Sample records for integrated system composed

  1. Integration of Information Retrieval and Database Management Systems.

    ERIC Educational Resources Information Center

    Deogun, Jitender S.; Raghavan, Vijay V.

    1988-01-01

    Discusses the motivation for integrating information retrieval and database management systems, and proposes a probabilistic retrieval model in which records in a file may be composed of attributes (formatted data items) and descriptors (content indicators). The details and resolutions of difficulties involved in integrating such systems are…

  2. THE EPA MULTIMEDIA INTEGRATED MODELING SYSTEM SOFTWARE SUITE

    EPA Science Inventory

    The U.S. EPA is developing a Multimedia Integrated Modeling System (MIMS) framework that will provide a software infrastructure or environment to support constructing, composing, executing, and evaluating complex modeling studies. The framework will include (1) common software ...

  3. Integration of robotic resources into FORCEnet

    NASA Astrophysics Data System (ADS)

    Nguyen, Chinh; Carroll, Daniel; Nguyen, Hoa

    2006-05-01

    The Networked Intelligence, Surveillance, and Reconnaissance (NISR) project integrates robotic resources into Composeable FORCEnet to control and exploit unmanned systems over extremely long distances. The foundations are built upon FORCEnet-the U.S. Navy's process to define C4ISR for net-centric operations-and the Navy Unmanned Systems Common Control Roadmap to develop technologies and standards for interoperability, data sharing, publish-and-subscribe methodology, and software reuse. The paper defines the goals and boundaries for NISR with focus on the system architecture, including the design tradeoffs necessary for unmanned systems in a net-centric model. Special attention is given to two specific scenarios demonstrating the integration of unmanned ground and water surface vehicles into the open-architecture web-based command-and-control information-management system of Composeable FORCEnet. Planned spiral development for NISR will improve collaborative control, expand robotic sensor capabilities, address multiple domains including underwater and aerial platforms, and extend distributive communications infrastructure for battlespace optimization for unmanned systems in net-centric operations.

  4. Marine Tactical Command and Control System (MTACCS) Field Development System-1 (FDS-1) assessment: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avery, L.W.; Hunt, S.T.; Savage, S.F.

    1992-04-01

    The United State Marine Corps (USMC) is continuing the development and fielding of the Marine Corps Tactical Command and Control System (MTACCS), a system which exists in varying states of development, fielding, or modernization. MTACCS is currently composed of the following components: Tactical Combat Operations System (TCO) for ground command and control (C2), Intelligence Analysis System (IAS) with a Genser terminal connected to a TCO workstation for intelligence C2, Marine Integrated Personnel System (MIPS) and a TCO workstation using the Marine Combat Personnel System (MCPERS) software for personnel C2, Marine Integrated Logistics System (MILOGS) which is composed of the Landingmore » Force Asset Distribution System (LFADS), the Marine Air-Ground Task Force (MAGTF) II, and a TCO terminal using the Marine Combat Logistics System (MCLOG) for logistics C2, Marine Corps Fire Support System (MCFSS) for fire support C2, and Advanced Tactical Air Command Central (ATACC) and the Improved Direct Air Support Central for aviation C2.« less

  5. Modular Power Standard for Space Explorations Missions

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Gardner, Brent G.

    2016-01-01

    Future human space exploration will most likely be composed of assemblies of multiple modular spacecraft elements with interconnected electrical power systems. An electrical system composed of a standardized set modular building blocks provides significant development, integration, and operational cost advantages. The modular approach can also provide the flexibility to configure power systems to meet the mission needs. A primary goal of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project is to establish a Modular Power Standard that is needed to realize these benefits. This paper is intended to give the space exploration community a "first look" at the evolving Modular Power Standard and invite their comments and technical contributions.

  6. A time domain simulation of a beam control system

    NASA Astrophysics Data System (ADS)

    Mitchell, J. R.

    1981-02-01

    The Airborne Laser Laboratory (ALL) is being developed by the Air Force to investigate the integration and operation of high energy laser components in a dynamic airborne environment and to study the propagation of laser light from an airborne vehicle to an airborne target. The ALL is composed of several systems; among these are the Airborne Pointing and Tracking System (APT) and the Automatic Alignment System (AAS). This report presents the results of performing a time domain dynamic simulation for an integrated beam control system composed of the APT and AAS. The simulation is performed on a digital computer using the MIMIC language. It includes models of the dynamics of the system and of disturbances. Also presented in the report are the rationales and developments of these models. The data from the simulation code is summarized by several plots. In addition results from massaging the data with waveform analysis packages are presented. The results are discussed and conclusions are drawn.

  7. Collimating slicer for optical integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Hénault, François

    2016-07-01

    Integral Field Spectroscopy (IFS) is a technique that gives simultaneously the spectrum of each spatial sampling element of a given field. It is a powerful tool which rearranges the data cube represented by two spatial dimensions defining the field and the spectral decomposition (x, y, λ) in a detector plane. In IFS, the "spatial" unit reorganizes the field, the "spectral" unit is being composed of a classical spectrograph. For the spatial unit, three main techniques - microlens array, microlens array associated with fibres and image slicer - are used in astronomical instrumentations. The development of a Collimating Slicer is to propose a new type of optical integral field spectroscopy which should be more compact. The main idea is to combine the image slicer with the collimator of the spectrograph mixing the "spatial" and "spectral" units. The traditional combination of slicer, pupil and slit elements and spectrograph collimator is replaced by a new one composed of a slicer and spectrograph collimator only. After testing few configurations, this new system looks very promising for low resolution spectrographs. In this paper, the state of art of integral field spectroscopy using image slicers will be described. The new system based onto the development of a Collimating Slicer for optical integral field spectroscopy will be depicted. First system analysis results and future improvements will be discussed.

  8. Uses of GIS for Homeland Security and Emergency Management for Higher Education Institutions

    ERIC Educational Resources Information Center

    Murchison, Stuart B.

    2010-01-01

    Geographic information systems (GIS) are a major component of the geospatial sciences, which are also composed of geostatistical analysis, remote sensing, and global positional satellite systems. These systems can be integrated into GIS for georeferencing, pattern analysis, visualization, and understanding spatial concepts that transcend…

  9. A high-speed trapezoid image sensor design for continuous traffic monitoring at signalized intersection approaches.

    DOT National Transportation Integrated Search

    2014-10-01

    The goal of this project is to monitor traffic flow continuously with an innovative camera system composed of a custom : designed image sensor integrated circuit (IC) containing trapezoid pixel array and camera system that is capable of : intelligent...

  10. Integrated editing system for Japanese text and image information "Linernote"

    NASA Astrophysics Data System (ADS)

    Tanaka, Kazuto

    Integrated Japanese text editing system "Linernote" developed by Toyo Industries Co. is explained. The system has been developed on the concept of electronic publishing. It is composed of personal computer NEC PC-9801 VX and other peripherals. Sentence, drawing and image data is inputted and edited under the integrated operating environment in the system and final text is printed out by laser printer. Handling efficiency of time consuming work such as pattern input or page make up has been improved by draft image data indication method on CRT. It is the latest DTP system equipped with three major functions, namly, typesetting for high quality text editing, easy drawing/tracing and high speed image processing.

  11. An integrated and open source GIS environmental management system for a protected area in the south of Portugal

    NASA Astrophysics Data System (ADS)

    Teodoro, A.; Duarte, L.; Sillero, N.; Gonçalves, J. A.; Fonte, J.; Gonçalves-Seco, L.; Pinheiro da Luz, L. M.; dos Santos Beja, N. M. R.

    2015-10-01

    Herdade da Contenda (HC), located in Moura municipality, Beja district (Alentejo province) in the south of Portugal (southwestern Iberia Peninsula), is a national hunting area with 5270ha. The development of an integrated system that aims to make the management of the natural and cultural heritage resources will be very useful for an effective management of this area. This integrated system should include the physical characterization of the territory, natural conservation, land use and land management themes, as well the cultural heritage resources. This paper presents a new tool for an integrated environmental management system of the HC, which aims to produce maps under a GIS open source environment (QGIS). The application is composed by a single button which opens a window. The window is composed by twelve menus (File, DRASTIC, Forest Fire Risk, Revised Universal Soil Loss Equation (RUSLE), Bioclimatic Index, Cultural Heritage, Fauna and Flora, Ortofoto, Normalizes Difference Vegetation Index (NDVI), Digital Elevation Model (DEM), Land Use Land Cover Cover (LULC) and Help. Several inputs are requires to generate these maps, e.g. DEM, geologic information, soil map, hydraulic conductivity information, LULC map, vulnerability and economic information, NDVI. Six buttons were added to the toolbar which allows to manipulate the information in the map canvas: Zoom in, Zoom out, Pan, Print/Layout and Clear. This integrated and open source GIS environment management system was developed for the HC area, but could be easily adapted to other natural or protected area. Despite the lack of data, the methodology presented fulfills the objectives.

  12. The agent-based spatial information semantic grid

    NASA Astrophysics Data System (ADS)

    Cui, Wei; Zhu, YaQiong; Zhou, Yong; Li, Deren

    2006-10-01

    Analyzing the characteristic of multi-Agent and geographic Ontology, The concept of the Agent-based Spatial Information Semantic Grid (ASISG) is defined and the architecture of the ASISG is advanced. ASISG is composed with Multi-Agents and geographic Ontology. The Multi-Agent Systems are composed with User Agents, General Ontology Agent, Geo-Agents, Broker Agents, Resource Agents, Spatial Data Analysis Agents, Spatial Data Access Agents, Task Execution Agent and Monitor Agent. The architecture of ASISG have three layers, they are the fabric layer, the grid management layer and the application layer. The fabric layer what is composed with Data Access Agent, Resource Agent and Geo-Agent encapsulates the data of spatial information system so that exhibits a conceptual interface for the Grid management layer. The Grid management layer, which is composed with General Ontology Agent, Task Execution Agent and Monitor Agent and Data Analysis Agent, used a hybrid method to manage all resources that were registered in a General Ontology Agent that is described by a General Ontology System. The hybrid method is assembled by resource dissemination and resource discovery. The resource dissemination push resource from Local Ontology Agent to General Ontology Agent and the resource discovery pull resource from the General Ontology Agent to Local Ontology Agents. The Local Ontology Agent is derived from special domain and describes the semantic information of local GIS. The nature of the Local Ontology Agents can be filtrated to construct a virtual organization what could provides a global scheme. The virtual organization lightens the burdens of guests because they need not search information site by site manually. The application layer what is composed with User Agent, Geo-Agent and Task Execution Agent can apply a corresponding interface to a domain user. The functions that ASISG should provide are: 1) It integrates different spatial information systems on the semantic The Grid management layer establishes a virtual environment that integrates seamlessly all GIS notes. 2) When the resource management system searches data on different spatial information systems, it transfers the meaning of different Local Ontology Agents rather than access data directly. So the ability of search and query can be said to be on the semantic level. 3) The data access procedure is transparent to guests, that is, they could access the information from remote site as current disk because the General Ontology Agent could automatically link data by the Data Agents that link the Ontology concept to GIS data. 4) The capability of processing massive spatial data. Storing, accessing and managing massive spatial data from TB to PB; efficiently analyzing and processing spatial data to produce model, information and knowledge; and providing 3D and multimedia visualization services. 5) The capability of high performance computing and processing on spatial information. Solving spatial problems with high precision, high quality, and on a large scale; and process spatial information in real time or on time, with high-speed and high efficiency. 6) The capability of sharing spatial resources. The distributed heterogeneous spatial information resources are Shared and realizing integrated and inter-operated on semantic level, so as to make best use of spatial information resources,such as computing resources, storage devices, spatial data (integrating from GIS, RS and GPS), spatial applications and services, GIS platforms, 7) The capability of integrating legacy GIS system. A ASISG can not only be used to construct new advanced spatial application systems, but also integrate legacy GIS system, so as to keep extensibility and inheritance and guarantee investment of users. 8) The capability of collaboration. Large-scale spatial information applications and services always involve different departments in different geographic places, so remote and uniform services are needed. 9) The capability of supporting integration of heterogeneous systems. Large-scale spatial information systems are always synthetically applications, so ASISG should provide interoperation and consistency through adopting open and applied technology standards. 10) The capability of adapting dynamic changes. Business requirements, application patterns, management strategies, and IT products always change endlessly for any departments, so ASISG should be self-adaptive. Two examples are provided in this paper, those examples provide a detailed way on how you design your semantic grid based on Multi-Agent systems and Ontology. In conclusion, the semantic grid of spatial information system could improve the ability of the integration and interoperability of spatial information grid.

  13. Time Integrating Optical Signal Processing

    DTIC Science & Technology

    1981-07-01

    advantage of greatly reducing the bandwidth requirement for the memory feeding the second cell. For a system composed of a PbMoO 4 and a ( TeO2 )s Bragg cell...bounds. ( TeO2 )L and ( TeO2 )s represent, respectively, the long- / , / itudinal and slow shear / modes of TeO2 . ’a , / / /a ’o [ / / / / was assumed here...could be implemented with a 25mm TeO2 device operated in the longitudinal mode in a hybrid system. A purely time-integrating system would require about

  14. Integrated CMOS dew point sensors for relative humidity measurement

    NASA Astrophysics Data System (ADS)

    Savalli, Nicolo; Baglio, Salvatore; Castorina, Salvatore; Sacco, Vincenzo; Tringali, Cristina

    2004-07-01

    This work deals with the development of integrated relative humidity dew point sensors realized by adopting standard CMOS technology for applications in various fields. The proposed system is composed by a suspended plate that is cooled by exploiting integrated Peltier cells. The cold junctions of the cells have been spread over the plate surface to improve the homogeneity of the temperature distribution over its surface, where cooling will cause the water condensation. The temperature at which water drops occur, named dew point temperature, is a function of the air humidity. Measurement of such dew point temperature and the ambient temperature allows to know the relative humidity. The detection of water drops is achieved by adopting a capacitive sensing strategy realized by interdigited fixed combs, composed by the upper layer of the adopted process. Such a capacitive sensor, together with its conditioning circuit, drives a trigger that stops the cooling of the plate and enables the reading of the dew point temperature. Temperature measurements are achieved by means of suitably integrated thermocouples. The analytical model of the proposed system has been developed and has been used to design a prototype device and to estimate its performances. In such a prototype, the thermoelectric cooler is composed by 56 Peltier cells, made by metal 1/poly 1 junctions. The plate has a square shape with 200 μm side, and it is realized by exploiting the oxide layers. Starting from the ambient temperature a temperature variation of ΔT = 15 K can be reached in 10 ms thus allowing to measure a relative humidity greater than 40%.

  15. Conceptual design study for an advanced cab and visual system, volume 2

    NASA Technical Reports Server (NTRS)

    Rue, R. J.; Cyrus, M. L.; Garnett, T. A.; Nachbor, J. W.; Seery, J. A.; Starr, R. L.

    1980-01-01

    The performance, design, construction and testing requirements are defined for developing an advanced cab and visual system. The rotorcraft system integration simulator is composed of the advanced cab and visual system and the rotorcraft system motion generator, and is part of an existing simulation facility. User's applications for the simulator include rotorcraft design development, product improvement, threat assessment, and accident investigation.

  16. The hybrid photonic planar integrated receiver with a polymer optical waveguide

    NASA Astrophysics Data System (ADS)

    Busek, Karel; Jerábek, Vitezslav; Armas Arciniega, Julio; Prajzler, Václav

    2008-11-01

    This article describes design of the photonic receiver composed of the system polymer planar waveguides, InGaAs p-i-n photodiode and integrated HBT amplifier on a low loss composite substrate. The photonic receiver was the main part of the hybrid integrated microwave optoelectronic transceiver TRx (transciever TRx) for the optical networks PON (passive optical networks) with FTTH (fiber-to-the-home) topology. In this article are presented the research results of threedimensional field between output facet of a optical waveguide and p-i-n photodiode. In terms of our research, there was optimized the optical coupling among the facet waveguide and pi-n photodiode and the electrical coupling among p-i-n photodiode and input of HBT amplifier. The hybrid planar lightwave circuit (PLC) of the transceiver TRx will be composed from a two parts - polymer optical waveguide including VHGT filter section and a optoelectronic microwave section.

  17. Continuing Education in a Lifelong Learning Society: The Hong Kong Model

    ERIC Educational Resources Information Center

    Young, Enoch C. M.

    2008-01-01

    This paper examines the role and position of continuing education in the lifelong learning society of Hong Kong. The first section describes the basic components of Hong Kong's lifelong learning system, which is composed of two interconnected sub-systems--namely, conventional education and continuing education--integrated under a common…

  18. Sensitivity of an Integrated Mesoscale Atmosphere and Agriculture Land Modeling System (WRF/CMAQ-EPIC) to MODIS Vegetation and Lightning Assimilation

    EPA Science Inventory

    The combined meteorology and air quality modeling system composed of the Weather Research and Forecast (WRF) model and Community Multiscale Air Quality (CMAQ) model is an important decision support tool that is used in research and regulatory decisions related to emissions, meteo...

  19. Formal mechanization of device interactions with a process algebra

    NASA Technical Reports Server (NTRS)

    Schubert, E. Thomas; Levitt, Karl; Cohen, Gerald C.

    1992-01-01

    The principle emphasis is to develop a methodology to formally verify correct synchronization communication of devices in a composed hardware system. Previous system integration efforts have focused on vertical integration of one layer on top of another. This task examines 'horizontal' integration of peer devices. To formally reason about communication, we mechanize a process algebra in the Higher Order Logic (HOL) theorem proving system. Using this formalization we show how four types of device interactions can be represented and verified to behave as specified. The report also describes the specification of a system consisting of an AVM-1 microprocessor and a memory management unit which were verified in previous work. A proof of correct communication is presented, and the extensions to the system specification to add a direct memory device are discussed.

  20. Economic dispatch optimization for system integrating renewable energy sources

    NASA Astrophysics Data System (ADS)

    Jihane, Kartite; Mohamed, Cherkaoui

    2018-05-01

    Nowadays, the use of energy is growing especially in transportation and electricity industries. However this energy is based on conventional sources which pollute the environment. Multi-source system is seen as the best solution to sustainable development. This paper proposes the Economic Dispatch (ED) of hybrid renewable power system. The hybrid system is composed of ten thermal generators, photovoltaic (PV) generator and wind turbine generator. To show the importance of renewable energy sources (RES) in the energy mix we have ran the simulation for system integrated PV only and PV plus wind. The result shows that the system with renewable energy sources (RES) is more compromising than the system without RES in terms of fuel cost.

  1. YF-12 cooperative airframe/propulsion control system program, volume 1

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Connolly, G. F.; Mauro, F. M.; Reukauf, P. J.; Marks, R. (Editor)

    1980-01-01

    Several YF-12C airplane analog control systems were converted to a digital system. Included were the air data computer, autopilot, inlet control system, and autothrottle systems. This conversion was performed to allow assessment of digital technology applications to supersonic cruise aircraft. The digital system was composed of a digital computer and specialized interface unit. A large scale mathematical simulation of the airplane was used for integration testing and software checkout.

  2. Secondary mirror system for the European Solar Telescope (EST)

    NASA Astrophysics Data System (ADS)

    Cavaller, L.; Siegel, B.; Prieto, G.; Hernandez, E.; Casalta, J. M.; Mercader, J.; Barriga, J.

    2010-07-01

    The European Solar Telescope (EST) is a European collaborative project to build a 4m class solar telescope in the Canary Islands, which is now in its design study phase. The telescope will provide diffraction limited performance for several instruments observing simultaneously at the Coudé focus at different wavelengths. A multi-conjugated adaptive optics system composed of a tip-tilt mirror and several deformable mirrors will be integrated in the telescope optical path. The secondary mirror system is composed of the mirror itself (Ø800mm), the alignment drives and the cooling system needed to remove the solar heat load from the mirror. During the design study the feasibility to provide fast tip-tilt capabilities at the secondary mirror to work as the adaptive optics tip-tilt mirror is also being evaluated.

  3. An integrative top-down and bottom-up qualitative model construction framework for exploration of biochemical systems.

    PubMed

    Wu, Zujian; Pang, Wei; Coghill, George M

    Computational modelling of biochemical systems based on top-down and bottom-up approaches has been well studied over the last decade. In this research, after illustrating how to generate atomic components by a set of given reactants and two user pre-defined component patterns, we propose an integrative top-down and bottom-up modelling approach for stepwise qualitative exploration of interactions among reactants in biochemical systems. Evolution strategy is applied to the top-down modelling approach to compose models, and simulated annealing is employed in the bottom-up modelling approach to explore potential interactions based on models constructed from the top-down modelling process. Both the top-down and bottom-up approaches support stepwise modular addition or subtraction for the model evolution. Experimental results indicate that our modelling approach is feasible to learn the relationships among biochemical reactants qualitatively. In addition, hidden reactants of the target biochemical system can be obtained by generating complex reactants in corresponding composed models. Moreover, qualitatively learned models with inferred reactants and alternative topologies can be used for further web-lab experimental investigations by biologists of interest, which may result in a better understanding of the system.

  4. Biological diversity, ecological integrity, and neotropical migrants: New perspectives for wildlife management

    Treesearch

    Brian A. Maurer

    1993-01-01

    New initiatives in wildlife management have come from the realization that birds can be used as indicators of ecosystem health. Conceptually, biological diversity includes processes working at all scales in biological hierarchies that compose the natural world. Recent advances in the understanding of ecological systems suggest they are nonequilibrium systems, and must...

  5. Integrated shielding systems for manned interplanetary spaceflight

    NASA Astrophysics Data System (ADS)

    George, Jeffrey A.

    1992-01-01

    The radiation environment encountered by manned interplanetary missions can have a severe impact on both vehicle design and mission performance. This study investigates the potential impact of radiation protection on interplanetary vehicle design for a manned Mars mission. A systems approach was used to investigate the radiation protection requirements of the sum interplanetary environment. Radiation budgets were developed which result in minimum integrated shielding system masses for both nuclear and non-nuclear powered missions. A variety of system configurations and geometries were assessed over a range of dose constraints. For an annual dose equivalent rate limit of 50 rem/yr, an environmental shielding system composed of a habitat shield and storm shelter was found to result in the lowest total mass. For a limit of 65 rem/yr, a system composed of a sleeping quarters shield was least massive, and resulted in significantly reduced system mass. At a limit of 75 rem/yr, a storm shelter alone was found to be sufficient, and exhibited a further mass reduction. Optimal shielding system results for 10 MWe nuclear powered missions were found to follow along similar lines, with the addition of a reactor shadow shield. A solar minimum galactic cosmic ray spectrum and one anomalously large solar particle event during the course of a two year mission were assumed. Water was assumed for environmental radiation shielding.

  6. Motor-Auditory-Visual Integration: The Role of the Human Mirror Neuron System in Communication and Communication Disorders

    ERIC Educational Resources Information Center

    Le Bel, Ronald M.; Pineda, Jaime A.; Sharma, Anu

    2009-01-01

    The mirror neuron system (MNS) is a trimodal system composed of neuronal populations that respond to motor, visual, and auditory stimulation, such as when an action is performed, observed, heard or read about. In humans, the MNS has been identified using neuroimaging techniques (such as fMRI and mu suppression in the EEG). It reflects an…

  7. Maturity Assessment of Space Plug-and-Play Architecture

    DTIC Science & Technology

    2013-03-01

    SSM SPA Service Module SRL System Readiness Level TAT Time-at-Tone TRA Technology Readiness Assessment TRL Technology Readiness Level USB Universal...maturity assessment—the Technology Readiness Level (TRL) process, the Integration Readiness Level (IRL) process, and the System Readiness Level ( SRL ...is an important hallmark of the SPA concept, and makes possible the composability and scalability of system designs that employ it. 14 4. SPA

  8. Airborne multidimensional integrated remote sensing system

    NASA Astrophysics Data System (ADS)

    Xu, Weiming; Wang, Jianyu; Shu, Rong; He, Zhiping; Ma, Yanhua

    2006-12-01

    In this paper, we present a kind of airborne multidimensional integrated remote sensing system that consists of an imaging spectrometer, a three-line scanner, a laser ranger, a position & orientation subsystem and a stabilizer PAV30. The imaging spectrometer is composed of two sets of identical push-broom high spectral imager with a field of view of 22°, which provides a field of view of 42°. The spectral range of the imaging spectrometer is from 420nm to 900nm, and its spectral resolution is 5nm. The three-line scanner is composed of two pieces of panchromatic CCD and a RGB CCD with 20° stereo angle and 10cm GSD(Ground Sample Distance) with 1000m flying height. The laser ranger can provide height data of three points every other four scanning lines of the spectral imager and those three points are calibrated to match the corresponding pixels of the spectral imager. The post-processing attitude accuracy of POS/AV 510 used as the position & orientation subsystem, which is the aerial special exterior parameters measuring product of Canadian Applanix Corporation, is 0.005° combined with base station data. The airborne multidimensional integrated remote sensing system was implemented successfully, performed the first flying experiment on April, 2005, and obtained satisfying data.

  9. A long time low drift integrator with temperature control

    NASA Astrophysics Data System (ADS)

    Zhang, Donglai; Yan, Xiaolan; Zhang, Enchao; Pan, Shimin

    2016-10-01

    The output of an operational amplifier always contains signals that could not have been predicted, even with knowledge of the input and an accurately determined closed-loop transfer function. These signals lead to integrator zero-drift over time. A new type of integrator system with a long-term low-drift characteristic has therefore been designed. The integrator system is composed of a temperature control module and an integrator module. The aluminum printed circuit board of the integrator is glued to a thermoelectric cooler to maintain the electronic components at a stable temperature. The integration drift is automatically compensated using an analog-to-digital converter/proportional integration/digital-to-analog converter control circuit. Performance testing in a standard magnet shows that the proposed integrator, which has an integration time constant of 10 ms, has a low integration drift (<5 mV) over 1000 s after repeated measurements. The integrator can be used for magnetic flux measurements in most tokamaks and in the wire rope nondestructive test.

  10. A long time low drift integrator with temperature control.

    PubMed

    Zhang, Donglai; Yan, Xiaolan; Zhang, Enchao; Pan, Shimin

    2016-10-01

    The output of an operational amplifier always contains signals that could not have been predicted, even with knowledge of the input and an accurately determined closed-loop transfer function. These signals lead to integrator zero-drift over time. A new type of integrator system with a long-term low-drift characteristic has therefore been designed. The integrator system is composed of a temperature control module and an integrator module. The aluminum printed circuit board of the integrator is glued to a thermoelectric cooler to maintain the electronic components at a stable temperature. The integration drift is automatically compensated using an analog-to-digital converter/proportional integration/digital-to-analog converter control circuit. Performance testing in a standard magnet shows that the proposed integrator, which has an integration time constant of 10 ms, has a low integration drift (<5 mV) over 1000 s after repeated measurements. The integrator can be used for magnetic flux measurements in most tokamaks and in the wire rope nondestructive test.

  11. National meeting to review IPAD status and goals. [Integrated Programs for Aerospace-vehicle Design

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.

    1980-01-01

    A joint NASA/industry project called Integrated Programs for Aerospace-vehicle Design (IPAD) is described, which has the goal of raising aerospace-industry productivity through the application of computers to integrate company-wide management of engineering data. Basically a general-purpose interactive computing system developed to support engineering design processes, the IPAD design is composed of three major software components: the executive, data management, and geometry and graphics software. Results of IPAD activities include a comprehensive description of a future representative aerospace vehicle design process and its interface to manufacturing, and requirements and preliminary design of a future IPAD software system to integrate engineering activities of an aerospace company having several products under simultaneous development.

  12. Design, construction, and field testing of an ultra high performance concrete pi-girder bridge.

    DOT National Transportation Integrated Search

    2011-01-01

    The Jakway Park Bridge in Buchanan County, Iowa is the first bridge constructed with a new prestesssed girder system composed of : precast Ultra-High Performance Concrete (UHPC). These girders employ an integral deck to facilitate construction and ar...

  13. An Intelligent Information System for forest management: NED/FVS integration

    Treesearch

    J. Wang; W.D. Potter; D. Nute; F. Maier; H. Michael Rauscher; M.J. Twery; S. Thomasma; P. Knopp

    2002-01-01

    An Intelligent Information System (IIS) is viewed as composed of a unified knowledge base, database, and model base. This allows an IIS to provide responses to user queries regardless of whether the query process involves a data retrieval, an inference, a computational method, a problem solving module, or some combination of these. NED-2 is a full-featured intelligent...

  14. Design of wideband solar ultraviolet radiation intensity monitoring and control system

    NASA Astrophysics Data System (ADS)

    Ye, Linmao; Wu, Zhigang; Li, Yusheng; Yu, Guohe; Jin, Qi

    2009-08-01

    According to the principle of SCM (Single Chip Microcomputer) and computer communication technique, the system is composed of chips such as ATML89C51, ADL0809, integrated circuit and sensors for UV radiation, which is designed for monitoring and controlling the UV index. This system can automatically collect the UV index data, analyze and check the history database, research the law of UV radiation in the region.

  15. A multi-structural and multi-functional integrated fog collection system in cactus

    PubMed Central

    Ju, Jie; Bai, Hao; Zheng, Yongmei; Zhao, Tianyi; Fang, Ruochen; Jiang, Lei

    2012-01-01

    Multiple biological structures have demonstrated fog collection abilities, such as beetle backs with bumps and spider silks with periodic spindle-knots and joints. Many Cactaceae species live in arid environments and are extremely drought-tolerant. Here we report that one of the survival systems of the cactus Opuntia microdasys lies in its efficient fog collection system. This unique system is composed of well-distributed clusters of conical spines and trichomes on the cactus stem; each spine contains three integrated parts that have different roles in the fog collection process according to their surface structural features. The gradient of the Laplace pressure, the gradient of the surface-free energy and multi-function integration endow the cactus with an efficient fog collection system. Investigations of the structure–function relationship in this system may help us to design novel materials and devices to collect water from fog with high efficiencies. PMID:23212376

  16. A multi-structural and multi-functional integrated fog collection system in cactus.

    PubMed

    Ju, Jie; Bai, Hao; Zheng, Yongmei; Zhao, Tianyi; Fang, Ruochen; Jiang, Lei

    2012-01-01

    Multiple biological structures have demonstrated fog collection abilities, such as beetle backs with bumps and spider silks with periodic spindle-knots and joints. Many Cactaceae species live in arid environments and are extremely drought-tolerant. Here we report that one of the survival systems of the cactus Opuntia microdasys lies in its efficient fog collection system. This unique system is composed of well-distributed clusters of conical spines and trichomes on the cactus stem; each spine contains three integrated parts that have different roles in the fog collection process according to their surface structural features. The gradient of the Laplace pressure, the gradient of the surface-free energy and multi-function integration endow the cactus with an efficient fog collection system. Investigations of the structure-function relationship in this system may help us to design novel materials and devices to collect water from fog with high efficiencies.

  17. Towards G2G: Systems of Technology Database Systems

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Bell, David

    2005-01-01

    We present an approach and methodology for developing Government-to-Government (G2G) Systems of Technology Database Systems. G2G will deliver technologies for distributed and remote integration of technology data for internal use in analysis and planning as well as for external communications. G2G enables NASA managers, engineers, operational teams and information systems to "compose" technology roadmaps and plans by selecting, combining, extending, specializing and modifying components of technology database systems. G2G will interoperate information and knowledge that is distributed across organizational entities involved that is ideal for NASA future Exploration Enterprise. Key contributions of the G2G system will include the creation of an integrated approach to sustain effective management of technology investments that supports the ability of various technology database systems to be independently managed. The integration technology will comply with emerging open standards. Applications can thus be customized for local needs while enabling an integrated management of technology approach that serves the global needs of NASA. The G2G capabilities will use NASA s breakthrough in database "composition" and integration technology, will use and advance emerging open standards, and will use commercial information technologies to enable effective System of Technology Database systems.

  18. Optofluidic platforms based on surface-enhanced Raman scattering.

    PubMed

    Lim, Chaesung; Hong, Jongin; Chung, Bong Geun; deMello, Andrew J; Choo, Jaebum

    2010-05-01

    We report recent progress in the development of surface-enhanced Raman scattering (SERS)-based optofluidic platforms for the fast and sensitive detection of chemical and biological analytes. In the current context, a SERS-based optofluidic platform is defined as an integrated analytical device composed of a microfluidic element and a sensitive Raman spectrometer. Optofluidic devices for SERS detection normally involve nanocolloid-based microfluidic systems or metal nanostructure-embedded microfluidic systems. In the current review, recent advances in both approaches are surveyed and assessed. Additionally, integrated real-time sensing systems that combine portable Raman spectrometers with microfluidic devices are also reviewed. Such real-time sensing systems have significant utility in environmental monitoring, forensic science and homeland defense applications.

  19. Social Behaviorism, Human Motivation, and the Conditioning Therapies.

    ERIC Educational Resources Information Center

    Staats, Arthur W.

    The author conceives of the human emotional system as being composed of three functions of motivational stimuli: (a) the attitudinal or emotional, (b) the reinforcing, and (c) the discriminative controlling function which the stimuli acquire. He defines and describes each of these functions and their effect on integrated learning principles. He…

  20. Data resources for the Wyoming Landscape Conservation Initiative (WLCI) Integrated Assessment (IA)

    USGS Publications Warehouse

    Assal, Timothy J.; Garman, Steven L.; Bowen, Zachary H.; Anderson, Patrick J.; Manier, Daniel J.; McDougal, Robert R.

    2012-01-01

    The data contained in this report were compiled, modified, and analyzed for the Wyoming Landscape Conservation Initiative (WLCI) Integrated Assessment (IA). The WLCI is a long-term science based effort to assess and enhance aquatic and terrestrial habitats at a landscape scale in southwest Wyoming while facilitating responsible energy development through local collaboration and partnerships. The IA is an integrated synthesis and analysis of WLCI resource values based on best available data and information collected from multiple agencies and organizations. It is a support tool for landscape-scale conservation planning and evaluation, and a data and analysis resource that can be used for addressing specific management questions. The IA analysis was conducted using a Geographic Information System in a raster (that is, a grid) environment using a cell size of 30 meters. To facilitate the interpretation of the data in a regional context, mean values were summarized and displayed at the subwatershed unit (WLCI subwatersheds were subset from the National Hydrography Dataset, Hydrologic Unit Code 12/Level 6). A dynamic mapping platform, accessed via the WLCI webpage at http://www.wlci.gov is used to display the mapped information, and to access underlying resource values that were combined to produce the final mapped results. The raster data used in the IA are provided here for use by interested parties to conduct additional analyses and can be accessed via the WLCI webpage. This series contains 74 spatial data sets: WLCI subwatersheds (vector) and 73 geotiffs (raster) that are segregated into the major categories of Multicriteria Index (including Resource Index and Condition), Change Agents, and Future Change. The Total Multicriteria Index is composed of the Aquatic Multicriteria Index and the Terrestrial Multicriteria Index. The Aquatic Multicriteria Index is composed of the Aquatic Resource Index and the Aquatic Condition. The Aquatic Resource Index is composed of the following components: Groundwater, Special Management Areas, and Priority Areas. The Aquatic Condition is composed of the following components: Focal Species, Species of Concern, Focal Ecosystems, and Proper Functioning Condition. The Terrestrial Multicriteria Index is composed of the Terrestrial Resource Index and the Terrestrial Condition. The Terrestrial Resource Index is composed of the following components: Special Management Areas, Agriculture, and Priority Areas. The Terrestrial Condition is composed of the following components: Focal Species, Big Game, Species of Concern, Rare Plants, and Focal Ecosystems. The Change Agents are composed the following components: Roads, Energy, Mines, and Urban. The Future Change is composed of the following components: Oil-Gas-Coal, Wind, Minerals, Climate-Temperature, Invasive Species, and Urban.

  1. A PIC microcontroller-based system for real-life interfacing of external peripherals with a mobile robot

    NASA Astrophysics Data System (ADS)

    Singh, N. Nirmal; Chatterjee, Amitava; Rakshit, Anjan

    2010-02-01

    The present article describes the development of a peripheral interface controller (PIC) microcontroller-based system for interfacing external add-on peripherals with a real mobile robot, for real life applications. This system serves as an important building block of a complete integrated vision-based mobile robot system, integrated indigenously in our laboratory. The system is composed of the KOALA mobile robot in conjunction with a personal computer (PC) and a two-camera-based vision system where the PIC microcontroller is used to drive servo motors, in interrupt-driven mode, to control additional degrees of freedom of the vision system. The performance of the developed system is tested by checking it under the control of several user-specified commands, issued from the PC end.

  2. New Demands and Policies on Higher Education in the Mercosur: A Comparative Study on Challenges, Resources, and Trends

    ERIC Educational Resources Information Center

    Larrechea, Enrique Martinez; Castro, Adriana Chiancone

    2009-01-01

    This article attempts to analyze the main tendencies of the higher education systems and policies within the Mercosur, a regional bloc composed by Argentina, Brazil, Paraguay, and Uruguay. The article discusses some global trends and describes the process of educational integration in the Mercosur as well as the higher education systems of each of…

  3. The "What Is a System" Reflection Interview as a Knowledge Integration Activity for High School Students' Understanding of Complex Systems in Human Biology

    ERIC Educational Resources Information Center

    Tripto, Jaklin; Ben-Zvi Assaraf, Orit; Snapir, Zohar; Amit, Miriam

    2016-01-01

    This study examined the reflection interview as a tool for assessing and facilitating the use of "systems language" amongst 11th grade students who have recently completed their first year of high school biology. Eighty-three students composed two concept maps in the 10th grade--one at the beginning of the school year and one at its end.…

  4. A rotorcraft flight/propulsion control integration study

    NASA Technical Reports Server (NTRS)

    Ruttledge, D. G. C.

    1986-01-01

    An eclectic approach was taken to a study of the integration of digital flight and propulsion controls for helicopters. The basis of the evaluation was the current Gen Hel simulation of the UH-60A Black Hawk helicopter with a model of the GE T700 engine. A list of flight maneuver segments to be used in evaluating the effectiveness of such an integrated control system was composed, based on past experience and an extensive survey of the U.S. Army Air-to-Air Combat Test data. A number of possible features of an integrated system were examined and screened. Those that survived the screening were combined into a design that replaced the T700 fuel control and part of the control system in the UH-60A Gen Hel simulation. This design included portions of an existing pragmatic adaptive fuel control designed by the Chandler-Evans Company and an linear quadratic regulator (LQR) based N(p) governor designed by the GE company, combined with changes in the basic Sikorsky Aircraft designed control system. The integrated system exhibited improved total performance in many areas of the flight envelope.

  5. Advanced software integration: The case for ITV facilities

    NASA Technical Reports Server (NTRS)

    Garman, John R.

    1990-01-01

    The array of technologies and methodologies involved in the development and integration of avionics software has moved almost as rapidly as computer technology itself. Future avionics systems involve major advances and risks in the following areas: (1) Complexity; (2) Connectivity; (3) Security; (4) Duration; and (5) Software engineering. From an architectural standpoint, the systems will be much more distributed, involve session-based user interfaces, and have the layered architectures typified in the layers of abstraction concepts popular in networking. Typified in the NASA Space Station Freedom will be the highly distributed nature of software development itself. Systems composed of independent components developed in parallel must be bound by rigid standards and interfaces, the clean requirements and specifications. Avionics software provides a challenge in that it can not be flight tested until the first time it literally flies. It is the binding of requirements for such an integration environment into the advances and risks of future avionics systems that form the basis of the presented concept and the basic Integration, Test, and Verification concept within the development and integration life cycle of Space Station Mission and Avionics systems.

  6. Integrated command, control, communications and computation system functional architecture

    NASA Technical Reports Server (NTRS)

    Cooley, C. G.; Gilbert, L. E.

    1981-01-01

    The functional architecture for an integrated command, control, communications, and computation system applicable to the command and control portion of the NASA End-to-End Data. System is described including the downlink data processing and analysis functions required to support the uplink processes. The functional architecture is composed of four elements: (1) the functional hierarchy which provides the decomposition and allocation of the command and control functions to the system elements; (2) the key system features which summarize the major system capabilities; (3) the operational activity threads which illustrate the interrelationahip between the system elements; and (4) the interfaces which illustrate those elements that originate or generate data and those elements that use the data. The interfaces also provide a description of the data and the data utilization and access techniques.

  7. A Framework for Adaptable Operating and Runtime Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterling, Thomas

    The emergence of new classes of HPC systems where performance improvement is enabled by Moore’s Law for technology is manifest through multi-core-based architectures including specialized GPU structures. Operating systems were originally designed for control of uniprocessor systems. By the 1980s multiprogramming, virtual memory, and network interconnection were integral services incorporated as part of most modern computers. HPC operating systems were primarily derivatives of the Unix model with Linux dominating the Top-500 list. The use of Linux for commodity clusters was first pioneered by the NASA Beowulf Project. However, the rapid increase in number of cores to achieve performance gain throughmore » technology advances has exposed the limitations of POSIX general-purpose operating systems in scaling and efficiency. This project was undertaken through the leadership of Sandia National Laboratories and in partnership of the University of New Mexico to investigate the alternative of composable lightweight kernels on scalable HPC architectures to achieve superior performance for a wide range of applications. The use of composable operating systems is intended to provide a minimalist set of services specifically required by a given application to preclude overheads and operational uncertainties (“OS noise”) that have been demonstrated to degrade efficiency and operational consistency. This project was undertaken as an exploration to investigate possible strategies and methods for composable lightweight kernel operating systems towards support for extreme scale systems.« less

  8. Full-parallax 3D display from stereo-hybrid 3D camera system

    NASA Astrophysics Data System (ADS)

    Hong, Seokmin; Ansari, Amir; Saavedra, Genaro; Martinez-Corral, Manuel

    2018-04-01

    In this paper, we propose an innovative approach for the production of the microimages ready to display onto an integral-imaging monitor. Our main contribution is using a stereo-hybrid 3D camera system, which is used for picking up a 3D data pair and composing a denser point cloud. However, there is an intrinsic difficulty in the fact that hybrid sensors have dissimilarities and therefore should be equalized. Handled data facilitate to generating an integral image after projecting computationally the information through a virtual pinhole array. We illustrate this procedure with some imaging experiments that provide microimages with enhanced quality. After projection of such microimages onto the integral-imaging monitor, 3D images are produced with great parallax and viewing angle.

  9. A Web-based, secure, light weight clinical multimedia data capture and display system.

    PubMed

    Wang, S S; Starren, J

    2000-01-01

    Computer-based patient records are traditionally composed of textual data. Integration of multimedia data has been historically slow. Multimedia data such as image, audio, and video have been traditionally more difficult to handle. An implementation of a clinical system for multimedia data is discussed. The system implementation uses Java, Secure Socket Layer (SSL), and Oracle 8i. The system is on top of the Internet so it is architectural independent, cross-platform, cross-vendor, and secure. Design and implementations issues are discussed.

  10. Fast Response, Open-Celled Porous, Shape Memory Effect Actuators with Integrated Attachments

    NASA Technical Reports Server (NTRS)

    Jardine, Andrew Peter (Inventor)

    2015-01-01

    This invention relates to the exploitation of porous foam articles exhibiting the Shape Memory Effect as actuators. Each foam article is composed of a plurality of geometric shapes, such that some geometric shapes can fit snugly into or around rigid mating connectors that attach the Shape Memory foam article intimately into the load path between a static structure and a moveable structure. The foam is open-celled, composed of a plurality of interconnected struts whose mean diameter can vary from approximately 50 to 500 microns. Gases and fluids flowing through the foam transfer heat rapidly with the struts, providing rapid Shape Memory Effect transformations. Embodiments of porous foam articles as torsional actuators and approximately planar structures are disposed. Simple, integral connection systems exploiting the ability to supply large loads to a structure, and that can also supply hot and cold gases and fluids to effect rapid actuation are also disposed.

  11. An Integrated Bibliographic Information System: Concept and Application for Resource Sharing in Special Libraries.

    ERIC Educational Resources Information Center

    Cotter, Gladys A.; And Others

    The Defense Department Scientific and Technical Information (STI) network is composed of over 200 technical libraries and information centers tied together by the Defense Technical Information Center (DTIC), an organization which seeks to improve the flow of information throughout the STI network by promoting shared cataloging and integrated…

  12. Graphene-based inline pressure sensor integrated with microfluidic elastic tube

    NASA Astrophysics Data System (ADS)

    Inoue, Nagisa; Onoe, Hiroaki

    2018-01-01

    We propose an inline pressure sensor composed of a polydimethylsiloxane (PDMS) microfluidic tube integrated with graphene sheets. The PDMS tube was fabricated through molding, and a multilayered graphene sheet was transferred on the surface of the PDMS tube. The pressure inside the tube was monitored using the changes in the electrical resistance of the transferred graphene. The proposed pressure sensor could be suitable for precise pressure measurement for a small amount of fluid in microfluidic systems including organ-on-a-chip devices.

  13. A Robotic Solution for Assisting People with MCI at Home: Preliminary Tests of the ENRICHME System.

    PubMed

    Salatino, Claudia; Pigini, Lucia; Van Kol, Marlies Maria Elisabeth; Gower, Valerio; Andrich, Renzo; Munaro, Giulia; Rosso, Roberto; Castellani, Angelo P; Farina, Elisabetta

    2017-01-01

    Robots have the potential to support care and independence of older adults. The ENRICHME project is developing an integrated system composed of a robot, sensors and a networking care platform, aiming at assisting older adults with MCI in their home environment. This paper reports findings of the tests performed on a sample of MCI users and their caregivers, with the first version of the ENRICHME system, in a controlled environment.

  14. A Model of Workflow Composition for Emergency Management

    NASA Astrophysics Data System (ADS)

    Xin, Chen; Bin-ge, Cui; Feng, Zhang; Xue-hui, Xu; Shan-shan, Fu

    The common-used workflow technology is not flexible enough in dealing with concurrent emergency situations. The paper proposes a novel model for defining emergency plans, in which workflow segments appear as a constituent part. A formal abstraction, which contains four operations, is defined to compose workflow segments under constraint rule. The software system of the business process resources construction and composition is implemented and integrated into Emergency Plan Management Application System.

  15. Composing for Affect, Audience, and Identity: Toward a Multidimensional Understanding of Adolescents' Multimodal Composing Goals and Designs

    ERIC Educational Resources Information Center

    Smith, Blaine E.

    2018-01-01

    This study examined adolescents' perspectives on their multimodal composing goals and designs when creating digital projects in the context of an English Language Arts class. Sociocultural and social semiotics theoretical frameworks were integrated to understand six 12th grade students' viewpoints when composing three multimodal products--a…

  16. Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation, volume 2, part 1. Appendix A: Software documentation

    NASA Technical Reports Server (NTRS)

    Lowrie, J. W.; Fermelia, A. J.; Haley, D. C.; Gremban, K. D.; Vanbaalen, J.; Walsh, R. W.

    1982-01-01

    Documentation of the preliminary software developed as a framework for a generalized integrated robotic system simulation is presented. The program structure is composed of three major functions controlled by a program executive. The three major functions are: system definition, analysis tools, and post processing. The system definition function handles user input of system parameters and definition of the manipulator configuration. The analysis tools function handles the computational requirements of the program. The post processing function allows for more detailed study of the results of analysis tool function executions. Also documented is the manipulator joint model software to be used as the basis of the manipulator simulation which will be part of the analysis tools capability.

  17. Real-Time Simulation of Ares I Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick; Matras, Alex; Wilson, Heath; Alday, Nathan; Walker, David; Betts, Kevin; Hughes, Ryan; Turbe, Michael

    2009-01-01

    The Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) has been developed for use by the Ares I launch vehicle System Integration Laboratory (SIL) at the Marshall Space Flight Center (MSFC). The primary purpose of the Ares SIL is to test the vehicle avionics hardware and software in a hardware-in-the-loop (HWIL) environment to certify that the integrated system is prepared for flight. ARTEMIS has been designed to be the real-time software backbone to stimulate all required Ares components through high-fidelity simulation. ARTEMIS has been designed to take full advantage of the advances in underlying computational power now available to support HWIL testing. A modular real-time design relying on a fully distributed computing architecture has been achieved. Two fundamental requirements drove ARTEMIS to pursue the use of high-fidelity simulation models in a real-time environment. First, ARTEMIS must be used to test a man-rated integrated avionics hardware and software system, thus requiring a wide variety of nominal and off-nominal simulation capabilities to certify system robustness. The second driving requirement - derived from a nationwide review of current state-of-the-art HWIL facilities - was that preserving digital model fidelity significantly reduced overall vehicle lifecycle cost by reducing testing time for certification runs and increasing flight tempo through an expanded operational envelope. These two driving requirements necessitated the use of high-fidelity models throughout the ARTEMIS simulation. The nature of the Ares mission profile imposed a variety of additional requirements on the ARTEMIS simulation. The Ares I vehicle is composed of multiple elements, including the First Stage Solid Rocket Booster (SRB), the Upper Stage powered by the J- 2X engine, the Orion Crew Exploration Vehicle (CEV) which houses the crew, the Launch Abort System (LAS), and various secondary elements that separate from the vehicle. At launch, the integrated vehicle stack is composed of these stages, and throughout the mission, various elements separate from the integrated stack and tumble back towards the earth. ARTEMIS must be capable of simulating the integrated stack through the flight as well as propagating each individual element after separation. In addition, abort sequences can lead to other unique configurations of the integrated stack as the timing and sequence of the stage separations are altered.

  18. A Correlational Analysis: Electronic Health Records (EHR) and Quality of Care in Critical Access Hospitals

    ERIC Educational Resources Information Center

    Khan, Arshia A.

    2012-01-01

    Driven by the compulsion to improve the evident paucity in quality of care, especially in critical access hospitals in the United States, policy makers, healthcare providers, and administrators have taken the advise of researchers suggesting the integration of technology in healthcare. The Electronic Health Record (EHR) System composed of multiple…

  19. 78 FR 26343 - Exelon Generation Company, LLC; Notice of Application Accepted for Filing, Soliciting Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... prior registration, using the eComment system at http://www.ferc.gov/docs-filing/ecomment.asp . You must... plant is integral with the dam and is composed of 13 turbine-generator units, draft tubes, and.... Water flowing through the turbines is discharged via the draft tubes into the tailrace immediately...

  20. Modeling of Kerena Emergency Condenser

    NASA Astrophysics Data System (ADS)

    Bryk, Rafał; Schmidt, Holger; Mull, Thomas; Wagner, Thomas; Ganzmann, Ingo; Herbst, Oliver

    2017-12-01

    KERENA is an innovative boiling water reactor concept equipped with several passive safety systems. For the experimental verification of performance of the systems and for codes validation, the Integral Test Stand Karlstein (INKA) was built in Karlstein, Germany. The emergency condenser (EC) system transfers heat from the reactor pressure vessel (RPV) to the core flooding pool in case of water level decrease in the RPV. EC is composed of a large number of slightly inclined tubes. During accident conditions, steam enters into the tubes and condenses due to the contact of the tubes with cold water at the secondary side. The condensed water flows then back to the RPV due to gravity. In this paper two approaches for modeling of condensation in slightly inclined tubes are compared and verified against experiments. The first approach is based on the flow regime map. Depending on the regime, heat transfer coefficient is calculated according to specific semi-empirical correlation. The second approach uses a general, fully-empirical correlation. The models are developed with utilization of the object-oriented Modelica language and the open-source OpenModelica environment. The results are compared with data obtained during a large scale integral test, simulating loss of coolant accident performed at Integral Test Stand Karlstein (INKA). The comparison shows a good agreement.Due to the modularity of models, both of them may be used in the future in systems incorporating condensation in horizontal or slightly inclined tubes. Depending on his preferences, the modeller may choose one-equation based approach or more sophisticated model composed of several exchangeable semi-empirical correlations.

  1. Coordinated development of the limb musculoskeletal system: Tendon and muscle patterning and integration with the skeleton.

    PubMed

    Huang, Alice H

    2017-09-15

    Functional movement and stability of the limb depends on an organized and fully integrated musculoskeletal system composed of skeleton, muscle, and tendon. Much of our current understanding of musculoskeletal development is based on studies that focused on the development and differentiation of individual tissues. Likewise, research on patterning events have been largely limited to the primary skeletal elements and the mechanisms that regulate soft tissue patterning, the development of the connections between tissues, and their interdependent development are only beginning to be elucidated. This review will therefore highlight recent exciting discoveries in this field, with an emphasis on tendon and muscle patterning and their integrated development with the skeleton and skeletal attachments. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The implementation of the Human Exploration Demonstration Project (HEDP), a systems technology testbed

    NASA Technical Reports Server (NTRS)

    Rosen, Robert; Korsmeyer, David J.

    1993-01-01

    The Human Exploration Demonstration Project (HEDP) is an ongoing task at the NASA's Ames Research Center to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary surface habitat. The integrated environment consists of life support systems, physiological monitoring of project crew, a virtual environment work station, and centralized data acquisition and habitat systems health monitoring. The HEDP is an integrated technology demonstrator, as well as an initial operational testbed. There are several robotic systems operational in a simulated planetary landscape external to the habitat environment, to provide representative work loads for the crew. This paper describes the evolution of the HEDP from initial concept to operational project; the status of the HEDP after two years; the final facilities composing the HEDP; the project's role as a NASA Ames Research Center systems technology testbed; and the interim demonstration scenarios that have been run to feature the developing technologies in 1993.

  3. Flat dielectric metasurface lens array for three dimensional integral imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Jianlei; Wang, Xiaorui; Yang, Yi; Yuan, Ying; Wu, Xiongxiong

    2018-05-01

    In conventional integral imaging, the singlet refractive lens array limits the imaging performance due to its prominent aberrations. Different from the refractive lens array relying on phase modulation via phase change accumulated along the optical paths, metasurfaces composed of nano-scatters can produce phase abrupt over the scale of wavelength. In this letter, we propose a novel lens array consisting of two neighboring flat dielectric metasurfaces for integral imaging system. The aspherical phase profiles of the metasurfaces are optimized to improve imaging performance. The simulation results show that our designed 5 × 5 metasurface-based lens array exhibits high image quality at designed wavelength 865 nm.

  4. System of experts for intelligent data management (SEIDAM)

    NASA Technical Reports Server (NTRS)

    Goodenough, David G.; Iisaka, Joji; Fung, KO

    1993-01-01

    A proposal to conduct research and development on a system of expert systems for intelligent data management (SEIDAM) is being developed. CCRS has much expertise in developing systems for integrating geographic information with space and aircraft remote sensing data and in managing large archives of remotely sensed data. SEIDAM will be composed of expert systems grouped in three levels. At the lowest level, the expert systems will manage and integrate data from diverse sources, taking account of symbolic representation differences and varying accuracies. Existing software can be controlled by these expert systems, without rewriting existing software into an Artificial Intelligence (AI) language. At the second level, SEIDAM will take the interpreted data (symbolic and numerical) and combine these with data models. at the top level, SEIDAM will respond to user goals for predictive outcomes given existing data. The SEIDAM Project will address the research areas of expert systems, data management, storage and retrieval, and user access and interfaces.

  5. System of Experts for Intelligent Data Management (SEIDAM)

    NASA Technical Reports Server (NTRS)

    Goodenough, David G.; Iisaka, Joji; Fung, KO

    1992-01-01

    It is proposed to conduct research and development on a system of expert systems for intelligent data management (SEIDAM). CCRS has much expertise in developing systems for integrating geographic information with space and aircraft remote sensing data and in managing large archives of remotely sensed data. SEIDAM will be composed of expert systems grouped in three levels. At the lowest level, the expert systems will manage and integrate data from diverse sources, taking account of symbolic representation differences and varying accuracies. Existing software can be controlled by these expert systems, without rewriting existing software into an Artificial Intelligence (AI) language. At the second level, SEIDAM will take the interpreted data (symbolic and numerical) and combine these with data models. At the top level, SEIDAM will respond to user goals for predictive outcomes given existing data. The SEIDAM Project will address the research areas of expert systems, data management, storage and retrieval, and user access and interfaces.

  6. Composing across Modes: A Comparative Analysis of Adolescents' Multimodal Composing Processes

    ERIC Educational Resources Information Center

    Smith, Blaine E.

    2017-01-01

    Although the shift from page to screen has dramatically redefined conceptions of writing, very little is known about how youth compose with multiple modes in digital environments. Integrating multimodality and multiliteracies theoretical frameworks, this comparative case study examined how urban twelfth-grade students collaboratively composed…

  7. A Web-based, secure, light weight clinical multimedia data capture and display system.

    PubMed Central

    Wang, S. S.; Starren, J.

    2000-01-01

    Computer-based patient records are traditionally composed of textual data. Integration of multimedia data has been historically slow. Multimedia data such as image, audio, and video have been traditionally more difficult to handle. An implementation of a clinical system for multimedia data is discussed. The system implementation uses Java, Secure Socket Layer (SSL), and Oracle 8i. The system is on top of the Internet so it is architectural independent, cross-platform, cross-vendor, and secure. Design and implementations issues are discussed. Images Figure 2 Figure 3 PMID:11080014

  8. [Characterizing composition and transformation of dissolved organic matter in subsurface wastewater infiltration system].

    PubMed

    Wang, Li-Jun; Liu, Yu-Zhong; Zhang, Lie-Yu; Xi, Bei-Dou; Xia, Xun-Feng; Liu, Ya-Ru

    2013-08-01

    In the present study, the soil column with radius of 30 cm and height of 200 cm was used to simulate a subsurface wastewater infiltration system. Under the hydraulic loading of 4 cm x d(-1), composition and transformation of dissolved organic matter (DOM) from different depths were analyzed in a subsurface wastewater infiltration system for treatment of septic tank effluent using three-dimensional excitation emission matrix fluorescence spectroscopy (3D-EEM) with regional integration analysis (FRI). The results indicate that: (1) from different depth, the composition of DOM was also different; influent with the depth of 0.5 m was mainly composed of protein-like substances, and that at other depths was mainly composed of humic- and fulvic-like substances. (2) DOM stability gradually increased and part of the nonbiodegradable organic matter can be removed during organic pollutants degradation process. (3) Not only the organic pollutants concentration was reduced effectively, but also the stability of the DOM improved in subsurface wastewater infiltration system.

  9. A UNIX-based real-time data acquisition system for microprobe analysis using an advanced X11 window toolkit

    NASA Astrophysics Data System (ADS)

    Kramer, J. L. A. M.; Ullings, A. H.; Vis, R. D.

    1993-05-01

    A real-time data acquisition system for microprobe analysis has been developed at the Free University of Amsterdam. The system is composed of two parts: a front-end real-time and a back-end monitoring system. The front-end consists of a VMEbus based system which reads out a CAMAC crate. The back-end is implemented on a Sun work station running the UNIX operating system. This separation allows the integration of a minimal, and consequently very fast, real-time executive within the sophisticated possibilities of advanced UNIX work stations.

  10. Monolithically mode division multiplexing photonic integrated circuit for large-capacity optical interconnection.

    PubMed

    Chen, Guanyu; Yu, Yu; Zhang, Xinliang

    2016-08-01

    We propose and fabricate an on-chip mode division multiplexed (MDM) photonic interconnection system. Such a monolithically photonic integrated circuit (PIC) is composed of a grating coupler, two micro-ring modulators, mode multiplexer/demultiplexer, and two germanium photodetectors. The signals' generation, multiplexing, transmission, demultiplexing, and detection are successfully demonstrated on the same chip. Twenty Gb/s MDM signals are successfully processed with clear and open eye diagrams, validating the feasibility of the proposed circuit. The measured power penalties show a good performance of the MDM link. The proposed on-chip MDM system can be potentially used for large-capacity optical interconnection in future high-performance computers and big data centers.

  11. Early Childhood Education and Care in Europe: Tackling Social and Cultural Inequalities. Lithuania

    ERIC Educational Resources Information Center

    Seibokiene, Grazina

    2008-01-01

    In Lithuania early childhood education and care embraces children of the age from one to seven and is an integrated part of the education system. According to Lithuanian education classification, it belongs to the zero level of education. Though defined as pre-school education yet this stage is composed of two parts--pre-school education of…

  12. Verification and Validation of the Malicious Activity Simulation Tool (MAST) for Network Administrator Training and Evaluation

    DTIC Science & Technology

    2012-03-01

    to sell fake antivirus software ; Gammima, which was used to steal gaming login information; and Zeus, which was used to steal banking information...13 3. Viruses ......................................14 C. PROOF OF CONCEPT OF SOFTWARE TRAINING USING MALWARE MIMICS...33 2. Software .....................................34 3. COMPOSE CG-71 Virtual Machines ...............37 a. Integrated Shipboard Network System

  13. Using Docker Compose for the Simple Deployment of an Integrated Drug Target Screening Platform.

    PubMed

    List, Markus

    2017-06-10

    Docker virtualization allows for software tools to be executed in an isolated and controlled environment referred to as a container. In Docker containers, dependencies are provided exactly as intended by the developer and, consequently, they simplify the distribution of scientific software and foster reproducible research. The Docker paradigm is that each container encapsulates one particular software tool. However, to analyze complex biomedical data sets, it is often necessary to combine several software tools into elaborate workflows. To address this challenge, several Docker containers need to be instantiated and properly integrated, which complicates the software deployment process unnecessarily. Here, we demonstrate how an extension to Docker, Docker compose, can be used to mitigate these problems by providing a unified setup routine that deploys several tools in an integrated fashion. We demonstrate the power of this approach by example of a Docker compose setup for a drug target screening platform consisting of five integrated web applications and shared infrastructure, deployable in just two lines of codes.

  14. CSDC: a nationwide screening platform for stroke control and prevention in China.

    PubMed

    Jinghui Yu; Huajian Mao; Mei Li; Dan Ye; Dongsheng Zhao

    2016-08-01

    As a leading cause of severe disability and death, stroke places an enormous burden on Chinese society. A nationwide stroke screening platform called CSDC (China Stoke Data Center) has been built to support the national stroke prevention program and stroke clinical research since 2011. This platform is composed of a data integration system and a big data analysis system. The data integration system is used to collect information on risk factors, diagnosis history, treatment, and sociodemographic characteristics and stroke patients' EMR. The big data analysis system support decision making of stroke control and prevention, clinical evaluation and research. In this paper, the design and implementation of CSDC are illustrated, and some application results are presented. This platform is expected to provide rich data and powerful tool support for stroke control and prevention in China.

  15. The Performance Analysis of a Real-Time Integrated INS/GPS Vehicle Navigation System with Abnormal GPS Measurement Elimination

    PubMed Central

    Chiang, Kai-Wei; Duong, Thanh Trung; Liao, Jhen-Kai

    2013-01-01

    The integration of an Inertial Navigation System (INS) and the Global Positioning System (GPS) is common in mobile mapping and navigation applications to seamlessly determine the position, velocity, and orientation of the mobile platform. In most INS/GPS integrated architectures, the GPS is considered to be an accurate reference with which to correct for the systematic errors of the inertial sensors, which are composed of biases, scale factors and drift. However, the GPS receiver may produce abnormal pseudo-range errors mainly caused by ionospheric delay, tropospheric delay and the multipath effect. These errors degrade the overall position accuracy of an integrated system that uses conventional INS/GPS integration strategies such as loosely coupled (LC) and tightly coupled (TC) schemes. Conventional tightly coupled INS/GPS integration schemes apply the Klobuchar model and the Hopfield model to reduce pseudo-range delays caused by ionospheric delay and tropospheric delay, respectively, but do not address the multipath problem. However, the multipath effect (from reflected GPS signals) affects the position error far more significantly in a consumer-grade GPS receiver than in an expensive, geodetic-grade GPS receiver. To avoid this problem, a new integrated INS/GPS architecture is proposed. The proposed method is described and applied in a real-time integrated system with two integration strategies, namely, loosely coupled and tightly coupled schemes, respectively. To verify the effectiveness of the proposed method, field tests with various scenarios are conducted and the results are compared with a reliable reference system. PMID:23955434

  16. A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications.

    PubMed

    Kim, Kuk-Hwan; Gaba, Siddharth; Wheeler, Dana; Cruz-Albrecht, Jose M; Hussain, Tahir; Srinivasa, Narayan; Lu, Wei

    2012-01-11

    Crossbar arrays based on two-terminal resistive switches have been proposed as a leading candidate for future memory and logic applications. Here we demonstrate a high-density, fully operational hybrid crossbar/CMOS system composed of a transistor- and diode-less memristor crossbar array vertically integrated on top of a CMOS chip by taking advantage of the intrinsic nonlinear characteristics of the memristor element. The hybrid crossbar/CMOS system can reliably store complex binary and multilevel 1600 pixel bitmap images using a new programming scheme. © 2011 American Chemical Society

  17. Interchip link system using an optical wiring method.

    PubMed

    Cho, In-Kui; Ryu, Jin-Hwa; Jeong, Myung-Yung

    2008-08-15

    A chip-scale optical link system is presented with a transmitter/receiver and optical wire link. The interchip link system consists of a metal optical bench, a printed circuit board module, a driver/receiver integrated circuit, a vertical cavity surface-emitting laser/photodiode array, and an optical wire link composed of plastic optical fibers (POFs). We have developed a downsized POF and an optical wiring method that allows on-site installation with a simple annealing as optical wiring technologies for achieving high-density optical interchip interconnection within such devices. Successful data transfer measurements are presented.

  18. T-SDN architecture for space and ground integrated optical transport network

    NASA Astrophysics Data System (ADS)

    Nie, Kunkun; Hu, Wenjing; Gao, Shenghua; Chang, Chengwu

    2015-11-01

    Integrated optical transport network is the development trend of the future space information backbone network. The space and ground integrated optical transport network(SGIOTN) may contain a variety of equipment and systems. Changing the network or meeting some innovation missions in the network will be an expensive implement. Software Defined Network(SDN) provides a good solution to flexibly adding process logic, timely control states and resources of the whole network, as well as shielding the differences of heterogeneous equipment and so on. According to the characteristics of SGIOTN, we propose an transport SDN architecture for it, with hierarchical control plane and data plane composed of packet networks and optical transport networks.

  19. The system integration and verification testing of an orbital maneuvering vehicle for an air bearing floor

    NASA Technical Reports Server (NTRS)

    Shields, N. L., Jr.; Martin, M. F.; Paulukaitis, K. R.; Haslam, J. W., Jr.; Henderson, D. E.

    1986-01-01

    The teleoperator and Robotics Evaluation Facility (TOREF) is composed of a 4,000 square foot precision air bearing floor, the Teleoperator Motion Base, the Target Motion and Support Simulator, the mock-ups of the Hubble Space Telescope, Multi-mission Modular Spacecraft, and the Orbital Maneuvering Vehicle (OMV). The TOREF and its general capabilities to support the OMV and other remote system simulations; the facility operating procedures and requirements; and the results of generic OMV investigations are summarized.

  20. An LQR controller design approach for a Large Gap Magnetic Suspension System (LGMSS)

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.; Schaffner, Philip R.

    1990-01-01

    Two control approaches for a Large Gap Magnetic Suspension System (LGMSS) are investigated and numerical results are presented. The approaches are based on Linear Quadratic Regulator (LQR) control theory and include a nonzero set point regulator with constant disturbance input and an integral feedback regulator. The LGMSS provides five degree of freedom control of a cylindrical suspended element which is composed of permanent magnet material. The magnetic actuators are air core electromagnets mounted in a planar way.

  1. A control strategy for PV stand-alone applications

    NASA Astrophysics Data System (ADS)

    Slouma, S.; Baccar, H.

    2015-04-01

    This paper proposes a stand-alone photovoltaic (PV) system study in domestic applications. Because of the decrease in power of photovoltaic module as a consequence of changes in solar radiation and temperature which affect the photovoltaic module performance, the design and control of DC-DC buck converter was proposed for providing power to the load from a photovoltaic source.In fact, the control of this converter is carried out with integrated MPPT (Maximum Power Point Tracking) algorithm which ensures a maximum energy generated by the PV arrays. Moreover, the output stage is composed by a battery energy storage system, dc-ac inverter, LCL filter which enables higher efficiency, low distortion ac waveforms and low leakage currents. The control strategy adopted is cascade control composed by two regulation loops.Simulations performed with PSIM software were able to validate the control system.The realization and testing of the photovoltaic system were achieved in the Photovoltaic laboratory of the Centre for Research and Energy Technologies at the Technopark Borj Cedria. Experimental results verify the effeciency of the proposed system.

  2. A novel bioprinting method and system for forming hybrid tissue engineering constructs.

    PubMed

    Shanjani, Y; Pan, C C; Elomaa, L; Yang, Y

    2015-12-18

    Three dimensional (3D) bioprinting is a promising approach to form tissue engineering constructs (TECs) via positioning biomaterials, growth factors, and cells with controlled spatial distribution due to its layer-by-layer manufacturing nature. Hybrid TECs composed of relatively rigid porous scaffolds for structural and mechanical integrity and soft hydrogels for cell- and growth factor-loading have a tremendous potential to tissue regeneration under mechanical loading. However, despite excessive progress in the field, the current 3D bioprinting techniques and systems fall short in integration of such soft and rigid multifunctional components. Here we present a novel 3D hybrid bioprinting technology (Hybprinter) and its capability enabling integration of soft and rigid components for TECs. Hybprinter employs digital light processing-based stereolithography (DLP-SLA) and molten material extrusion techniques for soft and rigid materials, respectively. In this study, poly-ethylene glycol diacrylate (PEGDA) and poly-(ε-caprolactone) (PCL) were used as a model material for soft hydrogel and rigid scaffold, respectively. It was shown that geometrical accuracy, swelling ratio and mechanical properties of the hydrogel component can be tailored by DLP-SLA module. We have demonstrated the printability of variety of complex hybrid construct designs using Hybprinter technology and characterized the mechanical properties and functionality of such constructs. The compressive mechanical stiffness of a hybrid construct (90% hydrogel) was significantly higher than hydrogel itself (∼6 MPa versus 100 kPa). In addition, viability of cells incorporated within the bioprinted hybrid constructs was determined approximately 90%. Furthermore, a functionality of a hybrid construct composed of porous scaffold with an embedded hydrogel conduit was characterized for vascularized tissue engineering applications. High material diffusion and high cell viability in about 2.5 mm distance surrounding the conduit indicated that culture media effectively diffused through the conduit and fed the cells. The results suggest that the developed technology is potent to form functional TECs composed of rigid and soft biomaterials.

  3. Integrating conservation genetic considerations into conservation planning: a case study of bull trout in the Lake Pend Oreille-lower Clark Fork River system

    Treesearch

    John Epifanio; Gordon Haas; Karen Pratt; Bruce Rieman; Paul Spruell; Craig Stockwell; Fred Utter; William Young

    2003-01-01

    Bull trout (Salvelinus confluentus) is a species of conservation concern-listed as "threatened" under the Endangered Species Act-throughout its native range in the western United States. The authors were assembled by the Clark Fork River Aquatic Implementation Team, composed of biologists representing Montana Fish, Wildlife and Parks (MFWP); Idaho Department...

  4. Relativistic bound states in three space-time dimensions in Minkowski space

    NASA Astrophysics Data System (ADS)

    Gutierrez, C.; Gigante, V.; Frederico, T.; Tomio, Lauro

    2016-01-01

    With the aim to derive a workable framework for bound states in Minkowski space, we have investigated the Nakanishi perturbative integral representation of the Bethe-Salpeter (BS) amplitude in two-dimensions (2D) in space and time (2+1). The homogeneous BS amplitude, projected onto the light-front plane, is used to derive an equation for the Nakanishi weight function. The formal development is illustrated in detail and applied to the bound system composed by two scalar particles interacting through the exchange of a massive scalar. The explicit forms of the integral equations are obtained in ladder approximation.

  5. An integrated interface for peripheral neural system recording and stimulation: system design, electrical tests and in-vivo results.

    PubMed

    Carboni, Caterina; Bisoni, Lorenzo; Carta, Nicola; Puddu, Roberto; Raspopovic, Stanisa; Navarro, Xavier; Raffo, Luigi; Barbaro, Massimo

    2016-04-01

    The prototype of an electronic bi-directional interface between the Peripheral Nervous System (PNS) and a neuro-controlled hand prosthesis is presented. The system is composed of 2 integrated circuits: a standard CMOS device for neural recording and a HVCMOS device for neural stimulation. The integrated circuits have been realized in 2 different 0.35μ m CMOS processes available from ams. The complete system incorporates 8 channels each including the analog front-end, the A/D conversion, based on a sigma delta architecture and a programmable stimulation module implemented as a 5-bit current DAC; two voltage boosters supply the output stimulation stage with a programmable voltage scalable up to 17V. Successful in-vivo experiments with rats having a TIME electrode implanted in the sciatic nerve were carried out, showing the capability of recording neural signals in the tens of microvolts, with a global noise of 7μ V r m s , and to selectively elicit the tibial and plantar muscles using different active sites of the electrode.

  6. Simulating first order optical systems—algorithms for and composition of discrete linear canonical transforms

    NASA Astrophysics Data System (ADS)

    Healy, John J.

    2018-01-01

    The linear canonical transforms (LCTs) are a parameterised group of linear integral transforms. The LCTs encompass a number of well-known transformations as special cases, including the Fourier transform, fractional Fourier transform, and the Fresnel integral. They relate the scalar wave fields at the input and output of systems composed of thin lenses and free space, along with other quadratic phase systems. In this paper, we perform a systematic search of all algorithms based on up to five stages of magnification, chirp multiplication and Fourier transforms. Based on that search, we propose a novel algorithm, for which we present numerical results. We compare the sampling requirements of three algorithms. Finally, we discuss some issues surrounding the composition of discrete LCTs.

  7. Sticker-type ECG/PPG concurrent monitoring system hybrid integration of CMOS SoC and organic sensor device.

    PubMed

    Yongsu Lee; Hyeonwoo Lee; Seunghyup Yoo; Hoi-Jun Yoo

    2016-08-01

    The sticker-type sensor system is proposed targeting ECG/PPG concurrent monitoring for cardiovascular diseases. The stickers are composed of two types: Hub and Sensor-node (SN) sticker. Low-power CMOS SoC for measuring ECG and PPG signal is hybrid integrated with organic light emitting diodes (OLEDs) and organic photo detector (OPD). The sticker has only 2g weight and only consumes 141μW. The optical calibration loop is adopted for maintaining SNR of PPG signal higher than 30dB. The pulse arrival time (PAT) and SpO2 value can be extracted from various body parts and verified comparing with the reference device from 20 people in-vivo experiments.

  8. Performance of an optical encoder based on a nondiffractive beam implemented with a specific photodetection integrated circuit and a diffractive optical element.

    PubMed

    Quintián, Fernando Perez; Calarco, Nicolás; Lutenberg, Ariel; Lipovetzky, José

    2015-09-01

    In this paper, we study the incremental signal produced by an optical encoder based on a nondiffractive beam (NDB). The NDB is generated by means of a diffractive optical element (DOE). The detection system is composed by an application specific integrated circuit (ASIC) sensor. The sensor consists of an array of eight concentric annular photodiodes, each one provided with a programmable gain amplifier. In this way, the system is able to synthesize a nonuniform detectivity. The contrast, amplitude, and harmonic content of the sinusoidal output signal are analyzed. The influence of the cross talk among the annular photodiodes is placed in evidence through the dependence of the signal contrast on the wavelength.

  9. Mechanical Fatigue Testing of High Burnup Fuel for Transportation Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John; Wang, Hong

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using amore » set up with three linear variable differential transformers (LVDTs).« less

  10. Mechanical Fatigue Testing of High-Burnup Fuel for Transportation Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An; Wang, Hong

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using amore » set up with three linear variable differential transformers (LVDTs).« less

  11. Airframe integration trade studies for a reusable launch vehicle

    NASA Astrophysics Data System (ADS)

    Dorsey, John T.; Wu, Chauncey; Rivers, Kevin; Martin, Carl; Smith, Russell

    1999-01-01

    Future launch vehicles must be lightweight, fully reusable and easily maintained if low-cost access to space is to be achieved. The goal of achieving an economically viable Single-Stage-to-Orbit (SSTO) Reusable Launch Vehicle (RLV) is not easily achieved and success will depend to a large extent on having an integrated and optimized total system. A series of trade studies were performed to meet three objectives. First, to provide structural weights and parametric weight equations as inputs to configuration-level trade studies. Second, to identify, assess and quantify major weight drivers for the RLV airframe. Third, using information on major weight drivers, and considering the RLV as an integrated thermal structure (composed of thrust structures, tanks, thermal protection system, insulation and control surfaces), identify and assess new and innovative approaches or concepts that have the potential for either reducing airframe weight, improving operability, and/or reducing cost.

  12. Fault tolerance techniques to assure data integrity in high-volume PACS image archives

    NASA Astrophysics Data System (ADS)

    He, Yutao; Huang, Lu J.; Valentino, Daniel J.; Wingate, W. Keith; Avizienis, Algirdas

    1995-05-01

    Picture archiving and communication systems (PACS) perform the systematic acquisition, archiving, and presentation of large quantities of radiological image and text data. In the UCLA Radiology PACS, for example, the volume of image data archived currently exceeds 2500 gigabytes. Furthermore, the distributed heterogeneous PACS is expected to have near real-time response, be continuously available, and assure the integrity and privacy of patient data. The off-the-shelf subsystems that compose the current PACS cannot meet these expectations; therefore fault tolerance techniques had to be incorporated into the system. This paper is to report our first-step efforts towards the goal and is organized as follows: First we discuss data integrity and identify fault classes under the PACS operational environment, then we describe auditing and accounting schemes developed for error-detection and analyze operational data collected. Finally, we outline plans for future research.

  13. Integrating query of relational and textual data in clinical databases: a case study.

    PubMed

    Fisk, John M; Mutalik, Pradeep; Levin, Forrest W; Erdos, Joseph; Taylor, Caroline; Nadkarni, Prakash

    2003-01-01

    The authors designed and implemented a clinical data mart composed of an integrated information retrieval (IR) and relational database management system (RDBMS). Using commodity software, which supports interactive, attribute-centric text and relational searches, the mart houses 2.8 million documents that span a five-year period and supports basic IR features such as Boolean searches, stemming, and proximity and fuzzy searching. Results are relevance-ranked using either "total documents per patient" or "report type weighting." Non-curated medical text has a significant degree of malformation with respect to spelling and punctuation, which creates difficulties for text indexing and searching. Presently, the IR facilities of RDBMS packages lack the features necessary to handle such malformed text adequately. A robust IR+RDBMS system can be developed, but it requires integrating RDBMSs with third-party IR software. RDBMS vendors need to make their IR offerings more accessible to non-programmers.

  14. Airframe Integration Trade Studies for a Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Wu, Chauncey; Rivers, Kevin; Martin, Carl; Smith, Russell

    1999-01-01

    Future launch vehicles must be lightweight, fully reusable and easily maintained if low-cost access to space is to be achieved. The goal of achieving an economically viable Single-Stage-to-Orbit (SSTO) Reusable Launch Vehicle (RLV) is not easily achieved and success will depend to a large extent on having an integrated and optimized total system. A series of trade studies were performed to meet three objectives. First, to provide structural weights and parametric weight equations as inputs to configuration-level trade studies. Second, to identify, assess and quantify major weight drivers for the RLV airframe. Third, using information on major weight drivers, and considering the RLV as an integrated thermal structure (composed of thrust structures, tanks, thermal protection system, insulation and control surfaces), identify and assess new and innovative approaches or concepts that have the potential for either reducing airframe weight, improving operability, and/or reducing cost.

  15. The study on the real estate integrated cadastral information system based on shared plots

    NASA Astrophysics Data System (ADS)

    Xu, Huan; Liu, Nan; Liu, Renyi; Huang, Jie

    2008-10-01

    Solving the problem of the land property right on the shared parcel demands the integration of real estate information into cadastral management. Therefore a new cadastral feature named Shared Plot is introduced. After defining the shared plot clearly and describing its characteristics in detail, the impact resulting from the new feature on the traditional cadastral model composed of three cadastral features - parcels, parcel boundary lines and parcel boundary points is focused on and a four feature cadastral model that makes some amendments to the three feature one is put forward. The new model has been applied to the development of a new generation of real estate integrated cadastral information system, which incorporates real estate attribute and spatial information into cadastral database in addition to cadastral information. The system has been used in several cities of Zhejiang Province and got a favorable response. This verifies the feasibility and effectiveness of the model to some extent.

  16. High-speed railway real-time localization auxiliary method based on deep neural network

    NASA Astrophysics Data System (ADS)

    Chen, Dongjie; Zhang, Wensheng; Yang, Yang

    2017-11-01

    High-speed railway intelligent monitoring and management system is composed of schedule integration, geographic information, location services, and data mining technology for integration of time and space data. Assistant localization is a significant submodule of the intelligent monitoring system. In practical application, the general access is to capture the image sequences of the components by using a high-definition camera, digital image processing technique and target detection, tracking and even behavior analysis method. In this paper, we present an end-to-end character recognition method based on a deep CNN network called YOLO-toc for high-speed railway pillar plate number. Different from other deep CNNs, YOLO-toc is an end-to-end multi-target detection framework, furthermore, it exhibits a state-of-art performance on real-time detection with a nearly 50fps achieved on GPU (GTX960). Finally, we realize a real-time but high-accuracy pillar plate number recognition system and integrate natural scene OCR into a dedicated classification YOLO-toc model.

  17. Heatpipe power system and heatpipe bimodal system design and development options

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Poston, D. I.; Emrich, W. J., Jr.

    1997-01-01

    The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components operate within the existing databases. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module is being fabricated, and testing is scheduled to begin in November 1996. A successful test will provide high confidence that the HPS can achieve its predicted performance.

  18. Composing only by thought: Novel application of the P300 brain-computer interface.

    PubMed

    Pinegger, Andreas; Hiebel, Hannah; Wriessnegger, Selina C; Müller-Putz, Gernot R

    2017-01-01

    The P300 event-related potential is a well-known pattern in the electroencephalogram (EEG). This kind of brain signal is used for many different brain-computer interface (BCI) applications, e.g., spellers, environmental controllers, web browsers, or for painting. In recent times, BCI systems are mature enough to leave the laboratories to be used by the end-users, namely severely disabled people. Therefore, new challenges arise and the systems should be implemented and evaluated according to user-centered design (USD) guidelines. We developed and implemented a new system that utilizes the P300 pattern to compose music. Our Brain Composing system consists of three parts: the EEG acquisition device, the P300-based BCI, and the music composing software. Seventeen musical participants and one professional composer performed a copy-spelling, a copy-composing, and a free-composing task with the system. According to the USD guidelines, we investigated the efficiency, the effectiveness and subjective criteria in terms of satisfaction, enjoyment, frustration, and attractiveness. The musical participants group achieved high average accuracies: 88.24% (copy-spelling), 88.58% (copy-composing), and 76.51% (free-composing). The professional composer achieved also high accuracies: 100% (copy-spelling), 93.62% (copy-composing), and 98.20% (free-composing). General results regarding the subjective criteria evaluation were that the participants enjoyed the usage of the Brain Composing system and were highly satisfied with the system. Showing very positive results with healthy people in this study, this was the first step towards a music composing system for severely disabled people.

  19. Composing only by thought: Novel application of the P300 brain-computer interface

    PubMed Central

    Hiebel, Hannah; Wriessnegger, Selina C.; Müller-Putz, Gernot R.

    2017-01-01

    The P300 event-related potential is a well-known pattern in the electroencephalogram (EEG). This kind of brain signal is used for many different brain-computer interface (BCI) applications, e.g., spellers, environmental controllers, web browsers, or for painting. In recent times, BCI systems are mature enough to leave the laboratories to be used by the end-users, namely severely disabled people. Therefore, new challenges arise and the systems should be implemented and evaluated according to user-centered design (USD) guidelines. We developed and implemented a new system that utilizes the P300 pattern to compose music. Our Brain Composing system consists of three parts: the EEG acquisition device, the P300-based BCI, and the music composing software. Seventeen musical participants and one professional composer performed a copy-spelling, a copy-composing, and a free-composing task with the system. According to the USD guidelines, we investigated the efficiency, the effectiveness and subjective criteria in terms of satisfaction, enjoyment, frustration, and attractiveness. The musical participants group achieved high average accuracies: 88.24% (copy-spelling), 88.58% (copy-composing), and 76.51% (free-composing). The professional composer achieved also high accuracies: 100% (copy-spelling), 93.62% (copy-composing), and 98.20% (free-composing). General results regarding the subjective criteria evaluation were that the participants enjoyed the usage of the Brain Composing system and were highly satisfied with the system. Showing very positive results with healthy people in this study, this was the first step towards a music composing system for severely disabled people. PMID:28877175

  20. ISYMOD: a knowledge warehouse for the identification, assembly and analysis of bacterial integrated systems.

    PubMed

    Chabalier, Julie; Capponi, Cécile; Quentin, Yves; Fichant, Gwennaele

    2005-04-01

    Complex biological functions emerge from interactions between proteins in stable supra-molecular assemblies and/or through transitory contacts. Most of the time protein partners of the assemblies are composed of one or several domains which exhibit different biochemical functions. Thus the study of cellular process requires the identification of different functional units and their integration in an interaction network; such complexes are referred to as integrated systems. In order to exploit with optimum efficiency the increased release of data, automated bioinformatics strategies are needed to identify, reconstruct and model such systems. For that purpose, we have developed a knowledge warehouse dedicated to the representation and acquisition of bacterial integrated systems involved in the exchange of the bacterial cell with its environment. ISYMOD is a knowledge warehouse that consistently integrates in the same environment the data and the methods used for their acquisition. This is achieved through the construction of (1) a domain knowledge base (DKB) devoted to the storage of the knowledge about the systems, their functional specificities, their partners and how they are related and (2) a methodological knowledge base (MKB) which depicts the task layout used to identify and reconstruct functional integrated systems. Instantiation of the DKB is obtained by solving the tasks of the MKB, whereas some tasks need instances of the DKB to be solved. AROM, an object-based knowledge representation system, has been used to design the DKB, and its task manager, AROMTasks, for developing the MKB. In this study two integrated systems, ABC transporters and two component systems, both involved in adaptation processes of a bacterial cell to its biotope, have been used to evaluate the feasibility of the approach.

  1. A Wireless Capsule Endoscope System With Low-Power Controlling and Processing ASIC.

    PubMed

    Xinkai Chen; Xiaoyu Zhang; Linwei Zhang; Xiaowen Li; Nan Qi; Hanjun Jiang; Zhihua Wang

    2009-02-01

    This paper presents the design of a wireless capsule endoscope system. The proposed system is mainly composed of a CMOS image sensor, a RF transceiver and a low-power controlling and processing application specific integrated circuit (ASIC). Several design challenges involving system power reduction, system miniaturization and wireless wake-up method are resolved by employing optimized system architecture, integration of an area and power efficient image compression module, a power management unit (PMU) and a novel wireless wake-up subsystem with zero standby current in the ASIC design. The ASIC has been fabricated in 0.18-mum CMOS technology with a die area of 3.4 mm * 3.3 mm. The digital baseband can work under a power supply down to 0.95 V with a power dissipation of 1.3 mW. The prototype capsule based on the ASIC and a data recorder has been developed. Test result shows that proposed system architecture with local image compression lead to an average of 45% energy reduction for transmitting an image frame.

  2. Extreme-Environment Silicon-Carbide (SiC) Wireless Sensor Suite

    NASA Technical Reports Server (NTRS)

    Yang, Jie

    2015-01-01

    Phase II objectives: Develop an integrated silicon-carbide wireless sensor suite capable of in situ measurements of critical characteristics of NTP engine; Compose silicon-carbide wireless sensor suite of: Extreme-environment sensors center, Dedicated high-temperature (450 deg C) silicon-carbide electronics that provide power and signal conditioning capabilities as well as radio frequency modulation and wireless data transmission capabilities center, An onboard energy harvesting system as a power source.

  3. Quantum chaos inside black holes

    NASA Astrophysics Data System (ADS)

    Addazi, Andrea

    2017-06-01

    We show how semiclassical black holes can be reinterpreted as an effective geometry, composed of a large ensemble of horizonless naked singularities (eventually smoothed at the Planck scale). We call these new items frizzy-balls, which can be rigorously defined by Euclidean path integral approach. This leads to interesting implications about information paradoxes. We demonstrate that infalling information will chaotically propagate inside this system before going to the full quantum gravity regime (Planck scale).

  4. Distributed Trust Management and Rogue AV Software

    DTIC Science & Technology

    2010-06-10

    Integrate with QTM – Particularly important in federated systems (e.g., dynamically composable SOAs) • Investigate the use of reactive mechanisms – Global...of demonstrators surfaced on Capitol Hill in opposition to the Democrats’ health care legislation. MAGAZINE PREVIEW Making Health Care Better By...sale will be sent on saving green forests in Amazonia . Have more questions? You can contact us easy via Online Supoort. Green AV an award-winning

  5. Secular dynamics of hierarchical multiple systems composed of nested binaries, with an arbitrary number of bodies and arbitrary hierarchical structure - II. External perturbations: flybys and supernovae

    NASA Astrophysics Data System (ADS)

    Hamers, Adrian S.

    2018-05-01

    We extend the formalism of a previous paper to include the effects of flybys and instantaneous perturbations such as supernovae on the long-term secular evolution of hierarchical multiple systems with an arbitrary number of bodies and hierarchy, provided that the system is composed of nested binary orbits. To model secular encounters, we expand the Hamiltonian in terms of the ratio of the separation of the perturber with respect to the barycentre of the multiple system, to the separation of the widest orbit. Subsequently, we integrate over the perturber orbit numerically or analytically. We verify our method for secular encounters and illustrate it with an example. Furthermore, we describe a method to compute instantaneous orbital changes to multiple systems, such as asymmetric supernovae and impulsive encounters. The secular code, with implementation of the extensions described in this paper, is publicly available within AMUSE, and we provide a number of simple example scripts to illustrate its usage for secular and impulsive encounters and asymmetric supernovae. The extensions presented in this paper are a next step towards efficiently modelling the evolution of complex multiple systems embedded in star clusters.

  6. Target-in-the-loop remote sensing of laser beam and atmospheric turbulence characteristics.

    PubMed

    Vorontsov, Mikhail A; Lachinova, Svetlana L; Majumdar, Arun K

    2016-07-01

    A new target-in-the-loop (TIL) atmospheric sensing concept for in situ remote measurements of major laser beam characteristics and atmospheric turbulence parameters is proposed and analyzed numerically. The technique is based on utilization of an integral relationship between complex amplitudes of the counterpropagating optical waves known as overlapping integral or interference metric, whose value is preserved along the propagation path. It is shown that the interference metric can be directly measured using the proposed TIL sensing system composed of a single-mode fiber-based optical transceiver and a remotely located retro-target. The measured signal allows retrieval of key beam and atmospheric turbulence characteristics including scintillation index and the path-integrated refractive index structure parameter.

  7. Predicting the behavior of techno-social systems.

    PubMed

    Vespignani, Alessandro

    2009-07-24

    We live in an increasingly interconnected world of techno-social systems, in which infrastructures composed of different technological layers are interoperating within the social component that drives their use and development. Examples are provided by the Internet, the World Wide Web, WiFi communication technologies, and transportation and mobility infrastructures. The multiscale nature and complexity of these networks are crucial features in understanding and managing the networks. The accessibility of new data and the advances in the theory and modeling of complex networks are providing an integrated framework that brings us closer to achieving true predictive power of the behavior of techno-social systems.

  8. Dynamic Integration of Task-Relevant Visual Features in Posterior Parietal Cortex

    PubMed Central

    Freedman, David J.

    2014-01-01

    Summary The primate visual system consists of multiple hierarchically organized cortical areas, each specialized for processing distinct aspects of the visual scene. For example, color and form are encoded in ventral pathway areas such as V4 and inferior temporal cortex, while motion is preferentially processed in dorsal pathway areas such as the middle temporal area. Such representations often need to be integrated perceptually to solve tasks which depend on multiple features. We tested the hypothesis that the lateral intraparietal area (LIP) integrates disparate task-relevant visual features by recording from LIP neurons in monkeys trained to identify target stimuli composed of conjunctions of color and motion features. We show that LIP neurons exhibit integrative representations of both color and motion features when they are task relevant, and task-dependent shifts of both direction and color tuning. This suggests that LIP plays a role in flexibly integrating task-relevant sensory signals. PMID:25199703

  9. Preliminary Design of Critical Function Monitoring System of PGSFR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-07-01

    A PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor) is under development at Korea Atomic Energy Research Institute. A critical function monitoring system of the PGSFR is preliminarily studied. The functions of CFMS are to display critical plant variables related to the safety of the plant during normal and accident conditions and guide the operators corrective actions to keep the plant in a safe condition and mitigate the consequences of accidents. The minimal critical functions of the PGSFR are composed of reactivity control, reactor core cooling, reactor coolant system integrity, primary heat transfer system(PHTS) heat removal, sodium water reaction mitigation, radiation controlmore » and containment conditions. The variables and alarm legs of each critical function of the PGSFR are as follows; - Reactivity control: The variables of reactivity control function are power range neutron flux instrumentation, intermediate range neutron flux instrumentation, source range neutron flux instrumentation, and control rod bottom contacts. The alarm leg to display the reactivity controls consists of status of control drop malfunction, high post trip power and thermal reactivity addition. - Reactor core cooling: The variables are PHTS sodium level, hot pool temperature of PHTS, subassembly exit temperature, cold pool temperature of the PHTS, PHTS pump current, and PHTS pump breaker status. The alarm leg consists of high core delta temperature, low sodium level of the PHTS, high subassembly exit temperature, and low PHTS pump load. - Reactor coolant system integrity: The variables are PHTS sodium level, cover gas pressure, and safeguard vessel sodium level. The alarm leg is composed of low sodium level of PHTS, high cover gas pressure and high sodium level of the safety guard vessel. - PHTS heat removal: The variables are PHTS sodium level, hot pool temperature of PHTS, core exit temperature, cold pool temperature of the PHTS, flow rate of passive residual heat removal system, flow rate of active residual heat removal system, and temperatures of air heat exchanger temperature of residual heat removal systems. The alarm legs are composed of two legs of a 'passive residual heat removal system not cooling' and 'active residual heat removal system not cooling'. - Sodium water reaction mitigation: The variables are intermediate heat transfer system(IHTS) pressure, pressure and temperature and level of sodium dump tank, the status of rupture disk, hydrogen concentration in IHTS and direct variable of sodium-water-reaction measure. The alarm leg consists of high IHTS pressure, the status of sodium water reaction mitigation system and the indication of direct measure. - Radiation control: The variables are radiation of PHTS, radiation of IHTS, and radiation of containment purge. The alarm leg is composed of high radiation of PHTS and IHTS, and containment purge system. - Containment condition: The variables are containment pressure, containment isolation status, and sodium fire. The alarm leg consists of high containment pressure, status of containment isolation and status of sodium fire. (authors)« less

  10. Ontological modelling of knowledge management for human-machine integrated design of ultra-precision grinding machine

    NASA Astrophysics Data System (ADS)

    Hong, Haibo; Yin, Yuehong; Chen, Xing

    2016-11-01

    Despite the rapid development of computer science and information technology, an efficient human-machine integrated enterprise information system for designing complex mechatronic products is still not fully accomplished, partly because of the inharmonious communication among collaborators. Therefore, one challenge in human-machine integration is how to establish an appropriate knowledge management (KM) model to support integration and sharing of heterogeneous product knowledge. Aiming at the diversity of design knowledge, this article proposes an ontology-based model to reach an unambiguous and normative representation of knowledge. First, an ontology-based human-machine integrated design framework is described, then corresponding ontologies and sub-ontologies are established according to different purposes and scopes. Second, a similarity calculation-based ontology integration method composed of ontology mapping and ontology merging is introduced. The ontology searching-based knowledge sharing method is then developed. Finally, a case of human-machine integrated design of a large ultra-precision grinding machine is used to demonstrate the effectiveness of the method.

  11. Network reliability maximization for stochastic-flow network subject to correlated failures using genetic algorithm and tabu\\xA0search

    NASA Astrophysics Data System (ADS)

    Yeh, Cheng-Ta; Lin, Yi-Kuei; Yang, Jo-Yun

    2018-07-01

    Network reliability is an important performance index for many real-life systems, such as electric power systems, computer systems and transportation systems. These systems can be modelled as stochastic-flow networks (SFNs) composed of arcs and nodes. Most system supervisors respect the network reliability maximization by finding the optimal multi-state resource assignment, which is one resource to each arc. However, a disaster may cause correlated failures for the assigned resources, affecting the network reliability. This article focuses on determining the optimal resource assignment with maximal network reliability for SFNs. To solve the problem, this study proposes a hybrid algorithm integrating the genetic algorithm and tabu search to determine the optimal assignment, called the hybrid GA-TS algorithm (HGTA), and integrates minimal paths, recursive sum of disjoint products and the correlated binomial distribution to calculate network reliability. Several practical numerical experiments are adopted to demonstrate that HGTA has better computational quality than several popular soft computing algorithms.

  12. Personal health systems and value creation mechanisms in occupational health care.

    PubMed

    Auvinen, Ari-Matti

    2007-01-01

    Personal Health Systems are believed to have great business potential among citizens, but they might reach also an important market in occupational health care. However, in reaching the occupational health care market, it is important to understand the value creation and value configuration mechanisms of this particular market. This paper also claims that in such a business-to-business market service integrators are needed to compose for the various customers specific offerings combing a tailored variety of products and services to suit their specific needs.

  13. A simple counter-flow cooling system for a supersonic free-jet beam source assembly

    NASA Astrophysics Data System (ADS)

    Barr, M.; Fahy, A.; Martens, J.; Dastoor, P. C.

    2016-05-01

    A simple design for an inexpensive, cooled, free-jet beam source is described. The source assembly features an integrated cooling system as supplied by a counter-flow of chilled nitrogen, and is composed primarily of off-the-shelf tube fittings. The design facilitates rapid implementation and eases subsequent alignment with respect to any downstream beamline aperture. The source assembly outlined cools the full length of the stagnation volume, offering temperature control down to 100 K and long-term temperature stability better than ±1 K.

  14. A simple counter-flow cooling system for a supersonic free-jet beam source assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barr, M.; Fahy, A.; Martens, J.

    2016-05-15

    A simple design for an inexpensive, cooled, free-jet beam source is described. The source assembly features an integrated cooling system as supplied by a counter-flow of chilled nitrogen, and is composed primarily of off-the-shelf tube fittings. The design facilitates rapid implementation and eases subsequent alignment with respect to any downstream beamline aperture. The source assembly outlined cools the full length of the stagnation volume, offering temperature control down to 100 K and long-term temperature stability better than ±1 K.

  15. Local effects of partly-cloudy skies on solar and emitted radiation

    NASA Technical Reports Server (NTRS)

    Whitney, D. A.; Venable, D. D.

    1982-01-01

    A computer automated data acquisition system for atmospheric emittance, and global solar, downwelled diffuse solar, and direct solar irradiances is discussed. Hourly-integrated global solar and atmospheric emitted radiances were measured continuously from February 1981 and hourly-integrated diffuse solar and direct solar irradiances were measured continuously from October 1981. One-minute integrated data are available for each of these components from February 1982. The results of the correlation of global insolation with fractional cloud cover for the first year's data set. A February data set, composed of one-minute integrated global insolation and direct solar irradiance, cloud cover fractions, meteorological data from nearby weather stations, and GOES East satellite radiometric data, was collected to test the theoretical model of satellite radiometric data correlation and develop the cloud dependence for the local measurement site.

  16. Demonstration of a time-integrated short line of sight neutron imaging system for inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, R., E-mail: raspberry@lanl.gov; Danly, C.; Fatherley, V. E.

    2015-12-15

    The Neutron Imaging System (NIS) is an important diagnostic for understanding implosions of deuterium-tritium capsules at the National Ignition Facility. While the detectors for the existing system must be positioned 28 m from the source to produce sufficient imaging magnification and resolution, recent testing of a new short line of sight neutron imaging system has shown sufficient resolution to allow reconstruction of the source image with quality similar to that of the existing NIS on a 11.6 m line of sight. The new system used the existing pinhole aperture array and a stack of detectors composed of 2 mm thickmore » high-density polyethylene converter material followed by an image plate. In these detectors, neutrons enter the converter material and interact with protons, which recoil and deposit energy within the thin active layer of the image plate through ionization losses. The described system produces time-integrated images for all neutron energies passing through the pinhole. We present details of the measurement scheme for this novel technique to produce energy-integrated neutron images as well as source reconstruction results from recent experiments at NIF.« less

  17. Knowledge-based reusable software synthesis system

    NASA Technical Reports Server (NTRS)

    Donaldson, Cammie

    1989-01-01

    The Eli system, a knowledge-based reusable software synthesis system, is being developed for NASA Langley under a Phase 2 SBIR contract. Named after Eli Whitney, the inventor of interchangeable parts, Eli assists engineers of large-scale software systems in reusing components while they are composing their software specifications or designs. Eli will identify reuse potential, search for components, select component variants, and synthesize components into the developer's specifications. The Eli project began as a Phase 1 SBIR to define a reusable software synthesis methodology that integrates reusabilityinto the top-down development process and to develop an approach for an expert system to promote and accomplish reuse. The objectives of the Eli Phase 2 work are to integrate advanced technologies to automate the development of reusable components within the context of large system developments, to integrate with user development methodologies without significant changes in method or learning of special languages, and to make reuse the easiest operation to perform. Eli will try to address a number of reuse problems including developing software with reusable components, managing reusable components, identifying reusable components, and transitioning reuse technology. Eli is both a library facility for classifying, storing, and retrieving reusable components and a design environment that emphasizes, encourages, and supports reuse.

  18. Integration for Severely Handicapped Children and Youth.

    ERIC Educational Resources Information Center

    Stremel-Campbell, Kathleen

    1983-01-01

    A model for integrating severely handicapped children and youth is composed of five major components: (1) general integration (in which a needs assessment determines such aspects as visibility of the classroom, interaction with regular classroom staff, and school-home communication); (2) active integration (in which educational and social…

  19. [Problematic issues and prospects of development of information and telecommunication technologies in the medical service of the Armed Forces].

    PubMed

    Kalachev, O V; Pershin, I V; Borisov, D N; Korneenkov, A A

    2014-12-01

    Medical information systems composed of many specialized modules help in synchronous solving of diagnostic, therapeutic, administrative, financial, statistical, and other tasks. According to the authors, the creation of a single information space of the medical service, integrating it into a single information space of the Defense Ministry of the Russian Fedaration, development and widespread use of telemedicine technology will significantly accelerate the integration in the daily activities of military hospitals of the latest achievements in medical science and practices consistent with the objectives of improving the military health care and improvement of the quality and accessibility of health care.

  20. A program to compute three-dimensional subsonic unsteady aerodynamic characteristics using the doublet lattice method, L216 (DUBFLEX). Volume 2: Supplemental system design and maintenance document

    NASA Technical Reports Server (NTRS)

    Harrison, B. A.; Richard, M.

    1979-01-01

    The information necessary for execution of the digital computer program L216 on the CDC 6600 is described. L216 characteristics are based on the doublet lattice method. Arbitrary aerodynamic configurations may be represented with combinations of nonplanar lifting surfaces composed of finite constant pressure panel elements, and axially summetric slender bodies composed of constant pressure line elements. Program input consists of configuration geometry, aerodynamic parameters, and modal data; output includes element geometry, pressure difference distributions, integrated aerodynamic coefficients, stability derivatives, generalized aerodynamic forces, and aerodynamic influence coefficient matrices. Optionally, modal data may be input on magnetic field (tape or disk), and certain geometric and aerodynamic output may be saved for subsequent use.

  1. Inverse Problems for Nonlinear Delay Systems

    DTIC Science & Technology

    2011-03-15

    population dynamics. We consider the delay between birth and adulthood for neonate pea aphids and present a mathematical model that treats this delay as...which there is currently no known cure. For HIV, the core of the virus is composed of single-stranded viral RNA and protein components. As depicted in...at a CD4 receptor site and the viral core is injected into the cell. Once inside, the protein components enable transcription and integration of the

  2. Technical Digest of the 1998 Summer Topical Meeting on Organic Optics and Optoelectronics

    DTIC Science & Technology

    1998-07-01

    substantially larger voltages (~2x), however, signal distortion and inter- symbol interference due to multiple RF reflections limit their...technology as data page composers. Texas Instrument’s DMD 0-7803-4953-9/98$10.00©1998 IEEE system has already been used in this capacity in several... lithography for fabricating and integrating the heads and sliders. The application of MEMS components and micromachined optical bench packaging techniques

  3. Nonlinear Relaxation in Population Dynamics

    NASA Astrophysics Data System (ADS)

    Cirone, Markus A.; de Pasquale, Ferdinando; Spagnolo, Bernardo

    We analyze the nonlinear relaxation of a complex ecosystem composed of many interacting species. The ecological system is described by generalized Lotka-Volterra equations with a multiplicative noise. The transient dynamics is studied in the framework of the mean field theory and with random interaction between the species. We focus on the statistical properties of the asymptotic behaviour of the time integral of the ith population and on the distribution of the population and of the local field.

  4. Opto-mechanical design of an image slicer for the GRIS spectrograph at GREGOR

    NASA Astrophysics Data System (ADS)

    Vega Reyes, N.; Esteves, M. A.; Sánchez-Capuchino, J.; Salaun, Y.; López, R. L.; Gracia, F.; Estrada Herrera, P.; Grivel, C.; Vaz Cedillo, J. J.; Collados, M.

    2016-07-01

    An image slicer has been proposed for the Integral Field Spectrograph [1] of the 4-m European Solar Telescope (EST) [2] The image slicer for EST is called MuSICa (Multi-Slit Image slicer based on collimator-Camera) [3] and it is a telecentric system with diffraction limited optical quality offering the possibility to obtain high resolution Integral Field Solar Spectroscopy or Spectro-polarimetry by coupling a polarimeter after the generated slit (or slits). Considering the technical complexity of the proposed Integral Field Unit (IFU), a prototype has been designed for the GRIS spectrograph at GREGOR telescope at Teide Observatory (Tenerife), composed by the optical elements of the image slicer itself, a scanning system (to cover a larger field of view with sequential adjacent measurements) and an appropriate re-imaging system. All these subsystems are placed in a bench, specially designed to facilitate their alignment, integration and verification, and their easy installation in front of the spectrograph. This communication describes the opto-mechanical solution adopted to upgrade GRIS while ensuring repeatability between the observational modes, IFU and long-slit. Results from several tests which have been performed to validate the opto-mechanical prototypes are also presented.

  5. Real-time optimizations for integrated smart network camera

    NASA Astrophysics Data System (ADS)

    Desurmont, Xavier; Lienard, Bruno; Meessen, Jerome; Delaigle, Jean-Francois

    2005-02-01

    We present an integrated real-time smart network camera. This system is composed of an image sensor, an embedded PC based electronic card for image processing and some network capabilities. The application detects events of interest in visual scenes, highlights alarms and computes statistics. The system also produces meta-data information that could be shared between other cameras in a network. We describe the requirements of such a system and then show how the design of the system is optimized to process and compress video in real-time. Indeed, typical video-surveillance algorithms as background differencing, tracking and event detection should be highly optimized and simplified to be used in this hardware. To have a good adequation between hardware and software in this light embedded system, the software management is written on top of the java based middle-ware specification established by the OSGi alliance. We can integrate easily software and hardware in complex environments thanks to the Java Real-Time specification for the virtual machine and some network and service oriented java specifications (like RMI and Jini). Finally, we will report some outcomes and typical case studies of such a camera like counter-flow detection.

  6. Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip.

    PubMed

    Kim, Je-Hyung; Aghaeimeibodi, Shahriar; Richardson, Christopher J K; Leavitt, Richard P; Englund, Dirk; Waks, Edo

    2017-12-13

    Scalable quantum photonic systems require efficient single photon sources coupled to integrated photonic devices. Solid-state quantum emitters can generate single photons with high efficiency, while silicon photonic circuits can manipulate them in an integrated device structure. Combining these two material platforms could, therefore, significantly increase the complexity of integrated quantum photonic devices. Here, we demonstrate hybrid integration of solid-state quantum emitters to a silicon photonic device. We develop a pick-and-place technique that can position epitaxially grown InAs/InP quantum dots emitting at telecom wavelengths on a silicon photonic chip deterministically with nanoscale precision. We employ an adiabatic tapering approach to transfer the emission from the quantum dots to the waveguide with high efficiency. We also incorporate an on-chip silicon-photonic beamsplitter to perform a Hanbury-Brown and Twiss measurement. Our approach could enable integration of precharacterized III-V quantum photonic devices into large-scale photonic structures to enable complex devices composed of many emitters and photons.

  7. A study on spatial decision support systems for HIV/AIDS prevention based on COM GIS technology

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Luo, Huasong; Peng, Shungyun; Xu, Quanli

    2007-06-01

    Based on the deeply analysis of the current status and the existing problems of GIS technology applications in Epidemiology, this paper has proposed the method and process for establishing the spatial decision support systems of AIDS epidemic prevention by integrating the COM GIS, Spatial Database, GPS, Remote Sensing, and Communication technologies, as well as ASP and ActiveX software development technologies. One of the most important issues for constructing the spatial decision support systems of AIDS epidemic prevention is how to integrate the AIDS spreading models with GIS. The capabilities of GIS applications in the AIDS epidemic prevention have been described here in this paper firstly. Then some mature epidemic spreading models have also been discussed for extracting the computation parameters. Furthermore, a technical schema has been proposed for integrating the AIDS spreading models with GIS and relevant geospatial technologies, in which the GIS and model running platforms share a common spatial database and the computing results can be spatially visualized on Desktop or Web GIS clients. Finally, a complete solution for establishing the decision support systems of AIDS epidemic prevention has been offered in this paper based on the model integrating methods and ESRI COM GIS software packages. The general decision support systems are composed of data acquisition sub-systems, network communication sub-systems, model integrating sub-systems, AIDS epidemic information spatial database sub-systems, AIDS epidemic information querying and statistical analysis sub-systems, AIDS epidemic dynamic surveillance sub-systems, AIDS epidemic information spatial analysis and decision support sub-systems, as well as AIDS epidemic information publishing sub-systems based on Web GIS.

  8. An explosively driven high-power microwave pulsed power system.

    PubMed

    Elsayed, M A; Neuber, A A; Dickens, J C; Walter, J W; Kristiansen, M; Altgilbers, L L

    2012-02-01

    The increased popularity of high power microwave systems and the various sources to drive them is the motivation behind the work to be presented. A stand-alone, self-contained explosively driven high power microwave pulsed power system has been designed, built, and tested at Texas Tech University's Center for Pulsed Power and Power Electronics. The system integrates four different sub-units that are composed of a battery driven prime power source utilizing capacitive energy storage, a dual stage helical flux compression generator as the main energy amplification device, an integrated power conditioning system with inductive energy storage including a fast opening electro-explosive switch, and a triode reflex geometry virtual cathode oscillator as the microwave radiating source. This system has displayed a measured electrical source power level of over 5 GW and peak radiated microwaves of about 200 MW. It is contained within a 15 cm diameter housing and measures 2 m in length, giving a housing volume of slightly less than 39 l. The system and its sub-components have been extensively studied, both as integrated and individual units, to further expand on components behavior and operation physics. This report will serve as a detailed design overview of each of the four subcomponents and provide detailed analysis of the overall system performance and benchmarks.

  9. An explosively driven high-power microwave pulsed power system

    NASA Astrophysics Data System (ADS)

    Elsayed, M. A.; Neuber, A. A.; Dickens, J. C.; Walter, J. W.; Kristiansen, M.; Altgilbers, L. L.

    2012-02-01

    The increased popularity of high power microwave systems and the various sources to drive them is the motivation behind the work to be presented. A stand-alone, self-contained explosively driven high power microwave pulsed power system has been designed, built, and tested at Texas Tech University's Center for Pulsed Power and Power Electronics. The system integrates four different sub-units that are composed of a battery driven prime power source utilizing capacitive energy storage, a dual stage helical flux compression generator as the main energy amplification device, an integrated power conditioning system with inductive energy storage including a fast opening electro-explosive switch, and a triode reflex geometry virtual cathode oscillator as the microwave radiating source. This system has displayed a measured electrical source power level of over 5 GW and peak radiated microwaves of about 200 MW. It is contained within a 15 cm diameter housing and measures 2 m in length, giving a housing volume of slightly less than 39 l. The system and its sub-components have been extensively studied, both as integrated and individual units, to further expand on components behavior and operation physics. This report will serve as a detailed design overview of each of the four subcomponents and provide detailed analysis of the overall system performance and benchmarks.

  10. A demonstration test of the dual-beam polarimetry differential imaging system for the high-contrast observation

    NASA Astrophysics Data System (ADS)

    Dou, Jiangpei; Ren, Deqing; Zhu, Yongtian; Wang, Xue; Zhang, Xi; Li, Rong

    2012-09-01

    We propose a dual-beam polarimetry differential imaging test system that can be used for the direct imaging of the exoplanets. The system is composed of a liquid crystal variable retarder (LCVR) in the pupil to switch between two orthogonal polarized states, and a Wollaston prism (WP) that will be inserted before the final focal focus of the system to create two polarized images for the differential subtraction. Such a system can work separately or be integrated in the coronagraph system to enhance the high-contrast imaging. To demonstrate the feasibility of the proposed system, here we show the initial test result both with and without integrating our developed coronagraph. A unique feature for this system is that each channel can subtract with itself by using the retarder to rotate the planet's polarization orientation, which has the best performance according to our lab test results. Finally, it is shown that the polarimetry differential imaging system is a promising technique and can be used for the direct imaging observation of reflected lights from the exoplanets.

  11. Utilizing a Suited Manikin Test Apparatus and Spacesuit Ventilation Loop to Evaluate Carbon Dioxide Washout

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Conger, Bruce; Korona, Adam; Kanne, Bryan; McMillin, Summer; Norcross, Jason; Jeng, Frank; Swickrath, Mike

    2014-01-01

    NASA is pursuing technology development of an Advanced Extravehicular Mobility Unit (AEMU) which is an integrated assembly made up of primarily a pressure garment system and a Portable Life Support System (PLSS). The PLSS is further composed of an oxygen subsystem, a ventilation subsystem, and a thermal subsystem. One of the key functions of the ventilation system is to remove and control the carbon dioxide delivered to the crewmember. Carbon dioxide washout is the mechanism by which CO2 levels are controlled within the spacesuit helmet to limit the concentration of CO2 inhaled by the crew member. CO2 washout performance is a critical parameter needed to ensure proper and robust designs that are insensitive to human variabilities in a spacesuit. A Suited Manikin Test Apparatus (SMTA) is being developed to augment testing of the PLSS ventilation loop in order to provide a lower cost and more controlled alternative to human testing. The CO2 removal function is performed by the regenerative Rapid Cycle Amine (RCA) within the PLSS ventilation loop and its performance is evaluated within the integrated SMTA and Ventilation Loop test system. This paper will provide a detailed description of the schematics, test configurations, and hardware components of this integrated system. Results and analysis of testing performed with this integrated system will be presented within this paper.

  12. On an LAS-integrated soft PLC system based on WorldFIP fieldbus.

    PubMed

    Liang, Geng; Li, Zhijun; Li, Wen; Bai, Yan

    2012-01-01

    Communication efficiency is lowered and real-time performance is not good enough in discrete control based on traditional WorldFIP field intelligent nodes in case that the scale of control in field is large. A soft PLC system based on WorldFIP fieldbus was designed and implemented. Link Activity Scheduler (LAS) was integrated into the system and field intelligent I/O modules acted as networked basic nodes. Discrete control logic was implemented with the LAS-integrated soft PLC system. The proposed system was composed of configuration and supervisory sub-systems and running sub-systems. The configuration and supervisory sub-system was implemented with a personal computer or an industrial personal computer; running subsystems were designed and implemented based on embedded hardware and software systems. Communication and schedule in the running subsystem was implemented with an embedded sub-module; discrete control and system self-diagnosis were implemented with another embedded sub-module. Structure of the proposed system was presented. Methodology for the design of the sub-systems was expounded. Experiments were carried out to evaluate the performance of the proposed system both in discrete and process control by investigating the effect of network data transmission delay induced by the soft PLC in WorldFIP network and CPU workload on resulting control performances. The experimental observations indicated that the proposed system is practically applicable. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Ring-resonator-integrated tunable external cavity laser employing EAM and SOA.

    PubMed

    Yoon, Ki-Hong; Kwon, O-Kyun; Kim, Ki Soo; Choi, Byung-Seok; Oh, Su Hwan; Kim, Hyun Su; Sim, Jae-Sik; Kim, Chul Soo

    2011-12-05

    We propose and demonstrate a tunable external cavity laser (ECL) composed of a polymer Bragg reflector (PBR) and integrated gain chip with gain, a ring resonator, an electro-absorption modulator (EAM), and a semiconductor optical amplifier (SOA). The cavity of the laser is composed of the PBR, gain, and ring resonator. The ring resonator reflects the predetermined wavelengths into the gain region and transmits the output signal into integrated devices such as the EAM and SOA. The output wavelength of the tunable laser is discretely tuned in steps of about 0.8 nm through the thermal-optic effect of the PBR and predetermined mode spacing of the ring resonator.

  14. Facility Composer (Trademark) and PACES (Trademark) Integration: Development of an XML Interface Based on Industry Foundation Classes

    DTIC Science & Technology

    2007-11-01

    Engineer- ing Research Laboratory is currently developing a set of facility ‘architec- tural’ programming tools , called Facility ComposerTM (FC). FC...requirements in the early phases of project development. As the facility program, crite- ria, and requirements are chosen, these tools populate the IFC...developing a set of facility “ar- chitectural” programming tools , called Facility Composer (FC), to support the capture and tracking of facility criteria

  15. Independent vs. Integrated Writing Tasks: A Comparison of Task Representation

    ERIC Educational Resources Information Center

    Plakans, Lia

    2010-01-01

    As the field of second language writing embraces the authenticity and meaningfulness of connecting writing with other skills, language teachers and testers require greater understanding of how writers respond to as well as compose for integrated tasks. Research on integrated tasks is critical in highlighting how integration impacts students and…

  16. Integrating Query of Relational and Textual Data in Clinical Databases: A Case Study

    PubMed Central

    Fisk, John M.; Mutalik, Pradeep; Levin, Forrest W.; Erdos, Joseph; Taylor, Caroline; Nadkarni, Prakash

    2003-01-01

    Objectives: The authors designed and implemented a clinical data mart composed of an integrated information retrieval (IR) and relational database management system (RDBMS). Design: Using commodity software, which supports interactive, attribute-centric text and relational searches, the mart houses 2.8 million documents that span a five-year period and supports basic IR features such as Boolean searches, stemming, and proximity and fuzzy searching. Measurements: Results are relevance-ranked using either “total documents per patient” or “report type weighting.” Results: Non-curated medical text has a significant degree of malformation with respect to spelling and punctuation, which creates difficulties for text indexing and searching. Presently, the IR facilities of RDBMS packages lack the features necessary to handle such malformed text adequately. Conclusion: A robust IR+RDBMS system can be developed, but it requires integrating RDBMSs with third-party IR software. RDBMS vendors need to make their IR offerings more accessible to non-programmers. PMID:12509355

  17. Bioinspired heterostructured bead-on-string fibers via controlling the wet-assembly of nanoparticles.

    PubMed

    Zhao, Lin; Song, Cheng; Zhang, Miaoxin; Zheng, Yongmei

    2014-09-21

    A kind of bioinspired heterostructured bead-on-string fiber (BHBF), composed of poly-(methyl methacrylate) (PMMA) and titanium tetrachloride (TiCl4) hydrolyzed nanoparticles, was prepared via integrating a wet-assembly system, including PMMA electrospinning, fog of nanoparticles and water coalescence at multi-stages. The wet-assembly of BHBF was regulated by the difference in surface energy and Laplace pressure. Especially, BHBF is characteristic of a hydrophilic rough bead for excellent water collection ability.

  18. Managing operational documentation in the ALICE Detector Control System

    NASA Astrophysics Data System (ADS)

    Lechman, M.; Augustinus, A.; Bond, P.; Chochula, P.; Kurepin, A.; Pinazza, O.; Rosinsky, P.

    2012-12-01

    ALICE (A Large Ion Collider Experiment) is one of the big LHC (Large Hadron Collider) experiments at CERN in Geneve, Switzerland. The experiment is composed of 18 sub-detectors controlled by an integrated Detector Control System (DCS) that is implemented using the commercial SCADA package PVSSII. The DCS includes over 1200 network devices, over 1,000,000 monitored parameters and numerous custom made software components that are prepared by over 100 developers from all around the world. This complex system is controlled by a single operator via a central user interface. One of his/her main tasks is the recovery of anomalies and errors that may occur during operation. Therefore, clear, complete and easily accessible documentation is essential to guide the shifter through the expert interfaces of different subsystems. This paper describes the idea of the management of the operational documentation in ALICE using a generic repository that is built on a relational database and is integrated with the control system. The experience gained and the conclusions drawn from the project are also presented.

  19. Utilizing a Suited Manikin Test Apparatus and Space Suit Ventilation Loop to Evaluate Carbon Dioxide Washout

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Conger, Bruce; Korona, Adam; Kanne, Bryan; McMillin, Summer; Paul, Thomas; Norcross, Jason; Alonso, Jesus Delgado; Swickrath, Mike

    2015-01-01

    NASA is pursuing technology development of an Advanced Extravehicular Mobility Unit (AEMU) which is an integrated assembly made up of primarily a pressure garment system and a portable life support subsystem (PLSS). The PLSS is further composed of an oxygen subsystem, a ventilation subsystem, and a thermal subsystem. One of the key functions of the ventilation system is to remove and control the carbon dioxide (CO2) delivered to the crewmember. Carbon dioxide washout is the mechanism by which CO2 levels are controlled within the space suit helmet to limit the concentration of CO2 inhaled by the crew member. CO2 washout performance is a critical parameter needed to ensure proper and robust designs that are insensitive to human variabilities in a space suit. A suited manikin test apparatus (SMTA) was developed to augment testing of the PLSS ventilation loop in order to provide a lower cost and more controlled alternative to human testing. The CO2 removal function is performed by the regenerative Rapid Cycle Amine (RCA) within the PLSS ventilation loop and its performance is evaluated within the integrated SMTA and Ventilation Loop test system. This paper will provide a detailed description of the schematics, test configurations, and hardware components of this integrated system. Results and analysis of testing performed with this integrated system will be presented within this paper.

  20. Wearable Fall Detector using Integrated Sensors and Energy Devices

    NASA Astrophysics Data System (ADS)

    Jung, Sungmook; Hong, Seungki; Kim, Jaemin; Lee, Sangkyu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2015-11-01

    Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction with integrated sensors, controllers, and wireless units. A stretchable conductive nylon is used as electrodes of the triboelectric generator and the interconnection between battery cells. Ethoxylated polyethylenimine, coated on the surface of the conductive nylon electrode, tunes the work function of a triboelectric generator and maximizes its performance. The electrical energy harvested from the triboelectric generator through human body motions continuously recharges the stretchable battery and prolongs hours of its use. The integrated energy supply system runs the 3-axis accelerometer and related electronics that record human body motions and send the data wirelessly. Upon the unexpected fall occurring, a custom-made software discriminates the fall signal and an emergency alert is immediately sent to an external mobile device. This wearable fall detection system would provide new opportunities in the mobile electronics and wearable healthcare.

  1. Wearable Fall Detector using Integrated Sensors and Energy Devices.

    PubMed

    Jung, Sungmook; Hong, Seungki; Kim, Jaemin; Lee, Sangkyu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2015-11-24

    Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction with integrated sensors, controllers, and wireless units. A stretchable conductive nylon is used as electrodes of the triboelectric generator and the interconnection between battery cells. Ethoxylated polyethylenimine, coated on the surface of the conductive nylon electrode, tunes the work function of a triboelectric generator and maximizes its performance. The electrical energy harvested from the triboelectric generator through human body motions continuously recharges the stretchable battery and prolongs hours of its use. The integrated energy supply system runs the 3-axis accelerometer and related electronics that record human body motions and send the data wirelessly. Upon the unexpected fall occurring, a custom-made software discriminates the fall signal and an emergency alert is immediately sent to an external mobile device. This wearable fall detection system would provide new opportunities in the mobile electronics and wearable healthcare.

  2. Towards a service bus for distributed manufacturing

    NASA Astrophysics Data System (ADS)

    Delgado-Gomes, Vasco; Oliveira-Lima, José A.; Martins, João F.; Jardim-Gonçalves, Ricardo

    2013-10-01

    The electronic exchange of data between industrial equipment, manufacturing and information systems of companies is becoming increasingly important with the current trend of reducing products' life cycle, wide range of diversified products, and the need to answer the specific needs of each consumer. In this context, quality, time, costs involved in integrating information over the company's internal processes, and in the interaction of these processes with their customers, suppliers and other business partners are in many sectors, far beyond what the current technology and communications solutions enable. This paper presents a communication infrastructure to integrate several companies from different sectors of the supply chain, to exchange their heterogeneous information using a data model which is composed by different standards.

  3. A path integral approach to the full Dicke model with dipole-dipole interaction

    NASA Astrophysics Data System (ADS)

    Aparicio Alcalde, M.; Stephany, J.; Svaiter, N. F.

    2011-12-01

    We consider the full Dicke spin-boson model composed by a single bosonic mode and an ensemble of N identical two-level atoms with different couplings for the resonant and anti-resonant interaction terms, and incorporate a dipole-dipole interaction between the atoms. Assuming that the system is in thermal equilibrium with a reservoir at temperature β-1, we compute the free energy in the thermodynamic limit N → ∞ in the saddle-point approximation to the path integral and determine the critical temperature for the super-radiant phase transition. In the zero temperature limit, we recover the critical coupling of the quantum phase transition, presented in the literature.

  4. The Structure of Integral Dimensions: Contrasting Topological and Cartesian Representations

    ERIC Educational Resources Information Center

    Jones, Matt; Goldstone, Robert L.

    2013-01-01

    Diverse evidence shows that perceptually integral dimensions, such as those composing color, are represented holistically. However, the nature of these holistic representations is poorly understood. Extant theories, such as those founded on multidimensional scaling or general recognition theory, model integral stimulus spaces using a Cartesian…

  5. Automated baseline change detection -- Phases 1 and 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byler, E.

    1997-10-31

    The primary objective of this project is to apply robotic and optical sensor technology to the operational inspection of mixed toxic and radioactive waste stored in barrels, using Automated Baseline Change Detection (ABCD), based on image subtraction. Absolute change detection is based on detecting any visible physical changes, regardless of cause, between a current inspection image of a barrel and an archived baseline image of the same barrel. Thus, in addition to rust, the ABCD system can also detect corrosion, leaks, dents, and bulges. The ABCD approach and method rely on precise camera positioning and repositioning relative to the barrelmore » and on feature recognition in images. The ABCD image processing software was installed on a robotic vehicle developed under a related DOE/FETC contract DE-AC21-92MC29112 Intelligent Mobile Sensor System (IMSS) and integrated with the electronics and software. This vehicle was designed especially to navigate in DOE Waste Storage Facilities. Initial system testing was performed at Fernald in June 1996. After some further development and more extensive integration the prototype integrated system was installed and tested at the Radioactive Waste Management Facility (RWMC) at INEEL beginning in April 1997 through the present (November 1997). The integrated system, composed of ABCD imaging software and IMSS mobility base, is called MISS EVE (Mobile Intelligent Sensor System--Environmental Validation Expert). Evaluation of the integrated system in RWMC Building 628, containing approximately 10,000 drums, demonstrated an easy to use system with the ability to properly navigate through the facility, image all the defined drums, and process the results into a report delivered to the operator on a GUI interface and on hard copy. Further work is needed to make the brassboard system more operationally robust.« less

  6. Cultural Diversity: Resources for Music Educators in Selected Works of Three Contemporary African-American Classical Composers

    ERIC Educational Resources Information Center

    Choi, Eunjung; Keith, Laura J.

    2016-01-01

    Contemporary African-American classical composers Cedric Adderley, John Lane, and Trevor Weston intertwine strands of culture and individual experience to produce musical works whose distinct designs offer cultural resources that music educators can use to integrate diversity into instructional settings. Of special interest is their ability to…

  7. An integrated design and fabrication strategy for entirely soft, autonomous robots.

    PubMed

    Wehner, Michael; Truby, Ryan L; Fitzgerald, Daniel J; Mosadegh, Bobak; Whitesides, George M; Lewis, Jennifer A; Wood, Robert J

    2016-08-25

    Soft robots possess many attributes that are difficult, if not impossible, to achieve with conventional robots composed of rigid materials. Yet, despite recent advances, soft robots must still be tethered to hard robotic control systems and power sources. New strategies for creating completely soft robots, including soft analogues of these crucial components, are needed to realize their full potential. Here we report the untethered operation of a robot composed solely of soft materials. The robot is controlled with microfluidic logic that autonomously regulates fluid flow and, hence, catalytic decomposition of an on-board monopropellant fuel supply. Gas generated from the fuel decomposition inflates fluidic networks downstream of the reaction sites, resulting in actuation. The body and microfluidic logic of the robot are fabricated using moulding and soft lithography, respectively, and the pneumatic actuator networks, on-board fuel reservoirs and catalytic reaction chambers needed for movement are patterned within the body via a multi-material, embedded 3D printing technique. The fluidic and elastomeric architectures required for function span several orders of magnitude from the microscale to the macroscale. Our integrated design and rapid fabrication approach enables the programmable assembly of multiple materials within this architecture, laying the foundation for completely soft, autonomous robots.

  8. A kinetic study of ferrocenium cation decomposition utilizing an integrated electrochemical methodology composed of cyclic voltammetry and amperometry.

    PubMed

    Singh, Archana; Chowdhury, Debarati Roy; Paul, Amit

    2014-11-21

    A novel, easy, quick, and inexpensive integrated electrochemical methodology composed of cyclic voltammetry and amperometry has been developed for the determination of the kinetic stability of higher oxidation states for inorganic complexes. In this study, ferrocene and its derivatives have been used as model systems and the corresponding ferrocenium cations were generated in situ during the electrochemical experiments to determine their kinetic stabilities. The study found that the ferrocenium cations decompose following the first-order kinetics at 27 ± 3 °C in the presence of ambient oxygen and water. The half-lives of the ferrocenium, carboxylate ferrocenium, and decamethyl ferrocenium cations were found to be 1.27 × 10(3), 1.52 × 10(3), and ≫11.0 × 10(3) s, respectively, in acetonitrile solvent having a 0.5 M tetrabutylammonium hexafluorophosphate electrolyte. These results are in agreement with the previous reports, i.e. the ferrocenium cation is unstable whereas the decamethyl ferrocenium cation has superior stability. The new methodology has been established by performing various experiments using different concentrations of ferrocene, variable scan rates in cyclic voltammetry, different time periods for amperometry, and in situ spectroelectrochemical experiments.

  9. The `What is a system' reflection interview as a knowledge integration activity for high school students' understanding of complex systems in human biology

    NASA Astrophysics Data System (ADS)

    Tripto, Jaklin; Ben-Zvi Assaraf, Orit; Snapir, Zohar; Amit, Miriam

    2016-03-01

    This study examined the reflection interview as a tool for assessing and facilitating the use of 'systems language' amongst 11th grade students who have recently completed their first year of high school biology. Eighty-three students composed two concept maps in the 10th grade-one at the beginning of the school year and one at its end. The first part of the interview is dedicated to guiding the students through comparing their two concept maps and by means of both explicit and non-explicit teaching. Our study showed that the explicit guidance in comparing the two concept maps was more effective than the non-explicit, eliciting a variety of different, more specific, types of interactions and patterns (e.g. 'hierarchy', 'dynamism', 'homeostasis') in the students' descriptions of the human body system. The reflection interview as a knowledge integration activity was found to be an effective tool for assessing the subjects' conceptual models of 'system complexity', and for identifying those aspects of a system that are most commonly misunderstood.

  10. Integrated pretreatment and desalination by electrocoagulation (EC)-ion concentration polarization (ICP) hybrid.

    PubMed

    Choi, Siwon; Kim, Bumjoo; Han, Jongyoon

    2017-06-13

    Conventional water treatment process is composed of multiple stages, including desalination (salt removal) and pre/post-treatment of desalination to remove particles, chemicals, and other potential foulants for desalination. In this work, we developed a microfluidic proof-of-concept for a single device water treatment system, which removes both salt ions and non-salt contaminants. Our system combines electrocoagulation (EC), a versatile contaminant removal process, and ion concentration polarization (ICP) desalination, which is an electromembrane desalination process. We demonstrated a continuous EC-ICP operation that removed >95% of suspended solids and reduced the salinity from brackish range (20 mM NaCl) to a potable level (<8.6 mM NaCl). We also demonstrated that our system is flexible in terms of the type and concentration of contaminants it can handle. Combining two different electrochemical processes into a single system, we can reduce unnecessary voltage drop by having a shared anode, and achieve both seamless integration and energy efficient operation. Our system will find applications as a small-scale water treatment system, if properly scaled up in the future.

  11. Study of surface integrity AISI 4140 as result of hard, dry and high speed machining using CBN

    NASA Astrophysics Data System (ADS)

    Ginting, B.; Sembiring, R. W.; Manurung, N.

    2017-09-01

    The concept of hard, dry and high speed machining can be combined, to produce high productivity, with lower production costs in manufacturing industry. Hard lathe process can be a solution to reduce production time. In lathe hard alloy steels reported problems relating to the integrity of such surface roughness, residual stress, the white layer and the surface integrity. AISI 4140 material is used for high reliable hydraulic system components. This material includes in cold work tool steel. Consideration election is because this material is able to be hardened up to 55 HRC. In this research, the experimental design using CCD model fit with three factors, each factor is composed of two levels, and six central point, experiments were conducted with 1 replications. The experimental design research using CCD model fit.

  12. Bio-hybrid integrated system for wide-spectrum solar energy harvesting

    DOE PAGES

    Martin, Kathleen; Erdman, Matthew; Quintana, Hope; ...

    2014-03-07

    An integrated hybrid photovoltaic-thermoelectric system has been developed using multiple layers of organic photosensitizers on inorganic semiconductors in order to efficiently convert UV-visible and IR energy into electricity. The hot anode of n-type ZnO nanowires was fabricated using a thermal process on pre-seeded layer and results to be crystalline with a transmittance up to 92 % and a bandgap of 3.32 eV. The visible-UV light-active organic layer was deposited between the anode and cathode at room temperature using a layer-by-layer deposition onto ITO and ZnO and Bi2Te3 nanowires from aqueous solution. The organic layer, a cooperative binary ionic (CBI) solidmore » is composed of oppositely charged porphyrin metal (Zn(II) and Sn(IV)(OH–)2) derivatives that are separately water soluble, but when combined form a virtually insoluble solid. The electron donor/acceptor properties (energy levels, band gaps) of the solid can be controlled by the choice of metals and the nature of the peripheral substituent groups of the porphyrin ring. The highly thermoelectric structure, which acts as a cold cathode, is composed of p-type Bi2Te3 nanowires with a thermoelectric efficiency (ZT) between ~0.7 to 1, values that are twice that expected for bulk Bi2Te3. Lastly, efficiency of the integrated device, was found to be 35 at 0.2 suns illumination and thermoelectric properties are enhanced by the charge transfer between the CBI and the Bi2Te3 is presented in terms of photo- and thermogenerated current and advantages of the low cost fabrication process is discussed.« less

  13. Advanced Artificial Intelligence Technology Testbed

    NASA Technical Reports Server (NTRS)

    Anken, Craig S.

    1993-01-01

    The Advanced Artificial Intelligence Technology Testbed (AAITT) is a laboratory testbed for the design, analysis, integration, evaluation, and exercising of large-scale, complex, software systems, composed of both knowledge-based and conventional components. The AAITT assists its users in the following ways: configuring various problem-solving application suites; observing and measuring the behavior of these applications and the interactions between their constituent modules; gathering and analyzing statistics about the occurrence of key events; and flexibly and quickly altering the interaction of modules within the applications for further study.

  14. Bacterial cell-free expression technology to in vitro systems engineering and optimization.

    PubMed

    Caschera, Filippo

    2017-06-01

    Cell-free expression system is a technology for the synthesis of proteins in vitro . The system is a platform for several bioengineering projects, e.g. cell-free metabolic engineering, evolutionary design of experiments, and synthetic minimal cell construction. Bacterial cell-free protein synthesis system (CFPS) is a robust tool for synthetic biology. The bacteria lysate, the DNA, and the energy module, which are the three optimized sub-systems for in vitro protein synthesis, compose the integrated system. Currently, an optimized E. coli cell-free expression system can produce up to ∼2.3 mg/mL of a fluorescent reporter protein. Herein, I will describe the features of ATP-regeneration systems for in vitro protein synthesis, and I will present a machine-learning experiment for optimizing the protein yield of E. coli cell-free protein synthesis systems. Moreover, I will introduce experiments on the synthesis of a minimal cell using liposomes as dynamic containers, and E. coli cell-free expression system as biochemical platform for metabolism and gene expression. CFPS can be further integrated with other technologies for novel applications in environmental, medical and material science.

  15. System-of-Systems Approach for Integrated Energy Systems Modeling and Simulation: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Saurabh; Ruth, Mark; Pratt, Annabelle

    Today’s electricity grid is the most complex system ever built—and the future grid is likely to be even more complex because it will incorporate distributed energy resources (DERs) such as wind, solar, and various other sources of generation and energy storage. The complexity is further augmented by the possible evolution to new retail market structures that provide incentives to owners of DERs to support the grid. To understand and test new retail market structures and technologies such as DERs, demand-response equipment, and energy management systems while providing reliable electricity to all customers, an Integrated Energy System Model (IESM) is beingmore » developed at NREL. The IESM is composed of a power flow simulator (GridLAB-D), home energy management systems implemented using GAMS/Pyomo, a market layer, and hardware-in-the-loop simulation (testing appliances such as HVAC, dishwasher, etc.). The IESM is a system-of-systems (SoS) simulator wherein the constituent systems are brought together in a virtual testbed. We will describe an SoS approach for developing a distributed simulation environment. We will elaborate on the methodology and the control mechanisms used in the co-simulation illustrated by a case study.« less

  16. How causal analysis can reveal autonomy in models of biological systems

    NASA Astrophysics Data System (ADS)

    Marshall, William; Kim, Hyunju; Walker, Sara I.; Tononi, Giulio; Albantakis, Larissa

    2017-11-01

    Standard techniques for studying biological systems largely focus on their dynamical or, more recently, their informational properties, usually taking either a reductionist or holistic perspective. Yet, studying only individual system elements or the dynamics of the system as a whole disregards the organizational structure of the system-whether there are subsets of elements with joint causes or effects, and whether the system is strongly integrated or composed of several loosely interacting components. Integrated information theory offers a theoretical framework to (1) investigate the compositional cause-effect structure of a system and to (2) identify causal borders of highly integrated elements comprising local maxima of intrinsic cause-effect power. Here we apply this comprehensive causal analysis to a Boolean network model of the fission yeast (Schizosaccharomyces pombe) cell cycle. We demonstrate that this biological model features a non-trivial causal architecture, whose discovery may provide insights about the real cell cycle that could not be gained from holistic or reductionist approaches. We also show how some specific properties of this underlying causal architecture relate to the biological notion of autonomy. Ultimately, we suggest that analysing the causal organization of a system, including key features like intrinsic control and stable causal borders, should prove relevant for distinguishing life from non-life, and thus could also illuminate the origin of life problem. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  17. Knowledge Integration to Make Decisions About Complex Systems: Sustainability of Energy Production from Agriculture

    ScienceCinema

    Danuso, Francesco

    2017-12-22

    A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed.  SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Jørgensen, 1994) in which systems are modelled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower  management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.

  18. An integrative view of microbiome-host interactions in inflammatory bowel diseases

    PubMed Central

    Wlodarska, Marta; Kostic, Aleksandar D.; Xavier, Ramnik J.

    2015-01-01

    Summary The intestinal microbiota, which is composed of bacteria, viruses, and micro-eukaryotes, acts as an accessory organ system with distinct functions along the intestinal tract that are critical for health. This review focuses on how the microbiota drives intestinal disease through alterations in microbial community architecture, disruption of the mucosal barrier, modulation of innate and adaptive immunity, and dysfunction of the enteric nervous system. Inflammatory bowel disease is used as a model system to understand these microbial-driven pathologies, but the knowledge gained in this space is extended to less well studied intestinal diseases that may also have an important microbial component, including environmental enteropathy and chronic colitis-associated colorectal cancer. PMID:25974300

  19. Potentials of Optical Damage Assessment Techniques in Automotive Crash-Concepts composed of FRP-Steel Hybrid Material Systems

    NASA Astrophysics Data System (ADS)

    Dlugosch, M.; Spiegelhalter, B.; Soot, T.; Lukaszewicz, D.; Fritsch, J.; Hiermaier, S.

    2017-05-01

    With car manufacturers simultaneously facing increasing passive safety and efficiency requirements, FRP-metal hybrid material systems are one way to design lightweight and crashworthy vehicle structures. Generic automotive hybrid structural concepts have been tested under crash loading conditions. In order to assess the state of overall damage and structural integrity, and primarily to validate simulation data, several NDT techniques have been assessed regarding their potential to detect common damage mechanisms in such hybrid systems. Significant potentials were found particularly in combining 3D-topography laser scanning and X-Ray imaging results. Ultrasonic testing proved to be limited by the signal coupling quality on damaged or curved surfaces.

  20. System identification methods for aircraft flight control development and validation

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1995-01-01

    System-identification methods compose a mathematical model, or series of models, from measurements of inputs and outputs of dynamic systems. The extracted models allow the characterization of the response of the overall aircraft or component subsystem behavior, such as actuators and on-board signal processing algorithms. This paper discusses the use of frequency-domain system-identification methods for the development and integration of aircraft flight-control systems. The extraction and analysis of models of varying complexity from nonparametric frequency-responses to transfer-functions and high-order state-space representations is illustrated using the Comprehensive Identification from FrEquency Responses (CIFER) system-identification facility. Results are presented for test data of numerous flight and simulation programs at the Ames Research Center including rotorcraft, fixed-wing aircraft, advanced short takeoff and vertical landing (ASTOVL), vertical/short takeoff and landing (V/STOL), tiltrotor aircraft, and rotor experiments in the wind tunnel. Excellent system characterization and dynamic response prediction is achieved for this wide class of systems. Examples illustrate the role of system-identification technology in providing an integrated flow of dynamic response data around the entire life-cycle of aircraft development from initial specifications, through simulation and bench testing, and into flight-test optimization.

  1. Architecture Design for the Space Situational Awareness System in the Preparedness Plan for Space Hazards of Republic of Korea

    NASA Astrophysics Data System (ADS)

    Choi, E.; Cho, S.; Shin, S.; Park, J.; Kim, J.; Kim, D.

    The threat posed by asteroids and comets has become one of the important issues. Jinju meteorite discovered in March 2014 has expanded the interest of the people of the fall of the natural space objects. Furthermore, the growing quantity of space debris is a serious threat to satellites and other spacecraft, which risk being damaged or even destroyed. In May of 2014, Korea established the preparedness plan for space hazards according to the space development promotion act which is amended to take action with respect to hazards from space. This plan is largely composed of 3 items such as system, technology and infrastructure. System is included the establishment and management of national space hazards headquarters at risk situation. Korea Astronomy and Space Science Institute (KASI) was designated as a space environment monitoring agency under the ministry of science, ICT and future planning (MSIP). Technology is supposed to develop the space situational awareness system that can monitor and detect space objects. For infrastructure, research and development of core technology will be promoted for capabilities improvement of space hazards preparedness such as software tools, application and data systems. This paper presents the architectural design for building space situational awareness system. The trade-off study of space situational awareness system for the Korea situation was performed. The results have shown the proposed architectural design. The baseline architecture is composed of Integrated Analysis System and Space Objects Monitoring System. Integrated Analysis System collects the status data from Space Objects Monitoring System and analyzes the space risk information through a data processing. For Space Objects Monitoring System, the all-sky surveillance camera, array radar and meteoroid surveillance sensor networks were considered. This system focuses on not only the threat of a large artificial satellite and natural space objects such as asteroids that crashed to Earth but also the prediction of potential collisions between space objects. Especially, array radar aims to accurately track space objects. By analyzing performance for radar system and sensor networks, several feasible approaches for such a space objects monitoring system will be presented in this paper.

  2. Managing Sustainable Data Infrastructures: The Gestalt of EOSDIS

    NASA Technical Reports Server (NTRS)

    Behnke, Jeanne; Lowe, Dawn; Lindsay, Francis; Lynnes, Chris; Mitchell, Andrew

    2016-01-01

    EOSDIS epitomizes a System of Systems, whose many varied and distributed parts are integrated into a single, highly functional organized science data system. A distributed architecture was adopted to ensure discipline-specific support for the science data, while also leveraging standards and establishing policies and tools to enable interdisciplinary research, and analysis across multiple scientific instruments. The EOSDIS is composed of system elements such as geographically distributed archive centers used to manage the stewardship of data. The infrastructure consists of underlying capabilities connections that enable the primary system elements to function together. For example, one key infrastructure component is the common metadata repository, which enables discovery of all data within the EOSDIS system. EOSDIS employs processes and standards to ensure partners can work together effectively, and provide coherent services to users.

  3. Design of a telemetry system based on wireless power transmission for physiological parameter monitoring

    NASA Astrophysics Data System (ADS)

    Jia, Zhiwei; Yan, Guozheng; Zhu, Bingquan

    2015-04-01

    An implanted telemetry system for experimental animals with or without anaesthesia can be used to continuously monitor physiological parameters. This system is significant not only in the study of organisms but also in the evaluation of drug efficacy, artificial organs, and auxiliary devices. The system is composed of a miniature electronic capsule, a wireless power transmission module, a data-recording device, and a processing module. An electrocardiograph, a temperature sensor, and a pressure sensor are integrated in the miniature electronic capsule, in which the signals are transmitted in vitro by wireless communication after filtering, amplification, and A/D sampling. To overcome the power shortage of batteries, a wireless power transmission module based on electromagnetic induction was designed. The transmitting coil of a rectangular-section solenoid and a 3D receiving coil are proposed according to stability and safety constraints. Experiments show that at least 150 mW of power could pick up on the load in a volume of Φ10.5 mm × 11 mm, with a transmission efficiency of 2.56%. Vivisection experiments verified the feasibility of the integrated radio-telemetry system.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qishi; Zhu, Mengxia; Rao, Nageswara S

    We propose an intelligent decision support system based on sensor and computer networks that incorporates various component techniques for sensor deployment, data routing, distributed computing, and information fusion. The integrated system is deployed in a distributed environment composed of both wireless sensor networks for data collection and wired computer networks for data processing in support of homeland security defense. We present the system framework and formulate the analytical problems and develop approximate or exact solutions for the subtasks: (i) sensor deployment strategy based on a two-dimensional genetic algorithm to achieve maximum coverage with cost constraints; (ii) data routing scheme tomore » achieve maximum signal strength with minimum path loss, high energy efficiency, and effective fault tolerance; (iii) network mapping method to assign computing modules to network nodes for high-performance distributed data processing; and (iv) binary decision fusion rule that derive threshold bounds to improve system hit rate and false alarm rate. These component solutions are implemented and evaluated through either experiments or simulations in various application scenarios. The extensive results demonstrate that these component solutions imbue the integrated system with the desirable and useful quality of intelligence in decision making.« less

  5. Exploring Manycore Multinode Systems for Irregular Applications with FPGA Prototyping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceriani, Marco; Palermo, Gianluca; Secchi, Simone

    We present a prototype of a multi-core architecture implemented on FPGA, designed to enable efficient execution of irregular applications on distributed shared memory machines, while maintaining high performance on regular workloads. The architecture is composed of off-the-shelf soft-core cores, local interconnection and memory interface, integrated with custom components that optimize it for irregular applications. It relies on three key elements: a global address space, multithreading, and fine-grained synchronization. Global addresses are scrambled to reduce the formation of network hot-spots, while the latency of the transactions is covered by integrating an hardware scheduler within the custom load/store buffers to take advantagemore » from the availability of multiple executions threads, increasing the efficiency in a transparent way to the application. We evaluated a dual node system irregular kernels showing scalability in the number of cores and threads.« less

  6. Controlling Magnetotactic Bacteria through an Integrated Nanofabricated Metallic Island and Optical Microscope Approach

    PubMed Central

    González, Lina M.; Ruder, Warren C.; Leduc, Philip R.; Messner, William C.

    2014-01-01

    Herein, we demonstrate the control of magnetotactic bacteria through the application of magnetic field gradients with real-time visualization. We accomplish this control by integrating a pair of macroscale Helmholtz coils and lithographically fabricated nanoscale islands composed of permalloy (Ni80Fe20). This system enabled us to guide and steer amphitrichous Magnetospirillum magneticum strain AMB-1 to specific location via magnetic islands. The geometries of the islands allowed us to have control over the specific magnetic field gradients on the bacteria. We estimate that magnetotactic bacteria located less than 1 μm from the edge of a diamond shaped island experience a maximum force of approximately 34 pN, which engages the bacteria without trapping them. Our system could be useful for a variety of applications including magnetic fabrication, self-assembly, and probing the sensing apparatus of magnetotactic bacteria. PMID:24553101

  7. PAMELA Space Mission: The Transition Radiation Detector

    NASA Astrophysics Data System (ADS)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; De Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2003-07-01

    PAMELA telescope is a satellite-b orne magnetic spectrometer built to fulfill the primary scientific objectives of detecting antiparticles (antiprotons and positrons) in the cosmic rays, and to measure spectra of particles in cosmic rays. The PAMELA telescope is currently under integration and is composed of: a silicon tracker housed in a permanent magnet, a time of flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD detector is composed of 9 sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD detector characteristics will be described along with its performance studied exposing the detector to particle beams of electrons, pions, muons and protons of different momenta at both CERN-PS and CERN-SPS facilities.

  8. Proposal for a telehealth concept in the translational research model.

    PubMed

    Silva, Angélica Baptista; Morel, Carlos Médicis; Moraes, Ilara Hämmerli Sozzi de

    2014-04-01

    To review the conceptual relationship between telehealth and translational research. Bibliographical search on telehealth was conducted in the Scopus, Cochrane BVS, LILACS and MEDLINE databases to find experiences of telehealth in conjunction with discussion of translational research in health. The search retrieved eight studies based on analysis of models of the five stages of translational research and the multiple strands of public health policy in the context of telehealth in Brazil. The models were applied to telehealth activities concerning the Network of Human Milk Banks, in the Telemedicine University Network. The translational research cycle of human milk collected, stored and distributed presents several integrated telehealth initiatives, such as video conferencing, and software and portals for synthesizing knowledge, composing elements of an information ecosystem, mediated by information and communication technologies in the health system. Telehealth should be composed of a set of activities in a computer mediated network promoting the translation of knowledge between research and health services.

  9. A low power on-chip class-E power amplifier for remotely powered implantable sensor systems

    NASA Astrophysics Data System (ADS)

    Ture, Kerim; Kilinc, Enver G.; Dehollain, Catherine

    2015-06-01

    This paper presents a low power fully integrated class-E power amplifier and its integration with remotely powered sensor system. The class-E power amplifier is suitable solution for low-power applications due to its high power efficiency. However, the required high inductance values which make the on-chip integration of the power amplifier difficult. The designed power amplifier is fully integrated in the remotely powered sensor system and fabricated in 0.18 μm CMOS process. The power is transferred to the implantable sensor system at 13.56 MHz by using an inductively coupled remote powering link. The induced AC voltage on the implant coil is converted into a DC voltage by a passive full-wave rectifier. A voltage regulator is used to suppress the ripples and create a clean and stable 1.8 V supply voltage for the sensor and communication blocks. The data collected from the sensors is transmitted by on-off keying modulated low-power transmitter at 1.2 GHz frequency. The transmitter is composed of a LC tank oscillator and a fully on-chip class-E power amplifier. An additional output network is used for the power amplifier which makes the integration of the power amplifier fully on-chip. The integrated power amplifier with 0.2 V supply voltage has a drain efficiency of 31.5% at -10 dBm output power for 50 Ω load. The measurement results verify the functionality of the power amplifier and the remotely powered implantable sensor system. The data communication is also verified by using a commercial 50 Ω chip antenna and has 600 kbps data rate at 1 m communication distance.

  10. Heterogeneously integrated III-V/silicon dual-mode distributed feedback laser array for terahertz generation.

    PubMed

    Shao, Haifeng; Keyvaninia, Shahram; Vanwolleghem, Mathias; Ducournau, Guillaume; Jiang, Xiaoqing; Morthier, Geert; Lampin, Jean-Francois; Roelkens, Gunther

    2014-11-15

    We demonstrate an integrated distributed feedback (DFB) laser array as a dual-wavelength source for narrowband terahertz (THz) generation. The laser array is composed of four heterogeneously integrated III-V-on-silicon DFB lasers with different lengths enabling dual-mode lasing tolerant to process variations, bias fluctuations, and ambient temperature variations. By optical heterodyning the two modes emitted by the dual-wavelength DFB laser in the laser array using a THz photomixer composed of an uni-traveling carrier photodiode (UTC-PD), a narrow and stable carrier signal with a frequency of 0.357 THz is generated. The central operating frequency and the emitted terahertz wave linewidth are analyzed, along with their dependency on the bias current applied to the laser diode and ambient temperature.

  11. Asymmetries in visual search for conjunctive targets.

    PubMed

    Cohen, A

    1993-08-01

    Asymmetry is demonstrated between conjunctive targets in visual search with no detectable asymmetries between the individual features that compose these targets. Experiment 1 demonstrated this phenomenon for targets composed of color and shape. Experiment 2 and 4 demonstrate this asymmetry for targets composed of size and orientation and for targets composed of contrast level and orientation, respectively. Experiment 3 demonstrates that search rate of individual features cannot predict search rate for conjunctive targets. These results demonstrate the need for 2 levels of representations: one of features and one of conjunction of features. A model related to the modified feature integration theory is proposed to account for these results. The proposed model and other models of visual search are discussed.

  12. Metropolitan Quantum Key Distribution with Silicon Photonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunandar, Darius; Lentine, Anthony; Lee, Catherine

    Photonic integrated circuits provide a compact and stable platform for quantum photonics. Here we demonstrate a silicon photonics quantum key distribution (QKD) encoder in the first high-speed polarization-based QKD field tests. The systems reach composable secret key rates of 1.039 Mbps in a local test (on a 103.6-m fiber with a total emulated loss of 9.2 dB) and 157 kbps in an intercity metropolitan test (on a 43-km fiber with 16.4 dB loss). Our results represent the highest secret key generation rate for polarization-based QKD experiments at a standard telecom wavelength and demonstrate photonic integrated circuits as a promising, scalablemore » resource for future formation of metropolitan quantum-secure communications networks.« less

  13. Metropolitan Quantum Key Distribution with Silicon Photonics

    DOE PAGES

    Bunandar, Darius; Lentine, Anthony; Lee, Catherine; ...

    2018-04-06

    Photonic integrated circuits provide a compact and stable platform for quantum photonics. Here we demonstrate a silicon photonics quantum key distribution (QKD) encoder in the first high-speed polarization-based QKD field tests. The systems reach composable secret key rates of 1.039 Mbps in a local test (on a 103.6-m fiber with a total emulated loss of 9.2 dB) and 157 kbps in an intercity metropolitan test (on a 43-km fiber with 16.4 dB loss). Our results represent the highest secret key generation rate for polarization-based QKD experiments at a standard telecom wavelength and demonstrate photonic integrated circuits as a promising, scalablemore » resource for future formation of metropolitan quantum-secure communications networks.« less

  14. Metropolitan Quantum Key Distribution with Silicon Photonics

    NASA Astrophysics Data System (ADS)

    Bunandar, Darius; Lentine, Anthony; Lee, Catherine; Cai, Hong; Long, Christopher M.; Boynton, Nicholas; Martinez, Nicholas; DeRose, Christopher; Chen, Changchen; Grein, Matthew; Trotter, Douglas; Starbuck, Andrew; Pomerene, Andrew; Hamilton, Scott; Wong, Franco N. C.; Camacho, Ryan; Davids, Paul; Urayama, Junji; Englund, Dirk

    2018-04-01

    Photonic integrated circuits provide a compact and stable platform for quantum photonics. Here we demonstrate a silicon photonics quantum key distribution (QKD) encoder in the first high-speed polarization-based QKD field tests. The systems reach composable secret key rates of 1.039 Mbps in a local test (on a 103.6-m fiber with a total emulated loss of 9.2 dB) and 157 kbps in an intercity metropolitan test (on a 43-km fiber with 16.4 dB loss). Our results represent the highest secret key generation rate for polarization-based QKD experiments at a standard telecom wavelength and demonstrate photonic integrated circuits as a promising, scalable resource for future formation of metropolitan quantum-secure communications networks.

  15. Mosquito larvicidal effectiveness of EcoBio-Block S: a novel integrated water-purifying concrete block formulation containing insect growth regulator pyriproxyfen.

    PubMed

    Kawada, Hitoshi; Saita, Susumu; Shimabukuro, Kozue; Hirano, Masachika; Koga, Masayuki; Iwashita, Toshiaki; Takagi, Masahiro

    2006-09-01

    EcoBio-Block S, a novel controlled release system (CRS) for the insect growth regulator pyriproxyfen, uses a water-purifying concrete block system (EcoBio-Block) composed of a porous volcanic rock and cement, and it incorporates the aerobic bacterial groups of Bacillus subtilis natto. EcoBio-Block S showed high inhibitory activity against mosquito emergence as well as a water-purifying effect. Chemical analysis and bioassay showed that EcoBio-Block S provides a high-performance CRS that controls the release of pyriproxyfen at low levels according to "zero order kinetics".

  16. Tight junction-based epithelial microenvironment and cell proliferation.

    PubMed

    Tsukita, S; Yamazaki, Y; Katsuno, T; Tamura, A; Tsukita, S

    2008-11-24

    Belt-like tight junctions (TJs), referred to as zonula occludens, have long been regarded as a specialized differentiation of epithelial cell membranes. They are required for cell adhesion and paracellular barrier functions, and are now thought to be partly involved in fence functions and in cell polarization. Recently, the molecular bases of TJs have gradually been unveiled. TJs are constructed by TJ strands, whose basic frameworks are composed of integral membrane proteins with four transmembrane domains, designated claudins. The claudin family is supposedly composed of at least 24 members in mice and humans. Other types of integral membrane proteins with four transmembrane domains, namely occludin and tricellulin, as well as the single transmembrane proteins, JAMs (junctional adhesion molecules) and CAR (coxsackie and adenovirus receptor), are associated with TJ strands, and the high-level organization of TJ strands is likely to be established by membrane-anchored scaffolding proteins, such as ZO-1/2. Recent functional analyses of claudins in cell cultures and in mice have suggested that claudin-based TJs may have pivotal functions in the regulation of the epithelial microenvironment, which is critical for various biological functions such as control of cell proliferation. These represent the dawn of 'Barriology' (defined by Shoichiro Tsukita as the science of barriers in multicellular organisms). Taken together with recent reports regarding changes in claudin expression levels, understanding the regulation of the TJ-based microenvironment system will provide new insights into the regulation of polarization in the respect of epithelial microenvironment system and new viewpoints for developing anticancer strategies.

  17. Data analysis and integration of environmental sensors to meet human needs

    NASA Astrophysics Data System (ADS)

    Santamaria, Amilcare Francesco; De Rango, Floriano; Barletta, Domenico; Falbo, Domenico; Imbrogno, Alessandro

    2014-05-01

    Nowadays one of the main task of technology is to make people's life simpler and easier. Ambient intelligence is an emerging discipline that brings intelligence to environments making them sensitive to us. This discipline has developed following the spread of sensors devices, sensor networks, pervasive computing and artificial intelligence. In this work, we attempt to enhance the Internet Of Things (loT) with intelligence and environments exploring various interactions between humans' beings and the environment they live in. In particular, the core of the system is composed of an automation system, which is made up with a domotic control unit and several sensors installed in the environment. The task of the sensors is to collect information from the environment and to send them to the control unit. Once the information is collected, the core combines them in order to infer the most accurate human needs. The knowledge of human needs and the current environment status compose the inputs of the intelligence block whose main goal is to find the right automations to satisfy human needs in a real time way. The system also provides a Speech Recognition service which allow users to interact with the system by their voice so human speech can be considered as additional input for smart automatisms.

  18. Research on networked manufacturing system for reciprocating pump industry

    NASA Astrophysics Data System (ADS)

    Wu, Yangdong; Qi, Guoning; Xie, Qingsheng; Lu, Yujun

    2005-12-01

    Networked manufacturing is a trend of reciprocating pump industry. According to the enterprises' requirement, the architecture of networked manufacturing system for reciprocating pump industry was proposed, which composed of infrastructure layer, system management layer, application service layer and user layer. Its main functions included product data management, ASP service, business management, and customer relationship management, its physics framework was a multi-tier internet-based model; the concept of ASP service integration was put forward and its process model was also established. As a result, a networked manufacturing system aimed at the characteristics of reciprocating pump industry was built. By implementing this system, reciprocating pump industry can obtain a new way to fully utilize their own resources and enhance the capabilities to respond to the global market quickly.

  19. Propulsion System with Pneumatic Artificial Muscles for Powering Ankle-Foot Orthosis

    NASA Astrophysics Data System (ADS)

    Veneva, Ivanka; Vanderborght, Bram; Lefeber, Dirk; Cherelle, Pierre

    2013-12-01

    The aim of this paper is to present the design of device for control of new propulsion system with pneumatic artificial muscles. The propulsion system can be used for ankle joint articulation, for assisting and rehabilitation in cases of injured ankle-foot complex, stroke patients or elderly with functional weakness. Proposed device for control is composed by microcontroller, generator for muscles contractions and sensor system. The microcontroller receives the control signals from sensors and modulates ankle joint flex- ion and extension during human motion. The local joint control with a PID (Proportional-Integral Derivative) position feedback directly calculates desired pressure levels and dictates the necessary contractions. The main goal is to achieve an adaptation of the system and provide the necessary joint torque using position control with feedback.

  20. ABLE project: Development of an advanced lead-acid storage system for autonomous PV installations

    NASA Astrophysics Data System (ADS)

    Lemaire-Potteau, Elisabeth; Vallvé, Xavier; Pavlov, Detchko; Papazov, G.; Borg, Nico Van der; Sarrau, Jean-François

    In the advanced battery for low-cost renewable energy (ABLE) project, the partners have developed an advanced storage system for small and medium-size PV systems. It is composed of an innovative valve-regulated lead-acid (VRLA) battery, optimised for reliability and manufacturing cost, and an integrated regulator, for optimal battery management and anti-fraudulent use. The ABLE battery performances are comparable to flooded tubular batteries, which are the reference in medium-size PV systems. The ABLE regulator has several innovative features regarding energy management and modular series/parallel association. The storage system has been validated by indoor, outdoor and field tests, and it is expected that this concept could be a major improvement for large-scale implementation of PV within the framework of national rural electrification schemes.

  1. [Current state and the future of medical technologist as a specialist Japanese Association of Medical Technologists].

    PubMed

    Nagasako, Tetsuro; Kawashima, Tohru; Takada, Tetsuya

    2012-06-01

    The recognition mechanism is composed of seven groups that conduct qualifying examinations within each region. The average pass rate in three qualifying examination areas conducted by JAMT is 77.2%. It is necessary to integrate similar qualifying examinations in the future and the new "Integrated management technologist system" has a key role from the aspect of personnel training. Requirements for the integrated management inspection technologist are as follows: 1) Person who obtains many positive evaluations; 2) Excellent personality; 3) Person with a sense of justice; 4) Person with resolution-making abilities and decision; 5) Person who can see the heart of an issue; 6) Person who has the potential to become a leader; 7) Person with crisis-management ability. Also, selected personnel are expected to become leaders not only in their field of expertise but also within their hospital and JAMT management.

  2. Management of CAD/CAM information: Key to improved manufacturing productivity

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.; Brainin, J.

    1984-01-01

    A key element to improved industry productivity is effective management of CAD/CAM information. To stimulate advancements in this area, a joint NASA/Navy/Industry project designated Integrated Programs for Aerospace-Vehicle Design (IPAD) is underway with the goal of raising aerospace industry productivity through advancement of technology to integrate and manage information involved in the design and manufacturing process. The project complements traditional NASA/DOD research to develop aerospace design technology and the Air Force's Integrated Computer-Aided Manufacturing (ICAM) program to advance CAM technology. IPAD research is guided by an Industry Technical Advisory Board (ITAB) composed of over 100 repesentatives from aerospace and computer companies. The IPAD accomplishments to date in development of requirements and prototype software for various levels of company-wide CAD/CAM data management are summarized and plans for development of technology for management of distributed CAD/CAM data and information required to control future knowledge-based CAD/CAM systems are discussed.

  3. Improving Human/Autonomous System Teaming Through Linguistic Analysis

    NASA Technical Reports Server (NTRS)

    Meszaros, Erica L.

    2016-01-01

    An area of increasing interest for the next generation of aircraft is autonomy and the integration of increasingly autonomous systems into the national airspace. Such integration requires humans to work closely with autonomous systems, forming human and autonomous agent teams. The intention behind such teaming is that a team composed of both humans and autonomous agents will operate better than homogenous teams. Procedures exist for licensing pilots to operate in the national airspace system and current work is being done to define methods for validating the function of autonomous systems, however there is no method in place for assessing the interaction of these two disparate systems. Moreover, currently these systems are operated primarily by subject matter experts, limiting their use and the benefits of such teams. Providing additional information about the ongoing mission to the operator can lead to increased usability and allow for operation by non-experts. Linguistic analysis of the context of verbal communication provides insight into the intended meaning of commonly heard phrases such as "What's it doing now?" Analyzing the semantic sphere surrounding these common phrases enables the prediction of the operator's intent and allows the interface to supply the operator's desired information.

  4. Assessment on the influence of resistive superconducting fault current limiter in VSC-HVDC system

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Geon; Khan, Umer Amir; Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Park, Byung-Bae; Lee, Bang-Wook

    2014-09-01

    Due to fewer risk of commutation failures, harmonic occurrences and reactive power consumptions, Voltage Source Converter (VSC) based HVDC system is known as the optimum solution of HVDC power system for the future power grid. However, the absence of suitable fault protection devices for HVDC system hinders the efficient VSC-HVDC power grid design. In order to enhance the reliability of the VSC-HVDC power grid against the fault current problems, the application of resistive Superconducting Fault Current Limiters (SFCLs) could be considered. Also, SFCLs could be applied to the VSC-HVDC system with integrated AC Power Systems in order to enhance the transient response and the robustness of the system. In this paper, in order to evaluate the role of SFCLs in VSC-HVDC systems and to determine the suitable position of SFCLs in VSC-HVDC power systems integrated with AC power System, a simulation model based on Korea Jeju-Haenam HVDC power system was designed in Matlab Simulink/SimPowerSystems. This designed model was composed of VSC-HVDC system connected with an AC microgrid. Utilizing the designed VSC-HVDC systems, the feasible locations of resistive SFCLs were evaluated when DC line-to-line, DC line-to-ground and three phase AC faults were occurred. Consequently, it was found that the simulation model was effective to evaluate the positive effects of resistive SFCLs for the effective suppression of fault currents in VSC-HVDC systems as well as in integrated AC Systems. Finally, the optimum locations of SFCLs in VSC-HVDC transmission systems were suggested based on the simulation results.

  5. NCC: A Multidisciplinary Design/Analysis Tool for Combustion Systems

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Quealy, Angela

    1999-01-01

    A multi-disciplinary design/analysis tool for combustion systems is critical for optimizing the low-emission, high-performance combustor design process. Based on discussions between NASA Lewis Research Center and the jet engine companies, an industry-government team was formed in early 1995 to develop the National Combustion Code (NCC), which is an integrated system of computer codes for the design and analysis of combustion systems. NCC has advanced features that address the need to meet designer's requirements such as "assured accuracy", "fast turnaround", and "acceptable cost". The NCC development team is comprised of Allison Engine Company (Allison), CFD Research Corporation (CFDRC), GE Aircraft Engines (GEAE), NASA Lewis Research Center (LeRC), and Pratt & Whitney (P&W). This development team operates under the guidance of the NCC steering committee. The "unstructured mesh" capability and "parallel computing" are fundamental features of NCC from its inception. The NCC system is composed of a set of "elements" which includes grid generator, main flow solver, turbulence module, turbulence and chemistry interaction module, chemistry module, spray module, radiation heat transfer module, data visualization module, and a post-processor for evaluating engine performance parameters. Each element may have contributions from several team members. Such a multi-source multi-element system needs to be integrated in a way that facilitates inter-module data communication, flexibility in module selection, and ease of integration.

  6. Wearable Fall Detector using Integrated Sensors and Energy Devices

    PubMed Central

    Jung, Sungmook; Hong, Seungki; Kim, Jaemin; Lee, Sangkyu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2015-01-01

    Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction with integrated sensors, controllers, and wireless units. A stretchable conductive nylon is used as electrodes of the triboelectric generator and the interconnection between battery cells. Ethoxylated polyethylenimine, coated on the surface of the conductive nylon electrode, tunes the work function of a triboelectric generator and maximizes its performance. The electrical energy harvested from the triboelectric generator through human body motions continuously recharges the stretchable battery and prolongs hours of its use. The integrated energy supply system runs the 3-axis accelerometer and related electronics that record human body motions and send the data wirelessly. Upon the unexpected fall occurring, a custom-made software discriminates the fall signal and an emergency alert is immediately sent to an external mobile device. This wearable fall detection system would provide new opportunities in the mobile electronics and wearable healthcare. PMID:26597423

  7. Building an Open Source Framework for Integrated Catchment Modeling

    NASA Astrophysics Data System (ADS)

    Jagers, B.; Meijers, E.; Villars, M.

    2015-12-01

    In order to develop effective strategies and associated policies for environmental management, we need to understand the dynamics of the natural system as a whole and the human role therein. This understanding is gained by comparing our mental model of the world with observations from the field. However, to properly understand the system we should look at dynamics of water, sediments, water quality, and ecology throughout the whole system from catchment to coast both at the surface and in the subsurface. Numerical models are indispensable in helping us understand the interactions of the overall system, but we need to be able to update and adjust them to improve our understanding and test our hypotheses. To support researchers around the world with this challenging task we started a few years ago with the development of a new open source modeling environment DeltaShell that integrates distributed hydrological models with 1D, 2D, and 3D hydraulic models including generic components for the tracking of sediment, water quality, and ecological quantities throughout the hydrological cycle composed of the aforementioned components. The open source approach combined with a modular approach based on open standards, which allow for easy adjustment and expansion as demands and knowledge grow, provides an ideal starting point for addressing challenging integrated environmental questions.

  8. An Intrusion Detection System for the Protection of Railway Assets Using Fiber Bragg Grating Sensors

    PubMed Central

    Catalano, Angelo; Bruno, Francesco Antonio; Pisco, Marco; Cutolo, Antonello; Cusano, Andrea

    2014-01-01

    We demonstrate the ability of Fiber Bragg Gratings (FBGs) sensors to protect large areas from unauthorized activities in railway scenarios such as stations or tunnels. We report on the technological strategy adopted to protect a specific depot, representative of a common scenario for security applications in the railway environment. One of the concerns in the protection of a railway area centers on the presence of rail-tracks, which cannot be obstructed with physical barriers. We propose an integrated optical fiber system composed of FBG strain sensors that can detect human intrusion for protection of the perimeter combined with FBG accelerometer sensors for protection of rail-track access. Several trials were carried out in indoor and outdoor environments. The results demonstrate that FBG strain sensors bonded under a ribbed rubber mat enable the detection of intruder break-in via the pressure induced on the mat, whereas the FBG accelerometers installed under the rails enable the detection of intruders walking close to the railroad tracks via the acoustic surface waves generated by footsteps. Based on a single enabling technology, this integrated system represents a valuable intrusion detection system for railway security and could be integrated with other sensing functionalities in the railway field using fiber optic technology. PMID:25268920

  9. The CALIPSO Integrated Thermal Control Subsystem

    NASA Technical Reports Server (NTRS)

    Gasbarre, Joseph F.; Ousley, Wes; Valentini, Marc; Thomas, Jason; Dejoie, Joel

    2007-01-01

    The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is a joint NASA-CNES mission to study the Earth's cloud and aerosol layers. The satellite is composed of a primary payload (built by Ball Aerospace) and a spacecraft platform bus (PROTEUS, built by Alcatel Alenia Space). The thermal control subsystem (TCS) for the CALIPSO satellite is a passive design utilizing radiators, multi-layer insulation (MLI) blankets, and both operational and survival surface heaters. The most temperature sensitive component within the satellite is the laser system. During thermal vacuum testing of the integrated satellite, the laser system's operational heaters were found to be inadequate in maintaining the lasers required set point. In response, a solution utilizing the laser system's survival heaters to augment the operational heaters was developed with collaboration between NASA, CNES, Ball Aerospace, and Alcatel-Alenia. The CALIPSO satellite launched from Vandenberg Air Force Base in California on April 26th, 2006. Evaluation of both the platform and payload thermal control systems show they are performing as expected and maintaining the critical elements of the satellite within acceptable limits.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Zhiwei, E-mail: jiayege@hotmail.com; Yan, Guozheng; Zhu, Bingquan

    An implanted telemetry system for experimental animals with or without anaesthesia can be used to continuously monitor physiological parameters. This system is significant not only in the study of organisms but also in the evaluation of drug efficacy, artificial organs, and auxiliary devices. The system is composed of a miniature electronic capsule, a wireless power transmission module, a data-recording device, and a processing module. An electrocardiograph, a temperature sensor, and a pressure sensor are integrated in the miniature electronic capsule, in which the signals are transmitted in vitro by wireless communication after filtering, amplification, and A/D sampling. To overcome themore » power shortage of batteries, a wireless power transmission module based on electromagnetic induction was designed. The transmitting coil of a rectangular-section solenoid and a 3D receiving coil are proposed according to stability and safety constraints. Experiments show that at least 150 mW of power could pick up on the load in a volume of Φ10.5 mm × 11 mm, with a transmission efficiency of 2.56%. Vivisection experiments verified the feasibility of the integrated radio-telemetry system.« less

  11. A Smart Sensor Web for Ocean Observation: Integrated Acoustics, Satellite Networking, and Predictive Modeling

    NASA Astrophysics Data System (ADS)

    Arabshahi, P.; Chao, Y.; Chien, S.; Gray, A.; Howe, B. M.; Roy, S.

    2008-12-01

    In many areas of Earth science, including climate change research, there is a need for near real-time integration of data from heterogeneous and spatially distributed sensors, in particular in-situ and space- based sensors. The data integration, as provided by a smart sensor web, enables numerous improvements, namely, 1) adaptive sampling for more efficient use of expensive space-based sensing assets, 2) higher fidelity information gathering from data sources through integration of complementary data sets, and 3) improved sensor calibration. The specific purpose of the smart sensor web development presented here is to provide for adaptive sampling and calibration of space-based data via in-situ data. Our ocean-observing smart sensor web presented herein is composed of both mobile and fixed underwater in-situ ocean sensing assets and Earth Observing System (EOS) satellite sensors providing larger-scale sensing. An acoustic communications network forms a critical link in the web between the in-situ and space-based sensors and facilitates adaptive sampling and calibration. After an overview of primary design challenges, we report on the development of various elements of the smart sensor web. These include (a) a cable-connected mooring system with a profiler under real-time control with inductive battery charging; (b) a glider with integrated acoustic communications and broadband receiving capability; (c) satellite sensor elements; (d) an integrated acoustic navigation and communication network; and (e) a predictive model via the Regional Ocean Modeling System (ROMS). Results from field experiments, including an upcoming one in Monterey Bay (October 2008) using live data from NASA's EO-1 mission in a semi closed-loop system, together with ocean models from ROMS, are described. Plans for future adaptive sampling demonstrations using the smart sensor web are also presented.

  12. Design of a device for simultaneous particle size and electrostatic charge measurement of inhalation drugs.

    PubMed

    Zhu, Kewu; Ng, Wai Kiong; Shen, Shoucang; Tan, Reginald B H; Heng, Paul W S

    2008-11-01

    To develop a device for simultaneous measurement of particle aerodynamic diameter and electrostatic charge of inhalation aerosols. An integrated system consisting of an add-on charge measurement device and a liquid impinger was developed to simultaneously determine particle aerodynamic diameter and electrostatic charge. The accuracy in charge measurement and fine particle fraction characterization of the new system was evaluated. The integrated system was then applied to analyze the electrostatic charges of a DPI formulation composed of salbutamol sulphate-Inhalac 230 dispersed using a Rotahaler. The charge measurement accuracy was comparable with the Faraday cage method, and incorporation of the charge measurement module had no effect on the performance of the liquid impinger. Salbutamol sulphate carried negative charges while the net charge of Inhalac 230 and un-dispersed salbutamol sulphate was found to be positive after being aerosolized from the inhaler. The instantaneous current signal was strong with small noise to signal ratio, and good reproducibility of charge to mass ratio was obtained for the DPI system investigated. A system for simultaneously measuring particle aerodynamic diameter and aerosol electrostatic charges has been developed, and the system provides a non-intrusive and reliable electrostatic charge characterization method for inhalation dosage forms.

  13. Integration of alternative feedstreams for biomass treatment and utilization

    DOEpatents

    Hennessey, Susan Marie [Avondale, PA; Friend, Julie [Claymont, DE; Dunson, Jr., James B.; Tucker, III, Melvin P.; Elander, Richard T [Evergreen, CO; Hames, Bonnie [Westminster, CO

    2011-03-22

    The present invention provides a method for treating biomass composed of integrated feedstocks to produce fermentable sugars. One aspect of the methods described herein includes a pretreatment step wherein biomass is integrated with an alternative feedstream and the resulting integrated feedstock, at relatively high concentrations, is treated with a low concentration of ammonia relative to the dry weight of biomass. In another aspect, a high solids concentration of pretreated biomass is integrated with an alternative feedstream for saccharifiaction.

  14. The Design Process of Physical Security as Applied to a U.S. Border Point of Entry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, G.G.

    1998-10-26

    This paper describes the design process of physical security as applied to a U.S. Border Port of Entry (PoE). Included in this paper are descriptions of the elements that compose U.S. border security. The physical security design will describe the various elements that make up the process as well as the considerations that must be taken into account when dealing with system integration of those elements. The distinctions between preventing unlawful entry and exit of illegal contraband will be emphasized.

  15. Proposed Schematics for an Advanced Development Lunar Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Conger, Bruce; Chullen, Cinda; Barnes, Bruce; Leavitt, Greg

    2010-01-01

    The latest development of the NASA space suit is an integrated assembly made up of primarily a Pressure Garment System (PGS) and a Portable Life Support System (PLSS). The PLSS is further composed of an oxygen (O2) subsystem, a ventilation subsystem, and a thermal subsystem. This paper baselines a detailed schematic of the PLSS to provide a basis for current and future PLSS development efforts. Both context diagrams and detailed schematics describe the hardware components and overall functions for all three of the PLSS subsystems. The various modes of operations for the PLSS are also presented. A comparison of the proposed PLSS to the Apollo and Shuttle PLSS designs is presented, highlighting several anticipated improvements over the historical PLSS architectures.

  16. Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner

    NASA Astrophysics Data System (ADS)

    Liang, Shanshan; Saidi, Arya; Jing, Joe; Liu, Gangjun; Li, Jiawen; Zhang, Jun; Sun, Changsen; Narula, Jagat; Chen, Zhongping

    2012-07-01

    We developed a multimodality fluorescence and optical coherence tomography probe based on a double-clad fiber (DCF) combiner. The probe is composed of a DCF combiner, grin lens, and micromotor in the distal end. An integrated swept-source optical coherence tomography and fluorescence intensity imaging system was developed based on the combined probe for the early diagnoses of atherosclerosis. This system is capable of real-time data acquisition and processing as well as image display. For fluorescence imaging, the inflammation of atherosclerosis and necrotic core formed with the annexin V-conjugated Cy5.5 were imaged. Ex vivo imaging of New Zealand white rabbit arteries demonstrated the capability of the combined system.

  17. Smart Coat with a Fully-Embedded Textile Antenna for IoT Applications.

    PubMed

    Loss, Caroline; Gonçalves, Ricardo; Lopes, Catarina; Pinho, Pedro; Salvado, Rita

    2016-06-22

    The Internet of Things (IoT) scenario is strongly related with the advance of the development of wireless sensor networks (WSN) and radio frequency identification (RFID) systems. Additionally, in the WSN context, for a continuous feed, the integration of textile antennas for energy harvesting into smart clothing is a particularly interesting solution when the replacement of batteries is not easy to practice, such as in wearable devices. This paper presents the E-Caption: Smart and Sustainable Coat. It has an embedded dual-band textile antenna for electromagnetic energy harvesting, operating at global system for mobile communication (GSM) 900 and digital cellular system (DCS) 1800 bands. This printed antenna is fully integrated, as its dielectric is the textile material composing the coat itself. The E-Caption illustrates the innovative concept of textile antennas that can be manipulated as simple emblems. Seven prototypes of these "emblem" antennas, manufactured by lamination and embroidering techniques are also presented. It is shown that the orientation of the conductive fabric does not influence the performance of the antenna. It is also shown that the direction and number of the stitches in the embroidery may influence the performance of the antenna. Moreover, the comparison of results obtained before and after the integration of the antenna into cloth shows the integration does not affect the behavior of the antenna.

  18. Smart Coat with a Fully-Embedded Textile Antenna for IoT Applications

    PubMed Central

    Loss, Caroline; Gonçalves, Ricardo; Lopes, Catarina; Pinho, Pedro; Salvado, Rita

    2016-01-01

    The Internet of Things (IoT) scenario is strongly related with the advance of the development of wireless sensor networks (WSN) and radio frequency identification (RFID) systems. Additionally, in the WSN context, for a continuous feed, the integration of textile antennas for energy harvesting into smart clothing is a particularly interesting solution when the replacement of batteries is not easy to practice, such as in wearable devices. This paper presents the E-Caption: Smart and Sustainable Coat. It has an embedded dual-band textile antenna for electromagnetic energy harvesting, operating at global system for mobile communication (GSM) 900 and digital cellular system (DCS) 1800 bands. This printed antenna is fully integrated, as its dielectric is the textile material composing the coat itself. The E-Caption illustrates the innovative concept of textile antennas that can be manipulated as simple emblems. Seven prototypes of these “emblem” antennas, manufactured by lamination and embroidering techniques are also presented. It is shown that the orientation of the conductive fabric does not influence the performance of the antenna. It is also shown that the direction and number of the stitches in the embroidery may influence the performance of the antenna. Moreover, the comparison of results obtained before and after the integration of the antenna into cloth shows the integration does not affect the behavior of the antenna. PMID:27338407

  19. The Developmental Process of Vowel Integration as Found in Children in Grades 1-3.

    ERIC Educational Resources Information Center

    Bentz, Darrell; Szymczuk, Mike

    A study was designed to investigate the auditory-visual integrative abilities of primary grade children for five long vowels and five short vowels. The Vowel Integration Test (VIT), composed of 35 nonsense words having all the long and short vowel sounds, was administered to students in 64 schools over a period of two years. Students' indications…

  20. First Operational Experience With a High-Energy Physics Run Control System Based on Web Technologies

    NASA Astrophysics Data System (ADS)

    Bauer, Gerry; Beccati, Barbara; Behrens, Ulf; Biery, Kurt; Branson, James; Bukowiec, Sebastian; Cano, Eric; Cheung, Harry; Ciganek, Marek; Cittolin, Sergio; Coarasa Perez, Jose Antonio; Deldicque, Christian; Erhan, Samim; Gigi, Dominique; Glege, Frank; Gomez-Reino, Robert; Gulmini, Michele; Hatton, Derek; Hwong, Yi Ling; Loizides, Constantin; Ma, Frank; Masetti, Lorenzo; Meijers, Frans; Meschi, Emilio; Meyer, Andreas; Mommsen, Remigius K.; Moser, Roland; O'Dell, Vivian; Oh, Alexander; Orsini, Luciano; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Racz, Attila; Raginel, Olivier; Sakulin, Hannes; Sani, Matteo; Schieferdecker, Philipp; Schwick, Christoph; Shpakov, Dennis; Simon, Michal; Sumorok, Konstanty; Yoon, Andre Sungho

    2012-08-01

    Run control systems of modern high-energy particle physics experiments have requirements similar to those of today's Internet applications. The Compact Muon Solenoid (CMS) collaboration at CERN's Large Hadron Collider (LHC) therefore decided to build the run control system for its detector based on web technologies. The system is composed of Java Web Applications distributed over a set of Apache Tomcat servlet containers that connect to a database back-end. Users interact with the system through a web browser. The present paper reports on the successful scaling of the system from a small test setup to the production data acquisition system that comprises around 10.000 applications running on a cluster of about 1600 hosts. We report on operational aspects during the first phase of operation with colliding beams including performance, stability, integration with the CMS Detector Control System and tools to guide the operator.

  1. The Dynamic Aviation Data System (DADS).

    PubMed

    Soman, S; Strome, T; Francescutti, L H

    1997-08-01

    This paper proposes The Dynamic Aviation Data System (DADS), which integrates a variety of existing information sources regarding flight to serve as a tool to pilots in dealing with the challenges of flight. The system is composed of three main parts: a pilot's history on disk; a system that can read proposed flight plans and make suggestions based upon Geographical Information Systems, weather, aircraft, and case report databases that exist throughout North America; and a small hand-held computer that interfaces with the aircraft's instruments and that can be brought into the cockpit to aid the pilot before and during flight. The system is based upon technology that currently exists and information that is already regularly collected. While many issues regarding implementation and cost efficiency of the system need to be addressed, the system shows promise in its ability to make useful flight safety information available to all pilots in order to save lives.

  2. GITEWS, an extensible and open integration platform for manifold sensor systems and processing components based on Sensor Web Enablement and the principles of Service Oriented Architectures

    NASA Astrophysics Data System (ADS)

    Haener, Rainer; Waechter, Joachim; Fleischer, Jens; Herrnkind, Stefan; Schwarting, Herrmann

    2010-05-01

    The German Indonesian Tsunami Early Warning System (GITEWS) is a multifaceted system consisting of various sensor types like seismometers, sea level sensors or GPS stations, and processing components, all with their own system behavior and proprietary data structure. To operate a warning chain, beginning from measurements scaling up to warning products, all components have to interact in a correct way, both syntactically and semantically. Designing the system great emphasis was laid on conformity to the Sensor Web Enablement (SWE) specification by the Open Geospatial Consortium (OGC). The technical infrastructure, the so called Tsunami Service Bus (TSB) follows the blueprint of Service Oriented Architectures (SOA). The TSB is an integration concept (SWE) where functionality (observe, task, notify, alert, and process) is grouped around business processes (Monitoring, Decision Support, Sensor Management) and packaged as interoperable services (SAS, SOS, SPS, WNS). The benefits of using a flexible architecture together with SWE lead to an open integration platform: • accessing and controlling heterogeneous sensors in a uniform way (Functional Integration) • assigns functionality to distinct services (Separation of Concerns) • allows resilient relationship between systems (Loose Coupling) • integrates services so that they can be accessed from everywhere (Location Transparency) • enables infrastructures which integrate heterogeneous applications (Encapsulation) • allows combination of services (Orchestration) and data exchange within business processes Warning systems will evolve over time: New sensor types might be added, old sensors will be replaced and processing components will be improved. From a collection of few basic services it shall be possible to compose more complex functionality essential for specific warning systems. Given these requirements a flexible infrastructure is a prerequisite for sustainable systems and their architecture must be tailored for evolution. The use of well-known techniques and widely used open source software implementing industrial standards reduces the impact of service modifications allowing the evolution of a system as a whole. GITEWS implemented a solution to feed sensor raw data from any (remote) system into the infrastructure. Specific dispatchers enable plugging in sensor-type specific processing without changing the architecture. Client components don't need to be adjusted if new sensor-types or individuals are added to the system, because they access them via standardized services. One of the outstanding features of service-oriented architectures is the possibility to compose new services from existing ones. The so called orchestration, allows the definition of new warning processes which can be adapted easily to new requirements. This approach has following advantages: • With implementing SWE it is possible to establish the "detection" and integration of sensors via the internet. Thus a system of systems combining early warning functionality at different levels of detail is feasible. • Any institution could add both its own components as well as components from third parties if they are developed in conformance to SOA principles. In a federation an institution keeps the ownership of its data and decides which data are provided by a service and when. • A system can be deployed at minor costs as a core for own development at any institution and thus enabling autonomous early warning- or monitoring systems. The presentation covers both design and various instantiations (live demonstration) of the GITEWS architecture. Experiences concerning the design and complexity of SWE will be addressed in detail. A substantial amount of attention is laid on the techniques and methods of extending the architecture, adapting proprietary components to SWE services and encoding, and their orchestration in high level workflows and processes. Furthermore the potential of the architecture concerning adaptive behavior, collaboration across boundaries and semantic interoperability will be addressed.

  3. Importance of biometrics to addressing vulnerabilities of the U.S. infrastructure

    NASA Astrophysics Data System (ADS)

    Arndt, Craig M.; Hall, Nathaniel A.

    2004-08-01

    Human identification technologies are important threat countermeasures in minimizing select infrastructure vulnerabilities. Properly targeted countermeasures should be selected and integrated into an overall security solution based on disciplined analysis and modeling. Available data on infrastructure value, threat intelligence, and system vulnerabilities are carefully organized, analyzed and modeled. Prior to design and deployment of an effective countermeasure; the proper role and appropriateness of technology in addressing the overall set of vulnerabilities is established. Deployment of biometrics systems, as with other countermeasures, introduces potentially heightened vulnerabilities into the system. Heightened vulnerabilities may arise from both the newly introduced system complexities and an unfocused understanding of the set of vulnerabilities impacted by the new countermeasure. The countermeasure's own inherent vulnerabilities and those introduced by the system's integration with the existing system are analyzed and modeled to determine the overall vulnerability impact. The United States infrastructure is composed of government and private assets. The infrastructure is valued by their potential impact on several components: human physical safety, physical/information replacement/repair cost, potential contribution to future loss (criticality in weapons production), direct productivity output, national macro-economic output/productivity, and information integrity. These components must be considered in determining the overall impact of an infrastructure security breach. Cost/benefit analysis is then incorporated in the security technology deployment decision process. Overall security risks based on system vulnerabilities and threat intelligence determines areas of potential benefit. Biometric countermeasures are often considered when additional security at intended points of entry would minimize vulnerabilities.

  4. Quantum Accelerators for High-performance Computing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S.; Britt, Keith A.; Mohiyaddin, Fahd A.

    We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantum-accelerator framework that uses specialized kernels to offload select workloads while integrating with existing computing infrastructure. We elaborate on the role of the host operating system to manage these unique accelerator resources, themore » prospects for deploying quantum modules, and the requirements placed on the language hierarchy connecting these different system components. We draw on recent advances in the modeling and simulation of quantum computing systems with the development of architectures for hybrid high-performance computing systems and the realization of software stacks for controlling quantum devices. Finally, we present simulation results that describe the expected system-level behavior of high-performance computing systems composed from compute nodes with quantum processing units. We describe performance for these hybrid systems in terms of time-to-solution, accuracy, and energy consumption, and we use simple application examples to estimate the performance advantage of quantum acceleration.« less

  5. Accuracy Improvement of Neutron Nuclear Data on Minor Actinides

    NASA Astrophysics Data System (ADS)

    Harada, Hideo; Iwamoto, Osamu; Iwamoto, Nobuyuki; Kimura, Atsushi; Terada, Kazushi; Nakao, Taro; Nakamura, Shoji; Mizuyama, Kazuhito; Igashira, Masayuki; Katabuchi, Tatsuya; Sano, Tadafumi; Takahashi, Yoshiyuki; Takamiya, Koichi; Pyeon, Cheol Ho; Fukutani, Satoshi; Fujii, Toshiyuki; Hori, Jun-ichi; Yagi, Takahiro; Yashima, Hiroshi

    2015-05-01

    Improvement of accuracy of neutron nuclear data for minor actinides (MAs) and long-lived fission products (LLFPs) is required for developing innovative nuclear system transmuting these nuclei. In order to meet the requirement, the project entitled as "Research and development for Accuracy Improvement of neutron nuclear data on Minor ACtinides (AIMAC)" has been started as one of the "Innovative Nuclear Research and Development Program" in Japan at October 2013. The AIMAC project team is composed of researchers in four different fields: differential nuclear data measurement, integral nuclear data measurement, nuclear chemistry, and nuclear data evaluation. By integrating all of the forefront knowledge and techniques in these fields, the team aims at improving the accuracy of the data. The background and research plan of the AIMAC project are presented.

  6. Neural associative memories for the integration of language, vision and action in an autonomous agent.

    PubMed

    Markert, H; Kaufmann, U; Kara Kayikci, Z; Palm, G

    2009-03-01

    Language understanding is a long-standing problem in computer science. However, the human brain is capable of processing complex languages with seemingly no difficulties. This paper shows a model for language understanding using biologically plausible neural networks composed of associative memories. The model is able to deal with ambiguities on the single word and grammatical level. The language system is embedded into a robot in order to demonstrate the correct semantical understanding of the input sentences by letting the robot perform corresponding actions. For that purpose, a simple neural action planning system has been combined with neural networks for visual object recognition and visual attention control mechanisms.

  7. Concept definition study for recovery of tumbling satellites. Volume 2: Supporting research and technology report

    NASA Technical Reports Server (NTRS)

    Cable, D. A.; Derocher, W. L., Jr.; Cathcart, J. A.; Keeley, M. G.; Madayev, L.; Nguyen, T. K.; Preese, J. R.

    1986-01-01

    A number of areas of research and laboratory experiments were identified which could lead to development of a cost efficient remote, disable satellite recovery system. Estimates were planned of disabled satellite motion. A concept is defined as a Tumbling Satellite Recovery kit which includes a modular system, composed of a number of subsystem mechanisms that can be readily integrated into varying combinations. This would enable the user to quickly configure a tailored remote, disabled satellite recovery kit to meet a broad spectrum of potential scenarios. The capability was determined of U.S. Earth based satellite tracking facilities to adequately determine the orientation and motion rates of disabled satellites.

  8. AKAP-scaffolding proteins and regulation of cardiac physiology

    PubMed Central

    Mauban, JRH; O'Donnell, M; Warrier, S; Manni, S; Bond, M

    2009-01-01

    A kinase anchoring proteins (AKAPs) compose a growing list of diverse but functionally related proteins defined by their ability to bind to the regulatory subunit of protein kinase A. AKAPs perform an integral role in the spatiotemporal modulation of a multitude of cellular signaling pathways. This review highlights the extensive role of AKAPs in cardiac excitation/contraction coupling and cardiac physiology. The literature shows that particular AKAPs are involved in cardiac Ca2+ influx, release, re-uptake, and myocyte repolarization. Studies have also suggested roles for AKAPs in cardiac remodeling. Transgenic studies show functional effects of AKAPs, not only in the cardiovascular system, but in other organ systems as well. PMID:19364910

  9. Solar heating system final design package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The system is composed of a warm air collector, a logic control unit and a universal switching and transport unit. The collector was originally conceived and designed as an integrated roof/wall system and therefore provides a dual function in the structure. The collector serves both as a solar energy conversion system and as a structural weather resistant skin. The control unit provides totally automatic control over the operation of the system. It receives input data from sensor probes in collectors, storage and living space. The logic was designed so as to make maximum use of solar energy and minimize use of conventional energy. The transport and switching unit is a high-efficiency air-handling system equipped with gear motor valves that respond to outputs from the control system. The fan unit was designed for maximum durability and efficiency in operation, and has permanently lubricated ball bearings and excellent air-handling efficiency.

  10. Genetic selection of cattle for improved immunity and health.

    PubMed

    Mallard, Bonnie A; Emam, Mehdi; Paibomesai, Marlene; Thompson-Crispi, Kathleen; Wagter-Lesperance, Lauraine

    2015-02-01

    The immune system is a sensing structure composed of tissues and molecules that are well integrated with the neuroendocrine system. This integrate system ensures non-self from self-discrimination. In this capacity the immune system provides detection and protection from a wide range of pathogens. In mammals, the immune system is regulated by several thousand genes (8-9% of the genome) which indicate its high genetic priority as a critical fitness trait providing survival of the species. Identifying and selectively breeding livestock with the inherent ability to make superior immune responses can reduce disease occurrence, improve milk quality and increase farm profitability. Healthier animals also may be expected to demonstrate improvements in other traits, including reproductive fitness. Using the University of Guelph's patented High Immune Response technology it is possible to classify animals as high, average, or low responders based on their genetic estimated breeding value for immune responsiveness. High responders have the inherent ability to produce more balanced and robust immune responses compared with average or low responders. High responders dairy cattle essentially have about one-half the disease occurrence of low responders, and can pass their superior immune response genes on to future generations thereby accumulating health benefits within the dairy herd.

  11. Occupational Component. 36-Level Courses. Teacher Resource Manual. Integrated Occupational Program.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Curriculum Branch.

    This 36-level occupational component of Integrated Occupational Program (IOP) consists of 8 occupational clusters composed of 20 occupational courses. Each course contains learning activities so that students in Alberta (Canada) may develop occupational concepts, skills, and attitudes. This teacher's manual consists of the following sections:…

  12. Basic Composition and Enriched Integration in Idiom Processing: An EEG Study

    ERIC Educational Resources Information Center

    Canal, Paolo; Pesciarelli, Francesca; Vespignani, Francesco; Molinaro, Nicola; Cacciari, Cristina

    2017-01-01

    We investigated the extent to which the literal meanings of the words forming literally plausible idioms (e.g., "break the ice") are semantically composed and how the idiomatic meaning is integrated in the unfolding sentence representation. Participants read ambiguous idiom strings embedded in highly predictable, literal, and idiomatic…

  13. DATA COLLECTION MANAGER MODULE OF REGION III'S MULTI-CRITERIA INTEGRATED RESOURCE ASSESSMENT (MIRA) ENVIRONMENTAL DECISION MAKING APPROACH

    EPA Science Inventory

    This proposal pertains to the on-going development of the Data Collection Manager (DCM) module, which is one of three modules that compose MIRA, Multi-criteria Integrated Resource Assessment. MIRA is Region III's newly conceived and continually developing decision support approac...

  14. Sensitivity of an Integrated Mesoscale Atmosphere and Agriculture Land Modeling System (WRF/CMAQ-EPIC) to MODIS Vegetation and Lightning Assimilation

    NASA Astrophysics Data System (ADS)

    Ran, L.; Cooter, E. J.; Gilliam, R. C.; Foroutan, H.; Kang, D.; Appel, W.; Wong, D. C.; Pleim, J. E.; Benson, V.; Pouliot, G.

    2017-12-01

    The combined meteorology and air quality modeling system composed of the Weather Research and Forecast (WRF) model and Community Multiscale Air Quality (CMAQ) model is an important decision support tool that is used in research and regulatory decisions related to emissions, meteorology, climate, and chemical transport. The Environmental Policy Integrated Climate (EPIC) is a cropping model which has long been used in a range of applications related to soil erosion, crop productivity, climate change, and water quality around the world. We have integrated WRF/CMAQ with EPIC using the Fertilizer Emission Scenario Tool for CMAQ (FEST-C) to estimate daily soil N information with fertilization for CMAQ bi-directional ammonia flux modeling. Driven by the weather and N deposition from WRF/CMAQ, FEST-C EPIC simulations are conducted on 22 different agricultural production systems ranging from managed grass lands (e.g. hay and alfalfa) to crop lands (e.g. corn grain and soybean) with rainfed and irrigated information across any defined conterminous United States (U.S.) CMAQ domain and grid resolution. In recent years, this integrated system has been enhanced and applied in many different air quality and ecosystem assessment projects related to land-water-atmosphere interactions. These enhancements have advanced this system to become a valuable tool for integrated assessments of air, land and water quality in light of social drivers and human and ecological outcomes. This presentation will focus on evaluating the sensitivity of precipitation and N deposition in the integrated system to MODIS vegetation input and lightning assimilation and their impacts on agricultural production and fertilization. We will describe the integrated modeling system and evaluate simulated precipitation and N deposition along with other weather information (e.g. temperature, humidity) for 2011 over the conterminous U.S. at 12 km grids from a coupled WRF/CMAQ with MODIS and lightning assimilation. Simulated agricultural production and fertilization from FEST-C EPIC driven by the changed meteorology and N deposition from MODIS and lightning assimilations will be evaluated and analyzed.

  15. Expression of hygromycin B resistance in oyster culinary-medicinal mushroom, Pleurotus ostreatus (Jacq.:Fr.)P. Kumm. (higher Basidiomycetes) using three gene expression systems.

    PubMed

    Dong, Xiaoya; Zhang, Ke; Gao, Yuqian; Qi, Yuancheng; Shen, Jinwen; Qiu, Liyou

    2012-01-01

    Three hygromycin B phosphotransferase (hph) gene expression systems for culinary-medicinal Oyster mushroom, Pleurotus ostreatus, plasmid pSHC, pAN7-1, and pBHt1 were evaluated through PEG/CaCl(2)-mediated protoplast transformation. Plasmid pSHC is a newly constructed hph gene expression system, composed of Escherichia coli hph gene, the P. ostreatus sdi promoter, and the CaMV35S terminator. The vector pAN7-1 was commonly used for integrative transformation in filamentous fungi. Plasmid pBHtl is a T-DNA binary vector, usually introduced into fungi by Agrobacterium-mediated transformation. The results showed that plasmids pSHC, pAN7-1, and pBHt1 were all integrated into the host chromosomes and expressed hygromycin B resistance in P. ostreatus. pAN7-1 had the highest transformation efficiency and hph gene expression level, pSHC the second, and pBHt1 the lowest. Growth rates of the transformants on plates containing hygromycin B were in correspondence with their hph gene expression levels. To our knowledge, this is the first report on integrated transformation of plasmid pAN7-1 and pBHt1 in P. ostreatus.

  16. The road to reorganization. A system keeps its regional network all in the family.

    PubMed

    Haglund, C

    1989-11-01

    One prominent strategy health-care institutions are pursuing today is the formation of regional networks providing comprehensive continuums of care. Regional activities can be organized according to several distinct geographical parameters: city, county, state, or multistate regions. Although the different types of regionalization may be beneficial, they will generate different types of activities and benefits. Another consideration is that regional structures can range from very loose affiliations to complete ownership. In 1987 the Sisters of Providence health system, Seattle, initiated efforts to create a functionally integrated regional healthcare system in the Portland, OR, market, which had a good framework in place for developing a vertically and horizontally linked comprehensive continuum of care. The Oregon Management Committee, composed of local administrators, was established to identify issues and develop common objectives. The group developed a regional strategic plan and identified eight key areas to begin regionally coordinated activities. It began creating working relationships among institutional counterparts and program integration in several outpatient service areas where duplication was evident. Another effort involved greater coordination of marketing activities.

  17. MARS: bringing the automation of small-molecule bioanalytical sample preparations to a new frontier.

    PubMed

    Li, Ming; Chou, Judy; Jing, Jing; Xu, Hui; Costa, Aldo; Caputo, Robin; Mikkilineni, Rajesh; Flannelly-King, Shane; Rohde, Ellen; Gan, Lawrence; Klunk, Lewis; Yang, Liyu

    2012-06-01

    In recent years, there has been a growing interest in automating small-molecule bioanalytical sample preparations specifically using the Hamilton MicroLab(®) STAR liquid-handling platform. In the most extensive work reported thus far, multiple small-molecule sample preparation assay types (protein precipitation extraction, SPE and liquid-liquid extraction) have been integrated into a suite that is composed of graphical user interfaces and Hamilton scripts. Using that suite, bioanalytical scientists have been able to automate various sample preparation methods to a great extent. However, there are still areas that could benefit from further automation, specifically, the full integration of analytical standard and QC sample preparation with study sample extraction in one continuous run, real-time 2D barcode scanning on the Hamilton deck and direct Laboratory Information Management System database connectivity. We developed a new small-molecule sample-preparation automation system that improves in all of the aforementioned areas. The improved system presented herein further streamlines the bioanalytical workflow, simplifies batch run design, reduces analyst intervention and eliminates sample-handling error.

  18. Integration of Si-CMOS embedded photo detector array and mixed signal processing system with embedded optical waveguide input

    NASA Astrophysics Data System (ADS)

    Kim, Daeik D.; Thomas, Mikkel A.; Brooke, Martin A.; Jokerst, Nan M.

    2004-06-01

    Arrays of embedded bipolar junction transistor (BJT) photo detectors (PD) and a parallel mixed-signal processing system were fabricated as a silicon complementary metal oxide semiconductor (Si-CMOS) circuit for the integration optical sensors on the surface of the chip. The circuit was fabricated with AMI 1.5um n-well CMOS process and the embedded PNP BJT PD has a pixel size of 8um by 8um. BJT PD was chosen to take advantage of its higher gain amplification of photo current than that of PiN type detectors since the target application is a low-speed and high-sensitivity sensor. The photo current generated by BJT PD is manipulated by mixed-signal processing system, which consists of parallel first order low-pass delta-sigma oversampling analog-to-digital converters (ADC). There are 8 parallel ADCs on the chip and a group of 8 BJT PDs are selected with CMOS switches. An array of PD is composed of three or six groups of PDs depending on the number of rows.

  19. MRI segmentation using dialectical optimization.

    PubMed

    dos Santos, Wellington P; de Assis, Francisco M; de Souza, Ricardo E

    2009-01-01

    Biology, Psychology and Social Sciences are intrinsically connected to the very roots of the development of algorithms and methods in Computational Intelligence, as it is easily seen in approaches like genetic algorithms, evolutionary programming and particle swarm optimization. In this work we propose a new optimization method based on dialectics using fuzzy membership functions to model the influence of interactions between integrating poles in the status of each pole. Poles are the basic units composing dialectical systems. In order to validate our proposal we designed a segmentation method based on the optimization of k-means using dialectics for the segmentation of MR images. As a case study we used 181 MR synthetic multispectral images composed by proton density, T(1)- and T(2)-weighted synthetic brain images of 181 slices with 1 mm, resolution of 1 mm(3), for a normal brain and a noiseless MR tomographic system without field inhomogeneities, amounting a total of 543 images, generated by the simulator BrainWeb [2]. Our principal target here is comparing our proposal to k-means, fuzzy c-means, and Kohonen's self-organized maps, concerning the quantization error, we proved that our method can improved results obtained using k-means.

  20. Special-purpose computer for holography HORN-4 with recurrence algorithm

    NASA Astrophysics Data System (ADS)

    Shimobaba, Tomoyoshi; Hishinuma, Sinsuke; Ito, Tomoyoshi

    2002-10-01

    We designed and built a special-purpose computer for holography, HORN-4 (HOlographic ReconstructioN) using PLD (Programmable Logic Device) technology. HORN computers have a pipeline architecture. We use HORN-4 as an attached processor to enhance the performance of a general-purpose computer when it is used to generate holograms using a "recurrence formulas" algorithm developed by our previous paper. In the HORN-4 system, we designed the pipeline by adopting our "recurrence formulas" algorithm which can calculate the phase on a hologram. As the result, we could integrate the pipeline composed of 21 units into one PLD chip. The units in the pipeline consists of one BPU (Basic Phase Unit) unit and twenty CU (Cascade Unit) units. These CU units can compute twenty light intensities on a hologram plane at one time. By mounting two of the PLD chips on a PCI (Peripheral Component Interconnect) universal board, HORN-4 can calculate holograms at high speed of about 42 Gflops equivalent. The cost of HORN-4 board is about 1700 US dollar. We could obtain 800×600 grids hologram from a 3D-image composed of 415 points in about 0.45 sec with the HORN-4 system.

  1. Soft Somatosensitive Actuators via Embedded 3D Printing.

    PubMed

    Truby, Ryan L; Wehner, Michael; Grosskopf, Abigail K; Vogt, Daniel M; Uzel, Sebastien G M; Wood, Robert J; Lewis, Jennifer A

    2018-04-01

    Humans possess manual dexterity, motor skills, and other physical abilities that rely on feedback provided by the somatosensory system. Herein, a method is reported for creating soft somatosensitive actuators (SSAs) via embedded 3D printing, which are innervated with multiple conductive features that simultaneously enable haptic, proprioceptive, and thermoceptive sensing. This novel manufacturing approach enables the seamless integration of multiple ionically conductive and fluidic features within elastomeric matrices to produce SSAs with the desired bioinspired sensing and actuation capabilities. Each printed sensor is composed of an ionically conductive gel that exhibits both long-term stability and hysteresis-free performance. As an exemplar, multiple SSAs are combined into a soft robotic gripper that provides proprioceptive and haptic feedback via embedded curvature, inflation, and contact sensors, including deep and fine touch contact sensors. The multimaterial manufacturing platform enables complex sensing motifs to be easily integrated into soft actuating systems, which is a necessary step toward closed-loop feedback control of soft robots, machines, and haptic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Study on Global GIS architecture and its key technologies

    NASA Astrophysics Data System (ADS)

    Cheng, Chengqi; Guan, Li; Lv, Xuefeng

    2009-09-01

    Global GIS (G2IS) is a system, which supports the huge data process and the global direct manipulation on global grid based on spheroid or ellipsoid surface. Based on global subdivision grid (GSG), Global GIS architecture is presented in this paper, taking advantage of computer cluster theory, the space-time integration technology and the virtual reality technology. Global GIS system architecture is composed of five layers, including data storage layer, data representation layer, network and cluster layer, data management layer and data application layer. Thereinto, it is designed that functions of four-level protocol framework and three-layer data management pattern of Global GIS based on organization, management and publication of spatial information in this architecture. Three kinds of core supportive technologies, which are computer cluster theory, the space-time integration technology and the virtual reality technology, and its application pattern in the Global GIS are introduced in detail. The primary ideas of Global GIS in this paper will be an important development tendency of GIS.

  3. Study on Global GIS architecture and its key technologies

    NASA Astrophysics Data System (ADS)

    Cheng, Chengqi; Guan, Li; Lv, Xuefeng

    2010-11-01

    Global GIS (G2IS) is a system, which supports the huge data process and the global direct manipulation on global grid based on spheroid or ellipsoid surface. Based on global subdivision grid (GSG), Global GIS architecture is presented in this paper, taking advantage of computer cluster theory, the space-time integration technology and the virtual reality technology. Global GIS system architecture is composed of five layers, including data storage layer, data representation layer, network and cluster layer, data management layer and data application layer. Thereinto, it is designed that functions of four-level protocol framework and three-layer data management pattern of Global GIS based on organization, management and publication of spatial information in this architecture. Three kinds of core supportive technologies, which are computer cluster theory, the space-time integration technology and the virtual reality technology, and its application pattern in the Global GIS are introduced in detail. The primary ideas of Global GIS in this paper will be an important development tendency of GIS.

  4. The 3-D vision system integrated dexterous hand

    NASA Technical Reports Server (NTRS)

    Luo, Ren C.; Han, Youn-Sik

    1989-01-01

    Most multifingered hands use a tendon mechanism to minimize the size and weight of the hand. Such tendon mechanisms suffer from the problems of striction and friction of the tendons resulting in a reduction of control accuracy. A design for a 3-D vision system integrated dexterous hand with motor control is described which overcomes these problems. The proposed hand is composed of three three-jointed grasping fingers with tactile sensors on their tips, a two-jointed eye finger with a cross-shaped laser beam emitting diode in its distal part. The two non-grasping fingers allow 3-D vision capability and can rotate around the hand to see and measure the sides of grasped objects and the task environment. An algorithm that determines the range and local orientation of the contact surface using a cross-shaped laser beam is introduced along with some potential applications. An efficient method for finger force calculation is presented which uses the measured contact surface normals of an object.

  5. Performance of the Fully Digital FPGA-Based Front-End Electronics for the GALILEO Array

    NASA Astrophysics Data System (ADS)

    Barrientos, D.; Bellato, M.; Bazzacco, D.; Bortolato, D.; Cocconi, P.; Gadea, A.; González, V.; Gulmini, M.; Isocrate, R.; Mengoni, D.; Pullia, A.; Recchia, F.; Rosso, D.; Sanchis, E.; Toniolo, N.; Ur, C. A.; Valiente-Dobón, J. J.

    2015-12-01

    In this work we present the architecture and results of a fully digital Front End Electronics (FEE) read out system developed for the GALILEO array. The FEE system, developed in collaboration with the Advanced Gamma Tracking Array (AGATA) collaboration, is composed of three main blocks: preamplifiers, digitizers and preprocessing electronics. The slow control system contains a custom Linux driver, a dynamic library and a server implementing network services. This work presents the first results of the digital FEE system coupled with a GALILEO germanium detector, which has demonstrated the capability to achieve an energy resolution of 1.530/00 at an energy of 1.33 MeV, similar to the one obtained with a conventional analog system. While keeping a good performance in terms of energy resolution, digital electronics will allow to instrument the full GALILEO array with a versatile system with high integration and low power consumption and costs.

  6. The hydrogeologic framework for the southeastern Coastal Plain aquifer system of the United States

    USGS Publications Warehouse

    Renken, R.A.

    1984-01-01

    Tertiary and Cretaceous age sand aquifers of the southeastern United States Coastal Plain constitute a distinct multistate hydrogeologic regime informally defined as the southeastern sand aquifer. Seven regional hydrogeologic units are defined; four regional aquifer units and three regional confining beds. Sand aquifers of this system consist of quartzose, feldspathic, and coarse to fine sand and sandstone and minor limestone; confining beds are composed of clay, shale, chalk, and marl. Three hydrogeologic units of Cretaceous to Holocene age overlie the sand system: the surficial aquifer, upper confining unit, and Floridan aquifer system. These three units are not part of the southeastern sand aquifer, but are an integral element of the total hydrogeologic system, and some act as a source of recharge to, or discharge from the underlying clastic sediments. Low-permeability strata of Paleozoic to early Mesozoic age form the base off the total system. (USGS)

  7. Navigation system for a mobile robot with a visual sensor using a fish-eye lens

    NASA Astrophysics Data System (ADS)

    Kurata, Junichi; Grattan, Kenneth T. V.; Uchiyama, Hironobu

    1998-02-01

    Various position sensing and navigation systems have been proposed for the autonomous control of mobile robots. Some of these systems have been installed with an omnidirectional visual sensor system that proved very useful in obtaining information on the environment around the mobile robot for position reckoning. In this article, this type of navigation system is discussed. The sensor is composed of one TV camera with a fish-eye lens, using a reference target on a ceiling and hybrid image processing circuits. The position of the robot, with respect to the floor, is calculated by integrating the information obtained from a visual sensor and a gyroscope mounted in the mobile robot, and the use of a simple algorithm based on PTP control for guidance is discussed. An experimental trial showed that the proposed system was both valid and useful for the navigation of an indoor vehicle.

  8. A Tri-Band Frequency Selective Surface (FSS) to Diplex Widely Separated Bands for Millimeter Wave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Poojali, Jayaprakash; Ray, Shaumik; Pesala, Bala; Chitti, Krishnamurthy V.; Arunachalam, Kavitha

    2016-10-01

    A substrate-backed frequency selective surface (FSS) is presented for diplexing the widely separated frequency spectrum centered at 55, 89, and 183 GHz with varying bandwidth for spatial separation in the quasi-optical feed network of the millimeter wave sounder. A unit cell composed of a crossed dipole integrated with a circular ring and loaded inside a square ring is optimized for tri-band frequency response with transmission window at 89 GHz and rejection windows at 55 and 183 GHz. The reflection and transmission losses predicted for the optimized unit cell (728 μm × 728 μm) composed of dissimilar resonant shapes is less than 0.5 dB for transverse electric (TE) and transverse magnetic (TM) polarizations and wide angle of incidence (0°-45°). The FSS is fabricated on a 175-μm-thick quartz substrate using microfabrication techniques. The transmission characteristics measured with continuous wave (CW) terahertz transmit receive system are in good agreement with the numerical simulations.

  9. Proposal for a telehealth concept in the translational research model

    PubMed Central

    Silva, Angélica Baptista; Morel, Carlos Médicis; de Moraes, Ilara Hämmerli Sozzi

    2014-01-01

    OBJECTIVE To review the conceptual relationship between telehealth and translational research. METHODS Bibliographical search on telehealth was conducted in the Scopus, Cochrane BVS, LILACS and MEDLINE databases to find experiences of telehealth in conjunction with discussion of translational research in health. The search retrieved eight studies based on analysis of models of the five stages of translational research and the multiple strands of public health policy in the context of telehealth in Brazil. The models were applied to telehealth activities concerning the Network of Human Milk Banks, in the Telemedicine University Network. RESULTS The translational research cycle of human milk collected, stored and distributed presents several integrated telehealth initiatives, such as video conferencing, and software and portals for synthesizing knowledge, composing elements of an information ecosystem, mediated by information and communication technologies in the health system. CONCLUSIONS Telehealth should be composed of a set of activities in a computer mediated network promoting the translation of knowledge between research and health services. PMID:24897057

  10. Multiscale Modeling of Cardiac Cellular Energetics

    PubMed Central

    BASSINGTHWAIGHTE, JAMES B.; CHIZECK, HOWARD J.; ATLAS, LES E.; QIAN, HONG

    2010-01-01

    Multiscale modeling is essential to integrating knowledge of human physiology starting from genomics, molecular biology, and the environment through the levels of cells, tissues, and organs all the way to integrated systems behavior. The lowest levels concern biophysical and biochemical events. The higher levels of organization in tissues, organs, and organism are complex, representing the dynamically varying behavior of billions of cells interacting together. Models integrating cellular events into tissue and organ behavior are forced to resort to simplifications to minimize computational complexity, thus reducing the model’s ability to respond correctly to dynamic changes in external conditions. Adjustments at protein and gene regulatory levels shortchange the simplified higher-level representations. Our cell primitive is composed of a set of subcellular modules, each defining an intracellular function (action potential, tricarboxylic acid cycle, oxidative phosphorylation, glycolysis, calcium cycling, contraction, etc.), composing what we call the “eternal cell,” which assumes that there is neither proteolysis nor protein synthesis. Within the modules are elements describing each particular component (i.e., enzymatic reactions of assorted types, transporters, ionic channels, binding sites, etc.). Cell subregions are stirred tanks, linked by diffusional or transporter-mediated exchange. The modeling uses ordinary differential equations rather than stochastic or partial differential equations. This basic model is regarded as a primitive upon which to build models encompassing gene regulation, signaling, and long-term adaptations in structure and function. During simulation, simpler forms of the model are used, when possible, to reduce computation. However, when this results in error, the more complex and detailed modules and elements need to be employed to improve model realism. The processes of error recognition and of mapping between different levels of model form complexity are challenging but are essential for successful modeling of large-scale systems in reasonable time. Currently there is to this end no established methodology from computational sciences. PMID:16093514

  11. Comparison of Aircraft Models and Integration Schemes for Interval Management in the TRACON

    NASA Technical Reports Server (NTRS)

    Neogi, Natasha; Hagen, George E.; Herencia-Zapana, Heber

    2012-01-01

    Reusable models of common elements for communication, computation, decision and control in air traffic management are necessary in order to enable simulation, analysis and assurance of emergent properties, such as safety and stability, for a given operational concept. Uncertainties due to faults, such as dropped messages, along with non-linearities and sensor noise are an integral part of these models, and impact emergent system behavior. Flight control algorithms designed using a linearized version of the flight mechanics will exhibit error due to model uncertainty, and may not be stable outside a neighborhood of the given point of linearization. Moreover, the communication mechanism by which the sensed state of an aircraft is fed back to a flight control system (such as an ADS-B message) impacts the overall system behavior; both due to sensor noise as well as dropped messages (vacant samples). Additionally simulation of the flight controller system can exhibit further numerical instability, due to selection of the integration scheme and approximations made in the flight dynamics. We examine the theoretical and numerical stability of a speed controller under the Euler and Runge-Kutta schemes of integration, for the Maintain phase for a Mid-Term (2035-2045) Interval Management (IM) Operational Concept for descent and landing operations. We model uncertainties in communication due to missed ADS-B messages by vacant samples in the integration schemes, and compare the emergent behavior of the system, in terms of stability, via the boundedness of the final system state. Any bound on the errors incurred by these uncertainties will play an essential part in a composable assurance argument required for real-time, flight-deck guidance and control systems,. Thus, we believe that the creation of reusable models, which possess property guarantees, such as safety and stability, is an innovative and essential requirement to assessing the emergent properties of novel airspace concepts of operation.

  12. Development of components for an S-band phased array antenna subsystem

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The system requirements, module test data, and S-band phased array subsystem test data are discussed. Of the two approaches to achieving antenna gain (mechanically steered reflector or electronically steered phased array), the phased array approach offers the greatest simplicity and lowest cost (size, weight, power, and dollars) for this medium gain. A competitive system design is described as well as hardware evaluation which will lead to timely availability of this technology for implementing such a system. The objectives of the study were: to fabricate and test six engineering model transmit/receive microelectronics modules; to design, fabricate, and test one dc and logic multilayer manifold; and to integrate and test an S-band phased array antenna subsystem composed of antenna elements, seven T/R modules, RF manifolds and dc manifold.

  13. Light addressable potentiometric sensor with an array of sensing regions

    NASA Astrophysics Data System (ADS)

    Liang, Weiguo; Han, JingHong; Zhang, Hong; Chen, Deyong

    2001-09-01

    This paper describes the mechanism of light addressable poteniometric sensors (LAPS) from the viewpoints of Semiconductor Physics, and introduces the fabrication of a multi-parameter LAPS chip. The MEMS technology is applied to produce a matrix of sensing regions on the wafer. By doing that, the cross talk among these regions is reduced, and the precision of the LAPS is increased. An IR-LED matrix is used as the light source, and the flow-injection method is used to input samples. The sensor system is compact and highly integrated. The measure and control system is composed of a personal computer, a lock-in amplifier, a potentiostat, a singlechip system, and an addressing circuit. Some experiments have been done with this device. The results show that this device is very promising for practical use.

  14. Biocomputing nanoplatforms as therapeutics and diagnostics.

    PubMed

    Evans, A C; Thadani, N N; Suh, J

    2016-10-28

    Biocomputing nanoplatforms are designed to detect and integrate single or multiple inputs under defined algorithms, such as Boolean logic gates, and generate functionally useful outputs, such as delivery of therapeutics or release of optically detectable signals. Using sensing modules composed of small molecules, polymers, nucleic acids, or proteins/peptides, nanoplatforms have been programmed to detect and process extrinsic stimuli, such as magnetic fields or light, or intrinsic stimuli, such as nucleic acids, enzymes, or pH. Stimulus detection can be transduced by the nanomaterial via three different mechanisms: system assembly, system disassembly, or system transformation. The increasingly sophisticated suite of biocomputing nanoplatforms may be invaluable for a multitude of applications, including medical diagnostics, biomedical imaging, environmental monitoring, and delivery of therapeutics to target cell populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Generic Sensor Failure Modeling for Cooperative Systems.

    PubMed

    Jäger, Georg; Zug, Sebastian; Casimiro, António

    2018-03-20

    The advent of cooperative systems entails a dynamic composition of their components. As this contrasts current, statically composed systems, new approaches for maintaining their safety are required. In that endeavor, we propose an integration step that evaluates the failure model of shared information in relation to an application's fault tolerance and thereby promises maintainability of such system's safety. However, it also poses new requirements on failure models, which are not fulfilled by state-of-the-art approaches. Consequently, this work presents a mathematically defined generic failure model as well as a processing chain for automatically extracting such failure models from empirical data. By examining data of an Sharp GP2D12 distance sensor, we show that the generic failure model not only fulfills the predefined requirements, but also models failure characteristics appropriately when compared to traditional techniques.

  16. MUSE optical alignment procedure

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Renault, Edgard; Loupias, Magali; Kosmalski, Johan; Anwand, Heiko; Bacon, Roland; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dubois, Jean-Pierre; Dupuy, Christophe; Kelz, Andreas; Lizon, Jean-Louis; Nicklas, Harald; Parès, Laurent; Remillieux, Alban; Seifert, Walter; Valentin, Hervé; Xu, Wenli

    2012-09-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation VLT integral field spectrograph (1x1arcmin² Field of View) developed for the European Southern Observatory (ESO), operating in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently assembling and testing MUSE in the Integration Hall of the Observatoire de Lyon for the Preliminary Acceptance in Europe, scheduled for 2013. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic instrument mechanical structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2011, all MUSE subsystems were integrated, aligned and tested independently in each institute. After validations, the systems were shipped to the P.I. institute at Lyon and were assembled in the Integration Hall This paper describes the end-to-end optical alignment procedure of the MUSE instrument. The design strategy, mixing an optical alignment by manufacturing (plug and play approach) and few adjustments on key components, is presented. We depict the alignment method for identifying the optical axis using several references located in pupil and image planes. All tools required to perform the global alignment between each subsystem are described. The success of this alignment approach is demonstrated by the good results for the MUSE image quality. MUSE commissioning at the VLT (Very Large Telescope) is planned for 2013.

  17. Mutual Injection Locking of Monolithically Integrated Coupled-Cavity DBR Lasers

    DOE PAGES

    Tauke-Pedretti, Anna; Vawter, G. Allen; Skogen, Erik J.; ...

    2011-07-01

    We present a photonic integrated circuit (PIC) composed of two strongly coupled distributed Bragg reflector (DBR) lasers. This PIC utilizes the dynamics of mutual injection locking to increase the relaxation resonance frequency from 3 GHz to beyond 30 GHz. Mutual injection-locking and external injection-locking operation are then compared.

  18. Source-Based Tasks in Writing Independent and Integrated Essays

    ERIC Educational Resources Information Center

    Gholami, Javad; Alinasab, Mahsa

    2017-01-01

    Integrated writing tasks have gained considerable attention in ESL and EFL writing assessment and are frequently needed and used in academic settings and daily life. However, they are very rarely practiced and promoted in writing classes. This paper explored the effects of source-based writing practice on EFL learners' composing abilities and…

  19. Exploring the bases for a mixed reality stroke rehabilitation system, Part I: A unified approach for representing action, quantitative evaluation, and interactive feedback

    PubMed Central

    2011-01-01

    Background Although principles based in motor learning, rehabilitation, and human-computer interfaces can guide the design of effective interactive systems for rehabilitation, a unified approach that connects these key principles into an integrated design, and can form a methodology that can be generalized to interactive stroke rehabilitation, is presently unavailable. Results This paper integrates phenomenological approaches to interaction and embodied knowledge with rehabilitation practices and theories to achieve the basis for a methodology that can support effective adaptive, interactive rehabilitation. Our resulting methodology provides guidelines for the development of an action representation, quantification of action, and the design of interactive feedback. As Part I of a two-part series, this paper presents key principles of the unified approach. Part II then describes the application of this approach within the implementation of the Adaptive Mixed Reality Rehabilitation (AMRR) system for stroke rehabilitation. Conclusions The accompanying principles for composing novel mixed reality environments for stroke rehabilitation can advance the design and implementation of effective mixed reality systems for the clinical setting, and ultimately be adapted for home-based application. They furthermore can be applied to other rehabilitation needs beyond stroke. PMID:21875441

  20. A piece of cake: the ground-state energies in γ i -deformed = 4 SYM theory at leading wrapping order

    NASA Astrophysics Data System (ADS)

    Fokken, Jan; Sieg, Christoph; Wilhelm, Matthias

    2014-09-01

    In the non-supersymmetric γi-deformed = 4 SYM theory, the scaling dimensions of the operators tr[ Z L ] composed of L scalar fields Z receive finite-size wrapping and prewrapping corrections in the 't Hooft limit. In this paper, we calculate these scaling dimensions to leading wrapping order directly from Feynman diagrams. For L ≥ 3, the result is proportional to the maximally transcendental `cake' integral. It matches with an earlier result obtained from the integrability-based Lüscher corrections, TBA and Y-system equations. At L = 2, where the integrability-based equations yield infinity, we find a finite rational result. This result is renormalization-scheme dependent due to the non-vanishing β-function of an induced quartic scalar double-trace coupling, on which we have reported earlier. This explicitly shows that conformal invariance is broken — even in the 't Hooft limit. [Figure not available: see fulltext.

  1. High pressure common rail injection system modeling and control.

    PubMed

    Wang, H P; Zheng, D; Tian, Y

    2016-07-01

    In this paper modeling and common-rail pressure control of high pressure common rail injection system (HPCRIS) is presented. The proposed mathematical model of high pressure common rail injection system which contains three sub-systems: high pressure pump sub-model, common rail sub-model and injector sub-model is a relative complicated nonlinear system. The mathematical model is validated by the software Matlab and a virtual detailed simulation environment. For the considered HPCRIS, an effective model free controller which is called Extended State Observer - based intelligent Proportional Integral (ESO-based iPI) controller is designed. And this proposed method is composed mainly of the referred ESO observer, and a time delay estimation based iPI controller. Finally, to demonstrate the performances of the proposed controller, the proposed ESO-based iPI controller is compared with a conventional PID controller and ADRC. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  2. End-User Evaluations of Semantic Web Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCool, Rob; Cowell, Andrew J.; Thurman, David A.

    Stanford University's Knowledge Systems Laboratory (KSL) is working in partnership with Battelle Memorial Institute and IBM Watson Research Center to develop a suite of technologies for information extraction, knowledge representation & reasoning, and human-information interaction, in unison entitled 'Knowledge Associates for Novel Intelligence' (KANI). We have developed an integrated analytic environment composed of a collection of analyst associates, software components that aid the user at different stages of the information analysis process. An important part of our participatory design process has been to ensure our technologies and designs are tightly integrate with the needs and requirements of our end users,more » To this end, we perform a sequence of evaluations towards the end of the development process that ensure the technologies are both functional and usable. This paper reports on that process.« less

  3. A methodology for identification and control of electro-mechanical actuators

    PubMed Central

    Tutunji, Tarek A.; Saleem, Ashraf

    2015-01-01

    Mechatronic systems are fully-integrated engineering systems that are composed of mechanical, electronic, and computer control sub-systems. These integrated systems use electro-mechanical actuators to cause the required motion. Therefore, the design of appropriate controllers for these actuators are an essential step in mechatronic system design. In this paper, a three-stage methodology for real-time identification and control of electro-mechanical actuator plants is presented, tested, and validated. First, identification models are constructed from experimental data to approximate the plants’ response. Second, the identified model is used in a simulation environment for the purpose of designing a suitable controller. Finally, the designed controller is applied and tested on the real plant through Hardware-in-the-Loop (HIL) environment. The described three-stage methodology provides the following practical contributions: • Establishes an easy-to-follow methodology for controller design of electro-mechanical actuators. • Combines off-line and on-line controller design for practical performance. • Modifies the HIL concept by using physical plants with computer control (rather than virtual plants with physical controllers). Simulated and experimental results for two case studies, induction motor and vehicle drive system, are presented in order to validate the proposed methodology. These results showed that electromechanical actuators can be identified and controlled using an easy-to-duplicate and flexible procedure. PMID:26150992

  4. A methodology for identification and control of electro-mechanical actuators.

    PubMed

    Tutunji, Tarek A; Saleem, Ashraf

    2015-01-01

    Mechatronic systems are fully-integrated engineering systems that are composed of mechanical, electronic, and computer control sub-systems. These integrated systems use electro-mechanical actuators to cause the required motion. Therefore, the design of appropriate controllers for these actuators are an essential step in mechatronic system design. In this paper, a three-stage methodology for real-time identification and control of electro-mechanical actuator plants is presented, tested, and validated. First, identification models are constructed from experimental data to approximate the plants' response. Second, the identified model is used in a simulation environment for the purpose of designing a suitable controller. Finally, the designed controller is applied and tested on the real plant through Hardware-in-the-Loop (HIL) environment. The described three-stage methodology provides the following practical contributions: •Establishes an easy-to-follow methodology for controller design of electro-mechanical actuators.•Combines off-line and on-line controller design for practical performance.•Modifies the HIL concept by using physical plants with computer control (rather than virtual plants with physical controllers). Simulated and experimental results for two case studies, induction motor and vehicle drive system, are presented in order to validate the proposed methodology. These results showed that electromechanical actuators can be identified and controlled using an easy-to-duplicate and flexible procedure.

  5. Internationally Educated Health Professionals in Canada: Navigating Three Policy Subsystems Along the Pathway to Practice.

    PubMed

    Paul, Robert; Martimianakis, Maria Athina Tina; Johnstone, Julie; McNaughton, Nancy; Austin, Zubin

    2017-05-01

    The integration of internationally educated health professionals (IEHPs) into the health workforces of their adopted countries is an issue that has challenged policy makers and policy scholars for decades. In this article, the authors explore the implications of the ideological underpinnings of the policy subsystems that IEHPs must navigate in seeking employment in Canada, with a focus on Ontario.Using a policy subsystem approach, in 2015 the authors analyzed a large preexisting data set composed of articles, governmental reports, Web sites, and transcripts of interviews and focus groups conducted in Ontario with IEHPs, health care executives, human resource managers, and job counselors to IEHPs. Through this analysis, they identified three policy subsystems-the immigration system, the educational and licensure/regulatory system, and the health human resources system-that conflict ideologically and, as a result, create barriers to IEHP integration.To make substantive progress on IEHP integration in Canada, four questions should be considered. First, how can researchers bring new research methods to bear to explore why no jurisdiction has been able to create an integrated pathway to practice for IEHPs? Second, how and to what end are the institutions within the three policy subsystems regulating the IEHP pathway to practice? Third, how might the educational and licensure/regulatory policy subsystem create alternative health care employment options for IEHPs? Finally, how might health professions educators pursue a leadership role in the creation of an overarching institution to manage the pathway to practice for IEHPs?

  6. MIMO capacities and outage probabilities in spatially multiplexed optical transport systems.

    PubMed

    Winzer, Peter J; Foschini, Gerard J

    2011-08-15

    With wavelength-division multiplexing (WDM) rapidly nearing its scalability limits, space-division multiplexing (SDM) seems the only option to further scale the capacity of optical transport networks. In order for SDM systems to continue the WDM trend of reducing energy and cost per bit with system capacity, integration will be key to SDM. Since integration is likely to introduce non-negligible crosstalk between multiple parallel transmission paths, multiple-input multiple output (MIMO) signal processing techniques will have to be used. In this paper, we discuss MIMO capacities in optical SDM systems, including related outage considerations which are an important part in the design of such systems. In order to achieve the low-outage standards required for optical transport networks, SDM transponders should be capable of individually addressing, and preferably MIMO processing all modes supported by the optical SDM waveguide. We then discuss the effect of distributed optical noise in MIMO SDM systems and focus on the impact of mode-dependent loss (MDL) on system capacity and system outage. Through extensive numerical simulations, we extract scaling rules for mode-average and mode-dependent loss and show that MIMO SDM systems composed of up to 128 segments and supporting up to 128 modes can tolerate up to 1 dB of per-segment MDL at 90% of the system's full capacity at an outage probability of 10(-4). © 2011 Optical Society of America

  7. The Precision Formation Flying Integrated Analysis Tool (PFFIAT)

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Lyon, Richard G.; Sears, Edie; Lu, Victor

    2004-01-01

    Several space missions presently in the concept phase (e.g. Stellar Imager, Submillimeter Probe of Evolutionary Cosmic Structure, Terrestrial Planet Finder) plan to use multiple spacecraft flying in precise formation to synthesize unprecedently large aperture optical systems. These architectures present challenges to the attitude and position determination and control system; optical performance is directly coupled to spacecraft pointing with typical control requirements being on the scale of milliarcseconds and nanometers. To investigate control strategies, rejection of environmental disturbances, and sensor and actuator requirements, a capability is needed to model both the dynamical and optical behavior of such a distributed telescope system. This paper describes work ongoing at NASA Goddard Space Flight Center toward the integration of a set of optical analysis tools (Optical System Characterization and Analysis Research software, or OSCAR) with the Formation Flying Test Bed (FFTB). The resulting system is called the Precision Formation Flying Integrated Analysis Tool (PFFIAT), and it provides the capability to simulate closed-loop control of optical systems composed of elements mounted on multiple spacecraft. The attitude and translation spacecraft dynamics are simulated in the FFTB, including effects of the space environment (e.g. solar radiation pressure, differential orbital motion). The resulting optical configuration is then processed by OSCAR to determine an optical image. From this image, wavefront sensing (e.g. phase retrieval) techniques are being developed to derive attitude and position errors. These error signals will be fed back to the spacecraft control systems, completing the control loop. A simple case study is presented to demonstrate the present capabilities of the tool.

  8. The Precision Formation Flying Integrated Analysis Tool (PFFIAT)

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Lyon, Richard G.; Sears, Edie; Lu, Victor

    2004-01-01

    Several space missions presently in the concept phase (e.g. Stellar Imager, Sub- millimeter Probe of Evolutionary Cosmic Structure, Terrestrial Planet Finder) plan to use multiple spacecraft flying in precise formation to synthesize unprecedently large aperture optical systems. These architectures present challenges to the attitude and position determination and control system; optical performance is directly coupled to spacecraft pointing with typical control requirements being on the scale of milliarcseconds and nanometers. To investigate control strategies, rejection of environmental disturbances, and sensor and actuator requirements, a capability is needed to model both the dynamical and optical behavior of such a distributed telescope system. This paper describes work ongoing at NASA Goddard Space Flight Center toward the integration of a set of optical analysis tools (Optical System Characterization and Analysis Research software, or OSCAR) with the Formation J?lying Test Bed (FFTB). The resulting system is called the Precision Formation Flying Integrated Analysis Tool (PFFIAT), and it provides the capability to simulate closed-loop control of optical systems composed of elements mounted on multiple spacecraft. The attitude and translation spacecraft dynamics are simulated in the FFTB, including effects of the space environment (e.g. solar radiation pressure, differential orbital motion). The resulting optical configuration is then processed by OSCAR to determine an optical image. From this image, wavefront sensing (e.g. phase retrieval) techniques are being developed to derive attitude and position errors. These error signals will be fed back to the spacecraft control systems, completing the control loop. A simple case study is presented to demonstrate the present capabilities of the tool.

  9. Design and Implementation of the National Seismic Monitoring Network in the Kingdom of Bhutan

    NASA Astrophysics Data System (ADS)

    Ohmi, S.; Inoue, H.; Chophel, J.; Pelgay, P.; Drukpa, D.

    2017-12-01

    Bhutan-Himalayan district is located along the plate collision zone between Indian and Eurasian plates, which is one of the most seismically active region in the world. Recent earthquakes such as M7.8 Gorkha Nepal earthquake in April 25, 2015 and M6.7 Imphal, India earthquake in January 3, 2016 are examples of felt earthquakes in Bhutan. However, there is no permanent seismic monitoring system ever established in Bhutan, whose territory is in the center of the Bhutan-Himalayan region. We started establishing permanent seismic monitoring network of minimum requirements and intensity meter network over the nation. The former is composed of six (6) observation stations in Bhutan with short period weak motion and strong motion seismometers as well as three (3) broad-band seismometers, and the latter is composed of twenty intensity meters located in every provincial government office. Obtained data are transmitted to the central processing system in the DGM office in Thimphu in real time. In this project, DGM will construct seismic vault with their own budget which is approved as the World Bank project, and Japan team assists the DGM for site survey of observation site, designing the observation vault, and designing the data telemetry system as well as providing instruments for the observation such as seismometers and digitizers. We already started the operation of the six (6) weak motion stations as well as twenty (20) intensity meter stations. Additionally, the RIMES (Regional Integrated Multi-hazard Early Warning System for Africa and Asia) is also providing eight (8) weak motion stations and we are keeping close communication to operate them as one single seismic monitoring network composed of fourteen (14) stations. This network will be definitely utilized for not only for seismic disaster mitigation of the country but also for studying the seismotectonics in the Bhutan-Himalayan region which is not yet precisely revealed due to the lack of observation data in the past.

  10. The international Argo data infrastructure; past, present, and future.

    NASA Astrophysics Data System (ADS)

    Buck, J. J. H.; Pouliquen, S.; Thresher, A.; Schmechtig, C.; Ignaszewski, M.; Carval, T.; Scanderbeg, M.; Frost, M.

    2016-12-01

    The Argo array is composed of over 3,000 autonomous profiling floats that measure the temperature and salinity of the upper 2,000 m of the global deep ocean every ten days. Argo is a key component of the global ocean observing system and the data addresses crucial questions such as quantifying the heat content of the upper ocean and steric sea level change. Further to this data are routinely assimilated into operational ocean forecast models. Argo is underpinned by an international data system that was founded in the year 2,000 at the first meeting of the Argo data management team. The Argo data system is built on principles of open data and supplying data to both operational ocean models and research communities within 24 hours of collection. The data system served as a template for the established international OceanSITES community and the emerging Everyones Glider Observatories initiative. The Argo data system is composed of national Data Assembly Centers (DAC) that supply data to two mirrored Global Data Assembly Centres (GDAC). GDAC data exchanges are based on File Transfer Protocol (FTP). A significant recent data system development is the assignment of a single dynamic DOI to GDAC holdings enabling time dependent unambiguous data citation at a monthly granularity. The on-going evolution of Argo to address new global questions requires deeper data, shallower data, biogeochemical sampling and increased spatial coverage. These enhancements are increasing data complexity and volumes necessitating significant recent data format adaptation. The challenge and achievement was to preserve data formats and quality for existing established users while still allowing the integration of new data streams. The implementation of these adaptations is currently in progress within DACs. Argo data have been traditionally delivered via FTP protocol with developments are on-going to facilitate new users and emerging expectations on data delivery mechanisms. These experimental developments include access via Application Programming Interfaces such as ERDDAP, integration with other components of GOOS within the AtlantOS project, and a prototype 'Big Data' solution is being developed within the EU ENVRIplus project.

  11. Information logistics: A production-line approach to information services

    NASA Technical Reports Server (NTRS)

    Adams, Dennis; Lee, Chee-Seng

    1991-01-01

    Logistics can be defined as the process of strategically managing the acquisition, movement, and storage of materials, parts, and finished inventory (and the related information flow) through the organization and its marketing channels in a cost effective manner. It is concerned with delivering the right product to the right customer in the right place at the right time. The logistics function is composed of inventory management, facilities management, communications unitization, transportation, materials management, and production scheduling. The relationship between logistics and information systems is clear. Systems such as Electronic Data Interchange (EDI), Point of Sale (POS) systems, and Just in Time (JIT) inventory management systems are important elements in the management of product development and delivery. With improved access to market demand figures, logisticians can decrease inventory sizes and better service customer demand. However, without accurate, timely information, little, if any, of this would be feasible in today's global markets. Information systems specialists can learn from logisticians. In a manner similar to logistics management, information logistics is concerned with the delivery of the right data, to the ring customer, at the right time. As such, information systems are integral components of the information logistics system charged with providing customers with accurate, timely, cost-effective, and useful information. Information logistics is a management style and is composed of elements similar to those associated with the traditional logistics activity: inventory management (data resource management), facilities management (distributed, centralized and decentralized information systems), communications (participative design and joint application development methodologies), unitization (input/output system design, i.e., packaging or formatting of the information), transportations (voice, data, image, and video communication systems), materials management (data acquisition, e.g., EDI, POS, external data bases, data entry) and production scheduling (job, staff, and project scheduling).

  12. The homeostatic astroglia emerges from evolutionary specialization of neural cells

    PubMed Central

    Verkhratsky, Alexei; Nedergaard, Maiken

    2016-01-01

    Evolution of the nervous system progressed through cellular diversification and specialization of functions. Conceptually, the nervous system is composed from electrically excitable neuronal networks connected with chemical synapses and non-excitable glial cells that provide for homeostasis and defence. Astrocytes are integrated into neural networks through multipartite synapses; astroglial perisynaptic processes closely enwrap synaptic contacts and control homeostasis of the synaptic cleft, supply neurons with glutamate and GABA obligatory precursor glutamine and contribute to synaptic plasticity, learning and memory. In neuropathology, astrocytes may undergo reactive remodelling or degeneration; to a large extent, astroglial reactions define progression of the pathology and neurological outcome. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377722

  13. Capturing method for integral three-dimensional imaging using multiviewpoint robotic cameras

    NASA Astrophysics Data System (ADS)

    Ikeya, Kensuke; Arai, Jun; Mishina, Tomoyuki; Yamaguchi, Masahiro

    2018-03-01

    Integral three-dimensional (3-D) technology for next-generation 3-D television must be able to capture dynamic moving subjects with pan, tilt, and zoom camerawork as good as in current TV program production. We propose a capturing method for integral 3-D imaging using multiviewpoint robotic cameras. The cameras are controlled through a cooperative synchronous system composed of a master camera controlled by a camera operator and other reference cameras that are utilized for 3-D reconstruction. When the operator captures a subject using the master camera, the region reproduced by the integral 3-D display is regulated in real space according to the subject's position and view angle of the master camera. Using the cooperative control function, the reference cameras can capture images at the narrowest view angle that does not lose any part of the object region, thereby maximizing the resolution of the image. 3-D models are reconstructed by estimating the depth from complementary multiviewpoint images captured by robotic cameras arranged in a two-dimensional array. The model is converted into elemental images to generate the integral 3-D images. In experiments, we reconstructed integral 3-D images of karate players and confirmed that the proposed method satisfied the above requirements.

  14. Design and implementation of a seamless and comprehensive integrated medical device interface system for outpatient electronic medical records in a general hospital.

    PubMed

    Choi, Jong Soo; Lee, Jean Hyoung; Park, Jong Hwan; Nam, Han Seung; Kwon, Hyuknam; Kim, Dongsoo; Park, Seung Woo

    2011-04-01

    Implementing an efficient Electronic Medical Record (EMR) system is regarded as one of the key strategies for improving the quality of healthcare services. However, the system's interoperability between medical devices and the EMR is a big barrier to deploying the EMR system in an outpatient clinical setting. The purpose of this study is to design a framework for a seamless and comprehensively integrated medical device interface system, and to develop and implement a system for accelerating the deployment of the EMR system. We designed and developed a framework that could transform data from medical devices into the relevant standards and then store them in the EMR. The framework is composed of 5 interfacing methods according to the types of medical devices utilized at an outpatient clinical setting, registered in Samsung Medical Center (SMC) database. The medical devices used for this study were devices that have microchips embedded or that came packaged with personal computers. The devices are completely integrated with the EMR based on SMC's long term IT strategies. First deployment of integrating 352 medical devices into the EMR took place in April, 2006, and it took about 48 months. By March, 2010, every medical device was interfaced with the EMR. About 66,000 medical examinations per month were performed taking up an average of 50GB of storage space. We surveyed users, mainly the technicians. Out of 73 that responded, 76% of the respondents replied that they were strongly satisfied or satisfied, 20% replied as being neutral and only 4% complained about the speed of the system, which was attributed to the slow speed of the old-fashioned medical devices and computers. The current implementation of the medical device interface system based on the SMC framework significantly streamlines the clinical workflow in a satisfactory manner. 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Computer prediction of large reflector antenna radiation properties

    NASA Technical Reports Server (NTRS)

    Botula, A.

    1980-01-01

    A FORTRAN program for calculating reflector antenna radiation patterns was rewritten and extended to include reflectors composed of a number of panels. These individual panels must be analytic surfaces. The theoretical foundation for the program is as follows: Geometrical optics techniques are used to trace rays from a feed antenna to the reflector surface and back to a mathematical plane just in front of the reflector. The resulting tangential electric field distribution, assumed to be the only source of forward radiation, is integrated numerically to calculate the radiation pattern for a desired set of angles. When the reflector is composed of more than one panel, each panel is treated as a separated antenna, the ray-tracing procedure and integration being repeated for each panel. The results of the individual aperture plane integrations are stored and summed to yield the relative electric field strength over the angles of interest. An example and several test cases are included to demonstrate the use of the program and verify the new method of computation.

  16. How We Use What We Learn in Math: An Integrative Account of the Development of Commutativity

    ERIC Educational Resources Information Center

    Haider, Hilde; Eichler, Alexandra; Hansen, Sonja; Vaterrodt, Bianca; Gaschler, Robert; Frensch, Peter A.

    2014-01-01

    One crucial issue in mathematics development is how children come to spontaneously apply arithmetical principles (e.g. commutativity). According to expertise research, well-integrated conceptual and procedural knowledge is required. Here, we report a method composed of two independent tasks that assessed in an unobtrusive manner the spontaneous…

  17. A second generation integrated map of the rainbow trout (Oncorhynchus mykiss) genome: analysis of synteny with model fish genomes

    USDA-ARS?s Scientific Manuscript database

    In this paper we generated DNA fingerprints and end sequences from bacterial artificial chromosomes (BACs) from two new libraries to improve the first generation integrated physical and genetic map of the rainbow trout (Oncorhynchus mykiss) genome. The current version of the physical map is compose...

  18. Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms.

    PubMed

    Chowdury, A; Kedziora, D J; Ankiewicz, A; Akhmediev, N

    2014-09-01

    We present the fifth-order equation of the nonlinear Schrödinger hierarchy. This integrable partial differential equation contains fifth-order dispersion and nonlinear terms related to it. We present the Lax pair and use Darboux transformations to derive exact expressions for the most representative soliton solutions. This set includes two-soliton collisions and the degenerate case of the two-soliton solution, as well as beating structures composed of two or three solitons. Ultimately, the new quintic operator and the terms it adds to the standard nonlinear Schrödinger equation (NLSE) are found to primarily affect the velocity of solutions, with complicated flow-on effects. Furthermore, we present a new structure, composed of coincident equal-amplitude solitons, which cannot exist for the standard NLSE.

  19. The National Grid Project: A system overview

    NASA Technical Reports Server (NTRS)

    Gaither, Adam; Gaither, Kelly; Jean, Brian; Remotigue, Michael; Whitmire, John; Soni, Bharat; Thompson, Joe; Dannenhoffer,, John; Weatherill, Nigel

    1995-01-01

    The National Grid Project (NGP) is a comprehensive numerical grid generation software system that is being developed at the National Science Foundation (NSF) Engineering Research Center (ERC) for Computational Field Simulation (CFS) at Mississippi State University (MSU). NGP is supported by a coalition of U.S. industries and federal laboratories. The objective of the NGP is to significantly decrease the amount of time it takes to generate a numerical grid for complex geometries and to increase the quality of these grids to enable computational field simulations for applications in industry. A geometric configuration can be discretized into grids (or meshes) that have two fundamental forms: structured and unstructured. Structured grids are formed by intersecting curvilinear coordinate lines and are composed of quadrilateral (2D) and hexahedral (3D) logically rectangular cells. The connectivity of a structured grid provides for trivial identification of neighboring points by incrementing coordinate indices. Unstructured grids are composed of cells of any shape (commonly triangles, quadrilaterals, tetrahedra and hexahedra), but do not have trivial identification of neighbors by incrementing an index. For unstructured grids, a set of points and an associated connectivity table is generated to define unstructured cell shapes and neighboring points. Hybrid grids are a combination of structured grids and unstructured grids. Chimera (overset) grids are intersecting or overlapping structured grids. The NGP system currently provides a user interface that integrates both 2D and 3D structured and unstructured grid generation, a solid modeling topology data management system, an internal Computer Aided Design (CAD) system based on Non-Uniform Rational B-Splines (NURBS), a journaling language, and a grid/solution visualization system.

  20. Fault tolerant system based on IDDQ testing

    NASA Astrophysics Data System (ADS)

    Guibane, Badi; Hamdi, Belgacem; Mtibaa, Abdellatif; Bensalem, Brahim

    2018-06-01

    Offline test is essential to ensure good manufacturing quality. However, for permanent or transient faults that occur during the use of the integrated circuit in an application, an online integrated test is needed as well. This procedure should ensure the detection and possibly the correction or the masking of these faults. This requirement of self-correction is sometimes necessary, especially in critical applications that require high security such as automotive, space or biomedical applications. We propose a fault-tolerant design for analogue and mixed-signal design complementary metal oxide (CMOS) circuits based on the quiescent current supply (IDDQ) testing. A defect can cause an increase in current consumption. IDDQ testing technique is based on the measurement of power supply current to distinguish between functional and failed circuits. The technique has been an effective testing method for detecting physical defects such as gate-oxide shorts, floating gates (open) and bridging defects in CMOS integrated circuits. An architecture called BICS (Built In Current Sensor) is used for monitoring the supply current (IDDQ) of the connected integrated circuit. If the measured current is not within the normal range, a defect is signalled and the system switches connection from the defective to a functional integrated circuit. The fault-tolerant technique is composed essentially by a double mirror built-in current sensor, allowing the detection of abnormal current consumption and blocks allowing the connection to redundant circuits, if a defect occurs. Spices simulations are performed to valid the proposed design.

  1. Separation and Detection of Toxic Gases with a Silicon Micromachined Gas Chromatography System

    NASA Technical Reports Server (NTRS)

    Kolesar, Edward S.; Reston, Rocky R.

    1995-01-01

    A miniature gas chromatography (GC) system was designed and fabricated using silicon micromachining and integrated circuit (IC) processing techniques. The silicon micromachined gas chromatography system (SMGCS) is composed of a miniature sample injector that incorporates a 10 microliter sample loop; a 0.9 meter long, rectangular shaped (300 micrometer width and 10 micrometer height) capillary column coated with a 0.2 micrometer thick copper phthalocyanine (CuPc) stationary phase; and a dual detector scheme based upon a CuPc-coated chemiresistor and a commercially available 125 micrometer diameter thermal conductivity detector (TCD) bead. Silicon micromachining was employed to fabricate the interface between the sample injector and the GC column, the column itself, and the dual detector cavity. A novel IC thin-film processing technique was developed to sublime the CuPc stationary phase coating on the column walls that were micromachined in the host silicon wafer substrate and Pyrex (r) cover plate, which were then electrostatically bonded together. The SMGCS can separate binary gas mixtures composed of parts-per-million (ppm) concentrations of ammonia (NH3) and nitrogen dioxide (NO2) when isothermally operated (55-80 degrees C). With a helium carrier gas and nitrogen diluent, a 10 microliter sample volume containing ammonia and nitrogen dioxide injected at 40 psi ((2.8 x 10(exp 5)Pa)) can be separated in less than 30 minutes.

  2. Structural Bus and Release Mechanisms on the ST5 Satellites: Summary and Status

    NASA Technical Reports Server (NTRS)

    Rossoni, Peter

    2007-01-01

    The Space Technology 5 Mechanical System met the challenge of packaging a fully functional science and technology satellite system with its Deployer mechanism into a compact 0.07cu m volume. Three 25 kg satellites were orbited in constellation in March, 2006. The ST5 mechanical system is composed of 1) The Structural Bus; 2) Magnetometer Instrument Boom 3) Spacecraft Deployer Release Mechanism This system includes a highly integrated electronics enclosure as a multifunctional structure; a lightweight, magnetically clean Magnetometer Boom; the first use of Nitinol Shape-Memory Alloy trigger devices for deploying multiple spacecraft; an innovative compliant mount for the umbilical connector and a Deployer mechanism that imparts both separation velocity and mission spin rate to three constellation flying satellites These elements employed cutting-edge design and analysis tools, state-of-the-art testing facilities and proven engineering techniques to meet stringent performance criteria, enabling the mission s success.

  3. Interpretation of coagulation test results using a web-based reporting system.

    PubMed

    Quesada, Andres E; Jabcuga, Christine E; Nguyen, Alex; Wahed, Amer; Nedelcu, Elena; Nguyen, Andy N D

    2014-01-01

    Web-based synoptic reporting has been successfully integrated into diverse fields of pathology, improving efficiency and reducing typographic errors. Coagulation is a challenging field for practicing pathologists and pathologists-in-training alike. To develop a Web-based program that can expedite the generation of a individualized interpretive report for a variety of coagulation tests. We developed a Web-based synoptic reporting system composed of 119 coagulation report templates and 38 thromboelastography (TEG) report templates covering a wide range of findings. Our institution implemented this reporting system in July 2011; it is currently used by pathology residents and attending pathologists. Feedback from the users of these reports have been overwhelmingly positive. Surveys note the time saved and reduced errors. Our easily accessible, user-friendly, Web-based synoptic reporting system for coagulation is a valuable asset to our laboratory services. Copyright© by the American Society for Clinical Pathology (ASCP).

  4. Integrated verification and testing system (IVTS) for HAL/S programs

    NASA Technical Reports Server (NTRS)

    Senn, E. H.; Ames, K. R.; Smith, K. A.

    1983-01-01

    The IVTS is a large software system designed to support user-controlled verification analysis and testing activities for programs written in the HAL/S language. The system is composed of a user interface and user command language, analysis tools and an organized data base of host system files. The analysis tools are of four major types: (1) static analysis, (2) symbolic execution, (3) dynamic analysis (testing), and (4) documentation enhancement. The IVTS requires a split HAL/S compiler, divided at the natural separation point between the parser/lexical analyzer phase and the target machine code generator phase. The IVTS uses the internal program form (HALMAT) between these two phases as primary input for the analysis tools. The dynamic analysis component requires some way to 'execute' the object HAL/S program. The execution medium may be an interpretive simulation or an actual host or target machine.

  5. 24 CFR 3282.7 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... or appliance which is built in as an integral part of the manufactured home during the manufacturing... (paragraph ff). (q) Joint monitoring team means a monitoring inspection team composed of personnel provided...

  6. 24 CFR 3282.7 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... or appliance which is built in as an integral part of the manufactured home during the manufacturing... (paragraph ff). (q) Joint monitoring team means a monitoring inspection team composed of personnel provided...

  7. 24 CFR 3282.7 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... or appliance which is built in as an integral part of the manufactured home during the manufacturing... (paragraph ff). (q) Joint monitoring team means a monitoring inspection team composed of personnel provided...

  8. 24 CFR 3282.7 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... or appliance which is built in as an integral part of the manufactured home during the manufacturing... monitoring team means a monitoring inspection team composed of personnel provided by the various State...

  9. Experience of Data Handling with IPPM Payload

    NASA Astrophysics Data System (ADS)

    Errico, Walter; Tosi, Pietro; Ilstad, Jorgen; Jameux, David; Viviani, Riccardo; Collantoni, Daniele

    2010-08-01

    A simplified On-Board Data Handling system has been developed by CAEN AURELIA SPACE and ABSTRAQT as PUS-over-SpaceWire demonstration platform for the Onboard Payload Data Processing laboratory at ESTEC. The system is composed of three Leon2-based IPPM (Integrated Payload Processing Module) computers that play the roles of Instrument, Payload Data Handling Unit and Satellite Management Unit. Two PCs complete the test set-up simulating an external Memory Management Unit and the Ground Control Unit. Communication among units take place primarily through SpaceWire links; RMAP[2] protocol is used for configuration and housekeeping. A limited implementation of ECSS-E-70-41B Packet Utilisation Standard (PUS)[1] over CANbus and MIL-STD-1553B has been also realized. The Open Source RTEMS is running on the IPPM AT697E CPU as real-time operating system.

  10. The mechanism of signal transduction by two-component systems.

    PubMed

    Casino, Patricia; Rubio, Vicente; Marina, Alberto

    2010-12-01

    Two-component systems, composed of a homodimeric histidine kinase (HK) and a response regulator (RR), are major signal transduction devices in bacteria. Typically the signal triggers HK autophosphorylation at one His residue, followed by phosphoryl transfer from the phospho-His to an Asp residue in the RR. Signal extinction frequently involves phospho-RR dephosphorylation by a phosphatase activity of the HK. Our understanding of these reactions and of the determinants of partner specificity among HK-RR couples has been greatly increased by recent crystal structures and biochemical experiments on HK-RR complexes. Cis-autophosphorylation (one subunit phosphorylates itself) occurs in some HKs while trans-autophosphorylation takes place in others. We review and integrate this new information, discuss the mechanism of the three reactions and propose a model for transmembrane signaling by these systems. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Isotope heat source simulator for testing of space power systems

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Smith, R. B.

    1973-01-01

    A reliable isotope heat source simulator was designed for use in a Brayton power system. This simulator is composed of an electrically heated tungsten wire which is wound around a boron nitride core and enclosed in a graphite jacket. Simulator testing was performed at the expected operating temperature of the Brayton power system. Endurance testing for 5012 hours was followed by cycling the simulator temperature. The integrity of this simulator was maintained throughout testing. Alumina beads served as a diffusion barrier to prevent interaction between the tungsten heater and boron nitride core. The simulator was designed to maintain a surface temperature of 1311 to 1366 K (1900 to 2000 F) with a power input of approximately 400 watts. The design concept and the materials used in the simulator make possible man different geometries. This flexibility increases its potential use.

  12. Generic Sensor Failure Modeling for Cooperative Systems

    PubMed Central

    Jäger, Georg; Zug, Sebastian

    2018-01-01

    The advent of cooperative systems entails a dynamic composition of their components. As this contrasts current, statically composed systems, new approaches for maintaining their safety are required. In that endeavor, we propose an integration step that evaluates the failure model of shared information in relation to an application’s fault tolerance and thereby promises maintainability of such system’s safety. However, it also poses new requirements on failure models, which are not fulfilled by state-of-the-art approaches. Consequently, this work presents a mathematically defined generic failure model as well as a processing chain for automatically extracting such failure models from empirical data. By examining data of an Sharp GP2D12 distance sensor, we show that the generic failure model not only fulfills the predefined requirements, but also models failure characteristics appropriately when compared to traditional techniques. PMID:29558435

  13. A PC-based generator of surface ECG potentials for computer electrocardiograph testing.

    PubMed

    Franchi, D; Palagi, G; Bedini, R

    1994-02-01

    The system is composed of an electronic circuit, connected to a PC, whose outputs, starting from ECGs digitally collected by commercial interpretative electrocardiographs, simulate virtual patients' limb and chest electrode potentials. Appropriate software manages the D/A conversion and lines up the original short-term signal in a ring buffer to generate continuous ECG traces. The device also permits the addition of artifacts and/or baseline wanders/shifts on each lead separately. The system has been accurately tested and statistical indexes have been computed to quantify the reproduction accuracy analyzing, in the generated signal, both the errors induced on the fiducial point measurements and the capability to retain the diagnostic significance. The device integrated with an annotated ECG data base constitutes a reliable and powerful system to be used in the quality assurance testing of computer electrocardiographs.

  14. Electrical delay line multiplexing for pulsed mode radiation detectors

    NASA Astrophysics Data System (ADS)

    Vinke, Ruud; Yeom, Jung Yeol; Levin, Craig S.

    2015-04-01

    Medical imaging systems are composed of a large number of position sensitive radiation detectors to provide high resolution imaging. For example, whole-body Positron Emission Tomography (PET) systems are typically composed of thousands of scintillation crystal elements, which are coupled to photosensors. Thus, PET systems greatly benefit from methods to reduce the number of data acquisition channels, in order to reduce the system development cost and complexity. In this paper we present an electrical delay line multiplexing scheme that can significantly reduce the number of readout channels, while preserving the signal integrity required for good time resolution performance. We experimented with two 4 × 4 LYSO crystal arrays, with crystal elements having 3 mm × 3 mm × 5 mm and 3 mm × 3 mm × 20 mm dimensions, coupled to 16 Hamamatsu MPPC S10931-050P SiPM elements. Results show that each crystal could be accurately identified, even in the presence of scintillation light sharing and inter-crystal Compton scatter among neighboring crystal elements. The multiplexing configuration degraded the coincidence timing resolution from ∼243 ps FWHM to ∼272 ps FWHM when 16 SiPM signals were combined into a single channel for the 4 × 4 LYSO crystal array with 3 mm × 3 mm × 20 mm crystal element dimensions, in coincidence with a 3 mm × 3 mm × 5 mm LYSO crystal pixel. The method is flexible to allow multiplexing configurations across different block detectors, and is scalable to an entire ring of detectors.

  15. Design Guidance for Application of Permeable Barriers to Remediate Dissolved Chlorinated Solvents,

    DTIC Science & Technology

    1997-02-01

    fill slurry composed of a reactive medium, such as iron powder and guar gum , can then be injected into the fracture to form a reactive treatment zone...slurry (Owaidat, 1996). The slurry, which is composed of powdered guar bean, acts to maintain the integrity of the trench walls during installation of...the cell. The guar gum will later biodegrade to mostly water after wall completion, and will have minimal effect on the permeability of the trench

  16. Electronics for a prototype variable field of view PET camera using the PMT-quadrant-sharing detector array

    NASA Astrophysics Data System (ADS)

    Li, H.; Wong, Wai-Hoi; Zhang, N.; Wang, J.; Uribe, J.; Baghaei, H.; Yokoyama, S.

    1999-06-01

    Electronics for a prototype high-resolution PET camera with eight position-sensitive detector modules has been developed. Each module has 16 BGO (Bi/sub 4/Ge/sub 3/O/sub 12/) blocks (each block is composed of 49 crystals). The design goals are component and space reduction. The electronics is composed of five parts: front-end analog processing, digital position decoding, fast timing, coincidence processing and master data acquisition. The front-end analog circuit is a zone-based structure (each zone has 3/spl times/3 PMTs). Nine ADCs digitize integration signals of an active zone identified by eight trigger clusters; each cluster is composed of six photomultiplier tubes (PMTs). A trigger corresponding to a gamma ray is sent to a fast timing board to obtain a time-mark, and the nine digitized signals are passed to the position decoding board, where a real block (four PMTs) can be picked out from the zone for position decoding. Lookup tables are used for energy discrimination and to identify the gamma-hit crystal location. The coincidence board opens a 70-ns initial timing window, followed by two 20-ns true/accidental time-mark lookup table windows. The data output from the coincidence board can be acquired either in sinogram mode or in list mode with a Motorola/IRONICS VME-based system.

  17. A Low-Power High-Speed Smart Sensor Design for Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi

    1997-01-01

    A low-power high-speed smart sensor system based on a large format active pixel sensor (APS) integrated with a programmable neural processor for space exploration missions is presented. The concept of building an advanced smart sensing system is demonstrated by a system-level microchip design that is composed with an APS sensor, a programmable neural processor, and an embedded microprocessor in a SOI CMOS technology. This ultra-fast smart sensor system-on-a-chip design mimics what is inherent in biological vision systems. Moreover, it is programmable and capable of performing ultra-fast machine vision processing in all levels such as image acquisition, image fusion, image analysis, scene interpretation, and control functions. The system provides about one tera-operation-per-second computing power which is a two order-of-magnitude increase over that of state-of-the-art microcomputers. Its high performance is due to massively parallel computing structures, high data throughput rates, fast learning capabilities, and advanced VLSI system-on-a-chip implementation.

  18. Motor-auditory-visual integration: The role of the human mirror neuron system in communication and communication disorders.

    PubMed

    Le Bel, Ronald M; Pineda, Jaime A; Sharma, Anu

    2009-01-01

    The mirror neuron system (MNS) is a trimodal system composed of neuronal populations that respond to motor, visual, and auditory stimulation, such as when an action is performed, observed, heard or read about. In humans, the MNS has been identified using neuroimaging techniques (such as fMRI and mu suppression in the EEG). It reflects an integration of motor-auditory-visual information processing related to aspects of language learning including action understanding and recognition. Such integration may also form the basis for language-related constructs such as theory of mind. In this article, we review the MNS system as it relates to the cognitive development of language in typically developing children and in children at-risk for communication disorders, such as children with autism spectrum disorder (ASD) or hearing impairment. Studying MNS development in these children may help illuminate an important role of the MNS in children with communication disorders. Studies with deaf children are especially important because they offer potential insights into how the MNS is reorganized when one modality, such as audition, is deprived during early cognitive development, and this may have long-term consequences on language maturation and theory of mind abilities. Readers will be able to (1) understand the concept of mirror neurons, (2) identify cortical areas associated with the MNS in animal and human studies, (3) discuss the use of mu suppression in the EEG for measuring the MNS in humans, and (4) discuss MNS dysfunction in children with (ASD).

  19. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip.

    PubMed

    Atabaki, Amir H; Moazeni, Sajjad; Pavanello, Fabio; Gevorgyan, Hayk; Notaros, Jelena; Alloatti, Luca; Wade, Mark T; Sun, Chen; Kruger, Seth A; Meng, Huaiyu; Al Qubaisi, Kenaish; Wang, Imbert; Zhang, Bohan; Khilo, Anatol; Baiocco, Christopher V; Popović, Miloš A; Stojanović, Vladimir M; Ram, Rajeev J

    2018-04-01

    Electronic and photonic technologies have transformed our lives-from computing and mobile devices, to information technology and the internet. Our future demands in these fields require innovation in each technology separately, but also depend on our ability to harness their complementary physics through integrated solutions 1,2 . This goal is hindered by the fact that most silicon nanotechnologies-which enable our processors, computer memory, communications chips and image sensors-rely on bulk silicon substrates, a cost-effective solution with an abundant supply chain, but with substantial limitations for the integration of photonic functions. Here we introduce photonics into bulk silicon complementary metal-oxide-semiconductor (CMOS) chips using a layer of polycrystalline silicon deposited on silicon oxide (glass) islands fabricated alongside transistors. We use this single deposited layer to realize optical waveguides and resonators, high-speed optical modulators and sensitive avalanche photodetectors. We integrated this photonic platform with a 65-nanometre-transistor bulk CMOS process technology inside a 300-millimetre-diameter-wafer microelectronics foundry. We then implemented integrated high-speed optical transceivers in this platform that operate at ten gigabits per second, composed of millions of transistors, and arrayed on a single optical bus for wavelength division multiplexing, to address the demand for high-bandwidth optical interconnects in data centres and high-performance computing 3,4 . By decoupling the formation of photonic devices from that of transistors, this integration approach can achieve many of the goals of multi-chip solutions 5 , but with the performance, complexity and scalability of 'systems on a chip' 1,6-8 . As transistors smaller than ten nanometres across become commercially available 9 , and as new nanotechnologies emerge 10,11 , this approach could provide a way to integrate photonics with state-of-the-art nanoelectronics.

  20. Data Decomposition Techniques with Multi-Scale Permutation Entropy Calculations for Bearing Fault Diagnosis

    PubMed Central

    Yasir, Muhammad Naveed; Koh, Bong-Hwan

    2018-01-01

    This paper presents the local mean decomposition (LMD) integrated with multi-scale permutation entropy (MPE), also known as LMD-MPE, to investigate the rolling element bearing (REB) fault diagnosis from measured vibration signals. First, the LMD decomposed the vibration data or acceleration measurement into separate product functions that are composed of both amplitude and frequency modulation. MPE then calculated the statistical permutation entropy from the product functions to extract the nonlinear features to assess and classify the condition of the healthy and damaged REB system. The comparative experimental results of the conventional LMD-based multi-scale entropy and MPE were presented to verify the authenticity of the proposed technique. The study found that LMD-MPE’s integrated approach provides reliable, damage-sensitive features when analyzing the bearing condition. The results of REB experimental datasets show that the proposed approach yields more vigorous outcomes than existing methods. PMID:29690526

  1. Integrate and fire neural networks, piecewise contractive maps and limit cycles.

    PubMed

    Catsigeras, Eleonora; Guiraud, Pierre

    2013-09-01

    We study the global dynamics of integrate and fire neural networks composed of an arbitrary number of identical neurons interacting by inhibition and excitation. We prove that if the interactions are strong enough, then the support of the stable asymptotic dynamics consists of limit cycles. We also find sufficient conditions for the synchronization of networks containing excitatory neurons. The proofs are based on the analysis of the equivalent dynamics of a piecewise continuous Poincaré map associated to the system. We show that for efficient interactions the Poincaré map is piecewise contractive. Using this contraction property, we prove that there exist a countable number of limit cycles attracting all the orbits dropping into the stable subset of the phase space. This result applies not only to the Poincaré map under study, but also to a wide class of general n-dimensional piecewise contractive maps.

  2. A 4H Silicon Carbide Gate Buffer for Integrated Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ericson, N; Frank, S; Britton, C

    2014-02-01

    A gate buffer fabricated in a 2-mu m 4H silicon carbide (SiC) process is presented. The circuit is composed of an input buffer stage with a push-pull output stage, and is fabricated using enhancement mode N-channel FETs in a process optimized for SiC power switching devices. Simulation and measurement results of the fabricated gate buffer are presented and compared for operation at various voltage supply levels, with a capacitive load of 2 nF. Details of the design including layout specifics, simulation results, and directions for future improvement of this buffer are presented. In addition, plans for its incorporation into anmore » isolated high-side/low-side gate-driver architecture, fully integrated with power switching devices in a SiC process, are briefly discussed. This letter represents the first reported MOSFET-based gate buffer fabricated in 4H SiC.« less

  3. Integral freeform illumination lens design of LED based pico-projector.

    PubMed

    Zhao, Shuang; Wang, Kai; Chen, Fei; Qin, Zong; Liu, Sheng

    2013-05-01

    In this paper, an illumination lens design for a LED-based pico-projector is presented. Different from the traditional illumination systems composed by lens group, the integral illumination lens consists of a total internal reflector (TIR) and a freeform surface. TIR acts as collimation lens and its top surface formed by a freeform surface reshapes the nonuniform circular light pattern generated by TIR to be rectangular and uniform. Diameter and height of the lens are 16 and 10 mm, respectively. An optimization method to deal with the problem of extended light source is also presented in detail in this paper. According to the simulation results of the final optimized lens, 77% (neglecting the effect of polarization) of the power of light source is collected on liquid crystal on silicon panel with a 16∶9 ratio and illumination uniformity achieves 92%.

  4. Integrated Microfluidic System for Size-Based Selection and Trapping of Giant Vesicles.

    PubMed

    Kazayama, Yuki; Teshima, Tetsuhiko; Osaki, Toshihisa; Takeuchi, Shoji; Toyota, Taro

    2016-01-19

    Vesicles composed of phospholipids (liposomes) have attracted interest as artificial cell models and have been widely studied to explore lipid-lipid and lipid-protein interactions. However, the size dispersity of liposomes prepared by conventional methods was a major problem that inhibited their use in high-throughput analyses based on monodisperse liposomes. In this study, we developed an integrative microfluidic device that enables both the size-based selection and trapping of liposomes. This device consists of hydrodynamic selection and trapping channels in series, which made it possible to successfully produce an array of more than 60 monodisperse liposomes from a polydisperse liposome suspension with a narrow size distribution (the coefficient of variation was less than 12%). We successfully observed a size-dependent response of the liposomes to sequential osmotic stimuli, which had not clarified so far, by using this device. Our device will be a powerful tool to facilitate the statistical analysis of liposome dynamics.

  5. Data Decomposition Techniques with Multi-Scale Permutation Entropy Calculations for Bearing Fault Diagnosis.

    PubMed

    Yasir, Muhammad Naveed; Koh, Bong-Hwan

    2018-04-21

    This paper presents the local mean decomposition (LMD) integrated with multi-scale permutation entropy (MPE), also known as LMD-MPE, to investigate the rolling element bearing (REB) fault diagnosis from measured vibration signals. First, the LMD decomposed the vibration data or acceleration measurement into separate product functions that are composed of both amplitude and frequency modulation. MPE then calculated the statistical permutation entropy from the product functions to extract the nonlinear features to assess and classify the condition of the healthy and damaged REB system. The comparative experimental results of the conventional LMD-based multi-scale entropy and MPE were presented to verify the authenticity of the proposed technique. The study found that LMD-MPE’s integrated approach provides reliable, damage-sensitive features when analyzing the bearing condition. The results of REB experimental datasets show that the proposed approach yields more vigorous outcomes than existing methods.

  6. Low-loss and energy efficient modulation in silicon photonic waveguides by adiabatic elimination scheme

    NASA Astrophysics Data System (ADS)

    Mrejen, Michael; Suchowski, Haim; Bachelard, Nicolas; Wang, Yuan; Zhang, Xiang

    2017-07-01

    High-speed Silicon Photonics calls for solutions providing a small footprint, high density, and minimum crosstalk, as exemplified by the recent development of integrated optical modulators. Yet, the performances of such modulators are hindered by intrinsic material losses, which results in low energy efficiency. Using the concept of Adiabatic Elimination, here, we introduce a scheme allowing for the low-loss modulation in densely packed waveguides. Our system is composed of two waveguides, whose coupling is mediated by an intermediate third waveguide. The signal is carried by the two outer modes, while the active control of their coupling is achieved via the intermediate dark mode. The modulation is performed by the manipulation of the central-waveguide mode index, leaving the signal-carrying waveguides unaffected by the loss. We discuss how Adiabatic Elimination provides a solution for mitigating signal losses and designing relatively compact, broadband, and energy-efficient integrated optical modulators.

  7. Gate-controlled electromechanical backaction induced by a quantum dot

    NASA Astrophysics Data System (ADS)

    Okazaki, Yuma; Mahboob, Imran; Onomitsu, Koji; Sasaki, Satoshi; Yamaguchi, Hiroshi

    2016-04-01

    Semiconductor-based quantum structures integrated into mechanical resonators have emerged as a unique platform for generating entanglement between macroscopic phononic and mesocopic electronic degrees of freedom. A key challenge to realizing this is the ability to create and control the coupling between two vastly dissimilar systems. Here, such coupling is demonstrated in a hybrid device composed of a gate-defined quantum dot integrated into a piezoelectricity-based mechanical resonator enabling milli-Kelvin phonon states to be detected via charge fluctuations in the quantum dot. Conversely, the single electron transport in the quantum dot can induce a backaction onto the mechanics where appropriate bias of the quantum dot can enable damping and even current-driven amplification of the mechanical motion. Such electron transport induced control of the mechanical resonator dynamics paves the way towards a new class of hybrid semiconductor devices including a current injected phonon laser and an on-demand single phonon emitter.

  8. Fully chip-embedded automation of a multi-step lab-on-a-chip process using a modularized timer circuit.

    PubMed

    Kang, Junsu; Lee, Donghyeon; Heo, Young Jin; Chung, Wan Kyun

    2017-11-07

    For highly-integrated microfluidic systems, an actuation system is necessary to control the flow; however, the bulk of actuation devices including pumps or valves has impeded the broad application of integrated microfluidic systems. Here, we suggest a microfluidic process control method based on built-in microfluidic circuits. The circuit is composed of a fluidic timer circuit and a pneumatic logic circuit. The fluidic timer circuit is a serial connection of modularized timer units, which sequentially pass high pressure to the pneumatic logic circuit. The pneumatic logic circuit is a NOR gate array designed to control the liquid-controlling process. By using the timer circuit as a built-in signal generator, multi-step processes could be done totally inside the microchip without any external controller. The timer circuit uses only two valves per unit, and the number of process steps can be extended without limitation by adding timer units. As a demonstration, an automation chip has been designed for a six-step droplet treatment, which entails 1) loading, 2) separation, 3) reagent injection, 4) incubation, 5) clearing and 6) unloading. Each process was successfully performed for a pre-defined step-time without any external control device.

  9. Heterogeneity and Developmental Connections between Cell Types Inhabiting Teeth

    PubMed Central

    Krivanek, Jan; Adameyko, Igor; Fried, Kaj

    2017-01-01

    Every tissue is composed of multiple cell types that are developmentally, evolutionary and functionally integrated into the unit we call an organ. Teeth, our organs for biting and mastication, are complex and made of many different cell types connected or disconnected in terms of their ontogeny. In general, epithelial and mesenchymal compartments represent the major framework of tooth formation. Thus, they give rise to the two most important matrix–producing populations: ameloblasts generating enamel and odontoblasts producing dentin. However, the real picture is far from this quite simplified view. Diverse pulp cells, the immune system, the vascular system, the innervation and cells organizing the dental follicle all interact, and jointly participate in transforming lifeless matrix into a functional organ that can sense and protect itself. Here we outline the heterogeneity of cell types that inhabit the tooth, and also provide a life history of the major populations. The mouse model system has been indispensable not only for the studies of cell lineages and heterogeneity, but also for the investigation of dental stem cells and tooth patterning during development. Finally, we briefly discuss the evolutionary aspects of cell type diversity and dental tissue integration. PMID:28638345

  10. A Charge Sensitive Pre-Amplifier for Smart Point-of-Care Devices Employing Polymer Based Lab-on-a-Chip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hanfeng; Britton, Charles; Quaiyum, Farhan

    With increasing emphasis on implantable and portable medical devices, low-power, small-chip-area sensor readout system realized in lab-on-a-chip (LOC) platform is gaining more and more importance these days. The main building blocks of the LOC system include a front-end transducer that generates an electrical signal in response to the presence of an analyte of interest, signal processing electronics to process the signal to comply with a specific transmission protocol and a low-power transmitter, all realized in a single integrated circuit platform. Low power consumption and compactness of the components are essential requirements of the LOC system. This paper presents a novelmore » charge sensitive pre-amplifier developed in a standard 180-nm CMOS process suitable for implementing in an LOC platform. The pre-amplifier converts the charge generated by a pyroelectric transducer into a voltage signal, which provides a measurement of the temperature variation in biological fluids. The proposed design is capable of providing 0.8-mV/pC gain while consuming only 2.1 μW of power. Finally, the pre-amplifier composed of integrated components occupies an area of 0.038 mm 2.« less

  11. A Strategy Toward Reconstructing the Healthcare System of a Unified Korea

    PubMed Central

    Lee, Yo Han; Kim, Seok Hyang; Shin, Hyun-Woung; Lee, Jin Yong; Kim, Beomsoo; Kim, Young Ae; Yoon, Jangho; Shin, Young Seok

    2013-01-01

    This road map aims to establish a stable and integrated healthcare system for the Korean Peninsula by improving health conditions and building a foundation for healthcare in North Korea through a series of effective healthcare programs. With a basic time frame extending from the present in stages towards unification, the roadmap is composed of four successive phases. The first and second phases, each expected to last five years, respectively, focus on disease treatment and nutritional treatment. These phases would thereby safeguard the health of the most vulnerable populations in North Korea, while fulfilling the basic health needs of other groups by modernizing existing medical facilities. Based on the gains of the first two phases, the third phase, for ten years, would prepare for unification of the Koreas by promoting the health of all the North Korean people and improving basic infrastructural elements such as health workforce capacity and medical institutions. The fourth phase, assuming that unification will take place, provides fundamental principles and directions for establishing an integrated healthcare system across the Korean Peninsula. We are hoping to increase the consistency of the program and overcome several existing concerns of the current program with this roadmap. PMID:23766871

  12. A strategy toward reconstructing the healthcare system of a unified Korea.

    PubMed

    Lee, Yo Han; Yoon, Seok-Jun; Kim, Seok Hyang; Shin, Hyun-Woung; Lee, Jin Yong; Kim, Beomsoo; Kim, Young Ae; Yoon, Jangho; Shin, Young Seok

    2013-05-01

    This road map aims to establish a stable and integrated healthcare system for the Korean Peninsula by improving health conditions and building a foundation for healthcare in North Korea through a series of effective healthcare programs. With a basic time frame extending from the present in stages towards unification, the roadmap is composed of four successive phases. The first and second phases, each expected to last five years, respectively, focus on disease treatment and nutritional treatment. These phases would thereby safeguard the health of the most vulnerable populations in North Korea, while fulfilling the basic health needs of other groups by modernizing existing medical facilities. Based on the gains of the first two phases, the third phase, for ten years, would prepare for unification of the Koreas by promoting the health of all the North Korean people and improving basic infrastructural elements such as health workforce capacity and medical institutions. The fourth phase, assuming that unification will take place, provides fundamental principles and directions for establishing an integrated healthcare system across the Korean Peninsula. We are hoping to increase the consistency of the program and overcome several existing concerns of the current program with this roadmap.

  13. A Charge Sensitive Pre-Amplifier for Smart Point-of-Care Devices Employing Polymer Based Lab-on-a-Chip

    DOE PAGES

    Wang, Hanfeng; Britton, Charles; Quaiyum, Farhan; ...

    2018-01-01

    With increasing emphasis on implantable and portable medical devices, low-power, small-chip-area sensor readout system realized in lab-on-a-chip (LOC) platform is gaining more and more importance these days. The main building blocks of the LOC system include a front-end transducer that generates an electrical signal in response to the presence of an analyte of interest, signal processing electronics to process the signal to comply with a specific transmission protocol and a low-power transmitter, all realized in a single integrated circuit platform. Low power consumption and compactness of the components are essential requirements of the LOC system. This paper presents a novelmore » charge sensitive pre-amplifier developed in a standard 180-nm CMOS process suitable for implementing in an LOC platform. The pre-amplifier converts the charge generated by a pyroelectric transducer into a voltage signal, which provides a measurement of the temperature variation in biological fluids. The proposed design is capable of providing 0.8-mV/pC gain while consuming only 2.1 μW of power. Finally, the pre-amplifier composed of integrated components occupies an area of 0.038 mm 2.« less

  14. Writing through Visual Acts of Reading: Incorporating Visual Aesthetics in Integrated Writing and Reading Tasks

    ERIC Educational Resources Information Center

    Choo, Suzanne S.

    2010-01-01

    The English curriculum tends to be framed in relation to two unconscious boundaries based on the dichotomies between writing and reading as well as print and image. This paper re-envisions the curriculum as comprising a hybrid space where students are involved in composing texts that integrate writing and reading practices while also considering…

  15. Supporting Integrated STEM in the Elementary Classroom: A Professional Development Approach Centered on an Engineering Design Challenge

    ERIC Educational Resources Information Center

    Estapa, Anne T.; Tank, Kristina M.

    2017-01-01

    Background: Science, technology, engineering, and mathematics (STEM) education is becoming more prevalent at the elementary level, and there has been a push to focus on the integration between the STEM disciplines. Researchers within this study sought to understand the extent to which triads composed of a classroom teacher, student teacher, and an…

  16. FIA: An Open Forensic Integration Architecture for Composing Digital Evidence

    NASA Astrophysics Data System (ADS)

    Raghavan, Sriram; Clark, Andrew; Mohay, George

    The analysis and value of digital evidence in an investigation has been the domain of discourse in the digital forensic community for several years. While many works have considered different approaches to model digital evidence, a comprehensive understanding of the process of merging different evidence items recovered during a forensic analysis is still a distant dream. With the advent of modern technologies, pro-active measures are integral to keeping abreast of all forms of cyber crimes and attacks. This paper motivates the need to formalize the process of analyzing digital evidence from multiple sources simultaneously. In this paper, we present the forensic integration architecture (FIA) which provides a framework for abstracting the evidence source and storage format information from digital evidence and explores the concept of integrating evidence information from multiple sources. The FIA architecture identifies evidence information from multiple sources that enables an investigator to build theories to reconstruct the past. FIA is hierarchically composed of multiple layers and adopts a technology independent approach. FIA is also open and extensible making it simple to adapt to technological changes. We present a case study using a hypothetical car theft case to demonstrate the concepts and illustrate the value it brings into the field.

  17. Advances in integration of photovoltaic power and energy production in practical systems

    NASA Astrophysics Data System (ADS)

    Fartaria, Tomas Oliveira

    This thesis presents advances in integration of photovoltaic (PV) power and energy in practical systems, such as existing power plants in buildings or directly integrated in the public electrical grid. It starts by providing an analyze of the current state of PV power and some of its limitations. The work done in this thesis begins by providing a model to compute mutual shading in large PV plants, and after provides a study of the integration of a PV plant in a biogas power plant. The remainder sections focus on the work done for project PVCROPS, which consisted on the construction and operation of two prototypes composed of a PV system and a novel battery connected to a building and to the public electrical grid. These prototypes were then used to test energy management strategies and validate the suitability of the two advanced batteries (a lithium-ion battery and a vanadium redox ow battery) for households (BIPV) and PV plants. This thesis is divided in 7 chapters: Chapter 1 provides an introduction to explain and develop the main research questions studied for this thesis; Chapter 2 presents the development of a ray-tracing model to compute shading in large PV elds (with or without trackers); Chapter 3 shows the simulation of hybridizing a biogas plant with a PV plant, using biogas as energy storage; Chapters 4 and 5 present the construction, programming, and initial operation of both prototypes (Chapter 4), EMS testing oriented to BIPV systems (Chapter 5). Finally, Chapters 6 provides some future lines of investigation that can follow this thesis, and Chapter 7 shows a synopsis of the main conclusions of this work.

  18. Overview of the NCC

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey

    2001-01-01

    A multi-disciplinary design/analysis tool for combustion systems is critical for optimizing the low-emission, high-performance combustor design process. Based on discussions between then NASA Lewis Research Center and the jet engine companies, an industry-government team was formed in early 1995 to develop the National Combustion Code (NCC), which is an integrated system of computer codes for the design and analysis of combustion systems. NCC has advanced features that address the need to meet designer's requirements such as "assured accuracy", "fast turnaround", and "acceptable cost". The NCC development team is comprised of Allison Engine Company (Allison), CFD Research Corporation (CFDRC), GE Aircraft Engines (GEAE), NASA Glenn Research Center (LeRC), and Pratt & Whitney (P&W). The "unstructured mesh" capability and "parallel computing" are fundamental features of NCC from its inception. The NCC system is composed of a set of "elements" which includes grid generator, main flow solver, turbulence module, turbulence and chemistry interaction module, chemistry module, spray module, radiation heat transfer module, data visualization module, and a post-processor for evaluating engine performance parameters. Each element may have contributions from several team members. Such a multi-source multi-element system needs to be integrated in a way that facilitates inter-module data communication, flexibility in module selection, and ease of integration. The development of the NCC beta version was essentially completed in June 1998. Technical details of the NCC elements are given in the Reference List. Elements such as the baseline flow solver, turbulence module, and the chemistry module, have been extensively validated; and their parallel performance on large-scale parallel systems has been evaluated and optimized. However the scalar PDF module and the Spray module, as well as their coupling with the baseline flow solver, were developed in a small-scale distributed computing environment. As a result, the validation of the NCC beta version as a whole was quite limited. Current effort has been focused on the validation of the integrated code and the evaluation/optimization of its overall performance on large-scale parallel systems.

  19. Radio-over-optical waveguide system-on-wafer for massive delivery capacity 5G MIMO access networks

    NASA Astrophysics Data System (ADS)

    Binh, Le N.

    2017-01-01

    Delivering maximum information capacity over MIMO antennae systems beam steering is critical so as to achieve the flexibility via beam steering, maximizing the number of users or community of users in Gb/s rate per user over distributed cloud-based optical-wireless access networks. This paper gives an overview of (i) demands of optical - wireless delivery with high flexibility, especially the beam steering of multi-Tbps information channels to information hungry community of users via virtualized beam steering MIMO antenna systems at the free-license mmW region; (ii) Proposing a novel photonic planar integrated waveguide systems composing several passive and active, passive and amplification photonic devices so as to generate mmW carrier and embedded baseband information channels to feed to antenna elements; (iii) Integration techniques to generate a radio over optical waveguide (RoOW) system-on-wafer (SoW) comprising MIMO planar antenna elements and associate photonic integrated circuits for both up- and down- links; (iv) Challenges encountered in the implementation of the SoW in both wireless and photonic domains; (v) Photonic modulation techniques to achieve maximum transmission capacity per wavelength per MIMO antenna system. (vi) A view on control-feedback systems for fast and accurate generation of phase pattern for MIMO beam steering via a bank of optical phase modulators to mmW carrier phases and their preservation in the converted mmW domain . (vi) The overall operational principles of the novel techniques and technologies based on the coherent mixing of two lightwave channels The entire SoW can be implemented on SOI Si-photonic technology or via hybrid integration. These technological developments and their pros- and cons- will be discussed to achieve 50Tera-bps over the extended 110 channel Cband single mode fiber with mmW centered at 58.6GHz and 7GHz free-license band.

  20. Smart photonic materials for theranostic applications

    NASA Astrophysics Data System (ADS)

    Keum, Do Hee; Beack, Songeun; Hahn, Sei Kwang

    2017-05-01

    We developed melanoidin nanoparticles for in vivo noninvasive photoacoustic mapping of sentinel lymph nodes, photoacoustic tomography of gastro-intestinal tracts, and photothermal ablation cancer therapy. In addition, we developed cell-integrated poly(ethylene glycol) hydrogels for in vivo optogenetic sensing and therapy. Real-time optical readout of encapsulated heat-shock-protein-coupled fluorescent reporter cells made it possible to measure the nanotoxicity of cadmium-based quantum dots in vivo. Using optogenetic cells producing glucagon-like peptide-1, we performed lightcontrolled diabetic therapy for glucose homeostasis. Finally, we developed a smart contact lens composed of biosensors, drug delivery systems, and power sources for the treatment of diabetes as a model disease.

  1. Design of two blackbody sources for millimeter and sub-millimeter wave Fourier transform spectrometry

    NASA Astrophysics Data System (ADS)

    Colin, Angel

    2014-03-01

    This paper describes an experimental setup for the spectral calibration of bolometric detectors used in radioastronomy. The system is composed of a Martin-Puplett interferometer with two identical artificial blackbody sources operating in the vacuum mode at 77 K and 300 K simultaneously. One source is integrated into a liquid nitrogen cryostat, and the other one into a vacuum chamber at room temperature. The sources were designed with a combination of conical with cylindrical geometries thus forming an orthogonal configuration to match the internal optics of the interfermometer. With a simple mathematical model we estimated emissivities of ε 0.995 for each source.

  2. An optical microsystem based on vertical silicon-air Bragg mirror for liquid substances monitoring

    NASA Astrophysics Data System (ADS)

    De Stefano, Luca; Rendina, Ivo; Rea, Ilaria; Rotiroti, Lucia; De Tommasi, Edoardo; Barillaro, Giuseppe

    2007-05-01

    In this work, an integrated optical microsystems for the continuous detection of flammable liquids has been fabricated and characterized. The proposed system is composed of a the transducer element, which is a vertical silicon/air Bragg mirror fabricated by silicon electrochemical micromachining, sealed with a cover glass anodically bonded on its top. The device has been optically characterized in presence of liquid substances of environmental interest, such as ethanol and isopropanol. The preliminary experimental results are in good agreement with the theoretical calculations and show the possibility to use the device as an optical sensor based on the change of its reflectivity spectrum.

  3. Integrated rheology model: Explosive Composition B-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Stephen M.; Zerkle, David K.; Smilowitz, Laura B.

    Composition B-3 (Comp B-3) is a high explosive formulation composed of 60/40wt% RDX (1,3,5-trinitroperhydro-1,3,5-triazine) /TNT (2,4,6 trinitrotoluene). Above approximately 78°C this formulation partially melts to form a multiphase system with solid RDX particles in a molten TNT matrix. This multiphase system presents a number of phenomena that influence its apparent viscosity. In an earlier study explosive Composition B-3 (Comp B-3, 60/40wt% RDX/TNT) was examined for evidence of yield stress using a non-isothermal falling ball viscometer and a yield stress model was proposed in this paper. An integrated viscosity model suitable for use in computational fluid dynamics (CFD) simulations is developedmore » to capture the transition from a heterogeneous solid to a Bingham viscoplastic fluid. This viscosity model is used to simulate the motion of imbedded spheres falling through molten Comp B-3. Finally, comparison of the simulations to physical tests show agreement between the positions predicted by the model and the measured locations of the spheres as a function of temperature between 90C and 165C.« less

  4. Microgripper construction kit

    NASA Astrophysics Data System (ADS)

    Gengenbach, Ulrich K.; Hofmann, Andreas; Engelhardt, Friedhelm; Scharnowell, Rudolf; Koehler, Bernd

    2001-10-01

    A large number of microgrippers has been developed in industry and academia. Although the importance of hybrid integration techniques and hence the demand for assembly tools grows continuously a large part of these developments has not yet been used in industrial production. The first grippers developed for microassembly were basically vacuum grippers and downscaled tweezers. Due to increasingly complex assembly tasks more and more functionality such as sensing or additional functions such as adhesive dispensing has been integrated into gripper systems over the last years. Most of these gripper systems are incompatible since there exists no standard interface to the assembly machine and no standard for the internal modules and interfaces. Thus these tools are not easily interchangeable between assembly machines and not easily adaptable to assembly tasks. In order to alleviate this situation a construction kit for modular microgrippers is being developed. It is composed of modules with well defined interfaces that can be combined to build task specific grippers. An abstract model of a microgripper is proposed as a tool to structure the development of the construction kit. The modular concept is illustrated with prototypes.

  5. Sensor-Web Operations Explorer

    NASA Technical Reports Server (NTRS)

    Meemong, Lee; Miller, Charles; Bowman, Kevin; Weidner, Richard

    2008-01-01

    Understanding the atmospheric state and its impact on air quality requires observations of trace gases, aerosols, clouds, and physical parameters across temporal and spatial scales that range from minutes to days and from meters to more than 10,000 kilometers. Observations include continuous local monitoring for particle formation; field campaigns for emissions, local transport, and chemistry; and periodic global measurements for continental transport and chemistry. Understanding includes global data assimilation framework capable of hierarchical coupling, dynamic integration of chemical data and atmospheric models, and feedback loops between models and observations. The objective of the sensor-web system is to observe trace gases, aerosols, clouds, and physical parameters, an integrated observation infrastructure composed of space-borne, air-borne, and in-situ sensors will be simulated based on their measurement physics properties. The objective of the sensor-web operation is to optimally plan for heterogeneous multiple sensors, the sampling strategies will be explored and science impact will be analyzed based on comprehensive modeling of atmospheric phenomena including convection, transport, and chemical process. Topics include system architecture, software architecture, hardware architecture, process flow, technology infusion, challenges, and future direction.

  6. Integrated rheology model: Explosive Composition B-3

    DOE PAGES

    Davis, Stephen M.; Zerkle, David K.; Smilowitz, Laura B.; ...

    2018-03-20

    Composition B-3 (Comp B-3) is a high explosive formulation composed of 60/40wt% RDX (1,3,5-trinitroperhydro-1,3,5-triazine) /TNT (2,4,6 trinitrotoluene). Above approximately 78°C this formulation partially melts to form a multiphase system with solid RDX particles in a molten TNT matrix. This multiphase system presents a number of phenomena that influence its apparent viscosity. In an earlier study explosive Composition B-3 (Comp B-3, 60/40wt% RDX/TNT) was examined for evidence of yield stress using a non-isothermal falling ball viscometer and a yield stress model was proposed in this paper. An integrated viscosity model suitable for use in computational fluid dynamics (CFD) simulations is developedmore » to capture the transition from a heterogeneous solid to a Bingham viscoplastic fluid. This viscosity model is used to simulate the motion of imbedded spheres falling through molten Comp B-3. Finally, comparison of the simulations to physical tests show agreement between the positions predicted by the model and the measured locations of the spheres as a function of temperature between 90C and 165C.« less

  7. Design and Lessons Learned on the Development of a Cryogenic Pupil Select Mechanism used in the Testing and Calibration of the Integrated Science Instrument Module (ISIM) on the James Webb Space Telescope (JWST)

    NASA Technical Reports Server (NTRS)

    Mitchell, Alissa; Capon, Thomas; Guzek, Jeffrey; Hakun, Claef; Haney, Paul; Koca, Corina

    2014-01-01

    Calibration and testing of the instruments on the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) is being performed by the use of a cryogenic, full-field, optical simulator that was constructed for this purpose. The Pupil Select Mechanism (PSM) assembly is one of several mechanisms and optical elements that compose the Optical Telescope Element SIMulator, or OSIM. The PSM allows for several optical elements to be inserted into the optical plane of OSIM, introducing a variety of aberrations, distortions, obscurations, and other calibration states into the pupil plane. The following discussion focuses on the details of the design evolution, analysis, build, and test of this mechanism along with the challenges associated with creating a sub arc-minute positioning mechanism operating in an extreme cryogenic environment. In addition, difficult challenges in the control system design will be discussed including the incorporation of closed-loop feedback control into a system that was designed to operate in an open-loop fashion.

  8. Design and Lessons Learned on the Development of a Cryogenic Pupil Select Mechanism Used in the Testing and Calibration of the Integrated Science Instrument Module (ISIM) on the James Webb Space Telescope (JWST)

    NASA Technical Reports Server (NTRS)

    Mitchell, Alissa; Capon, Thomas; Guzek, Jeffrey; Hakun, Claef; Haney, Paul; Koca, Corina

    2014-01-01

    Calibration and testing of the instruments on the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) is being performed by the use of a cryogenic, full-field, optical simulator that was constructed for this purpose. The Pupil Select Mechanism (PSM) assembly is one of several mechanisms and optical elements that compose the Optical Telescope Element SIMulator, or OSIM. The PSM allows for several optical elements to be inserted into the optical plane of OSIM, introducing a variety of aberrations, distortions, obscurations, and other calibration states into the pupil plane. The following discussion focuses on the details of the design evolution, analysis, build, and test of this mechanism along with the challenges associated with creating a sub arc-minute positioning mechanism operating in an extreme cryogenic environment. In addition, difficult challenges in the control system design will be discussed including the incorporation of closed-loop feedback control into a system that was designed to operate in an open-loop fashion.

  9. Advanced testing of the DEPFET minimatrix particle detector

    NASA Astrophysics Data System (ADS)

    Andricek, L.; Kodyš, P.; Koffmane, C.; Ninkovic, J.; Oswald, C.; Richter, R.; Ritter, A.; Rummel, S.; Scheirich, J.; Wassatsch, A.

    2012-01-01

    The DEPFET (DEPleted Field Effect Transistor) is an active pixel particle detector with a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) integrated in each pixel, providing first amplification stage of readout electronics. Excellent signal over noise performance is gained this way. The DEPFET sensor will be used as a vertex detector in the Belle II experiment at SuperKEKB, electron-positron collider in Japan. The vertex detector will be composed of two layers of pixel detectors (DEPFET) and four layers of strip detectors. The DEPFET sensor requires switching and current readout circuits for its operation. These circuits have been designed as ASICs (Application Specific Integrated Circuits) in several different versions, but they provide insufficient flexibility for precise detector testing. Therefore, a test system with a flexible control cycle range and minimal noise has been designed for testing and characterizing of small detector prototypes (Minimatrices). Sensors with different design layouts and thicknesses are produced in order to evaluate and select the one with the best performance for the Belle II application. Description of the test system as well as measurement results are presented.

  10. Updated optical read/write memory system components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The fabrication of an updated block data composer and holographic storage array for a breadboard holographic read/write memory system is described. System considerations such as transform optics and controlled aberration lens design are described along with the block data composer, photoplastic recording materials, and material development.

  11. One-Pot and Facile Fabrication of Hierarchical Branched Pt-Cu Nanoparticles as Excellent Electrocatalysts for Direct Methanol Fuel Cells.

    PubMed

    Cao, Yanqin; Yang, Yong; Shan, Yufeng; Huang, Zhengren

    2016-03-09

    Hierarchical branched nanoparticles are one promising nanostructure with three-dimensional open porous structure composed of integrated branches for superior catalysis. We have successfully synthesized Pt-Cu hierarchical branched nanoparticles (HBNDs) with small size of about 30 nm and composed of integrated ultrathin branches by using a modified polyol process with introduction of poly(vinylpyrrolidone) and HCl. This strategy is expected to be a general strategy to prepare various metallic nanostructures for catalysis. Because of the special open porous structure, the as-prepared Pt-Cu HBNDs exhibit greatly enhanced specific activity toward the methanol oxidation reaction as much as 2.5 and 1.7 times compared with that of the commercial Pt-Ru and Pt-Ru/C catalysts, respectively. Therefore, they are potentially applicable as electrocatalysts for direct methanol fuel cells.

  12. Changes in Frontoparietotemporal Connectivity following Do-As-I-Do Imitation Training in Chimpanzees ( Pan troglodytes).

    PubMed

    Pope, Sarah M; Taglialatela, Jared P; Skiba, Sara A; Hopkins, William D

    2018-03-01

    Human imitation is supported by an underlying "mirror system" principally composed of inferior frontal, inferior parietal, and superior temporal cortical regions. Across primate species, differences in frontoparietotemporal connectivity have been hypothesized to explain phylogenetic variation in imitative abilities. However, if and to what extent these regions are involved in imitation in nonhuman primates is unknown. We hypothesized that "Do As I Do" (DAID) imitation training would enhance white matter integrity within and between frontoparietotemporal regions. To this end, four captive chimpanzees ( Pan troglodytes) were trained to reproduce 23 demonstrated actions, and four age-/sex-matched controls were trained to produce basic husbandry behaviors in response to manual cues. Diffusion tensor images were acquired before and after 600 min of training over an average of 112 days. Bilateral and asymmetrical changes in frontoparietotemporal white matter integrity were compared between DAID trained subjects and controls. We found that imitation trained subjects exhibited leftward shifts in both mean fractional anisotropy and tract strength asymmetry measures in brain regions within the mirror system. This is the first report of training-induced changes in white matter integrity in chimpanzees and suggests that frontoparietotemporal connectivity, particularly in the left hemisphere, may have facilitated the emergence of increasingly complex imitation learning abilities.

  13. A strategic plan for integrating cost-effectiveness analysis into the US healthcare system.

    PubMed

    Neumann, Peter J; Palmer, Jennifer A; Daniels, Norman; Quigley, Karen; Gold, Marthe R; Chao, Schumarry

    2008-04-01

    The Panel on Integrating Cost-Effectiveness Considerations into Health Policy Decisions, composed of medical and pharmacy directors at public and private health plans, was convened to (1) explore the views of health plan purchasers about cost-effectiveness analysis (CEA) and (2) to develop a strategic plan for policymakers to address obstacles and to integrate CEA into health policy decisions, drawing on stakeholders as part of the solution. Panelists expressed strong support for a greater role for CEA in US health policy decisions, although they also highlighted barriers in the current system and challenges involved in moving forward. The strategic plan involves a series of activities to advance the use of CEA in the United States, including research and demonstration projects to illustrate potential gains from using the technique and ongoing consensus- building steps (eg, workshops, conferences, town meetings) involving a broad coalition of stakeholders. Funding and leadership from policymakers and nonprofit foundations will be needed, as well as the active engagement of legislators and business and consumer groups. Panelists emphasized the importance of the Medicare program taking a lead role, and the need for new "infrastructure," in the form of either a new institute for conducting research or increased funding for existing institutions.

  14. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells.

    PubMed

    Liao, Hsin-Kai; Gu, Ying; Diaz, Arturo; Marlett, John; Takahashi, Yuta; Li, Mo; Suzuki, Keiichiro; Xu, Ruo; Hishida, Tomoaki; Chang, Chan-Jung; Esteban, Concepcion Rodriguez; Young, John; Izpisua Belmonte, Juan Carlos

    2015-03-10

    To combat hostile viruses, bacteria and archaea have evolved a unique antiviral defense system composed of clustered regularly interspaced short palindromic repeats (CRISPRs), together with CRISPR-associated genes (Cas). The CRISPR/Cas9 system develops an adaptive immune resistance to foreign plasmids and viruses by creating site-specific DNA double-stranded breaks (DSBs). Here we adapt the CRISPR/Cas9 system to human cells for intracellular defense against foreign DNA and viruses. Using HIV-1 infection as a model, our results demonstrate that the CRISPR/Cas9 system disrupts latently integrated viral genome and provides long-term adaptive defense against new viral infection, expression and replication in human cells. We show that engineered human-induced pluripotent stem cells stably expressing HIV-targeted CRISPR/Cas9 can be efficiently differentiated into HIV reservoir cell types and maintain their resistance to HIV-1 challenge. These results unveil the potential of the CRISPR/Cas9 system as a new therapeutic strategy against viral infections.

  15. System-level challenges in pressure-operated soft robotics

    NASA Astrophysics Data System (ADS)

    Onal, Cagdas D.

    2016-05-01

    Last decade witnessed the revival of fluidic soft actuation. As pressure-operated soft robotics becomes more popular with promising recent results, system integration remains an outstanding challenge. Inspired greatly by biology, we envision future robotic systems to embrace mechanical compliance with bodies composed of soft and hard components as well as electronic and sensing sub-systems, such that robot maintenance starts to resemble surgery. In this vision, portable energy sources and driving infrastructure plays a key role to offer autonomous many-DoF soft actuation. On the other hand, while offering many advantages in safety and adaptability to interact with unstructured environments, objects, and human bodies, mechanical compliance also violates many inherent assumptions in traditional rigid-body robotics. Thus, a complete soft robotic system requires new approaches to utilize proprioception that provides rich sensory information while remaining flexible, and motion control under significant time delay. This paper discusses our proposed solutions for each of these system-level challenges in soft robotics research.

  16. Mechanical intermixing of components in (CoMoNi)-based systems and the formation of (CoMoNi)/WC nanocomposite layers on Ti sheets under ball collisions

    NASA Astrophysics Data System (ADS)

    Romankov, S.; Park, Y. C.; Shchetinin, I. V.

    2017-11-01

    Cobalt (Co), molybdenum (Mo), and nickel (Ni) components were simultaneously introduced onto titanium (Ti) surfaces from a composed target using ball collisions. Tungsten carbide (WC) balls were selected for processing as the source of a cemented carbide reinforcement phase. During processing, ball collisions continuously introduced components from the target and the grinding media onto the Ti surface and induced mechanical intermixing of the elements, resulting in formation of a complex nanocomposite structure onto the Ti surface. The as-fabricated microstructure consisted of uniformly dispersed WC particles embedded within an integrated metallic matrix composed of an amorphous phase with nanocrystalline grains. The phase composition of the alloyed layers, atomic reactions, and the matrix grain sizes depended on the combination of components introduced onto the Ti surface during milling. The as-fabricated layer exhibited a very high hardness compared to industrial metallic alloys and tool steel materials. This approach could be used for the manufacture of both cemented carbides and amorphous matrix composite layers.

  17. Design of an integrated aerial image sensor

    NASA Astrophysics Data System (ADS)

    Xue, Jing; Spanos, Costas J.

    2005-05-01

    The subject of this paper is a novel integrated aerial image sensor (IAIS) system suitable for integration within the surface of an autonomous test wafer. The IAIS could be used as a lithography processing monitor, affording a "wafer's eye view" of the process, and therefore facilitating advanced process control and diagnostics without integrating (and dedicating) the sensor to the processing equipment. The IAIS is composed of an aperture mask and an array of photo-detectors. In order to retrieve nanometer scale resolution of the aerial image with a practical photo-detector pixel size, we propose a design of an aperture mask involving a series of spatial phase "moving" aperture groups. We demonstrate a design example aimed at the 65nm technology node through TEMPEST simulation. The optimized, key design parameters include an aperture width in the range of 30nm, aperture thickness in the range of 70nm, and offer a spatial resolution of about 5nm, all with comfortable fabrication tolerances. Our preliminary simulation work indicates the possibility of the IAIS being applied to the immersion lithography. A bench-top far-field experiment verifies that our approach of the spatial frequency down-shift through forming large Moire patterns is feasible.

  18. Single cell transcriptomics to explore the immune system in health and disease†

    PubMed Central

    Regev, Aviv; Teichmann, Sarah A.

    2017-01-01

    The immune system varies in cell types, states, and locations. The complex networks, interactions and responses of immune cells produce diverse cellular ecosystems composed of multiple cell types, accompanied by genetic diversity in antigen receptors. Within this ecosystem, innate and adaptive immune cells maintain and protect tissue function, integrity and homeostasis upon changes in functional demands and diverse insults. Characterizing this inherent complexity requires studies at single-cell resolution. Recent advances such as, massively-parallel single cell RNA-Seq and sophisticated computational methods are catalysing a revolution in our understanding of immunology. Here, we provide an overview of the state of single cell genomics methods and an outlook on the use of single-cell techniques to decipher the adaptive and innate components of immunity. PMID:28983043

  19. Spectral Narrowing of a Varactor-Integrated Resonant-Tunneling-Diode Terahertz Oscillator by Phase-Locked Loop

    NASA Astrophysics Data System (ADS)

    Ogino, Kota; Suzuki, Safumi; Asada, Masahiro

    2017-12-01

    Spectral narrowing of a resonant-tunneling-diode (RTD) terahertz oscillator, which is useful for various applications of terahertz frequency range, such as an accurate gas spectroscopy, a frequency reference in various communication systems, etc., was achieved with a phase-locked loop system. The oscillator is composed of an RTD, a slot antenna, and a varactor diode for electrical frequency tuning. The output of the RTD oscillating at 610 GHz was down-converted to 400 MHz by a heterodyne detection. The phase noise was transformed to amplitude noise by a balanced mixer and fed back into the varactor diode. The loop filter for a stable operation is discussed. The spectral linewidth of 18.6 MHz in free-running operation was reduced to less than 1 Hz by the feedback.

  20. [A novel biologic electricity signal measurement based on neuron chip].

    PubMed

    Lei, Yinsheng; Wang, Mingshi; Sun, Tongjing; Zhu, Qiang; Qin, Ran

    2006-06-01

    Neuron chip is a multiprocessor with three pipeline CPU; its communication protocol and control processor are integrated in effect to carry out the function of communication, control, attemper, I/O, etc. A novel biologic electronic signal measurement network system is composed of intelligent measurement nodes with neuron chip at the core. In this study, the electronic signals such as ECG, EEG, EMG and BOS can be synthetically measured by those intelligent nodes, and some valuable diagnostic messages are found. Wavelet transform is employed in this system to analyze various biologic electronic signals due to its strong time-frequency ability of decomposing signal local character. Better effect is gained. This paper introduces the hardware structure of network and intelligent measurement node, the measurement theory and the signal figure of data acquisition and processing.

  1. The development of an autonomous rendezvous and docking simulation using rapid integration and prototyping technology

    NASA Technical Reports Server (NTRS)

    Shackelford, John H.; Saugen, John D.; Wurst, Michael J.; Adler, James

    1991-01-01

    A generic planar 3 degree of freedom simulation was developed that supports hardware in the loop simulations, guidance and control analysis, and can directly generate flight software. This simulation was developed in a small amount of time utilizing rapid prototyping techniques. The approach taken to develop this simulation tool, the benefits seen using this approach to development, and on-going efforts to improve and extend this capability are described. The simulation is composed of 3 major elements: (1) Docker dynamics model, (2) Dockee dynamics model, and (3) Docker Control System. The docker and dockee models are based on simple planar orbital dynamics equations using a spherical earth gravity model. The docker control system is based on a phase plane approach to error correction.

  2. An Active System for Visually-Guided Reaching in 3D across Binocular Fixations

    PubMed Central

    2014-01-01

    Based on the importance of relative disparity between objects for accurate hand-eye coordination, this paper presents a biological approach inspired by the cortical neural architecture. So, the motor information is coded in egocentric coordinates obtained from the allocentric representation of the space (in terms of disparity) generated from the egocentric representation of the visual information (image coordinates). In that way, the different aspects of the visuomotor coordination are integrated: an active vision system, composed of two vergent cameras; a module for the 2D binocular disparity estimation based on a local estimation of phase differences performed through a bank of Gabor filters; and a robotic actuator to perform the corresponding tasks (visually-guided reaching). The approach's performance is evaluated through experiments on both simulated and real data. PMID:24672295

  3. Realization and testing of multi-material 3D printer for bone scaffold fabrication

    NASA Astrophysics Data System (ADS)

    Whulanza, Yudan; Hidayaturrahmi, Pretty; Kurniawati, Tri; AJ, Rahyussalim

    2017-02-01

    This research realized 3D constructs by integrating more than one material with multi fabrication system within a single session. A commercial rapid prototyping system, RepRap MendelTM, is modified so that it enables us to realize microenvironment composed of multi materials namely gelatin hydrogel and polylactic acid. Firstly, the session is preceded by realization of 3D scaffold using polylactic acid (PLA) with porosity and modulus elasticity as characterized. Later, the gelatin extrusion took place to seed the cellular in determined spatial arrangement. The results show that our apparatus able to realized scaffold that using PLA as matrix filled with gelatin that act as cell carrier in future application. The scaffolds have porous around 0.25 mm2 porosity with a modulus of elasticity around 160 MPa.

  4. Transparent mediation-based access to multiple yeast data sources using an ontology driven interface.

    PubMed

    Briache, Abdelaali; Marrakchi, Kamar; Kerzazi, Amine; Navas-Delgado, Ismael; Rossi Hassani, Badr D; Lairini, Khalid; Aldana-Montes, José F

    2012-01-25

    Saccharomyces cerevisiae is recognized as a model system representing a simple eukaryote whose genome can be easily manipulated. Information solicited by scientists on its biological entities (Proteins, Genes, RNAs...) is scattered within several data sources like SGD, Yeastract, CYGD-MIPS, BioGrid, PhosphoGrid, etc. Because of the heterogeneity of these sources, querying them separately and then manually combining the returned results is a complex and time-consuming task for biologists most of whom are not bioinformatics expert. It also reduces and limits the use that can be made on the available data. To provide transparent and simultaneous access to yeast sources, we have developed YeastMed: an XML and mediator-based system. In this paper, we present our approach in developing this system which takes advantage of SB-KOM to perform the query transformation needed and a set of Data Services to reach the integrated data sources. The system is composed of a set of modules that depend heavily on XML and Semantic Web technologies. User queries are expressed in terms of a domain ontology through a simple form-based web interface. YeastMed is the first mediation-based system specific for integrating yeast data sources. It was conceived mainly to help biologists to find simultaneously relevant data from multiple data sources. It has a biologist-friendly interface easy to use. The system is available at http://www.khaos.uma.es/yeastmed/.

  5. Excess Entropy Production in Quantum System: Quantum Master Equation Approach

    NASA Astrophysics Data System (ADS)

    Nakajima, Satoshi; Tokura, Yasuhiro

    2017-12-01

    For open systems described by the quantum master equation (QME), we investigate the excess entropy production under quasistatic operations between nonequilibrium steady states. The average entropy production is composed of the time integral of the instantaneous steady entropy production rate and the excess entropy production. We propose to define average entropy production rate using the average energy and particle currents, which are calculated by using the full counting statistics with QME. The excess entropy production is given by a line integral in the control parameter space and its integrand is called the Berry-Sinitsyn-Nemenman (BSN) vector. In the weakly nonequilibrium regime, we show that BSN vector is described by ln \\breve{ρ }_0 and ρ _0 where ρ _0 is the instantaneous steady state of the QME and \\breve{ρ }_0 is that of the QME which is given by reversing the sign of the Lamb shift term. If the system Hamiltonian is non-degenerate or the Lamb shift term is negligible, the excess entropy production approximately reduces to the difference between the von Neumann entropies of the system. Additionally, we point out that the expression of the entropy production obtained in the classical Markov jump process is different from our result and show that these are approximately equivalent only in the weakly nonequilibrium regime.

  6. Design and Experimental Investigation of a Compact Circularly Polarized Integrated Filtering Antenna for Wearable Biotelemetric Devices.

    PubMed

    Jiang, Zhi Hao; Gregory, Micah D; Werner, Douglas H

    2016-04-01

    A compact circularly polarized (CP) integrated filtering antenna is reported for wearable biotelemetric devices in the 2.4 GHz ISM band. The design is based on a mutual synthesis of a CP patch antenna connected to a bandpass filter composed of coupled stripline open-loop resonators, which provides an integrated low-profile radiating and filtering module with a compact form factor of 0.44λ(0)×0.44λ(0)×0.04λ(0). The optimized filtering antenna is fabricated and measured, achieving an S11 < -14 dB, an axial ratio of less than 3 dB and gain higher than 3.5 dBi in the targeted ISM band. With the integrated filtering functionality, the antenna exhibits good out-of-band rejection over an ultra-wide frequency range of 1-6 GHz. Further full-wave simulations and experiments were carried out, verifying that the proposed filtering antenna maintains these desirable properties even when mounted in close proximity to the human body at different positions. The stable impedance performance and the simultaneous wide axial ratio and radiated power beam widths make it an ideal candidate as a wearable antenna for off-body communications. The additional integrated filtering functionality further improves utility by greatly reducing interference and crosstalk with other existing wireless systems.

  7. HyQue: evaluating hypotheses using Semantic Web technologies.

    PubMed

    Callahan, Alison; Dumontier, Michel; Shah, Nigam H

    2011-05-17

    Key to the success of e-Science is the ability to computationally evaluate expert-composed hypotheses for validity against experimental data. Researchers face the challenge of collecting, evaluating and integrating large amounts of diverse information to compose and evaluate a hypothesis. Confronted with rapidly accumulating data, researchers currently do not have the software tools to undertake the required information integration tasks. We present HyQue, a Semantic Web tool for querying scientific knowledge bases with the purpose of evaluating user submitted hypotheses. HyQue features a knowledge model to accommodate diverse hypotheses structured as events and represented using Semantic Web languages (RDF/OWL). Hypothesis validity is evaluated against experimental and literature-sourced evidence through a combination of SPARQL queries and evaluation rules. Inference over OWL ontologies (for type specifications, subclass assertions and parthood relations) and retrieval of facts stored as Bio2RDF linked data provide support for a given hypothesis. We evaluate hypotheses of varying levels of detail about the genetic network controlling galactose metabolism in Saccharomyces cerevisiae to demonstrate the feasibility of deploying such semantic computing tools over a growing body of structured knowledge in Bio2RDF. HyQue is a query-based hypothesis evaluation system that can currently evaluate hypotheses about the galactose metabolism in S. cerevisiae. Hypotheses as well as the supporting or refuting data are represented in RDF and directly linked to one another allowing scientists to browse from data to hypothesis and vice versa. HyQue hypotheses and data are available at http://semanticscience.org/projects/hyque.

  8. Sampling Plans for the Thrips Frankliniella schultzei (Thysanoptera: Thripidae) in Three Lettuce Varieties.

    PubMed

    Silva, Alisson R; Rodrigues-Silva, Nilson; Pereira, Poliana S; Sarmento, Renato A; Costa, Thiago L; Galdino, Tarcísio V S; Picanço, Marcelo C

    2017-12-05

    The common blossom thrips, Frankliniella schultzei Trybom (Thysanoptera: Thripidae), is an important lettuce pest worldwide. Conventional sampling plans are the first step in implementing decision-making systems into integrated pest management programs. However, this tool is not available for F. schultzei infesting lettuce crops. Thus, the objective of this work was to develop a conventional sampling plan for F. schultzei in lettuce crops. Two sampling techniques (direct counting and leaf beating on a white plastic tray) were compared in crisphead, looseleaf, and Boston lettuce varieties before and during head formation. The frequency distributions of F. schultzei densities in lettuce crops were assessed, and the number of samples required to compose the sampling plan was determined. Leaf beating on a white plastic tray was the best sampling technique. F. schultzei densities obtained with this technique were fitted to the negative binomial distribution with a common aggregation parameter (common K = 0.3143). The developed sampling plan is composed of 91 samples per field and presents low errors in its estimates (up to 20%), fast execution time (up to 47 min), and low cost (up to US $1.67 per sampling area). This sampling plan can be used as a tool for integrated pest management in lettuce crops, assisting with reliable decision making in different lettuce varieties before and during head formation. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. A semantic proteomics dashboard (SemPoD) for data management in translational research.

    PubMed

    Jayapandian, Catherine P; Zhao, Meng; Ewing, Rob M; Zhang, Guo-Qiang; Sahoo, Satya S

    2012-01-01

    One of the primary challenges in translational research data management is breaking down the barriers between the multiple data silos and the integration of 'omics data with clinical information to complete the cycle from the bench to the bedside. The role of contextual metadata, also called provenance information, is a key factor ineffective data integration, reproducibility of results, correct attribution of original source, and answering research queries involving "What", "Where", "When", "Which", "Who", "How", and "Why" (also known as the W7 model). But, at present there is limited or no effective approach to managing and leveraging provenance information for integrating data across studies or projects. Hence, there is an urgent need for a paradigm shift in creating a "provenance-aware" informatics platform to address this challenge. We introduce an ontology-driven, intuitive Semantic Proteomics Dashboard (SemPoD) that uses provenance together with domain information (semantic provenance) to enable researchers to query, compare, and correlate different types of data across multiple projects, and allow integration with legacy data to support their ongoing research. The SemPoD platform, currently in use at the Case Center for Proteomics and Bioinformatics (CPB), consists of three components: (a) Ontology-driven Visual Query Composer, (b) Result Explorer, and (c) Query Manager. Currently, SemPoD allows provenance-aware querying of 1153 mass-spectrometry experiments from 20 different projects. SemPod uses the systems molecular biology provenance ontology (SysPro) to support a dynamic query composition interface, which automatically updates the components of the query interface based on previous user selections and efficiently prunes the result set usinga "smart filtering" approach. The SysPro ontology re-uses terms from the PROV-ontology (PROV-O) being developed by the World Wide Web Consortium (W3C) provenance working group, the minimum information required for reporting a molecular interaction experiment (MIMIx), and the minimum information about a proteomics experiment (MIAPE) guidelines. The SemPoD was evaluated both in terms of user feedback and as scalability of the system. SemPoD is an intuitive and powerful provenance ontology-driven data access and query platform that uses the MIAPE and MIMIx metadata guideline to create an integrated view over large-scale systems molecular biology datasets. SemPoD leverages the SysPro ontology to create an intuitive dashboard for biologists to compose queries, explore the results, and use a query manager for storing queries for later use. SemPoD can be deployed over many existing database applications storing 'omics data, including, as illustrated here, the LabKey data-management system. The initial user feedback evaluating the usability and functionality of SemPoD has been very positive and it is being considered for wider deployment beyond the proteomics domain, and in other 'omics' centers.

  10. Structural materials and components

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Lee, Raymond (Inventor)

    1982-01-01

    High density structural (blocking) materials composed of a polyimide filled with glass microballoons and methods for making such materials. Structural components such as panels which have integral edgings and/or other parts made of the high density materials.

  11. Involution and Difference Schemes for the Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Gerdt, Vladimir P.; Blinkov, Yuri A.

    In the present paper we consider the Navier-Stokes equations for the two-dimensional viscous incompressible fluid flows and apply to these equations our earlier designed general algorithmic approach to generation of finite-difference schemes. In doing so, we complete first the Navier-Stokes equations to involution by computing their Janet basis and discretize this basis by its conversion into the integral conservation law form. Then we again complete the obtained difference system to involution with eliminating the partial derivatives and extracting the minimal Gröbner basis from the Janet basis. The elements in the obtained difference Gröbner basis that do not contain partial derivatives of the dependent variables compose a conservative difference scheme. By exploiting arbitrariness in the numerical integration approximation we derive two finite-difference schemes that are similar to the classical scheme by Harlow and Welch. Each of the two schemes is characterized by a 5×5 stencil on an orthogonal and uniform grid. We also demonstrate how an inconsistent difference scheme with a 3×3 stencil is generated by an inappropriate numerical approximation of the underlying integrals.

  12. Program operational summary: Operational 90 day manned test of a regenerative life support system

    NASA Technical Reports Server (NTRS)

    Jackson, J. K.; Wamsley, J. R.; Bonura, M. S.; Seeman, J. S.

    1972-01-01

    An operational 90-day manned test of a regenerative life support system was successfully completed. This test was performed with a crew of four carefully selected and trained men in a space station simulator (SSS) which had a two gas atmosphere maintained at a total pressure of 68.9, 10 psia, and composed of oxygen at a partial pressure of 3.05 psia with nitrogen as the diluent. The test was planned to provide data on regenerative life support subsystems and on integrated system operations in a closed ecology, similar to that of a space station. All crew equipment and expendables were stored onboard at the start of the mission to eliminate the need for pass-in operations. The significant accomplishments of the test, some of the pertinent test results, some of the problem areas, and conclusions are presented.

  13. Materials for engine applications above 3000 deg F: An overview

    NASA Technical Reports Server (NTRS)

    Shaw, Nancy J.; Dicarlo, James A.; Jacobson, Nathan S.; Levine, Stanley R.; Nesbitt, James A.; Probst, Hubert B.; Sanders, William A.; Stearns, Carl A.

    1987-01-01

    Materials for future generations of aeropropulsion systems will be required to perform at ever-increasing temperatures and have properties superior to the current state of the art. Improved engine efficiency can reduce specific fuel consumption and thus increase range and reduce operating costs. The ultimate payoff gain is expected to come when materials are developed which can perform without cooling at gas temperatures to 2200 C (4000 F). An overview is presented of materials for applications above 1650 C (3000 F), some pertinent physical property data, and the rationale used: (1) to arrive at recommendations of material systems that qualify for further investigation, and (2) to develop a proposed plan of research. From an analysis of available thermochemical data it was included that such materials systems must be composed of oxide ceramics. The required structural integrity will be achieved by developing these materials into fiber-reinforced ceramic composites.

  14. Synthetic mixed-signal computation in living cells

    PubMed Central

    Rubens, Jacob R.; Selvaggio, Gianluca; Lu, Timothy K.

    2016-01-01

    Living cells implement complex computations on the continuous environmental signals that they encounter. These computations involve both analogue- and digital-like processing of signals to give rise to complex developmental programs, context-dependent behaviours and homeostatic activities. In contrast to natural biological systems, synthetic biological systems have largely focused on either digital or analogue computation separately. Here we integrate analogue and digital computation to implement complex hybrid synthetic genetic programs in living cells. We present a framework for building comparator gene circuits to digitize analogue inputs based on different thresholds. We then demonstrate that comparators can be predictably composed together to build band-pass filters, ternary logic systems and multi-level analogue-to-digital converters. In addition, we interface these analogue-to-digital circuits with other digital gene circuits to enable concentration-dependent logic. We expect that this hybrid computational paradigm will enable new industrial, diagnostic and therapeutic applications with engineered cells. PMID:27255669

  15. Gyrocopter-Based Remote Sensing Platform

    NASA Astrophysics Data System (ADS)

    Weber, I.; Jenal, A.; Kneer, C.; Bongartz, J.

    2015-04-01

    In this paper the development of a lightweight and highly modularized airborne sensor platform for remote sensing applications utilizing a gyrocopter as a carrier platform is described. The current sensor configuration consists of a high resolution DSLR camera for VIS-RGB recordings. As a second sensor modality, a snapshot hyperspectral camera was integrated in the aircraft. Moreover a custom-developed thermal imaging system composed of a VIS-PAN camera and a LWIR-camera is used for aerial recordings in the thermal infrared range. Furthermore another custom-developed highly flexible imaging system for high resolution multispectral image acquisition with up to six spectral bands in the VIS-NIR range is presented. The performance of the overall system was tested during several flights with all sensor modalities and the precalculated demands with respect to spatial resolution and reliability were validated. The collected data sets were georeferenced, georectified, orthorectified and then stitched to mosaics.

  16. Culture Models for Studying Thyroid Biology and Disorders

    PubMed Central

    Toda, Shuji; Aoki, Shigehisa; Uchihashi, Kazuyoshi; Matsunobu, Aki; Yamamoto, Mihoko; Ootani, Akifumi; Yamasaki, Fumio; Koike, Eisuke; Sugihara, Hajime

    2011-01-01

    The thyroid is composed of thyroid follicles supported by extracellular matrix, capillary network, and stromal cell types such as fibroblasts. The follicles consist of thyrocytes and C cells. In this microenvironment, thyrocytes are highly integrated in their specific structural and functional polarization, but monolayer and floating cultures cannot allow thyrocytes to organize the follicles with such polarity. In contrast, three-dimensional (3-D) collagen gel culture enables thyrocytes to form 3-D follicles with normal polarity. However, these systems never reconstruct the follicles consisting of both thyrocytes and C cells. Thyroid tissue-organotypic culture retains 3-D follicles with both thyrocytes and C cells. To create more appropriate experimental models, we here characterize four culture systems above and then introduce the models for studying thyroid biology and disorders. Finally, we propose a new approach to the cell type-specific culture systems on the basis of in vivo microenvironments of various cell types. PMID:22363871

  17. The tsunami service bus, an integration platform for heterogeneous sensor systems

    NASA Astrophysics Data System (ADS)

    Haener, R.; Waechter, J.; Kriegel, U.; Fleischer, J.; Mueller, S.

    2009-04-01

    1. INTRODUCTION Early warning systems are long living and evolving: New sensor-systems and -types may be developed and deployed, sensors will be replaced or redeployed on other locations and the functionality of analyzing software will be improved. To ensure a continuous operability of those systems their architecture must be evolution-enabled. From a computer science point of view an evolution-enabled architecture must fulfill following criteria: • Encapsulation of and functionality on data in standardized services. Access to proprietary sensor data is only possible via these services. • Loose coupling of system constituents which easily can be achieved by implementing standardized interfaces. • Location transparency of services what means that services can be provided everywhere. • Separation of concerns that means breaking a system into distinct features which overlap in functionality as little as possible. A Service Oriented Architecture (SOA) as e. g. realized in the German Indonesian Tsunami Early Warning System (GITEWS) and the advantages of functional integration on the basis of services described below adopt these criteria best. 2. SENSOR INTEGRATION Integration of data from (distributed) data sources is just a standard task in computer science. From few well known solution patterns, taking into account performance and security requirements of early warning systems only functional integration should be considered. Precondition for this is that systems are realized compliant to SOA patterns. Functionality is realized in form of dedicated components communicating via a service infrastructure. These components provide their functionality in form of services via standardized and published interfaces which could be used to access data maintained in - and functionality provided by dedicated components. Functional integration replaces the tight coupling at data level by a dependency on loosely coupled services. If the interfaces of the service providing components remain unchanged, components can be maintained and evolved independently on each other and service functionality as a whole can be reused. In GITEWS the functional integration pattern was adopted by applying the principles of an Enterprise Service Bus (ESB) as a backbone. Four services provided by the so called Tsunami Service Bus (TSB) which are essential for early warning systems are realized compliant to services specified within the Sensor Web Enablement (SWE) initiative of the Open Geospatial Consortium (OGC). 3. ARCHITECTURE The integration platform was developed to access proprietary, heterogeneous sensor data and to provide them in a uniform manner for further use. Its core, the TSB provides both a messaging-backbone and -interfaces on the basis of a Java Messaging Service (JMS). The logical architecture of GITEWS consists of four independent layers: • A resource layer where physical or virtual sensors as well as data or model storages provide relevant measurement-, event- and analysis-data: Utilizable for the TSB are any kind of data. In addition to sensors databases, model data and processing applications are adopted. SWE specifies encoding both to access and to describe these data in a comprehensive way: 1. Sensor Model Language (SensorML): Standardized description of sensors and sensor data 2. Observations and Measurements (O&M): Model and encoding of sensor measurements • A service layer to collect and conduct data from heterogeneous and proprietary resources and provide them via standardized interfaces: The TSB enables interaction with sensors via the following services: 1. Sensor Observation Service (SOS): Standardized access to sensor data 2. Sensor Planning Service (SPS): Controlling of sensors and sensor networks 3. Sensor Alert Service (SAS): Active sending of data if defined events occur 4. Web Notification Service (WNS): Conduction of asynchronous dialogues between services • An orchestration layer where atomic services are composed and arranged to high level processes like a decision support process: One of the outstanding features of service-oriented architectures is the possibility to compose new services from existing ones, which can be done programmatically or via declaration (workflow or process design). This allows e. g. the definition of new warning processes which could be adapted easily to new requirements. • An access layer which may contain graphical user interfaces for decision support, monitoring- or visualization-systems: To for example visualize time series graphical user interfaces request sensor data simply via the SOS. 4.BENEFIT The integration platform is realized on top of well known and widely used open source software implementing industrial standards. New sensors could be added easily to the infrastructure. Client components don't need to be adjusted if new sensor-types or -individuals are added to the system, because they access the sensors via standardized services. With implementing SWE fully compatible to the OGC specification it is possible to establish the "detection" and integration of sensors via the Web. Thus realizing a system of systems that combines early warning system functionality at different levels of detail (distant early warning systems, monitoring systems and any sensor system) is feasible.

  18. Envisioning a Future of Computational Geoscience in a Data Rich Semantic World

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Elag, M.; Jiang, P.; Marini, L.

    2015-12-01

    Advances in observational systems and reduction in their cost are allowing us to explore, monitor, and digitally represent our environment in unprecedented details and over large areas. Low cost in situ sensors, unmanned autonomous vehicles, imaging technologies, and other new observational approaches along with airborne and space borne systems are allowing us to measure nearly everything, almost everywhere, and at almost all the time. Under the aegis of observatories they are enabling an integrated view across space and time scales ranging from storms to seasons to years and, in some cases, decades. Rapid increase in the convergence of computational, communication and information systems and their inter-operability through advances in technologies such as semantic web can provide opportunities to further facilitate fusion and synthesis of heterogeneous measurements with knowledge systems. This integration can enable us to break disciplinary boundaries and bring sensor data directly to desktop or handheld devices. We describe CyberInfrastructure effort that is being developed through projects such as Earthcube Geosemantics (http://geosemantics.hydrocomplexity.net), (SEAD (http://sead-data.net/), and Browndog (http://browndog.ncsa.illinois.edu/)s o that data across all of earth science can be easily shared and integrated with models. This also includes efforts to enable models to become interoperable among themselves and with data using technologies that enable human-out-of-the-loop integration. Through such technologies our ability to use real time information for decision-making and scientific investigations will increase multifold. The data goes through a sequence of steps, often iterative, from collection to long-term preservation. Similarly the scientific investigation and associated outcomes are composed of a number of iterative steps from problem identification to solutions. However, the integration between these two pathways is rather limited. We describe characteristics of new technologies that are needed to bring these processes together in the near future to significantly reduce the latency between data, science, and agile and informed actions that support sustainability.

  19. Recent developments in electroabsorption modulators at Acreo Swedish ICT

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Zhang, Andy Z.; Almqvist, Susanne; Junique, Stephane; Noharet, Bertrand; Platt, Duncan; Salter, Michael; Andersson, Jan Y.

    2015-03-01

    Three types of electroabsorption modulators (EAMs) based on III-V semiconductor multiple quantum wells (MQW) are presented in this work. One is a novel monolithic integration traveling-wave EAM for an analog optical transmitter/transceiver to achieve integrated photonic mm-wave functions for broadband connectivity. Another one is composed of an integrated EAM 1D array in a photonic beam-former as a Ku-band phased array antenna for seamless aeronautical networking through integration of data links, radios, and antennas. The third one addresses the use of MQW EAMs in free space optical links through biological tissue for transcutaneous communication.

  20. Feasibility Study of Seawater Electrolysis for Photovoltaic/Fuel Cell Hybrid Power System for the Coastal Areas in Thailand

    NASA Astrophysics Data System (ADS)

    Srisiriwat, A.; Pirom, W.

    2017-10-01

    Solar photovoltaic cell and fuel cell are the practicable options to realize as a possible hybrid power system because the power of the sun cannot be utilized at night or cloudy days but hydrogen has been found as an ideal energy carrier for being transportable, storable, and converting energy though fuel cell. Hydrogen storage is chosen for its ability to obtain a clean energy option. Electrolysis, which is the simplest process to produce hydrogen, can be powered by the dc voltage from the photovoltaic cell instead of using the battery as power supply. This paper concentrates on a feasibility study of seawater electrolysis using photovoltaic power integrated fuel cell system for the coastal cities in Thailand. The proposed system composed of photovoltaic arrays, seawater electrolyzer and fuel cell is presented when the 10-kW of fuel cell electrical power is considered. The feasibility study of hydrogen production and energy analysis of this proposed system is also evaluated.

  1. Experimental scheme for qubit and qutrit symmetric informationally complete positive operator-valued measurements using multiport devices

    NASA Astrophysics Data System (ADS)

    Tabia, Gelo Noel M.

    2012-12-01

    It is crucial for various quantum information processing tasks that the state of a quantum system can be determined reliably and efficiently from general quantum measurements. One important class of measurements for this purpose is symmetric informationally complete positive operator-valued measurements (SIC-POVMs). SIC-POVMs have the advantage of providing an unbiased estimator for the quantum state with the minimal number of outcomes needed for full tomography. By virtue of Naimark's dilation theorem, any POVM can always be realized with a suitable coupling between the system and an auxiliary system and by performing a projective measurement on the joint system. In practice, finding the appropriate coupling is rather nontrivial. Here we propose an experimental design for directly implementing SIC-POVMs using multiport devices and path-encoded qubits and qutrits, the utility of which has recently been demonstrated by several experimental groups around the world. Furthermore, we describe how these multiports can be attained in practice with an integrated photonic system composed of nested linear optical elements.

  2. Multistage Polymeric Lens Structures Integrated into Silica Waveguides

    NASA Astrophysics Data System (ADS)

    Tate, Atsushi; Suzuki, Takanori; Tsuda, Hiroyuki

    2006-08-01

    A waveguide lens, composed of multistage polymer-filled thin grooves in a silica planar lightwave circuit (PLC) is proposed and a low-loss structure has been designed. A waveguide lens in a silica slab waveguide has been fabricated using reactive ion etching (RIE) and formed by filling with polymer. Both an imagding optical system and a Fourier-transform optical system can be configured in a PLC using a waveguide lens. It renders the PLC functional and its design flexible. To obtain a shorter focal length with a low insertion loss, it is more effective to use a multistage lens structure. An imaging optical system and a Fourier-transform optical system with a focal length of less than 1000 μm were fabricated in silica waveguides using a multistage lens structure. The lens imaging waveguides incorporate a 16-24-stage lens, with insertion losses of 4-7 dB. A 4 × 4 optical coupler, using a Fourier-transform optical system, utilizes a 6-stage lens with losses of 2-4 dB.

  3. Solar power generation system for reducing leakage current

    NASA Astrophysics Data System (ADS)

    Wu, Jinn-Chang; Jou, Hurng-Liahng; Hung, Chih-Yi

    2018-04-01

    This paper proposes a transformer-less multi-level solar power generation system. This solar power generation system is composed of a solar cell array, a boost power converter, an isolation switch set and a full-bridge inverter. A unipolar pulse-width modulation (PWM) strategy is used in the full-bridge inverter to attenuate the output ripple current. Circuit isolation is accomplished by integrating the isolation switch set between the solar cell array and the utility, to suppress the leakage current. The isolation switch set also determines the DC bus voltage for the full-bridge inverter connecting to the solar cell array or the output of the boost power converter. Accordingly, the proposed transformer-less multi-level solar power generation system generates a five-level voltage, and the partial power of the solar cell array is also converted to AC power using only the full-bridge inverter, so the power efficiency is increased. A prototype is developed to validate the performance of the proposed transformer-less multi-level solar power generation system.

  4. A reconfigurable, wearable, wireless ECG system.

    PubMed

    Borromeo, S; Rodriguez-Sanchez, C; Machado, F; Hernandez-Tamames, J A; de la Prieta, R

    2007-01-01

    New emerging concepts as "wireless hospital", "mobile healthcare" or "wearable telemonitoring" require the development of bio-signal acquisition devices to be easily integrated into the clinical routine. In this work, we present a new system for Electrocardiogram (ECG) acquisition and its processing, with wireless transmission on demand (either the complete ECG or only one alarm message, just in case a pathological heart rate detected). Size and power consumption are optimized in order to provide mobility and comfort to the patient. We have designed a modular hardware system and an autonomous platform based on a Field-Programmable Gate Array (FPGA) for developing and debugging. The modular approach allows to redesign the system in an easy way. Its adaptation to a new biomedical signal would only need small changes on it. The hardware system is composed of three layers that can be plugged/unplugged: communication layer, processing layer and sensor layer. In addition, we also present a general purpose end-user application developed for mobile phones or Personal Digital Assistant devices (PDAs).

  5. Integrated nitrogen removal biofilter system with ceramic membrane for advanced post-treatment of municipal wastewater.

    PubMed

    Son, Dong-Jin; Yun, Chan-Young; Kim, Woo-Yeol; Zhang, Xing-Ya; Kim, Dae-Gun; Chang, Duk; Sunwoo, Young; Hong, Ki-Ho

    2016-12-01

    The pre-denitrification biofilm process for nitrogen removal was combined with ceramic membrane with pore sizes of 0.05-0.1 µm as a system for advanced post-treatment of municipal wastewater. The system was operated under an empty bed hydraulic retention time of 7.8 h, recirculation ratio of 3, and transmembrane pressure of 0.47 bar. The system showed average removals of organics, total nitrogen, and solids as high as 93%, 80%, and 100%, respectively. Rapid nitrification could be achieved and denitrification was performed in the anoxic filter without external carbon supplements. The residual particulate organics and nitrogen in effluent from biofilm process could be also removed successfully through membrane filtration and the removal of total coliform was noticeably improved after membrane filtration. Thus, a system composed of the pre-denitrification biofilm process with ceramic membrane would be a compact and flexible option for advanced post-treatment of municipal wastewater.

  6. Modeling and simulation of biological systems using SPICE language

    PubMed Central

    Lallement, Christophe; Haiech, Jacques

    2017-01-01

    The article deals with BB-SPICE (SPICE for Biochemical and Biological Systems), an extension of the famous Simulation Program with Integrated Circuit Emphasis (SPICE). BB-SPICE environment is composed of three modules: a new textual and compact description formalism for biological systems, a converter that handles this description and generates the SPICE netlist of the equivalent electronic circuit and NGSPICE which is an open-source SPICE simulator. In addition, the environment provides back and forth interfaces with SBML (System Biology Markup Language), a very common description language used in systems biology. BB-SPICE has been developed in order to bridge the gap between the simulation of biological systems on the one hand and electronics circuits on the other hand. Thus, it is suitable for applications at the interface between both domains, such as development of design tools for synthetic biology and for the virtual prototyping of biosensors and lab-on-chip. Simulation results obtained with BB-SPICE and COPASI (an open-source software used for the simulation of biochemical systems) have been compared on a benchmark of models commonly used in systems biology. Results are in accordance from a quantitative viewpoint but BB-SPICE outclasses COPASI by 1 to 3 orders of magnitude regarding the computation time. Moreover, as our software is based on NGSPICE, it could take profit of incoming updates such as the GPU implementation, of the coupling with powerful analysis and verification tools or of the integration in design automation tools (synthetic biology). PMID:28787027

  7. HORN-6 special-purpose clustered computing system for electroholography.

    PubMed

    Ichihashi, Yasuyuki; Nakayama, Hirotaka; Ito, Tomoyoshi; Masuda, Nobuyuki; Shimobaba, Tomoyoshi; Shiraki, Atsushi; Sugie, Takashige

    2009-08-03

    We developed the HORN-6 special-purpose computer for holography. We designed and constructed the HORN-6 board to handle an object image composed of one million points and constructed a cluster system composed of 16 HORN-6 boards. Using this HORN-6 cluster system, we succeeded in creating a computer-generated hologram of a three-dimensional image composed of 1,000,000 points at a rate of 1 frame per second, and a computer-generated hologram of an image composed of 100,000 points at a rate of 10 frames per second, which is near video rate, when the size of a computer-generated hologram is 1,920 x 1,080. The calculation speed is approximately 4,600 times faster than that of a personal computer with an Intel 3.4-GHz Pentium 4 CPU.

  8. SMAP Instrument Mechanical System Engineering

    NASA Technical Reports Server (NTRS)

    Slimko, Eric; French, Richard; Riggs, Benjamin

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

  9. Group Development and Integration in a Cross-Disciplinary and Intercultural Research Team.

    PubMed

    Kirk-Lawlor, Naomi; Allred, Shorna

    2017-04-01

    Cross-disciplinary research is necessary to solve many complex problems that affect society today, including problems involving linked social and environmental systems. Examples include natural resource management or scarcity problems, problematic effects of climate change, and environmental pollution issues. Intercultural research teams are needed to address many complex environmental matters as they often cross geographic and political boundaries, and involve people of different countries and cultures. It follows that disciplinarily and culturally diverse research teams have been organized to investigate and address environmental issues. This case study investigates a team composed of both monolingual and bilingual Chilean and US university researchers who are geoscientists, engineers and economists. The objective of this research team was to study both the natural and human parts of a hydrologic system in a hyper-arid region in northern Chile. Interviews (n = 8) addressed research questions focusing on the interaction of cross-disciplinary diversity and cultural diversity during group integration and development within the team. The case study revealed that the group struggled more with cross-disciplinary challenges than with intercultural ones. Particularly challenging ones were instances the of disciplinary crosstalk, or hidden misunderstandings, where team members thought they understood their cross-disciplinary colleagues, when in reality they did not. Results showed that translation served as a facilitator to cross-disciplinary integration of the research team. The use of translation in group meetings as a strategy for effective cross-disciplinary integration can be extended to monolingual cross-disciplinary teams as well.

  10. Group Development and Integration in a Cross-Disciplinary and Intercultural Research Team

    NASA Astrophysics Data System (ADS)

    Kirk-Lawlor, Naomi; Allred, Shorna

    2017-04-01

    Cross-disciplinary research is necessary to solve many complex problems that affect society today, including problems involving linked social and environmental systems. Examples include natural resource management or scarcity problems, problematic effects of climate change, and environmental pollution issues. Intercultural research teams are needed to address many complex environmental matters as they often cross geographic and political boundaries, and involve people of different countries and cultures. It follows that disciplinarily and culturally diverse research teams have been organized to investigate and address environmental issues. This case study investigates a team composed of both monolingual and bilingual Chilean and US university researchers who are geoscientists, engineers and economists. The objective of this research team was to study both the natural and human parts of a hydrologic system in a hyper-arid region in northern Chile. Interviews ( n = 8) addressed research questions focusing on the interaction of cross-disciplinary diversity and cultural diversity during group integration and development within the team. The case study revealed that the group struggled more with cross-disciplinary challenges than with intercultural ones. Particularly challenging ones were instances the of disciplinary crosstalk, or hidden misunderstandings, where team members thought they understood their cross-disciplinary colleagues, when in reality they did not. Results showed that translation served as a facilitator to cross-disciplinary integration of the research team. The use of translation in group meetings as a strategy for effective cross-disciplinary integration can be extended to monolingual cross-disciplinary teams as well.

  11. Integrated optimization of planetary rover layout and exploration routes

    NASA Astrophysics Data System (ADS)

    Lee, Dongoo; Ahn, Jaemyung

    2018-01-01

    This article introduces an optimization framework for the integrated design of a planetary surface rover and its exploration route that is applicable to the initial phase of a planetary exploration campaign composed of multiple surface missions. The scientific capability and the mobility of a rover are modelled as functions of the science weight fraction, a key parameter characterizing the rover. The proposed problem is formulated as a mixed-integer nonlinear program that maximizes the sum of profits obtained through a planetary surface exploration mission by simultaneously determining the science weight fraction of the rover, the sites to visit and their visiting sequences under resource consumption constraints imposed on each route and collectively on a mission. A solution procedure for the proposed problem composed of two loops (the outer loop and the inner loop) is developed. The results of test cases demonstrating the effectiveness of the proposed framework are presented.

  12. A methodological approach to be used in integrated coastal zone management processes: the case of the Catalan Coast (Catalonia, Spain)

    NASA Astrophysics Data System (ADS)

    Sardá, Rafael; Avila, Conxita; Mora, Joan

    2005-02-01

    Since early 1999, we have been working on an environmental information system as a preliminary phase to develop the National Strategy of the Catalan Coast. Using the tourism industry as the main pressuring driver and the municipality as the territorial unit, we have compiled a vast amount of information that has been converted into an information platform for the general public, politicians, and public administrators. Working in close co-operation with the planning authorities of the Generalitat of Catalonia, we developed decision support tools as a methodological approach for coastal management. The decision support system is composed by: (a) the development of an environmental indicator-based report; (b) the use of a geographical information system (GIS); and (c) the incorporation of different types of graphical packages. These tools have been applied to the 70 municipalities of the Catalan Coast and a specific development of the system was carried out in the region of La Selva, municipalities of Blanes, Lloret de Mar, and Tossa de Mar (southern Costa Brava, Girona). The system has been designed to help coastal managers in Catalonia, and it is thought to be used in the process of developing the National Strategy for Integrated Coastal Zone Management (ICZM) of the Catalan Coast following the EC Recommendation (COM/00/545).

  13. Surface profile measurement by using the integrated Linnik WLSI and confocal microscope system

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chung; Shen, Ming-Hsing; Hwang, Chi-Hung; Yu, Yun-Ting; Wang, Tzu-Fong

    2017-06-01

    The white-light scanning interferometer (WLSI) and confocal microscope (CM) are the two major optical inspection systems for measuring three-dimensional (3D) surface profile (SP) of micro specimens. Nevertheless, in practical applications, WLSI is more suitable for measuring smooth and low-slope surfaces. On the other hand, CM is more suitable for measuring uneven-reflective and low-reflective surfaces. As for aspect of surface profiles to be measured, the characteristics of WLSI and CM are also different. WLSI is generally used in semiconductor industry while CM is more popular in printed circuit board industry. In this paper, a self-assembled multi-function optical system was integrated to perform Linnik white-light scanning interferometer (Linnik WLSI) and CM. A connecting part composed of tubes, lenses and interferometer was used to conjunct finite and infinite optical systems for Linnik WLSI and CM in the self-assembled optical system. By adopting the flexibility of tubes and lenses, switching to perform two different optical measurements can be easily achieved. Furthermore, based on the shape from focus method with energy of Laplacian filter, the CM was developed to enhance the on focal information of each pixel so that the CM can provide all-in-focus image for performing the 3D SP measurement and analysis simultaneously. As for Linnik WLSI, eleven-step phase shifting algorithm was used to analyze vertical scanning signals and determine the 3D SP.

  14. Peri-implant and systemic effects of high-/low-affinity bisphosphonate-hydroxyapatite composite coatings in a rabbit model with peri-implant high bone turnover

    PubMed Central

    2012-01-01

    Background Hydroxyapatite (HA) coatings composed with bisphosphonates (BPs) which have high mineral-binding affinities have been confirmed to successfully enhance implant stability. However, few previous studies focused on HA coatings composed with low-affinity BPs or on systemic effects of locally released BPs. Methods In this long-term study, we developed two kinds of BP-HA composite coatings using either high-affinity BP (alendronate, ALN) or low-affinity BP (risedronate, RIS). Thirty-six rabbits were divided into three groups according to different coating applications (group I: HA, group II: ALN-HA, and group III: RIS-HA). Implants were inserted into the proximal region of the medullary cavity of the left tibiay. At insertion, 2 × 108 wear particles were injected around implants to induce a peri-implant high bone turnover environment. Both local (left tibias) and systemic (right tibias and lumbar vertebrae) inhibitory effect on bone resorption were compared, including bone-implant integration, bone architecture, bone mineral density (BMD), implant stability, and serum levels of bone turnover markers. Results The results indicated that ALN-HA composite coating, which could induce higher bone-implant contact (BIC) ratio, bone mass augmentation, BMD, and implant stability in the peri-implant region, was more potent on peri-implant bone, while RIS-HA composite coating, which had significant systemic effect, was more potent on non-peri-implant bone, especially lumbar vertebrae. Conclusions It is instructive and meaningful to further clinical studies that we could choose different BP-HA composite coatings according to the patient’s condition. PMID:22686414

  15. An innovative design for cardiopulmonary resuscitation manikins based on a human-like thorax and embedded flow sensors.

    PubMed

    Thielen, Mark; Joshi, Rohan; Delbressine, Frank; Bambang Oetomo, Sidarto; Feijs, Loe

    2017-03-01

    Cardiopulmonary resuscitation manikins are used for training personnel in performing cardiopulmonary resuscitation. State-of-the-art cardiopulmonary resuscitation manikins are still anatomically and physiologically low-fidelity designs. The aim of this research was to design a manikin that offers high anatomical and physiological fidelity and has a cardiac and respiratory system along with integrated flow sensors to monitor cardiac output and air displacement in response to cardiopulmonary resuscitation. This manikin was designed in accordance with anatomical dimensions using a polyoxymethylene rib cage connected to a vertebral column from an anatomical female model. The respiratory system was composed of silicon-coated memory foam mimicking lungs, a polyvinylchloride bronchus and a latex trachea. The cardiovascular system was composed of two sets of latex tubing representing the pulmonary and aortic arteries which were connected to latex balloons mimicking the ventricles and lumped abdominal volumes, respectively. These balloons were filled with Life/form simulation blood and placed inside polyether foam. The respiratory and cardiovascular systems were equipped with flow sensors to gather data in response to chest compressions. Three non-medical professionals performed chest compressions on this manikin yielding data corresponding to force-displacement while the flow sensors provided feedback. The force-displacement tests on this manikin show a desirable nonlinear behaviour mimicking chest compressions during cardiopulmonary resuscitation in humans. In addition, the flow sensors provide valuable data on the internal effects of cardiopulmonary resuscitation. In conclusion, scientifically designed and anatomically high-fidelity designs of cardiopulmonary resuscitation manikins that embed flow sensors can improve physiological fidelity and provide useful feedback data.

  16. An Efficient Strategy Based on Liquid-Liquid Extraction with Three-Phase Solvent System and High Speed Counter-Current Chromatography for Rapid Enrichment and Separation of Epimers of Minor Bufadienolide from Toad Meat.

    PubMed

    Zou, Denglang; Zhu, Xuelin; Zhang, Fan; Du, Yurong; Ma, Jianbin; Jiang, Renwang

    2018-01-31

    This study presents an efficient strategy based on liquid-liquid extraction with three-phase solvent system and high speed counter-current chromatography for rapid enrichment and separation of epimers of minor bufadienolide from toad meat. The reflux extraction conditions were optimized by response surface methodology first, and a novel three-phase solvent system composed of n-hexane/methyl acetate/acetonitrile/water (3:6:5:5, v/v) was developed for liquid-liquid extraction of the crude extract. This integrative extraction process could enrich minor bufadienolide from complex matrix efficiently and minimize the loss of minor targets induced by repeated extraction with different kinds of organic solvents occurring in the classical liquid two-phase extraction. As a result, four epimers of minor bufadienolide were greatly enriched in the middle phase and total content of these epimers of minor bufadienolide was increased from 3.25% to 46.23%. Then, the enriched four epimers were separated by HSCCC with a two-phase solvent system composed of chloroform/methanol/water (4:2:2, v/v) successfully. Furthermore, we tested Na + ,K + -ATPase (NKA) inhibitory effect of the four epimers. 3β-Isomers of bufadienolide showed stronger (>8-fold) inhibitory activity than 3α-isomers. The characterization of minor bufadienolide in toad meat and their significant difference of inhibitory effect on NKA would promote the further quantitative analysis and safety evaluation of toad meat as a food source.

  17. Motor-auditory-visual integration: The role of the human mirror neuron system in communication and communication disorders

    PubMed Central

    Le Bel, Ronald M.; Pineda, Jaime A.; Sharma, Anu

    2009-01-01

    The mirror neuron system (MNS) is a trimodal system composed of neuronal populations that respond to motor, visual, and auditory stimulation, such as when an action is performed, observed, heard or read about. In humans, the MNS has been identified using neuro-imaging techniques (such as fMRI and mu suppression in the EEG). It reflects an integration of motor-auditory-visual information processing related to aspects of language learning including action understanding and recognition. Such integration may also form the basis for language-related constructs such as theory of mind. In this article, we review the MNS system as it relates to the cognitive development of language in typically developing children and in children at-risk for communication disorders, such as children with autism spectrum disorder (ASD) or hearing impairment. Studying MNS development in these children may help illuminate an important role of the MNS in children with communication disorders. Studies with deaf children are especially important because they offer potential insights into how the MNS is reorganized when one modality, such as audition, is deprived during early cognitive development, and this may have long-term consequences on language maturation and theory of mind abilities. Learning outcomes Readers will be able to (1) understand the concept of mirror neurons, (2) identify cortical areas associated with the MNS in animal and human studies, (3) discuss the use of mu suppression in the EEG for measuring the MNS in humans, and (4) discuss MNS dysfunction in children with (ASD). PMID:19419735

  18. Multi-modal gesture recognition using integrated model of motion, audio and video

    NASA Astrophysics Data System (ADS)

    Goutsu, Yusuke; Kobayashi, Takaki; Obara, Junya; Kusajima, Ikuo; Takeichi, Kazunari; Takano, Wataru; Nakamura, Yoshihiko

    2015-07-01

    Gesture recognition is used in many practical applications such as human-robot interaction, medical rehabilitation and sign language. With increasing motion sensor development, multiple data sources have become available, which leads to the rise of multi-modal gesture recognition. Since our previous approach to gesture recognition depends on a unimodal system, it is difficult to classify similar motion patterns. In order to solve this problem, a novel approach which integrates motion, audio and video models is proposed by using dataset captured by Kinect. The proposed system can recognize observed gestures by using three models. Recognition results of three models are integrated by using the proposed framework and the output becomes the final result. The motion and audio models are learned by using Hidden Markov Model. Random Forest which is the video classifier is used to learn the video model. In the experiments to test the performances of the proposed system, the motion and audio models most suitable for gesture recognition are chosen by varying feature vectors and learning methods. Additionally, the unimodal and multi-modal models are compared with respect to recognition accuracy. All the experiments are conducted on dataset provided by the competition organizer of MMGRC, which is a workshop for Multi-Modal Gesture Recognition Challenge. The comparison results show that the multi-modal model composed of three models scores the highest recognition rate. This improvement of recognition accuracy means that the complementary relationship among three models improves the accuracy of gesture recognition. The proposed system provides the application technology to understand human actions of daily life more precisely.

  19. Synthetic biology: applying biological circuits beyond novel therapies.

    PubMed

    Dobrin, Anton; Saxena, Pratik; Fussenegger, Martin

    2016-04-18

    Synthetic biology, an engineering, circuit-driven approach to biology, has developed whole new classes of therapeutics. Unfortunately, these advances have thus far been undercapitalized upon by basic researchers. As discussed herein, using synthetic circuits, one can undertake exhaustive investigations of the endogenous circuitry found in nature, develop novel detectors and better temporally and spatially controlled inducers. One could detect changes in DNA, RNA, protein or even transient signaling events, in cell-based systems, in live mice, and in humans. Synthetic biology has also developed inducible systems that can be induced chemically, optically or using radio waves. This induction has been re-wired to lead to changes in gene expression, RNA stability and splicing, protein stability and splicing, and signaling via endogenous pathways. Beyond simple detectors and inducible systems, one can combine these modalities and develop novel signal integration circuits that can react to a very precise pre-programmed set of conditions or even to multiple sets of precise conditions. In this review, we highlight some tools that were developed in which these circuits were combined such that the detection of a particular event automatically triggered a specific output. Furthermore, using novel circuit-design strategies, circuits have been developed that can integrate multiple inputs together in Boolean logic gates composed of up to 6 inputs. We highlight the tools available and what has been developed thus far, and highlight how some clinical tools can be very useful in basic science. Most of the systems that are presented can be integrated together; and the possibilities far exceed the number of currently developed strategies.

  20. Mission Composeable C2 in DIL Information Environments Using Widgets and App Stores

    DTIC Science & Technology

    2013-06-01

    C2). Warfighters increasingly have access to integrated mobile devices to enhance their situational awareness. The Department of Defense and the...for agile command and control (C2). Warfighters increasingly have access to integrated mobile devices to enhance their situational awareness. The...This need has been partially addressed in the civilian world with the increasing use of mobile technology through which a company’s leadership can

  1. Studies on the S-band bunching system with the Hybrid Bunching-accelerating Structure

    NASA Astrophysics Data System (ADS)

    Pei, Shi-Lun; Gao, Bin

    2018-04-01

    Generally, a standard bunching system is composed of a standing-wave (SW) pre-buncher (PB), a traveling-wave (TW) buncher (B) and a standard accelerating structure. In the industrial area, the bunching system is usually simplified by eliminating the PB and integrating the B and the standard accelerating structure together to form a β-varied accelerating structure. The beam capturing efficiency for this kind of simplified system is often worse than that for the standard one. The hybrid buncher (HB) has been proved to be a successful attempt to reduce the cost but preserve the beam quality as much as possible. Here we propose to exclusively simplify the standard bunching system by integrating the PB, the B and the standard accelerating structure together to form a Hybrid Bunching-accelerating Structure (HBaS). Compared to the standard bunching system, the one based on the HBaS is more compact, and the cost is lowered to the largest extent. With almost the same beam transportation efficiency (∼70%) from the electron gun to the linac exit, the peak-to-peak (p-to-p) beam energy spread and the 1 σ emittance of the linac with the HBaS are ∼20% and ∼60% bigger than those of the linac based on the split PB/B/standard accelerating structure system. Nonetheless, the proposed HBaS can be widely applied in the industrial linacs to greatly increase the beam capturing efficiency without fairly increasing the construction cost.

  2. Big data managing in a landslide early warning system: experience from a ground-based interferometric radar application

    NASA Astrophysics Data System (ADS)

    Intrieri, Emanuele; Bardi, Federica; Fanti, Riccardo; Gigli, Giovanni; Fidolini, Francesco; Casagli, Nicola; Costanzo, Sandra; Raffo, Antonio; Di Massa, Giuseppe; Capparelli, Giovanna; Versace, Pasquale

    2017-10-01

    A big challenge in terms or landslide risk mitigation is represented by increasing the resiliency of society exposed to the risk. Among the possible strategies with which to reach this goal, there is the implementation of early warning systems. This paper describes a procedure to improve early warning activities in areas affected by high landslide risk, such as those classified as critical infrastructures for their central role in society. This research is part of the project LEWIS (Landslides Early Warning Integrated System): An Integrated System for Landslide Monitoring, Early Warning and Risk Mitigation along Lifelines. LEWIS is composed of a susceptibility assessment methodology providing information for single points and areal monitoring systems, a data transmission network and a data collecting and processing center (DCPC), where readings from all monitoring systems and mathematical models converge and which sets the basis for warning and intervention activities. The aim of this paper is to show how logistic issues linked to advanced monitoring techniques, such as big data transfer and storing, can be dealt with compatibly with an early warning system. Therefore, we focus on the interaction between an areal monitoring tool (a ground-based interferometric radar) and the DCPC. By converting complex data into ASCII strings and through appropriate data cropping and average, and by implementing an algorithm for line-of-sight correction, we managed to reduce the data daily output without compromising the capability for performing.

  3. Holothurian Nervous System Diversity Revealed by Neuroanatomical Analysis

    PubMed Central

    Díaz-Balzac, Carlos A.; Lázaro-Peña, María I.; Vázquez-Figueroa, Lionel D.; Díaz-Balzac, Roberto J.; García-Arrarás, José E.

    2016-01-01

    The Echinodermata comprise an interesting branch in the phylogenetic tree of deuterostomes. Their radial symmetry which is reflected in their nervous system anatomy makes them a target of interest in the study of nervous system evolution. Until recently, the study of the echinoderm nervous system has been hindered by a shortage of neuronal markers. However, in recent years several markers of neuronal and fiber subpopulations have been described. These have been used to identify subpopulations of neurons and fibers, but an integrative study of the anatomical relationship of these subpopulations is wanting. We have now used eight commercial antibodies, together with three antibodies produced by our group to provide a comprehensive and integrated description and new details of the echinoderm neuroanatomy using the holothurian Holothuria glaberrima (Selenka, 1867) as our model system. Immunoreactivity of the markers used showed: (1) specific labeling patterns by markers in the radial nerve cords, which suggest the presence of specific nerve tracts in holothurians. (2) Nerves directly innervate most muscle fibers in the longitudinal muscles. (3) Similar to other deuterostomes (mainly vertebrates), their enteric nervous system is composed of a large and diverse repertoire of neurons and fiber phenotypes. Our results provide a first blueprint of the anatomical organization of cells and fibers that form the holothurian neural circuitry, and highlight the fact that the echinoderm nervous system shows unexpected diversity in cell and fiber types and their distribution in both central and peripheral nervous components. PMID:26987052

  4. Space Power Amplification with Active Linearly Tapered Slot Antenna Array

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1993-01-01

    A space power amplifier composed of active linearly tapered slot antennas (LTSA's) has been demonstrated and shown to have a gain of 30 dB at 20 GHz. In each of the antenna elements, a GaAs monolithic microwave integrated circuit (MMIC) three-stage power amplifier is integrated with two LTSA's. The LTSA and the MMIC power amplifier has a gain of 11 dB and power added efficiency of 14 percent respectively. The design is suitable for constructing a large array using monolithic integration techniques.

  5. Computerized Instruction in Translation Strategies for Students in Upper Elementary and Middle School Grades With Persisting Learning Disabilities in Written Language

    PubMed Central

    Niedo, Jasmin; Tanimoto, Steve; Thompson, Robert H.; Abbott, Robert D.; Berninger, Virginia W.

    2016-01-01

    Students in grades 5 to 9 (ages 10 to 14; 6 girls, 27 boys) who had persisting specific learning disabilities in transcription (handwriting and spelling) completed three kinds of composition tasks requiring translation (thought to written language) on iPads using alternating transcription modes (stylus or keyboard) across every three lessons: personal narratives (6 lessons) and written summaries about read source material (integrated reading-writing) and heard source material (integrated listening-writing) (12 lessons). Before composing summaries, students clicked sequentially one at a time onto translation strategies, which they read and heard through earphones, and could click on again as needed during summary writing: (a) Level I composing of the very next sentence, and (b) Level II composing of a higher-level discourse structure. ANOVAs showed that Level I strategies were used significantly more often than Level II strategies; but the main effect for transcription mode was not significant. Written summaries of read source material had more errors in main ideas and factual details than heard source materials, but not more irrelevant statements. Applications of results are discussed for using computers for writing instruction, not just accommodations, for students with persisting transcription disabilities. PMID:28670103

  6. Space Station alpha joint bearing

    NASA Technical Reports Server (NTRS)

    Everman, Michael R.; Jones, P. Alan; Spencer, Porter A.

    1987-01-01

    Perhaps the most critical structural system aboard the Space Station is the Solar Alpha Rotary Joint which helps align the power generation system with the sun. The joint must provide structural support and controlled rotation to the outboard transverse booms as well as power and data transfer across the joint. The Solar Alpha Rotary Joint is composed of two transition sections and an integral, large diameter bearing. Alpha joint bearing design presents a particularly interesting problem because of its large size and need for high reliability, stiffness, and on orbit maintability. The discrete roller bearing developed is a novel refinement to cam follower technology. It offers thermal compensation and ease of on-orbit maintenance that are not found in conventional rolling element bearings. How the bearing design evolved is summarized. Driving requirements are reviewed, alternative concepts assessed, and the selected design is described.

  7. CLV First Stage Design, Development, Test and Evaluation

    NASA Technical Reports Server (NTRS)

    Burt, Richard K.; Brasfield, F.

    2006-01-01

    The Crew Launch Vehicle (CLV) is an integral part of NASA's Exploration architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Currently in the system definition phase, the CLV is planned to replace the Space Shuttle for crew transport in the post 2010 time frame. It is comprised of a solid rocket booster first stage derived from the current Space Shuttle SRB, a LOX/hydrogen liquid fueled second stage utilizing a derivative of the Space Shuttle Main Engine (SSME) for propulsion, and a Crew Exploration Vehicle (GEV) composed of Command and Service Modules. This paper deals with current DDT&E planning for the CLV first stage solid rocket booster. Described are the current overall point-of-departure design and booster subsystems, systems engineering approach, and milestone schedule requirements.

  8. Development of a Three-Dimensional Spectral Element Model for NWP: Idealized Simulations on the Sphere

    NASA Astrophysics Data System (ADS)

    Viner, K.; Reinecke, P. A.; Gabersek, S.; Flagg, D. D.; Doyle, J. D.; Martini, M.; Ryglicki, D.; Michalakes, J.; Giraldo, F.

    2016-12-01

    NEPTUNE: the Navy Environmental Prediction sysTem Using the NUMA*corE, is a 3D spectral element atmospheric model composed of a full suite of physics parameterizations and pre- and post-processing infrastructure with plans for data assimilation and coupling components to a variety of Earth-system models. This talk will focus on the initial struggles and solutions in adapting NUMA for stable and accurate integration on the sphere using both the deep atmosphere equations and a newly developed shallow-atmosphere approximation, as demonstrated through idealized test cases. In addition, details of the physics-dynamics coupling methodology will be discussed. NEPTUNE results for test cases from the 2016 Dynamical Core Model Intercomparison Project (DCMIP-2016) will be shown and discussed. *NUMA: Nonhydrostatic Unified Model of the Atmosphere; Kelly and Giraldo 2012, JCP

  9. A biotechnological T-shirt monitors the patient's heart during hemodialysis.

    PubMed

    Lacquaniti, Antonio; Donato, Valentina; Lucisano, Silvia; Buemi, Antoine; Buemi, Michele

    2012-01-01

    Uremic patients are characterized by a "pro-arrhythmic substrate." Arrhythmia appearance during hemodialysis (HD) is an unexpected event with a high incidence of mortality and morbidity and difficult to record in patients repeatedly checked using electrocardiogram (ECG). Furthermore the carrying out of this important examination by classical devices during HD is uncomfortable and sometimes stressful for the patient. It may be very useful to monitor the patient's cardiac activity during the whole HD session. We tried to overcome these difficulties using Whealthy(®) (Wearable Health Care System), a wearable system in a T-shirt composed of conductors and piezoresistive materials, integrated to form fibers and threads connected to tissular sensors, electrodes, and connectors. ECG and pneumographic impedance signals are acquired by the electrodes in the tissue, and the data are registered by a small computer and transmitted via GPRS or Bluetooth.

  10. Content-based TV sports video retrieval using multimodal analysis

    NASA Astrophysics Data System (ADS)

    Yu, Yiqing; Liu, Huayong; Wang, Hongbin; Zhou, Dongru

    2003-09-01

    In this paper, we propose content-based video retrieval, which is a kind of retrieval by its semantical contents. Because video data is composed of multimodal information streams such as video, auditory and textual streams, we describe a strategy of using multimodal analysis for automatic parsing sports video. The paper first defines the basic structure of sports video database system, and then introduces a new approach that integrates visual stream analysis, speech recognition, speech signal processing and text extraction to realize video retrieval. The experimental results for TV sports video of football games indicate that the multimodal analysis is effective for video retrieval by quickly browsing tree-like video clips or inputting keywords within predefined domain.

  11. Design automation techniques for custom LSI arrays

    NASA Technical Reports Server (NTRS)

    Feller, A.

    1975-01-01

    The standard cell design automation technique is described as an approach for generating random logic PMOS, CMOS or CMOS/SOS custom large scale integration arrays with low initial nonrecurring costs and quick turnaround time or design cycle. The system is composed of predesigned circuit functions or cells and computer programs capable of automatic placement and interconnection of the cells in accordance with an input data net list. The program generates a set of instructions to drive an automatic precision artwork generator. A series of support design automation and simulation programs are described, including programs for verifying correctness of the logic on the arrays, performing dc and dynamic analysis of MOS devices, and generating test sequences.

  12. Development of Bread Board Model of TRMM precipitation radar

    NASA Astrophysics Data System (ADS)

    Okamoto, Ken'ichi; Ihara, Toshio; Kumagai, Hiroshi

    The active array radar was selected as a reliable candidate for the TRMM (Tropical Rainfall Measuring Mission) precipitation radar after the trade off studies performed by Communications Research Laboratory (CRL) in the US-Japan joint feasibility study of TRMM in 1987-1988. Main system parameters and block diagram for TRMM precipitation radar are shown as the result of feasibility study. CRL developed key devices for the active array precipitation radar such as 8-element slotted waveguide array antenna, the 5 bit PIN diode phase shifters, solid state power amplifiers and low noise amplifiers in 1988-1990. Integration of these key devices was made to compose 8-element Bread Board Model of TRMM precipitation radar.

  13. On architecting and composing engineering information services to enable smart manufacturing

    PubMed Central

    Ivezic, Nenad; Srinivasan, Vijay

    2016-01-01

    Engineering information systems play an important role in the current era of digitization of manufacturing, which is a key component to enable smart manufacturing. Traditionally, these engineering information systems spanned the lifecycle of a product by providing interoperability of software subsystems through a combination of open and proprietary exchange of data. But research and development efforts are underway to replace this paradigm with engineering information services that can be composed dynamically to meet changing needs in the operation of smart manufacturing systems. This paper describes the opportunities and challenges in architecting such engineering information services and composing them to enable smarter manufacturing. PMID:27840595

  14. Integrated application of combined cooling, heating and power poly-generation PV radiant panel system of zero energy buildings

    NASA Astrophysics Data System (ADS)

    Yin, Baoquan

    2018-02-01

    A new type of combined cooling, heating and power of photovoltaic radiant panel (PV/R) module was proposed, and applied in the zero energy buildings in this paper. The energy system of this building is composed of PV/R module, low temperature difference terminal, energy storage, multi-source heat pump, energy balance control system. Radiant panel is attached on the backside of the PV module for cooling the PV, which is called PV/R module. During the daytime, the PV module was cooled down with the radiant panel, as the temperature coefficient influence, the power efficiency was increased by 8% to 14%, the radiant panel solar heat collecting efficiency was about 45%. Through the nocturnal radiant cooling, the PV/R cooling capacity could be 50 W/m2. For the multifunction energy device, the system shows the versatility during the heating, cooling and power used of building utilization all year round.

  15. A UHF RFID system with on-chip-antenna tag for short range communication

    NASA Astrophysics Data System (ADS)

    Qi, Peng; Chun, Zhang; Xijin, Zhao; Zhihua, Wang

    2015-05-01

    A UHF RF identification system based on the 0.18 μm CMOS process has been developed for short range and harsh size requirement applications, which is composed of a fully integrated tag and a special reader. The whole tag chip with the antenna takes up an area of 0.36 mm2, which is smaller than other reported tags with an on-chip antenna (OCA) using the standard CMOS process. A self-defined protocol is proposed to reduce the power consumption, and minimize the size of the tag. The specialized SOC reader system consists of the RF transceiver, digital baseband, MCU and host interface. Its power consumption is about 500 mW. Measurement results show that the system's reading range is 2 mm with 20 dBm reader output power. With an inductive antenna printed on a paper substrate around the OCA tag, the reading range can be extended from several centimeters to meters, depending on the shape and size of the inductive antenna.

  16. Homogenization-based interval analysis for structural-acoustic problem involving periodical composites and multi-scale uncertain-but-bounded parameters.

    PubMed

    Chen, Ning; Yu, Dejie; Xia, Baizhan; Liu, Jian; Ma, Zhengdong

    2017-04-01

    This paper presents a homogenization-based interval analysis method for the prediction of coupled structural-acoustic systems involving periodical composites and multi-scale uncertain-but-bounded parameters. In the structural-acoustic system, the macro plate structure is assumed to be composed of a periodically uniform microstructure. The equivalent macro material properties of the microstructure are computed using the homogenization method. By integrating the first-order Taylor expansion interval analysis method with the homogenization-based finite element method, a homogenization-based interval finite element method (HIFEM) is developed to solve a periodical composite structural-acoustic system with multi-scale uncertain-but-bounded parameters. The corresponding formulations of the HIFEM are deduced. A subinterval technique is also introduced into the HIFEM for higher accuracy. Numerical examples of a hexahedral box and an automobile passenger compartment are given to demonstrate the efficiency of the presented method for a periodical composite structural-acoustic system with multi-scale uncertain-but-bounded parameters.

  17. Brain mechanisms that control sleep and waking

    NASA Astrophysics Data System (ADS)

    Siegel, Jerome

    This review paper presents a brief historical survey of the technological and early research that laid the groundwork for recent advances in sleep-waking research. A major advance in this field occurred shortly after the end of World War II with the discovery of the ascending reticular activating system (ARAS) as the neural source in the brain stem of the waking state. Subsequent research showed that the brain stem activating system produced cortical arousal via two pathways: a dorsal route through the thalamus and a ventral route through the hypothalamus and basal forebrain. The nuclei, pathways, and neurotransmitters that comprise the multiple components of these arousal systems are described. Sleep is now recognized as being composed of two very different states: rapid eye movements (REMs) sleep and non-REM sleep. The major findings on the neural mechanisms that control these two sleep states are presented. This review ends with a discussion of two current views on the function of sleep: to maintain the integrity of the immune system and to enhance memory consolidation.

  18. Optimization and Control of Cyber-Physical Vehicle Systems

    PubMed Central

    Bradley, Justin M.; Atkins, Ella M.

    2015-01-01

    A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined. PMID:26378541

  19. Optimization and Control of Cyber-Physical Vehicle Systems.

    PubMed

    Bradley, Justin M; Atkins, Ella M

    2015-09-11

    A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined.

  20. A Conformal, Bio-interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology

    PubMed Central

    Viventi, Jonathan; Kim, Dae-Hyeong; Moss, Joshua D.; Kim, Yun-Soung; Blanco, Justin A.; Annetta, Nicholas; Hicks, Andrew; Xiao, Jianliang; Huang, Younggang; Callans, David J.; Rogers, John A.; Litt, Brian

    2011-01-01

    The sophistication and resolution of current implantable medical devices are limited by the need connect each sensor separately to data acquisition systems. The ability of these devices to sample and modulate tissues is further limited by the rigid, planar nature of the electronics and the electrode-tissue interface. Here, we report the development of a class of mechanically flexible silicon electronics for measuring signals in an intimate, conformal integrated mode on the dynamic, three dimensional surfaces of soft tissues in the human body. We illustrate this technology in sensor systems composed of 2016 silicon nanomembrane transistors configured to record electrical activity directly from the curved, wet surface of a beating heart in vivo. The devices sample with simultaneous sub-millimeter and sub-millisecond resolution through 288 amplified and multiplexed channels. We use these systems to map the spread of spontaneous and paced ventricular depolarization in real time, at high resolution, on the epicardial surface in a porcine animal model. This clinical-scale demonstration represents one example of many possible uses of this technology in minimally invasive medical devices. [Conformal electronics and sensors intimately integrated with living tissues enable a new generation of implantable devices capable of addressing important problems in human health.] PMID:20375008

  1. Conceptual framework of public health surveillance and action and its application in health sector reform.

    PubMed

    McNabb, Scott J N; Chungong, Stella; Ryan, Mike; Wuhib, Tadesse; Nsubuga, Peter; Alemu, Wondi; Carande-Kulis, Vilma; Rodier, Guenael

    2002-01-01

    Because both public health surveillance and action are crucial, the authors initiated meetings at regional and national levels to assess and reform surveillance and action systems. These meetings emphasized improved epidemic preparedness, epidemic response, and highlighted standardized assessment and reform. To standardize assessments, the authors designed a conceptual framework for surveillance and action that categorized the framework into eight core and four support activities, measured with indicators. In application, country-level reformers measure both the presence and performance of the six core activities comprising public health surveillance (detection, registration, reporting, confirmation, analyses, and feedback) and acute (epidemic-type) and planned (management-type) responses composing the two core activities of public health action. Four support activities - communications, supervision, training, and resource provision - enable these eight core processes. National, multiple systems can then be concurrently assessed at each level for effectiveness, technical efficiency, and cost. This approach permits a cost analysis, highlights areas amenable to integration, and provides focused intervention. The final public health model becomes a district-focused, action-oriented integration of core and support activities with enhanced effectiveness, technical efficiency, and cost savings. This reform approach leads to sustained capacity development by an empowerment strategy defined as facilitated, process-oriented action steps transforming staff and the system.

  2. Development of acoustic model-based iterative reconstruction technique for thick-concrete imaging

    NASA Astrophysics Data System (ADS)

    Almansouri, Hani; Clayton, Dwight; Kisner, Roger; Polsky, Yarom; Bouman, Charles; Santos-Villalobos, Hector

    2016-02-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.1

  3. The Performance Analysis of AN Indoor Mobile Mapping System with Rgb-D Sensor

    NASA Astrophysics Data System (ADS)

    Tsai, G. J.; Chiang, K. W.; Chu, C. H.; Chen, Y. L.; El-Sheimy, N.; Habib, A.

    2015-08-01

    Over the years, Mobile Mapping Systems (MMSs) have been widely applied to urban mapping, path management and monitoring and cyber city, etc. The key concept of mobile mapping is based on positioning technology and photogrammetry. In order to achieve the integration, multi-sensor integrated mapping technology has clearly established. In recent years, the robotic technology has been rapidly developed. The other mapping technology that is on the basis of low-cost sensor has generally used in robotic system, it is known as the Simultaneous Localization and Mapping (SLAM). The objective of this study is developed a prototype of indoor MMS for mobile mapping applications, especially to reduce the costs and enhance the efficiency of data collection and validation of direct georeferenced (DG) performance. The proposed indoor MMS is composed of a tactical grade Inertial Measurement Unit (IMU), the Kinect RGB-D sensor and light detection, ranging (LIDAR) and robot. In summary, this paper designs the payload for indoor MMS to generate the floor plan. In first session, it concentrates on comparing the different positioning algorithms in the indoor environment. Next, the indoor plans are generated by two sensors, Kinect RGB-D sensor LIDAR on robot. Moreover, the generated floor plan will compare with the known plan for both validation and verification.

  4. Airport Surface Movement Technologies: Atlanta Demonstrations Overview

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Young, Steven D.

    1997-01-01

    A flight demonstration was conducted in August 1997 at the Hartsfield Atlanta (ATL) International Airport as part of low visibility landing and surface operations (LVLASO) research activities. This research was aimed at investigating technology to improve the safety and efficiency of aircraft movements on the surface during the operational phases of roll-out, turnoff, and taxi in any weather condition down to a runway visual range of 300 feet. The system tested at ATL was composed of airborne and ground-based components that were integrated to provide both the flight crew and controllers with supplemental information to enable safe, expedient surface operations. Experimental displays were installed on a Boeing 757-200 research aircraft in both headup and head-down formats. On the ground, an integrated system maintained surveillance of the airport surface and a controller interface provided routing and control instructions. While at ATL, the research aircraft performed a series of flight and taxi operations to show the validity of the operational concept at a major airport facility, to validate simulation findings, and to assess each of the individual technologies performance in an airport environment. The concept was demonstrated to over 100 visitors from the Federal Aviation Administration (FAA) and the aviation community. This paper gives an overview of the LVLASO system and ATL test activities.

  5. Transparent Stretchable Self-Powered Patchable Sensor Platform with Ultrasensitive Recognition of Human Activities.

    PubMed

    Hwang, Byeong-Ung; Lee, Ju-Hyuck; Trung, Tran Quang; Roh, Eun; Kim, Do-Il; Kim, Sang-Woo; Lee, Nae-Eung

    2015-09-22

    Monitoring of human activities can provide clinically relevant information pertaining to disease diagnostics, preventive medicine, care for patients with chronic diseases, rehabilitation, and prosthetics. The recognition of strains on human skin, induced by subtle movements of muscles in the internal organs, such as the esophagus and trachea, and the motion of joints, was demonstrated using a self-powered patchable strain sensor platform, composed on multifunctional nanocomposites of low-density silver nanowires with a conductive elastomer of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/polyurethane, with high sensitivity, stretchability, and optical transparency. The ultra-low-power consumption of the sensor, integrated with both a supercapacitor and a triboelectric nanogenerator into a single transparent stretchable platform based on the same nanocomposites, results in a self-powered monitoring system for skin strain. The capability of the sensor to recognize a wide range of strain on skin has the potential for use in new areas of invisible stretchable electronics for human monitoring. A new type of transparent, stretchable, and ultrasensitive strain sensor based on a AgNW/PEDOT:PSS/PU nanocomposite was developed. The concept of a self-powered patchable sensor system integrated with a supercapacitor and a triboelectric nanogenerator that can be used universally as an autonomous invisible sensor system was used to detect the wide range of strain on human skin.

  6. The Comparison between Circadian Oscillators in Mouse Liver and Pituitary Gland Reveals Different Integration of Feeding and Light Schedules

    PubMed Central

    Bur, Isabelle M.; Zouaoui, Sonia; Fontanaud, Pierre; Coutry, Nathalie; Molino, François; Martin, Agnès O.; Mollard, Patrice; Bonnefont, Xavier

    2010-01-01

    The mammalian circadian system is composed of multiple peripheral clocks that are synchronized by a central pacemaker in the suprachiasmatic nuclei of the hypothalamus. This system keeps track of the external world rhythms through entrainment by various time cues, such as the light-dark cycle and the feeding schedule. Alterations of photoperiod and meal time modulate the phase coupling between central and peripheral oscillators. In this study, we used real-time quantitative PCR to assess circadian clock gene expression in the liver and pituitary gland from mice raised under various photoperiods, or under a temporal restricted feeding protocol. Our results revealed unexpected differences between both organs. Whereas the liver oscillator always tracked meal time, the pituitary circadian clockwork showed an intermediate response, in between entrainment by the light regimen and the feeding-fasting rhythm. The same composite response was also observed in the pituitary gland from adrenalectomized mice under daytime restricted feeding, suggesting that circulating glucocorticoids do not inhibit full entrainment of the pituitary clockwork by meal time. Altogether our results reveal further aspects in the complexity of phase entrainment in the circadian system, and suggest that the pituitary may host oscillators able to integrate multiple time cues. PMID:21179516

  7. An automated knowledge-based textual summarization system for longitudinal, multivariate clinical data.

    PubMed

    Goldstein, Ayelet; Shahar, Yuval

    2016-06-01

    Design and implement an intelligent free-text summarization system: The system's input includes large numbers of longitudinal, multivariate, numeric and symbolic clinical raw data, collected over varying periods of time, and in different complex contexts, and a suitable medical knowledge base. The system then automatically generates a textual summary of the data. We aim to prove the feasibility of implementing such a system, and to demonstrate its potential benefits for clinicians and for enhancement of quality of care. We have designed a new, domain-independent, knowledge-based system, the CliniText system, for automated summarization in free text of longitudinal medical records of any duration, in any context. The system is composed of six components: (1) A temporal abstraction module generates all possible abstractions from the patient's raw data using a temporal-abstraction knowledge base; (2) The abductive reasoning module infers abstractions or events from the data, which were not explicitly included in the database; (3) The pruning module filters out raw or abstract data based on predefined heuristics; (4) The document structuring module organizes the remaining raw or abstract data, according to the desired format; (5) The microplanning module, groups the raw or abstract data and creates referring expressions; (6) The surface realization module, generates the text, and applies the grammar rules of the chosen language. We have performed an initial technical evaluation of the system in the cardiac intensive-care and diabetes domains. We also summarize the results of a more detailed evaluation study that we have performed in the intensive-care domain that assessed the completeness, correctness, and overall quality of the system's generated text, and its potential benefits to clinical decision making. We assessed these measures for 31 letters originally composed by clinicians, and for the same letters when generated by the CliniText system. We have successfully implemented all of the components of the CliniText system in software. We have also been able to create a comprehensive temporal-abstraction knowledge base to support its functionality, mostly in the intensive-care domain. The initial technical evaluation of the system in the cardiac intensive-care and diabetes domains has shown great promise, proving the feasibility of constructing and operating such systems. The detailed results of the evaluation in the intensive-care domain are out of scope of the current paper, and we refer the reader to a more detailed source. In all of the letters composed by clinicians, there were at least two important items per letter missed that were included by the CliniText system. The clinicians' letters got a significantly better grade in three out of four measured quality parameters, as judged by an expert; however, the variance in the quality was much higher in the clinicians' letters. In addition, three clinicians answered questions based on the discharge letter 40% faster, and answered four out of the five questions equally well or significantly better, when using the CliniText-generated letters, than when using the clinician-composed letters. Constructing a working system for automated summarization in free text of large numbers of varying periods of multivariate longitudinal clinical data is feasible. So is the construction of a large knowledge base, designed to support such a system, in a complex clinical domain, such as the intensive-care domain. The integration of the quality and functionality results suggests that the optimal discharge letter should exploit both human and machine, possibly by creating a machine-generated draft that will be polished by a human clinician. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Modeling and Simulation of Variable Mass, Flexible Structures

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick A.; Matras, Alex L.; Wilson, Heath E.

    2009-01-01

    The advent of the new Ares I launch vehicle has highlighted the need for advanced dynamic analysis tools for variable mass, flexible structures. This system is composed of interconnected flexible stages or components undergoing rapid mass depletion through the consumption of solid or liquid propellant. In addition to large rigid body configuration changes, the system simultaneously experiences elastic deformations. In most applications, the elastic deformations are compatible with linear strain-displacement relationships and are typically modeled using the assumed modes technique. The deformation of the system is approximated through the linear combination of the products of spatial shape functions and generalized time coordinates. Spatial shape functions are traditionally composed of normal mode shapes of the system or even constraint modes and static deformations derived from finite element models of the system. Equations of motion for systems undergoing coupled large rigid body motion and elastic deformation have previously been derived through a number of techniques [1]. However, in these derivations, the mode shapes or spatial shape functions of the system components were considered constant. But with the Ares I vehicle, the structural characteristics of the system are changing with the mass of the system. Previous approaches to solving this problem involve periodic updates to the spatial shape functions or interpolation between shape functions based on system mass or elapsed mission time. These solutions often introduce misleading or even unstable numerical transients into the system. Plus, interpolation on a shape function is not intuitive. This paper presents an approach in which the shape functions are held constant and operate on the changing mass and stiffness matrices of the vehicle components. Each vehicle stage or component finite element model is broken into dry structure and propellant models. A library of propellant models is used to describe the distribution of mass in the fuel tank or Solid Rocket Booster (SRB) case for various propellant levels. Based on the mass consumed by the liquid engine or SRB, the appropriate propellant model is coupled with the dry structure model for the stage. Then using vehicle configuration data, the integrated vehicle model is assembled and operated on by the constant system shape functions. The system mode shapes and frequencies can then be computed from the resulting generalized mass and stiffness matrices for that mass configuration. The rigid body mass properties of the vehicle are derived from the integrated vehicle model. The coupling terms between the vehicle rigid body motion and elastic deformation are also updated from the constant system shape functions and the integrated vehicle model. This approach was first used to analyze variable mass spinning beams and then prototyped into a generic dynamics simulation engine. The resulting code was tested against Crew Launch Vehicle (CLV-)class problems worked in the TREETOPS simulation package and by Wilson [2]. The Ares I System Integration Laboratory (SIL) is currently being developed at the Marshall Space Flight Center (MSFC) to test vehicle avionics hardware and software in a hardware-in-the-loop (HWIL) environment and certify that the integrated system is prepared for flight. The Ares I SIL utilizes the Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) tool to simulate the launch vehicle and stimulate avionics hardware. Due to the presence of vehicle control system filters and the thrust oscillation suppression system, which are tuned to the structural characteristics of the vehicle, ARTEMIS must incorporate accurate structural models of the Ares I launch vehicle. The ARTEMIS core dynamics simulation models the highly coupled nature of the vehicle flexible body dynamics, propellant slosh, and vehicle nozzle inertia effects combined with mass and flexible body properties that vary significant with time during the flight. All forces that act on the vehicle during flight must be simulated, including deflected engine thrust force, spatially distributed aerodynamic forces, gravity, and reaction control jet thrust forces. These forces are used to excite an integrated flexible vehicle, slosh, and nozzle dynamics model for the vehicle stack that simulates large rigid body translations and rotations along with small elastic deformations. Highly effective matrix math operations on a distributed, threaded high-performance simulation node allow ARTEMIS to retain up to 30 modes of flex for real-time simulation. Stage elements that separate from the stack during flight are propagated as independent rigid six degrees of freedom (6DOF) bodies. This paper will present the formulation of the resulting equations of motion, solutions to example problems, and describe the resulting dynamics simulation engine within ARTEMIS.

  9. The Modular Modeling System (MMS): A modeling framework for water- and environmental-resources management

    USGS Publications Warehouse

    Leavesley, G.H.; Markstrom, S.L.; Viger, R.J.

    2004-01-01

    The interdisciplinary nature and increasing complexity of water- and environmental-resource problems require the use of modeling approaches that can incorporate knowledge from a broad range of scientific disciplines. The large number of distributed hydrological and ecosystem models currently available are composed of a variety of different conceptualizations of the associated processes they simulate. Assessment of the capabilities of these distributed models requires evaluation of the conceptualizations of the individual processes, and the identification of which conceptualizations are most appropriate for various combinations of criteria, such as problem objectives, data constraints, and spatial and temporal scales of application. With this knowledge, "optimal" models for specific sets of criteria can be created and applied. The U.S. Geological Survey (USGS) Modular Modeling System (MMS) is an integrated system of computer software that has been developed to provide these model development and application capabilities. MMS supports the integration of models and tools at a variety of levels of modular design. These include individual process models, tightly coupled models, loosely coupled models, and fully-integrated decision support systems. A variety of visualization and statistical tools are also provided. MMS has been coupled with the Bureau of Reclamation (BOR) object-oriented reservoir and river-system modeling framework, RiverWare, under a joint USGS-BOR program called the Watershed and River System Management Program. MMS and RiverWare are linked using a shared relational database. The resulting database-centered decision support system provides tools for evaluating and applying optimal resource-allocation and management strategies to complex, operational decisions on multipurpose reservoir systems and watersheds. Management issues being addressed include efficiency of water-resources management, environmental concerns such as meeting flow needs for endangered species, and optimizing operations within the constraints of multiple objectives such as power generation, irrigation, and water conservation. This decision support system approach is being developed, tested, and implemented in the Gunni-son, Yakima, San Juan, Rio Grande, and Truckee River basins of the western United States. Copyright ASCE 2004.

  10. EMMA: a new paradigm in configurable software

    DOE PAGES

    Nogiec, J. M.; Trombly-Freytag, K.

    2017-11-23

    EMMA is a framework designed to create a family of configurable software systems, with emphasis on extensibility and flexibility. It is based on a loosely coupled, event driven architecture. The EMMA framework has been built upon the premise of composing software systems from independent components. It opens up opportunities for reuse of components and their functionality and composing them together in many different ways. As a result, it provides the developer of test and measurement applications with a lightweight alternative to microservices, while sharing their various advantages, including composability, loose coupling, encapsulation, and reuse.

  11. EMMA: A New Paradigm in Configurable Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nogiec, J. M.; Trombly-Freytag, K.

    EMMA is a framework designed to create a family of configurable software systems, with emphasis on extensibility and flexibility. It is based on a loosely coupled, event driven architecture. The EMMA framework has been built upon the premise of composing software systems from independent components. It opens up opportunities for reuse of components and their functionality and composing them together in many different ways. It provides the developer of test and measurement applications with a lightweight alternative to microservices, while sharing their various advantages, including composability, loose coupling, encapsulation, and reuse.

  12. EMMA: a new paradigm in configurable software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nogiec, J. M.; Trombly-Freytag, K.

    EMMA is a framework designed to create a family of configurable software systems, with emphasis on extensibility and flexibility. It is based on a loosely coupled, event driven architecture. The EMMA framework has been built upon the premise of composing software systems from independent components. It opens up opportunities for reuse of components and their functionality and composing them together in many different ways. As a result, it provides the developer of test and measurement applications with a lightweight alternative to microservices, while sharing their various advantages, including composability, loose coupling, encapsulation, and reuse.

  13. EMMA: a new paradigm in configurable software

    NASA Astrophysics Data System (ADS)

    Nogiec, J. M.; Trombly-Freytag, K.

    2017-10-01

    EMMA is a framework designed to create a family of configurable software systems, with emphasis on extensibility and flexibility. It is based on a loosely coupled, event driven architecture. The EMMA framework has been built upon the premise of composing software systems from independent components. It opens up opportunities for reuse of components and their functionality and composing them together in many different ways. It provides the developer of test and measurement applications with a lightweight alternative to microservices, while sharing their various advantages, including composability, loose coupling, encapsulation, and reuse.

  14. Implementation of a preamplifier-amplifier system for radiation detectors used in Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Velásquez, A. A.; Arroyave, M.

    2014-01-01

    We report the assembly and testing of a preamplification and amplification system for pulses produced by gaseous radiation detectors commonly used in Mössbauer spectroscopy. The system is composed by a pair of commercial integrated circuits A203 and A206, which operate as charge sensitive preamplifier-shaping amplifier and linear amplifier-low level discriminator, respectively. The integrated circuits were interconnected in the unipolar output mode and placed inside a metallic shielding, which prevents noise amplification for a suitable signal-noise ratio. The system was tested by irradiating a proportional counter LND-45431 with characteristic X rays of 6.3 keV and gamma rays of 14.4 keV emitted by a Mössbauer radioactive source of 57Co (Rh). Unipolar pulses with Gaussian profile were obtained at the output of the linear amplifier, whose amplitudes were close to 0.4 V for 6.3 keV X rays and 1.4 V for 14.4 keV gamma rays. Pulse height spectra showed that the system allows a satisfactory identification of the X-rays and gamma rays emitted by the 57Co source, giving the possibility to make a good selection of the 14.4 keV peak for having a suitable signal-noise ratio in the Mössbauer spectra. Absorption percentages of 14 % were found by taking the Mössbauer spectra of a natural iron absorber. The assembly and tests of the system are presented through this paper.

  15. A service-based framework for pharmacogenomics data integration

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Bai, Xiaoying; Li, Jing; Ding, Cong

    2010-08-01

    Data are central to scientific research and practices. The advance of experiment methods and information retrieval technologies leads to explosive growth of scientific data and databases. However, due to the heterogeneous problems in data formats, structures and semantics, it is hard to integrate the diversified data that grow explosively and analyse them comprehensively. As more and more public databases are accessible through standard protocols like programmable interfaces and Web portals, Web-based data integration becomes a major trend to manage and synthesise data that are stored in distributed locations. Mashup, a Web 2.0 technique, presents a new way to compose content and software from multiple resources. The paper proposes a layered framework for integrating pharmacogenomics data in a service-oriented approach using the mashup technology. The framework separates the integration concerns from three perspectives including data, process and Web-based user interface. Each layer encapsulates the heterogeneous issues of one aspect. To facilitate the mapping and convergence of data, the ontology mechanism is introduced to provide consistent conceptual models across different databases and experiment platforms. To support user-interactive and iterative service orchestration, a context model is defined to capture information of users, tasks and services, which can be used for service selection and recommendation during a dynamic service composition process. A prototype system is implemented and cases studies are presented to illustrate the promising capabilities of the proposed approach.

  16. CMOS-Compatible Room-Temperature Rectifier Toward Terahertz Radiation Detection

    NASA Astrophysics Data System (ADS)

    Varlamava, Volha; De Amicis, Giovanni; Del Monte, Andrea; Perticaroli, Stefano; Rao, Rosario; Palma, Fabrizio

    2016-08-01

    In this paper, we present a new rectifying device, compatible with the technology of CMOS image sensors, suitable for implementing a direct-conversion detector operating at room temperature for operation at up to terahertz frequencies. The rectifying device can be obtained by introducing some simple modifications of the charge-storage well in conventional CMOS integrated circuits, making the proposed solution easy to integrate with the existing imaging systems. The rectifying device is combined with the different elements of the detector, composed of a 3D high-performance antenna and a charge-storage well. In particular, its position just below the edge of the 3D antenna takes maximum advantage of the high electric field concentrated by the antenna itself. In addition, the proposed structure ensures the integrity of the charge-storage well of the detector. In the structure, it is not necessary to use very scaled and costly technological nodes, since the CMOS transistor only provides the necessary integrated readout electronics. On-wafer measurements of RF characteristics of the designed junction are reported and discussed. The overall performances of the entire detector in terms of noise equivalent power (NEP) are evaluated by combining low-frequency measurements of the rectifier with numerical simulations of the 3D antenna and the semiconductor structure at 1 THz, allowing prediction of the achievable NEP.

  17. HyQue: evaluating hypotheses using Semantic Web technologies

    PubMed Central

    2011-01-01

    Background Key to the success of e-Science is the ability to computationally evaluate expert-composed hypotheses for validity against experimental data. Researchers face the challenge of collecting, evaluating and integrating large amounts of diverse information to compose and evaluate a hypothesis. Confronted with rapidly accumulating data, researchers currently do not have the software tools to undertake the required information integration tasks. Results We present HyQue, a Semantic Web tool for querying scientific knowledge bases with the purpose of evaluating user submitted hypotheses. HyQue features a knowledge model to accommodate diverse hypotheses structured as events and represented using Semantic Web languages (RDF/OWL). Hypothesis validity is evaluated against experimental and literature-sourced evidence through a combination of SPARQL queries and evaluation rules. Inference over OWL ontologies (for type specifications, subclass assertions and parthood relations) and retrieval of facts stored as Bio2RDF linked data provide support for a given hypothesis. We evaluate hypotheses of varying levels of detail about the genetic network controlling galactose metabolism in Saccharomyces cerevisiae to demonstrate the feasibility of deploying such semantic computing tools over a growing body of structured knowledge in Bio2RDF. Conclusions HyQue is a query-based hypothesis evaluation system that can currently evaluate hypotheses about the galactose metabolism in S. cerevisiae. Hypotheses as well as the supporting or refuting data are represented in RDF and directly linked to one another allowing scientists to browse from data to hypothesis and vice versa. HyQue hypotheses and data are available at http://semanticscience.org/projects/hyque. PMID:21624158

  18. Etude theorique des fluctuations structurales dans les composes organiques a dimensionnalite reduite

    NASA Astrophysics Data System (ADS)

    Dumoulin, Benoit

    Les systemes a dimensionnalite reduite constituent maintenant une branche entiere de la physique de la matiere condensee. Cette derniere s'est developpee rapidement au cours des dernieres annees, avec la decouverte des materiaux organiques qui presentent, justement, des proprietes physiques fortement anisotropes. Cette these presente une etude en trois parties de plusieurs composes organiques qui, bien que tres differents du point de vue de leurs compositions chimiques et de leurs proprietes physiques a haute temperature, subissent tous une instabilite structurale a tres basse temperature. De plus, dans chacun des cas, l'instabilite structurale est precedee d'un important regime fluctuatif a partir duquel les proprietes physiques changent de maniere significative. Notre etude suit un ordre chronologique inverse puisque nous nous attardons en premier lieu au cas de composes recemment decouverts: les composes de la famille des (BCPTTF)2X (X = PF6 , AsF6). Ces derniers sont des isolants magnetiques a la temperature ambiante et subissent une instabilite structurale de type spin-Peierls a une temperature appelee TSP. En particulier, nous nous interessons a l'etude des proprietes physiques de ces systemes dans le regime fluctuatif, qui precede cette instabilite. Notre etude theorique nous permet de comprendre en detail comment ces systemes s'approchent de l'instabilite struturale. Dans la seconde partie de cette these, nous etudions le regime fluctuatif (pre-transitionnel) observe experimentalement dans le compose de (TMTTF)2PF6. Ce compose organique, dont la structure s'apparente aux sels de Bechgaard, subit une instabilite de type spin-Peierls a une temperature T SP = 19K. Bien que ce compose possede la particularite d'etre un bon conducteur a la temperature ambiante, il subit une transition de type Mott-Hubbard a une temperature Trho ≈ 220K et devient alors un isolant magnetique, analogue aux composes de la famille des (BCPTTF)2X. Le regime fluctuatif precedant l'instabilite spin-Peierls apparait ensuite vers 60K. Notre etude theorique montre qu'un modele d'electrons en interaction de type "g-ologie" avec possibilite de processus umklapp permet de bien rendre compte des proprietes physiques de ce systeme. Finalement, la troisieme partie de cette these porte sur l'etude des premiers composes organiques quasi-unidimensionnels a avoir ete synthetises: les composes de la famille du TTF-TCNQ. Notre etude theorique des instabilites structurales que presentent ces composes n'est evidemment pas la premiere. L'originalite de cette derniere est qu'elle tient compte des fortes interactions entre les electrons, presentent dans ces composes. Pour tenir compte de telles interactions, nous avons choisi la formulation "liquide de Luttinger" qui nous permet de mieux traiter ce regimne dit de couplage fort.

  19. CSEO – the Cigarette Smoke Exposure Ontology

    PubMed Central

    2014-01-01

    Background In the past years, significant progress has been made to develop and use experimental settings for extensive data collection on tobacco smoke exposure and tobacco smoke exposure-associated diseases. Due to the growing number of such data, there is a need for domain-specific standard ontologies to facilitate the integration of tobacco exposure data. Results The CSEO (version 1.0) is composed of 20091 concepts. The ontology in its current form is able to capture a wide range of cigarette smoke exposure concepts within the knowledge domain of exposure science with a reasonable sensitivity and specificity. Moreover, it showed a promising performance when used to answer domain expert questions. The CSEO complies with standard upper-level ontologies and is freely accessible to the scientific community through a dedicated wiki at https://publicwiki-01.fraunhofer.de/CSEO-Wiki/index.php/Main_Page. Conclusions The CSEO has potential to become a widely used standard within the academic and industrial community. Mainly because of the emerging need of systems toxicology to controlled vocabularies and also the lack of suitable ontologies for this domain, the CSEO prepares the ground for integrative systems-based research in the exposure science. PMID:25093069

  20. A CMOS application-specified-integrated-circuit for 40 GHz high-electron-mobility-transistors automatic biasing

    NASA Astrophysics Data System (ADS)

    De Matteis, M.; De Blasi, M.; Vallicelli, E. A.; Zannoni, M.; Gervasi, M.; Bau, A.; Passerini, A.; Baschirotto, A.

    2017-02-01

    This paper presents the design and the experimental results of a CMOS Automatic Control System (ACS) for the biasing of High-Electron-Mobility-Transistors (HEMT). The ACS is the first low-power mixed-signal Application-Specified-Integrated-Circuit (ASIC) able to automatically set and regulate the operating point of an off-chip 6 HEMT Low-Noise-Amplifiers (LNAs), hence it composes a two-chip system (the ACS+LNAs) to be used in the Large Scale Polarization Explorer (LSPE) stratospheric balloon for Cosmic Microwave Background (CMB) signal observation. The hereby presented ACS ASIC provides a reliable instrumentation for gradual and very stable LNAs characterization, switching-on, and operating point (<4 mV accuracy). Moreover, it simplifies the electronic instrumentation needed for biasing the LNAs, since it replaces several off-the-shelf and digital programmable device components. The ASIC prototype has been implemented in a CMOS 0.35 μ m technology (12 mm2 area occupancy). It operates at 4 kHz clock frequency. The power consumption of one-channel ASIC (biasing one LNA) is 3.6 mW, whereas 30 mW are consumed by a single LNA device.

  1. A CMOS application-specified-integrated-circuit for 40 GHz high-electron-mobility-transistors automatic biasing.

    PubMed

    De Matteis, M; De Blasi, M; Vallicelli, E A; Zannoni, M; Gervasi, M; Bau, A; Passerini, A; Baschirotto, A

    2017-02-01

    This paper presents the design and the experimental results of a CMOS Automatic Control System (ACS) for the biasing of High-Electron-Mobility-Transistors (HEMT). The ACS is the first low-power mixed-signal Application-Specified-Integrated-Circuit (ASIC) able to automatically set and regulate the operating point of an off-chip 6 HEMT Low-Noise-Amplifiers (LNAs), hence it composes a two-chip system (the ACS+LNAs) to be used in the Large Scale Polarization Explorer (LSPE) stratospheric balloon for Cosmic Microwave Background (CMB) signal observation. The hereby presented ACS ASIC provides a reliable instrumentation for gradual and very stable LNAs characterization, switching-on, and operating point (<4 mV accuracy). Moreover, it simplifies the electronic instrumentation needed for biasing the LNAs, since it replaces several off-the-shelf and digital programmable device components. The ASIC prototype has been implemented in a CMOS 0.35 μm technology (12 mm 2 area occupancy). It operates at 4 kHz clock frequency. The power consumption of one-channel ASIC (biasing one LNA) is 3.6 mW, whereas 30 mW are consumed by a single LNA device.

  2. Integrative and conjugative elements and their hosts: composition, distribution and organization

    PubMed Central

    Touchon, Marie; Rocha, Eduardo P. C.

    2017-01-01

    Abstract Conjugation of single-stranded DNA drives horizontal gene transfer between bacteria and was widely studied in conjugative plasmids. The organization and function of integrative and conjugative elements (ICE), even if they are more abundant, was only studied in a few model systems. Comparative genomics of ICE has been precluded by the difficulty in finding and delimiting these elements. Here, we present the results of a method that circumvents these problems by requiring only the identification of the conjugation genes and the species’ pan-genome. We delimited 200 ICEs and this allowed the first large-scale characterization of these elements. We quantified the presence in ICEs of a wide set of functions associated with the biology of mobile genetic elements, including some that are typically associated with plasmids, such as partition and replication. Protein sequence similarity networks and phylogenetic analyses revealed that ICEs are structured in functional modules. Integrases and conjugation systems have different evolutionary histories, even if the gene repertoires of ICEs can be grouped in function of conjugation types. Our characterization of the composition and organization of ICEs paves the way for future functional and evolutionary analyses of their cargo genes, composed of a majority of unknown function genes. PMID:28911112

  3. Composing the theme of city to be diverse and sustainable

    NASA Astrophysics Data System (ADS)

    Wiranegara, H. W.

    2018-01-01

    To give a path for developing a city needs a theme. City’s goal stated in a document of a spatial plan were too broad and insufficient detail in giving a direction. To make more detail and precise, every city has to compose a city theme. It is developed based on the potential, the uniqueness, the excellence, and the sustainability of its human resources, natural resources, and man-made resources. An integration among the three of resources which have the highest score become a theme of the city. The aim of this research was to formulate the conceptual framework to compose a city theme. The research design was the interview survey in Banda Aceh, Banjarmasin, and Kupang. Informants were the government officials, academics, figures, the private sector and public who considered related to the intended information being collected. Having set the conceptual framework, the interview directed to check the implementation in realities. The result was that the conceptual framework could accommodate the phenomenon of composing the theme of the city. Yet, it was a preliminary in nature and needed more research to get a complete result.

  4. Integrated design course of applied optics focusing on operating and maintaining abilities

    NASA Astrophysics Data System (ADS)

    Xu, Zhongjie; Ning, Yu; Jiang, Tian; Cheng, Xiangai

    2017-08-01

    The abilities of operating and maintaining optical instruments are crucial in modern society. Besides the basic knowledge in optics, the optics courses in the National University of Defense Technology also focus on the training on handling typical optical equipment. As the link between classroom courses on applied optics and the field trips, the integrated design course of applied optics aims to give the students a better understanding on several instantly used optical equipment, such as hand-held telescope and periscope, etc. The basic concepts of optical system design are also emphasized as well. The course is arranged rightly after the classroom course of applied optics and composed of experimental and design tasks. The experimental tasks include the measurements of aberrations and major parameters of a primitive telescope, while in the design parts, the students are asked to design a Keplerian telescope. The whole course gives a deepened understandings on the concepts, assembling, and operating of telescopes. The students are also encouraged to extend their interests on other typical optical instruments.

  5. Parallel computing in experimental mechanics and optical measurement: A review (II)

    NASA Astrophysics Data System (ADS)

    Wang, Tianyi; Kemao, Qian

    2018-05-01

    With advantages such as non-destructiveness, high sensitivity and high accuracy, optical techniques have successfully integrated into various important physical quantities in experimental mechanics (EM) and optical measurement (OM). However, in pursuit of higher image resolutions for higher accuracy, the computation burden of optical techniques has become much heavier. Therefore, in recent years, heterogeneous platforms composing of hardware such as CPUs and GPUs, have been widely employed to accelerate these techniques due to their cost-effectiveness, short development cycle, easy portability, and high scalability. In this paper, we analyze various works by first illustrating their different architectures, followed by introducing their various parallel patterns for high speed computation. Next, we review the effects of CPU and GPU parallel computing specifically in EM & OM applications in a broad scope, which include digital image/volume correlation, fringe pattern analysis, tomography, hyperspectral imaging, computer-generated holograms, and integral imaging. In our survey, we have found that high parallelism can always be exploited in such applications for the development of high-performance systems.

  6. Detection system of capillary array electrophoresis microchip based on optical fiber

    NASA Astrophysics Data System (ADS)

    Yang, Xiaobo; Bai, Haiming; Yan, Weiping

    2009-11-01

    To meet the demands of the post-genomic era study and the large parallel detections of epidemic diseases and drug screening, the high throughput micro-fluidic detection system is needed urgently. A scanning laser induced fluorescence detection system based on optical fiber has been established by using a green laser diode double-pumped solid-state laser as excitation source. It includes laser induced fluorescence detection subsystem, capillary array electrophoresis micro-chip, channel identification unit and fluorescent signal processing subsystem. V-shaped detecting probe composed with two optical fibers for transmitting the excitation light and detecting induced fluorescence were constructed. Parallel four-channel signal analysis of capillary electrophoresis was performed on this system by using Rhodamine B as the sample. The distinction of different samples and separation of samples were achieved with the constructed detection system. The lowest detected concentration is 1×10-5 mol/L for Rhodamine B. The results show that the detection system possesses some advantages, such as compact structure, better stability and higher sensitivity, which are beneficial to the development of microminiaturization and integration of capillary array electrophoresis chip.

  7. Streamflow generation in humid West Africa: the role of Bas-fonds investigated with a physically based model of the Critical Zone

    NASA Astrophysics Data System (ADS)

    Hector, B.; Cohard, J. M.; Séguis, L.

    2015-12-01

    In West Africa, the drought initiated in the 70's-80's together with intense land-use change due to increasing food demand produced very contrasted responses on water budgets of the critical zone (CZ) depending on the lithological and pedological contexts. In Sahel, streamflow increased, mostly due to increasing hortonian runoff from soil crusting, and so did groundwater storage. On the contrary, in the more humid southern Sudanian area, streamflow decreased and no clear signal has been observed concerning water storage in this hard-rock basement area. There, Bas-fonds are fundamental landscape features. They are seasonally water-logged valley bottoms from which first order streams originate, mostly composed of baseflow. They are a key feature for understanding streamflow generation processes. They also carry an important agronomic potential due to their moisture and nutrient availability. The role of Bas-fond in streamflow generation processes is investigated using a physically-based coupled model of the CZ, ParFlow-CLM at catchment scale (10km²). The model is evaluated against classical hydrological measurements (water table, soil moisture, streamflow, fluxes), acquired in the AMMA-CATCH observing system for the West African monsoon, but also hybrid gravity data which measure integrated water storage changes. The bas-fond system is shown to be composed of two components with different time scales. The slow component is characterized by the seasonal and interannual amplitude of the permanent water table, which is disconnected from streams, fed by direct recharge and lowered by evapotranspiration, mostly from riparian areas. The fast component is characterized by thresholds in storage and perched and permanent water tables surrounding the bas-fond during the wet season, which are linked with baseflow generation. This is a first step toward integrating these features into larger scale modeling of the critical zone for evaluating the effect of precipitation intensification and land use changes scenarios in the area.

  8. Composable languages for bioinformatics: the NYoSh experiment

    PubMed Central

    Simi, Manuele

    2014-01-01

    Language WorkBenches (LWBs) are software engineering tools that help domain experts develop solutions to various classes of problems. Some of these tools focus on non-technical users and provide languages to help organize knowledge while other workbenches provide means to create new programming languages. A key advantage of language workbenches is that they support the seamless composition of independently developed languages. This capability is useful when developing programs that can benefit from different levels of abstraction. We reasoned that language workbenches could be useful to develop bioinformatics software solutions. In order to evaluate the potential of language workbenches in bioinformatics, we tested a prominent workbench by developing an alternative to shell scripting. To illustrate what LWBs and Language Composition can bring to bioinformatics, we report on our design and development of NYoSh (Not Your ordinary Shell). NYoSh was implemented as a collection of languages that can be composed to write programs as expressive and concise as shell scripts. This manuscript offers a concrete illustration of the advantages and current minor drawbacks of using the MPS LWB. For instance, we found that we could implement an environment-aware editor for NYoSh that can assist the programmers when developing scripts for specific execution environments. This editor further provides semantic error detection and can be compiled interactively with an automatic build and deployment system. In contrast to shell scripts, NYoSh scripts can be written in a modern development environment, supporting context dependent intentions and can be extended seamlessly by end-users with new abstractions and language constructs. We further illustrate language extension and composition with LWBs by presenting a tight integration of NYoSh scripts with the GobyWeb system. The NYoSh Workbench prototype, which implements a fully featured integrated development environment for NYoSh is distributed at http://nyosh.campagnelab.org. PMID:24482760

  9. Composable languages for bioinformatics: the NYoSh experiment.

    PubMed

    Simi, Manuele; Campagne, Fabien

    2014-01-01

    Language WorkBenches (LWBs) are software engineering tools that help domain experts develop solutions to various classes of problems. Some of these tools focus on non-technical users and provide languages to help organize knowledge while other workbenches provide means to create new programming languages. A key advantage of language workbenches is that they support the seamless composition of independently developed languages. This capability is useful when developing programs that can benefit from different levels of abstraction. We reasoned that language workbenches could be useful to develop bioinformatics software solutions. In order to evaluate the potential of language workbenches in bioinformatics, we tested a prominent workbench by developing an alternative to shell scripting. To illustrate what LWBs and Language Composition can bring to bioinformatics, we report on our design and development of NYoSh (Not Your ordinary Shell). NYoSh was implemented as a collection of languages that can be composed to write programs as expressive and concise as shell scripts. This manuscript offers a concrete illustration of the advantages and current minor drawbacks of using the MPS LWB. For instance, we found that we could implement an environment-aware editor for NYoSh that can assist the programmers when developing scripts for specific execution environments. This editor further provides semantic error detection and can be compiled interactively with an automatic build and deployment system. In contrast to shell scripts, NYoSh scripts can be written in a modern development environment, supporting context dependent intentions and can be extended seamlessly by end-users with new abstractions and language constructs. We further illustrate language extension and composition with LWBs by presenting a tight integration of NYoSh scripts with the GobyWeb system. The NYoSh Workbench prototype, which implements a fully featured integrated development environment for NYoSh is distributed at http://nyosh.campagnelab.org.

  10. An Integrated, Evidence-Based Approach to Transitioning to Operations: Specifications for Future Replacement Lights on ISS

    NASA Technical Reports Server (NTRS)

    Leveton, Lauren; Brainard, George; Whitmire, Alexandra; Kubey, Alan; Maida, Jim; Bowen, Charles; Johnston, Smith

    2010-01-01

    The International Space Station (ISS) currently uses General Luminaire Assemblies (GLAs) as its primary light source. These GLAs are composed of fluorescent lighting and are integrated into the electrical system on Station. Seventy seven of these units are distributed throughout the vehicle, and many of the lights, having reached their lifespan, are no longer functional; while backup panels are available on orbit, it is anticipated that the supplies of fluorescents on the station will be exhausted by 2015. The ISS vehicle office is therefore preparing to replace all of the GLAs, with Solid State Light Assemblies (SSLAs) composed of white Light Emitting Diodes (LEDs). In the Spring of 2010, an announcement for the replacement lights was released. The announcement specified that proposed lighting systems should use LED technology, given certain power draw restrictions and no changes to how the lights are currently controlled (a central on/off switch per node, and a dial to turn on/off and increase brightness on each lighting unit). The replacement lights are to follow current specifications for brightness levels (lux) and color temperature (degrees Kelvin, or K). Reportedly, the lighting on orbit is dim and suboptimal. The average brightness of the lights (given all lights within a node are operational) is 291 lux; by comparison, recommended office lighting ranges from 200 to 500 lux, and daylight ranges on a typical overcast day, consists of 10,000 to 25,000 lux. Representatives from NASA Behavioral Health and Performance Element (BHP) and Human Factors and Habitability identified that maintaining current brightness levels limits visual acuity, work space, and the use of light as a countermeasure for improving circadian entrainment, hastening phase shifting, evoking acute alertness and enhancing performance. Revised lighting specifications are therefore needed to optimize the replacement lights for the ISS.

  11. Development of Incident Report Database for Organizational Learning

    NASA Astrophysics Data System (ADS)

    Otsuka, Yuichi; Abe, Tomotaka; Noguchi, Hiroshi; Makinouchi, Akifumi

    The necessity of an incident reporting system has recently been increasing for hospitals. Japan Council for Quality Health Care (JCQHC) started operating a national incident reporting system to which domestic hospitals would report their incidents. However, the reporting system obtained an additional problem for the hospitals. They managed their own systems which collected reports by papers. The purposes of the reporting systems was to analyze considerable causes involved in incidents to improve the quality of patient safety management. On the contrary, the national reporting system aimed at collecting a statistical tendency of normal incidents. Simultaneously operating the two systems would be too much workload for safety managers. The load may have the managers rest only a short time for summarizing occurrences, not enough for analyzing their causes. However, to the authors' knowledge, there has not been an integrating policy of the two forms to adapt them to practical situations in patient safety management. The scope of this paper is to establish the integrated form in order to use in analyzing the causes of incidents as well as reporting for the national system. We have developed new data base system using XML + XSLT and Java Servlet. The developed system is composed of three computers; DB server , DB client and Data sending server. To investigate usability of the developed system, we conducted a monitoring test by real workers in reporting workplaces. The result of subjective evaluations by examinees was so preferable for the developed system. The results of usability test and the achievement of increasing the number of reports after the introduction can demonstrate the enough effectiveness of the developed system for supporting the activity of patient safety management.

  12. Development of a Configurable Growth Chamber with a Computer Vision System to Study Circadian Rhythm in Plants

    PubMed Central

    Navarro, Pedro J.; Fernández, Carlos; Weiss, Julia; Egea-Cortines, Marcos

    2012-01-01

    Plant development is the result of an endogenous morphogenetic program that integrates environmental signals. The so-called circadian clock is a set of genes that integrates environmental inputs into an internal pacing system that gates growth and other outputs. Study of circadian growth responses requires high sampling rates to detect changes in growth and avoid aliasing. We have developed a flexible configurable growth chamber comprising a computer vision system that allows sampling rates ranging between one image per 30 s to hours/days. The vision system has a controlled illumination system, which allows the user to set up different configurations. The illumination system used emits a combination of wavelengths ensuring the optimal growth of species under analysis. In order to obtain high contrast of captured images, the capture system is composed of two CCD cameras, for day and night periods. Depending on the sample type, a flexible image processing software calculates different parameters based on geometric calculations. As a proof of concept we tested the system in three different plant tissues, growth of petunia- and snapdragon (Antirrhinum majus) flowers and of cladodes from the cactus Opuntia ficus-indica. We found that petunia flowers grow at a steady pace and display a strong growth increase in the early morning, whereas Opuntia cladode growth turned out not to follow a circadian growth pattern under the growth conditions imposed. Furthermore we were able to identify a decoupling of increase in area and length indicating that two independent growth processes are responsible for the final size and shape of the cladode. PMID:23202214

  13. BigQ: a NoSQL based framework to handle genomic variants in i2b2.

    PubMed

    Gabetta, Matteo; Limongelli, Ivan; Rizzo, Ettore; Riva, Alberto; Segagni, Daniele; Bellazzi, Riccardo

    2015-12-29

    Precision medicine requires the tight integration of clinical and molecular data. To this end, it is mandatory to define proper technological solutions able to manage the overwhelming amount of high throughput genomic data needed to test associations between genomic signatures and human phenotypes. The i2b2 Center (Informatics for Integrating Biology and the Bedside) has developed a widely internationally adopted framework to use existing clinical data for discovery research that can help the definition of precision medicine interventions when coupled with genetic data. i2b2 can be significantly advanced by designing efficient management solutions of Next Generation Sequencing data. We developed BigQ, an extension of the i2b2 framework, which integrates patient clinical phenotypes with genomic variant profiles generated by Next Generation Sequencing. A visual programming i2b2 plugin allows retrieving variants belonging to the patients in a cohort by applying filters on genomic variant annotations. We report an evaluation of the query performance of our system on more than 11 million variants, showing that the implemented solution scales linearly in terms of query time and disk space with the number of variants. In this paper we describe a new i2b2 web service composed of an efficient and scalable document-based database that manages annotations of genomic variants and of a visual programming plug-in designed to dynamically perform queries on clinical and genetic data. The system therefore allows managing the fast growing volume of genomic variants and can be used to integrate heterogeneous genomic annotations.

  14. Use of GIS in visualization of work-related health problems

    PubMed Central

    Delaunay, M.; Van der Westhuizen, H.; Godard, V.; Agius, R.; Le Barbier, M.; Godderis, L.

    2015-01-01

    Background Occupational health and safety (OHS) information is often complex, diverse and unstructured and suffers from a lack of integration which usually precludes any systemic insight of the situation. Aims To analyse to what extent the use of geographical information systems (GISs) can help to integrate, analyse and present OHS data in a comprehensive and communicable way relevant for surveillance purposes. Methods We first developed a ‘macro-approach’ (from national to local level), mapping data related to economic activity (denominator of active workers displayed by activity sectors), as well as work-related ill-health (numerators of workers suffering from work-related ill-health). The latter data are composed of compensated occupational diseases on the one hand and work-related diseases investigated by specialized clinics on the other hand. Then, a ‘micro-approach’ was worked out, integrating at a plant level, using computer-aided drawing, occupational risks data and OHS surveillance data (e.g. use of medication and sickness absence data). Results At the macro-level, microelectronics companies and workers were mapped at different scales. For the first time, we were able to compare, up to the enterprise level, complementary data showing different pictures of work-related ill-health, allowing a better understanding of OH issues in this sector. At the micro-level, new information arose from the integration of risk assessment data and medical data. Conclusions This work illustrates to what extent GIS is a promising tool in the OHS field, and discusses related challenges (technical, ethical, biases and interpretation) and research perspectives. PMID:26503981

  15. Horizontal Gene Transfers in Mycoplasmas (Mollicutes).

    PubMed

    Citti, C; Dordet-Frisoni, E; Nouvel, L X; Kuo, C H; Baranowski, E

    2018-04-12

    The class Mollicutes (trivial name "mycoplasma") is composed of wall-less bacteria with reduced genomes whose evolution was long thought to be only driven by gene losses. Recent evidences of massive horizontal gene transfer (HGT) within and across species provided a new frame to understand the successful adaptation of these minimal bacteria to a broad range of hosts. Mobile genetic elements are being identified in a growing number of mycoplasma species, but integrative and conjugative elements (ICEs) are emerging as pivotal in HGT. While sharing common traits with other bacterial ICEs, such as their chromosomal integration and the use of a type IV secretion system to mediate horizontal dissemination, mycoplasma ICEs (MICEs) revealed unique features: their chromosomal integration is totally random and driven by a DDE recombinase related to the Mutator-like superfamily. Mycoplasma conjugation is not restricted to ICE transmission, but also involves the transfer of large chromosomal fragments that generates progenies with mosaic genomes, nearly every position of chromosome being mobile. Mycoplasmas have thus developed efficient ways to gain access to a considerable reservoir of genetic resources distributed among a vast number of species expanding the concept of minimal cell to the broader context of flowing information.

  16. Integral Sensor Fault Detection and Isolation for Railway Traction Drive.

    PubMed

    Garramiola, Fernando; Del Olmo, Jon; Poza, Javier; Madina, Patxi; Almandoz, Gaizka

    2018-05-13

    Due to the increasing importance of reliability and availability of electric traction drives in Railway applications, early detection of faults has become an important key for Railway traction drive manufacturers. Sensor faults are important sources of failures. Among the different fault diagnosis approaches, in this article an integral diagnosis strategy for sensors in traction drives is presented. Such strategy is composed of an observer-based approach for direct current (DC)-link voltage and catenary current sensors, a frequency analysis approach for motor current phase sensors and a hardware redundancy solution for speed sensors. None of them requires any hardware change requirement in the actual traction drive. All the fault detection and isolation approaches have been validated in a Hardware-in-the-loop platform comprising a Real Time Simulator and a commercial Traction Control Unit for a tram. In comparison to safety-critical systems in Aerospace applications, Railway applications do not need instantaneous detection, and the diagnosis is validated in a short time period for reliable decision. Combining the different approaches and existing hardware redundancy, an integral fault diagnosis solution is provided, to detect and isolate faults in all the sensors installed in the traction drive.

  17. Integral Sensor Fault Detection and Isolation for Railway Traction Drive

    PubMed Central

    del Olmo, Jon; Poza, Javier; Madina, Patxi; Almandoz, Gaizka

    2018-01-01

    Due to the increasing importance of reliability and availability of electric traction drives in Railway applications, early detection of faults has become an important key for Railway traction drive manufacturers. Sensor faults are important sources of failures. Among the different fault diagnosis approaches, in this article an integral diagnosis strategy for sensors in traction drives is presented. Such strategy is composed of an observer-based approach for direct current (DC)-link voltage and catenary current sensors, a frequency analysis approach for motor current phase sensors and a hardware redundancy solution for speed sensors. None of them requires any hardware change requirement in the actual traction drive. All the fault detection and isolation approaches have been validated in a Hardware-in-the-loop platform comprising a Real Time Simulator and a commercial Traction Control Unit for a tram. In comparison to safety-critical systems in Aerospace applications, Railway applications do not need instantaneous detection, and the diagnosis is validated in a short time period for reliable decision. Combining the different approaches and existing hardware redundancy, an integral fault diagnosis solution is provided, to detect and isolate faults in all the sensors installed in the traction drive. PMID:29757251

  18. Reliability Evaluation and Improvement Approach of Chemical Production Man - Machine - Environment System

    NASA Astrophysics Data System (ADS)

    Miao, Yongchun; Kang, Rongxue; Chen, Xuefeng

    2017-12-01

    In recent years, with the gradual extension of reliability research, the study of production system reliability has become the hot topic in various industries. Man-machine-environment system is a complex system composed of human factors, machinery equipment and environment. The reliability of individual factor must be analyzed in order to gradually transit to the research of three-factor reliability. Meanwhile, the dynamic relationship among man-machine-environment should be considered to establish an effective blurry evaluation mechanism to truly and effectively analyze the reliability of such systems. In this paper, based on the system engineering, fuzzy theory, reliability theory, human error, environmental impact and machinery equipment failure theory, the reliabilities of human factor, machinery equipment and environment of some chemical production system were studied by the method of fuzzy evaluation. At last, the reliability of man-machine-environment system was calculated to obtain the weighted result, which indicated that the reliability value of this chemical production system was 86.29. Through the given evaluation domain it can be seen that the reliability of man-machine-environment integrated system is in a good status, and the effective measures for further improvement were proposed according to the fuzzy calculation results.

  19. Integrated lipase production and in situ biodiesel synthesis in a recombinant Pichia pastoris yeast: an efficient dual biocatalytic system composed of cell free enzymes and whole cell catalysts

    PubMed Central

    2014-01-01

    Background Lipase-catalyzed biotransformation of acylglycerides or fatty acids into biodiesel via immobilized enzymes or whole cell catalysts has been considered as one of the most promising methods to produce renewable and environmentally friendly alternative liquid fuels, thus being extensively studied so far. In all previously pursued approaches, however, lipase enzymes are prepared in an independent process separated from enzymatic biodiesel production, which would unavoidably increase the cost and energy consumption during industrial manufacture of this cost-sensitive energy product. Therefore, there is an urgent need to develop novel cost-effective biocatalysts and biocatalytic processes with genuine industrial feasibility. Result Inspired by the consolidated bioprocessing of lignocellulose to generate bioethanol, an integrated process with coupled lipase production and in situ biodiesel synthesis in a recombinant P. pastoris yeast was developed in this study. The novel and efficient dual biocatalytic system based on Thermomyces lanuginosus lipase took advantage of both cell free enzymes and whole cell catalysts. The extracellular and intracellular lipases of growing yeast cells were simultaneously utilized to produce biodiesel from waste cooking oils in situ and in one pot. This integrated system effectively achieved 58% and 72% biodiesel yield via concurrent esterified-transesterified methanolysis and stepwise hydrolysis-esterification at 3:1 molar ratio between methanol and waste cooking oils, respectively. Further increasing the molar ratio of methanol to waste cooking oils to 6:1 led to an 87% biodiesel yield using the stepwise strategy. Both water tolerance and methanol tolerance of this novel system were found to be significantly improved compared to previous non-integrated biodiesel production processes using separately prepared immobilized enzymes or whole cell catalysts. Conclusion We have proposed a new concept of integrated biodiesel production. This integrated system couples lipase production to lipase-catalyzed biodiesel synthesis in one pot. The proof-of-concept was established through construction of a recombinant P. pastoris yeast strain that was able to grow, overexpress T. lanuginosus lipase, and efficiently catalyze biodiesel production from fed waste cooking oils and methanol simultaneously. This simplified single-step process represents a significant advance toward achieving economical production of biodiesel at industrial scale via a ‘green’ biocatalytic route. PMID:24713071

  20. Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit

    PubMed Central

    Shinki, Yuharu; Shibata, Kyohei; Mansour, Mohamed

    2017-01-01

    This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC) voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for −4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz. PMID:28763043

  1. Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit.

    PubMed

    Shinki, Yuharu; Shibata, Kyohei; Mansour, Mohamed; Kanaya, Haruichi

    2017-08-01

    This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC) voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for -4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz.

  2. Automatic monitoring of ecosystem structure and functions using integrated low-cost near surface sensors

    NASA Astrophysics Data System (ADS)

    Kim, J.; Ryu, Y.; Jiang, C.; Hwang, Y.

    2016-12-01

    Near surface sensors are able to acquire more reliable and detailed information with higher temporal resolution than satellite observations. Conventional near surface sensors usually work individually, and thus they require considerable manpower from data collection through information extraction and sharing. Recent advances of Internet of Things (IoT) provides unprecedented opportunities to integrate various low-cost sensors as an intelligent near surface observation system for monitoring ecosystem structure and functions. In this study, we developed a Smart Surface Sensing System (4S), which can automatically collect, transfer, process and analyze data, and then publish time series results on public-available website. The system is composed of micro-computer Raspberry pi, micro-controller Arduino, multi-spectral spectrometers made from Light Emitting Diode (LED), visible and near infrared cameras, and Internet module. All components are connected with each other and Raspberry pi intelligently controls the automatic data production chain. We did intensive tests and calibrations in-lab. Then, we conducted in-situ observations at a rice paddy field and a deciduous broadleaf forest. During the whole growth season, 4S obtained landscape images, spectral reflectance in red, green, blue, and near infrared, normalized difference vegetation index (NDVI), fraction of photosynthetically active radiation (fPAR), and leaf area index (LAI) continuously. Also We compared 4S data with other independent measurements. NDVI obtained from 4S agreed well with Jaz hyperspectrometer at both diurnal and seasonal scales (R2 = 0.92, RMSE = 0.059), and 4S derived fPAR and LAI were comparable to LAI-2200 and destructive measurements in both magnitude and seasonal trajectory. We believe that the integrated low-cost near surface sensor could help research community monitoring ecosystem structure and functions closer and easier through a network system.

  3. On Integration and Validation of a Very Low Complexity ATC UWB System for Muscle Force Transmission.

    PubMed

    Sapienza, Stefano; Crepaldi, Marco; Motto Ros, Paolo; Bonanno, Alberto; Demarchi, Danilo

    2016-04-01

    The thresholding of Surface ElectroMyoGraphic (sEMG) signals, i.e., Average Threshold Crossing (ATC) technique, reduces the amount of data to be processed enabling circuit complexity reduction and low power consumption. This paper investigates the lowest level of complexity reachable by an ATC system through measurements and in-vivo experiments with an embedded prototype for wireless force transmission, based on asynchronous Impulse-Radio Ultra Wide Band (IR-UWB). The prototype is composed by the acquisition unit, a wearable PCB 23 × 34 mm, which includes a full custom IC integrating a UWB transmitter (chip active silicon area 0.016 mm(2), 1 mW power consumption), and the receiver. The system is completely asynchronous, it acquires a differential sEMG signal, generates the ATC events and triggers a 3.3 GHz IR-UWB transmission. ATC robustness relaxes filters constraints: two passive first order filters have been implemented, bandwidth from 10 Hz up to 1 kHz. Energy needed for the single pulse generation is 30 pJ while the whole PCB consumes 5.65 mW. The pulses radiated by the acquisition unit TX are received by a short-range and low complexity threshold-based 130 nm CMOS IR-UWB receiver with an Ultra Low Power (ULP) baseband unit capable of robustly receiving generic quasi-digital pulse sequences. The acquisition unit have been tested with 10 series of in vivo isometric and isotonic contractions, while the transmission channel with over-the-air and cable measurements obtained with a couple of planar monopole antennas and an integrated 0.004 mm(2) transmitter, the same used for the acquisition unit, with realistic channel conditions. The entire system, acquisition unit and receiver, consumes 15.49 mW.

  4. Development of an electromagnetic imaging system for well bore integrity inspection

    NASA Astrophysics Data System (ADS)

    Plotnikov, Yuri; Wheeler, Frederick W.; Mandal, Sudeep; Climent, Helene C.; Kasten, A. Matthias; Ross, William

    2017-02-01

    State-of-the-art imaging technologies for monitoring the integrity of oil and gas well bores are typically limited to the inspection of metal casings and cement bond interfaces close to the first casing region. The objective of this study is to develop and evaluate a novel well-integrity inspection system that is capable of providing enhanced information about the flaw structure and topology of hydrocarbon producing well bores. In order to achieve this, we propose the development of a multi-element electromagnetic (EM) inspection tool that can provide information about material loss in the first and second casing structure as well as information about eccentricity between multiple casing strings. Furthermore, the information gathered from the EM inspection tool will be combined with other imaging modalities (e.g. data from an x-ray backscatter imaging device). The independently acquired data are then fused to achieve a comprehensive assessment of integrity with greater accuracy. A test rig composed of several concentric metal casings with various defect structures was assembled and imaged. Initial test results were obtained with a scanning system design that includes a single transmitting coil and several receiving coils mounted on a single rod. A mechanical linear translation stage was used to move the EM sensors in the axial direction during data acquisition. For simplicity, a single receiving coil and repetitive scans were employed to simulate performance of the designed receiving sensor array system. The resulting electromagnetic images enable the detection of the metal defects in the steel pipes. Responses from several sensors were used to assess the location and amount of material loss in the first and second metal pipe as well as the relative eccentric position between these two pipes. The results from EM measurements and x-ray backscatter simulations demonstrate that data fusion from several sensing modalities can provide an enhanced assessment of flaw structures in producing well bores and potentially allow for early detection of anomalies that if undetected might lead to catastrophic failures.

  5. Is there anything "autonomous" in the nervous system?

    PubMed

    Rasia-Filho, Alberto A

    2006-03-01

    The terms "autonomous" or "vegetative" are currently used to identify one part of the nervous system composed of sympathetic, parasympathetic, and gastrointestinal divisions. However, the concepts that are under the literal meaning of these words can lead to misconceptions about the actual nervous organization. Some clear-cut examples indicate that no element shows "autonomy" in an integrated body. Nor are they solely "passive" or generated "without mental elaboration." In addition, to be "not consciously controlled" is not a unique attribute of these components. Another term that could be proposed is "homeostatic nervous system" for providing conditions to the execution of behaviors and maintenance of the internal milieu within normal ranges. But, not all homeostatic conditions are under the direct influence of these groups of neurons, and some situations clearly impose different ranges for some variables that are adaptative (or hazardous) in the tentative of successfully coping with challenging situations. Finally, the name "nervous system for visceral control" emerges as another possibility. Unfortunately, it is not only "viscera" that represent end targets for this specific innervation. Therefore, it is commented that no quite adequate term for the sympathetic, parasympathetic, and gastrointestinal divisions has already been coined. The basic condition for a new term is that it should clearly imply the whole integrated and collaborative functions that the components have in an indivisible organism, including the neuroendocrine, immunological, and respiratory systems. Until that, we can call these parts simply by their own names and avoid terms that are more "convenient" than appropriate.

  6. FIRESTORM: a collaborative network suite application for rapid sensor data processing and precise decisive responses

    NASA Astrophysics Data System (ADS)

    Kaniyantethu, Shaji

    2011-06-01

    This paper discusses the many features and composed technologies in Firestorm™ - a Distributed Collaborative Fires and Effects software. Modern response management systems capitalize on the capabilities of a plethora of sensors and its output for situational awareness. Firestorm utilizes a unique networked lethality approach by integrating unmanned air and ground vehicles to provide target handoff and sharing of data between humans and sensors. The system employs Bayesian networks for track management of sensor data, and distributed auction algorithms for allocating targets and delivering the right effect without information overload to the Warfighter. Firestorm Networked Effects Component provides joint weapon-target pairing, attack guidance, target selection standards, and other fires and effects components. Moreover, the open and modular architecture allows for easy integration with new data sources. Versatility and adaptability of the application enable it to devise and dispense a suitable response to a wide variety of scenarios. Recently, this application was used for detecting and countering a vehicle intruder with the help of radio frequency spotter sensor, command driven cameras, remote weapon system, portable vehicle arresting barrier, and an unmanned aerial vehicle - which confirmed the presence of the intruder, as well as provided lethal/non-lethal response and battle damage assessment. The completed demonstrations have proved Firestorm's™ validity and feasibility to predict, detect, neutralize, and protect key assets and/or area against a variety of possible threats. The sensors and responding assets can be deployed with numerous configurations to cover the various terrain and environmental conditions, and can be integrated to a number of platforms.

  7. The electronics readout and data acquisition system of the KM3NeT neutrino telescope node

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Real, Diego; Collaboration: KM3NeT Collaboration

    2014-11-18

    The KM3NeT neutrino telescope will be composed by tens of thousands of glass spheres, called Digital Optical Module (DOM), each of them containing 31 PMTs of small photocathode area (3'). The readout and data acquisition system of KM3NeT have to collect, treat and send to shore, in an economic way, the enormous amount of data produced by the photomultipliers and at the same time to provide time synchronization between each DOM at the level of 1 ns. It is described in the present article the Central Logic Board, that integrates the Time to Digital Converters and the White Rabbit protocolmore » used for the DOM synchronization in a transparent way, the Power Board used in the DOM, the PMT base to readout the photomultipliers and the respective collecting boards, the so called Octopus Board.« less

  8. Ares 1 First Stage Design, Development, Test, and Evaluation

    NASA Technical Reports Server (NTRS)

    Williams, Tom; Cannon, Scott

    2006-01-01

    The Ares I Crew Launch Vehicle (CLV) is an integral part of NASA s exploration architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Currently in the system definition phase, the CLV is planned to replace the Space Shuttle for crew transport in the post 2010 time frame. It is comprised of a solid rocket booster (SRB) first stage derived from the current Space Shuttle SRB, a liquid oxygen/hydrogen fueled second stage utilizing a derivative of the Apollo upper stage engine for propulsion, and a Crew Exploration Vehicle (CEV) composed of command and service modules. This paper deals with current design, development, test, and evaluation planning for the CLV first stage SRB. Described are the current overall point-of-departure design and booster subsystems, systems engineering approach, and milestone schedule requirements.

  9. The Second Brain: Is the Gut Microbiota a Link Between Obesity and Central Nervous System Disorders?

    PubMed Central

    Ochoa-Repáraz, Javier; Kasper, Lloyd H.

    2016-01-01

    The gut-brain axis is a bi-directional integrated system composed by immune, endocrine and neuronal components by which the gap between the gut microbiota and the brain is significantly impacted. An increasing number of different gut microbial species are now postulated to regulate brain function in health and disease. The westernized diet is hypothesized to be the cause of the current obesity levels in many countries, a major socio-economical health problem. Experimental and epidemiological evidence suggest that the gut microbiota is responsible for significant immunologic, neuronal and endocrine changes that lead to obesity. We hypothesize that the gut microbiota, and changes associated with diet, affect the gut-brain axis and may possibly contribute to the development of mental illness. In this review, we discuss the links between diet, gut dysbiosis, obesity, and immunologic and neurologic diseases that impact brain function and behavior. PMID:26865085

  10. The Second Brain: Is the Gut Microbiota a Link Between Obesity and Central Nervous System Disorders?

    PubMed

    Ochoa-Repáraz, Javier; Kasper, Lloyd H

    2016-03-01

    The gut-brain axis is a bi-directional integrated system composed by immune, endocrine, and neuronal components by which the gap between the gut microbiota and the brain is significantly impacted. An increasing number of different gut microbial species are now postulated to regulate brain function in health and disease. The westernized diet is hypothesized to be the cause of the current obesity levels in many countries, a major socio-economical health problem. Experimental and epidemiological evidence suggest that the gut microbiota is responsible for significant immunologic, neuronal, and endocrine changes that lead to obesity. We hypothesize that the gut microbiota, and changes associated with diet, affect the gut-brain axis and may possibly contribute to the development of mental illness. In this review, we discuss the links between diet, gut dysbiosis, obesity, and immunologic and neurologic diseases that impact brain function and behavior.

  11. Summary of LSST systems analysis and integration task for SPS flight test articles

    NASA Astrophysics Data System (ADS)

    Greenberg, H. S.

    1981-02-01

    The structural and equipment requirements for two solar power satellite (SPS) test articles are defined. The first SPS concept uses a hexagonal frame structure to stabilize the array of primary tension cables configured to support a Mills Cross antenna containing 17,925 subarrays composed of dipole radiating elements and solid state power amplifier modules. The second test article consists of a microwave antenna and its power source, a 20 by 200 m array of solar cell blankets, both of which are supported by the solar blanket array support structure. The test article structure, a ladder, is comprised of two longitudinal beams (215 m long) spaced 10 m apart and interconnected by six lateral beams. The system control module structure and bridge fitting provide bending and torsional stiffness, and supplement the in plane Vierendeel structure behavior. Mission descriptions, construction, and structure interfaces are addressed.

  12. Application of Probabilistic Risk Assessment (PRA) During Conceptual Design for the NASA Orbital Space Plane (OSP)

    NASA Technical Reports Server (NTRS)

    Rogers, James H.; Safie, Fayssal M.; Stott, James E.; Lo, Yunnhon

    2004-01-01

    In order to meet the space transportation needs for a new century, America's National Aeronautics and Space Administration (NASA) has implemented an Integrated Space Transportation Plan to produce safe, economical, and reliable access to space. One near term objective of this initiative is the design and development of a next-generation vehicle and launch system that will transport crew and cargo to and from the International Space Station (ISS), the Orbital Space Plane (OSP). The OSP system is composed of a manned launch vehicle by an existing Evolved Expendable Launch Vehicle (EELV). The OSP will provide emergency crew rescue from the ISS by 2008, and provide crew and limited cargo transfer to and from the ISS by 2012. A key requirement is for the OSP to be safer and more reliable than the Soyuz and Space Shuttle, which currently provide these capabilities.

  13. Enteric glia.

    PubMed

    Rühl, A; Nasser, Y; Sharkey, K A

    2004-04-01

    The enteric nervous system is composed of both enteric neurones and enteric glia. Enteric glial cells were first described by Dogiel and are now known to outnumber neurones approximately 4 : 1. In the past, these cells were assumed to subserve a largely supportive role; however, recent evidence indicates that enteric glial cells may play a more active role in the control of gut function. In transgenic mouse models, where enteric glial cells are selectively ablated, the loss of glia results in intestinal inflammation and disruption of the epithelial barrier. Enteric glia are activated specifically by inflammatory insults and may contribute actively to inflammatory pathology via antigen presentation and cytokine synthesis. Enteric glia also express receptors for neurotransmitters and so may serve as intermediaries in enteric neurotransmission. Thus, enteric glia may serve as a link between the nervous and immune systems of the gut and may also have an important role in maintaining the integrity of the mucosal barrier and in other aspects of intestinal homeostasis.

  14. Towards a laboratory breadboard for PEGASE, the DARWIN pathfinder

    NASA Astrophysics Data System (ADS)

    Cassaing, F.; Le Duigou, J.-M.; Sorrente, B.; Fleury, B.; Gorius, N.; Brachet, F.; Buisset, C.; Ollivier, M.; Hénault, F.; Mourard, D.; Rabbia, Y.; Delpech, M.; Guidotti, P.-Y.; Léger, A.; Barillot, M.; Rouan, D.; Rousset, G.

    2017-11-01

    PEGASE, a spaceborne mission proposed to the CNES, is a 2-aperture interferometer for nulling and interferometric imaging. PEGASE is composed of 3 free-flying satellites (2 siderostats and 1 beam combiner) with baselines from 50 to 500 m. The goals of PEGASE are the spectroscopy of hot Jupiter (Pegasides) and brown dwarves, the exploration of the inner part of protoplanetary disks and the validation in real space conditions of nulling and visibility interferometry with formation flying. During a phase-0 study performed in 2005 at CNES, ONERA and in the laboratories, the critical subsystems of the optical payload have been investigated and a preliminary system integration has been performed. These subsystems are mostly the broadband (2.5-5 μm) nuller and the cophasing system (visible) dedicated to the real-time control of the OPD/tip/tilt inside the payload. A laboratory breadboard of the payload is under definition and should be built in 2007.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Zhao, Changhong; Guggilam, Swaroop

    Power networks have to withstand a variety of disturbances that affect system frequency, and the problem is compounded with the increasing integration of intermittent renewable generation. Following a large-signal generation or load disturbance, system frequency is arrested leveraging primary frequency control provided by governor action in synchronous generators. In this work, we propose a framework for distributed energy resources (DERs) deployed in distribution networks to provide (supplemental) primary frequency response. Particularly, we demonstrate how power-frequency droop slopes for individual DERs can be designed so that the distribution feeder presents a guaranteed frequency-regulation characteristic at the feeder head. Furthermore, the droopmore » slopes are engineered such that injections of individual DERs conform to a well-defined fairness objective that does not penalize them for their location on the distribution feeder. Time-domain simulations for an illustrative network composed of a combined transmission network and distribution network with frequency-responsive DERs are provided to validate the approach.« less

  16. Medical Data Architecture Project Capabilities and Design

    NASA Technical Reports Server (NTRS)

    Middour, C.; Krihak, M.; Lindsey, A.; Marker, N.; Wolfe, S.; Winther, S.; Ronzano, K.; Bolles, D.; Toscano, W.; Shaw, T.

    2017-01-01

    Mission constraints will challenge the delivery of medical care on a long-term, deep space exploration mission. This type of mission will be restricted in the availability of medical knowledge, skills, procedures and resources to prevent, diagnose, and treat in-flight medical events. Challenges to providing medical care are anticipated, including resource and resupply constraints, delayed communications and no ability for medical evacuation. The Medical Data Architecture (MDA) project will enable medical care capability in this constrained environment. The first version of the system, called "Test Bed 1," includes capabilities for automated data collection, data storage and data retrieval to provide information to the Crew Medical Officer (CMO). Test Bed 1 seeks to establish a data architecture foundation and develop a scalable data management system through modular design and standardized interfaces. In addition, it will demonstrate to stakeholders the potential for an improved, automated, flow of data to and from the medical system over the current methods employed on the International Space Station (ISS). It integrates a set of external devices, software and processes, and a Subjective, Objective, Assessment, and Plan (SOAP) note commonly used by clinicians. Medical data like electrocardiogram plots, heart rate, skin temperature, respiration rate, medications taken, and more are collected from devices and stored in the Electronic Medical Records (EMR) system, and reported to crew and clinician. Devices integrated include the Astroskin biosensor vest and IMED CARDIAX electrocardiogram (ECG) device with INEED MD ECG Glove, and the NASA-developed Medical Dose Tracker application. The system is designed to be operated as a standalone system, and can be deployed in a variety of environments, from a laptop to a data center. The system is primarily composed of open-source software tools, and is designed to be modular, so new capabilities can be added. The software components and integration methods will be discussed.

  17. GA-based fuzzy reinforcement learning for control of a magnetic bearing system.

    PubMed

    Lin, C T; Jou, C P

    2000-01-01

    This paper proposes a TD (temporal difference) and GA (genetic algorithm)-based reinforcement (TDGAR) learning method and applies it to the control of a real magnetic bearing system. The TDGAR learning scheme is a new hybrid GA, which integrates the TD prediction method and the GA to perform the reinforcement learning task. The TDGAR learning system is composed of two integrated feedforward networks. One neural network acts as a critic network to guide the learning of the other network (the action network) which determines the outputs (actions) of the TDGAR learning system. The action network can be a normal neural network or a neural fuzzy network. Using the TD prediction method, the critic network can predict the external reinforcement signal and provide a more informative internal reinforcement signal to the action network. The action network uses the GA to adapt itself according to the internal reinforcement signal. The key concept of the TDGAR learning scheme is to formulate the internal reinforcement signal as the fitness function for the GA such that the GA can evaluate the candidate solutions (chromosomes) regularly, even during periods without external feedback from the environment. This enables the GA to proceed to new generations regularly without waiting for the arrival of the external reinforcement signal. This can usually accelerate the GA learning since a reinforcement signal may only be available at a time long after a sequence of actions has occurred in the reinforcement learning problem. The proposed TDGAR learning system has been used to control an active magnetic bearing (AMB) system in practice. A systematic design procedure is developed to achieve successful integration of all the subsystems including magnetic suspension, mechanical structure, and controller training. The results show that the TDGAR learning scheme can successfully find a neural controller or a neural fuzzy controller for a self-designed magnetic bearing system.

  18. KiMoSys: a web-based repository of experimental data for KInetic MOdels of biological SYStems

    PubMed Central

    2014-01-01

    Background The kinetic modeling of biological systems is mainly composed of three steps that proceed iteratively: model building, simulation and analysis. In the first step, it is usually required to set initial metabolite concentrations, and to assign kinetic rate laws, along with estimating parameter values using kinetic data through optimization when these are not known. Although the rapid development of high-throughput methods has generated much omics data, experimentalists present only a summary of obtained results for publication, the experimental data files are not usually submitted to any public repository, or simply not available at all. In order to automatize as much as possible the steps of building kinetic models, there is a growing requirement in the systems biology community for easily exchanging data in combination with models, which represents the main motivation of KiMoSys development. Description KiMoSys is a user-friendly platform that includes a public data repository of published experimental data, containing concentration data of metabolites and enzymes and flux data. It was designed to ensure data management, storage and sharing for a wider systems biology community. This community repository offers a web-based interface and upload facility to turn available data into publicly accessible, centralized and structured-format data files. Moreover, it compiles and integrates available kinetic models associated with the data. KiMoSys also integrates some tools to facilitate the kinetic model construction process of large-scale metabolic networks, especially when the systems biologists perform computational research. Conclusions KiMoSys is a web-based system that integrates a public data and associated model(s) repository with computational tools, providing the systems biology community with a novel application facilitating data storage and sharing, thus supporting construction of ODE-based kinetic models and collaborative research projects. The web application implemented using Ruby on Rails framework is freely available for web access at http://kimosys.org, along with its full documentation. PMID:25115331

  19. Integrated terrain mapping with digital Landsat images in Queensland, Australia

    USGS Publications Warehouse

    Robinove, Charles Joseph

    1979-01-01

    Mapping with Landsat images usually is done by selecting single types of features, such as soils, vegetation, or rocks, and creating visually interpreted or digitally classified maps of each feature. Individual maps can then be overlaid on or combined with other maps to characterize the terrain. Integrated terrain mapping combines several terrain features into each map unit which, in many cases, is more directly related to uses of the land and to methods of land management than the single features alone. Terrain brightness, as measured by the multispectral scanners in Landsat 1 and 2, represents an integration of reflectance from the terrain features within the scanner's instantaneous field of view and is therefore more correlatable with integrated terrain units than with differentiated ones, such as rocks, soils, and vegetation. A test of the feasibilty of the technique of mapping integrated terrain units was conducted in a part of southwestern Queensland, Australia, in cooperation with scientists of the Queensland Department of Primary Industries. The primary purpose was to test the use of digital classification techniques to create a 'land systems map' usable for grazing land management. A recently published map of 'land systems' in the area (made by aerial photograph interpretation and ground surveys), which are integrated terrain units composed of vegetation, soil, topography, and geomorphic features, was used as a basis for comparison with digitally classified Landsat multispectral images. The land systems, in turn, each have a specific grazing capacity for cattle (expressed in beasts per km 2 ) which is estimated following analysis of both research results and property carrying capacities. Landsat images, in computer-compatible tape form, were first contrast-stretched to increase their visual interpretability, and digitally classified by the parallelepiped method into distinct spectral classes to determine their correspondence to the land systems classes and to areally smaller, but readily recognizable, 'land units.' Many land systems appeared as distinct spectral classes or as acceptably homogeneous combinations of several spectral classes. The digitally classified map corresponded to the general geographic patterns of many of the land systems. Statistical correlation of the digitally classified map and the published map was not possible because the published map showed only land systems whereas the digitally classified map showed some land units as well as systems. The general correspondence of spectral classes to the integrated terrain units means that the digital mapping of the units may precede fieldwork and act as a guide to field sampling and detailed terrain unit description as well as measuring of the location, area, and extent of each unit. Extension of the Landsat mapping and classification technique to other arid and semi-arid regions of the world may be feasible.

  20. Developing a Collection of Composable Data Translation Software Units to Improve Efficiency and Reproducibility in Ecohydrologic Modeling Workflows

    NASA Astrophysics Data System (ADS)

    Olschanowsky, C.; Flores, A. N.; FitzGerald, K.; Masarik, M. T.; Rudisill, W. J.; Aguayo, M.

    2017-12-01

    Dynamic models of the spatiotemporal evolution of water, energy, and nutrient cycling are important tools to assess impacts of climate and other environmental changes on ecohydrologic systems. These models require spatiotemporally varying environmental forcings like precipitation, temperature, humidity, windspeed, and solar radiation. These input data originate from a variety of sources, including global and regional weather and climate models, global and regional reanalysis products, and geostatistically interpolated surface observations. Data translation measures, often subsetting in space and/or time and transforming and converting variable units, represent a seemingly mundane, but critical step in the application workflows. Translation steps can introduce errors, misrepresentations of data, slow execution time, and interrupt data provenance. We leverage a workflow that subsets a large regional dataset derived from the Weather Research and Forecasting (WRF) model and prepares inputs to the Parflow integrated hydrologic model to demonstrate the impact translation tool software quality on scientific workflow results and performance. We propose that such workflows will benefit from a community approved collection of data transformation components. The components should be self-contained composable units of code. This design pattern enables automated parallelization and software verification, improving performance and reliability. Ensuring that individual translation components are self-contained and target minute tasks increases reliability. The small code size of each component enables effective unit and regression testing. The components can be automatically composed for efficient execution. An efficient data translation framework should be written to minimize data movement. Composing components within a single streaming process reduces data movement. Each component will typically have a low arithmetic intensity, meaning that it requires about the same number of bytes to be read as the number of computations it performs. When several components' executions are coordinated the overall arithmetic intensity increases, leading to increased efficiency.

  1. Application of a self-supporting microporous layer to gas diffusion layers of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi; Heo, Yun; Ishida, Masayoshi; Nakano, Akihiro; Someya, Satoshi; Munakata, Tetsuo

    2017-02-01

    The intrinsic effect of properties of a self-supporting microporous layer (MPL) on the performance of proton exchange membrane fuel cells (PEMFCs) is identified. First, a self-supporting MPL is fabricated and applied to a gas diffusion layer (GDL) of a PEMFC, when the GDL is either an integrated sample composed of a gas diffusion backing (GDB, i.e., carbon paper) combined with MPL or a sample with only MPL. Cell performance tests reveal that, the same as the MPL fabricated by the coating method, the self-supporting MPL on the GDB improves the cell performance at high current density. Furthermore, the GDL composed only of the MPL (i.e., GDB-free GDL) shows better performance than does the integrated GDB/MPL GDL. These results along with literature data strongly suggest that the low thermal conductivity of MPL induces a high temperature throughout the GDL, and thus vapor diffusion is dominant in the transport of product water through the MPL.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Jacob; Edgar, Thomas W.; Daily, Jeffrey A.

    With an ever-evolving power grid, concerns regarding how to maintain system stability, efficiency, and reliability remain constant because of increasing uncertainties and decreasing rotating inertia. To alleviate some of these concerns, demand response represents a viable solution and is virtually an untapped resource in the current power grid. This work describes a hierarchical control framework that allows coordination between distributed energy resources and demand response. This control framework is composed of two control layers: a coordination layer that ensures aggregations of resources are coordinated to achieve system objectives and a device layer that controls individual resources to assure the predeterminedmore » power profile is tracked in real time. Large-scale simulations are executed to study the hierarchical control, requiring advancements in simulation capabilities. Technical advancements necessary to investigate and answer control interaction questions, including the Framework for Network Co-Simulation platform and Arion modeling capability, are detailed. Insights into the interdependencies of controls across a complex system and how they must be tuned, as well as validation of the effectiveness of the proposed control framework, are yielded using a large-scale integrated transmission system model coupled with multiple distribution systems.« less

  3. Adapting forest health assessments to changing perspectives on threats--a case example from Sweden.

    PubMed

    Wulff, Sören; Lindelöw, Åke; Lundin, Lars; Hansson, Per; Axelsson, Anna-Lena; Barklund, Pia; Wijk, Sture; Ståhl, Göran

    2012-04-01

    A revised Swedish forest health assessment system is presented. The assessment system is composed of several interacting components which target information needs for strategic and operational decision making and accommodate a continuously expanding knowledge base. The main motivation for separating information for strategic and operational decision making is that major damage outbreaks are often scattered throughout the landscape. Generally, large-scale inventories (such as national forest inventories) cannot provide adequate information for mitigation measures. In addition to broad monitoring programs that provide time-series information on known damaging agents and their effects, there is also a need for local and regional inventories adapted to specific damage events. While information for decision making is the major focus of the health assessment system, the system also contributes to expanding the knowledge base of forest conditions. For example, the integrated monitoring programs provide a better understanding of ecological processes linked to forest health. The new health assessment system should be able to respond to the need for quick and reliable information and thus will be an important part of the future monitoring of Swedish forests.

  4. Design for Verification: Using Design Patterns to Build Reliable Systems

    NASA Technical Reports Server (NTRS)

    Mehlitz, Peter C.; Penix, John; Koga, Dennis (Technical Monitor)

    2003-01-01

    Components so far have been mainly used in commercial software development to reduce time to market. While some effort has been spent on formal aspects of components, most of this was done in the context of programming language or operating system framework integration. As a consequence, increased reliability of composed systems is mainly regarded as a side effect of a more rigid testing of pre-fabricated components. In contrast to this, Design for Verification (D4V) puts the focus on component specific property guarantees, which are used to design systems with high reliability requirements. D4V components are domain specific design pattern instances with well-defined property guarantees and usage rules, which are suitable for automatic verification. The guaranteed properties are explicitly used to select components according to key system requirements. The D4V hypothesis is that the same general architecture and design principles leading to good modularity, extensibility and complexity/functionality ratio can be adapted to overcome some of the limitations of conventional reliability assurance measures, such as too large a state space or too many execution paths.

  5. DUSTER: demonstration of an integrated LWIR-VNIR-SAR imaging system

    NASA Astrophysics Data System (ADS)

    Wilson, Michael L.; Linne von Berg, Dale; Kruer, Melvin; Holt, Niel; Anderson, Scott A.; Long, David G.; Margulis, Yuly

    2008-04-01

    The Naval Research Laboratory (NRL) and Space Dynamics Laboratory (SDL) are executing a joint effort, DUSTER (Deployable Unmanned System for Targeting, Exploitation, and Reconnaissance), to develop and test a new tactical sensor system specifically designed for Tier II UAVs. The system is composed of two coupled near-real-time sensors: EyePod (VNIR/LWIR ball gimbal) and NuSAR (L-band synthetic aperture radar). EyePod consists of a jitter-stabilized LWIR sensor coupled with a dual focal-length optical system and a bore-sighted high-resolution VNIR sensor. The dual focal-length design coupled with precision pointing an step-stare capabilities enable EyePod to conduct wide-area survey and high resolution inspection missions from a single flight pass. NuSAR is being developed with partners Brigham Young University (BYU) and Artemis, Inc and consists of a wideband L-band SAR capable of large area survey and embedded real-time image formation. Both sensors employ standard Ethernet interfaces and provide geo-registered NITFS output imagery. In the fall of 2007, field tests were conducted with both sensors, results of which will be presented.

  6. Perfectly invisible PT -symmetric zero-gap systems, conformal field theoretical kinks, and exotic nonlinear supersymmetry

    NASA Astrophysics Data System (ADS)

    Guilarte, Juan Mateos; Plyushchay, Mikhail S.

    2017-12-01

    We investigate a special class of the PT -symmetric quantum models being perfectly invisible zero-gap systems with a unique bound state at the very edge of continuous spectrum of scattering states. The family includes the PT -regularized two particle Calogero systems (conformal quantum mechanics models of de Alfaro-Fubini-Furlan) and their rational extensions whose potentials satisfy equations of the KdV hierarchy and exhibit, particularly, a behaviour typical for extreme waves. We show that the two simplest Hamiltonians from the Calogero subfamily determine the fluctuation spectra around the PT -regularized kinks arising as traveling waves in the field-theoretical Liouville and SU(3) conformal Toda systems. Peculiar properties of the quantum systems are reflected in the associated exotic nonlinear supersymmetry in the unbroken or partially broken phases. The conventional N=2 supersymmetry is extended here to the N=4 nonlinear supersymmetry that involves two bosonic generators composed from Lax-Novikov integrals of the subsystems, one of which is the central charge of the superalgebra. Jordan states are shown to play an essential role in the construction.

  7. Using the PORS Problems to Examine Evolutionary Optimization of Multiscale Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinhart, Zachary; Molian, Vaelan; Bryden, Kenneth

    2013-01-01

    Nearly all systems of practical interest are composed of parts assembled across multiple scales. For example, an agrodynamic system is composed of flora and fauna on one scale; soil types, slope, and water runoff on another scale; and management practice and yield on another scale. Or consider an advanced coal-fired power plant: combustion and pollutant formation occurs on one scale, the plant components on another scale, and the overall performance of the power system is measured on another. In spite of this, there are few practical tools for the optimization of multiscale systems. This paper examines multiscale optimization of systemsmore » composed of discrete elements using the plus-one-recall-store (PORS) problem as a test case or study problem for multiscale systems. From this study, it is found that by recognizing the constraints and patterns present in discrete multiscale systems, the solution time can be significantly reduced and much more complex problems can be optimized.« less

  8. The merged basins of signal transduction pathways in spatiotemporal cell biology.

    PubMed

    Hou, Yingchun; Hou, Yang; He, Siyu; Ma, Caixia; Sun, Mengyao; He, Huimin; Gao, Ning

    2014-03-01

    Numerous evidences have indicated that a signal system is composed by signal pathways, each pathway is composed by sub-pathways, and the sub-pathway is composed by the original signal terminals initiated with a protein/gene. We infer the terminal signals merged signal transduction system as "signal basin". In this article, we discussed the composition and regulation of signal basins, and the relationship between the signal basin control and triple W of spatiotemporal cell biology. Finally, we evaluated the importance of the systemic regulation to gene expression by signal basins under triple W. We hope our discussion will be the beginning to cause the attention for this area from the scientists of life science. © 2013 Wiley Periodicals, Inc.

  9. Energy optimization for a wind DFIG with flywheel energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamzaoui, Ihssen, E-mail: hamzaoui-ihssen2000@yahoo.fr; Laboratory of Instrumentation, Faculty of Electronics and Computer, University of Khemis Miliana, Ain Defla; Bouchafaa, Farid, E-mail: fbouchafa@gmail.com

    2016-07-25

    The type of distributed generation unit that is the subject of this paper relates to renewable energy sources, especially wind power. The wind generator used is based on a double fed induction Generator (DFIG). The stator of the DFIG is connected directly to the network and the rotor is connected to the network through the power converter with three levels. The objective of this work is to study the association a Flywheel Energy Storage System (FESS) in wind generator. This system is used to improve the quality of electricity provided by wind generator. It is composed of a flywheel; anmore » induction machine (IM) and a power electronic converter. A maximum power tracking technique « Maximum Power Point Tracking » (MPPT) and a strategy for controlling the pitch angle is presented. The model of the complete system is developed in Matlab/Simulink environment / to analyze the results from simulation the integration of wind chain to networks.« less

  10. A network-based training environment: a medical image processing paradigm.

    PubMed

    Costaridou, L; Panayiotakis, G; Sakellaropoulos, P; Cavouras, D; Dimopoulos, J

    1998-01-01

    The capability of interactive multimedia and Internet technologies is investigated with respect to the implementation of a distance learning environment. The system is built according to a client-server architecture, based on the Internet infrastructure, composed of server nodes conceptually modelled as WWW sites. Sites are implemented by customization of available components. The environment integrates network-delivered interactive multimedia courses, network-based tutoring, SIG support, information databases of professional interest, as well as course and tutoring management. This capability has been demonstrated by means of an implemented system, validated with digital image processing content, specifically image enhancement. Image enhancement methods are theoretically described and applied to mammograms. Emphasis is given to the interactive presentation of the effects of algorithm parameters on images. The system end-user access depends on available bandwidth, so high-speed access can be achieved via LAN or local ISDN connections. Network based training offers new means of improved access and sharing of learning resources and expertise, as promising supplements in training.

  11. The algebra of two dimensional generalized Chebyshev-Koornwinder oscillator

    NASA Astrophysics Data System (ADS)

    Borzov, V. V.; Damaskinsky, E. V.

    2014-10-01

    In the previous works of Borzov and Damaskinsky ["Chebyshev-Koornwinder oscillator," Theor. Math. Phys. 175(3), 765-772 (2013)] and ["Ladder operators for Chebyshev-Koornwinder oscillator," in Proceedings of the Days on Diffraction, 2013], the authors have defined the oscillator-like system that is associated with the two variable Chebyshev-Koornwinder polynomials. We call this system the generalized Chebyshev-Koornwinder oscillator. In this paper, we study the properties of infinite-dimensional Lie algebra that is analogous to the Heisenberg algebra for the Chebyshev-Koornwinder oscillator. We construct the exact irreducible representation of this algebra in a Hilbert space H of functions that are defined on a region which is bounded by the Steiner hypocycloid. The functions are square-integrable with respect to the orthogonality measure for the Chebyshev-Koornwinder polynomials and these polynomials form an orthonormalized basis in the space H. The generalized oscillator which is studied in the work can be considered as the simplest nontrivial example of multiboson quantum system that is composed of three interacting oscillators.

  12. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System

    PubMed Central

    Ito, Yoichiro; Yamanishi, Mamoru; Ikeuchi, Akinori; Imamura, Chie; Matsuyama, Takashi

    2015-01-01

    Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering. PMID:26692026

  13. Embedded Triboelectric Active Sensors for Real-Time Pneumatic Monitoring.

    PubMed

    Fu, Xian Peng; Bu, Tian Zhao; Xi, Feng Ben; Cheng, Ting Hai; Zhang, Chi; Wang, Zhong Lin

    2017-09-20

    Pneumatic monitoring sensors have great demands for power supply in cylinder systems. Here, we present an embedded sliding triboelectric nanogenerator (TENG) in air cylinder as active sensors for position and velocity monitoring. The embedded TENG is composed of a circular poly(tetrafluoroethylene) polymer and a triangular copper electrode. The working mechanism as triboelectric active sensors and electric output performance are systematically investigated. By integrating into the pneumatic system, the embedded triboelectric active sensors have been used for real-time air pressure/flow monitoring and energy storage. Air pressures are measured from 0.04 to 0.12 MPa at a step of 0.02 MPa with a sensitivity of 49.235 V/MPa, as well as airflow from 50 to 250 L/min at a step of 50 L/min with a sensitivity of 0.002 μA·min/L. This work has first demonstrated triboelectric active sensors for pneumatic monitoring and may promote the development of TENG in intelligent pneumatic system.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borzov, V. V., E-mail: borzov.vadim@yandex.ru; Damaskinsky, E. V., E-mail: evd@pdmi.ras.ru

    In the previous works of Borzov and Damaskinsky [“Chebyshev-Koornwinder oscillator,” Theor. Math. Phys. 175(3), 765–772 (2013)] and [“Ladder operators for Chebyshev-Koornwinder oscillator,” in Proceedings of the Days on Diffraction, 2013], the authors have defined the oscillator-like system that is associated with the two variable Chebyshev-Koornwinder polynomials. We call this system the generalized Chebyshev-Koornwinder oscillator. In this paper, we study the properties of infinite-dimensional Lie algebra that is analogous to the Heisenberg algebra for the Chebyshev-Koornwinder oscillator. We construct the exact irreducible representation of this algebra in a Hilbert space H of functions that are defined on a region which ismore » bounded by the Steiner hypocycloid. The functions are square-integrable with respect to the orthogonality measure for the Chebyshev-Koornwinder polynomials and these polynomials form an orthonormalized basis in the space H. The generalized oscillator which is studied in the work can be considered as the simplest nontrivial example of multiboson quantum system that is composed of three interacting oscillators.« less

  15. Inkjet Printing Based Droplet Generation for Integrated Online Digital Polymerase Chain Reaction.

    PubMed

    Zhang, Weifei; Li, Nan; Koga, Daisuke; Zhang, Yong; Zeng, Hulie; Nakajima, Hizuru; Lin, Jin-Ming; Uchiyama, Katsumi

    2018-04-17

    We report on the development of a novel and flexible online digital polymerase chain reaction (dPCR) system. The system was composed of three parts: an inkjet for generating the droplets, a coiled fused-silica capillary for thermal cycling, and a laser-induced fluorescence detector (LIFD) for positive droplet counting. Upon inkjet printing, monodisperse droplets were continuously generated in the oil phase and then introduced into the capillary in the form of a stable dispersion. The droplets containing one or zero molecules of target DNA passed through the helical capillary that was attached to a cylindrical thermal cycler for PCR amplification, resulting in the generation of fluorescence for the DNA-positive droplet. After 36 PCR cycles, the fluorescence signal intensity was detected by laser-induced fluorescence located at the downstream of the capillary, followed by a positive/negative counting. The present system was successfully applied to the absolute quantification of the HPV sequence in Caski cells with dynamic ranges spanning 4 orders of magnitude.

  16. Building analytical three-field cosmological models

    NASA Astrophysics Data System (ADS)

    Santos, J. R. L.; Moraes, P. H. R. S.; Ferreira, D. A.; Neta, D. C. Vilar

    2018-02-01

    A difficult task to deal with is the analytical treatment of models composed of three real scalar fields, as their equations of motion are in general coupled and hard to integrate. In order to overcome this problem we introduce a methodology to construct three-field models based on the so-called "extension method". The fundamental idea of the procedure is to combine three one-field systems in a non-trivial way, to construct an effective three scalar field model. An interesting scenario where the method can be implemented is with inflationary models, where the Einstein-Hilbert Lagrangian is coupled with the scalar field Lagrangian. We exemplify how a new model constructed from our method can lead to non-trivial behaviors for cosmological parameters.

  17. [Hygiene and security management in medical biology laboratory].

    PubMed

    Vinner, E; Odou, M F; Fovet, B; Ghnassia, J C

    2013-06-01

    Risk management in Medical Biology Laboratory (MBL) which includes hygiene and waste management, is an integrated process to the whole MBL organisation. It is composed of three stages: risks factors identification, grading and prioritization, and their evaluation in the system. From the legislation and NF EN ISO 15189 standard's requirements viewpoint, prevention and protection actions to implement are described, at premises level, but also at work station environment's one (human resources and equipments) towards biological, chemical, linked to gas, to ionizing or non ionizing radiations and fire riks, in order not to compromise patients safety, employees safety, and quality results. Then, although NF EN 15189 standard only enacts requirements in terms of prevention, curative actions after established blood or chemical exposure accident are defined.

  18. Bending and splitting of spoof surface acoustic waves through structured rigid surface

    NASA Astrophysics Data System (ADS)

    Xie, Sujun; Ouyang, Shiliang; He, Zhaojian; Wang, Xiaoyun; Deng, Ke; Zhao, Heping

    2018-03-01

    In this paper, we demonstrated that a 90°-bended imaging of spoof surface acoustic waves with subwavelength resolution of 0.316λ can be realized by a 45° prism-shaped surface phononic crystal (SPC), which is composed of borehole arrays with square lattice in a rigid plate. Furthermore, by combining two identical prism-shaped phononic crystal to form an interface (to form a line-defect), the excited spoof surface acoustic waves can be split into bended and transmitted parts. The power ratio between the bended and transmitted surface waves can be tuned arbitrarily by adjusting the defect size. This acoustic system is believed to have potential applications in various multifunctional acoustic solutions integrated by different acoustical devices.

  19. Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km.

    PubMed

    Weyrauch, Thomas; Vorontsov, Mikhail; Mangano, Joseph; Ovchinnikov, Vladimir; Bricker, David; Polnau, Ernst; Rostov, Andrey

    2016-02-15

    We demonstrate coherent beam combining and adaptive mitigation of atmospheric turbulence effects over 7 km under strong scintillation conditions using a coherent fiber array laser transmitter operating in a target-in-the-loop setting. The transmitter system is composed of a densely packed array of 21 fiber collimators with integrated capabilities for piston, tip, and tilt control of the outgoing beams wavefront phases. A small cat's-eye retro reflector was used for evaluation of beam combining and turbulence compensation performance at the target plane, and to provide the feedback signal for control of piston and tip/tilt phases of the transmitted beams using the stochastic parallel gradient descent maximization of the power-in-the-bucket metric.

  20. Exploration of plasma-enhanced chemical vapor deposition as a method for thin-film fabrication with biological applications.

    PubMed

    Vasudev, Milana C; Anderson, Kyle D; Bunning, Timothy J; Tsukruk, Vladimir V; Naik, Rajesh R

    2013-05-22

    Chemical vapor deposition (CVD) has been used historically for the fabrication of thin films composed of inorganic materials. But the advent of specialized techniques such as plasma-enhanced chemical vapor deposition (PECVD) has extended this deposition technique to various monomers. More specifically, the deposition of polymers of responsive materials, biocompatible polymers, and biomaterials has made PECVD attractive for the integration of biotic and abiotic systems. This review focuses on the mechanisms of thin-film growth using low-pressure PECVD and current applications of classic PECVD thin films of organic and inorganic materials in biological environments. The last part of the review explores the novel application of low-pressure PECVD in the deposition of biological materials.

  1. Three-dimensional unstructured grid Euler computations using a fully-implicit, upwind method

    NASA Technical Reports Server (NTRS)

    Whitaker, David L.

    1993-01-01

    A method has been developed to solve the Euler equations on a three-dimensional unstructured grid composed of tetrahedra. The method uses an upwind flow solver with a linearized, backward-Euler time integration scheme. Each time step results in a sparse linear system of equations which is solved by an iterative, sparse matrix solver. Local-time stepping, switched evolution relaxation (SER), preconditioning and reuse of the Jacobian are employed to accelerate the convergence rate. Implicit boundary conditions were found to be extremely important for fast convergence. Numerical experiments have shown that convergence rates comparable to that of a multigrid, central-difference scheme are achievable on the same mesh. Results are presented for several grids about an ONERA M6 wing.

  2. Simulating the decentralized processes of the human immune system in a virtual anatomy model.

    PubMed

    Sarpe, Vladimir; Jacob, Christian

    2013-01-01

    Many physiological processes within the human body can be perceived and modeled as large systems of interacting particles or swarming agents. The complex processes of the human immune system prove to be challenging to capture and illustrate without proper reference to the spatial distribution of immune-related organs and systems. Our work focuses on physical aspects of immune system processes, which we implement through swarms of agents. This is our first prototype for integrating different immune processes into one comprehensive virtual physiology simulation. Using agent-based methodology and a 3-dimensional modeling and visualization environment (LINDSAY Composer), we present an agent-based simulation of the decentralized processes in the human immune system. The agents in our model - such as immune cells, viruses and cytokines - interact through simulated physics in two different, compartmentalized and decentralized 3-dimensional environments namely, (1) within the tissue and (2) inside a lymph node. While the two environments are separated and perform their computations asynchronously, an abstract form of communication is allowed in order to replicate the exchange, transportation and interaction of immune system agents between these sites. The distribution of simulated processes, that can communicate across multiple, local CPUs or through a network of machines, provides a starting point to build decentralized systems that replicate larger-scale processes within the human body, thus creating integrated simulations with other physiological systems, such as the circulatory, endocrine, or nervous system. Ultimately, this system integration across scales is our goal for the LINDSAY Virtual Human project. Our current immune system simulations extend our previous work on agent-based simulations by introducing advanced visualizations within the context of a virtual human anatomy model. We also demonstrate how to distribute a collection of connected simulations over a network of computers. As a future endeavour, we plan to use parameter tuning techniques on our model to further enhance its biological credibility. We consider these in silico experiments and their associated modeling and optimization techniques as essential components in further enhancing our capabilities of simulating a whole-body, decentralized immune system, to be used both for medical education and research as well as for virtual studies in immunoinformatics.

  3. Active magnetic compensation composed of shielding panels.

    PubMed

    Kato, K; Yamazaki, K; Sato, T; Haga, A; Okitsu, T; Muramatsu, K; Ueda, T; Kobayashi, K; Yoshizawa, M

    2004-11-30

    Magnetically shielded rooms (MSRs) with materials of high permeability and active shield systems have been used to shield magnetic noise for biomagnetic measurements up to now. However, these techniques have various disadvantages. Therefore, we have developed a new shielding system composed of shielding panels using an active compensation technique. In this study, we evaluated the shielding performance of several unit panels attached together. Numerical and experimental approaches indicated that the shielding factor of a cubic model composed of 24 panels was 17 for uniform fields, and 7 for disturbances due to car movement. Furthermore, the compensation space is larger than that of an ordinary active system using large coils rather than panels. Moreover, the new active compensation system has the important advantage that panels of any shape can be assembled for occasional use because the unit panels are small and light.

  4. Formal groups and Z-entropies

    PubMed Central

    2016-01-01

    We shall prove that the celebrated Rényi entropy is the first example of a new family of infinitely many multi-parametric entropies. We shall call them the Z-entropies. Each of them, under suitable hypotheses, generalizes the celebrated entropies of Boltzmann and Rényi. A crucial aspect is that every Z-entropy is composable (Tempesta 2016 Ann. Phys. 365, 180–197. (doi:10.1016/j.aop.2015.08.013)). This property means that the entropy of a system which is composed of two or more independent systems depends, in all the associated probability space, on the choice of the two systems only. Further properties are also required to describe the composition process in terms of a group law. The composability axiom, introduced as a generalization of the fourth Shannon–Khinchin axiom (postulating additivity), is a highly non-trivial requirement. Indeed, in the trace-form class, the Boltzmann entropy and Tsallis entropy are the only known composable cases. However, in the non-trace form class, the Z-entropies arise as new entropic functions possessing the mathematical properties necessary for information-theoretical applications, in both classical and quantum contexts. From a mathematical point of view, composability is intimately related to formal group theory of algebraic topology. The underlying group-theoretical structure determines crucially the statistical properties of the corresponding entropies. PMID:27956871

  5. Topological Properties of Some Integrated Circuits for Very Large Scale Integration Chip Designs

    NASA Astrophysics Data System (ADS)

    Swanson, S.; Lanzerotti, M.; Vernizzi, G.; Kujawski, J.; Weatherwax, A.

    2015-03-01

    This talk presents topological properties of integrated circuits for Very Large Scale Integration chip designs. These circuits can be implemented in very large scale integrated circuits, such as those in high performance microprocessors. Prior work considered basic combinational logic functions and produced a mathematical framework based on algebraic topology for integrated circuits composed of logic gates. Prior work also produced an historically-equivalent interpretation of Mr. E. F. Rent's work for today's complex circuitry in modern high performance microprocessors, where a heuristic linear relationship was observed between the number of connections and number of logic gates. This talk will examine topological properties and connectivity of more complex functionally-equivalent integrated circuits. The views expressed in this article are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense or the U.S. Government.

  6. Irradiation performance of U-Mo monolithic fuel

    DOE PAGES

    Meyer, M. K.; Gan, J.; Jue, J. F.; ...

    2014-04-01

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. U-Mo alloys represent the best known tradeoff in these properties.more » Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.« less

  7. simBio: a Java package for the development of detailed cell models.

    PubMed

    Sarai, Nobuaki; Matsuoka, Satoshi; Noma, Akinori

    2006-01-01

    Quantitative dynamic computer models, which integrate a variety of molecular functions into a cell model, provide a powerful tool to create and test working hypotheses. We have developed a new modeling tool, the simBio package (freely available from ), which can be used for constructing cell models, such as cardiac cells (the Kyoto model from Matsuoka et al., 2003, 2004 a, b, the LRd model from Faber and Rudy, 2000, and the Noble 98 model from Noble et al., 1998), epithelial cells (Strieter et al., 1990) and pancreatic beta cells (Magnus and Keizer, 1998). The simBio package is written in Java, uses XML and can solve ordinary differential equations. In an attempt to mimic biological functional structures, a cell model is, in simBio, composed of independent functional modules called Reactors, such as ion channels and the sarcoplasmic reticulum, and dynamic variables called Nodes, such as ion concentrations. The interactions between Reactors and Nodes are described by the graph theory and the resulting graph represents a blueprint of an intricate cellular system. Reactors are prepared in a hierarchical order, in analogy to the biological classification. Each Reactor can be composed or improved independently, and can easily be reused for different models. This way of building models, through the combination of various modules, is enabled through the use of object-oriented programming concepts. Thus, simBio is a straightforward system for the creation of a variety of cell models on a common database of functional modules.

  8. IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.K. Meyer; J. Gan; J.-F. Jue

    2014-04-01

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties.more » Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.« less

  9. Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices

    PubMed Central

    Kim, Young Jo; Wu, Wei; Chun, Sang-Eun; Whitacre, Jay F.; Bettinger, Christopher J.

    2013-01-01

    Biodegradable electronics represents an attractive and emerging paradigm in medical devices by harnessing simultaneous advantages afforded by electronically active systems and obviating issues with chronic implants. Integrating practical energy sources that are compatible with the envisioned operation of transient devices is an unmet challenge for biodegradable electronics. Although high-performance energy storage systems offer a feasible solution, toxic materials and electrolytes present regulatory hurdles for use in temporary medical devices. Aqueous sodium-ion charge storage devices combined with biocompatible electrodes are ideal components to power next-generation biodegradable electronics. Here, we report the use of biologically derived organic electrodes composed of melanin pigments for use in energy storage devices. Melanins of natural (derived from Sepia officinalis) and synthetic origin are evaluated as anode materials in aqueous sodium-ion storage devices. Na+-loaded melanin anodes exhibit specific capacities of 30.4 ± 1.6 mAhg−1. Full cells composed of natural melanin anodes and λ-MnO2 cathodes exhibit an initial potential of 1.03 ± 0.06 V with a maximum specific capacity of 16.1 ± 0.8 mAhg−1. Natural melanin anodes exhibit higher specific capacities compared with synthetic melanins due to a combination of beneficial chemical, electrical, and physical properties exhibited by the former. Taken together, these results suggest that melanin pigments may serve as a naturally occurring biologically derived charge storage material to power certain types of medical devices. PMID:24324163

  10. Overview--Development of a geodatabase and conceptual model of the hydrogeologic units beneath Air Force Plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas

    USGS Publications Warehouse

    Shah, Sachin D.

    2004-01-01

    Air Force Plant 4 (AFP4) and adjacent Naval Air Station-Joint Reserve Base Carswell Field (NAS–JRB) at Fort Worth, Tex., constitute a contractor-owned, government-operated facility that has been in operation since 1942. Contaminants from the 3,600-acre facility, primarily volatile organic compounds (VOCs) and metals, have entered the ground-water-flow system through leakage from waste-disposal sites and from manufacturing processes. Environmental data collected at AFP4 and NAS–JRB during 1993–2002 created the need for consolidation of the data into a comprehensive temporal and spatial geodatabase. The U.S. Geological Survey (USGS), in cooperation with the U.S. Air Force Aeronautical Systems Center Environmental Management Directorate, developed a comprehensive geodatabase of temporal and spatial environmental data associated with the hydrogeologic units beneath the facility. A three-dimensional conceptual model of the hydrogeologic units integrally linked to the geodatabase was designed concurrently. Three hydrogeologic units—from land surface downward, the alluvial aquifer, the GoodlandWalnut confining unit, and the Paluxy aquifer—compose the subsurface of interest at AFP4 and NAS–JRB. The alluvial aquifer consists primarily of clay and silt with sand and gravel channel deposits that might be interconnected or interfingered. The Goodland-Walnut confining unit directly underlies the alluvial aquifer and consists of limestone, marl, shale, and clay. The Paluxy aquifer is composed of dense mudstone and fine- to coarse-grained sandstone

  11. CARMENES-NIR channel spectrograph cooling system AIV: thermo-mechanical performance of the instrument

    NASA Astrophysics Data System (ADS)

    Becerril, S.; Mirabet, E.; Lizon, J. L.; Abril, M.; Cárdenas, C.; Ferro, I.; Morales, R.; Pérez, D.; Ramón, A.; Sánchez-Carrasco, M. A.; Quirrenbach, A.; Amado, P.; Ribas, I.; Reiners, A.; Caballero, J. A.; Seifert, W.; Herranz, J.

    2016-07-01

    CARMENES is the new high-resolution high-stability spectrograph built for the 3.5m telescope at the Calar Alto Observatory (CAHA, Almería, Spain) by a consortium formed by German and Spanish institutions. This instrument is composed by two separated spectrographs: VIS channel (550-1050 nm) and NIR channel (950- 1700 nm). The NIR-channel spectrograph's responsible is the Instituto de Astrofísica de Andalucía (IAACSIC). It has been manufactured, assembled, integrated and verified in the last two years, delivered in fall 2015 and commissioned in December 2015. One of the most challenging systems in this cryogenic channel involves the Cooling System. Due to the highly demanding requirements applicable in terms of stability, this system arises as one of the core systems to provide outstanding stability to the channel. Really at the edge of the state-of-the-art, the Cooling System is able to provide to the cold mass ( 1 Ton) better thermal stability than few hundredths of degree within 24 hours (goal: 0.01K/day). The present paper describes the Assembly, Integration and Verification phase (AIV) of the CARMENES-NIR channel Cooling System implemented at IAA-CSIC and later installation at CAHA 3.5m Telescope, thus the most relevant highlights being shown in terms of thermal performance. The CARMENES NIR-channel Cooling System has been implemented by the IAA-CSIC through very fruitful collaboration and involvement of the ESO (European Southern Observatory) cryo-vacuum department with Jean-Louis Lizon as its head and main collaborator. The present work sets an important trend in terms of cryogenic systems for future E-ELT (European Extremely Large Telescope) large-dimensioned instrumentation in astrophysics.

  12. Decoupling control of vehicle chassis system based on neural network inverse system

    NASA Astrophysics Data System (ADS)

    Wang, Chunyan; Zhao, Wanzhong; Luan, Zhongkai; Gao, Qi; Deng, Ke

    2018-06-01

    Steering and suspension are two important subsystems affecting the handling stability and riding comfort of the chassis system. In order to avoid the interference and coupling of the control channels between active front steering (AFS) and active suspension subsystems (ASS), this paper presents a composite decoupling control method, which consists of a neural network inverse system and a robust controller. The neural network inverse system is composed of a static neural network with several integrators and state feedback of the original chassis system to approach the inverse system of the nonlinear systems. The existence of the inverse system for the chassis system is proved by the reversibility derivation of Interactor algorithm. The robust controller is based on the internal model control (IMC), which is designed to improve the robustness and anti-interference of the decoupled system by adding a pre-compensation controller to the pseudo linear system. The results of the simulation and vehicle test show that the proposed decoupling controller has excellent decoupling performance, which can transform the multivariable system into a number of single input and single output systems, and eliminate the mutual influence and interference. Furthermore, it has satisfactory tracking capability and robust performance, which can improve the comprehensive performance of the chassis system.

  13. Micromachined piezoresistive inclinometer with oscillator-based integrated interface circuit and temperature readout

    NASA Astrophysics Data System (ADS)

    Dalola, Simone; Ferrari, Vittorio; Marioli, Daniele

    2012-03-01

    In this paper a dual-chip system for inclination measurement is presented. It consists of a MEMS (microelectromechanical system) piezoresistive accelerometer manufactured in silicon bulk micromachining and a CMOS (complementary metal oxide semiconductor) ASIC (application specific integrated circuit) interface designed for resistive-bridge sensors. The sensor is composed of a seismic mass symmetrically suspended by means of four flexure beams that integrate two piezoresistors each to detect the applied static acceleration, which is related to inclination with respect to the gravity vector. The ASIC interface is based on a relaxation oscillator where the frequency and the duty cycle of a rectangular-wave output signal are related to the fractional bridge imbalance and the overall bridge resistance of the sensor, respectively. The latter is a function of temperature; therefore the sensing element itself can be advantageously used to derive information for its own thermal compensation. DC current excitation of the sensor makes the configuration unaffected by wire resistances and parasitic capacitances. Therefore, a modular system results where the sensor can be placed remotely from the electronics without suffering accuracy degradation. The inclination measurement system has been characterized as a function of the applied inclination angle at different temperatures. At room temperature, the experimental sensitivity of the system results in about 148 Hz/g, which corresponds to an angular sensitivity around zero inclination angle of about 2.58 Hz deg-1. This is in agreement with finite element method simulations. The measured output fluctuations at constant temperature determine an equivalent resolution of about 0.1° at midrange. In the temperature range of 25-65 °C the system sensitivity decreases by about 10%, which is less than the variation due to the microsensor alone thanks to thermal compensation provided by the current excitation of the bridge and the positive temperature coefficient of resistance of the piezoresistors.

  14. Chiral separation and chemical profile of Dengzhan Shengmai by integrating comprehensive with multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    PubMed

    Sheng, Ning; Zheng, Hao; Xiao, Yao; Wang, Zhe; Li, Menglin; Zhang, Jinlan

    2017-09-29

    Chemical profile for Chinese medicine formulas composed of several herbs is always a challenge due to a big array of small molecules with high chemical diversity so much as isomers. The present paper develops a feasible strategy to characterize and identify complex chemical constituents of a four-herb traditional Chinese medicine formula, Denzhan Shenmai (DZSM) by integrating comprehensive two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC×LC-qTOF-MS) with multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (MHC-qTOF-MS). DZSM was separated by C8×C18 HPLC column system for comprehensive two-dimensional liquid chromatography system and 283 compounds most of which belonged to phenolic acid, flavonoid, saponin and lignan families were characterized and identified within 75min. Some isomers and compounds at low level were analyzed on C8×Chiral HPLC column system for multiple heart-cutting two-dimensional liquid chromatography system with 1D and 2D optimized gradient elution program. These 1D cutting fractions were successively separated on 2D chiral chromatographic column under extended the 2D gradient elution time from 30s to 5.0min. 12 pairs of isomer compounds were separated with good resolution. The combination of LC×LC and MHC system provides a powerful technique for global chemical profiling of DZSM and provided feasible strategy for other complex systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Integration of a Portfolio-based Approach to Evaluate Aerospace R and D Problem Formulation Into a Parametric Synthesis Tool

    NASA Astrophysics Data System (ADS)

    Oza, Amit R.

    The focus of this study is to improve R&D effectiveness towards aerospace and defense planning in the early stages of the product development lifecycle. Emphasis is on: correct formulation of a decision problem, with special attention to account for data relationships between the individual design problem and the system capability required to size the aircraft, understanding of the meaning of the acquisition strategy objective and subjective data requirements that are required to arrive at a balanced analysis and/or "correct" mix of technology projects, understanding the meaning of the outputs that can be created from the technology analysis, and methods the researcher can use at effectively support decisions at the acquisition and conceptual design levels through utilization of a research and development portfolio strategy. The primary objectives of this study are to: (1) determine what strategy should be used to initialize conceptual design parametric sizing processes during requirements analysis for the materiel solution analysis stage of the product development lifecycle when utilizing data already constructed in the latter phase when working with a generic database management system synthesis tool integration architecture for aircraft design , and (2) assess how these new data relationships can contribute for innovative decision-making when solving acquisition hardware/technology portfolio problems. As such, an automated composable problem formulation system is developed to consider data interactions for the system architecture that manages acquisition pre-design concept refinement portfolio management, and conceptual design parametric sizing requirements. The research includes a way to: • Formalize the data storage and implement the data relationship structure with a system architecture automated through a database management system. • Allow for composable modeling, in terms of level of hardware abstraction, for the product model, mission model, and operational constraint model data blocks in the pre-design stages. • Allow the product model, mission model, and operational constraint model to be cross referenced with a generic aircraft synthesis capability to identify disciplinary analysis methods and processes. • Allow for matching, comparison, and balancing of the aircraft hardware portfolio to the associated developmental and technology risk metrics. • Allow for visualization technology portfolio decision space. The problem formulation architecture is finally implemented and verified for a generic hypersonic vehicle research demonstrator where a portfolio of technology hardware are measured for developmental and technology risks, prioritized by the researcher risk constraints, and the data generated delivered to a novel aircraft synthesis tool to confirm vehicle feasibility.

  16. An NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles for tumor targeted drug delivery in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Gayam, Srivardhan Reddy; Venkatesan, Parthiban; Sung, Yi-Ming; Sung, Shuo-Yuan; Hu, Shang-Hsiu; Hsu, Hsin-Yun; Wu, Shu-Pao

    2016-06-01

    The synthesis and characterization of an NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles (MSNPs) for on-command delivery applications has been described in this paper. Gatekeeping of MSNPs is achieved by the integration of mechanically interlocked rotaxane nanovalves on the surface of MSNPs. The rotaxane nanovalve system is composed of a linear stalk anchoring on the surface of MSNPs, an α-cyclodextrin ring that encircles it and locks the payload ``cargo'' molecules in the mesopores, and a benzoquinone stopper incorporated at the end of the stalk. The gate opening and controlled release of the cargo are triggered by cleavage of the benzoquinone stopper using an endogenous NQO1 enzyme. In addition to having efficient drug loading and controlled release mechanisms, this smart biocompatible carrier system showed obvious uptake and consequent release of the drug in tumor cells, could selectively induce the tumor cell death and enhance the capability of inhibition of tumor growth in vivo. The controlled drug delivery system demonstrated its use as a potential theranostic material.The synthesis and characterization of an NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles (MSNPs) for on-command delivery applications has been described in this paper. Gatekeeping of MSNPs is achieved by the integration of mechanically interlocked rotaxane nanovalves on the surface of MSNPs. The rotaxane nanovalve system is composed of a linear stalk anchoring on the surface of MSNPs, an α-cyclodextrin ring that encircles it and locks the payload ``cargo'' molecules in the mesopores, and a benzoquinone stopper incorporated at the end of the stalk. The gate opening and controlled release of the cargo are triggered by cleavage of the benzoquinone stopper using an endogenous NQO1 enzyme. In addition to having efficient drug loading and controlled release mechanisms, this smart biocompatible carrier system showed obvious uptake and consequent release of the drug in tumor cells, could selectively induce the tumor cell death and enhance the capability of inhibition of tumor growth in vivo. The controlled drug delivery system demonstrated its use as a potential theranostic material. Electronic supplementary information (ESI) available: Synthesis and characterization of the functional molecules and MSNPs is available in the ESI. See DOI: 10.1039/c6nr03525f

  17. Anaerobic treatment of Tequila vinasses in a CSTR-type digester.

    PubMed

    Méndez-Acosta, Hugo Oscar; Snell-Castro, Raúl; Alcaraz-González, Víctor; González-Alvarez, Víctor; Pelayo-Ortiz, Carlos

    2010-06-01

    Tequila industries in general produce great volumes of effluents with high pollutant loads, which are discharged (untreated or partially treated) into natural receivers, thus causing severe environmental problems. In this contribution, we propose an integrated system as a first step to comply with the Mexican ecological norms and stabilize the anaerobic treatment of Tequila vinasses with main design criteria: simple and easy operation, reduce operating time and associated costs (maintenance), integrated and compact design, minimal cost of set-up, start-up, monitoring and control. This system is composed of a fully instrumented and automated lab-scale CSTR-type digester, on-line measuring devices of key variables (pH, temperature, flow rates, etc.), which are used along with off-line readings of chemical oxygen demand (COD), biogas composition, alkalinity and volatile fatty acids to guarantee the operational stability of the anaerobic digestion process. The system performance was evaluated for 200 days and the experimental results show that even under the influence of load disturbances, it is possible to reduce the COD concentration to 85% in the start-up phase and up to 95% during the normal operation phase while producing a biogas with a methane composition greater than 65%. It is also shown that in order to maintain an efficient treatment, the buffering capacity (given by the alkalinity ratio, alpha = intermediate alkalinity/total alkalinity) must be closely monitored.

  18. Oleyl group-functionalized insulating gate transistors for measuring extracellular pH of floating cells

    NASA Astrophysics Data System (ADS)

    Imaizumi, Yuki; Goda, Tatsuro; Toya, Yutaro; Matsumoto, Akira; Miyahara, Yuji

    2016-01-01

    The extracellular ionic microenvironment has a close relationship to biological activities such as by cellular respiration, cancer development, and immune response. A system composed of ion-sensitive field-effect transistors (ISFET), cells, and program-controlled fluidics has enabled the acquisition of real-time information about the integrity of the cell membrane via pH measurement. Here we aimed to extend this system toward floating cells such as T lymphocytes for investigating complement activation and pharmacokinetics through alternations in the plasma membrane integrity. We functionalized the surface of tantalum oxide gate insulator of ISFET with oleyl-tethered phosphonic acid for interacting with the plasma membranes of floating cells without affecting the cell signaling. The surface modification was characterized by X-ray photoelectron spectroscopy and water contact angle measurements. The Nernst response of -37.8 mV/pH was obtained for the surface-modified ISFET at 37 °C. The oleyl group-functionalized gate insulator successfully captured Jurkat T cells in a fluidic condition without acute cytotoxicity. The system was able to record the time course of pH changes at the cells/ISFET interface during the process of instant addition and withdrawal of ammonium chloride. Further, the plasma membrane injury of floating cells after exposure by detergent Triton™ X-100 was successfully determined using the modified ISFET with enhanced sensitivity as compared with conventional hemolysis assays.

  19. Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almansouri, Hani; Clayton, Dwight A; Kisner, Roger A

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structuresmore » are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.« less

  20. Oleyl group-functionalized insulating gate transistors for measuring extracellular pH of floating cells

    PubMed Central

    Imaizumi, Yuki; Goda, Tatsuro; Toya, Yutaro; Matsumoto, Akira; Miyahara, Yuji

    2016-01-01

    Abstract The extracellular ionic microenvironment has a close relationship to biological activities such as by cellular respiration, cancer development, and immune response. A system composed of ion-sensitive field-effect transistors (ISFET), cells, and program-controlled fluidics has enabled the acquisition of real-time information about the integrity of the cell membrane via pH measurement. Here we aimed to extend this system toward floating cells such as T lymphocytes for investigating complement activation and pharmacokinetics through alternations in the plasma membrane integrity. We functionalized the surface of tantalum oxide gate insulator of ISFET with oleyl-tethered phosphonic acid for interacting with the plasma membranes of floating cells without affecting the cell signaling. The surface modification was characterized by X-ray photoelectron spectroscopy and water contact angle measurements. The Nernst response of −37.8 mV/pH was obtained for the surface-modified ISFET at 37 °C. The oleyl group-functionalized gate insulator successfully captured Jurkat T cells in a fluidic condition without acute cytotoxicity. The system was able to record the time course of pH changes at the cells/ISFET interface during the process of instant addition and withdrawal of ammonium chloride. Further, the plasma membrane injury of floating cells after exposure by detergent Triton™ X-100 was successfully determined using the modified ISFET with enhanced sensitivity as compared with conventional hemolysis assays. PMID:27877886

  1. Integrated horizontal-flow anaerobic and radial-flow aerobic reactors for the removal of organic matter and nitrogen from domestic sewage.

    PubMed

    Vieira, L G T; Fazolo, A; Zaiat, M; Foresti, E

    2003-01-01

    This paper presents the conception and discusses the results obtained from the operation of an integrated biological anaerobic/aerobic/anaerobic system composed of horizontal-flow anaerobic and radial-flow aerobic reactors for domestic sewage treatment. The performance of a horizontal-flow anaerobic immobilized biomass reactor, with five stages,followed by a radial-flow aerobic immobilized biomass reactor was evaluated along 22 weeks. After the 14th week, the last stage of the HAIB reactor was used as a denitrifying unit. Polyurethane foam cubic matrices with 1-cm sides were used as support for biomass immobilization in all the units. The influent domestic sewage presented mean chemical oxygen demand of 365 +/- 71 mg. 1(-1) and the temperature was 23 +/- 3degrees C. The integrated system achieved COD removal efficiency of 90% while the maximum ammonium removal efficiency was 97% in the aerobic post-treatment unit. The nitrification process was found to be better represented by first-order reactions in series model. The apparent first-order kinetic coefficient for nitrate formation was about 50 times higher than that estimated for the nitrite formation. The denitrification process was well represented by a Monod-type kinetic model. The maximum specific denitrifying rate and the half-saturation coefficient were 2.9 x 10(-4) mg NO(3)(-)-N mg(-1) VSS h(-1) and 19.4 mg NO(3)(-)-N 1(-1), respectively.

  2. Using Quality Attributes to Bridge Systems Engineering Gaps : A Juno Ground Data Systems Case Study

    NASA Technical Reports Server (NTRS)

    Dubon, Lydia P.; Jackson, Maddalena M.; Thornton, Marla S.

    2012-01-01

    The Juno Mission to Jupiter is the second mission selected by the NASA New Frontiers Program. Juno launched August 2011 and will reach Jupiter July 2016. Juno's payload system is composed of nine instruments plus a gravity science experiment. One of the primary functions of the Juno Ground Data System (GDS) is the assembly and distribution of the CFDP (CCSDS File Delivery Protocol) product telemetry, also referred to as raw science data, for eight out of the nine instruments. The GDS accomplishes this with the Instrument Data Pipeline (IDP). During payload integration, the first attempt to exercise the IDP in a flight like manner revealed that although the functional requirements were well understood, the system was unable to meet latency requirements with the as-is heritage design. A systems engineering gap emerged between Juno instrument data delivery requirements and the assumptions behind the heritage flight-ground interactions. This paper describes the use of quality attributes to measure and overcome this gap by introducing a new systems engineering activity, and a new monitoring service architecture that successfully delivered the performance metrics needed to validate Juno IDP.

  3. Ubiquitous-health (U-Health) monitoring systems for elders and caregivers

    NASA Astrophysics Data System (ADS)

    Moon, Gyu; Lim, Kyung-won; Yoo, Young-min; An, Hye-min; Lee, Ki Seop; Szu, Harold

    2011-06-01

    This paper presents two aordable low-tack system for household biomedical wellness monitoring. The rst system, JIKIMI (pronounced caregiver in Korean), is a remote monitoring system that analyzes the behavior patterns of elders that live alone. JIKIMI is composed of an in-house sensing system, a set of wireless sensor nodes containing a pyroelectric infrared sensor to detect the motion of elders, an emergency button and a magnetic sensor that detects the opening and closing of doors. The system is also equipped with a server system, which is comprised of a database and web server. The server provides the mechanism for web-based monitoring to caregivers. The second system, Reader of Bottle Information (ROBI), is an assistant system which advises the contents of bottles for elders. ROBI is composed of bottles that have connected RFID tags and an advice system, which is composed of a wireless RFID reader, a gateway and a remote database server. The RFID tags are connected to the caps of the bottles are used in conjunction with the advice system These systems have been in use for three years and have proven to be useful for caregivers to provide more ecient and eective care services.

  4. Self calibration of the stereo vision system of the Chang'e-3 lunar rover based on the bundle block adjustment

    NASA Astrophysics Data System (ADS)

    Zhang, Shuo; Liu, Shaochuang; Ma, Youqing; Qi, Chen; Ma, Hao; Yang, Huan

    2017-06-01

    The Chang'e-3 was the first lunar soft landing probe of China. It was composed of the lander and the lunar rover. The Chang'e-3 successful landed in the northwest of the Mare Imbrium in December 14, 2013. The lunar rover completed the movement, imaging and geological survey after landing. The lunar rover equipped with a stereo vision system which was made up of the Navcam system, the mast mechanism and the inertial measurement unit (IMU). The Navcam system composed of two cameras with the fixed focal length. The mast mechanism was a robot with three revolute joints. The stereo vision system was used to determine the position of the lunar rover, generate the digital elevation models (DEM) of the surrounding region and plan the moving paths of the lunar rover. The stereo vision system must be calibrated before use. The control field could be built to calibrate the stereo vision system in the laboratory on the earth. However, the parameters of the stereo vision system would change after the launch, the orbital changes, the braking and the landing. Therefore, the stereo vision system should be self calibrated on the moon. An integrated self calibration method based on the bundle block adjustment is proposed in this paper. The bundle block adjustment uses each bundle of ray as the basic adjustment unit and the adjustment is implemented in the whole photogrammetric region. The stereo vision system can be self calibrated with the proposed method under the unknown lunar environment and all parameters can be estimated simultaneously. The experiment was conducted in the ground lunar simulation field. The proposed method was compared with other methods such as the CAHVOR method, the vanishing point method, the Denavit-Hartenberg method, the factorization method and the weighted least-squares method. The analyzed result proved that the accuracy of the proposed method was superior to those of other methods. Finally, the proposed method was practical used to self calibrate the stereo vision system of the Chang'e-3 lunar rover on the moon.

  5. Composition in an Integrated Arts Program

    ERIC Educational Resources Information Center

    Strand, Katherine

    2016-01-01

    This article examines possibilities for addressing the need to relate learning in music to learning in other disciplines through developing a third space where students are invited to bring their own knowledge, imagination, and ideas to a music curriculum. The article explores the connections between third-space learning, composing, and arts…

  6. Training of Industrial Sphere Managers in a Specially Organized Education Environment

    ERIC Educational Resources Information Center

    Gorshenina, Margarita; Firsova, Elena

    2016-01-01

    The professional activity of industrial sphere managers has an integrated character and includes managerial, economic and production activity. Due to this the structure of readiness of industrial sphere managers for professional activity is composed of three components: subject, reflexive and technological ones. The objective of this paper…

  7. A History of Women in Jazz.

    ERIC Educational Resources Information Center

    Miller, Susanna L.

    1991-01-01

    The history of women jazz performers and composers, namely African Americans, in the United States is traced from its beginnings to contemporary artists. Women have played an integral role in jazz development. Separate women's festivals showcase many female talents, demonstrating that the future is very promising for women in jazz. (SLD)

  8. Social Studies Research Papers: A Writing Process Approach.

    ERIC Educational Resources Information Center

    Gilstrap, Robert L.

    1987-01-01

    Describes a writing process approach to research papers which involves four steps: prewriting, composing, rewriting, and sharing. Illustrates the process using an intermediate grade level example but states that the process is appropriate at higher levels. Stresses that this approach is important because it integrates writing skills with social…

  9. Targets of Opportunity: Strategies for Managing a Staff Development Consortium.

    ERIC Educational Resources Information Center

    Parsons, Michael H.

    The Appalachian Staff Development Consortium, comprised of three community colleges and the state college located in Appalachian Maryland, attempts to integrate staff development activities into the operational framework of the sponsoring agencies. The consortium, which is managed by a steering committee composed of one teaching faculty member and…

  10. Integration of Histology Lectures and Practical Teaching in China

    ERIC Educational Resources Information Center

    Lu, Xiaoye; Cheng, Xin; Li, Ke; Lee, Kenneth Ka Ho; Yang, Xuesong

    2016-01-01

    Objectives: Human histology is a discipline concerning the study of microscopic structures of human tissues and organs--with the aid of light or electron microscopes. Traditional teaching of histology is composed of two separated components, theory and practice. The main disadvantage with traditional histology teaching is the detachment of theory…

  11. A Thermally Powered ISFET Array for On-Body pH Measurement.

    PubMed

    Douthwaite, Matthew; Koutsos, Ermis; Yates, David C; Mitcheson, Paul D; Georgiou, Pantelis

    2017-12-01

    Recent advances in electronics and electrochemical sensors have led to an emerging class of next generation wearables, detecting analytes in biofluids such as perspiration. Most of these devices utilize ion-selective electrodes (ISEs) as a detection method; however, ion-sensitive field-effect transistors (ISFETs) offer a solution with improved integration and a low power consumption. This work presents a wearable, thermoelectrically powered system composed of an application-specific integrated circuit (ASIC), two commercial power management integrated circuits and a network of commercial thermoelectric generators (TEGs). The ASIC is fabricated in 0.35 m CMOS and contains an ISFET array designed to read pH as a current, a processing module which averages the signal to reduce noise and encodes it into a frequency, and a transmitter. The output frequency has a measured sensitivity of 6 to 8 kHz/pH for a pH range of 7-5. It is shown that the sensing array and processing module has a power consumption 6 W and, therefore, can be entirely powered by body heat using a TEG. Array averaging is shown to reduce noise at these low power levels to 104 V (input referred integrated noise), reducing the minimum detectable limit of the ASIC to 0.008 pH units. The work forms the foundation and proves the feasibility of battery-less, on-body electrochemical for perspiration analysis in sports science and healthcare applications.

  12. Polymer planar lightwave circuit based hybrid-integrated coherent receiver for advanced modulation signals

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Han, Yang; Liang, Zhongcheng; Chen, Yongjin

    2012-11-01

    Applying coherent detection technique to advanced modulation formats makes it possible to electronically compensate the signal impairments. A key issue for a successful deployment of coherent detection technique is the availability of cost-efficient and compact integrated receivers, which are composed of an optical 90° hybrid mixer and four photodiodes (PDs). In this work, three different types of optical hybrids are fabricated with polymer planar lightwave circuit (PLC), and hybridly integrated with four vertical backside illuminated III-V PDs. Their performances, such as the insertion loss, the transmission imbalance, the polarization dependence and the phase deviation of 90° hybrid will be discussed.

  13. Three-dimensional analysis of chevron-notched specimens by boundary integral method

    NASA Technical Reports Server (NTRS)

    Mendelson, A.; Ghosn, L.

    1983-01-01

    The chevron-notched short bar and short rod specimens was analyzed by the boundary integral equations method. This method makes use of boundary surface elements in obtaining the solution. The boundary integral models were composed of linear triangular and rectangular surface segments. Results were obtained for two specimens with width to thickness ratios of 1.45 and 2.00 and for different crack length to width ratios ranging from 0.4 to 0.7. Crack opening displacement and stress intensity factors determined from displacement calculations along the crack front and compliance calculations were compared with experimental values and with finite element analysis.

  14. Fully Integral, Flexible Composite Driveshaft

    NASA Technical Reports Server (NTRS)

    Lawrie, Duncan

    2014-01-01

    An all-composite driveshaft incorporating integral flexible diaphragms was developed for prime contractor testing. This new approach makes obsolete the split lines required to attach metallic flex elements and either metallic or composite spacing tubes in current solutions. Subcritical driveshaft weights can be achieved that are half that of incumbent technology for typical rotary wing shaft lengths. Spacing tubes compose an integral part of the initial tooling but remain part of the finished shaft and control natural frequencies and torsional stability. A concurrently engineered manufacturing process and design for performance competes with incumbent solutions at significantly lower weight and with the probability of improved damage tolerance and fatigue life.

  15. Application of acidogenic fixed-bed reactor prior to anaerobic membrane bioreactor for sustainable slaughterhouse wastewater treatment.

    PubMed

    Saddoud, Ahlem; Sayadi, Sami

    2007-11-19

    High rate anaerobic treatment systems such as anaerobic membrane bioreactors (AMBR) are less popular for slaughterhouse wastewater due to the presence of high fat oil and suspended matters in the effluent. This affects the performance and efficiency of the treatment system. In this work, AMBR has been tried for slaughterhouse wastewater treatment. After the start up period, the reactor was operated with an average organic loading rate (OLR) of 4.37 kg TCODm(-3)d(-1) with gradual increase to an average of 13.27 kg TCODm(-3)d(-1). At stable conditions, the treatment efficiency was high with an average COD and BOD(5) reduction of 93.7 and 93.96%, respectively. However, a reduction in the AMBR performance was shown with the increase of the OLR to 16.32 kg TCODm(-3)d(-1). The removal efficiencies of SCOD and BOD(5) were drastically decreased to below 53.6 and 73.3%, respectively. The decrease of the AMBR performance was due to the accumulation of VFAs. Thus, a new integrated system composed of a FBR for the acidogenesis step followed by the AMBR for methanogenesis step was developed. At high ORL, the integrated system improved the performance of the anaerobic digestion and it successfully overcame the VFA accumulation problem in the AMBR. The anaerobic treatment led to a total removal of all tested pathogens. Thus, the microbiological quality of treated wastewater fits largely with WHO guidelines.

  16. [Network structures in biological systems].

    PubMed

    Oleskin, A V

    2013-01-01

    Network structures (networks) that have been extensively studied in the humanities are characterized by cohesion, a lack of a central control unit, and predominantly fractal properties. They are contrasted with structures that contain a single centre (hierarchies) as well as with those whose elements predominantly compete with one another (market-type structures). As far as biological systems are concerned, their network structures can be subdivided into a number of types involving different organizational mechanisms. Network organization is characteristic of various structural levels of biological systems ranging from single cells to integrated societies. These networks can be classified into two main subgroups: (i) flat (leaderless) network structures typical of systems that are composed of uniform elements and represent modular organisms or at least possess manifest integral properties and (ii) three-dimensional, partly hierarchical structures characterized by significant individual and/or intergroup (intercaste) differences between their elements. All network structures include an element that performs structural, protective, and communication-promoting functions. By analogy to cell structures, this element is denoted as the matrix of a network structure. The matrix includes a material and an immaterial component. The material component comprises various structures that belong to the whole structure and not to any of its elements per se. The immaterial (ideal) component of the matrix includes social norms and rules regulating network elements' behavior. These behavioral rules can be described in terms of algorithms. Algorithmization enables modeling the behavior of various network structures, particularly of neuron networks and their artificial analogs.

  17. An inference method from multi-layered structure of biomedical data.

    PubMed

    Kim, Myungjun; Nam, Yonghyun; Shin, Hyunjung

    2017-05-18

    Biological system is a multi-layered structure of omics with genome, epigenome, transcriptome, metabolome, proteome, etc., and can be further stretched to clinical/medical layers such as diseasome, drugs, and symptoms. One advantage of omics is that we can figure out an unknown component or its trait by inferring from known omics components. The component can be inferred by the ones in the same level of omics or the ones in different levels. To implement the inference process, an algorithm that can be applied to the multi-layered complex system is required. In this study, we develop a semi-supervised learning algorithm that can be applied to the multi-layered complex system. In order to verify the validity of the inference, it was applied to the prediction problem of disease co-occurrence with a two-layered network composed of symptom-layer and disease-layer. The symptom-disease layered network obtained a fairly high value of AUC, 0.74, which is regarded as noticeable improvement when comparing 0.59 AUC of single-layered disease network. If further stretched to whole layered structure of omics, the proposed method is expected to produce more promising results. This research has novelty in that it is a new integrative algorithm that incorporates the vertical structure of omics data, on contrary to other existing methods that integrate the data in parallel fashion. The results can provide enhanced guideline for disease co-occurrence prediction, thereby serve as a valuable tool for inference process of multi-layered biological system.

  18. EGSE (Electrical Ground Support Equipment) for ESA VEGA Launcher

    NASA Astrophysics Data System (ADS)

    Ferrante, M.; Ortenzi, A.; del Re, V.; Bordin, M.; Saccucci, Fr.

    2004-08-01

    Activities belonging to Assembly, Integration and Validation (AIV) phase of a launch vehicle are fundamental in development of a so much delicate system. The equipment used to support this long and crucial phase can be described as a set of Mechanical and Electrical Ground Support Equipment (EGSE). This paper describes the approach followed to develop such a system, and the benefits that this brings in terms of lower risk, more coordinated interfaces and improved functionality. The paper briefly outlines VEGA Electrical Ground Support Equipment major characteristics. In particular, this paper describes the EGSE design for a small launch vehicle such as VEGA. The objective of EGSE is to provide hardware and software for efficient electrical testing of either single stages and integrated launcher. The needs to develop a small launcher is a response to a Resolution in the Space Transportation Strategy adopted by the ESA Council in June 2000, aiming at: "completing, in the medium term, the range of launch services offered by the addition of European manufactured small and medium launcher, complementary to Ariane, consistent with diversified users' needs and relying on common elements, such as stages, subsystems, technologies, production facilities and operational infrastructure, thereby increasing the European launcher industry's competitiveness". Three different parts principally compose the Vega EGSE: TCS (Test Configuration System), TES (Test Execution System), PPS (Post Processing System). The TES is the part of the EGSE devoted to the tests execution; it has capabilities of immediate test data analysis, parameters monitoring and it is able to undertake pre-defined actions, in case of anomalous events happen, in order to put in safe conditions the Unity Under Test (UUT). The TES is composed of two main components: HLCS and LLCS. The HLCS is based on SCOS 2000 ESA product; it is mainly devoted to the interaction with operators. It allows loading Test Sequences and sending commands to the LLCS, thereafter retrieving and displaying the results. The LLCS is the EGSE part closest to the UUT and directly connected to it. It is in charge of monitoring and commanding the UUT, reacting in real-time to both nominal and anomalous events and to ensure safety conditions during the execution of test sessions, even in absence of connection with the HLCS. To perform the tests of VEGA launcher three test areas are foreseen: one for each VEGA launcher stage, except for the third and the second stages that are tested in the same test area. One of these areas is also used to perform the test of complete VEGA launcher. In order to perform all tests, the LLCS is composed of modular subsystems able to work either independently in different test areas or in jointure in the main test area The TCS is the part devoted to the configuration of the EGSE, during the configuration phase it is possible to configure all components of EGSE depending on the test session to be performed. The PPS is the part devoted to the test results post processing. The PPS allows retrieving, analysis and displaying of the data generated in the test execution phases.

  19. Analysis of the Yukawa gravitational potential in f (R ) gravity. II. Relativistic periastron advance

    NASA Astrophysics Data System (ADS)

    De Laurentis, Mariafelicia; De Martino, Ivan; Lazkoz, Ruth

    2018-05-01

    Alternative theories of gravity may serve to overcome several shortcomings of the standard cosmological model but, in their weak field limit, general relativity must be recovered so as to match the tight constraints at the Solar System scale. Therefore, testing such alternative models at scales of stellar systems could give a unique opportunity to confirm or rule them out. One of the most straightforward modifications is represented by analytical f (R )-gravity models that introduce a Yukawa-like modification to the Newtonian potential thus modifying the dynamics of particles. Using the geodesics equations, we have illustrated the amplitude of these modifications. First, we have integrated numerically the equations of motion showing the orbital precession of a particle around a massive object. Second, we have computed an analytic expression for the periastron advance of systems having their semimajor axis much shorter than the Yukawa-scale length. Finally, we have extended our results to the case of a binary system composed of two massive objects. Our analysis provides a powerful tool to obtain constraints on the underlying theory of gravity using current and forthcoming data sets.

  20. The Calipso Thermal Control Subsystem

    NASA Technical Reports Server (NTRS)

    Gasbarre, Joseph F.; Ousley, Wes; Valentini, Marc; Thomas, Jason; Dejoie, Joel

    2007-01-01

    The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is a joint NASA-CNES mission to study the Earth s cloud and aerosol layers. The satellite is composed of a primary payload (built by Ball Aerospace) and a spacecraft platform bus (PROTEUS, built by Alcatel Alenia Space). The thermal control subsystem (TCS) for the CALIPSO satellite is a passive design utilizing radiators, multi-layer insulation (MLI) blankets, and both operational and survival surface heaters. The most temperature sensitive component within the satellite is the laser system. During thermal vacuum testing of the integrated satellite, the laser system s operational heaters were found to be inadequate in maintaining the lasers required set point. In response, a solution utilizing the laser system s survival heaters to augment the operational heaters was developed with collaboration between NASA, CNES, Ball Aerospace, and Alcatel-Alenia. The CALIPSO satellite launched from Vandenberg Air Force Base in California on April 26th, 2006. Evaluation of both the platform and payload thermal control systems show they are performing as expected and maintaining the critical elements of the satellite within acceptable limits.

Top