICER During a recent interview, Major General Fred F. Marty, Commandant of the Field...143. Ibid., 722-724. 144. Fred F. Marty, Major General, U.S. Army, Commandant of the U.S. Army Field Artillery School, Fort Sill, Oklahoma, interview by
The School of Hard Knocks: The Development of Close Air Support in Burma during the Second World War
2015-05-23
Group CAOC Combined Air Operations Center CAS Close Air Support CBI China-Burma-India EAC Eastern Air Command FM Field Manual JP Joint...Command ( EAC ) solved problems identified by the American Volunteer Group (AVG) in 1942. EAC’s doctrine, procedures, and techniques laid the foundation for...named the Eastern Air Command ( EAC ), and oversaw the air-land cooperation during the Allied counter-offensive into Burma throughout 1943 and 1944.8 The
Hydrodynamic Hull Damping (Phase 1)
1987-06-01
Administration Mr. Alexander Malakhoff Mr. Thomas W. Allen Director, Structural Integrity Engineering Officer (N7) Subgroup ( SEA 55Y) MR" Sealift Command...Shipping U. S. Coast Guard CONTRACTING OFFICER TECHNICAL REPRESENTATIVES Mr. William J. Siekierka Mr. Greg D. Woods SEA 55Y3 SEA 55Y3 Naval Sea Systems...Command Naval Sea Systems Command SHIP STRUCTURE SUBCOMMITTEE The SHIP STRUCTURE SUBCOMMITTEE acts for the Ship Structure Committee on technical matters
OneSAF as an In-Stride Mission Command Asset
2014-06-01
implementation approach. While DARPA began with a funded project to complete the capability as a “ big bang ” approach the approach here is based on reuse and...Command (MC), Modeling and Simulation (M&S), Distributed Interactive Simulation (DIS) ABSTRACT: To provide greater interoperability and integration...within Mission Command (MC) Systems the One Semi-Automated Forces (OneSAF) entity level simulation is evolving from a tightly coupled client server
2005-09-01
Command – Space and Global Strike JFCOM Joint Forces Command JFRL Joint Forces Restricted Frequency List JIC Joint Integrating Concept JIM Joint...into the theater’s Joint Restricted Frequency List (JRFL). The ARSST trained the coalition and US soldiers on installation, use and troubleshooting
Sovereignty and Collaboration: Affordable Strategies in Times of Austerity
2016-10-01
provide precision-guided bombs and a land-support SOVEREIGNTY—ANALYSIS 26 vehicle were delivered for more than 20 percent below the expenditure ini...weapon Precision-guided bomb Support vehicle Panther command & control vehicle Successor Identification Friend or Foe (IFF) Joint combat aircraft...GLMRS) Multi-role armoured vehicle (MRAV) Next-generation light anti-armoured weapon Precision-guided bomb Support vehicle Panther command & control
The CSM and the NCO Support Channel.
1988-03-30
the NCO support channel functions . And it would be wrong to blame the CSM for conflicts between the chain of command and the NCO support channel. It is...model for all noncommissioned officers and soldiers of the unit. However, Command Sergeant Majors are conditioned to function in a dual channel of ... the premier role model for all noncommissioned officers and soldiers of the unit.
Resourcing interventions enhance psychology support capabilities in special operations forces.
Myatt, Craig A; Auzenne, J W
2012-01-01
This study provides an examination of approaches to United States Government (USG) resourcing interventions on a national scale that enhance psychology support capabilities in the Special Operations Forces (SOF) community. A review of Congressional legislation and resourcing trends in the form of authorizations and appropriations since 2006 demonstrates how Congress supported enhanced psychology support capabilities throughout the Armed Forces and in SOF supporting innovative command interests that address adverse affects of operations tempo behavioral effects (OTBE). The formulation of meaningful metrics to address SOF specific command interests led to a personnel tempo (PERSTEMPO) analysis in response to findings compiled by the Preservation of the Force and Families (POTFF) Task Force. The review of PERSTEMPO data at subordinate command and unit levels enhances the capability of SOF leaders to develop policy and guidance on training and operational planning that mitigates OTBE and maximizes resourcing authorizations. A major challenge faced by the DoD is in providing behavioral healthcare that meets public and legislative demands while proving suitable and sustainable at all levels of military operations: strategic, operational, and tactical. Current legislative authorizations offer a mechanism of command advocacy for resourced multi-functional program development that enhances psychology support capabilities while reinforcing SOF readiness and performance. 2012.
1981-01-31
Intelligence and Security Command (INSCOM), the US Army Communications Command (USACC), and the US Army Computer Systems Command (USACSC). (3...responsibilities of the US-Army Intelligence and Security Command (INSCOM), the US Army Communications Command (USACC), and the US Army Computer Systems...necessary to sustain, modify, and improve a deployed system’s computer software, as defined by the User or his representative. It includes evaluation
Study of multi-LLID technology to support multi-services carring in EPONS
NASA Astrophysics Data System (ADS)
Li, Wang; Yi, Benshun; Cheng, Chuanqing
2006-09-01
The Ethernet Passive Optical Network (EPON) has recently attracted more and more research attentions since it could be a perfect candidate for next generation access networks. EPON utilizes pon structure to carry ethernet data, having the both advantages of pon and ethernet devices. From traditional view, EPON is considered to only be a Ethernet services access platform and wake in supporting multi-services especially real-time service. It is obvious that if epon designed only to aim to carrying data service, it is difficult for epon devices to fulfill service provider's command of taking EPON as a integrated service access platform. So discussing the multi-services carrying technology in EPONs is a significative task. This paper deploy a novel method of multi-llid to support multi-services carrying in EPONs.
Combat Pair: The Evolution of Air Force-Navy Integration in Strike Warfare
2007-01-01
Force–Navy Integration in Strike Warfare our departure for the carrier. I am equally indebted to Rear Admiral David Buss , USN, at the time Commanding... mari - time component commander (CFMCC) in Enduring Freedom, Vice Admiral Charles Moore, Jr., who drew a sharp contrast between the spotty...fired several Ababil 100 theater ballistic missiles at Kuwait in a response to the opening U.S. attack, the Navy’s Arleigh Burke -class destroyer USS
Functional integration of vertical flight path and speed control using energy principles
NASA Technical Reports Server (NTRS)
Lambregts, A. A.
1984-01-01
A generalized automatic flight control system was developed which integrates all longitudinal flight path and speed control functions previously provided by a pitch autopilot and autothrottle. In this design, a net thrust command is computed based on total energy demand arising from both flight path and speed targets. The elevator command is computed based on the energy distribution error between flight path and speed. The engine control is configured to produce the commanded net thrust. The design incorporates control strategies and hierarchy to deal systematically and effectively with all aircraft operational requirements, control nonlinearities, and performance limits. Consistent decoupled maneuver control is achieved for all modes and flight conditions without outer loop gain schedules, control law submodes, or control function duplication.
1983-01-01
altioser access (2) Asesss maturity of on-gotnR efforts and integrate appropriate development Into an effective globally dftjtributod .command spport...numerical techniques for nonlinear media.structure shock Interaction inrluding effects of elastic-plastic deformation have bee.a developed and used to...shtittle flight; develop camera payload for SPARTAN (free flyer) flight f rom shuttle. Develop detailed Interpretivesystem capablity~ for global ultraviolet
2013-03-14
was supported by funding from the Telemedicine and Advanced Technology Research Center (TATRC) at the US Army Medical Research and Materiel Command...instructions. Specific primers were synthesized by Integrated DNA Technologies (San Diego, CA) as shown in Table S1. Real-time PCR was performed with SYBR...PFA for 1 h at 4uC and then permeablized in a buffer containing 0.1% saponin . Nonspecific antibody binding to Fc receptors was blocked by incubation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brigantic, Robert T.; Papatyi, Anthony F.; Perkins, Casey J.
This report summarizes a study and corresponding model development conducted in support of the United States Pacific Command (USPACOM) as part of the Federal Energy Management Program (FEMP) American Reinvestment and Recovery Act (ARRA). This research was aimed at developing a mathematical programming framework and accompanying optimization methodology in order to simultaneously evaluate energy efficiency (EE) and renewable energy (RE) opportunities. Once developed, this research then demonstrated this methodology at a USPACOM installation - Camp H.M. Smith, Hawaii. We believe this is the first time such an integrated, joint EE and RE optimization methodology has been constructed and demonstrated.
Astronauts Ochoa and Tanner during egress training
1994-06-23
S94-40073 (23 June 1994) --- Wearing training versions of the launch and entry suits (LES), astronauts Ellen Ochoa, payload commander, and Joseph P. Tanner, mission specialist, await the beginning of a training session on emergency egress procedures. The STS-66 crew participated in the training, held in the Johnson Space Center's (JSC) Shuttle Mockup and Integration Laboratory. Ochoa and Tanner will join three other NASA astronauts and one international mission specialist aboard the Space Shuttle Atlantis in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3) flight scheduled for November of this year.
52. Photocopy of Outboard Profile, Booklet of General Plans, U.S.C.G.C. ...
52. Photocopy of Outboard Profile, Booklet of General Plans, U.S.C.G.C. White Heath, WLM-545. U.S. Coast Guard Naval Engineering Department. U.S.C.G. Headquarters, Washington, D.C. Coast Guard Headquarters Drawing No. 540-WAGL-0103-019 C. sheet 2 of 7, dated May 1967; revised June 1971, December 1976, and April 1989. Original drawing property of the U.S. Coast Guard. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
57. Photocopy of Hold, Booklet of General Plans, U.S.C.G.C. White ...
57. Photocopy of Hold, Booklet of General Plans, U.S.C.G.C. White Heath, WLM-545. U.S. Coast Guard Naval Engineering Department, U.S.C.G. Headquarters, Washington, D.C. Coast Guard Headquarters Drawing No. 540-WAGL-0103-019 C. sheet 7 of 7, dated May 1967; revised June 1971, December 1976, and April 1989. Original drawing property of the U.S. Coast Guard. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
51. Photocopy of Title Sheet, Booklet of General Plans, U.S.C.G.C ...
51. Photocopy of Title Sheet, Booklet of General Plans, U.S.C.G.C White Heath, WLM-545, U.S. Coast Guard Naval Engineering Department, U.S.C.G. Headquarters, Washington, D.C. Coast Guard Headquarters Drawing No. 540-WAGL-0103-019 C. sheet 1 of 7, dated May 1967; revised June 1971, December 1976, and April 1989. Original drawing property of the U.S. Coast Guard. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
54. Photocopy of Top of Pilot House, Booklet of General ...
54. Photocopy of Top of Pilot House, Booklet of General Plans, U.S.C.G.C. White Heath, WLM-545. U.S. Coast Guard Naval Engineering Department, U.S.C.G. Headquarters, Washington, D.C. Coast Guard Headquarters Drawing No. 540-WAGL-0103-019 C. sheet 4 of 7, dated May 1967; revised June 1971, December 1976, and April 1989. Original drawing property of the U.S. Coast Guard. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
53. Photocopy of Inboard Profile, Booklet of General Plans, U.S.C.G.C. ...
53. Photocopy of Inboard Profile, Booklet of General Plans, U.S.C.G.C. White Heath, WLM-545. U.S. Coast Guard Naval Engineering Department. U.S.C.G. Headquarters, Washington, D.C. Coast Guard Headquarters Drawing No. 540-WAGL-0103-019 C. sheet 3 of 7, dated May 1967; revised June 1971, December 1976, and April 1989. Original drawing property of the U.S. Coast Guard. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
55. Photocopy of Fcsle & Upper Deck, Booklet of General ...
55. Photocopy of Fcsle & Upper Deck, Booklet of General Plans, U.S.C.G.C. White Heath, WLM-545. U.S. Coast Guard Naval Engineering Department, U.S.C.G. Headquarters, Washington, D.C. Coast Guard Headquarters Drawing No. 540-WAGL-0103-019 C. sheet 5 of 7, dated May 1967; revised June 1971, December 1976, and April 1989. Original drawing property of the U.S. Coast Guard. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
56. Photocopy of Main Deck, Booklet of General Plans, U.S.C.G.C. ...
56. Photocopy of Main Deck, Booklet of General Plans, U.S.C.G.C. White Heath WLM-545. U.S. Coast Guard Naval Engineering Department, U.S.C.G. Headquarters, Washington, D.C. Coast Guard Headquarters Drawing No. 540-WAGL-0103-019 C. sheet 6 of 7, dated May 1967; revised June 1971, December 1976, and April 1989. Original drawing property of the U.S. Coast Guard. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
2001-12-01
27 A. INTRODUCTION..........................................................................................27 B. MEU SUPLY OFFICER... SUPLY PERSONNEL .......................................27 C. ENLISTED CONTRACT SPECIALIST.....................................................30 D...commander to 4 identify any requirement shortfalls up the chain of command upon the receipt of orders for a specific mission. The Fleet commander
Nimbus 4/IRLS Balloon Interrogation Package (BIP)
NASA Technical Reports Server (NTRS)
1971-01-01
The balloon interrogation package (BIP), an integral part of the overall interrogation, recording, and location subsystems (IRLS) for the Nimbus 4 program, is described. The BIP is a self-contained, integrated transponder designed to be carried aloft by a constant altitude, superpressure balloon to an altitude of 67,000 or 78,000 feet. After launch the BIP senses high-altitude balloon overpressure and temperature, and upon receipt of an interrogated command from the IRLS aboard the Nimbus 4 satellite, the BIP enodes the data on a real-time basis into a pulse-code modulation (PCM) format and transmits this data to the satellite. A summary of the program activity to produce 30 BIP systems and to support balloon launches from Ascension Island is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Kedar G.; Pannu, Satinderpall S.
An integrated circuit system having an integrated circuit (IC) component which is able to have its functionality destroyed upon receiving a command signal. The system may involve a substrate with the IC component being supported on the substrate. A module may be disposed in proximity to the IC component. The module may have a cavity and a dissolving compound in a solid form disposed in the cavity. A heater component may be configured to heat the dissolving compound to a point of sublimation where the dissolving compound changes from a solid to a gaseous dissolving compound. A triggering mechanism maymore » be used for initiating a dissolution process whereby the gaseous dissolving compound is allowed to attack the IC component and destroy a functionality of the IC component.« less
Relay Sequence Generation Software
NASA Technical Reports Server (NTRS)
Gladden, Roy E.; Khanampompan, Teerapat
2009-01-01
Due to thermal and electromagnetic interactivity between the UHF (ultrahigh frequency) radio onboard the Mars Reconnaissance Orbiter (MRO), which performs relay sessions with the Martian landers, and the remainder of the MRO payloads, it is required to integrate and de-conflict relay sessions with the MRO science plan. The MRO relay SASF/PTF (spacecraft activity sequence file/ payload target file) generation software facilitates this process by generating a PTF that is needed to integrate the periods of time during which MRO supports relay activities with the rest of the MRO science plans. The software also generates the needed command products that initiate the relay sessions, some features of which are provided by the lander team, some are managed by MRO internally, and some being derived.
Reorganizing the 7th Civil Support Command in Europe
2012-03-12
from Tompkins Barracks, Schwetzigen, Germany to Daenner Kaserne, Kaiserslautern, Germany in the summer of 2008. Current 7th Civil Support Command...7csc.army.mil/unithistory.aspx (accessed December 12, 2011). 3 Gerald Evans and David Zabecki, “USAR in Europe: "All ready, already here," The Officer, volume
How Technology and Data Affect Mission Command
2016-05-17
critical enabler, allows the commander and staff to see farther and faster, ana - lyze and communicate with greater efficiency, and maintain a common...simply transition stand- alone legacy systems to web-based platforms and integrate those pro - grams as applications on common How Technology and Data...useful, the data has to be segmented by data type in a time- ly manner. Th is stresses any mission command or decision-making pro - cess that relies
Using social media to communicate during crises: an analytic methodology
NASA Astrophysics Data System (ADS)
Greene, Marjorie
2011-06-01
The Emerging Media Integration Team at the Department of the Navy Office of Information (CHINFO) has recently put together a Navy Command Social Media Handbook designed to provide information needed to safely and effectively use social media. While not intended to be a comprehensive guide on command use of social media or to take the place of official policy, the Handbook provides a useful guide for navigating a dynamic communications environment. Social media are changing the way information is diffused and decisions are made, especially for Humanitarian Assistance missions when there is increased emphasis on Navy commands to share critical information with other Navy command sites, government, and official NGO (nongovernmental organization) sites like the American Red Cross. In order to effectively use social media to support such missions, the Handbook suggests creating a centralized location to funnel information. This suggests that as the community of interest (COI) grows during a crisis, it will be important to ensure that information is shared with appropriate organizations for different aspects of the mission such as evacuation procedures, hospital sites, location of seaports and airports, and other topics relevant to the mission. For example, in the first 14 days of the U.S. Southern Command's Haiti HA/DR (Humanitarian Assistance/Disaster Relief) mission, the COI grew to over 1,900 users. In addition, operational conditions vary considerably among incidents, and coordination between different groups is often set up in an ad hoc manner. What is needed is a methodology that will help to find appropriate people with whom to share information for particular aspects of a mission during a wide range of events related to the mission. CNA has developed such a methodology and we would like to test it in a small scale lab experiment.
XTCE: XML Telemetry and Command Exchange Tutorial, XTCE Version 1
NASA Technical Reports Server (NTRS)
Rice, Kevin; Kizzort, Brad
2008-01-01
These presentation slides are a tutorial on XML Telemetry and Command Exchange (XTCE). The goal of XTCE is to provide an industry standard mechanism for describing telemetry and command streams (particularly from satellites.) it wiill lower cost and increase validation over traditional formats, and support exchange or native format.XCTE is designed to describe bit streams, that are typical of telemetry and command in the historic space domain.
Reducing acquisition risk through integrated systems of systems engineering
NASA Astrophysics Data System (ADS)
Gross, Andrew; Hobson, Brian; Bouwens, Christina
2016-05-01
In the fall of 2015, the Joint Staff J7 (JS J7) sponsored the Bold Quest (BQ) 15.2 event and conducted planning and coordination to combine this event into a joint event with the Army Warfighting Assessment (AWA) 16.1 sponsored by the U.S. Army. This multipurpose event combined a Joint/Coalition exercise (JS J7) with components of testing, training, and experimentation required by the Army. In support of Assistant Secretary of the Army for Acquisition, Logistics, and Technology (ASA(ALT)) System of Systems Engineering and Integration (SoSE&I), Always On-On Demand (AO-OD) used a system of systems (SoS) engineering approach to develop a live, virtual, constructive distributed environment (LVC-DE) to support risk mitigation utilizing this complex and challenging exercise environment for a system preparing to enter limited user test (LUT). AO-OD executed a requirements-based SoS engineering process starting with user needs and objectives from Army Integrated Air and Missile Defense (AIAMD), Patriot units, Coalition Intelligence, Surveillance and Reconnaissance (CISR), Focused End State 4 (FES4) Mission Command (MC) Interoperability with Unified Action Partners (UAP), and Mission Partner Environment (MPE) Integration and Training, Tactics and Procedures (TTP) assessment. The SoS engineering process decomposed the common operational, analytical, and technical requirements, while utilizing the Institute of Electrical and Electronics Engineers (IEEE) Distributed Simulation Engineering and Execution Process (DSEEP) to provide structured accountability for the integration and execution of the AO-OD LVC-DE. As a result of this process implementation, AO-OD successfully planned for, prepared, and executed a distributed simulation support environment that responsively satisfied user needs and objectives, demonstrating the viability of an LVC-DE environment to support multiple user objectives and support risk mitigation activities for systems in the acquisition process.
The Unified Command Plan and Combatant Commands: Background and Issues for Congress
2012-07-17
U.S. Army Special Operations Command (USASOC) USASOC includes Army Special Forces, also known as Green Berets; Rangers ; Civil Affairs, and Military...weather, day/night C-5 Galaxy -capable air base. JTF-Bravo organizes multilateral exercises and, with partner nations, supports humanitarian and civic
Ada and the rapid development lifecycle
NASA Technical Reports Server (NTRS)
Deforrest, Lloyd; Gref, Lynn
1991-01-01
JPL is under contract, through NASA, with the US Army to develop a state-of-the-art Command Center System for the US European Command (USEUCOM). The Command Center System will receive, process, and integrate force status information from various sources and provide this integrated information to staff officers and decision makers in a format designed to enhance user comprehension and utility. The system is based on distributed workstation class microcomputers, VAX- and SUN-based data servers, and interfaces to existing military mainframe systems and communication networks. JPL is developing the Command Center System utilizing an incremental delivery methodology called the Rapid Development Methodology with adherence to government and industry standards including the UNIX operating system, X Windows, OSF/Motif, and the Ada programming language. Through a combination of software engineering techniques specific to the Ada programming language and the Rapid Development Approach, JPL was able to deliver capability to the military user incrementally, with comparable quality and improved economies of projects developed under more traditional software intensive system implementation methodologies.
Design, implementation and flight testing of PIF autopilots for general aviation aircraft
NASA Technical Reports Server (NTRS)
Broussard, J. R.
1983-01-01
The designs of Proportional-Integrated-Filter (PIF) auto-pilots for a General Aviation (NAVION) aircraft are presented. The PIF autopilot uses the sampled-data regulator and command generator tracking to determine roll select, pitch select, heading select, altitude select and localizer/glideslope capture and hold autopilot modes. The PIF control law uses typical General Aviation sensors for state feedback, command error integration for command tracking, digital complementary filtering and analog prefiltering for sensor noise suppression, a control filter for computation delay accommodation and the incremental form to eliminate trim values in implementation. Theoretical developments described in detail, were needed to combine the sampled-data regulator with command generator tracking for use as a digital flight control system. The digital PIF autopilots are evaluated using closed-loop eigenvalues and linear simulations. The implementation of the PIF autopilots in a digital flight computer using a high order language (FORTRAN) is briefly described. The successful flight test results for each PIF autopilot mode is presented.
Secure Web-based Ground System User Interfaces over the Open Internet
NASA Technical Reports Server (NTRS)
Langston, James H.; Murray, Henry L.; Hunt, Gary R.
1998-01-01
A prototype has been developed which makes use of commercially available products in conjunction with the Java programming language to provide a secure user interface for command and control over the open Internet. This paper reports successful demonstration of: (1) Security over the Internet, including encryption and certification; (2) Integration of Java applets with a COTS command and control product; (3) Remote spacecraft commanding using the Internet. The Java-based Spacecraft Web Interface to Telemetry and Command Handling (Jswitch) ground system prototype provides these capabilities. This activity demonstrates the use and integration of current technologies to enable a spacecraft engineer or flight operator to monitor and control a spacecraft from a user interface communicating over the open Internet using standard World Wide Web (WWW) protocols and commercial off-the-shelf (COTS) products. The core command and control functions are provided by the COTS Epoch 2000 product. The standard WWW tools and browsers are used in conjunction with the Java programming technology. Security is provided with the current encryption and certification technology. This system prototype is a step in the direction of giving scientist and flight operators Web-based access to instrument, payload, and spacecraft data.
Rhee, Minsoung
2010-01-01
We have developed pneumatic logic circuits and microprocessors built with microfluidic channels and valves in polydimethylsiloxane (PDMS). The pneumatic logic circuits perform various combinational and sequential logic calculations with binary pneumatic signals (atmosphere and vacuum), producing cascadable outputs based on Boolean operations. A complex microprocessor is constructed from combinations of various logic circuits and receives pneumatically encoded serial commands at a single input line. The device then decodes the temporal command sequence by spatial parallelization, computes necessary logic calculations between parallelized command bits, stores command information for signal transportation and maintenance, and finally executes the command for the target devices. Thus, such pneumatic microprocessors will function as a universal on-chip control platform to perform complex parallel operations for large-scale integrated microfluidic devices. To demonstrate the working principles, we have built 2-bit, 3-bit, 4-bit, and 8-bit microprecessors to control various target devices for applications such as four color dye mixing, and multiplexed channel fluidic control. By significantly reducing the need for external controllers, the digital pneumatic microprocessor can be used as a universal on-chip platform to autonomously manipulate microfluids in a high throughput manner. PMID:19823730
Transitioning to Intel-based Linux Servers in the Payload Operations Integration Center
NASA Technical Reports Server (NTRS)
Guillebeau, P. L.
2004-01-01
The MSFC Payload Operations Integration Center (POIC) is the focal point for International Space Station (ISS) payload operations. The POIC contains the facilities, hardware, software and communication interface necessary to support payload operations. ISS ground system support for processing and display of real-time spacecraft and telemetry and command data has been operational for several years. The hardware components were reaching end of life and vendor costs were increasing while ISS budgets were becoming severely constrained. Therefore it has been necessary to migrate the Unix portions of our ground systems to commodity priced Intel-based Linux servers. hardware architecture including networks, data storage, and highly available resources. This paper will concentrate on the Linux migration implementation for the software portion of our ground system. The migration began with 3.5 million lines of code running on Unix platforms with separate servers for telemetry, command, Payload information management systems, web, system control, remote server interface and databases. The Intel-based system is scheduled to be available for initial operational use by August 2004 The overall migration to Intel-based Linux servers in the control center involves changes to the This paper will address the Linux migration study approach including the proof of concept, criticality of customer buy-in and importance of beginning with POSlX compliant code. It will focus on the development approach explaining the software lifecycle. Other aspects of development will be covered including phased implementation, interim milestones and metrics measurements and reporting mechanisms. This paper will also address the testing approach covering all levels of testing including development, development integration, IV&V, user beta testing and acceptance testing. Test results including performance numbers compared with Unix servers will be included. need for a smooth transition while maintaining real-time support. An important aspect of the paper will involve challenges and lessons learned. product compatibility, implications of phasing decisions and tracking of dependencies, particularly non- software dependencies. The paper will also discuss scheduling challenges providing real-time flight support during the migration and the requirement to incorporate in the migration changes being made simultaneously for flight support. This paper will also address the deployment approach including user involvement in testing and the , This includes COTS product compatibility, implications of phasing decisions and tracking of dependencies, particularly non- software dependencies. The paper will also discuss scheduling challenges providing real-time flight support during the migration and the requirement to incorporate in the migration changes being made simultaneously for flight support.
Total energy based flight control system
NASA Technical Reports Server (NTRS)
Lambregts, Antonius A. (Inventor)
1985-01-01
An integrated aircraft longitudinal flight control system uses a generalized thrust and elevator command computation (38), which accepts flight path angle, longitudinal acceleration command signals, along with associated feedback signals, to form energy rate error (20) and energy rate distribution error (18) signals. The engine thrust command is developed (22) as a function of the energy rate distribution error and the elevator position command is developed (26) as a function of the energy distribution error. For any vertical flight path and speed mode the outerloop errors are normalized (30, 34) to produce flight path angle and longitudinal acceleration commands. The system provides decoupled flight path and speed control for all control modes previously provided by the longitudinal autopilot, autothrottle and flight management systems.
Enabling OpenID Authentication for VO-integrated Portals
NASA Astrophysics Data System (ADS)
Plante, R.; Yekkirala, V.; Baker, W.
2012-09-01
To support interoperating services that share proprietary data and other user-specific information, the VAO Project provides login services for browser-based portals built on the open standard, OpenID. To help portal developers take advantage of this service, we have developed a downloadable toolkit for integrating OpenID single sign-on support into any portal. This toolkit provides APIs in a few languages commonly used on the server-side as well as a command-line version for use in any language. In addition to describing how to use this toolkit, we also discuss the general VAO framework for single sign-on. While a portal may, if it wishes, support any OpenID provider, the VAO service provides a few extra features to support VO interoperability. This includes a portal's ability to retrieve (with the user's permission) an X.509 certificate representing the authenticated user so that the portal can access other restricted services on the user's behalf. Other standard features of OpenID allow portals to request other information about the user; this feature will be used in the future for sharing information about a user's group membership to enable sharing within a group of collaborating scientists.
Mobile Agents: A Distributed Voice-Commanded Sensory and Robotic System for Surface EVA Assistance
NASA Technical Reports Server (NTRS)
Clancey, William J.; Sierhuis, Maarten; Alena, Rick; Crawford, Sekou; Dowding, John; Graham, Jeff; Kaskiris, Charis; Tyree, Kim S.; vanHoof, Ronnie
2003-01-01
A model-based, distributed architecture integrates diverse components in a system designed for lunar and planetary surface operations: spacesuit biosensors, cameras, GPS, and a robotic assistant. The system transmits data and assists communication between the extra-vehicular activity (EVA) astronauts, the crew in a local habitat, and a remote mission support team. Software processes ("agents"), implemented in a system called Brahms, run on multiple, mobile platforms, including the spacesuit backpacks, all-terrain vehicles, and robot. These "mobile agents" interpret and transform available data to help people and robotic systems coordinate their actions to make operations more safe and efficient. Different types of agents relate platforms to each other ("proxy agents"), devices to software ("comm agents"), and people to the system ("personal agents"). A state-of-the-art spoken dialogue interface enables people to communicate with their personal agents, supporting a speech-driven navigation and scheduling tool, field observation record, and rover command system. An important aspect of the engineering methodology involves first simulating the entire hardware and software system in Brahms, and then configuring the agents into a runtime system. Design of mobile agent functionality has been based on ethnographic observation of scientists working in Mars analog settings in the High Canadian Arctic on Devon Island and the southeast Utah desert. The Mobile Agents system is developed iteratively in the context of use, with people doing authentic work. This paper provides a brief introduction to the architecture and emphasizes the method of empirical requirements analysis, through which observation, modeling, design, and testing are integrated in simulated EVA operations.
UAS Integration in the NAS Project: Integrated Test and Evaluation (IT&E) Flight Test 3. Revision E
NASA Technical Reports Server (NTRS)
Marston, Michael
2015-01-01
The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration into the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability, Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including the integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project will conduct a series of Human-in-the-Loop and Flight Test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity and complexity of the previous tests and technical simulations, resulting in research findings that support the development of regulations governing the access of UAS into the NAS.
COMMAND-AND-CONTROL AND MANAGEMENT DECISION MAKING,
Reports that the development of command-and-con trol systems in support of decision making and action taking has been accomplished by military...methods applicable to management systems. Concludes that the command-and-control type system for top management decision making is a man-machine system having as its core an on going, dynamic operation. (Author)
Field experiments using SPEAR: a speech control system for UGVs
NASA Astrophysics Data System (ADS)
Chhatpar, Siddharth R.; Blanco, Chris; Czerniak, Jeffrey; Hoffman, Orin; Juneja, Amit; Pruthi, Tarun; Liu, Dongqing; Karlsen, Robert; Brown, Jonathan
2009-05-01
This paper reports on a Field Experiment carried out by the Human Research and Engineering Directorate at Ft. Benning to evaluate the efficacy of using speech to control an Unmanned Ground Vehicle (UGV) concurrently with a handcontroller. The SPEAR system, developed by Think-A-Move, provides speech-control of UGVs. The system picks up user-speech in the ear canal with an in-ear microphone. This property allows it to work efficiently in high-noise environments, where traditional speech systems, employing external microphones, fail. It has been integrated with an iRobot PackBot 510 with EOD kit. The integrated system allows the hand-controller to be supplemented with speech for concurrent control. At Ft. Benning, the integrated system was tested by soldiers from the Officer Candidate School. The Experiment had dual focus: 1) Quantitative measurement of the time taken to complete each station and the cognitive load on users; 2) Qualitative evaluation of ease-of-use and ergonomics through soldier-feedback. Also of significant benefit to Think-A-Move was soldier-feedback on the speech-command vocabulary employed: What spoken commands are intuitive, and how the commands should be executed, e.g., limited-motion vs. unlimited-motion commands. Overall results from the Experiment are reported in the paper.
Naver: a PC-cluster-based VR system
NASA Astrophysics Data System (ADS)
Park, ChangHoon; Ko, HeeDong; Kim, TaiYun
2003-04-01
In this paper, we present a new framework NAVER for virtual reality application. The NAVER is based on a cluster of low-cost personal computers. The goal of NAVER is to provide flexible, extensible, scalable and re-configurable framework for the virtual environments defined as the integration of 3D virtual space and external modules. External modules are various input or output devices and applications on the remote hosts. From the view of system, personal computers are divided into three servers according to its specific functions: Render Server, Device Server and Control Server. While Device Server contains external modules requiring event-based communication for the integration, Control Server contains external modules requiring synchronous communication every frame. And, the Render Server consists of 5 managers: Scenario Manager, Event Manager, Command Manager, Interaction Manager and Sync Manager. These managers support the declaration and operation of virtual environment and the integration with external modules on remote servers.
SCORPION II persistent surveillance system with universal gateway
NASA Astrophysics Data System (ADS)
Coster, Michael; Chambers, Jonathan; Brunck, Albert
2009-05-01
This paper addresses improvements and benefits derived from the next generation Northrop Grumman SCORPION II family of persistent surveillance and target recognition systems produced by the Xetron campus in Cincinnati, Ohio. SCORPION II reduces the size, weight, and cost of all SCORPION components in a flexible, field programmable system that is easier to conceal, backward compatible, and enables integration of over forty Unattended Ground Sensor (UGS) and camera types from a variety of manufacturers, with a modular approach to supporting multiple Line of Sight (LOS) and Beyond Line of Sight (BLOS) communications interfaces. Since 1998 Northrop Grumman has been integrating best in class sensors with its proven universal modular Gateway to provide encrypted data exfiltration to Common Operational Picture (COP) systems and remote sensor command and control. In addition to being fed to COP systems, SCORPION and SCORPION II data can be directly processed using a common sensor status graphical user interface (GUI) that allows for viewing and analysis of images and sensor data from up to seven hundred SCORPION system Gateways on single or multiple displays. This GUI enables a large amount of sensor data and imagery to be used for actionable intelligence as well as remote sensor command and control by a minimum number of analysts.
Timeline analysis tools for law enforcement
NASA Astrophysics Data System (ADS)
Mucks, John
1997-02-01
The timeline analysis system (TAS) was developed by Rome Laboratory to assist intelligence analysts with the comprehension of large amounts of information. Under the TAS program data visualization, manipulation and reasoning tools were developed in close coordination with end users. The initial TAS prototype was developed for foreign command and control analysts at Space Command in Colorado Springs and was fielded there in 1989. The TAS prototype replaced manual paper timeline maintenance and analysis techniques and has become an integral part of Space Command's information infrastructure. TAS was designed to be domain independent and has been tailored and proliferated to a number of other users. The TAS program continues to evolve because of strong user support. User funded enhancements and Rome Lab funded technology upgrades have significantly enhanced TAS over the years and will continue to do so for the foreseeable future. TAS was recently provided to the New York State Police (NYSP) for evaluation using actual case data. Timeline analysis it turns out is a popular methodology used in law enforcement. The evaluation has led to a more comprehensive application and evaluation project sponsored by the National Institute of Justice (NIJ). This paper describes the capabilities of TAS, results of the initial NYSP evaluation and the plan for a more comprehensive NYSP evaluation.
Use of Dynamic Models and Operational Architecture to Solve Complex Navy Challenges
NASA Technical Reports Server (NTRS)
Grande, Darby; Black, J. Todd; Freeman, Jared; Sorber, TIm; Serfaty, Daniel
2010-01-01
The United States Navy established 8 Maritime Operations Centers (MOC) to enhance the command and control of forces at the operational level of warfare. Each MOC is a headquarters manned by qualified joint operational-level staffs, and enabled by globally interoperable C41 systems. To assess and refine MOC staffing, equipment, and schedules, a dynamic software model was developed. The model leverages pre-existing operational process architecture, joint military task lists that define activities and their precedence relations, as well as Navy documents that specify manning and roles per activity. The software model serves as a "computational wind-tunnel" in which to test a MOC on a mission, and to refine its structure, staffing, processes, and schedules. More generally, the model supports resource allocation decisions concerning Doctrine, Organization, Training, Material, Leadership, Personnel and Facilities (DOTMLPF) at MOCs around the world. A rapid prototype effort efficiently produced this software in less than five months, using an integrated process team consisting of MOC military and civilian staff, modeling experts, and software developers. The work reported here was conducted for Commander, United States Fleet Forces Command in Norfolk, Virginia, code N5-0LW (Operational Level of War) that facilitates the identification, consolidation, and prioritization of MOC capabilities requirements, and implementation and delivery of MOC solutions.
High-frame-rate infrared and visible cameras for test range instrumentation
NASA Astrophysics Data System (ADS)
Ambrose, Joseph G.; King, B.; Tower, John R.; Hughes, Gary W.; Levine, Peter A.; Villani, Thomas S.; Esposito, Benjamin J.; Davis, Timothy J.; O'Mara, K.; Sjursen, W.; McCaffrey, Nathaniel J.; Pantuso, Francis P.
1995-09-01
Field deployable, high frame rate camera systems have been developed to support the test and evaluation activities at the White Sands Missile Range. The infrared cameras employ a 640 by 480 format PtSi focal plane array (FPA). The visible cameras employ a 1024 by 1024 format backside illuminated CCD. The monolithic, MOS architecture of the PtSi FPA supports commandable frame rate, frame size, and integration time. The infrared cameras provide 3 - 5 micron thermal imaging in selectable modes from 30 Hz frame rate, 640 by 480 frame size, 33 ms integration time to 300 Hz frame rate, 133 by 142 frame size, 1 ms integration time. The infrared cameras employ a 500 mm, f/1.7 lens. Video outputs are 12-bit digital video and RS170 analog video with histogram-based contrast enhancement. The 1024 by 1024 format CCD has a 32-port, split-frame transfer architecture. The visible cameras exploit this architecture to provide selectable modes from 30 Hz frame rate, 1024 by 1024 frame size, 32 ms integration time to 300 Hz frame rate, 1024 by 1024 frame size (with 2:1 vertical binning), 0.5 ms integration time. The visible cameras employ a 500 mm, f/4 lens, with integration time controlled by an electro-optical shutter. Video outputs are RS170 analog video (512 by 480 pixels), and 12-bit digital video.
Integrated Component Fluidic Servovalves and Position Control Systems
1983-04-01
35807 ATTN DRSMI- RG , WILLIAM GRIFFITHATTN DRSMI-TGC, J. C. DUNAWAY ATTN DRCPM-TOE, FRED J. CHEPLEN REDSTONE ARSENAL, AL 35898 77 hyJ DISTRIBUT10N (Cont...ARMY TANK AUTOMOTIVE COMMAND ARMOR & COOP DIV, DRDTA-RKT COMMANDER BLDG 215 NAVAL SHIP ENGINEERING CESTER ATTN K. WHITMORE PHILADELPHIA DIVISION WARREN
DOT National Transportation Integrated Search
2017-06-13
In recent years, there has been an increased focus on Traffic Incident Management (TIM) and : incorporation of the Incident Command System (ICS) to reduce traffic congestion on the nation's : Interstates. In fact, studies show that for every minute a...
ERIC Educational Resources Information Center
Grebenau, Maury
2016-01-01
Educational leaders who are second in command face specific challenges. Dealing with these stresses is integral to being successful in such a position. Seconds in command must learn to deal with that "caught in the middle" feeling: They need to accept what they can't change and change what they can, not get lured into badmouthing their…
Avionics Simulation, Development and Software Engineering
NASA Technical Reports Server (NTRS)
Francis, Ronald C.; Settle, Gray; Tobbe, Patrick A.; Kissel, Ralph; Glaese, John; Blanche, Jim; Wallace, L. D.
2001-01-01
This monthly report summarizes the work performed under contract NAS8-00114 for Marshall Space Flight Center in the following tasks: 1) Purchase Order No. H-32831D, Task Order 001A, GPB Program Software Oversight; 2) Purchase Order No. H-32832D, Task Order 002, ISS EXPRESS Racks Software Support; 3) Purchase Order No. H-32833D, Task Order 003, SSRMS Math Model Integration; 4) Purchase Order No. H-32834D, Task Order 004, GPB Program Hardware Oversight; 5) Purchase Order No. H-32835D, Task Order 005, Electrodynamic Tether Operations and Control Analysis; 6) Purchase Order No. H-32837D, Task Order 007, SRB Command Receiver/Decoder; and 7) Purchase Order No. H-32838D, Task Order 008, AVGS/DART SW and Simulation Support
Integration of g4tools in Geant4
NASA Astrophysics Data System (ADS)
Hřivnáčová, Ivana
2014-06-01
g4tools, that is originally part of the inlib and exlib packages, provides a very light and easy to install set of C++ classes that can be used to perform analysis in a Geant4 batch program. It allows to create and manipulate histograms and ntuples, and write them in supported file formats (ROOT, AIDA XML, CSV and HBOOK). It is integrated in Geant4 through analysis manager classes, thus providing a uniform interface to the g4tools objects and also hiding the differences between the classes for different supported output formats. Moreover, additional features, such as for example histogram activation or support for Geant4 units, are implemented in the analysis classes following users requests. A set of Geant4 user interface commands allows the user to create histograms and set their properties interactively or in Geant4 macros. g4tools was first introduced in the Geant4 9.5 release where its use was demonstrated in one basic example, and it is already used in a majority of the Geant4 examples within the Geant4 9.6 release. In this paper, we will give an overview and the present status of the integration of g4tools in Geant4 and report on upcoming new features.
Integrated Test and Evaluation Flight Test 3 Flight Test Plan
NASA Technical Reports Server (NTRS)
Marston, Michael Lawrence
2015-01-01
The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration into the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability, Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including the integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project will conduct a series of Human-in-the-Loop and Flight Test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity and complexity of the previous tests and technical simulations, resulting in research findings that support the development of regulations governing the access of UAS into the NAS.
Advantages of Brahms for Specifying and Implementing a Multiagent Human-Robotic Exploration System
NASA Technical Reports Server (NTRS)
Clancey, William J.; Sierhuis, Maarten; Kaskiris, Charis; vanHoof, Ron
2003-01-01
We have developed a model-based, distributed architecture that integrates diverse components in a system designed for lunar and planetary surface operations: an astronaut's space suit, cameras, all-terrain vehicles, robotic assistant, crew in a local habitat, and mission support team. Software processes ('agents') implemented in the Brahms language, run on multiple, mobile platforms. These mobile agents interpret and transform available data to help people and robotic systems coordinate their actions to make operations more safe and efficient. The Brahms-based mobile agent architecture (MAA) uses a novel combination of agent types so the software agents may understand and facilitate communications between people and between system components. A state-of-the-art spoken dialogue interface is integrated with Brahms models, supporting a speech-driven field observation record and rover command system. An important aspect of the methodology involves first simulating the entire system in Brahms, then configuring the agents into a runtime system Thus, Brahms provides a language, engine, and system builder's toolkit for specifying and implementing multiagent systems.
2011-12-01
operating in their territory. NSHQ is a new and evolving organization, which was instructed to develop a rapidly deployable HQ. NSHQ receives its...single overarching concept, eliminating redundancy, and integrates new deployable operational C2 structures (notably NSHQ) agreed through the...of the command and control issue is the ability to communicate effectively both up and down the chain of command. With the new technologies
NASA Astrophysics Data System (ADS)
Avellar, J.; Duarte, L. G. S.; da Mota, L. A. C. P.; de Melo, N.; Skea, J. E. F.
2012-09-01
A set of Maple routines is presented, fully compatible with the new releases of Maple (14 and higher). The package deals with the numerical evolution of dynamical systems and provide flexible plotting of the results. The package also brings an initial conditions generator, a numerical solver manager, and a focusing set of routines that allow for better analysis of the graphical display of the results. The novelty that the package presents an optional C interface is maintained. This allows for fast numerical integration, even for the totally inexperienced Maple user, without any C expertise being required. Finally, the package provides the routines to calculate the fractal dimension of boundaries (via box counting). New version program summary Program Title: Ndynamics Catalogue identifier: %Leave blank, supplied by Elsevier. Licensing provisions: no. Programming language: Maple, C. Computer: Intel(R) Core(TM) i3 CPU M330 @ 2.13 GHz. Operating system: Windows 7. RAM: 3.0 GB Keywords: Dynamical systems, Box counting, Fractal dimension, Symbolic computation, Differential equations, Maple. Classification: 4.3. Catalogue identifier of previous version: ADKH_v1_0. Journal reference of previous version: Comput. Phys. Commun. 119 (1999) 256. Does the new version supersede the previous version?: Yes. Nature of problem Computation and plotting of numerical solutions of dynamical systems and the determination of the fractal dimension of the boundaries. Solution method The default method of integration is a fifth-order Runge-Kutta scheme, but any method of integration present on the Maple system is available via an argument when calling the routine. A box counting [1] method is used to calculate the fractal dimension [2] of the boundaries. Reasons for the new version The Ndynamics package met a demand of our research community for a flexible and friendly environment for analyzing dynamical systems. All the user has to do is create his/her own Maple session, with the system to be studied, and use the commands on the package to (for instance) calculate the fractal dimension of a certain boundary, without knowing or worrying about a single line of C programming. So the package combines the flexibility and friendly aspect of Maple with the fast and robust numerical integration of the compiled (for example C) basin. The package is old, but the problems it was designed to dealt with are still there. Since Maple evolved, the package stopped working, and we felt compelled to produce this version, fully compatible with the latest version of Maple, to make it again available to the Maple user. Summary of revisions Deprecated Maple Packages and Commands: Paraphrasing the Maple in-built help files, "Some Maple commands and packages are deprecated. A command (or package) is deprecated when its functionality has been replaced by an improved implementation. The newer command is said to supersede the older one, and use of the newer command is strongly recommended". So, we have examined our code to see if some of these occurrences could be dangerous for it. For example, the "readlib" command is unnecessary, and we have removed its occurrences from our code. We have checked and changed all the necessary commands in order for us to be safe in respect to danger from this source. Another change we had to make was related to the tools we have implemented in order to use the interface for performing the numerical integration in C, externally, via the use of the Maple command "ssystem". In the past, we had used, for the external C integration, the DJGPP system. But now we present the package with (free) Borland distribution. The compilation and compiling commands are now slightly changed. For example, to compile only, we had used "gcc-c"; now, we use "bcc32-c", etc. All this installation (Borland) is explained on a "README" file we are submitting here to help the potential user. Restrictions Besides the inherent restrictions of numerical integration methods, this version of the package only deals with systems of first-order differential equations. Unusual features This package provides user-friendly software tools for analyzing the character of a dynamical system, whether it displays chaotic behaviour, and so on. Options within the package allow the user to specify characteristics that separate the trajectories into families of curves. In conjunction with the facilities for altering the user's viewpoint, this provides a graphical interface for the speedy and easy identification of regions with interesting dynamics. An unusual characteristic of the package is its interface for performing the numerical integrations in C using a fifth-order Runge-Kutta method (default). This potentially improves the speed of the numerical integration by some orders of magnitude and, in cases where it is necessary to calculate thousands of graphs in regions of difficult integration, this feature is very desirable. Besides that tool, somewhat more experienced users can produce their own C integrator and, by using the commands available in the package, use it as the C integrator provided with the package as long as the new integrator manages the input and output in the same format as the default one does. Running time This depends strongly on the dynamical system. With an Intel® Core™ i3 CPU M330 @ 2.13 GHz, the integration of 50 graphs, for a system of two first-order equations, typically takes less than a second to run (with the C integration interface). Without the C interface, it takes a few seconds. In order to calculate the fractal dimension, where we typically use 10,000 points to integrate, using the C interface it takes from 20 to 30 s. Without the C interface, it becomes really impractical, taking, sometimes, for the same case, almost an hour. For some cases, it takes many hours.
Photocopy of recent aerial photograph (from U.S. Army Support Command ...
Photocopy of recent aerial photograph (from U.S. Army Support Command Hawaii, Wheeler Army Air Base, Hawaii) Photographer unknown, Circa 1990 OBLIQUE AERIAL VIEW SHOWING MAIN SECTION OF BASE WITH LAKE WILSON IN THE FOREGROUND AND WAIANAE MOUNTAINS IN THE BACKGROUND. - Schofield Barracks Military Reservation, Wilikina Drive & Kunia Road, Wahiawa, Honolulu County, HI
NAVSUP Global Logistics Support
2012-08-01
Support $3.5 M Ill SB Contracting Actions Ill SB Value 35% of total spend to Small Business ! NAVAL SUPPLY SYSTEMS COMMAND • Procurement • Barge...Other services now using as well • Awarded Aug 2011, Features: • 100% Sma II Business Set Aside ! • 25 multiple award task order contracts to 8...UP- GLOBAL LOGISTICS I · -~ --; •• ~.c. SUPPORT ,.. NAVAL SUPPLY SYSTEMS COMMAND Fiscal Year 2011 Small Business Contracting Spend: 28,000 actions
Organizing NORTHCOM for Success: A Theater Special Operations Command
2003-05-22
90 U.S. FORSCOM, "Olympic and Paralympic Games Operations Plan for Emergency Contingency Support," (Ft. McPherson: U.S...Army Forces Command. "Olympic and Paralympic Games Operations Plan for Emergency Contingency Support." Ft. McPherson: Georgia, 1996. ———. "HQ FORSCOM and...Atlanta Organizing Committee for the Olympic Games for the purpose of planning for security and logistical support that the Department of Defense may
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowen, Benjamin; Ruebel, Oliver; Fischer, Curt Fischer R.
BASTet is an advanced software library written in Python. BASTet serves as the analysis and storage library for the OpenMSI project. BASTet is an integrate framework for: i) storage of spectral imaging data, ii) storage of derived analysis data, iii) provenance of analyses, iv) integration and execution of analyses via complex workflows. BASTet implements the API for the HDF5 storage format used by OpenMSI. Analyses that are developed using BASTet benefit from direct integration with storage format, automatic tracking of provenance, and direct integration with command-line and workflow execution tools. BASTet also defines interfaces to enable developers to directly integratemore » their analysis with OpenMSI's web-based viewing infrastruture without having to know OpenMSI. BASTet also provides numerous helper classes and tools to assist with the conversion of data files, ease parallel implementation of analysis algorithms, ease interaction with web-based functions, description methods for data reduction. BASTet also includes detailed developer documentation, user tutorials, iPython notebooks, and other supporting documents.« less
Military Presence: U.S. Personnel in NATO Europe.
1989-10-06
Transportation 42nd Military 18th Engineer 26th Support Command Police Brigade Group Page.s GAO (.)SIA)-94)4 Militao I’ri-eeii in NATO Eurobpe Chapter 2...575 4th Transportation Command 3 585 0 3,585 7th Army Training Command 1 942 4 772 6,714 Other 0 9 551 9,551 Total 199,398 88,408 287,806 %ote Totals...p)ersolinel in Eiurope to siiI)l)01t Air Logistica SupportFor-ce op~erat ions. ’Ihel thr-ee largest commnands-the Air For-ce Commow- nications
NATO initial common operational picture capability project
NASA Astrophysics Data System (ADS)
Fanti, Laura; Beach, David
2002-08-01
The Common Operational Picture (COP) capability can be defined as the ability to display on a single screen integrated views of the Recognized Maritime, Air and Ground Pictures, enriched by other tactical data, such as theater plans, assets, intelligence and logistics information. The purpose of the COP capability is to provide military forces a comprehensive view of the battle space, thereby enhancing situational awareness and the decision-making process across the military command and control spectrum. The availability of a COP capability throughout the command structure is a high priority operational requirement in NATO. A COP capability for NATO is being procured and implemented in an incremental way within the NATO Automated Information System (Bi-SC AIS) Functional Services programme under the coordination of the NATO Consultation, Command and Control Agency (NC3A) Integrated Programme Team 5 (IPT5). The NATO Initial COP (iCOP) capability project, first step of this evolutionary procurement, will provide an initial COP capability to NATO in a highly pragmatic and low-risk fashion, by using existing operational communications infrastructure and NATO systems, i.e. the NATO-Wide Integrated Command and Control Software for Air Operations (ICC), the Maritime Command and Control Information System (MCCIS), and the Joint Operations and Intelligence Information System (JOIIS), which will provide respectively the Recognized Air, Maritime and Ground Pictures. This paper gives an overview of the NATO Initial COP capability project, including its evolutionary implementation approach, and describes the technical solution selected to satisfy the urgent operational requirement in a timely and cost effective manner.
Communicating Difficult and Taboo Information: A How-To Guide for Commanders.
Moosey, Matthew
2016-01-01
Military commanders frequently mention that communicating difficult or taboo information is especially challenging. In the context of gender-integrated ground combat service there may be additional communication challenges for military commanders who may be unaccustomed to leading both men and women. Often, military commanders must communicate and deliver difficult information, or information that causes a negative emotional response from the communicator or the intended audience. This article is intended to identify some of these challenges and present practical examples and tips for military commanders to effectively communicate difficult or taboo topics and information. In addition, this article is a call for communication experts to reach out to military leaders and offer appropriate assistance in facilitating and delivering difficult communication. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
Tactical Mission Command (TMC)
2016-03-01
capabilities to Army commanders and their staffs, consisting primarily of a user-customizable Common Operating Picture ( COP ) enabled with real-time... COP viewer and data management capability. It is a collaborative, visualization and planning application that also provides a common map display... COP ): Display the COP consisting of the following:1 Friendly forces determined by the commander including subordinate and supporting units at
1995-10-20
Astronaut Kathryn C. Thornton, payload commander, works at the Drop Physics Module (DPM) on the portside of the science module supporting the U.S. Microgravity Laboratory (USML-2). Astronaut Kerneth D. Bowersox, mission commander, looks on.
32 CFR Appendix F to Part 651 - Glossary
Code of Federal Regulations, 2011 CFR
2011-07-01
... Training Area Management. LCED Life Cycle Environmental Documentation. MACOM Major Army Command. MATDEV... Record of Non-Applicability. RSC Regional Support Command. S&T Science and Technology. SA Secretary of...
Re-engineering the Multimission Command System at the Jet Propulsion Laboratory
NASA Technical Reports Server (NTRS)
Alexander, Scott; Biesiadecki, Jeff; Cox, Nagin; Murphy, Susan C.; Reeve, Tim
1994-01-01
The Operations Engineering Lab (OEL) at JPL has developed the multimission command system as part of JPL's Advanced Multimission Operations System. The command system provides an advanced multimission environment for secure, concurrent commanding of multiple spacecraft. The command functions include real-time command generation, command translation and radiation, status reporting, some remote control of Deep Space Network antenna functions, and command file management. The mission-independent architecture has allowed easy adaptation to new flight projects and the system currently supports all JPL planetary missions (Voyager, Galileo, Magellan, Ulysses, Mars Pathfinder, and CASSINI). This paper will discuss the design and implementation of the command software, especially trade-offs and lessons learned from practical operational use. The lessons learned have resulted in a re-engineering of the command system, especially in its user interface and new automation capabilities. The redesign has allowed streamlining of command operations with significant improvements in productivity and ease of use. In addition, the new system has provided a command capability that works equally well for real-time operations and within a spacecraft testbed. This paper will also discuss new development work including a multimission command database toolkit, a universal command translator for sequencing and real-time commands, and incorporation of telecommand capabilities for new missions.
Project Report: Automatic Sequence Processor Software Analysis
NASA Technical Reports Server (NTRS)
Benjamin, Brandon
2011-01-01
The Mission Planning and Sequencing (MPS) element of Multi-Mission Ground System and Services (MGSS) provides space missions with multi-purpose software to plan spacecraft activities, sequence spacecraft commands, and then integrate these products and execute them on spacecraft. Jet Propulsion Laboratory (JPL) is currently is flying many missions. The processes for building, integrating, and testing the multi-mission uplink software need to be improved to meet the needs of the missions and the operations teams that command the spacecraft. The Multi-Mission Sequencing Team is responsible for collecting and processing the observations, experiments and engineering activities that are to be performed on a selected spacecraft. The collection of these activities is called a sequence and ultimately a sequence becomes a sequence of spacecraft commands. The operations teams check the sequence to make sure that no constraints are violated. The workflow process involves sending a program start command, which activates the Automatic Sequence Processor (ASP). The ASP is currently a file-based system that is comprised of scripts written in perl, c-shell and awk. Once this start process is complete, the system checks for errors and aborts if there are any; otherwise the system converts the commands to binary, and then sends the resultant information to be radiated to the spacecraft.
2014-01-06
HOUSTON – Chris Ferguson, a former space shuttle commander who is now director of Crew and Mission Operations for Boeing Space Exploration, talks with an engineer following simulations that showed that the CST-100 software. Boeing demonstrated that the CST-100 software allows a human pilot to take over control of the spacecraft from the computer during all phases of a mission following separation from the launch vehicle. The pilot-in-the-loop demonstration at the Houston Product Support Center is a milestone under Boeing's Commercial Crew Integrated Capability agreement with the agency and its Commercial Crew Program. Photo credit: NASA/Bill Stafford
Astronauts McMonagle and Brown on flight deck mockup during training
1994-06-23
S94-40090 (23 June 1994) --- Astronauts Donald R. McMonagle, left, and Curtis L. Brown man the commander's and pilot's stations, respectively, during a rehearsal of ascent and entry phases of their scheduled November 1994 flight aboard Atlantis. Three other NASA astronauts and a European mission specialist joined the two for this training exercise in the Crew Compartment Trainer (CCT) at the Johnson Space Center's (JSC) Shuttle Mockup and Integration Laboratory and will join them aboard the Space Shuttle Atlantis in November. The flight is manifest to support the Atmospheric Laboratory for Applications and Science (ATLAS-3) mission.
STS-92 group photo with workers in SSPF
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, workers who have supported mission STS-92 gather for a photo with the crew: (left to right) Mission Specialists Koichi Wakata of Japan, Michael Lopez-Alegria, Jeff Wisoff, Bill McArthur and Leroy Chiao; Pilot Pam Melroy; and Commander Brian Duffy. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.
Costing Complex Products, Operations, and Support
2011-04-30
Symposium, 10-12 May 2011, Seaside, CA. U.S. Government or Federal Rights License 14. ABSTRACT Complex products and systems (CoPS), such as large defense...Program Executive Officer SHIPS • Commander, Naval Sea Systems Command • Army Contracting Command, U.S. Army Materiel Command • Program Manager...Airborne, Maritime and Fixed Station Joint Tactical Radio System = ==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb=====- ii
STS-32 Commander Brandenstein adjusts IMAX camera during training session
NASA Technical Reports Server (NTRS)
1989-01-01
STS-32 Commander Daniel C. Brandenstein adjusts IMAX camera setting during briefing and training session as technician looks on. The session was conducted in the JSC Mockup and Integration Laboratory (MAIL) Bldg 9B. The IMAX camera will be used onboard Columbia, Orbiter Vehicle (OV) 102, during the STS-32 mission.
NASA Technical Reports Server (NTRS)
2008-01-01
As Global Positioning Satellite (GPS) applications become more prevalent for land- and air-based vehicles, GPS applications for space vehicles will also increase. The Applied Technology Directorate of Kennedy Space Center (KSC) has developed a lightweight, low-cost GPS Metric Tracking Unit (GMTU), the first of two steps in developing a lightweight, low-cost Space-Based Tracking and Command Subsystem (STACS) designed to meet Range Safety's link margin and latency requirements for vehicle command and telemetry data. The goals of STACS are to improve Range Safety operations and expand tracking capabilities for space vehicles. STACS will track the vehicle, receive commands, and send telemetry data through the space-based asset, which will dramatically reduce dependence on ground-based assets. The other step was the Low-Cost Tracking and Data Relay Satellite System (TDRSS) Transceiver (LCT2), developed by the Wallops Flight Facility (WFF), which allows the vehicle to communicate with a geosynchronous relay satellite. Although the GMTU and LCT2 were independently implemented and tested, the design collaboration of KSC and WFF engineers allowed GMTU and LCT2 to be integrated into one enclosure, leading to the final STACS. In operation, GMTU needs only a radio frequency (RF) input from a GPS antenna and outputs position and velocity data to the vehicle through a serial or pulse code modulation (PCM) interface. GMTU includes one commercial GPS receiver board and a custom board, the Command and Telemetry Processor (CTP) developed by KSC. The CTP design is based on a field-programmable gate array (FPGA) with embedded processors to support GPS functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Case study describes how the Army Reserve 99th Regional Support Command (RSC) cut its energy consumption in half at the Support Command's Technical Sergeant Vernon McGarity Army Reserve Center by replacing more than 1,200 fluorescent troffers with 46 W and 61 W LED troffers with dimmers. The site achieved annual savings of more than 180,000 kWh and more than $20,000 in energy cost savings.
Photocopy of recent aerial photograph (from U.S. Army Support Command ...
Photocopy of recent aerial photograph (from U.S. Army Support Command Hawaii, Wheeler Army Air Base, Hawaii) Photographer unknown, Circa 1990 AERIAL VIEW SHOWING MAIN SECTION OF BASE, BETWEEN KUNIA ROAD, WILIKINA DRIVE, AND McMAHON ROAD, AS WELL AS ADJACENT PINEAPPLE FIELDS, AND LAKE WILSON. - Schofield Barracks Military Reservation, Wilikina Drive & Kunia Road, Wahiawa, Honolulu County, HI
The Australian Medical Support Force in Rwanda.
Ramsey, W; Bridgford, L R; Lusby, R J; Pearn, J H
In the aftermath of the Rwandan civil war, Australia's defence forces deployed a medical force to support the United Nations Assistance Mission. In this article, Wayne Ramsey, Commander of the Australian contingent, Lindsay R Bridgford, Officer Commanding Bravo Section, Robert J Lusby, Lt.-Colonel (Surgeon), Australian Medical Support Force Hospital, and John H Pearn, Colonel, and Director of Intensive Care in the Australian Medical Support Force Hospital, describe the Australian effort in the rebuilding of a shattered people and, in particular, of Kigali Central Hospital, the country's major medical facility.
NASA Technical Reports Server (NTRS)
Gundy-Burlet, Karen
2003-01-01
The Neural Flight Control System (NFCS) was developed to address the need for control systems that can be produced and tested at lower cost, easily adapted to prototype vehicles and for flight systems that can accommodate damaged control surfaces or changes to aircraft stability and control characteristics resulting from failures or accidents. NFCS utilizes on a neural network-based flight control algorithm which automatically compensates for a broad spectrum of unanticipated damage or failures of an aircraft in flight. Pilot stick and rudder pedal inputs are fed into a reference model which produces pitch, roll and yaw rate commands. The reference model frequencies and gains can be set to provide handling quality characteristics suitable for the aircraft of interest. The rate commands are used in conjunction with estimates of the aircraft s stability and control (S&C) derivatives by a simplified Dynamic Inverse controller to produce virtual elevator, aileron and rudder commands. These virtual surface deflection commands are optimally distributed across the aircraft s available control surfaces using linear programming theory. Sensor data is compared with the reference model rate commands to produce an error signal. A Proportional/Integral (PI) error controller "winds up" on the error signal and adds an augmented command to the reference model output with the effect of zeroing the error signal. In order to provide more consistent handling qualities for the pilot, neural networks learn the behavior of the error controller and add in the augmented command before the integrator winds up. In the case of damage sufficient to affect the handling qualities of the aircraft, an Adaptive Critic is utilized to reduce the reference model frequencies and gains to stay within a flyable envelope of the aircraft.
A local network integrated into a balloon-borne apparatus
NASA Astrophysics Data System (ADS)
Imori, Masatosi; Ueda, Ikuo; Shimamura, Kotaro; Maeno, Tadashi; Murata, Takahiro; Sasaki, Makoto; Matsunaga, Hiroyuki; Matsumoto, Hiroshi; Shikaze, Yoshiaki; Anraku, Kazuaki; Matsui, Nagataka; Yamagami, Takamasa
A local network is incorporated into an apparatus for a balloon-borne experiment. A balloon-borne system implemented in the apparatus is composed of subsystems interconnected through a local network, which introduces modular architecture into the system. The network decomposes the balloon-borne system into subsystems, which are similarly structured from the point of view that the systems is kept under the control of a ground station. The subsystem is functionally self-contained and electrically independent. A computer is integrated into a subsystem, keeping the subsystem under the control. An independent group of batteries, being dedicated to a subsystem, supplies the whole electricity of the subsystem. The subsystem could be turned on and off independently of the other subsystems. So communication among the subsystems needs to be based on such a protocol that could guarantee the independence of the individual subsystems. An Omninet protocol is employed to network the subsystems. A ground station sends commands to the balloon-borne system. The command is received and executed at the system, then results of the execution are returned to the ground station. Various commands are available so that the system borne on a balloon could be controlled and monitored remotely from the ground station. A subsystem responds to a specific group of commands. A command is received by a transceiver subsystem and then transferred through the network to the subsystem to which the command is addressed. Then the subsystem executes the command and returns results to the transceiver subsystem, where the results are telemetered to the ground station. The network enhances independence of the individual subsystems, which enables programs of the individual subsystems to be coded independently. Independence facilitates development and debugging of programs, improving the quality of the system borne on a balloon.
Battlespace awareness and the Australian Army battlefield command support system
NASA Astrophysics Data System (ADS)
Gaertner, Paul S.; Slade, Mark; Bowden, Fred; Stagg, Bradley; Huf, Samuel
2000-08-01
Effective battlespace awareness is essential for any defence operation; this is especially true in the increasingly complex and dynamic land component of the military environment. Because of its relatively small force size dispersed piece-wise across a large and largely vacant landmass, the Defence of Australia presents a somewhat unique challenge for the development of systems that support command decision-making. The intent of this paper is to first examine the digitisation effort under way in Australia and describe the Army Battlefield Command Support System (BCSS) being developed for use in the tactical arena. BCSS is essentially a suite of commercial-off-the-shelf and government-off-the-shelf software components provided via a standard operating environment to aid decision-making. Then, we present the development of a Tactical Land C4I Assessment Capability (TLCAC) synthetic environment which is being used to undertake controlled performance evaluations of the various elements of the BCSS suite and provide impact assessments of new technological advances. The TLCAC provides a capacity to assess in near real-time Brigade and below level command post exercise activities. That is, when deployed it provides a mechanism to automatically collect command and control and manoeuvre data, which can aid in the after action review process.
Open multi-agent control architecture to support virtual-reality-based man-machine interfaces
NASA Astrophysics Data System (ADS)
Freund, Eckhard; Rossmann, Juergen; Brasch, Marcel
2001-10-01
Projective Virtual Reality is a new and promising approach to intuitively operable man machine interfaces for the commanding and supervision of complex automation systems. The user interface part of Projective Virtual Reality heavily builds on latest Virtual Reality techniques, a task deduction component and automatic action planning capabilities. In order to realize man machine interfaces for complex applications, not only the Virtual Reality part has to be considered but also the capabilities of the underlying robot and automation controller are of great importance. This paper presents a control architecture that has proved to be an ideal basis for the realization of complex robotic and automation systems that are controlled by Virtual Reality based man machine interfaces. The architecture does not just provide a well suited framework for the real-time control of a multi robot system but also supports Virtual Reality metaphors and augmentations which facilitate the user's job to command and supervise a complex system. The developed control architecture has already been used for a number of applications. Its capability to integrate sensor information from sensors of different levels of abstraction in real-time helps to make the realized automation system very responsive to real world changes. In this paper, the architecture will be described comprehensively, its main building blocks will be discussed and one realization that is built based on an open source real-time operating system will be presented. The software design and the features of the architecture which make it generally applicable to the distributed control of automation agents in real world applications will be explained. Furthermore its application to the commanding and control of experiments in the Columbus space laboratory, the European contribution to the International Space Station (ISS), is only one example which will be described.
Wireless Telemetry and Command (T and C) Program
NASA Technical Reports Server (NTRS)
Jiang, Hui; Horan, Stephen
2000-01-01
The Wireless Telemetry and Command (T&C) program is to investigate methods of using commercial telecommunications service providers to support command and telemetry services between a remote user and a base station. While the initial development is based on ground networks, the development is being done with an eye towards future space communications needs. Both NASA and the Air Force have indicated a plan to consider the use of commercial telecommunications providers to support their space missions. To do this, there will need to be an understanding of the requirements and limitations of interfacing with the commercial providers. The eventual payoff will be the reduced operations cost and the ability to tap into commercial services being developed by the commercial networks. This should enable easier realization of EP services to the end points, commercial routing of data, and quicker integration of new services into the space mission operations. Therefore, the ultimate goal of this program is not just to provide wireless radio communications for T&C services but to enhance those services through wireless networking and provider enhancements that come with the networks. In the following chapters, the detailed technical procedure will be showed step by step. Chapter 2 will talk about the general idea of simulation as well as the implementation of data acquisition including sensor array data and GPS data. Chapter 3 will talk about how to use LabVEEW and Component Works to do wireless communication simulation and how to distribute the real-time information over the Internet by using Visual Basic and ActiveX controls. Also talk about the test configuration and validation. Chapter 4 will show the test results both from In-Lab test and Networking Test. Chapter 5 will summarize the whole procedure and give the perspective for the future consideration.
AMO EXPRESS: A Command and Control Experiment for Crew Autonomy
NASA Technical Reports Server (NTRS)
Stetson, Howard K.; Frank, Jeremy; Cornelius, Randy; Haddock, Angie; Wang, Lui; Garner, Larry
2015-01-01
NASA is investigating a range of future human spaceflight missions, including both Mars-distance and Near Earth Object (NEO) targets. Of significant importance for these missions is the balance between crew autonomy and vehicle automation. As distance from Earth results in increasing communication delays, future crews need both the capability and authority to independently make decisions. However, small crews cannot take on all functions performed by ground today, and so vehicles must be more automated to reduce the crew workload for such missions. NASA's Advanced Exploration Systems Program funded Autonomous Mission Operations (AMO) project conducted an autonomous command and control demonstration of intelligent procedures to automatically initialize a rack onboard the International Space Station (ISS) with power and thermal interfaces, and involving core and payload command and telemetry processing, without support from ground controllers. This autonomous operations capability is enabling in scenarios such as a crew medical emergency, and representative of other spacecraft autonomy challenges. The experiment was conducted using the Expedite the Processing of Experiments for Space Station (EXPRESS) rack 7, which was located in the Port 2 location within the U.S Laboratory onboard the International Space Station (ISS). Activation and deactivation of this facility is time consuming and operationally intensive, requiring coordination of three flight control positions, 47 nominal steps, 57 commands, 276 telemetry checks, and coordination of multiple ISS systems (both core and payload). The autonomous operations concept includes a reduction of the amount of data a crew operator is required to verify during activation or de-activation, as well as integration of procedure execution status and relevant data in a single integrated display. During execution, the auto-procedures provide a step-by-step messaging paradigm and a high level status upon termination. This messaging and high level status is the only data generated for operator display. To enhance situational awareness of the operator, the Web-based Procedure Display (WebPD) provides a novel approach to the issues of procedure display and execution tracking. For this demonstration, the procedure was initiated and monitored from the ground. As the Timeliner sequences executed, their high level execution status was transmitted to ground, for WebPD consumption.
2007-06-01
at the joint level on the actual functions they perform. The generic terms include Air Command and Control Agency ( ACCA ), Air Support Control...in the supporting text. USJFCOM 10/22/2007 16UNCLASSIFIED Naval Surface Fires Corps/MEF FSCA JTAC ACCA ASCA Div FSCA BCT/Regt FSCA Bn FSCA TACP TACP...FSCA/ ACCA CAS Aircraft FAC(A) Indirect Surface Fires Hostile Targets WOC TACP GLO Legend ACCA Air Command and Control Agency ISR Intelligence
77 FR 27202 - 36(b)(1) Arms Sales Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-09
... includes: Electronic Warfare Systems, Command, Control, Communication, Computers and Intelligence/Communication, Navigational and Identifications (C4I/CNI), Autonomic Logistics Global Support System (ALGS... Systems, Command, Control, Communication, Computers and Intelligence/Communication, Navigational and...
A Spoken Dialogue System for Command and Control
2012-10-01
Previous work in this domain focused on the formal representation of linguistic concepts in ontologies for data integration. His doctoral...20 2.8 Ongoing and Future Work .................................................................................... 20 2.8.1 Dynamic... work , we developed grammars with broader coverage for the domain of Livespace room-control. The goal was to provide commands and queries to be
Computers for Command and Control: An Airland Battle Requirement!
1984-05-01
systems can enhance communications, improve data management, and support decision making through information display (SEE REVERSE) JAN 173 E~lNOS~SIISLT...organizations to improve communications, enhance data management, and support decision making through graphical display techniques and mathematical...tactical commander’s control of maneuver forces. There are many reasons for the Army’s apparent inability to develop and field these systems. Among the
Marine Air Ground Task Force Distribution In The Battlespace
2016-09-01
benefit of this research is a proposed systemic structure with an associated web application that provides the MAGTF commander with critical...associated web application that provides the MAGTF commander with critical information for supporting operations. vi THIS PAGE INTENTIONALLY LEFT BLANK... web analytics in order to support the decision making process. The potential benefit of this research is a methodology with associated application
Estimation of Critical Population Support Requirements.
1984-05-30
VA 22160 W.U. 4921H 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Federal Emergency Management Agency May 30, 1984 Industrial Protection...ensure the availability of industrial production required to support the population, maintain defense capabilities and perform command and control ...the population, maintain national defense capabilities and perform command and control activi- ties during a national emergency such as a threat of a
Integration of cloud-based storage in BES III computing environment
NASA Astrophysics Data System (ADS)
Wang, L.; Hernandez, F.; Deng, Z.
2014-06-01
We present an on-going work that aims to evaluate the suitability of cloud-based storage as a supplement to the Lustre file system for storing experimental data for the BES III physics experiment and as a backend for storing files belonging to individual members of the collaboration. In particular, we discuss our findings regarding the support of cloud-based storage in the software stack of the experiment. We report on our development work that improves the support of CERN' s ROOT data analysis framework and allows efficient remote access to data through several cloud storage protocols. We also present our efforts providing the experiment with efficient command line tools for navigating and interacting with cloud storage-based data repositories both from interactive sessions and grid jobs.
NASA Technical Reports Server (NTRS)
1971-01-01
Individualized program direct costs for each satellite program are presented. This breakdown provides the activity level dependent costs for each satellite program. The activity level dependent costs, or, more simply, program direct costs, are comprised of the total payload costs (as these costs are strictly program dependent) and the direct launch vehicle costs. Only those incremental launch vehicle costs associated directly with the satellite program are considered. For expendable launch vehicles the direct costs include the vehicle investment hardware costs and the launch operations costs. For the reusable STS vehicles the direct costs include only the launch operations, recovery operations, command and control, vehicle maintenance, and propellant support. The costs associated with amortization of reusable vehicle investment, RDT&E range support, etc., are not included.
Commander Ken Bowersox films activity in Spacelab
1995-11-02
STS073-230-014 (20 October - 5 November 1995) --- Astronaut Kenneth D. Bowersox, STS-73 mission commander, uses a camcorder to record United States Microgravity Laboratory 2 (USML-2) activities onboard the Space Shuttle Columbia. Nearby, astronaut Kathryn C. Thornton, payload commander, prepares to open a supply chest to support one of many science experiments conducted by the seven-member crew during the 16-day USML-2 flight.
What It Takes. Air Force Command of Joint Operations
2009-01-01
Iraq Assistance Group IDE intermediate developmental education IO international organization ISAF International Security and Assistance Force ISR...Operations Table A.1—Continued Joint Task Force Mission/Operation Start End Service Command Rank JTF–Joint Area Support Group (JASG) Iraqi Freedom...be of interest to a wide group of Air Force personnel involved in the development and func- tion of the service’s command organizations, including
The Emperor’s New Clothes -- SF Force Structure and EAF Force Protection
2002-07-01
Competencies.129 USAF Major Commands and Wings should develop supporting Mission Essential Task Lists tailored to their specific situation. Outsourcing ...United States Marine Corps Command and Staff College Marine Corps University 2076 South Street Marine Corps Combat Development Command Quantico...Within current resource constraints, some present SF functions must be outsourced or reassigned, other present functions must be expanded, and some
Varga, Nicole L; Bauer, Patricia J
2017-11-01
To build a general knowledge base, it is imperative that individuals acquire, integrate, and further extend knowledge across experiences. For instance, in one episode an individual may learn that George Washington was the first president. In a separate episode they may then learn that Washington was the commander of the Continental Army. Integration of the information in memory may then support self-derivation of the new knowledge that the leader of the Continental Army was also the first president. Despite a considerable amount of fMRI research aimed at further elucidating the neuroanatomical regions supporting this ability, a consensus has yet to be reached with regards to the precise neurocognitive processes involved. In the present research, we capitalized on the high temporal resolution of event-related potentials (ERPs) to inform the time course of processes elicited during successful integration and further extension of new factual knowledge. Adults read novel, related stem facts and were tested for self-derivation of novel integration facts while ERPs were recorded. Consistent with current theoretical models, memory integration was first triggered by novelty detection within 400 msec of experience of a second, related stem fact. Two additional temporally staged encoding processes were then observed interpreted to reflect (1) explicit meaning comprehension and (2) representation of the integrated relation in memory. During the test for self-derivation, a single ERP was elicited, which presumably reflected retrieval and/or recombination of previously integrated knowledge. Together, the present research provides important insight into the time course of neurocognitive processing associated with the formation of a knowledge base.
DPM, Payload Commander Kathy Thornton and Commander Ken Bowersox in Spacelab
1995-11-05
STS073-229-014 (20 October - 5 November 1995) --- Astronauts Kathryn C. Thornton, STS-73 payload commander, and Kenneth D. Bowersox, mission commander, observe a liquid drop's activity at the Drop Physics Module (DPM) in the science module aboard the Earth-orbiting Space Shuttle Columbia. The drop is partially visible at the center of the left edge of the frame. The two were joined by three other NASA astronauts and two guest researchers for almost 16-days of in-orbit research in support of the U.S. Microgravity Laboratory (USML-2) mission.
Sharing Space Situational Awareness Data
NASA Astrophysics Data System (ADS)
Bird, D.
2010-09-01
The Commander, United States Strategic Command (CDRUSSTRATCOM) accepted responsibility for sharing space situational awareness (SSA) information/services with commercial & foreign entities from the US Air Force on 22 Dec 09 (formerly the Commercial & Foreign Entities Pilot Program). The requirement to share SSA services with non-US Government (USG) entities is derived from Title 10, United States Code, Section 2274 (2010) and is consistent with the new National Space Policy. US Strategic Command’s (USSTRATCOM’s) sharing of SSA services consists of basic services (Two-Line Elements, decay data and satellite catalog details) available on www.space-track.org and advanced services (conjunction assessment, launch support, etc) available with a signed agreement. USSTRATCOM has requested USG permission to enter into international agreements to enable SSA data exchange with our foreign partners. USSTRATCOM recently authorized Joint Functional Component Command for Space (JFCC SPACE) to share Conjunction Summary Messages (CSMs) with satellite owner/operators whose satellites have been identified as closely approaching another space object. CSMs contain vector and covariance data computed using Special Perturbations theory. To facilitate the utility of the CSMs, USSTRATCOM has and is hosting CSM Workshops to ensure satellite operators fully understand the data contained in the CSM in order to provide an informed recommendation to their leadership. As JFCC SPACE matures its ability to accept ephemeris data from a satellite operator, it will be necessary to automatically transfer that data from one security level to another. USSTRATCOM and Air Force Space Command are coordinating the integration of a cross domain solution that will allow JFCC SPACE to do just that. Finally, USSTRATCOM is also working with commercial and governmental organizations to develop an internationally-accepted conjunction assessment message. The United States Government (USG), specifically the Department of Defense, has been integrating data from diverse sources for decades. In recent years, more and more commercial entities have been integrating our data into their operations, whether to use General Perturbation (GP) Two-Line Elements (TLEs) to perform a rudimentary form of conjunction assessment (CA) or to provide a new app for the iPhone. For the longest time, the USG was one of the few organizations able to fund and conduct space surveillance using optical telescopes and various types of radar. Unfortunately, despite decades of experience tracking objects in space, we had not matured either our equipment or our processes to the point that we were able to prevent the Iridium-Cosmos collision about 18 months ago. As a result, there are two belts of debris orbiting our planet, today and for years to come. As space has become more congested and budgets have shrunk, the need to integrate data has increased. Fortunately, the number of organizations who have developed or are developing space situational awareness (SSA) capabilities, including analytical tools, has also increased.
Total Army Analysis Supporting Maximization of National Resources
2013-03-01
Robert M. Mundell Department of Command Leadership and Management 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY...Colonel Robert M. Mundell Department of Command Leadership and Management Project Adviser This manuscript is submitted in partial fulfillment
Application Of Optical Techniques To Command, Control, And Communications (C3) Systems
NASA Astrophysics Data System (ADS)
Weinberg, M.; Steensma, P. D.
1981-02-01
This paper identifies and discusses specific applications of the optical transmission technology to various Command Control and Communications (C3) systems. Candidate C3 systems will first be identified and discussed briefly. These will include: 407L/485L Tactical Air Defense Systems (USAF) TAOC-85 Tactical Air Operations Central (USMC) SACDIN Strategic Air Command Digital Integrated Network (USAF) MX-C3 Missile "X" Command Control Communications Network The first tr are classified as tactical C3 systems while the latter two are classified as strategic C systems. Potential optical applications will be identified along with the benefits derived. Each application will be discussed with key parameters, cost performance benefits, potential problem areas, time frame for development identified.
The contaminant analysis automation robot implementation for the automated laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younkin, J.R.; Igou, R.E.; Urenda, T.D.
1995-12-31
The Contaminant Analysis Automation (CAA) project defines the automated laboratory as a series of standard laboratory modules (SLM) serviced by a robotic standard support module (SSM). These SLMs are designed to allow plug-and-play integration into automated systems that perform standard analysis methods (SAM). While the SLMs are autonomous in the execution of their particular chemical processing task, the SAM concept relies on a high-level task sequence controller (TSC) to coordinate the robotic delivery of materials requisite for SLM operations, initiate an SLM operation with the chemical method dependent operating parameters, and coordinate the robotic removal of materials from the SLMmore » when its commands and events has been established to allow ready them for transport operations as well as performing the Supervisor and Subsystems (GENISAS) software governs events from the SLMs and robot. The Intelligent System Operating Environment (ISOE) enables the inter-process communications used by GENISAS. CAA selected the Hewlett-Packard Optimized Robot for Chemical Analysis (ORCA) and its associated Windows based Methods Development Software (MDS) as the robot SSM. The MDS software is used to teach the robot each SLM position and required material port motions. To allow the TSC to command these SLM motions, a hardware and software implementation was required that allowed message passing between different operating systems. This implementation involved the use of a Virtual Memory Extended (VME) rack with a Force CPU-30 computer running VxWorks; a real-time multitasking operating system, and a Radiuses PC compatible VME computer running MDS. A GENISAS server on The Force computer accepts a transport command from the TSC, a GENISAS supervisor, over Ethernet and notifies software on the RadiSys PC of the pending command through VMEbus shared memory. The command is then delivered to the MDS robot control software using a Windows Dynamic Data Exchange conversation.« less
NASA ARCH- A FILE ARCHIVAL SYSTEM FOR THE DEC VAX
NASA Technical Reports Server (NTRS)
Scott, P. J.
1994-01-01
The function of the NASA ARCH system is to provide a permanent storage area for files that are infrequently accessed. The NASA ARCH routines were designed to provide a simple mechanism by which users can easily store and retrieve files. The user treats NASA ARCH as the interface to a black box where files are stored. There are only five NASA ARCH user commands, even though NASA ARCH employs standard VMS directives and the VAX BACKUP utility. Special care is taken to provide the security needed to insure file integrity over a period of years. The archived files may exist in any of three storage areas: a temporary buffer, the main buffer, and a magnetic tape library. When the main buffer fills up, it is transferred to permanent magnetic tape storage and deleted from disk. Files may be restored from any of the three storage areas. A single file, multiple files, or entire directories can be stored and retrieved. archived entities hold the same name, extension, version number, and VMS file protection scheme as they had in the user's account prior to archival. NASA ARCH is capable of handling up to 7 directory levels. Wildcards are supported. User commands include TEMPCOPY, DISKCOPY, DELETE, RESTORE, and DIRECTORY. The DIRECTORY command searches a directory of savesets covering all three archival areas, listing matches according to area, date, filename, or other criteria supplied by the user. The system manager commands include 1) ARCHIVE- to transfer the main buffer to duplicate magnetic tapes, 2) REPORTto determine when the main buffer is full enough to archive, 3) INCREMENT- to back up the partially filled main buffer, and 4) FULLBACKUP- to back up the entire main buffer. On-line help files are provided for all NASA ARCH commands. NASA ARCH is written in DEC VAX DCL for interactive execution and has been implemented on a DEC VAX computer operating under VMS 4.X. This program was developed in 1985.
Multimodal interaction for human-robot teams
NASA Astrophysics Data System (ADS)
Burke, Dustin; Schurr, Nathan; Ayers, Jeanine; Rousseau, Jeff; Fertitta, John; Carlin, Alan; Dumond, Danielle
2013-05-01
Unmanned ground vehicles have the potential for supporting small dismounted teams in mapping facilities, maintaining security in cleared buildings, and extending the team's reconnaissance and persistent surveillance capability. In order for such autonomous systems to integrate with the team, we must move beyond current interaction methods using heads-down teleoperation which require intensive human attention and affect the human operator's ability to maintain local situational awareness and ensure their own safety. This paper focuses on the design, development and demonstration of a multimodal interaction system that incorporates naturalistic human gestures, voice commands, and a tablet interface. By providing multiple, partially redundant interaction modes, our system degrades gracefully in complex environments and enables the human operator to robustly select the most suitable interaction method given the situational demands. For instance, the human can silently use arm and hand gestures for commanding a team of robots when it is important to maintain stealth. The tablet interface provides an overhead situational map allowing waypoint-based navigation for multiple ground robots in beyond-line-of-sight conditions. Using lightweight, wearable motion sensing hardware either worn comfortably beneath the operator's clothing or integrated within their uniform, our non-vision-based approach enables an accurate, continuous gesture recognition capability without line-of-sight constraints. To reduce the training necessary to operate the system, we designed the interactions around familiar arm and hand gestures.
Zane, Richard D; Prestipino, Ann L
2004-01-01
Hospital disaster manuals and response plans often lack formal command structure; instead, they rely on the presence of key individuals who are familiar with hospital operations, or who are in leadership positions during routine, day-to-day operations. Although this structure occasionally may prove to be successful, it is unreliable, as this leadership may be unavailable at the time of the crisis, and may not be sustainable during a prolonged event. The Hospital Emergency Incident Command System (HEICS) provides a command structure that does not rely on specific individuals, is flexible and expandable, and is ubiquitous in the fire service, emergency medical services, military, and police agencies, thus allowing for ease of communication during event management. A descriptive report of the implementation of the HEICS throughout a large healthcare network is reviewed. Implementation of the HEICS provides a consistent command structure for hospitals that enables consistency and commonality with other hospitals and disaster response entities.
Does the United States’ Strategic Mobility Program Support the Needs of Operational Commanders
2010-10-01
Does the United States’ Strategic Mobility Program Support the Needs of Operational Commanders? A Monograph by MAJ Erik E. Hilberg United...inability to project certain capabilities? This monograph argues that the Department of Defense’s shortfalls in strategic sealift will limit a ground...quantitative research associated with this study goes through a qualitative analysis. The research results of this study then undergo an examination
A Lessons Learned Knowledge Warehouse to Support the Army Knowledge Management Command-Centric
2004-03-01
Warehouse to Support the Army Knowledge Management Command-Centric increase the quality and availability of information in context ( knowledge ) to the... information , geographical information , knowledge base, Intelligence data (HUMINT, SIGINT, etc.); and • • Human Computer Interaction (HCI): allows...the Data Fusion Process from the HCI point of view? Can the LL Knowledge Base provide any valuable information to achieve better estimates of the
On-Command Exoskeleton for Countermeasure Microgravity Effects on Muscles and Bones
NASA Astrophysics Data System (ADS)
Bar-Cohen, Y.; Bao, X.; Badescu, M.; Sherrit, S.; Mavroidis, C.; Unluhisarcikh, O.; Pietrusinski, M.; Rajulu, S.; Berka, R.; Cowley, M.
2012-06-01
On-command exoskeleton with impeding and augmenting elements would support the operation of astronauts traveling to Mars. Thus, countermeasure deleterious effects on the muscles and bones during travel and assist their physical activity on Mars.
A New Approach to Site Demand-Based Level Inventory Optimization
2016-06-01
Command (2016) Navy supply chain management. Accessed April 17, 2016, https://www.navsup.navy.mil/navsup/capabilities/nscm Salmeron J, Craparo E (2016...Engineering 53: 122-142. Naval Supply Systems Command (2016a) Navy supply chain management. Accessed April 17, 2016, https://www.navsup.navy.mil...distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Naval Supply Systems Command (NAVSUP) supports Navy, Marine Corps
Design of a command, communications, and control van (surrogate)
NASA Astrophysics Data System (ADS)
Holder, J. Darryl; Fishback, Jerome
1989-03-01
This report describes the design, construction, and checkout of a radio and telephone multi-mode communications hub. This unit is to serve as a surrogate for a command, control, and communications van which is to be used in support of a special series of testing at a remote site. This unit is assembled in a military four-wheel van and has a crew of a commander and three operators. Radio communications monitoring can be performed in all popular modes of transmission from 50 KHz to 2 GHz and transmission can be performed on selected frequencies in the 40-meter, 6-meter, and 2-meter bands. Both voice and digital (teletype, packet, facsimile, etc.) communications are supported.
Ekberg, Joakim; Ericson, Leni; Timpka, Toomas; Eriksson, Henrik; Nordfeldt, Sam; Hanberger, Lena; Ludvigsson, Johnny
2010-04-01
Self-directed learning denotes that the individual is in command of what should be learned and why it is important. In this study, guidelines for the design of Web 2.0 systems for supporting diabetic adolescents' every day learning needs are examined in light of theories about information behaviour and social learning. A Web 2.0 system was developed to support a community of practice and social learning structures were created to support building of relations between members on several levels in the community. The features of the system included access to participation in the culture of diabetes management practice, entry to information about the community and about what needs to be learned to be a full practitioner or respected member in the community, and free sharing of information, narratives and experience-based knowledge. After integration with the key elements derived from theories of information behaviour, a preliminary design guideline document was formulated.
STS-53 Commander Walker adjusts LES prior to JSC emergency egress training
NASA Technical Reports Server (NTRS)
1992-01-01
STS-53 Discovery, Orbiter Vehicle (OV) 103, Commander David M. Walker pulls at launch and entry suit (LES) neck ring and neck dam in an attempt to adjust it and/or loosen it. Walker appears uncomfortable and makes the adjustments in preparation for launch emergency egress bailout procedures in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE.
Development of the Special Operations Combat Management System
1999-08-01
Distribution Unlimited Prepared for U. S. Army Soldier and Biological Chemical Command Soldier Systems Center Natick, Massachusetts 01760-5020 19990826 022...Army Soldier and Biological Chemical Command, Soldier Systems Center, ATTN: AMSSB-RSS-D(N) (H. Girolamo), Natick, MA 01760-5020 14. ABSTRACT The...system design, integration and test. American Megatrends Inc. provided the motherboard circuit design, layout and production. Tactical Technologies Inc
Gnuastro: GNU Astronomy Utilities
NASA Astrophysics Data System (ADS)
Akhlaghi, Mohammad
2018-01-01
Gnuastro (GNU Astronomy Utilities) manipulates and analyzes astronomical data. It is an official GNU package of a large collection of programs and C/C++ library functions. Command-line programs perform arithmetic operations on images, convert FITS images to common types like JPG or PDF, convolve an image with a given kernel or matching of kernels, perform cosmological calculations, crop parts of large images (possibly in multiple files), manipulate FITS extensions and keywords, and perform statistical operations. In addition, it contains programs to make catalogs from detection maps, add noise, make mock profiles with a variety of radial functions using monte-carlo integration for their centers, match catalogs, and detect objects in an image among many other operations. The command-line programs share the same basic command-line user interface for the comfort of both the users and developers. Gnuastro is written to comply fully with the GNU coding standards and integrates well with all Unix-like operating systems. This enables astronomers to expect a fully familiar experience in the source code, building, installing and command-line user interaction that they have seen in all the other GNU software that they use. Gnuastro's extensive library is included for users who want to build their own unique programs.
UAS-NAS Integrated Human in the Loop: Test Environment Report
NASA Technical Reports Server (NTRS)
Murphy, Jim; Otto, Neil; Jovic, Srba
2015-01-01
The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration in the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability (SSI), Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research was broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of the Test Infrastructure theme was to enable development and validation of airspace integration procedures and performance standards, including the execution of integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project developed an adaptable, scalable, and schedulable relevant test environment incorporating live, virtual, and constructive elements capable of validating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project planned to conduct three integrated events: a Human-in-the-Loop simulation and two Flight Test series that integrated key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events were built on the technical achievements, fidelity and complexity of previous simulations and tests, resulting in research findings that support the development of regulations governing the access of UAS into the NAS. The purpose of this document is to describe how well the system under test was representative
BMDS/SSA Integrated Sensing Demonstration (BISD)
NASA Astrophysics Data System (ADS)
Turner, T.; Springford, K.; Grimaldi, L.
2011-09-01
This demonstration is intended to provide a near-term prototype, leave-behind capability for integrating Ballistic Missile Defense System (BMDS) ground sensors for use in the Space Situational Awareness (SSA) mission. Closed-loop tasking and cueing capability will be implemented, and a demonstration of net-centric space data dissemination using the BMDS sensors will be undertaken using various SSA mission threads. The demonstration is designed to highlight the implications of modifying software and/or hardware at the BMDS command and control node so that cost, risk, and schedule for an operational implementation can be fully understood. Additionally, this demonstration is intended to assess the impacts to both mission areas as a multi-mission, non-traditional sensor capability is integrated into the SSA mission. A successful demonstration will have many leave-behind capabilities and first-of-its-kind achievements to include: a) an extensible SSA operational prototype configuration for BMDS X-Band radars such as AN/TPY-2 and Sea-Based X-Band (SBX) b) a prototype SSA tasking and cueing capability between the Joint Functional Component Command for Space (JFCC Space) Joint Space Operations Center (JSpOC) and the Command, Control, Battle Management, and Communications (C2BMC) Experimental Laboratory (X-Lab), extensible to the Combatant Commands (COCOMS), and out to BMDS sensors c) a capability for a twoway, net-centric, interface for JSpOC space operations, to include translation from net-centric communications to legacy systems and d) processing of BMDS X-Band Radar tracks in the Space Defense Operations Center (SPADOC).
Multi-Agent Diagnosis and Control of an Air Revitalization System for Life Support in Space
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Kowing, Jeffrey; Nieten, Joseph; Graham, Jeffrey s.; Schreckenghost, Debra; Bonasso, Pete; Fleming, Land D.; MacMahon, Matt; Thronesbery, Carroll
2000-01-01
An architecture of interoperating agents has been developed to provide control and fault management for advanced life support systems in space. In this adjustable autonomy architecture, software agents coordinate with human agents and provide support in novel fault management situations. This architecture combines the Livingstone model-based mode identification and reconfiguration (MIR) system with the 3T architecture for autonomous flexible command and control. The MIR software agent performs model-based state identification and diagnosis. MIR identifies novel recovery configurations and the set of commands required for the recovery. The AZT procedural executive and the human operator use the diagnoses and recovery recommendations, and provide command sequencing. User interface extensions have been developed to support human monitoring of both AZT and MIR data and activities. This architecture has been demonstrated performing control and fault management for an oxygen production system for air revitalization in space. The software operates in a dynamic simulation testbed.
Automated CPX support system preliminary design phase
NASA Technical Reports Server (NTRS)
Bordeaux, T. A.; Carson, E. T.; Hepburn, C. D.; Shinnick, F. M.
1984-01-01
The development of the Distributed Command and Control System (DCCS) is discussed. The development of an automated C2 system stimulated the development of an automated command post exercise (CPX) support system to provide a more realistic stimulus to DCCS than could be achieved with the existing manual system. An automated CPX system to support corps-level exercise was designed. The effort comprised four tasks: (1) collecting and documenting user requirements; (2) developing a preliminary system design; (3) defining a program plan; and (4) evaluating the suitability of the TRASANA FOURCE computer model.
1992-04-03
CAPABILITIES AND EFFECTIVENESS U J 1 V> ELECTE ~ JUN181Ö92 BY COLONEL HERMAN KEIZER, JR., CHAPLAIN COLONEL KENNETH A. SEIFRIED, CHAPLAIN LIEUTENANT...Religious Support Activities and Tech- nical Doctrine, and Command Team Assessment of UMT Actions. Capabilities, and Effectiveness 12. PERSONAL AUTHOR...historical review in order to provide pragmatic recommendations for effective religious support in the next war. 20. DISTRIBUTION/AVAILABILITY OF
Iridium: Global OTH data communications for high altitude scientific ballooning
NASA Astrophysics Data System (ADS)
Denney, A.
While the scientific community is no stranger to embracing commercially available technologies, the growth and availability of truly affordable cutting edge technologies is opening the door to an entirely new means of global communications. For many years high altitude ballooning has provided science an alternative to costly satellite based experimental platforms. As with any project, evolution becomes an integral part of development. Specifically in the NSBF ballooning program, where flight durations have evolved from the earlier days of hours to several weeks and plans are underway to provide missions up to 100 days. Addressing increased flight durations, the harsh operational environment, along with cumbersome and outdated systems used on existing systems, such as the balloon vehicles Support Instrumentation Package (SIP) and ground-based systems, a new Over-The-Horizon (OTH) communications medium is sought. Current OTH equipment planning to be phased-out include: HF commanding systems, ARGOS PTT telemetry downlinks and INMARSAT data terminals. Other aspects up for review in addition to the SIP to utilize this communications medium include pathfinder balloon platforms - thereby, adding commanding abilities and increased data rates, plus providing a package for ultra-small experiments to ride aloft. Existing communication systems employed by the National Scientific Balloon Facility ballooning program have been limited not only by increased cost, slow data rates and "special government use only" services such as TDRSS (Tracking and Data Relay Satellite System), but have had to make special provisions to geographical flight location. Development of the Support Instrumentation Packages whether LDB (Long Duration Balloon), ULDB (Ultra Long Duration Balloon) or conventional ballooning have been plagued by non-standard systems configurations requiring additional support equipment for different regions and missions along with a myriad of backup for redundancy. Several beneficial points provided by the Iridium platform include pure global accessibility (as well as polar), cost effectiveness because it is available as a COTS (Commercially Off The Shelf) technology, reliability in that the equipment must operate in extreme conditions (near space), integration and development time into current systems must be minimized. As a bonus Motorola and NAL Research Corporation are developing SBD (Short Burst Data) into the Iridium network. This may lead the way to a global IP (Internet Protocol) node based ballooning platform. The Iridium satellite data modems employ the Iridium Low-Earth Orbit (LEO) satellite network. The scope of this paper is to introduce an OTH communications alternative, albeit not necessarily a primary one, to existing ballooning platforms using COTS based emerging technologies. Design aspects, characteristics, actual flight testing statistics, principles of the Iridium modems and communication paths are described including payload and support instrumentation interfacing. Not limited to high altitude ballooning, the Iridium communications platform opens a new era in remote commanding and data retrieval.
2014-01-06
HOUSTON – Chris Ferguson, a former space shuttle commander who is now director of Crew and Mission Operations for Boeing Space Exploration, takes the controls inside the company's CST-100 spacecraft simulator. To Ferguson's right, an engineer observes the exercise. Boeing demonstrated that the CST-100's software allows a human pilot to take over control of the spacecraft from the computer during all phases of a mission following separation from the launch vehicle. The pilot-in-the-loop demonstration at the Houston Product Support Center is a milestone under Boeing's Commercial Crew Integrated Capability agreement with the agency and its Commercial Crew Program. Photo credit: NASA/Bill Stafford
NASA Astrophysics Data System (ADS)
1982-07-01
Plant and system level operating instructions are provided for the Barstow Solar Pilot Plant. Individual status instructions are given that identify plant conditions, process controller responsibilities, process conditions and control accuracies, operating envelopes, and operator cautions appropriate to the operating condition. Transition operating instructions identify the sequence of activities to be carried out to accomplish the indicated transition. Most transitions involve the startup or shutdown of an individual flowpath. Background information is provided on collector field operations, and the heliostat groupings and specific commands used in support receiver startup are defined.
Implementing system simulation of C3 systems using autonomous objects
NASA Technical Reports Server (NTRS)
Rogers, Ralph V.
1987-01-01
The basis of all conflict recognition in simulation is a common frame of reference. Synchronous discrete-event simulation relies on the fixed points in time as the basic frame of reference. Asynchronous discrete-event simulation relies on fixed-points in the model space as the basic frame of reference. Neither approach provides sufficient support for autonomous objects. The use of a spatial template as a frame of reference is proposed to address these insufficiencies. The concept of a spatial template is defined and an implementation approach offered. Discussed are the uses of this approach to analyze the integration of sensor data associated with Command, Control, and Communication systems.
A model that integrates eye velocity commands to keep track of smooth eye displacements.
Blohm, Gunnar; Optican, Lance M; Lefèvre, Philippe
2006-08-01
Past results have reported conflicting findings on the oculomotor system's ability to keep track of smooth eye movements in darkness. Whereas some results indicate that saccades cannot compensate for smooth eye displacements, others report that memory-guided saccades during smooth pursuit are spatially correct. Recently, it was shown that the amount of time before the saccade made a difference: short-latency saccades were retinotopically coded, whereas long-latency saccades were spatially coded. Here, we propose a model of the saccadic system that can explain the available experimental data. The novel part of this model consists of a delayed integration of efferent smooth eye velocity commands. Two alternative physiologically realistic neural mechanisms for this integration stage are proposed. Model simulations accurately reproduced prior findings. Thus, this model reconciles the earlier contradictory reports from the literature about compensation for smooth eye movements before saccades because it involves a slow integration process.
Robotics development for the enhancement of space endeavors
NASA Astrophysics Data System (ADS)
Mauceri, A. J.; Clarke, Margaret M.
Telerobotics and robotics development activities to support NASA's goal of increasing opportunities in space commercialization and exploration are described. The Rockwell International activities center is using robotics to improve efficiency and safety in three related areas: remote control of autonomous systems, automated nondestructive evaluation of aspects of vehicle integrity, and the use of robotics in space vehicle ground reprocessing operations. In the first area, autonomous robotic control, Rockwell is using the control architecture, NASREM, as the foundation for the high level command of robotic tasks. In the second area, we have demonstrated the use of nondestructive evaluation (using acoustic excitation and lasers sensors) to evaluate the integrity of space vehicle surface material bonds, using Orbiter 102 as the test case. In the third area, Rockwell is building an automated version of the present manual tool used for Space Shuttle surface tile re-waterproofing. The tool will be integrated into an orbiter processing robot being developed by a KSC-led team.
Measuring nursing essential contributions to quality patient care outcomes.
Wolgast, Kelly A; Taylor, Katherine; Garcia, Dawn; Watkins, Miko
2011-01-01
Workload Management System for Nursing (WMSN) is a core Army Medical Department business system that has provided near real-time, comprehensive nursing workload and manpower data for decision making at all levels for over 25 years. The Army Manpower Requirements and Documentation Agency populates data from WMSN into the Manpower Staffing Standards System (Inpatient module within Automated Staffing Assessment Model). The current system, Workload Management System for Nursing Internet (WMSNi), is an interim solution that requires additional functionalities for modernization and integration at the enterprise level. The expanding missions and approved requirements for WMSNi support strategic initiatives on the Army Medical Command balanced scorecard and require continued sustainment for multiple personnel and manpower business processes for both inpatient and outpatient nursing care. This system is currently being leveraged by the TRICARE Management Activity as an interim multiservice solution, and is being used at 24 Army medical treatment facilities. The evidenced-based information provided to Army decision makers through the methods used in the WMSNi will be essential across the Army Medical Command throughout the system's life cycle.
Commanding Officer Sergeant Major Sections S1 - Administration S3 - Training S4 - Logistics Career Planner Operation Command, Pacific Hawaii Judicial Circuit Consolidated Storage Program DLA Customer Support Warrior Detachment College of Distance Education & Training Patrol and Reconnaissance Wing TWO Patrol
Autonomous Command Operation of the WIRE Spacecraft
NASA Technical Reports Server (NTRS)
Prior, Mike; Walyus, Keith; Saylor, Rick
1999-01-01
This paper presents the end-to-end design architecture for an autonomous commanding capability to be used on the Wide Field Infrared Explorer (WIRE) mission for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented an autonomous command loading capability. This capability allows completely unattended operations over a typical two-day weekend period.
Payne, Thomas H; Alonso, W David; Markiel, J Andrew; Lybarger, Kevin; White, Andrew A
2018-01-01
We describe the development and design of a smartphone app-based system to create inpatient progress notes using voice, commercial automatic speech recognition software, with text processing to recognize spoken voice commands and format the note, and integration with a commercial EHR. This new system fits hospital rounding workflow and was used to support a randomized clinical trial testing whether use of voice to create notes improves timeliness of note availability, note quality, and physician satisfaction with the note creation process. The system was used to create 709 notes which were placed in the corresponding patient's EHR record. The median time from pressing the Send button to appearance of the formatted note in the Inbox was 8.8 min. It was generally very reliable, accepted by physician users, and secure. This approach provides an alternative to use of keyboard and templates to create progress notes and may appeal to physicians who prefer voice to typing. Copyright © 2017 Elsevier Inc. All rights reserved.
Supporting Increased Autonomy for a Mars Rover
NASA Technical Reports Server (NTRS)
Estlin, Tara; Castano, Rebecca; Gaines, Dan; Bornstein, Ben; Judd, Michele; Anderson, Robert C.; Nesnas, Issa
2008-01-01
This paper presents an architecture and a set of technology for performing autonomous science and commanding for a planetary rover. The MER rovers have outperformed all expectations by lasting over 1100 sols (or Martian days), which is an order of magnitude longer than their original mission goal. The longevity of these vehicles will have significant effects on future mission goals, such as objectives for the Mars Science Laboratory rover mission (scheduled to fly in 2009) and the Astrobiology Field Lab rover mission (scheduled to potentially fly in 2016). Common objectives for future rover missions to Mars include the handling of opportunistic science, long-range or multi-sol driving, and onboard fault diagnosis and recovery. To handle these goals, a number of new technologies have been developed and integrated as part of the CLARAty architecture. CLARAty is a unified and reusable robotic architecture that was designed to simplify the integration, testing and maturation of robotic technologies for future missions. This paper focuses on technology comprising the CLARAty Decision Layer, which was designed to support and validate high-level autonomy technologies, such as automated planning and scheduling and onboard data analysis.
Brahms Mobile Agents: Architecture and Field Tests
NASA Technical Reports Server (NTRS)
Clancey, William J.; Sierhuis, Maarten; Kaskiris, Charis; vanHoof, Ron
2002-01-01
We have developed a model-based, distributed architecture that integrates diverse components in a system designed for lunar and planetary surface operations: an astronaut's space suit, cameras, rover/All-Terrain Vehicle (ATV), robotic assistant, other personnel in a local habitat, and a remote mission support team (with time delay). Software processes, called agents, implemented in the Brahms language, run on multiple, mobile platforms. These mobile agents interpret and transform available data to help people and robotic systems coordinate their actions to make operations more safe and efficient. The Brahms-based mobile agent architecture (MAA) uses a novel combination of agent types so the software agents may understand and facilitate communications between people and between system components. A state-of-the-art spoken dialogue interface is integrated with Brahms models, supporting a speech-driven field observation record and rover command system (e.g., return here later and bring this back to the habitat ). This combination of agents, rover, and model-based spoken dialogue interface constitutes a personal assistant. An important aspect of the methodology involves first simulating the entire system in Brahms, then configuring the agents into a run-time system.
Consolidating DoD Housing and Allowance Data Collection
1991-01-01
data . In addition, the military staff chains of command, unit chains of command, DMDC, and the Navy’s Facilities Support Office (FACSO) become...non-pay section of the form if the Finance Office abandons it. However, the current methods of collecting data are equally risky, and statistical ...minimum standards are rescored as acceptable. The survey data sheets are then mailed to the Navy’s Facility Support Office (FACSO) at Port Hueneme, CA
2009-04-01
non-governmental levels . The military planner faces a daunting question—in what missions are NGO partnerships appropriate? AU/ACSC/LaGrou/AY09 8...for a wide range of operations. As the illustration shows, partnerships at the cooperative level are more likely to exist (and succeed) in...Support of Combatant Commander Objectives—Getting Past the Vision Statement by Edward J. LaGrou, Major, USAF A Research Report
U.S. Special Operations Forces (SOF): Background and Issues for Congress
2017-01-06
Defense. The Assistant Secretary of Defense for Special Operations and Low Intensity Conflict ( ASD /SOLIC), a member of the Office of the Secretary of...Defense for Policy (OSD-P), provides civilian oversight over USSOCOM activities. The current ASD /SOLIC is Mr. Michael Lumpkin, a former Navy SEAL...supports U.S. European Command; CCSA is the Army; Special Operations Command Central (SOCCENT), MacDill Air Force Base, FL; supports U.S
Decision Support Systems for Operational Level Command and Control
1990-04-30
business -based. These definitions still have applicability to military command and control - the business of military operations. A synthesis of the...other hand, there are such studies that were conducted in business environments. An eight week empincal study39 was 37 bd, pp 8-1 I. 38 Ranesh Shada...pp 139-158. 19 conducted and the groups with access to decision support system made significantly more effective decisions :n a business simulation
The Big Issue: Command and Combat in the Information Age
2003-02-01
a new construct might emerge based on sensing forces, strike forces and manoeuvre forces.5 Whatever the outcome , an agile and razor-sharp command...wide range of mission support functions carried out in the home base – including intelligence, legal support, course of action analysis and operational... analysis as well as rear- based logistics. At the strategic level, once a major expeditionary operation is underway, rear operations might also embrace
1999-07-16
Commander of the Air Force Space Command, General Richard B. Myers (left) joins Ed Gormel (center) and Commander of the 45th Space Wing Brig. Gen. F. Randall Starbuck (right) after the presentation of the Hammer Award. The Hammer Award is Vice President Al Gore's special recognition of teams of federal employees who have made significant contributions in support of the principles of the National Partnership for Reinventing Government. Morley Winograd, director of the National Partnership for Reinventing Government, presented the award to the Joint Base Operations and Support Contract (J-BOSC) Source Evaluation Board (SEB). Gormel is a co-chair of the SEB. This Hammer Award acknowledges the accomplishments of a joint NASA and Air Force team that established the J-BOSC SEB. The team developed and implemented the acquisition strategy for establishing a single set of base operations and support service requirements for KSC, Cape Canaveral Air Station and Patrick Air Force Base
The Hammer Award is presented to KSC and 45th Space Wing.
NASA Technical Reports Server (NTRS)
1999-01-01
Commander of the Air Force Space Command, General Richard B. Myers (left) joins Ed Gormel (center) and Commander of the 45th Space Wing Brig. Gen. F. Randall Starbuck (right) after the presentation of the Hammer Award. The Hammer Award is Vice President Al Gore's special recognition of teams of federal employees who have made significant contributions in support of the principles of the National Partnership for Reinventing Government. Morley Winograd, director of the National Partnership for Reinventing Government, presented the award to the Joint Base Operations and Support Contract (J-BOSC) Source Evaluation Board (SEB). Gormel is a co-chair of the SEB. This Hammer Award acknowledges the accomplishments of a joint NASA and Air Force team that established the J-BOSC SEB. The team developed and implemented the acquisition strategy for establishing a single set of base operations and support service requirements for KSC, Cape Canaveral Air Station and Patrick Air Force Base.
Military Review: Operation Desert Shield/Desert Storm
1991-09-01
areas of responsibility and ob- where he could best interact with key operation- jectives to influence the outcome of the battle. al wmmanders: the...Air component command- Key to successful operational command was er for air support, the Saudi Joint Forces Coin- the interaction of the two command...opterira~~ d-~ a~ ini ection as in available news people in the field. - Vtnmam.... The operational securiy/top safety prMAlem Dese ~amnind actio oereid
The radar eye blinded: The USAF and electronic warfare, 1945-1955
NASA Astrophysics Data System (ADS)
Kuehl, Daniel T.
This study concentrates on the doctrinal and operational elements of the Air Force's use of ECM to support offensive combat operations. It does not directly address such factors as intelligence gathering or technology development except as they pertain to the primary topic. As a result, the study focuses closely on the activities of the Air Force's two primary combat commands, the Strategic Air Command (SAC), and Tactical Air Command (TAC).
Status of Centrifugal Impeller Internal Aerodynamics: Experiments and Calculations
1979-02-01
Dan Adler February 1979 TJ Approved for public release; distribution unlimited 267.5 16 Prepared for: A35 Naval Air Systems Command Washington...The work reported herein was supported by the Naval Air Systems Command, Washington, DC. Reproduction of all or part of this report is authorized...6115 3N; N00019-79-WR-91115 II. CONTROLLING OFFICE NAME AND ADDRESS Naval Air Systems Command Washington, DC 20361 12. REPORT DATE
To Determine the Impact of OPMS on the Development of Commanders.
1982-04-19
and training policies are designed to promote the development of leadership , managerial, and technical skills.5 In spite of the foregoing, there is...corps into commanders and staff, with the in- evitable consequence of each group convinced the other does not under- stand its problems . Further, the...developing leadership skills needed to effec- tively command troops* Caterory Label Combat Arms Combat Support Combat Svc Spt Strongly agree/agree 65% 58
2006-04-01
Banking Mr. Robert Luby, IBM Dr. Robert Lucky, Telcordia Technologies Mr. William Lynn, Raytheon Mr. Dave Oliver, EADS North America GOVERNMENT...MAY 2005 Central Command (CENTCOM) COL Peter Zielinski CENTCOM Office of Force Transformation (OFT) Review of COCOM Experimentation COL Richard...for Defense Analyses Mr. Patrick McCarthy, U.S. Joint Forces Command Mr. Stephen Moore, U.S. Joint Forces Command MAY 10, 2005 COL Peter Zielinski
Land Ahoy! Understanding Submarine Command and Control During the Completion of Inshore Operations.
Roberts, Aaron P J; Stanton, Neville A; Fay, Daniel
2017-12-01
The aim of this study was to use multiple command teams to provide empirical evidence for understanding communication flow, information pertinence, and tasks undertaken in a submarine control room when completing higher- and lower-demand inshore operation (INSO) scenarios. The focus of submarine operations has changed, and submarines are increasingly required to operate in costal littoral zones. However, submarine command team performance during INSO is not well understood, particularly from a sociotechnical systems perspective. A submarine control-room simulator was built. The creation of networked workstations allowed a team of nine operators to perform tasks completed by submarine command teams during INSO. The Event Analysis of Systematic Teamwork method was used to model the social, task, and information networks and to describe command team performance. Ten teams were recruited for the study, affording statistical comparisons of how command-team roles and level of demand affected performance. Results indicated that the submarine command-team members are required to rapidly integrate sonar and visual data as the periscope is used, periodically, in a "duck-and-run" fashion, to maintain covertness. The fusion of such information is primarily completed by the operations officer (OPSO), with this operator experiencing significantly greater demand than any other operator. The OPSO was a bottleneck in the command team when completing INSO, experiencing similar load in both scenarios, suggesting that the command team may benefit from data synthesis tasks being more evenly distributed within the command team. The work can inform future control-room design and command-team ways of working by identifying bottlenecks in terms of information and task flow between operators.
77 FR 66956 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-08
...://www.regulations.gov . Follow the instructions for submitting comments. Mail: Federal Docket Management... Transportation Command, Command Change Management, ATTN: Diana Roach, 508 Scott Drive, Scott Air Force Base, IL... more effective in providing global mobility solutions to support customer requirements in peace and war...
General Electric Unattended Power System Study. Addendum
1980-05-01
AND NAVIGATION SYSTEMS ELECTRONIC SYSTEMS DIVISION AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE Hascom Air Force Base, Massachusetts DTIC C-3 B I...MITRE Corporation under Project No. 633A. The contract is sponsored by the Electronic Systems *Division, Air Force Systems Command, Hanscom Air Force...is delivered fully integrated, tested, and certified. The system consists of a combustion system, vapor generator, turbo- alternator, air -cooled
Air Mobility Command’s Total Force Integration: A Critical Analysis
2012-02-26
variety of techniques available to positively change culture . 9 Changing assumptions of in-group collectivist requires increasing breadth and open...there have been issues. Command structure, cultural differences and vague guidance for implementation have plagued Air Mobility Command’s...through the Governor and not the President of the United States. Cultural Considerations The purpose of this section is to identify and discuss
ERIC Educational Resources Information Center
Hickman, Tanner Franklin
2010-01-01
The purpose of this study was to better understand the leadership philosophy and key strategic actions of Dr. David S. Dockery in relation to Jesus' Great Commandment. Dockery's leadership has been instrumental in shaping and defining the meaning of Christian education during his fourteen year tenure as president of Union University. During his…
Empowering Globally Integrated Operations and Mission Command: Revisiting Key West
2013-03-01
depended on coordination between commanders. Examples include Captain Thomas McDonough’s 4 U.S...Hedgehog Concept In his book, Good to Great, which describes how good organizations become great ones, Jim Collins borrows an example from an Isaiah ...that it executes with perfection—curling into a ball with its spikes outward. 62 In the words of Archilochus (first line in quotes), Isaiah Berlin
Beyond the New Architectures - Enabling Rapid System Configurations
NASA Technical Reports Server (NTRS)
Smith, Dan
2009-01-01
This presentation slide document reviews the attempts to integrate systems and create common standards for missions. A primary example is telemetry and command sets for satellites. The XML Telemetric and Command Exchange (XTCE) exists, but this is not easy to implement. There is a need for a new standard. The document proposes a method to achieve the standard, and the benefits of using a new standard,
The relevance of central command for the neural cardiovascular control of exercise.
Williamson, J W
2010-11-01
This paper briefly reviews the role of central command in the neural control of the circulation during exercise. While defined as a feedforward component of the cardiovascular control system, central command is also associated with perception of effort or effort sense. The specific factors influencing perception of effort and their effect on autonomic regulation of cardiovascular function during exercise can vary according to condition. Centrally mediated integration of multiple signals occurring during exercise certainly involves feedback mechanisms, but it is unclear whether or how these signals modify central command via their influence on perception of effort. As our understanding of central neural control systems continues to develop, it will be important to examine more closely how multiple sensory signals are prioritized and processed centrally to modulate cardiovascular responses during exercise. The purpose of this article is briefly to review the concepts underlying central command and its assessment via perception of effort, and to identify potential areas for future studies towards determining the role and relevance of central command for neural control of exercise.
The relevance of central command for the neural cardiovascular control of exercise
Williamson, J W
2010-01-01
This paper briefly reviews the role of central command in the neural control of the circulation during exercise. While defined as a feedfoward component of the cardiovascular control system, central command is also associated with perception of effort or effort sense. The specific factors influencing perception of effort and their effect on autonomic regulation of cardiovascular function during exercise can vary according to condition. Centrally mediated integration of multiple signals occurring during exercise certainly involves feedback mechanisms, but it is unclear whether or how these signals modify central command via their influence on perception of effort. As our understanding of central neural control systems continues to develop, it will be important to examine more closely how multiple sensory signals are prioritized and processed centrally to modulate cardiovascular responses during exercise. The purpose of this article is briefly to review the concepts underlying central command and its assessment via perception of effort, and to identify potential areas for future studies towards determining the role and relevance of central command for neural control of exercise. PMID:20696787
Ship to Shore Data Communication and Prioritization
2011-12-01
First Out FTP File Transfer Protocol GCCS-M Global Command and Control System Maritime HAIPE High Assurance Internet Protocol Encryptor HTTP Hypertext...Transfer Protocol (world wide web protocol ) IBS Integrated Bar Code System IDEF0 Integration Definition IER Information Exchange Requirements...INTEL Intelligence IP Internet Protocol IPT Integrated Product Team ISEA In-Service Engineering Agent ISNS Integrated Shipboard Network System IT
The Army's Use of the Advanced Communications Technology Satellite
NASA Technical Reports Server (NTRS)
Ilse, Kenneth
1996-01-01
Tactical operations require military commanders to be mobile and have a high level of independence in their actions. Communications capabilities providing intelligence and command orders in these tactical situations have been limited to simple voice communications or low-rate narrow bandwidth communications because of the need for immediate reliable connectivity. The Advanced Communications Technology Satellite (ACTS) has brought an improved communications tool to the tactical commander giving the ability to gain access to a global communications system using high data rates and wide bandwidths. The Army has successfully tested this new capability of bandwidth-on-demand and high data rates for commanders in real-world conditions during Operation UPHOLD DEMOCRACY in Haiti during the fall and winter of 1994. This paper examines ACTS use by field commanders and details the success of the ACTS system in support of a wide variety of field condition command functions.
NASA Technical Reports Server (NTRS)
Stinnett, W. G.
1980-01-01
The modifications, additions, and testing results for a version of the Deep Space Station command software, generated for support of the Voyager Saturn encounter, are discussed. The software update requirements included efforts to: (1) recode portions of the software to permit recovery of approximately 2000 words of memory; (2) correct five Voyager Ground data System liens; (3) provide capability to automatically turn off the command processor assembly local printer during periods of low activity; and (4) correct anomalies existing in the software.
2009-10-26
for Acquisition, Technology, and Logistics, 30 July 2007). 16 Craig Koontz , ―U.S. Transportation Command,‖ PowerPoint, 23 September 2009, Newport, RI...Support Group. To Lt Col Michael W. Pratt, Naval War College. Memorandum, 30 September 2009. Koontz , Craig. ―U.S. Transportation Command...PowerPoint. 23 September 2009. 22 Koontz , Craig. Contractor/Advisor to CDR U.S. Transportation Command. To Lt Col Michael W. Pratt, 28
Stars and Stripes (S and S) Newspapers and Business Operations
1993-10-05
Department of Defense TIC ’DIRECTIVE ELECTE AD-A274 481 JAN 51994 I NUMBER 5122.11 ASD(PA) SUBJECT: Stars and Stripes (S&S) Newspapers and Business ...support the overall S&S mission, production, distribution authority, and business operations as mission-essential activities of the Department of...European Command, and the Commander in Chief, U.S. Pacific Command, to establish and maintain a S&S board of directors to address S&S business operations
2011-06-01
a contingency operation.15 • The NDAA for Fiscal Year 2006, which became effective on October 1, 2006, expanded the program, and almost all...activated not in support of a contingency operation, TRICARE coverage becomes effective when active duty starts. 20Members activated not in support of a...commander exercises authority over subordinates within a unit by virtue of rank or assignment. A commander has the authority and responsibility for
The Global Logistics Command: A Strategy to Sustain the Post-War Army
2014-05-22
Logistics: Determining Relevance for 21st Century Operations,” 17. 56Jobson and Antell, U.S. Army Materiel Command, 23. Joseph M. Heiser Jr., “Supply...mechanization expanded. Heiser , “Supply Support in Vietnam,” 37. 24 lacked.58 He also formalized in-theater training with two teams, codenamed Project...Airborne Corps History Office, Fort Bragg, NC, 2010. Heiser , Joseph M. Jr. Vietnam Studies Logistics Support. Washington, DC: U.S. Army Center of
Naval Air Operations Within the Role of JFACC: Lessons Learned and Future Roles
1994-02-08
ramains the principal ewtdiw agent for employing that air power." (Emphasis added.) 7 components informs the JFC and the JFACC of available direct support...an afloat JFACC or command as the JFACC. Chapter II reviews background information concerning joint air operations and defines command and control...direct support of service missions. In practice the JTCB has become the JFC’s agent for enming the ffective application of theater air powec The JFACC
Lewis Wooten in the MSFC Payload Operations Integration facility.
2015-04-13
LEWIS WOOTEN, NEW DIRECTOR OF THE MISSION OPERATIONS LABORATORY AT NASA'S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALABAMA, MANAGES OPERATIONS IN THE PAYLOAD OPERATIONS INTEGRATION CENTER-THE COMMAND POST FOR ALL SCIENCE AND RESEARCH ACTIVITIES ON THE INTERNATIONAL SPACE STATION
C3 generic workstation: Performance metrics and applications
NASA Technical Reports Server (NTRS)
Eddy, Douglas R.
1988-01-01
The large number of integrated dependent measures available on a command, control, and communications (C3) generic workstation under development are described. In this system, embedded communications tasks will manipulate workload to assess the effects of performance-enhancing drugs (sleep aids and decongestants), work/rest cycles, biocybernetics, and decision support systems on performance. Task performance accuracy and latency will be event coded for correlation with other measures of voice stress and physiological functioning. Sessions will be videotaped to score non-verbal communications. Physiological recordings include spectral analysis of EEG, ECG, vagal tone, and EOG. Subjective measurements include SWAT, fatigue, POMS and specialized self-report scales. The system will be used primarily to evaluate the effects on performance of drugs, work/rest cycles, and biocybernetic concepts. Performance assessment algorithms will also be developed, including those used with small teams. This system provides a tool for integrating and synchronizing behavioral and psychophysiological measures in a complex decision-making environment.
Lessons learned in command environment development
NASA Astrophysics Data System (ADS)
Wallace, Daniel F.; Collie, Brad E.
2000-11-01
As we consider the issues associated with the development of an Integrated Command Environment (ICE), we must obviously consider the rich history in the development of control rooms, operations centers, information centers, dispatch offices, and other command and control environments. This paper considers the historical perspective of control environments from the industrial revolution through the information revolution, and examines the historical influences and the implications that that has for us today. Environments to be considered are military command and control spaces, emergency response centers, medical response centers, nuclear reactor control rooms, and operations centers. Historical 'lessons learned' from the development and evolution of these environments will be examined to determine valuable models to use, and those to be avoided. What are the pitfalls? What are the assumptions that drive the environment design? Three case histories will be presented, examining (1) the control room of the Three Mile Island power plant, (2) the redesign of the US Naval Space Command operations center, and (3) a testbed for an ICE aboard a naval surface combatant.
A Fundamental Mathematical Model of a Microbial Predenitrification System
NASA Technical Reports Server (NTRS)
Hoo, Karlene A.
2005-01-01
Space flight beyond Low Earth Orbit requires sophisticated systems to support all aspects of the mission (life support, real-time communications, etc.). A common concern that cuts across all these systems is the selection of information technology (IT) methodology, software and hardware architectures to provide robust monitoring, diagnosis, and control support. Another dimension of the problem space is that different systems must be integrated seamlessly so that communication speed and data handling appear as a continuum (un-interrupted). One such team investigating this problem is the Advanced Integration Matrix (AIM) team whose role is to define the critical requirements expected of software and hardware to support an integrated approach to the command and control of Advanced Life Support (ALS) for future long-duration human space missions, including permanent human presence on the Moon and Mars. A goal of the AIM team is to set the foundation for testing criteria that will assist in specifying tasks, control schemes and test scenarios to validate and verify systems capabilities. This project is to contribute to the goals of the AIM team by assisting with controls planning for ALS. Control for ALS is an enormous problem it involves air revitalization, water recovery, food production, solids processing and crew. In more general terms, these systems can be characterized as involving both continuous and discrete processes, dynamic interactions among the sub-systems, nonlinear behavior due to the complex operations, and a large number of multivariable interactions due to the dimension of the state space. It is imperative that a baseline approach from which to measure performance is established especially when the expectation for the control system is complete autonomous control.
Cai, Shanqing; Beal, Deryk S.; Ghosh, Satrajit S.; Tiede, Mark K.; Guenther, Frank H.; Perkell, Joseph S.
2012-01-01
Previous empirical observations have led researchers to propose that auditory feedback (the auditory perception of self-produced sounds when speaking) functions abnormally in the speech motor systems of persons who stutter (PWS). Researchers have theorized that an important neural basis of stuttering is the aberrant integration of auditory information into incipient speech motor commands. Because of the circumstantial support for these hypotheses and the differences and contradictions between them, there is a need for carefully designed experiments that directly examine auditory-motor integration during speech production in PWS. In the current study, we used real-time manipulation of auditory feedback to directly investigate whether the speech motor system of PWS utilizes auditory feedback abnormally during articulation and to characterize potential deficits of this auditory-motor integration. Twenty-one PWS and 18 fluent control participants were recruited. Using a short-latency formant-perturbation system, we examined participants’ compensatory responses to unanticipated perturbation of auditory feedback of the first formant frequency during the production of the monophthong [ε]. The PWS showed compensatory responses that were qualitatively similar to the controls’ and had close-to-normal latencies (∼150 ms), but the magnitudes of their responses were substantially and significantly smaller than those of the control participants (by 47% on average, p<0.05). Measurements of auditory acuity indicate that the weaker-than-normal compensatory responses in PWS were not attributable to a deficit in low-level auditory processing. These findings are consistent with the hypothesis that stuttering is associated with functional defects in the inverse models responsible for the transformation from the domain of auditory targets and auditory error information into the domain of speech motor commands. PMID:22911857
Conducting Research on the International Space Station Using the EXPRESS Rack Facilities
NASA Technical Reports Server (NTRS)
Thompson, Sean W.; Lake, Robert E.
2013-01-01
Eight "Expedite the Processing of Experiments to Space Station" (EXPRESS) Rack facilities are located within the International Space Station (ISS) laboratories to provide standard resources and interfaces for the simultaneous and independent operation of multiple experiments within each rack. Each EXPRESS Rack provides eight Middeck Locker Equivalent locations and two drawer locations for powered experiment equipment, also referred to as sub-rack payloads. Payload developers may provide their own structure to occupy the equivalent volume of one, two, or four lockers as a single unit. Resources provided for each location include power (28 Vdc, 0-500 W), command and data handling (Ethernet, RS-422, 5 Vdc discrete, +/- 5 Vdc analog), video (NTSC/RS 170A), and air cooling (0-200 W). Each rack also provides water cooling (500 W) for two locations, one vacuum exhaust interface, and one gaseous nitrogen interface. Standard interfacing cables and hoses are provided on-orbit. One laptop computer is provided with each rack to control the rack and to accommodate payload application software. Four of the racks are equipped with the Active Rack Isolation System to reduce vibration between the ISS and the rack. EXPRESS Racks are operated by the Payload Operations Integration Center at Marshall Space Flight Center and the sub-rack experiments are operated remotely by the investigating organization. Payload Integration Managers serve as a focal to assist organizations developing payloads for an EXPRESS Rack. NASA provides EXPRESS Rack simulator software for payload developers to checkout payload command and data handling at the development site before integrating the payload with the EXPRESS Functional Checkout Unit for an end-to-end test before flight. EXPRESS Racks began supporting investigations onboard ISS on April 24, 2001 and will continue through the life of the ISS.
Conducting Research on the International Space Station using the EXPRESS Rack Facilities
NASA Technical Reports Server (NTRS)
Thompson, Sean W.; Lake, Robert E.
2016-01-01
Eight "Expedite the Processing of Experiments to Space Station" (EXPRESS) Rack facilities are located within the International Space Station (ISS) laboratories to provide standard resources and interfaces for the simultaneous and independent operation of multiple experiments within each rack. Each EXPRESS Rack provides eight Middeck Locker Equivalent locations and two drawer locations for powered experiment equipment, also referred to as sub-rack payloads. Payload developers may provide their own structure to occupy the equivalent volume of one, two, or four lockers as a single unit. Resources provided for each location include power (28 Vdc, 0-500 W), command and data handling (Ethernet, RS-422, 5 Vdc discrete, +/- 5 Vdc analog), video (NTSC/RS 170A), and air cooling (0-200 W). Each rack also provides water cooling for two locations (500W ea.), one vacuum exhaust interface, and one gaseous nitrogen interface. Standard interfacing cables and hoses are provided on-orbit. One laptop computer is provided with each rack to control the rack and to accommodate payload application software. Four of the racks are equipped with the Active Rack Isolation System to reduce vibration between the ISS and the rack. EXPRESS Racks are operated by the Payload Operations Integration Center at Marshall Space Flight Center and the sub-rack experiments are operated remotely by the investigating organization. Payload Integration Managers serve as a focal to assist organizations developing payloads for an EXPRESS Rack. NASA provides EXPRESS Rack simulator software for payload developers to checkout payload command and data handling at the development site before integrating the payload with the EXPRESS Functional Checkout Unit for an end-to-end test before flight. EXPRESS Racks began supporting investigations onboard ISS on April 24, 2001 and will continue through the life of the ISS.
Analyzing Cyber-Physical Threats on Robotic Platforms.
Ahmad Yousef, Khalil M; AlMajali, Anas; Ghalyon, Salah Abu; Dweik, Waleed; Mohd, Bassam J
2018-05-21
Robots are increasingly involved in our daily lives. Fundamental to robots are the communication link (or stream) and the applications that connect the robots to their clients or users. Such communication link and applications are usually supported through client/server network connection. This networking system is amenable of being attacked and vulnerable to the security threats. Ensuring security and privacy for robotic platforms is thus critical, as failures and attacks could have devastating consequences. In this paper, we examine several cyber-physical security threats that are unique to the robotic platforms; specifically the communication link and the applications. Threats target integrity, availability and confidential security requirements of the robotic platforms, which use MobileEyes/arnlServer client/server applications. A robot attack tool (RAT) was developed to perform specific security attacks. An impact-oriented approach was adopted to analyze the assessment results of the attacks. Tests and experiments of attacks were conducted in simulation environment and physically on the robot. The simulation environment was based on MobileSim; a software tool for simulating, debugging and experimenting on MobileRobots/ActivMedia platforms and their environments. The robot platform PeopleBot TM was used for physical experiments. The analysis and testing results show that certain attacks were successful at breaching the robot security. Integrity attacks modified commands and manipulated the robot behavior. Availability attacks were able to cause Denial-of-Service (DoS) and the robot was not responsive to MobileEyes commands. Integrity and availability attacks caused sensitive information on the robot to be hijacked. To mitigate security threats, we provide possible mitigation techniques and suggestions to raise awareness of threats on the robotic platforms, especially when the robots are involved in critical missions or applications.
Analyzing Cyber-Physical Threats on Robotic Platforms †
2018-01-01
Robots are increasingly involved in our daily lives. Fundamental to robots are the communication link (or stream) and the applications that connect the robots to their clients or users. Such communication link and applications are usually supported through client/server network connection. This networking system is amenable of being attacked and vulnerable to the security threats. Ensuring security and privacy for robotic platforms is thus critical, as failures and attacks could have devastating consequences. In this paper, we examine several cyber-physical security threats that are unique to the robotic platforms; specifically the communication link and the applications. Threats target integrity, availability and confidential security requirements of the robotic platforms, which use MobileEyes/arnlServer client/server applications. A robot attack tool (RAT) was developed to perform specific security attacks. An impact-oriented approach was adopted to analyze the assessment results of the attacks. Tests and experiments of attacks were conducted in simulation environment and physically on the robot. The simulation environment was based on MobileSim; a software tool for simulating, debugging and experimenting on MobileRobots/ActivMedia platforms and their environments. The robot platform PeopleBotTM was used for physical experiments. The analysis and testing results show that certain attacks were successful at breaching the robot security. Integrity attacks modified commands and manipulated the robot behavior. Availability attacks were able to cause Denial-of-Service (DoS) and the robot was not responsive to MobileEyes commands. Integrity and availability attacks caused sensitive information on the robot to be hijacked. To mitigate security threats, we provide possible mitigation techniques and suggestions to raise awareness of threats on the robotic platforms, especially when the robots are involved in critical missions or applications. PMID:29883403
Astronaut James McDivitt photographed inside Command Module during Apollo 9
1969-03-06
AS09-20-3154 (3-13 March 1969) --- This close-up view of astronaut James A. McDivitt shows several days' beard growth. The Apollo 9 mission commander was onboard the Lunar Module (LM) "Spider" in Earth orbit, near the end of the flight. He was joined on the mission by astronauts David R. Scott, command module pilot, and Russell L. Schweickart, lunar module pilot. Schweickart took this picture while Scott remained in the Command Module (CM) "Gumdrop." In Earth orbit, the three tested the transposition and docking systems of the lunar module and command module. On a scheduled lunar landing mission later this year, a team of three astronauts and ground controllers will use what this crew and its support staff have learned in handling the systems of the two spacecraft.
VHF command system study. [spectral analysis of GSFC VHF-PSK and VHF-FSK Command Systems
NASA Technical Reports Server (NTRS)
Gee, T. H.; Geist, J. M.
1973-01-01
Solutions are provided to specific problems arising in the GSFC VHF-PSK and VHF-FSK Command Systems in support of establishment and maintenance of Data Systems Standards. Signal structures which incorporate transmission on the uplink of a clock along with the PSK or FSK data are considered. Strategies are developed for allocating power between the clock and data, and spectral analyses are performed. Bit error probability and other probabilities pertinent to correct transmission of command messages are calculated. Biphase PCM/PM and PCM/FM are considered as candidate modulation techniques on the telemetry downlink, with application to command verification. Comparative performance of PCM/PM and PSK systems is given special attention, including implementation considerations. Gain in bit error performance due to coding is also considered.
32 CFR 724.407 - Commander, Naval Reserve Force.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 5 2010-07-01 2010-07-01 false Commander, Naval Reserve Force. 724.407 Section 724.407 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL..., Naval Reserve Force. Manages Naval Reserve resources. Responsible for providing limited support to the...
32 CFR 724.407 - Commander, Naval Reserve Force.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 5 2011-07-01 2011-07-01 false Commander, Naval Reserve Force. 724.407 Section 724.407 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL..., Naval Reserve Force. Manages Naval Reserve resources. Responsible for providing limited support to the...
NASA Technical Reports Server (NTRS)
Mcmurran, W. R. (Editor)
1973-01-01
A history is presented of the major electronic tracking, optical, telemetry, and command systems used at ETR in support of Apollo-Saturn and its forerunner vehicles launched under the jurisdiction of the Kennedy Space Center and its forerunner organizations.
2018-03-19
ethnographic research (Anderson 2009). Ethnographic research stresses interacting with system users in their natural environment while observing and...network integration evaluation (NIE) 13.2: observations on cognitive load in mission command. Aberdeen Proving Ground (MD): Army Research Laboratory...ARL-TR-8322 ● MAR 2018 US Army Research Laboratory The New Equipment is Here, Now Comes the Hard Part: Cognitive and
Compensated gain control circuit for buck regulator command charge circuit
Barrett, David M.
1996-01-01
A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit.
Compensated gain control circuit for buck regulator command charge circuit
Barrett, D.M.
1996-11-05
A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit. 5 figs.
Multilingual Speech and Language Processing
2003-04-01
client software handles the user end of the transaction. Historically, four clients were provided: e-mail, web, FrameMaker , and command line. By...command-line client and an API. The API allows integration of CyberTrans into a number of processes including word processing packages ( FrameMaker ...preservation and logging, and others. The available clients remain e-mail, Web and FrameMaker . Platforms include both Unix and PC for clients, with
Command Dysfunction: Minding the Cognitive War
1996-06-01
failure sometimes resulted from the physical test of arms in combat, leading to a mortal wound. At other times the fall was psychological , brought...for the attack and protection of command and control. The doctrinal definition follows: C2W is the integrated use of psychological operations (PSYOP... psychological , components of C2W. The problem of emphasizing direct attack C2W targeting is that it potentially underplays the complementary aspect of
2009-12-01
of the Congressionally Directed Medical Research Programs (CDMRP) # PT073804 II. BACKGROUND Unlike the painfully obvious losses seen in Alzheimer ...Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for...AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702
Terrain Commander: a next-generation remote surveillance system
NASA Astrophysics Data System (ADS)
Finneral, Henry J.
2003-09-01
Terrain Commander is a fully automated forward observation post that provides the most advanced capability in surveillance and remote situational awareness. The Terrain Commander system was selected by the Australian Government for its NINOX Phase IIB Unattended Ground Sensor Program with the first systems delivered in August of 2002. Terrain Commander offers next generation target detection using multi-spectral peripheral sensors coupled with autonomous day/night image capture and processing. Subsequent intelligence is sent back through satellite communications with unlimited range to a highly sophisticated central monitoring station. The system can "stakeout" remote locations clandestinely for 24 hours a day for months at a time. With its fully integrated SATCOM system, almost any site in the world can be monitored from virtually any other location in the world. Terrain Commander automatically detects and discriminates intruders by precisely cueing its advanced EO subsystem. The system provides target detection capabilities with minimal nuisance alarms combined with the positive visual identification that authorities demand before committing a response. Terrain Commander uses an advanced beamforming acoustic sensor and a distributed array of seismic, magnetic and passive infrared sensors to detect, capture images and accurately track vehicles and personnel. Terrain Commander has a number of emerging military and non-military applications including border control, physical security, homeland defense, force protection and intelligence gathering. This paper reviews the development, capabilities and mission applications of the Terrain Commander system.
2005-06-01
cognitive task analysis , organizational information dissemination and interaction, systems engineering, collaboration and communications processes, decision-making processes, and data collection and organization. By blending these diverse disciplines command centers can be designed to support decision-making, cognitive analysis, information technology, and the human factors engineering aspects of Command and Control (C2). This model can then be used as a baseline when dealing with work in areas of business processes, workflow engineering, information management,
Know Yourself, Define Your Enemy: Presidential Rhetoric and American Strategic Culture
2016-06-10
Commander Gareth Prendergast received his commission from the Queen in 2000. Upon qualification in role as a Navigator on the Tornado GR4 fighter...On returning to the Tornado , he successfully deployed the first UK combat air assets in support of the humanitarian crisis in Iraq and...subsequently commanded the RAF Tornado detachment. Wing Commander Prendergast read for a Masters in International Law at Lancaster University and holds a Bachelor degree with honors from Keele University in International Relations.
Simplifying operations with an uplink/downlink integration toolkit
NASA Technical Reports Server (NTRS)
Murphy, Susan C.; Miller, Kevin J.; Guerrero, Ana Maria; Joe, Chester; Louie, John J.; Aguilera, Christine
1994-01-01
The Operations Engineering Lab (OEL) at JPL has developed a simple, generic toolkit to integrate the uplink/downlink processes, (often called closing the loop), in JPL's Multimission Ground Data System. This toolkit provides capabilities for integrating telemetry verification points with predicted spacecraft commands and ground events in the Mission Sequence Of Events (SOE) document. In the JPL ground data system, the uplink processing functions and the downlink processing functions are separate subsystems that are not well integrated because of the nature of planetary missions with large one-way light times for spacecraft-to-ground communication. Our new closed-loop monitoring tool allows an analyst or mission controller to view and save uplink commands and ground events with their corresponding downlinked telemetry values regardless of the delay in downlink telemetry and without requiring real-time intervention by the user. An SOE document is a time-ordered list of all the planned ground and spacecraft events, including all commands, sequence loads, ground events, significant mission activities, spacecraft status, and resource allocations. The SOE document is generated by expansion and integration of spacecraft sequence files, ground station allocations, navigation files, and other ground event files. This SOE generation process has been automated within the OEL and includes a graphical, object-oriented SOE editor and real-time viewing tool running under X/Motif. The SOE toolkit was used as the framework for the integrated implementation. The SOE is used by flight engineers to coordinate their operations tasks, serving as a predict data set in ground operations and mission control. The closed-loop SOE toolkit allows simple, automated integration of predicted uplink events with correlated telemetry points in a single SOE document for on-screen viewing and archiving. It automatically interfaces with existing real-time or non real-time sources of information, to display actual values from the telemetry data stream. This toolkit was designed to greatly simplify the user's ability to access and view telemetry data, and also provide a means to view this data in the context of the commands and ground events that are used to interpret it. A closed-loop system can prove especially useful in small missions with limited resources requiring automated monitoring tools. This paper will discuss the toolkit implementation, including design trade-offs and future plans for enhancing the automated capabilities.
Simplifying operations with an uplink/downlink integration toolkit
NASA Astrophysics Data System (ADS)
Murphy, Susan C.; Miller, Kevin J.; Guerrero, Ana Maria; Joe, Chester; Louie, John J.; Aguilera, Christine
1994-11-01
The Operations Engineering Lab (OEL) at JPL has developed a simple, generic toolkit to integrate the uplink/downlink processes, (often called closing the loop), in JPL's Multimission Ground Data System. This toolkit provides capabilities for integrating telemetry verification points with predicted spacecraft commands and ground events in the Mission Sequence Of Events (SOE) document. In the JPL ground data system, the uplink processing functions and the downlink processing functions are separate subsystems that are not well integrated because of the nature of planetary missions with large one-way light times for spacecraft-to-ground communication. Our new closed-loop monitoring tool allows an analyst or mission controller to view and save uplink commands and ground events with their corresponding downlinked telemetry values regardless of the delay in downlink telemetry and without requiring real-time intervention by the user. An SOE document is a time-ordered list of all the planned ground and spacecraft events, including all commands, sequence loads, ground events, significant mission activities, spacecraft status, and resource allocations. The SOE document is generated by expansion and integration of spacecraft sequence files, ground station allocations, navigation files, and other ground event files. This SOE generation process has been automated within the OEL and includes a graphical, object-oriented SOE editor and real-time viewing tool running under X/Motif. The SOE toolkit was used as the framework for the integrated implementation. The SOE is used by flight engineers to coordinate their operations tasks, serving as a predict data set in ground operations and mission control. The closed-loop SOE toolkit allows simple, automated integration of predicted uplink events with correlated telemetry points in a single SOE document for on-screen viewing and archiving. It automatically interfaces with existing real-time or non real-time sources of information, to display actual values from the telemetry data stream. This toolkit was designed to greatly simplify the user's ability to access and view telemetry data, and also provide a means to view this data in the context of the commands and ground events that are used to interpret it. A closed-loop system can prove especially useful in small missions with limited resources requiring automated monitoring tools. This paper will discuss the toolkit implementation, including design trade-offs and future plans for enhancing the automated capabilities.
Defense Energy Support Center Fact Book, Fiscal Year 2001, Twenty-Fourth Edition
2001-01-01
PMA-272). He was assigned to the U.S. European Command in Stuttgart, Germany from 1991 to 1994, serving in the Joint Petroleum Office as the Staff...Air Force Base, Florida from July 1990 to June 1993. He then served as Logistics Officer (G4) at 3rd Corps Support Command in Wiesbaden, Germany from...TURNOVER TO DESC FUEL SALES TO NORWAY AND EXCHANGES OF PRODUCT WITH GERMANY WILL LEAD TO TERMINATION OF AGREEMENTS WITH NORWAY AND DENMARK IN 2002 SOURCE
Defense Energy Support Center Fact Book, Fiscal Year 2000, Twenty-Third Edition
2000-01-01
assigned to the U.S. European Command in Stuttgart, Germany from 1991 to 1994, serving in the Joint Petroleum Office as the Staff Petroleum Officer for...from July 1990 to June 1993. He then served as Logistics Officer (G4) at 3rd Corps Support Command in Wiesbaden, Germany from July 1993 to June 1995...successfully used the RDC system to collect fuel requirements for customers in the Germany PC&S and Hawaii PC&S programs. In August 2000, DESC used the
Can the Army Provide Bulk Petroleum Support to Joint Force 2020?
2013-03-01
Petroleum Officer (JPO) and one or more Sub Area Petroleum Officers ( SAPO ). The JPO coordinates petroleum support to all forces in a theater on behalf...position is the SAPO , established by the Combatant Commander or a Joint Force Commander (JFC) to fulfill bulk petroleum planning and execution in a...section of the theater for which the JPO is responsible.7 A key duty of the SAPO is to advise the JFC and his/her staff on petroleum logistics
1984-12-01
system. The reconstruction process is Simply data fusion after allA data are in. After reconstruction, artifcial intelligence (Al) techniques may be...14. CATE OF fhPM~TVW MWtvt Ogv It PAWE COMN Interim __100 -_ TO December 1984 24 MILD ON" s-o Artificial intelligence Command control Data fusion...RD-Ai5O 867 RESEARCH NEEDS FOR ARTIFICIAL INTELLIGENCE APPLICATIONS i/i IN SUPPORT OF C3 (..(U) NAVAL OCEAN SVSTEIIS CENTER SAN DIEGO CA R R DILLARD
1982-11-01
maneuver commander. In the defense, the opposite is true. CThe criteria is the centralization of fire support, since the highest level commander must...the ASP in the division rear. With this capability, all CSR levels are capable of being obtained from the ATP. 6) Travel times, both day and night, are...breakthrough below brigade level . I Procedure The changing situation of the modern battlefield does not permit calculation and input of excessive amounts
2010-06-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT Cost Management in a Tactical Environment: A Case Study of...SUBTITLE Cost Management in a Tactical Environment: A Case Study of the 316th Expeditionary Support Command (ESC) in Iraq, 2007–2008 6. AUTHOR(S...This project provides a case study of the 316th ESC, which may begin to fill that void. The 316th ESC’s staff forecasted future consumption
2008-12-19
Undistributed ISFF-Funded Equipment 105 17. Iraqi Army Maintenance Program 107 18. Class IX Material Management 115 Part V – Medical Sustainability 123...database and are subsequently forwarded to the Army Material Command, Logistics Support Activity for inclusion in the DoD Small Arms and Light Weapons...be forwarded to the Army Material Command, Logistics Support Activity for inclusion in the DoD Small Arms and Light Weapons Serialization Program
Improved CLARAty Functional-Layer/Decision-Layer Interface
NASA Technical Reports Server (NTRS)
Estlin, Tara; Rabideau, Gregg; Gaines, Daniel; Johnston, Mark; Chouinard, Caroline; Nessnas, Issa; Shu, I-Hsiang
2008-01-01
Improved interface software for communication between the CLARAty Decision and Functional layers has been developed. [The Coupled Layer Architecture for Robotics Autonomy (CLARAty) was described in Coupled-Layer Robotics Architecture for Autonomy (NPO-21218), NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 48. To recapitulate: the CLARAty architecture was developed to improve the modularity of robotic software while tightening coupling between planning/execution and basic control subsystems. Whereas prior robotic software architectures typically contained three layers, the CLARAty contains two layers: a decision layer (DL) and a functional layer (FL).] Types of communication supported by the present software include sending commands from DL modules to FL modules and sending data updates from FL modules to DL modules. The present software supplants prior interface software that had little error-checking capability, supported data parameters in string form only, supported commanding at only one level of the FL, and supported only limited updates of the state of the robot. The present software offers strong error checking, and supports complex data structures and commanding at multiple levels of the FL, and relative to the prior software, offers a much wider spectrum of state-update capabilities.
Command-line cellular electrophysiology for conventional and real-time closed-loop experiments.
Linaro, Daniele; Couto, João; Giugliano, Michele
2014-06-15
Current software tools for electrophysiological experiments are limited in flexibility and rarely offer adequate support for advanced techniques such as dynamic clamp and hybrid experiments, which are therefore limited to laboratories with a significant expertise in neuroinformatics. We have developed lcg, a software suite based on a command-line interface (CLI) that allows performing both standard and advanced electrophysiological experiments. Stimulation protocols for classical voltage and current clamp experiments are defined by a concise and flexible meta description that allows representing complex waveforms as a piece-wise parametric decomposition of elementary sub-waveforms, abstracting the stimulation hardware. To perform complex experiments lcg provides a set of elementary building blocks that can be interconnected to yield a large variety of experimental paradigms. We present various cellular electrophysiological experiments in which lcg has been employed, ranging from the automated application of current clamp protocols for characterizing basic electrophysiological properties of neurons, to dynamic clamp, response clamp, and hybrid experiments. We finally show how the scripting capabilities behind a CLI are suited for integrating experimental trials into complex workflows, where actual experiment, online data analysis and computational modeling seamlessly integrate. We compare lcg with two open source toolboxes, RTXI and RELACS. We believe that lcg will greatly contribute to the standardization and reproducibility of both simple and complex experiments. Additionally, on the long run the increased efficiency due to a CLI will prove a great benefit for the experimental community. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Qi, Yuan; Zhao, Hongtao
2017-04-01
China is one of few several natural disaster prone countries, which has complex geological and geographical environment and abnormal climate. On August 8, 2010, a large debris flow disaster happened in Zhouqu Country, Gansu province, resulting in more than 1700 casualties and more than 200 buildings damaged. In order to percept landslide and debris flow, an early warning system was established in the county. Spatial information technologies, such as remote sensing, GIS, and GPS, play core role in the early warning system, due to their functions in observing, analyzing, and locating geological disasters. However, all of these spatial information technologies could play an important role only guided by the emergency response mechanism. This article takes the establishment of Zhouqu Country's Disaster Emergency Response Interaction Mechanism (DERIM) as an example to discuss the risk management of country-level administrative units. The country-level risk management aims to information sharing, resources integration, integrated prevention and unified command. Then, nine subsystems support DERIM, which included disaster prevention and emergency data collection and sharing system, joint duty system, disaster verification and evaluation system, disaster consultation system, emergency warning and information release system, emergency response system, disaster reporting system, plan management system, mass prediction and prevention management system. At last, an emergency command platform in Zhouqu Country built up to realize DERIM. The core mission of the platform consists of daily management of disaster, monitoring and warning, comprehensive analysis, information release, consultation and decision-making, emergency response, etc. Five functional modules, including module of disaster information management, comprehensive monitoring module (geological monitoring, meteorological monitoring, water conservancy and hydrological monitoring), alarm management module, emergency command and disaster dispatching management module are developed on the basis of this platform. Based on the internet technology, an web-based office platform is exploited for the nodes scattered in departments and towns, which includes daily business, monitoring and warning, alarm notification, alarm recording, personnel management and update in disaster region, query and analysis of real-time observation data, etc. The platform experienced 3 years' test of the duty in flood period since 2013, and two typical disaster cases during this period fully illustrates the effectiveness of the DERIM and the emergency command platform.
1991-05-01
Marine Corps Tiaining Systems (CBESS) memorization training Inteligence Center, Dam Neck Threat memorization training Commander Tactical Wings, Atlantic...News Shipbuilding Technical training AEGIS Training Center, Dare Artificial Intelligence (Al) Tools Computerized firm-end analysis tools NETSCPAC...Technology Department and provides computational and electronic mail support for research in areas of artificial intelligence, computer-assisted instruction
Employment of a Dual Status Commander in a Multi-State Disaster Operation
2016-06-10
propagates parallel commands among affected states without a singular organization to synchronize and prioritize efforts. Thus, the central research ...without a singular organization to synchronize and prioritize efforts. Thus, the central research question is: How can laws be changed to support the...1 The Research Question
32 CFR 724.307 - Functions of the Commander, Naval Reserve Force.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 5 2011-07-01 2011-07-01 false Functions of the Commander, Naval Reserve Force... PERSONNEL NAVAL DISCHARGE REVIEW BOARD Director, Secretary of the Navy Council of Review Boards and President Naval Discharge Review Board; Responsibilities in Support of the Naval Discharge Review Board...
The Unified Command Plan and Combatant Commands: Background and Issues for Congress
2013-01-03
Forces, also known as Green Berets; Rangers ; Civil Affairs, and Military Information Support Operations (MISO)—formerly known as psychological...Soto Cano Air Base, Honduras, and operates a forward, all weather, day/night C-5 Galaxy -capable air base. JTF-Bravo organizes multilateral exercises
NASA Technical Reports Server (NTRS)
Fern, Lisa; Rorie, R. Conrad; Shively, R. Jay
2014-01-01
In 2011 the National Aeronautics and Space Administration (NASA) began a five-year Project to address the technical barriers related to routine access of Unmanned Aerial Systems (UAS) in the National Airspace System (NAS). Planned in two phases, the goal of the first phase was to lay the foundations for the Project by identifying those barriers and key issues to be addressed to achieve integration. Phase 1 activities were completed two years into the five-year Project. The purpose of this paper is to review activities within the Human Systems Integration (HSI) subproject in Phase 1 toward its two objectives: 1) develop GCS guidelines for routine UAS access to the NAS, and 2) develop a prototype display suite within an existing Ground Control Station (GCS). The first objective directly addresses a critical barrier for UAS integration into the NAS - a lack of GCS design standards or requirements. First, the paper describes the initial development of a prototype GCS display suite and supporting simulation software capabilities. Then, three simulation experiments utilizing this simulation architecture are summarized. The first experiment sought to determine a baseline performance of UAS pilots operating in civil airspace under current instrument flight rules for manned aircraft. The second experiment examined the effect of currently employed UAS contingency procedures on Air Traffic Control (ATC) participants. The third experiment compared three GCS command and control interfaces on UAS pilot response times in compliance with ATC clearances. The authors discuss how the results of these and future simulation and flight-testing activities contribute to the development of GCS guidelines to support the safe integration of UAS into the NAS. Finally, the planned activities for Phase 2, including an integrated human-in-the-loop simulation and two flight tests are briefly described.
Interfaces and Integration of Medical Image Analysis Frameworks: Challenges and Opportunities.
Covington, Kelsie; McCreedy, Evan S; Chen, Min; Carass, Aaron; Aucoin, Nicole; Landman, Bennett A
2010-05-25
Clinical research with medical imaging typically involves large-scale data analysis with interdependent software toolsets tied together in a processing workflow. Numerous, complementary platforms are available, but these are not readily compatible in terms of workflows or data formats. Both image scientists and clinical investigators could benefit from using the framework which is a most natural fit to the specific problem at hand, but pragmatic choices often dictate that a compromise platform is used for collaboration. Manual merging of platforms through carefully tuned scripts has been effective, but exceptionally time consuming and is not feasible for large-scale integration efforts. Hence, the benefits of innovation are constrained by platform dependence. Removing this constraint via integration of algorithms from one framework into another is the focus of this work. We propose and demonstrate a light-weight interface system to expose parameters across platforms and provide seamless integration. In this initial effort, we focus on four platforms Medical Image Analysis and Visualization (MIPAV), Java Image Science Toolkit (JIST), command line tools, and 3D Slicer. We explore three case studies: (1) providing a system for MIPAV to expose internal algorithms and utilize these algorithms within JIST, (2) exposing JIST modules through self-documenting command line interface for inclusion in scripting environments, and (3) detecting and using JIST modules in 3D Slicer. We review the challenges and opportunities for light-weight software integration both within development language (e.g., Java in MIPAV and JIST) and across languages (e.g., C/C++ in 3D Slicer and shell in command line tools).
STS-112 crew during Crew Equipment Interface Test
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test, STS-112 Commander Jeffrey Ashby checks out the windshield on Atlantis, the designated orbiter for the mission. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002.
Astronaut Ellen Ochoa in middeck during launch/entry training
1994-06-23
S94-40061 (23 June 1994) --- Secured in a collapsible seat on the middeck of a Shuttle trainer, astronaut Ellen Ochoa, payload commander, participates in a rehearsal of procedures to be followed during launch and entry phases of the scheduled November flight of STS-66. This rehearsal, held in the crew compartment trainer of the Johnson Space Center's (JSC) Shuttle Mockup and Integration Laboratory, was followed by a training session on emergency egress procedures. In November Ochoa will join four other NASA astronauts and a European mission specialist for a week and a half aboard the Space Shuttle Atlantis in Earth-orbit in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3).
The James Webb Space Telescope Integrated Science Instrument Module
NASA Technical Reports Server (NTRS)
Greenhouse, Matthew A.; Sullivan, Pamela C.; Boyce, Leslye A.; Glazer, Stuart D.; Johnson, Eric L.; McCloskey, John C.; Voyton, Mark F.
2004-01-01
The Integrated Science Instrument Module of the James Webb Space Telescope is described from a systems perspective with emphasis on unique and advanced technology aspects. The major subsystems of this flight element are described including: structure, thermal, command and data handling, and software.
NASA Technical Reports Server (NTRS)
Griner, Jim; Kerczewski, Bob
2017-01-01
In order to provide for the safe integration of unmanned aircraft systems (UAS) into the National Airspace System, the command and control communications link connecting the ground-based pilot with the unmanned aircraft must be highly reliable and robust, with national and international standards to enable interoperability and certification. Both line-of-sight (LOS) links using terrestrial-based communications and beyond-line-of-sight (BLOS) links using satellite communications, supported by national and international standards, are required for integrated UAS operations. The National Aeronautics and Space Administration (NASA) has undertaken an extensive technology development and test program in order to provide the required technical data needed to enable C2 standards development. NASAs UAS Integration in the National Airspace System (NAS), or UAS in the NAS Project, included as a major element the Command and Control Communications (C2) Subproject, based at NASAs Glenn Research Center. The successful first phase of the C2 Subproject, completed during 2012-2016, focused primarily on line-of-sight communications. Accomplishments included air-ground channel propagation characterization and modeling; CNPC prototype radio development; CNPC radio flight testing; satellite communications spectrum study and interference analysis; and development of C2 LOS communications standards development. The second phase of the C2 Subproject will focus primarily on beyond-line-of-sight communications, although a follow-on activity for terrestrial LOS communications, known as Terrestrial Extension, is also included. In addition to the terrestrial element, Phase 2 also includes technology development and testing activities for Ka-Band BLOS C2 Satellite Communications; Ku-Band BLOS C2 Satellite Communications; Ku-Band Interference and Propagation; and C-Band Satellite Communications. This paper will provide brief overviews of the C2 Subproject and its Phase I accomplishments, followed by a description of the plans for the C2 Subproject Phase 2.
NASA Technical Reports Server (NTRS)
Griner, James H.; Kerczewski, Robert J.
2017-01-01
In order to provide for the safe integration of unmanned aircraft systems (UAS) into the National Airspace System, the command and control communications link connecting the ground-based pilot with the unmanned aircraft must be highly reliable and robust, with national and international standards to enable interoperability and certification. Both line-of-sight (LOS) links using terrestrial-based communications and beyond-line-of-sight (BLOS) links using satellite communications, supported by national and international standards, are required for integrated UAS operations. The National Aeronautics and Space Administration (NASA) has undertaken an extensive technology development and test program in order to provide the required technical data needed to enable C2 standards development. NASAs UAS Integration in the National Airspace System (NAS), or UAS in the NAS Project, included as a major element the Command and Control Communications (C2) Subproject, based at NASAs Glenn Research Center. The successful first phase of the C2 Subproject, completed during 2012-2016, focused primarily on line-of-sight communications. Accomplishments included air-ground channel propagation characterization and modeling; CNPC prototype radio development; CNPC radio flight testing; satellite communications spectrum study and interference analysis; and development of C2 LOS communications standards development. The second phase of the C2 Subproject will focus primarily on beyond-line-of-sight communications, although a follow-on activity for terrestrial LOS communications, known as Terrestrial Extension, is also included. In addition to the terrestrial element, Phase 2 also includes technology development and testing activities for Ka-Band BLOS C2 Satellite Communications; Ku-Band BLOS C2 Satellite Communications; Ku-Band Interference and Propagation; and C-Band Satellite Communications. This paper will provide brief overviews of the C2 Subproject and its Phase I accomplishments, followed by a description of the plans for the C2 Subproject Phase 2.
Rapid Diagnostics of Onboard Sequences
NASA Technical Reports Server (NTRS)
Starbird, Thomas W.; Morris, John R.; Shams, Khawaja S.; Maimone, Mark W.
2012-01-01
Keeping track of sequences onboard a spacecraft is challenging. When reviewing Event Verification Records (EVRs) of sequence executions on the Mars Exploration Rover (MER), operators often found themselves wondering which version of a named sequence the EVR corresponded to. The lack of this information drastically impacts the operators diagnostic capabilities as well as their situational awareness with respect to the commands the spacecraft has executed, since the EVRs do not provide argument values or explanatory comments. Having this information immediately available can be instrumental in diagnosing critical events and can significantly enhance the overall safety of the spacecraft. This software provides auditing capability that can eliminate that uncertainty while diagnosing critical conditions. Furthermore, the Restful interface provides a simple way for sequencing tools to automatically retrieve binary compiled sequence SCMFs (Space Command Message Files) on demand. It also enables developers to change the underlying database, while maintaining the same interface to the existing applications. The logging capabilities are also beneficial to operators when they are trying to recall how they solved a similar problem many days ago: this software enables automatic recovery of SCMF and RML (Robot Markup Language) sequence files directly from the command EVRs, eliminating the need for people to find and validate the corresponding sequences. To address the lack of auditing capability for sequences onboard a spacecraft during earlier missions, extensive logging support was added on the Mars Science Laboratory (MSL) sequencing server. This server is responsible for generating all MSL binary SCMFs from RML input sequences. The sequencing server logs every SCMF it generates into a MySQL database, as well as the high-level RML file and dictionary name inputs used to create the SCMF. The SCMF is then indexed by a hash value that is automatically included in all command EVRs by the onboard flight software. Second, both the binary SCMF result and the RML input file can be retrieved simply by specifying the hash to a Restful web interface. This interface enables command line tools as well as large sophisticated programs to download the SCMF and RMLs on-demand from the database, enabling a vast array of tools to be built on top of it. One such command line tool can retrieve and display RML files, or annotate a list of EVRs by interleaving them with the original sequence commands. This software has been integrated with the MSL sequencing pipeline where it will serve sequences useful in diagnostics, debugging, and situational awareness throughout the mission.
Landpower 2020: Enabling Regionally Aligned US Army Forces with Threat-Based Planning
2013-03-01
situation, EUCOM has prioritized BPC as a tenet of its theater strategy, and it is the only command to have submitted the requirement for additional...Army forces to enable BPC as part of the annual GCC’s submission of integrated priorities to the joint staff.27 In fact, EUCOM has requested...perform BPC tasks in the AOR. However, United States Central Command (CENTCOM) indicated a vulnerability to effectively respond to emerging
Astronauts McMonagle and Brown on flight deck mockup during training
NASA Technical Reports Server (NTRS)
1994-01-01
Astronauts Donald R. McMonagle, STS-66 mission commander, left, and Curtis L. Brown, STS-66 pilot, man the commander's and pilot's stations, respectively, during a rehearsal of procedures to be followed during the launch and entry phases of their scheduled November 1994 flight. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.
Advance Planning Briefing for Industry: Sustaining the Warfighter through Battlespace Integration
1998-05-14
value, Indefinite Delivery/Indefinite Quantity procurement, and consist of a base year and 4 option years. BRIEFER: COL Alfred J. Estrella ...Indefinite Delivery/Indefinite Quantity procurement, and consist of a base year plus 4 option years. BRIEFER: COL Alfred J. Estrella , Commander, US...MR. ROBERT R. LEHNES DPEO, C3S MR. DENNIS TURNER DIR, CECOM SEC COL ALFRED J. ESTRELLA COMMANDER, ISEC MRS. MAUREEN MACFARLAND DEP DIR, CECOM
Joint Center for Operational Analysis Journal. Volume 12, Issue 2, Summer 2010
2010-01-01
Peixoto. In 19X7. then-Major Keen attended Bra- zil’s Command and General Staff Course in Rio de Janeiro . Bra- zil. In 1988, then Captain Floriano...controlling DoD office). • DISTRIBUTION STATEMENT E . Distribution authorized to DoD Components only (fill in reason) (date of determination). Other... basic joint functions that integrate, synchronize, and direct joint operations, which arc: command and control, intelligence, fires, movement and
Atmosphere Explorer control system software (version 1.0)
NASA Technical Reports Server (NTRS)
Villasenor, A.
1972-01-01
The basic design is described of the Atmosphere Explorer Control System (AECS) software used in the testing, integration, and flight contol of the AE spacecraft and experiments. The software performs several vital functions, such as issuing commands to the spacecraft and experiments, receiving and processing telemetry data, and allowing for extensive data processing by experiment analysis programs. The major processing sections are: executive control section, telemetry decommutation section, command generation section, and utility section.
Defense Science Board Summer Study on Transformation: A Progress Assessment. Volume 1
2006-02-01
Force Chairmen. Dr. Jerry McGinn, OUSD(P), will serve as the Executive Secretary, and Lt Col Dave Robertson will serve as the Defense Science Board...Sweetzer United States Army Operational Assessment 2005 Col Gail Wojtowicz United States Air Force USAF Brief on Transformation Col Peter Zielinski ...JOC) COL Peter Zielinski CENTCOM Central Command C-10 DSB 2005 SUMMER STUDY ON APPENDICES MULTI-AGENCY INTEGRATION MG Herbert Altshuler Commander
Astronaut Russell Schweickart photographed during EVA
1969-03-06
AS09-19-2983 (6 March 1969) --- Astronaut Russell L. Schweickart, lunar module pilot, operates a 70mm Hasselblad camera during his extravehicular activity (EVA) on the fourth day of the Apollo 9 Earth-orbital mission. The Command and Service Modules (CSM) and Lunar Module (LM) "Spider" are docked. This view was taken from the Command Module (CM) "Gumdrop". Schweickart, wearing an Extravehicular Mobility Unit (EMU), is standing in "golden slippers" on the LM porch. On his back, partially visible, are a Portable Life Support System (PLSS) and an Oxygen Purge System (OPS). Astronaut James A. McDivitt, Apollo 9 commander, was inside the "Spider". Astronaut David R. Scott, command module pilot, remained at the controls in the CM.
User guide to a command and control system; a part of a prelaunch wind monitoring program
NASA Technical Reports Server (NTRS)
Cowgill, G. R.
1976-01-01
A set of programs called Command and Control System (CCS), intended as a user manual, is described for the operation of CCS by the personnel supporting the wind monitoring portion of the launch mission. Wind data obtained by tracking balloons is sent by electronic means using telephone lines to other locations. Steering commands are computed from a system called ADDJUST for the on-board computer and relays this data. Data are received and automatically stored in a microprocessor, then via a real time program transferred to the UNIVAC 1100/40 computer. At this point the data is available to be used by the Command and Control system.
Givel, Michael
2007-10-01
Since the early 1980s, neo-liberals have argued that command and control regulation (such as modern tobacco control programs) are costly in supporting corporate markets and profits. Some recent social constructionists have also argued that weak and symbolic command and control policies are necessary to maintain corporate productivity. This paper examines whether the command and control-oriented United States cigarette warning label law is symbolic thus helping to maintain corporate profitability. This paper compares United States and Canadian requirements that promote significant smoking cessation such as color pictures or graphics on cigarette packs. This paper also provides a detailed overview of the respective cigarette pack warning label laws through an archival and content analysis of tobacco industry documents, LexisNexis, web pages, and peer reviewed journal articles. Cigarette pack warning label requirements under the command and control United States Cigarette Labeling and Advertising Act are currently fairly symbolic and weak in promoting tobacco cessation when compared with the much stronger Canadian warning label requirements. Contrary to the arguments of neo-liberals, symbolic command and control policies can actually support corporate private profit making, which for the tobacco industry occurs at the expense of the public health.
SOA approach to battle command: simulation interoperability
NASA Astrophysics Data System (ADS)
Mayott, Gregory; Self, Mid; Miller, Gordon J.; McDonnell, Joseph S.
2010-04-01
NVESD is developing a Sensor Data and Management Services (SDMS) Service Oriented Architecture (SOA) that provides an innovative approach to achieve seamless application functionality across simulation and battle command systems. In 2010, CERDEC will conduct a SDMS Battle Command demonstration that will highlight the SDMS SOA capability to couple simulation applications to existing Battle Command systems. The demonstration will leverage RDECOM MATREX simulation tools and TRADOC Maneuver Support Battle Laboratory Virtual Base Defense Operations Center facilities. The battle command systems are those specific to the operation of a base defense operations center in support of force protection missions. The SDMS SOA consists of four components that will be discussed. An Asset Management Service (AMS) will automatically discover the existence, state, and interface definition required to interact with a named asset (sensor or a sensor platform, a process such as level-1 fusion, or an interface to a sensor or other network endpoint). A Streaming Video Service (SVS) will automatically discover the existence, state, and interfaces required to interact with a named video stream, and abstract the consumers of the video stream from the originating device. A Task Manager Service (TMS) will be used to automatically discover the existence of a named mission task, and will interpret, translate and transmit a mission command for the blue force unit(s) described in a mission order. JC3IEDM data objects, and software development kit (SDK), will be utilized as the basic data object definition for implemented web services.
Sargent, Patrick D
2008-01-01
Leading a deployed combat healthcare system is a very complex task and requires a command and control structure that is a unique blend of technical and tactical expertise to efficaciously deliver world-class medical care to America's sons and daughters. The medical task force in Iraq has successfully managed the transformation of the medical footprint from a tactically arrayed set of disparate medical units to a nascent integrated healthcare system with many features similar to the best healthcare systems in the United States. The American public demands, and Soldiers, Marines, Sailors, Airmen, and Coast Guardsmen deserve US quality medical care, whether they are being treated at a military medical center in the US, or a US medical facility in Iraq. This article presents an overview of the 62nd Medical Brigade's development of the combat healthcare support system during its tenure leading the US medical task force in Iraq.
Automatic Command Sequence Generation
NASA Technical Reports Server (NTRS)
Fisher, Forest; Gladded, Roy; Khanampompan, Teerapat
2007-01-01
Automatic Sequence Generator (Autogen) Version 3.0 software automatically generates command sequences for the Mars Reconnaissance Orbiter (MRO) and several other JPL spacecraft operated by the multi-mission support team. Autogen uses standard JPL sequencing tools like APGEN, ASP, SEQGEN, and the DOM database to automate the generation of uplink command products, Spacecraft Command Message Format (SCMF) files, and the corresponding ground command products, DSN Keywords Files (DKF). Autogen supports all the major multi-mission mission phases including the cruise, aerobraking, mapping/science, and relay mission phases. Autogen is a Perl script, which functions within the mission operations UNIX environment. It consists of two parts: a set of model files and the autogen Perl script. Autogen encodes the behaviors of the system into a model and encodes algorithms for context sensitive customizations of the modeled behaviors. The model includes knowledge of different mission phases and how the resultant command products must differ for these phases. The executable software portion of Autogen, automates the setup and use of APGEN for constructing a spacecraft activity sequence file (SASF). The setup includes file retrieval through the DOM (Distributed Object Manager), an object database used to store project files. This step retrieves all the needed input files for generating the command products. Depending on the mission phase, Autogen also uses the ASP (Automated Sequence Processor) and SEQGEN to generate the command product sent to the spacecraft. Autogen also provides the means for customizing sequences through the use of configuration files. By automating the majority of the sequencing generation process, Autogen eliminates many sequence generation errors commonly introduced by manually constructing spacecraft command sequences. Through the layering of commands into the sequence by a series of scheduling algorithms, users are able to rapidly and reliably construct the desired uplink command products. With the aid of Autogen, sequences may be produced in a matter of hours instead of weeks, with a significant reduction in the number of people on the sequence team. As a result, the uplink product generation process is significantly streamlined and mission risk is significantly reduced. Autogen is used for operations of MRO, Mars Global Surveyor (MGS), Mars Exploration Rover (MER), Mars Odyssey, and will be used for operations of Phoenix. Autogen Version 3.0 is the operational version of Autogen including the MRO adaptation for the cruise mission phase, and was also used for development of the aerobraking and mapping mission phases for MRO.
NASA Technical Reports Server (NTRS)
Russell, Richard A.; Waiss, Richard D.
1988-01-01
A study was conducted to identify the common support equipment and Space Station interface requirements for the IOC (initial operating capabilities) model technology experiments. In particular, each principal investigator for the proposed model technology experiment was contacted and visited for technical understanding and support for the generation of the detailed technical backup data required for completion of this study. Based on the data generated, a strong case can be made for a dedicated technology experiment command and control work station consisting of a command keyboard, cathode ray tube, data processing and storage, and an alert/annunciator panel located in the pressurized laboratory.
Suzuki, Masataka; Yamazaki, Yoshihiko
2005-01-01
According to the equilibrium point hypothesis of voluntary motor control, control action of muscles is not explicitly computed, but rather arises as a consequence of interaction between moving equilibrium position, current kinematics and stiffness of the joint. This approach is attractive as it obviates the need to explicitly specify the forces controlling limb movements. However, many debatable aspects of this hypothesis remain in the manner of specification of the equilibrium point trajectory and muscle activation (or its stiffness), which elicits a restoring force toward the planned equilibrium trajectory. In this study, we expanded the framework of this hypothesis by assuming that the control system uses the velocity measure as the origin of subordinate variables scaling descending commands. The velocity command is translated into muscle control inputs by second order pattern generators, which yield reciprocal command and coactivation commands, and create alternating activation of the antagonistic muscles during movement and coactivation in the post-movement phase, respectively. The velocity command is also integrated to give a position command specifying a moving equilibrium point. This model is purely kinematics-dependent, since the descending commands needed to modulate the visco-elasticity of muscles are implicitly given by simple parametric specifications of the velocity command alone. The simulated movements of fast elbow single-joint movements corresponded well with measured data performed over a wide range of movement distances, in terms of both muscle excitations and kinematics. Our proposal on a synthesis for the equilibrium point approach and velocity command, may offer some insights into the control scheme of the single-joint arm movements.
chemalot and chemalot_knime: Command line programs as workflow tools for drug discovery.
Lee, Man-Ling; Aliagas, Ignacio; Feng, Jianwen A; Gabriel, Thomas; O'Donnell, T J; Sellers, Benjamin D; Wiswedel, Bernd; Gobbi, Alberto
2017-06-12
Analyzing files containing chemical information is at the core of cheminformatics. Each analysis may require a unique workflow. This paper describes the chemalot and chemalot_knime open source packages. Chemalot is a set of command line programs with a wide range of functionalities for cheminformatics. The chemalot_knime package allows command line programs that read and write SD files from stdin and to stdout to be wrapped into KNIME nodes. The combination of chemalot and chemalot_knime not only facilitates the compilation and maintenance of sequences of command line programs but also allows KNIME workflows to take advantage of the compute power of a LINUX cluster. Use of the command line programs is demonstrated in three different workflow examples: (1) A workflow to create a data file with project-relevant data for structure-activity or property analysis and other type of investigations, (2) The creation of a quantitative structure-property-relationship model using the command line programs via KNIME nodes, and (3) The analysis of strain energy in small molecule ligand conformations from the Protein Data Bank database. The chemalot and chemalot_knime packages provide lightweight and powerful tools for many tasks in cheminformatics. They are easily integrated with other open source and commercial command line tools and can be combined to build new and even more powerful tools. The chemalot_knime package facilitates the generation and maintenance of user-defined command line workflows, taking advantage of the graphical design capabilities in KNIME. Graphical abstract Example KNIME workflow with chemalot nodes and the corresponding command line pipe.
The Next Generation of Ground Operations Command and Control; Scripting in C Sharp and Visual Basic
NASA Technical Reports Server (NTRS)
Ritter, George; Pedoto, Ramon
2010-01-01
This slide presentation reviews the use of scripting languages in Ground Operations Command and Control. It describes the use of scripting languages in a historical context, the advantages and disadvantages of scripts. It describes the Enhanced and Redesigned Scripting (ERS) language, that was designed to combine the features of a scripting language and the graphical and IDE richness of a programming language with the utility of scripting languages. ERS uses the Microsoft Visual Studio programming environment and offers custom controls that enable an ERS developer to extend the Visual Basic and C sharp language interface with the Payload Operations Integration Center (POIC) telemetry and command system.
Small Space Launch: Origins & Challenges
NASA Astrophysics Data System (ADS)
Freeman, T.; Delarosa, J.
2010-09-01
The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft, and in the development of constellations of spacecraft. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by an old, unresponsive and relatively expensive set of launchers in the Expandable, Expendable Launch Vehicles (EELV) platforms; Delta IV and Atlas V. The United States directed Air Force Space Command to develop the capability for operationally responsive access to space and use of space to support national security, including the ability to provide critical space capabilities in the event of a failure of launch or on-orbit capabilities. On 1 Aug 06, Air Force Space Command activated the Space Development & Test Wing (SDTW) to perform development, test and evaluation of Air Force space systems and to execute advanced space deployment and demonstration projects to exploit new concepts and technologies, and rapidly migrate capabilities to the warfighter. The SDTW charged the Launch Test Squadron (LTS) with the mission to develop the capability of small space launch, supporting government research and development space launches and missile defense target missions, with operationally responsive spacelift for Low-Earth-Orbit Space Situational Awareness assets as a future mission. This new mission created new challenges for LTS. The LTS mission tenets of developing space launches and missile defense target vehicles were an evolution from the squadrons previous mission of providing sounding rockets under the Rocket Sounding Launch Program (RSLP). The new mission tenets include shortened operational response periods criteria for the warfighter, while reducing the life-cycle development, production and launch costs of space launch systems. This presentation will focus on the technical challenges in transforming and integrating space launch vehicles and space craft vehicles for small space launch missions.
Basic Aerospace Doctrine of the United States Air Force
1984-03-16
sue for peace. But commanders must anticipate the impact and potential of all attacks or support actions. Knowing the social and cultural makeup of an... AUTONY iAUTHYT Wi t I MW~BE OF XS -- - --- - ---- USAF If’ Figure 4-1. Command Structure. 4-3 Operational authority comes from the President through
CACTUS: Command and Control Training Using Knowledge-Based Simulations
ERIC Educational Resources Information Center
Hartley, Roger; Ravenscroft, Andrew; Williams, R. J.
2008-01-01
The CACTUS project was concerned with command and control training of large incidents where public order may be at risk, such as large demonstrations and marches. The training requirements and objectives of the project are first summarized justifying the use of knowledge-based computer methods to support and extend conventional training…
2008-02-13
procedures not ratified by the United States, commanders should evaluate and follow the multinational command’s doctrine and procedures, where applicable... human intelligence sources to be effective and implementation of appropriate force protection measures regardless of the operational...intelligence requirements needed to support the anticipated operation. Human intelligence often may provide the most useful source of information. Even
The principle of superposition in human prehension.
Zatsiorsky, Vladimir M; Latash, Mark L; Gao, Fan; Shim, Jae Kun
2004-03-01
The experimental evidence supports the validity of the principle of superposition for multi-finger prehension in humans. Forces and moments of individual digits are defined by two independent commands: "Grasp the object stronger/weaker to prevent slipping" and "Maintain the rotational equilibrium of the object". The effects of the two commands are summed up.
32 CFR 705.20 - Use of Navy material and facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) The program support must be within the command's public affairs responsibility. (2) The loan of the equipment must not interfere with the military mission of the command. (3) Equipment must be available... one per quarter per group). (4) Incident to group visits by the Boy Scouts of America, Boys Clubs of...
32 CFR 705.20 - Use of Navy material and facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) The program support must be within the command's public affairs responsibility. (2) The loan of the equipment must not interfere with the military mission of the command. (3) Equipment must be available... one per quarter per group). (4) Incident to group visits by the Boy Scouts of America, Boys Clubs of...
32 CFR 705.20 - Use of Navy material and facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) The program support must be within the command's public affairs responsibility. (2) The loan of the equipment must not interfere with the military mission of the command. (3) Equipment must be available... one per quarter per group). (4) Incident to group visits by the Boy Scouts of America, Boys Clubs of...
32 CFR 705.20 - Use of Navy material and facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) The program support must be within the command's public affairs responsibility. (2) The loan of the equipment must not interfere with the military mission of the command. (3) Equipment must be available... one per quarter per group). (4) Incident to group visits by the Boy Scouts of America, Boys Clubs of...
32 CFR 705.20 - Use of Navy material and facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) The program support must be within the command's public affairs responsibility. (2) The loan of the equipment must not interfere with the military mission of the command. (3) Equipment must be available... one per quarter per group). (4) Incident to group visits by the Boy Scouts of America, Boys Clubs of...
The Making of a Government LSI - From Warfare Capability to Operational System
2015-04-30
continues to evolve and implement Lead System Integrator (LSI) acquisition strategies, they have started to define numerous program initiatives that...employ more integrated engineering and management processes and techniques. These initiatives are developing varying acquisition approaches that define (1...government LSI transformation. Navy Systems Commands have begun adding a higher level of integration into their acquisition process with the
The importance of the command-physician in trauma resuscitation.
Hoff, W S; Reilly, P M; Rotondo, M F; DiGiacomo, J C; Schwab, C W
1997-11-01
Definitive trauma team leadership, although difficult to measure, has been shown to improve trauma resuscitation performance. The purpose of this study was to evaluate the effect of an identified command-physician on resuscitation performance. In addition, the leadership capability of four physician combinations functioning as command-physician was studied. Retrospective review. Videotapes of trauma resuscitations performed at a Level I trauma center over a 25-month period were reviewed. The presence of an identified command-physician was determined by multidisciplinary consensus. Resuscitation performance was measured by compliance with three objective criteria: primary survey, secondary survey, and definitive plan; and two subjective criteria: orderliness, and adherence to Advanced Trauma Life Support protocol. Performance was then analyzed (1) as a function of the presence or absence of a command-physician, and (2) between four identified physician combinations: AF (attending surgeon + trauma fellow); F (trauma fellow); ASR (attending surgeon + senior surgical resident); SR (senior surgical resident). Chi square and the Mann-Whitney U tests were applied. A total of 425 trauma resuscitations were reviewed. A command-physician was identified (CP[Pos]) in 365 resuscitations (85.7%); no command-physician was identified (CP[NEG]) in 60 (14.3%). Compliance with completion of secondary survey (81.4%) and formulation of a definitive plan (89.6%) was significantly higher in the CP(POS) group. Subjective scores for orderliness and adherence to Advanced Trauma Life Support protocol were significantly higher in the CP(POS) group. In the CP(POS) resuscitations, formulation of a definitive plan was lower in SR when compared with the other three physician combinations. An identified command-physician enhances trauma resuscitation performance. Completion of the primary and secondary survey is not affected by the physician combination. Prompt formulation of a definitive plan is facilitated by the active involvement of an attending traumatologist or a properly mentored trauma fellow.
Spaceport Command and Control System Support Software Development
NASA Technical Reports Server (NTRS)
Brunotte, Leonard
2016-01-01
The Spaceport Command and Control System (SCCS) is a project developed and used by NASA at Kennedy Space Center in order to control and monitor the Space Launch System (SLS) at the time of its launch. One integral subteam under SCCS is the one assigned to the development of a data set building application to be used both on the launch pad and in the Launch Control Center (LCC) at the time of launch. This web application was developed in Ruby on Rails, a web framework using the Ruby object-oriented programming language, by a 15 - employee team (approx.). Because this application is such a huge undertaking with many facets and iterations, there were a few areas in which work could be more easily organized and expedited. As an intern working with this team, I was charged with the task of writing web applications that fulfilled this need, creating a virtual and highly customizable whiteboard in order to allow engineers to keep track of build iterations and their status. Additionally, I developed a knowledge capture web application wherein any engineer or contractor within SCCS could ask a question, answer an existing question, or leave a comment on any question or answer, similar to Stack Overflow.
Methodologies for Adaptive Flight Envelope Estimation and Protection
NASA Technical Reports Server (NTRS)
Tang, Liang; Roemer, Michael; Ge, Jianhua; Crassidis, Agamemnon; Prasad, J. V. R.; Belcastro, Christine
2009-01-01
This paper reports the latest development of several techniques for adaptive flight envelope estimation and protection system for aircraft under damage upset conditions. Through the integration of advanced fault detection algorithms, real-time system identification of the damage/faulted aircraft and flight envelop estimation, real-time decision support can be executed autonomously for improving damage tolerance and flight recoverability. Particularly, a bank of adaptive nonlinear fault detection and isolation estimators were developed for flight control actuator faults; a real-time system identification method was developed for assessing the dynamics and performance limitation of impaired aircraft; online learning neural networks were used to approximate selected aircraft dynamics which were then inverted to estimate command margins. As off-line training of network weights is not required, the method has the advantage of adapting to varying flight conditions and different vehicle configurations. The key benefit of the envelope estimation and protection system is that it allows the aircraft to fly close to its limit boundary by constantly updating the controller command limits during flight. The developed techniques were demonstrated on NASA s Generic Transport Model (GTM) simulation environments with simulated actuator faults. Simulation results and remarks on future work are presented.
Integrated learning of mathematics, science and technology concepts through LEGO/Logo projects
NASA Astrophysics Data System (ADS)
Wu, Lina
This dissertation examined integrated learning in the domains of mathematics, science and technology based on Piaget's constructivism, Papert's constructionism, and project-based approach to education. Ten fifth grade students were involved in a two-month long after school program where they designed and built their own computer-controlled LEGO/Logo projects that required the use of gears, ratios and motion concepts. The design of this study centered on three notions of integrated learning: (1) integration in terms of what educational materials/settings provide, (2) integration in terms of students' use of those materials, and (3) integration in the psychological sense. In terms of the first notion, the results generally showed that the LEGO/Logo environment supported the integrated learning of math, science and technology concepts. Regarding the second notion, the students all completed impressive projects of their own design. They successfully combined gears, motors, and LEGO parts together to create motion and writing control commands to manipulate the motion. But contrary to my initial expectations, their successful designs did not require numerical reasoning about ratios in designing effective gear systems. When they did reason about gear relationships, they worked with "qualitative" ratios, e.g., "a larger driver gear with a smaller driven gear increases the speed." In terms of the third notion of integrated learning, there was evidence in all four case study students of the psychological processes involved in linking mathematical, scientific, and/or technological concepts together to achieve new conceptual units. The students not only made connections between ideas and experiences, but also recognized decisive patterns and relationships in their project work. The students with stronger overall project performances showed more evidence of synthesis than the students with relatively weaker performances did. The findings support the conclusion that all three notions of the integrated learning are important for understanding what the students learned from their project work. By considering these notions together, and by deliberating about their interrelations, we take a step towards understanding the integrated learning.
New ultraportable display technology and applications
NASA Astrophysics Data System (ADS)
Alvelda, Phillip; Lewis, Nancy D.
1998-08-01
MicroDisplay devices are based on a combination of technologies rooted in the extreme integration capability of conventionally fabricated CMOS active-matrix liquid crystal display substrates. Customized diffraction grating and optical distortion correction technology for lens-system compensation allow the elimination of many lenses and systems-level components. The MicroDisplay Corporation's miniature integrated information display technology is rapidly leading to many new defense and commercial applications. There are no moving parts in MicroDisplay substrates, and the fabrication of the color generating gratings, already part of the CMOS circuit fabrication process, is effectively cost and manufacturing process-free. The entire suite of the MicroDisplay Corporation's technologies was devised to create a line of application- specific integrated circuit single-chip display systems with integrated computing, memory, and communication circuitry. Next-generation portable communication, computer, and consumer electronic devices such as truly portable monitor and TV projectors, eyeglass and head mounted displays, pagers and Personal Communication Services hand-sets, and wristwatch-mounted video phones are among the may target commercial markets for MicroDisplay technology. Defense applications range from Maintenance and Repair support, to night-vision systems, to portable projectors for mobile command and control centers.
NASA Technical Reports Server (NTRS)
Bachelder, Edward; Hess, Ronald; Godfroy-Cooper, Martine; Aponso, Bimal
2017-01-01
In this study, behavioral models are developed that closely reproduced pulsive control response of two pilots from the experimental pool using markedly different control techniques (styles) while conducting a tracking task. An intriguing find was that the pilots appeared to: 1) produce a continuous, internally-generated stick signal that they integrated in time; 2) integrate the actual stick position; and 3) compare the two integrations to issue and cease pulse commands. This suggests that the pilots utilized kinesthetic feedback in order to perceive and integrate stick position, supporting the hypothesis that pilots can access and employ the proprioceptive inner feedback loop proposed by Hess' pilot Structural Model. The Pulse Models used in conjunction with the pilot Structural Model closely recreated the pilot data both in the frequency and time domains during closed-loop simulation. This indicates that for the range of tasks and control styles encountered, the models captured the fundamental mechanisms governing pulsive and control processes. The pilot Pulse Models give important insight for the amount of remnant (stick output uncorrelated with the forcing function) that arises from nonlinear pilot technique, and for the remaining remnant arising from different sources unrelated to tracking control (i.e. neuromuscular tremor, reallocation of cognitive resources, etc.).
Creating a process for incorporating epidemiological modelling into outbreak management decisions.
Akselrod, Hana; Mercon, Monica; Kirkeby Risoe, Petter; Schlegelmilch, Jeffrey; McGovern, Joanne; Bogucki, Sandy
2012-01-01
Modern computational models of infectious diseases greatly enhance our ability to understand new infectious threats and assess the effects of different interventions. The recently-released CDC Framework for Preventing Infectious Diseases calls for increased use of predictive modelling of epidemic emergence for public health preparedness. Currently, the utility of these technologies in preparedness and response to outbreaks is limited by gaps between modelling output and information requirements for incident management. The authors propose an operational structure that will facilitate integration of modelling capabilities into action planning for outbreak management, using the Incident Command System (ICS) and Synchronization Matrix framework. It is designed to be adaptable and scalable for use by state and local planners under the National Response Framework (NRF) and Emergency Support Function #8 (ESF-8). Specific epidemiological modelling requirements are described, and integrated with the core processes for public health emergency decision support. These methods can be used in checklist format to align prospective or real-time modelling output with anticipated decision points, and guide strategic situational assessments at the community level. It is anticipated that formalising these processes will facilitate translation of the CDC's policy guidance from theory to practice during public health emergencies involving infectious outbreaks.
1984-03-01
DRDAR-TSS-S (STINFO) ATTN DRXRES-RTL, TECH LIBRARY ABERDEN PROVING GROUND , MD 21005 NATICK, MA 01762 23 %.. * ,w...DRXSY-MP (LIBRARY) ABERDEEN PROVING GROUND , MD 21005 UNDER SECRETARY OF DEFENSE RES £ ENGINEERING COMMANDER ATTN TECHNICAL LIBRARY, 3C128 US ARMY MISSILE...SANDS MISSILE RANGE, N 88002 ABERDEEN PROVING GROUND , MD 21005 DIRECTOR COMMANDER 08 RMM BALLISTIC RESEARCH LABORATORY US ARMY TROOP SUPPORT COMMAND AT
SCORPION persistent surveillance system with universal gateway
NASA Astrophysics Data System (ADS)
Coster, Michael; Chambers, Jon; Winters, Michael; Belesi, Joe
2008-04-01
This paper addresses benefits derived from the universal gateway utilized in Northrop Grumman Systems Corporation's (NGSC) SCORPION, a persistent surveillance and target recognition system produced by the Xetron campus in Cincinnati, Ohio. SCORPION is currently deployed in Operations Iraqi Freedom (OIF) and Enduring Freedom (OEF). The SCORPION universal gateway is a flexible, field programmable system that provides integration of over forty Unattended Ground Sensor (UGS) types from a variety of manufacturers, multiple visible and thermal electro-optical (EO) imagers, and numerous long haul satellite and terrestrial communications links, including the Army Research Lab (ARL) Blue Radio. Xetron has been integrating best in class sensors with this universal gateway to provide encrypted data exfiltration and remote sensor command and control since 1998. SCORPION data can be distributed point to point, or to multiple Common Operational Picture (COP) systems, including Command and Control Personal Computer (C2PC), Common Data Interchange Format for the Situational Awareness Display (CDIF/SAD), Force XXI Battle Command Brigade and Below (FBCB2), Defense Common Ground Systems (DCGS), and Remote Automated Position Identification System (RAPIDS).
Command and Control of Space Assets Through Internet-Based Technologies Demonstrated
NASA Technical Reports Server (NTRS)
Foltz, David A.
2002-01-01
The NASA Glenn Research Center successfully demonstrated a transmission-control-protocol/ Internet-protocol- (TCP/IP) based approach to the command and control of onorbit assets over a secure network. This is a significant accomplishment because future NASA missions will benefit by using Internet-standards-based protocols. Benefits of this Internet-based space command and control system architecture include reduced mission costs and increased mission efficiency. The demonstration proved that this communications architecture is viable for future NASA missions. This demonstration was a significant feat involving multiple NASA organizations and industry. Phillip Paulsen, from Glenn's Project Development and Integration Office, served as the overall project lead, and David Foltz, from Glenn's Satellite Networks and Architectures Branch, provided the hybrid networking support for the required Internet connections. The goal was to build a network that would emulate a connection between a space experiment on the International Space Station and a researcher accessing the experiment from anywhere on the Internet, as shown. The experiment was interfaced to a wireless 802.11 network inside the demonstration area. The wireless link provided connectivity to the Tracking and Data Relay Satellite System (TDRSS) Internet Link Terminal (TILT) satellite uplink terminal located 300 ft away in a parking lot on top of a panel van. TILT provided a crucial link in this demonstration. Leslie Ambrose, NASA Goddard Space Flight Center, provided the TILT/TDRSS support. The TILT unit transmitted the signal to TDRS 6 and was received at the White Sands Second TDRSS Ground Station. This station provided the gateway to the Internet. Coordination also took place at the White Sands station to install a Veridian Firewall and automated security incident measurement (ASIM) system to the Second TDRSS Ground Station Internet gateway. The firewall provides a trusted network for the simulated space experiment. A second Internet connection at the demonstration area was implemented to provide Internet connectivity to a group of workstations to serve as platforms for controlling the simulated space experiment. Installation of this Internet connection was coordinated with an Internet service provider (ISP) and local NASA Johnson Space Center personnel. Not only did this TCP/IP-based architecture prove that a principal investigator on the Internet can securely command and control on-orbit assets, it also demonstrated that valuable virtual testing of planned on-orbit activities can be conducted over the Internet prior to actual deployment in space.
UAS Integration into the NAS: HSI Full Mission Simulation Preliminary Results
NASA Technical Reports Server (NTRS)
Shively, Jay; Fern, Lisa; Rorie, Conrad
2014-01-01
The goal of the Full Mission Sim was to examine the effects of different command and control interfaces on UAS pilots' ability to respond to ATC commands and traffic advisories. Results suggest that higher levels of automation (i.e., waypoint-to-waypoint control interfaces) lead to longer initial response times and longer edit times. The findings demonstrate the importance of providing pilots with interfaces that facilitate their ability to get back "in the loop."
OPERATIONAL TEST AND EVALUATION OF PHOTOTROPIC GOGGLES.
Irreversible Phototropic Filter Device is one of many such systems. Forty-nine Air Defense Command and twenty-four Tactical Air Command aircrews evaluated the...indicated that: The goggles do not integrate with the oxygen mask, helmet and visor; It is not practicable to carry additional phototropic lenses for...in-flight changes. The Irreversible Phototropic Filter Device is operationally unacceptable for use by aircrew members. Recommend that ASD continue efforts to develop a suitable device for flashblindness protection. (Author)
STS-56 Commander Cameron & Pilot Oswald at CCT hatch during JSC training
1992-12-01
STS-56 Discovery, Orbiter Vehicle (OV) 103, Commander Kenneth Cameron (right) and Pilot Stephen S. Oswald, wearing launch and entry suits (LESs), stand at the side hatch of the crew compartment trainer (CCT), a shuttle mockup, prior to entering the mockup. Once inside the CCT, they will don their launch and entry helmets (LEHs) and participate in emergency egress (bailout) procedures. The CCT is located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE.
Analysing Command Challenges Using the Command and Control Framework: Pilot Study Results
2003-02-01
allocation of resources (2), adequate staff, abuse of power Primary Rank Level 8 % Rank too low Abuse of power/authority (14), gender Use of Power 58...Advisory Board on Gender Integration and Employment Equity: 2000 Annual Report. Ottawa: Department of National Defence. 8. Adams-Roy, J.E., MacLennan...Opportunity (e.g., for socialisation ) Explain: = NoDl Yes R] :Other Explain: 36 DRDC Toronto TR 2003-034 PART D - GENERAL 6. Overall Assessment = In your
2015-10-01
October 2015 TYPE OF REPORT: Annual Report PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012...AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR...no funds have been used to date. 15. SUBJECT TERMS Gulf war illness; magnetic resonance imaging; dopamine ; diffusion tensor imaging 16. SECURITY
1998-06-05
judgment, intuition, and empathy . Integration is most clearly identified in CTC lessons learned, particularly in its relation to the synchronization of...and empathy can be inferred from the results of some battles, but is not discussed in CALL materials. Some observations can be made about initiative...operations. Repeated practice can increase both knowledge and experi- ence and increase intuition and empathy as well. A seasoned combat commander
1985-12-02
units, organized to fully integrate the effects of combined arms, merging individual capabilities of mobility, protection, and fire power to provide a... capability to meet a wide range of operational requirements with minimal reorganization. Organizations which provide this inherent flexibility...5 LA - .- f increasingly proficient and capable massed Soviet armies attacking on broad frontages, and finally the surprising German t-actica; and
Combat Pair: The Evolution of Air Force-Navy Integration in Strike Warfare
2007-01-01
Rear Admiral David Buss , USN, at the time Commanding Officer of USS John C. Stennis, for freely sharing his time during our three-day visit despite...These points were further affirmed by the combined force mari - time component commander (CFMCC) in Enduring Freedom, Vice Admiral Charles Moore, Jr...attack, the Navy’s Arleigh Burke -class destroyer USS Higgins on station in the North Arabian Gulf served as a tactical ballistic missile early
Skylab Rescue Space Vehicle OAT No. 1 Plugs in Test
NASA Technical Reports Server (NTRS)
Jevitt, S. J.
1973-01-01
A test is described which demonstrates the compatibility of the Skylab Rescue Space Vehicle systems, the ground support equipment, and off-site support facilities by proceeding through a simulated launch countdown, liftoff, and flight. The functions of propellant loading, umbilical ejection, holddown arm release, service arm retraction, liftoff, and inflight separation are simulated. An external power source supplies transfer power to internal, and instrument unit commands are simulated by the digital command system. The test outline is presented along with a list of references, intercommunications information, radio frequency matrix, and interface control chart.
Method for hierarchical modeling of the command of flexible manufacturing systems
NASA Astrophysics Data System (ADS)
Ausfelder, Christian; Castelain, Emmanuel; Gentina, Jean-Claude
1994-04-01
The present paper focuses on the modeling of the command and proposes a hierarchical and modular approach which is oriented on the physical structure of FMS. The requirements issuing from monitoring of FMS are discussed and integrated in the proposed model. Its modularity makes the approach open for extensions concerning as well the production resources as the products. As a modeling tool, we have chosen Object Petri nets. The first part of the paper describes desirable features of an FMS command such as safety, robustness, and adaptability. As it is shown, these features result from the flexibility of the installation. The modeling method presented in the second part of the paper begins with a structural analysis of FMS and defines a natural command hierarchy, where the coordination of the production process, the synchronization of production resources on products, and the internal coordination are treated separately. The method is rigorous and leads to a structured and modular Petri net model which can be used for FMS simulation or translated into the final command code.
NASA Astrophysics Data System (ADS)
Chen, Lei; Kou, Yingxin; Li, Zhanwu; Xu, An; Wu, Cheng
2018-01-01
We build a complex networks model of combat System-of-Systems (SoS) based on empirical data from a real war-game, this model is a combination of command & control (C2) subnetwork, sensors subnetwork, influencers subnetwork and logistical support subnetwork, each subnetwork has idiographic components and statistical characteristics. The C2 subnetwork is the core of whole combat SoS, it has a hierarchical structure with no modularity, of which robustness is strong enough to maintain normal operation after any two nodes is destroyed; the sensors subnetwork and influencers subnetwork are like sense organ and limbs of whole combat SoS, they are both flat modular networks of which degree distribution obey GEV distribution and power-law distribution respectively. The communication network is the combination of all subnetworks, it is an assortative Small-World network with core-periphery structure, the Intelligence & Communication Stations/Command Center integrated with C2 nodes in the first three level act as the hub nodes in communication network, and all the fourth-level C2 nodes, sensors, influencers and logistical support nodes have communication capability, they act as the periphery nodes in communication network, its degree distribution obeys exponential distribution in the beginning, Gaussian distribution in the middle, and power-law distribution in the end, and its path length obeys GEV distribution. The betweenness centrality distribution, closeness centrality distribution and eigenvector centrality are also been analyzed to measure the vulnerability of nodes.
A Commander’s Guide for Conducting Integration Operations in the San Antonio Military Health System
1999-02-01
Conducting Integration Operations 27 Denzin , Norman and Lincoln , Yvonna. (1994). Handbook of Qualitative Research. Sage Publications. Thousand Oaks...the Defense. (1998). “Program Decision Memorandum.” August 18, 1998. Phillips, Donald. (1992). Lincoln on Leadership. Warner Books. New York. 1992
Baroreflex regulation of blood pressure during dynamic exercise
NASA Technical Reports Server (NTRS)
Raven, P. B.; Potts, J. T.; Shi, X.; Blomqvist, C. G. (Principal Investigator)
1997-01-01
From the work of Potts et al. Papelier et al. and Shi et al. it is readily apparent that the arterial (aortic and carotid) baroreflexes are reset to function at the prevailing ABP of exercise. The blood pressure of exercise is the result of the hemodynamic (cardiac output and TPR) responses, which appear to be regulated by two redundant neural control systems, "Central Command" and the "exercise pressor reflex". Central Command is a feed-forward neural control system that operates in parallel with the neural regulation of the locomotor system and appears to establish the hemodynamic response to exercise. Within the central nervous system it appears that the HLR may be the operational site for Central Command. Specific neural sites within the HLR have been demonstrated in animals to be active during exercise. With the advent of positron emission tomography (PET) and single-photon emission computed tomography (SPECT), the anatomical areas of the human brain related to Central Command are being mapped. It also appears that the Nucleus Tractus Solitarius and the ventrolateral medulla may serve as an integrating site as they receive neural information from the working muscles via the group III/IV muscle afferents as well as from higher brain centers. This anatomical site within the CNS is now the focus of many investigations in which arterial baroreflex function, Central Command and the "exercise pressor reflex" appear to demonstrate inhibitory or facilitatory interaction. The concept of whether Central Command is the prime mover in the resetting of the arterial baroreceptors to function at the exercising ABP or whether the resetting is an integration of the "exercise pressor reflex" information with that of Central Command is now under intense investigation. However, it would be justified to conclude, from the data of Bevegard and Shepherd, Dicarlo and Bishop, Potts et al., and Papelier et al. that the act of exercise results in the resetting of the arterial baroreflex. In addition, if, as we have proposed, the cardiopulmonary baroreceptors primarily monitors and reflexly regulates cardiac filling volume, it would seem from the data of Mack et al. and Potts et al. that the cardiopulmonary baroreceptor is also reset at the beginning of exercise. Therefore, investigations of the neural mechanisms of regulation involving Central Command and cardiopulmonary afferents, similar to those being undertaken for the arterial baroreflex, need to be established.
Astronaut Russell Schweickart photographed during EVA
1969-03-06
AS09-19-2994 (6 March 1969) --- Astronaut Russell L. Schweickart, lunar module pilot, is photographed from the Command Module (CM) "Gumdrop" during his extravehicular activity (EVA) on the fourth day of the Apollo 9 Earth-orbital mission. He holds, in his right hand, a thermal sample which he is retrieving from the Lunar Module (LM) exterior. The Command and Service Modules (CSM) and LM "Spider" are docked. Schweickart, wearing an Extravehicular Mobility Unit (EMU), is standing in "golden slippers" on the LM porch. Visible on his back are the Portable Life Support System (PLSS) and Oxygen Purge System (OPS). Astronaut James A. McDivitt, Apollo 9 commander, was inside the "Spider". Astronaut David R. Scott, command module pilot, remained at the controls in the CM "Gumdrop".
Macintosh II based space Telemetry and Command (MacTac) system
NASA Technical Reports Server (NTRS)
Dominy, Carol T.; Chesney, James R.; Collins, Aaron S.; Kay, W. K.
1991-01-01
The general architecture and the principal functions of the Macintosh II based Telemetry and Command system, presently under development, are described, with attention given to custom telemetry cards, input/output interfaces, and the icon driven user interface. The MacTac is a low-cost, transportable, easy to use, compact system designed to meet the requirements specified by the Consultative Committeee for Space Data Systems while remaining flexible enough to support a wide variety of other user specific telemetry processing requirements, such as TDM data. In addition, the MacTac can accept or generate forward data (such as spacecraft commands), calculate and append a Polynomial Check Code, and output these data to NASCOM to provide full Telemetry and Command capability.
48 CFR 225.7402-3 - Government support.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Government support. 225... States 225.7402-3 Government support. (a) Government support that may be authorized or required for... coordination with the combatant commander that— (1) Such Government support is available and is needed to...
48 CFR 225.7402-3 - Government support.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Government support. 225... States 225.7402-3 Government support. (a) Government support that may be authorized or required for... coordination with the combatant commander that— (1) Such Government support is available and is needed to...
48 CFR 225.7402-3 - Government support.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Government support. 225... States 225.7402-3 Government support. (a) Government support that may be authorized or required for... coordination with the combatant commander that— (1) Such Government support is available and is needed to...
48 CFR 225.7402-3 - Government support.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Government support. 225... States 225.7402-3 Government support. (a) Government support that may be authorized or required for... coordination with the combatant commander that— (1) Such Government support is available and is needed to...
48 CFR 225.7402-3 - Government support.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Government support. 225... States 225.7402-3 Government support. (a) Government support that may be authorized or required for... coordination with the combatant commander that— (1) Such Government support is available and is needed to...