Space Launch System Integrated Structural Test b-roll
2017-04-19
Integrated Structural Test at test stand 4699 at Marshall Space Flight Center: 1. Launch Vehicle Stage Adapter (LVSA) install to 4699 - 00:05 2. Interim Cryogenic Propulsion stage (ICPS) install to 4699 00:20 3. Orion Stage Adapter (OSA) install to 4699 00:56 4. Integrated Structural Test control room 01:10 5. Animation of stacking LVSA, ICPS & OSA in test stand 02:46
NASA Astrophysics Data System (ADS)
Mahajan, Ajay; Chitikeshi, Sanjeevi; Utterbach, Lucas; Bandhil, Pavan; Figueroa, Fernando
2006-05-01
This paper describes the application of intelligent sensors in the Integrated Systems Health Monitoring (ISHM) as applied to a rocket test stand. The development of intelligent sensors is attempted as an integrated system approach, i.e. one treats the sensors as a complete system with its own physical transducer, A/D converters, processing and storage capabilities, software drivers, self-assessment algorithms, communication protocols and evolutionary methodologies that allow them to get better with time. Under a project being undertaken at the NASA Stennis Space Center, an integrated framework is being developed for the intelligent monitoring of smart elements associated with the rocket tests stands. These smart elements can be sensors, actuators or other devices. Though the immediate application is the monitoring of the rocket test stands, the technology should be generally applicable to the ISHM vision. This paper outlines progress made in the development of intelligent sensors by describing the work done till date on Physical Intelligent sensors (PIS) and Virtual Intelligent Sensors (VIS).
AIAA Aerospace America Magazine - Year in Review Article, 2010
NASA Technical Reports Server (NTRS)
Figueroa, Fernando
2010-01-01
NASA Stennis Space Center has implemented a pilot operational Integrated System Health Management (ISHM) capability. The implementation was done for the E-2 Rocket Engine Test Stand and a Chemical Steam Generator (CSG) test article; and validated during operational testing. The CSG test program is a risk mitigation activity to support building of the new A-3 Test Stand, which will be a highly complex facility for testing of engines in high altitude conditions. The foundation of the ISHM capability are knowledge-based integrated domain models for the test stand and CSG, with physical and model-based elements represented by objects the domain models enable modular and evolutionary ISHM functionality.
KEITH HIGGINBOTHAM AT TEST STAND 4699
2016-10-17
KEITH HIGGINBOTHAM, STRUCTURAL TEST LEAD FOR THE SLS SPACECRAFT PAYLOAD INTEGRATION AND EVOLUTION OFFICE, IS SHOWN BESIDE TEST STAND 4699 AT THE MARSHALL SPACE FLIGHT CENTER’S WEST TEST AREA. HIGGINBOTHAM WILL BE LEADING STRUCTURAL LOADS TESTING AT TEST STAND 4699 FOR THE CORE STAGE SIMULATER AND THE LAUNCH VEHICLE STAGE ADAPTER. THE TEST SERIES WILL ENSURE EACH STRUCTURE CAN WITHSTAND THE INCREDIBLE STRESSES OF LAUNCH.
Laboratories | Energy Systems Integration Facility | NREL
laboratories to be safely divided into multiple test stand locations (or "capability hubs") to enable Fabrication Laboratory Energy Systems High-Pressure Test Laboratory Energy Systems Integration Laboratory Energy Systems Sensor Laboratory Fuel Cell Development and Test Laboratory High-Performance Computing
Integrated System Health Management: Pilot Operational Implementation in a Rocket Engine Test Stand
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Schmalzel, John L.; Morris, Jonathan A.; Turowski, Mark P.; Franzl, Richard
2010-01-01
This paper describes a credible implementation of integrated system health management (ISHM) capability, as a pilot operational system. Important core elements that make possible fielding and evolution of ISHM capability have been validated in a rocket engine test stand, encompassing all phases of operation: stand-by, pre-test, test, and post-test. The core elements include an architecture (hardware/software) for ISHM, gateways for streaming real-time data from the data acquisition system into the ISHM system, automated configuration management employing transducer electronic data sheets (TEDS?s) adhering to the IEEE 1451.4 Standard for Smart Sensors and Actuators, broadcasting and capture of sensor measurements and health information adhering to the IEEE 1451.1 Standard for Smart Sensors and Actuators, user interfaces for management of redlines/bluelines, and establishment of a health assessment database system (HADS) and browser for extensive post-test analysis. The ISHM system was installed in the Test Control Room, where test operators were exposed to the capability. All functionalities of the pilot implementation were validated during testing and in post-test data streaming through the ISHM system. The implementation enabled significant improvements in awareness about the status of the test stand, and events and their causes/consequences. The architecture and software elements embody a systems engineering, knowledge-based approach; in conjunction with object-oriented environments. These qualities are permitting systematic augmentation of the capability and scaling to encompass other subsystems.
Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing
NASA Technical Reports Server (NTRS)
Tuma, M. L.; Chenevert, D. J.
2009-01-01
Ground vibration testing has been an integral tool for developing new launch vehicles throughout the space age. Several launch vehicles have been lost due to problems that would have been detected by early vibration testing, including Ariane 5, Delta III, and Falcon 1. NASA will leverage experience and testing hardware developed during the Saturn and Shuttle programs to perform ground vibration testing (GVT) on the Ares I crew launch vehicle and Ares V cargo launch vehicle stacks. NASA performed dynamic vehicle testing (DVT) for Saturn and mated vehicle ground vibration testing (MVGVT) for Shuttle at the Dynamic Test Stand (Test Stand 4550) at Marshall Space Flight Center (MSFC) in Huntsville, Alabama, and is now modifying that facility to support Ares I integrated vehicle ground vibration testing (IVGVT) beginning in 2012. The Ares IVGVT schedule shows most of its work being completed between 2010 and 2014. Integrated 2nd Stage Ares IVGVT will begin in 2012 and IVGVT of the entire Ares launch stack will begin in 2013. The IVGVT data is needed for the human-rated Orion launch vehicle's Design Certification Review (DCR) in early 2015. During the Apollo program, GVT detected several serious design concerns, which NASA was able to address before Saturn V flew, eliminating costly failures and potential losses of mission or crew. During the late 1970s, Test Stand 4550 was modified to support the four-body structure of the Space Shuttle. Vibration testing confirmed that the vehicle's mode shapes and frequencies were better than analytical models suggested, however, the testing also identified challenges with the rate gyro assemblies, which could have created flight instability and possibly resulted in loss of the vehicle. Today, NASA has begun modifying Test Stand 4550 to accommodate Ares I, including removing platforms needed for Shuttle testing and upgrading the dynamic test facilities to characterize the mode shapes and resonant frequencies of the vehicle. The IVGVT team expects to collect important information about the new launch vehicles, greatly increasing astronaut safety as NASA prepares to explore the Moon and beyond.
Contributions to lateral balance control in ambulatory older adults.
Sparto, Patrick J; Newman, A B; Simonsick, E M; Caserotti, P; Strotmeyer, E S; Kritchevsky, S B; Yaffe, K; Rosano, C
2018-06-01
In older adults, impaired control of standing balance in the lateral direction is associated with the increased risk of falling. Assessing the factors that contribute to impaired standing balance control may identify areas to address to reduce falls risk. To investigate the contributions of physiological factors to standing lateral balance control. Two hundred twenty-two participants from the Pittsburgh site of the Health, Aging and Body Composition Study had lateral balance control assessed using a clinical sensory integration balance test (standing on level and foam surface with eyes open and closed) and a lateral center of pressure tracking test using visual feedback. The center of pressure was recorded from a force platform. Multiple linear regression models examined contributors of lateral control of balance performance, including concurrently measured tests of lower extremity sensation, knee extensor strength, executive function, and clinical balance tests. Models were adjusted for age, body mass index, and sex. Larger lateral sway during the sensory integration test performed on foam was associated with longer repeated chair stands time. During the lateral center of pressure tracking task, the error in tracking increased at higher frequencies; greater error was associated with worse executive function. The relationship between sway performance and physical and cognitive function differed between women and men. Contributors to control of lateral balance were task-dependent. Lateral standing performance on an unstable surface may be more dependent upon general lower extremity strength, whereas visual tracking performance may be more dependent upon cognitive factors. Lateral balance control in ambulatory older adults is associated with deficits in strength and executive function.
Rehabilitation of the Rocket Vehicle Integration Test Stand at Edwards Air Force Base
NASA Technical Reports Server (NTRS)
Jones, Daniel S.; Ray, Ronald J.; Phillips, Paul
2005-01-01
Since initial use in 1958 for the X-15 rocket-powered research airplane, the Rocket Engine Test Facility has proven essential for testing and servicing rocket-powered vehicles at Edwards Air Force Base. For almost two decades, several successful flight-test programs utilized the capability of this facility. The Department of Defense has recently demonstrated a renewed interest in propulsion technology development with the establishment of the National Aerospace Initiative. More recently, the National Aeronautics and Space Administration is undergoing a transformation to realign the organization, focusing on the Vision for Space Exploration. These initiatives provide a clear indication that a very capable ground-test stand at Edwards Air Force Base will be beneficial to support the testing of future access-to-space vehicles. To meet the demand of full integration testing of rocket-powered vehicles, the NASA Dryden Flight Research Center, the Air Force Flight Test Center, and the Air Force Research Laboratory have combined their resources in an effort to restore and upgrade the original X-15 Rocket Engine Test Facility to become the new Rocket Vehicle Integration Test Stand. This report describes the history of the X-15 Rocket Engine Test Facility, discusses the current status of the facility, and summarizes recent efforts to rehabilitate the facility to support potential access-to-space flight-test programs. A summary of the capabilities of the facility is presented and other important issues are discussed.
Evolving Postmortems as Teams Evolve Through TxP
2014-12-01
Instead of waiting for SEI to compile enough data to repeat this kind of analysis for the system integration test domain , a system integration test team...and stand up their Team Test Process (TTP). Some abilities, like planning on how many mistakes will be made by the team in producing a test procedure...can only be performed after the team has determined a) which mistakes count in the domain of system integration testing, b) what units to use to
1966-01-01
Engineers and technicians at the Marshall Space Flight Center placed a Saturn V ground test booster (S-IC-D) into the dynamic test stand. The stand was constructed to test the integrity of the vehicle. Forces were applied to the tail of the vehicle to simulate the engines thrusting, and various other flight factors were fed to the vehicle to test reactions. The Saturn V launch vehicle, with the Apollo spacecraft, was subjected to more than 450 hours of shaking. The photograph shows the 300,000 pound S-IC stage being lifted from its transporter into place inside the 360-foot tall test stand. This dynamic test booster has one dummy F-1 engine and weight simulators are used at the other four engine positions.
Church, Kathryn; Wringe, Alison; Fakudze, Phelele; Kikuvi, Joshua; Simelane, Dudu; Mayhew, Susannah H
2013-01-01
Introduction Integrating HIV with primary health services has the potential to reduce HIV-related stigma through delivering care in settings disassociated with HIV. This study investigated the relationship between integrated care and felt stigma. The study design was a comparative case study of four models of HIV care in Swaziland, ranging from fully integrated to fully stand-alone HIV care. Methods An exit survey (N=602) measured differences in felt stigma across model of care; the primary outcome “perception of HIV status exposure through clinic attendance” was analyzed using multivariable logistic regression. In-depth interviews (N=22) explored whether and how measured differences in stigma experiences were related to service integration. Results There were significant differences in perceived status exposure across models of care. After adjustment for potential confounding between sites, those at a partially integrated site and a partially stand-alone site had greater odds of perceived status exposure than those at the fully stand-alone site (aOR 3.33, 95% CI 1.98–5.60; and aOR 11.84, 95% CI 6.89–20.36, respectively). There was no difference between the fully stand-alone and the fully integrated clinic. Qualitative data suggested that many clients at HIV-only sites felt greater confidentiality knowing that those around them were positive, and support was gained from other HIV care clients. Confidentiality was maintained in various ways, even in stand-alone sites, through separate waiting areas for HIV testing and HIV treatment, and careful clinic and room labelling. Conclusions The relationship between model of care and stigma was complex, and the hypothesis that stigma is higher at stand-alone sites did not hold true in this high prevalence setting. Policy-makers should ensure that service integration does not increase stigma, in particular within partially integrated models of care. PMID:23336726
Rocket Testing and Integrated System Health Management
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Schmalzel, John
2005-01-01
Integrated System Health Management (ISHM) describes a set of system capabilities that in aggregate perform: determination of condition for each system element, detection of anomalies, diagnosis of causes for anomalies, and prognostics for future anomalies and system behavior. The ISHM should also provide operators with situational awareness of the system by integrating contextual and timely data, information, and knowledge (DIaK) as needed. ISHM capabilities can be implemented using a variety of technologies and tools. This chapter provides an overview of ISHM contributing technologies and describes in further detail a novel implementation architecture along with associated taxonomy, ontology, and standards. The operational ISHM testbed is based on a subsystem of a rocket engine test stand. Such test stands contain many elements that are common to manufacturing systems, and thereby serve to illustrate the potential benefits and methodologies of the ISHM approach for intelligent manufacturing.
Bučar Pajek, Maja; Leskošek, Bojan; Vivoda, Tjaša; Svilan, Katarina; Čuk, Ivan; Pajek, Jernej
2016-06-01
To reduce the need for a large number of executed physical function tests we examined inter-relations and determined predictive power for daily physical activity of the following tests: 6-min walk, 10 repetition sit-to-stand, time up-and-go, Storke balance, handgrip strength, upper limb tapping and sitting forward bend tests. In 90 dialysis and 140 healthy control subjects we found high correlations between all tests, especially those engaging lower extremities. Sit-to-stand, forward bend and handgrip strength were selected for the test battery and composite motor performance score. Sit-to-stand test was superior in terms of sensitivity to uremia effects and association with daily physical function in adjusted analyses. There was no incremental value in calculating the composite performance score. We propose to standardize the physical function assessment of dialysis patients for cross-sectional and longitudinal observations with three simple, cheap, well-accessible and easily performed test tools: sit-to-stand test, handgrip strength and Human Activity Profile questionnaire. © 2016 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.
HESTIA Commodities Exchange Pallet and Sounding Rocket Test Stand
NASA Technical Reports Server (NTRS)
Chaparro, Javier
2013-01-01
During my Spring 2016 internship, my two major contributions were the design of the Commodities Exchange Pallet and the design of a test stand for a 100 pounds-thrust sounding rocket. The Commodities Exchange Pallet is a prototype developed for the Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA) program. Under the HESTIA initiative the Commodities Exchange Pallet was developed as a method for demonstrating multi-system integration thru the transportation of In-Situ Resource Utilization produced oxygen and water to a human habitat. Ultimately, this prototype's performance will allow for future evaluation of integration, which may lead to the development of a flight capable pallet for future deep-space exploration missions. For HESTIA, my main task was to design the Commodities Exchange Pallet system to be used for completing an integration demonstration. Under the guidance of my mentor, I designed, both, the structural frame and fluid delivery system for the commodities pallet. The fluid delivery system includes a liquid-oxygen to gaseous-oxygen system, a water delivery system, and a carbon-dioxide compressors system. The structural frame is designed to meet safety and transportation requirements, as well as the ability to interface with the ER division's Portable Utility Pallet. The commodities pallet structure also includes independent instrumentation oxygen/water panels for operation and system monitoring. My major accomplishments for the commodities exchange pallet were the completion of the fluid delivery systems and the structural frame designs. In addition, parts selection was completed in order to expedite construction of the prototype, scheduled to begin in May of 2016. Once the commodities pallet is assembled and tested it is expected to complete a fully integrated transfer demonstration with the ISRU unit and the Environmental Control and Life Support System test chamber in September of 2016. In addition to the development of the Commodities Exchange Pallet, I also assisted in preparation for testing the upper stage of a sounding rocket developed as a Center Innovation Fund project. The main objective of this project is to demonstrate the integration between a propulsion system and a solid oxide fuel cell (SOFC). The upper stage and SOFC are scheduled to complete an integrated test in August of 2016. As part of preparation for scheduled testing, I was responsible for designing the upper stage's test stand/support structure and main engine plume deflector to be used during hot-fire testing (fig. 3). The structural components of the test stand need to meet safety requirements for operation of the propulsion system, which consist of a 100 pounds-thrust main engine and two 15 pounds-thrust reaction control thrusters. My main accomplishment for this project was the completion of the design and the parts selection for construction of the structure, scheduled to begin late April of 2016.
Reaction to the sensory integration therapy in children with postural stability deficits.
Maciaszek, Janusz; Kilan, Natalia; Bronikowski, Michal
2016-10-05
The goal was to examine the influence of sensory integration therapy (SIT) on one leg standing in children with deficits of the postural stability. 28 children 4 - 6 year old that could not stand on one leg for more than 20 seconds were randomly divided into control "C" and experimental "E" groups. Group "C" participated in standard classes in the kindergarten. Group "E" participated in sensory integration therapy (SIT) for 2 weeks, 5 times a week (additionally to the standard classes). Results of the experiment show that the skill of standing on one leg has significantly improved (p<0.01) in the group that underwent additional therapy. The change in time of standing on the right leg with eyes open in the E group was statistically and significantly higher than the changes observed in the same time in group C (F = 22.5, p = 0.001' η2 = 0.44). Similarly, significant changes in time of standing on the right leg with eyes closed were observed in group E. The foregoing changes were bigger in group E than in group C (F = 16. 1 , p = 0.004, η2 = 0.36). The analysis post hoc revealed that while there were no significant differences between the two groups on the pretest (p>0.05), there were significant differences between groups in right leg standing test with eyes open or closed on posttest. (p<0.05). Similar results were observed during on the one, left leg standing. The time of one leg standing with both eyes open and closed improved more significantly in group E than in group C (F = 20.4, p = 0.001, η2 = 0.42 respectively for the test with eyes open and F = 7.4, p = 0.010, η2 = 0.21 for the test with eyes closed). The analysis post hoc revealed that while there were no significant differences between the two groups on the pretest (p>0.05), there were significant differences between groups in left leg standing test with eyes open or closed on posttest. (p<0.05). Research conducted show that there is a positive influence of SIT on children with low level of postural stability. Its significant improvement in children with low levels of postural stability is important not only for the current functioning of those children but for their future - by protecting them from falling down and from injuries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foucar, James G.; Salinger, Andrew G.; Deakin, Michael
CIME is the software infrastructure for configuring, building, running, and testing an Earth system model. It can be developed and tested as stand-alone software, but its main role is to be integrating into the CESM and ACME Earth system models.
Integrated System Health Management (ISHM) for Test Stand and J-2X Engine: Core Implementation
NASA Technical Reports Server (NTRS)
Figueroa, Jorge F.; Schmalzel, John L.; Aguilar, Robert; Shwabacher, Mark; Morris, Jon
2008-01-01
ISHM capability enables a system to detect anomalies, determine causes and effects, predict future anomalies, and provides an integrated awareness of the health of the system to users (operators, customers, management, etc.). NASA Stennis Space Center, NASA Ames Research Center, and Pratt & Whitney Rocketdyne have implemented a core ISHM capability that encompasses the A1 Test Stand and the J-2X Engine. The implementation incorporates all aspects of ISHM; from anomaly detection (e.g. leaks) to root-cause-analysis based on failure mode and effects analysis (FMEA), to a user interface for an integrated visualization of the health of the system (Test Stand and Engine). The implementation provides a low functional capability level (FCL) in that it is populated with few algorithms and approaches for anomaly detection, and root-cause trees from a limited FMEA effort. However, it is a demonstration of a credible ISHM capability, and it is inherently designed for continuous and systematic augmentation of the capability. The ISHM capability is grounded on an integrating software environment used to create an ISHM model of the system. The ISHM model follows an object-oriented approach: includes all elements of the system (from schematics) and provides for compartmentalized storage of information associated with each element. For instance, a sensor object contains a transducer electronic data sheet (TEDS) with information that might be used by algorithms and approaches for anomaly detection, diagnostics, etc. Similarly, a component, such as a tank, contains a Component Electronic Data Sheet (CEDS). Each element also includes a Health Electronic Data Sheet (HEDS) that contains health-related information such as anomalies and health state. Some practical aspects of the implementation include: (1) near real-time data flow from the test stand data acquisition system through the ISHM model, for near real-time detection of anomalies and diagnostics, (2) insertion of the J-2X predictive model providing predicted sensor values for comparison with measured values and use in anomaly detection and diagnostics, and (3) insertion of third-party anomaly detection algorithms into the integrated ISHM model.
Flat Surface Damage Detection System (FSDDS)
NASA Technical Reports Server (NTRS)
Williams, Martha; Lewis, Mark; Gibson, Tracy; Lane, John; Medelius, Pedro; Snyder, Sarah; Ciarlariello, Dan; Parks, Steve; Carrejo, Danny; Rojdev, Kristina
2013-01-01
The Flat Surface Damage Detection system (FSDDS} is a sensory system that is capable of detecting impact damages to surfaces utilizing a novel sensor system. This system will provide the ability to monitor the integrity of an inflatable habitat during in situ system health monitoring. The system consists of three main custom designed subsystems: the multi-layer sensing panel, the embedded monitoring system, and the graphical user interface (GUI). The GUI LABVIEW software uses a custom developed damage detection algorithm to determine the damage location based on the sequence of broken sensing lines. It estimates the damage size, the maximum depth, and plots the damage location on a graph. Successfully demonstrated as a stand alone technology during 2011 D-RATS. Software modification also allowed for communication with HDU avionics crew display which was demonstrated remotely (KSC to JSC} during 2012 integration testing. Integrated FSDDS system and stand alone multi-panel systems were demonstrated remotely and at JSC, Mission Operations Test using Space Network Research Federation (SNRF} network in 2012. FY13, FSDDS multi-panel integration with JSC and SNRF network Technology can allow for integration with other complementary damage detection systems.
Small-Scale Hybrid Rocket Test Stand & Characterization of Swirl Injectors
NASA Astrophysics Data System (ADS)
Summers, Matt H.
Derived from the necessity to increase testing capabilities of hybrid rocket motor (HRM) propulsion systems for Daedalus Astronautics at Arizona State University, a small-scale motor and test stand were designed and developed to characterize all components of the system. The motor is designed for simple integration and setup, such that both the forward-end enclosure and end cap can be easily removed for rapid integration of components during testing. Each of the components of the motor is removable allowing for a broad range of testing capabilities. While examining injectors and their potential it is thought ideal to obtain the highest regression rates and overall motor performance possible. The oxidizer and fuel are N2O and hydroxyl-terminated polybutadiene (HTPB), respectively, due to previous experience and simplicity. The injector designs, selected for the same reasons, are designed such that they vary only in the swirl angle. This system provides the platform for characterizing the effects of varying said swirl angle on HRM performance.
NASA Technical Reports Server (NTRS)
Fisher, Mark F.; King, Richard F.; Chenevert, Donald J.
1998-01-01
The need for low cost access to space has initiated the development of low cost liquid rocket engine and propulsion system hardware at the Marshall Space Flight Center. This hardware will be tested at the Stennis Space Center's B-2 test stand. This stand has been reactivated for the testing of the Marshall designed Fastrac engine and the Propulsion Test Article. The RP-1 and LOX engine is a turbopump fed gas generator rocket with an ablative nozzle which has a thrust of 60,000 lbf. The Propulsion Test Article (PTA) is a test bed for low cost propulsion system hardware including a composite RP-I tank, flight feedlines and pressurization system, stacked in a booster configuration. The PTA is located near the center line of the B-2 test stand, firing vertically into the water cooled flame deflector. A new second position on the B-2 test stand has been designed and built for the horizontal testing of the Fastrac engine in direct support of the X-34 launch vehicle. The design and integration of these test facilities as well as the coordination which was required between the two Centers is described and lessons learned are provided. The construction of the horizontal test position is discussed in detail. The activation of these facilities is examined and the major test milestones are described.
The Cold Dark Matter Search test stand warm electronics card
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hines, Bruce; /Colorado U., Denver; Hansen, Sten
A card which does the signal processing for four SQUID amplifiers and two charge sensitive channels is described. The card performs the same functions as is presently done with two custom 9U x 280mm Eurocard modules, a commercial multi-channel VME digitizer, a PCI to GPIB interface, a PCI to VME interface and a custom built linear power supply. By integrating these functions onto a single card and using the power over Ethernet standard, the infrastructure requirements for instrumenting a Cold Dark Matter Search (CDMS) detector test stand are significantly reduced.
Fixed Equipment in the Energy Systems Integration Facility | Energy Systems
dynamic simulation of future energy systems. Photo of a robot used to test hydrogen coupling hardware. At test chambers (rated up to 60°C) for testing HVAC systems under simulated loading conditions Two bench performance Test stand for measuring performance of receiver tubes for concentrating solar power applications
Investigation of Data Fusion Applied to Health Monitoring of Wind Turbine Drive train Components
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Sheng, Shuangwen
2011-01-01
The research described was performed on diagnostic tools used to detect damage to dynamic mechanical components in a wind turbine gearbox. Different monitoring technologies were evaluated by collecting vibration and oil debris data from tests performed on a "healthy" gearbox and a damaged gearbox in a dynamometer test stand located at the National Renewable Energy Laboratory. The damaged gearbox tested was removed from the field after experiencing component damage due to two losses of oil events and was retested under controlled conditions in the dynamometer test stand. Preliminary results indicate oil debris and vibration can be integrated to assess the health of the wind turbine gearbox.
2017-11-17
Technicians in clean-room suits attach a crane to the Orion crew module for Exploration Mission-1 for its move to the thermal chamber in the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. Orion will be lifted out of a test stand and lowered onto another stand to for the move. The crew module will undergo a thermal cycle test to assess the workmanship of critical hardware and structural locations. The test also demonstrates crew module subsystem operations in a thermally stressing environment to confirm no damage or anomalous hardware conditions as a result of the test. The Orion spacecraft will launch atop NASA's Space Launch System rocket on its first uncrewed integrated flight.
Standing-up exerciser based on functional electrical stimulation and body weight relief.
Ferrarin, M; Pavan, E E; Spadone, R; Cardini, R; Frigo, C
2002-05-01
The goal of the present work was to develop and test an innovative system for the training of paraplegic patients when they are standing up. The system consisted of a computer-controlled stimulator, surface electrodes for quadricep muscle stimulation, two knee angle sensors, a digital proportional-integrative-derivative (PID) controller and a mechanical device to support, partially, the body weight (weight reliever (WR)). A biomechanical model of the combined WR and patient was developed to find an optimum reference trajectory for the PID controller. The system was tested on three paraplegic patients and was shown to be reliable and safe. One patient completed a 30-session training period. Initially he was able to stand up only with 62% body weight relief, whereas, after the training period, he performed a series of 30 standing-up/sitting-down cycles with 45% body weight relief. The closed-loop controller was able to keep the patient standing upright with minimum stimulation current, to compensate automatically for muscle fatigue and to smooth the sitting-down movement. The limitations of the controller in connection with a highly non-linear system are considered.
Application of the Life Safety Code to a Historic Test Stand
NASA Technical Reports Server (NTRS)
Askins, Bruce; Lemke, Paul R.; Lewis, William L.; Covell, Carol C.
2011-01-01
NASA has conducted a study to assess alternatives to refurbishing existing launch vehicle modal test facilities as opposed to developing new test facilities to meet the demands of a very fiscally constrained test and evaluation environment. The results of this study showed that Marshall Space Flight Center (MSFC) Test Stand (TS) 4550 could be made compliant, within reasonable cost and schedule impacts, if safety processes and operational limitations were put in place to meet the safety codes and concerns of the Fire Marshall. Trades were performed with key selection criteria to ensure that appropriate levels of occupant safety are incorporated into test facility design modifications. In preparation for the ground vibration tests that were to be performed on the Ares I launch vehicle, the Ares Flight and Integrated Test Office (FITO) organization evaluated the available test facility options, which included the existing mothballed structural dynamic TS4550 used by Apollo and Shuttle, alternative ground vibration test facilities at other locations, and construction of a new dynamic test stand. After an exhaustive assessment of the alternatives, the results favored modifying the TS4550 because it was the lowest cost option and presented the least schedule risk to the NASA Constellation Program for Ares Integrated Vehicle Ground Vibration Test (IVGVT). As the renovation design plans and drawings were being developed for TS4550, a safety concern was discovered the original design for the construction of the test stand, originally built for the Apollo Program and renovated for the Shuttle Program, was completed before NASA s adoption of the currently imposed safety and building codes per National Fire Protection Association Life Safety Code [NFPA 101] and International Building Codes. The initial FITO assessment of the design changes, required to make TS4550 compliant with current safety and building standards, identified a significant cost increase and schedule impact. An effort was launched to thoroughly evaluate the applicable life safety requirements, examine the context in which they were derived, and determine a means by which the TS4550 modifications could be made within budget and on schedule, while still providing the occupants with appropriate levels of safety.
[Alternatives to animal testing].
Fabre, Isabelle
2009-11-01
The use of alternative methods to animal testing are an integral part of the 3Rs concept (refine, reduce, replace) defined by Russel & Burch in 1959. These approaches include in silico methods (databases and computer models), in vitro physicochemical analysis, biological methods using bacteria or isolated cells, reconstructed enzyme systems, and reconstructed tissues. Emerging "omic" methods used in integrated approaches further help to reduce animal use, while stem cells offer promising approaches to toxicologic and pathophysiologic studies, along with organotypic cultures and bio-artificial organs. Only a few alternative methods can so far be used in stand-alone tests as substitutes for animal testing. The best way to use these methods is to integrate them in tiered testing strategies (ITS), in which animals are only used as a last resort.
Church, Kathryn; Wringe, Alison; Lewin, Simon; Ploubidis, George B.; Fakudze, Phelele; Mayhew, Susannah H.
2015-01-01
Integrating reproductive health (RH) with HIV care is a policy priority in high HIV prevalence settings, despite doubts surrounding its feasibility and varying evidence of effects on health outcomes. The process and outcomes of integrated RH-HIV care were investigated in Swaziland, through a comparative case study of four service models, ranging from fully integrated to fully stand-alone HIV services, selected purposively within one town. A client exit survey (n=602) measured integrated care received and unmet family planning (FP) needs. Descriptive statistics were used to assess the degree of integration per clinic and client demand for services. Logistic regression modelling was used to test the hypothesis that clients at more integrated sites had lower unmet FP needs than clients in a stand-alone site. Qualitative methods included in-depth interviews with clients and providers to explore contextual factors influencing the feasibility of integrated RH-HIV care delivery; data were analysed thematically, combining deductive and inductive approaches. Results demonstrated that clinic models were not as integrated in practice as had been claimed. Fragmentation of HIV care was common. Services accessed per provider were no higher at the more integrated clinics compared to stand-alone models (p>0.05), despite reported demand. While women at more integrated sites received more FP and pregnancy counselling than stand-alone models, they received condoms (a method of choice) less often, and there was no statistical evidence of difference in unmet FP needs by model of care. Multiple contextual factors influenced integration practices, including provider de-skilling within sub-specialist roles; norms of task-oriented routinised HIV care; perceptions of heavy client loads; imbalanced client-provider interactions hindering articulation of RH needs; and provider motivation challenges. Thus, despite institutional support, factors related to the social context of care inhibited provision of fully integrated RH-HIV services in these clinics. Programmes should move beyond simplistic training and equipment provision if integrated care interventions are to be sustained. PMID:25978632
The Association of Glaucomatous Visual Field Loss and Balance
de Luna, Regina A.; Mihailovic, Aleksandra; Nguyen, Angeline M.; Friedman, David S.; Gitlin, Laura N.; Ramulu, Pradeep Y.
2017-01-01
Purpose To relate balance measures to visual field (VF) damage from glaucoma. Methods The OPAL kinematic system measured balance, as root mean square (RMS) sway, on 236 patients with suspect/diagnosed glaucoma. Balance was measured with feet shoulder width apart while standing on a firm/foam surface with eyes opened/closed (Instrumental Clinical Test of Sensory Integration and Balance [ICTSIB] conditions), and eyes open on a firm surface under feet together, semi-tandem, or tandem positions (standing balance conditions). Integrated VF (IVF) sensitivities were calculated by merging right and left eye 24-2 VF data. Results Mean age was 71 years (range, 57–93) and mean IVF sensitivity was 27.1 dB (normal = 31 dB). Lower IVF sensitivity was associated with greater RMS sway during eyes-open foam-surface testing (β = 0.23 z-score units/5 dB IVF sensitivity decrement, P = 0.001), but not during other ICTSIB conditions. Lower IVF sensitivity also was associated with greater RMS sway during feet together standing balance testing (0.10 z-score units/5 dB IVF sensitivity decrement, P = 0.049), but not during other standing balance conditions. Visual dependence of balance was lower in patients with worse IVF sensitivity (β = −21%/5 dB IVF sensitivity decrement, P < 0.001). Neither superior nor inferior IVF sensitivity consistently predicted balance measures better than measures of overall VF sensitivity. Conclusions Balance was worse in glaucoma patients with greater VF damage under foam surface testing (designed to inhibit proprioceptive contributions to balance) as well as feet-together firm-surface conditions when somatosensory inputs were available. Translational Relevance Good balance is essential to avoid unnecessary falls and patients with VF loss from glaucoma may be at higher risk of falls because of poor balance. PMID:28553562
SMART Rotor Development and Wind Tunnel Test
2009-09-01
amplifier and control system , and data acquisition, processing, and display systems . Boeing�s LRTS (Fig. 2), consists of a sled structure that...Support Test Stand Sled Tail Sting Outrigger Arm Figure 2: System integration test at whirl tower Port Rotor Balance Main Strut Flap Tail...demonstrated. Finally, the reliability of the flap actuation system was successfully proven in more than 60 hours of wind tunnel testing
Integrated Energy Solutions | NREL
Transitions A man and woman standing in front of a large, color 3D visualization screen that spans the height a woman and a man testing a scaled model of a microgrid controller in a laboratory setting
Flexible integration of free-standing nanowires into silicon photonics.
Chen, Bigeng; Wu, Hao; Xin, Chenguang; Dai, Daoxin; Tong, Limin
2017-06-14
Silicon photonics has been developed successfully with a top-down fabrication technique to enable large-scale photonic integrated circuits with high reproducibility, but is limited intrinsically by the material capability for active or nonlinear applications. On the other hand, free-standing nanowires synthesized via a bottom-up growth present great material diversity and structural uniformity, but precisely assembling free-standing nanowires for on-demand photonic functionality remains a great challenge. Here we report hybrid integration of free-standing nanowires into silicon photonics with high flexibility by coupling free-standing nanowires onto target silicon waveguides that are simultaneously used for precise positioning. Coupling efficiency between a free-standing nanowire and a silicon waveguide is up to ~97% in the telecommunication band. A hybrid nonlinear-free-standing nanowires-silicon waveguides Mach-Zehnder interferometer and a racetrack resonator for significantly enhanced optical modulation are experimentally demonstrated, as well as hybrid active-free-standing nanowires-silicon waveguides circuits for light generation. These results suggest an alternative approach to flexible multifunctional on-chip nanophotonic devices.Precisely assembling free-standing nanowires for on-demand photonic functionality remains a challenge. Here, Chen et al. integrate free-standing nanowires into silicon waveguides and show all-optical modulation and light generation on silicon photonic chips.
A stratified charge research engine and test stand were designed and built for this work. The primary goal of this project was to evaluate the feasibility of using a removal integral injector ignition source insert which allows a convenient method of charging the relative locat...
In-situ Testing of the EHT High Gain and Frequency Ultra-Stable Integrators
NASA Astrophysics Data System (ADS)
Miller, Kenneth; Ziemba, Timothy; Prager, James; Slobodov, Ilia; Lotz, Dan
2014-10-01
Eagle Harbor Technologies (EHT) has developed a long-pulse integrator that exceeds the ITER specification for integration error and pulse duration. During the Phase I program, EHT improved the RPPL short-pulse integrators, added a fast digital reset, and demonstrated that the new integrators exceed the ITER integration error and pulse duration requirements. In Phase II, EHT developed Field Programmable Gate Array (FPGA) software that allows for integrator control and real-time signal digitization and processing. In the second year of Phase II, the EHT integrator will be tested at a validation platform experiment (HIT-SI) and tokamak (DIII-D). In the Phase IIB program, EHT will continue development of the EHT integrator to reduce overall cost per channel. EHT will test lower cost components, move to surface mount components, and add an onboard Field Programmable Gate Array and data acquisition to produce a stand-alone system with lower cost per channel and increased the channel density. EHT will test the Phase IIB integrator at a validation platform experiment (HIT-SI) and tokamak (DIII-D). Work supported by the DOE under Contract Number (DE-SC0006281).
Locomotive emissions test stand with particulate matter measurement integration : final report.
DOT National Transportation Integrated Search
2015-10-01
This project builds upon previous research efforts, in which a complete instruction manual and bill of materials was developed for : a blueprint that allows any organization in the railroad industry to build their own locomotive emissions measurement...
Lin, Chin-Kai; Wu, Huey-Min; Lin, Chung-Hui; Wu, Yuh-Yih; Wu, Pei-Fang; Kuo, Bor-Chen; Yeung, Kwok-Tak
2012-10-01
The goal of this study was to examine the relationship between the validity of postural movement and bilateral motor integration in terms of sensory integration theory. Participants in this study were 61 Chinese children ages 48 to 70 months. Structural equation modeling was applied to assess the relation between measures tapping postural movement and bilateral motor integration: for postural movement, the measures involve the Monkey Task, Side-Sit Co-contraction, Prone on Elbows, Wheelbarrow Walk, Airplane, and Scooter Board Co-contraction from the DeGangi-Berk Test of Sensory Integration, and Standing Balance with Eyes Closed/Opened in Southern California Sensory Integration Tests. For bilateral motor integration, the measures chosen were the Rolling Pin Activity, Jump and Turn, Diadokokinesis, Drumming, and Upper Extremity Control from the DeGangi-Berk Test of Sensory Integration, and Cross the Midline in Southern California Sensory Integration Tests (SCSIT). Postural movement was highly correlated with the bilateral motor integration. The factor structure fit the theoretical conceptualization, classifying postural movement and bilateral motor integration together in the same category. Therapists could combine two separate objectives (postural movement and bilateral motor integration) of intervention in an activity to improve the adaptive skills based on the vestibular-proprioceptive integration.
Test and Verification Approach for the NASA Constellation Program
NASA Technical Reports Server (NTRS)
Strong, Edward
2008-01-01
This viewgraph presentation is a test and verification approach for the NASA Constellation Program. The contents include: 1) The Vision for Space Exploration: Foundations for Exploration; 2) Constellation Program Fleet of Vehicles; 3) Exploration Roadmap; 4) Constellation Vehicle Approximate Size Comparison; 5) Ares I Elements; 6) Orion Elements; 7) Ares V Elements; 8) Lunar Lander; 9) Map of Constellation content across NASA; 10) CxP T&V Implementation; 11) Challenges in CxP T&V Program; 12) T&V Strategic Emphasis and Key Tenets; 13) CxP T&V Mission & Vision; 14) Constellation Program Organization; 15) Test and Evaluation Organization; 16) CxP Requirements Flowdown; 17) CxP Model Based Systems Engineering Approach; 18) CxP Verification Planning Documents; 19) Environmental Testing; 20) Scope of CxP Verification; 21) CxP Verification - General Process Flow; 22) Avionics and Software Integrated Testing Approach; 23) A-3 Test Stand; 24) Space Power Facility; 25) MEIT and FEIT; 26) Flight Element Integrated Test (FEIT); 27) Multi-Element Integrated Testing (MEIT); 28) Flight Test Driving Principles; and 29) Constellation s Integrated Flight Test Strategy Low Earth Orbit Servicing Capability.
AIM being prepared for integrated testing and flight simulation
2007-03-24
In Building 1555 on North Vandenberg Air Force Base in California, technicians carry the separation system, at left, toward the AIM spacecraft hovering above the stand at right. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
AIM being prepared for integrated testing and flight simulation
2007-03-24
In Building 1555 on North Vandenberg Air Force Base in California, technicians lower the AIM spacecraft onto a moveable stand. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
AIM being prepared for integrated testing and flight simulation
2007-03-24
In Building 1555 on North Vandenberg Air Force Base in California, technicians move a mobile stand toward the AIM spacecraft suspended via a crane at left. . AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kyung-Doo; Jeong, Jae-Jun; Lee, Seung-Wook
The Nuclear Steam Supply System (NSSS) thermal-hydraulic model adopted in the Korea Nuclear Plant Education Center (KNPEC)-2 simulator was provided in the early 1980s. The reference plant for KNPEC-2 is the Yong Gwang Nuclear Unit 1, which is a Westinghouse-type 3-loop, 950 MW(electric) pressurized water reactor. Because of the limited computational capability at that time, it uses overly simplified physical models and assumptions for a real-time simulation of NSSS thermal-hydraulic transients. This may entail inaccurate results and thus, the possibility of so-called ''negative training,'' especially for complicated two-phase flows in the reactor coolant system. To resolve the problem, we developedmore » a realistic NSSS thermal-hydraulic program (named ARTS code) based on the best-estimate code RETRAN-3D. The systematic assessment of ARTS has been conducted by both a stand-alone test and an integrated test in the simulator environment. The non-integrated stand-alone test (NIST) results were reasonable in terms of accuracy, real-time simulation capability, and robustness. After successful completion of the NIST, ARTS was integrated with a 3-D reactor kinetics model and other system models. The site acceptance test (SAT) has been completed successively and confirmed to comply with the ANSI/ANS-3.5-1998 simulator software performance criteria. This paper presents our efforts for the ARTS development and some test results of the NIST and SAT.« less
NASA Astrophysics Data System (ADS)
Sauerborn, Markus; Liebenstund, Lena; Raue, Markus; Mang, Thomas; Herrmann, Ulf; Dueing, Andreas
2017-06-01
The Solar-Institute Jülich (SIJ) developed the micro heliostat system - a small sized heliostat - during the last years. One special performance of the micro heliostat is the option to integrate inexpensive plastic elements. The use of plastic as a cost reducer in the heliostat technique is also offering the chance to integrate complex designed components with a higher quality and special system function. The plastic for this application requires a high standing against UV radiation and thermal cycles with a daily extreme temperature variation. The temperature range inside the closed micro heliostat box can annually fluctuate between -20 °C and 80 °C in the worst case. Special aging tests were designed and performed for the first time in cooperation with the Institute for Applied Polymer Science (IAP) in order to identify and qualify a resistance plastic for the micro heliostat. This systematic plastic aging testing for the micro heliostat is introduced here. The tests were carried out under extreme ambient situations, which simulate the temperature and irradiation conditions that the heliostat has to stand for years. A particular climate of arid areas with continuous high solar radiation was defined for these tests. Two accelerating aging methods were adapted to reach adequate aging results in a reduced time. The aging of the investigated kinds of plastics were followed by tensile test, impact test, measuring Shore hardness, dynamic-mechanical analysis, differential scanning calorimetry and Fourier transform infrared spectroscopy to compare the different types of polymers. Parallel to these tests running real outdoor tests were performed, to control this accelerated aging. To have adequate conditions that the plastic in a micro heliostat has to stand, an identical closed test box with a glass cover was designed. The test samples inside the box were irradiated by the sun. The wanted forecast for the analyzed plastic was defined by the comparison of the real and the accelerated aging results.
NASA Technical Reports Server (NTRS)
Fikes, John C.
2014-01-01
The objective of this project is to hot fire test an additively manufactured thrust chamber assembly TCA (injector and thrust chamber). GRC will install the additively manufactured Inconel 625 injector, two additively manufactured (SLM) water cooled Cu-Cr thrust chamber barrels and one additively manufactured (SLM) water cooled Cu-Cr thrust chamber nozzle on the test stand in Cell 32 and perform hot fire testing of the integrated TCA.
Halim, Isa; Arep, Hambali; Kamat, Seri Rahayu; Abdullah, Rohana; Omar, Abdul Rahman; Ismail, Ahmad Rasdan
2014-06-01
Prolonged standing has been hypothesized as a vital contributor to discomfort and muscle fatigue in the workplace. The objective of this study was to develop a decision support system that could provide systematic analysis and solutions to minimize the discomfort and muscle fatigue associated with prolonged standing. The integration of object-oriented programming and a Model Oriented Simultaneous Engineering System were used to design the architecture of the decision support system. Validation of the decision support system was carried out in two manufacturing companies. The validation process showed that the decision support system produced reliable results. The decision support system is a reliable advisory tool for providing analysis and solutions to problems related to the discomfort and muscle fatigue associated with prolonged standing. Further testing of the decision support system is suggested before it is used commercially.
Halim, Isa; Arep, Hambali; Kamat, Seri Rahayu; Abdullah, Rohana; Omar, Abdul Rahman; Ismail, Ahmad Rasdan
2014-01-01
Background Prolonged standing has been hypothesized as a vital contributor to discomfort and muscle fatigue in the workplace. The objective of this study was to develop a decision support system that could provide systematic analysis and solutions to minimize the discomfort and muscle fatigue associated with prolonged standing. Methods The integration of object-oriented programming and a Model Oriented Simultaneous Engineering System were used to design the architecture of the decision support system. Results Validation of the decision support system was carried out in two manufacturing companies. The validation process showed that the decision support system produced reliable results. Conclusion The decision support system is a reliable advisory tool for providing analysis and solutions to problems related to the discomfort and muscle fatigue associated with prolonged standing. Further testing of the decision support system is suggested before it is used commercially. PMID:25180141
2017-09-01
in the vertical (z) directions. There are several instruments controls like proportional, integral , and derivative (PID) gain as well as tip force...the PID control, where P stands for proportional gain, I stands for integral gain, and D stands for derivative gain. An additional parameter that...contributes to the scanned image quality is set point. Proportional gain is multiplied by the error to adjust controller output and integral gain sums
Measuring x-ray spectra of flash radiographic sources [PowerPoint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehring, Amanda Elizabeth; Espy, Michelle A.; Haines, Todd Joseph
2015-11-02
The x-ray spectra of flash radiographic sources are difficult to measure. The sources measured were Radiographic Integrated Test Stand-6 (370 rad at 1 m; 50 ns pulse) and Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) (550 rad at 1 m; 50 ns pulse). Features of the Compton spectrometer are described, and spectra are shown. Additional slides present data on instrumental calibration.
Objectives and Progress on Integrated Vehicle Ground Vibration Testing for the Ares Launch Vehicles
NASA Technical Reports Server (NTRS)
Tuma, Margaret L.; Asloms. Brice R.
2009-01-01
As NASA begins design and development of the Ares launch vehicles to replace the Space Shuttle and explore beyond low Earth orbit, Integrated Vehicle Ground Vibration Testing (IVGVT) will be a vital component of ensuring that those vehicles can perform the missions assigned to them. A ground vibration test (GVT) is intended to measure by test the fundamental dynamic characteristics of launch vehicles during various phases of flight. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. This data is then used to calibrate loads and control systems analysis models for verifying analyses of the launch vehicle. The Ares Flight & Integrated Test Office (FITO) will be conducting IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2011 to 2012 using the venerable Test Stand (TS) 4550, which supported similar tests for the Saturn V and Space Shuttle vehicle stacks.
Stapleton, John; Setti, Annalisa; Doheny, Emer P; Kenny, Rose Anne; Newell, Fiona N
2014-02-01
Recent research has provided evidence suggesting a link between inefficient processing of multisensory information and incidence of falling in older adults. Specifically, Setti et al. (Exp Brain Res 209:375-384, 2011) reported that older adults with a history of falling were more susceptible than their healthy, age-matched counterparts to the sound-induced flash illusion. Here, we investigated whether balance control in fall-prone older adults was directly associated with multisensory integration by testing susceptibility to the illusion under two postural conditions: sitting and standing. Whilst standing, fall-prone older adults had a greater body sway than the age-matched healthy older adults and their body sway increased when presented with the audio-visual illusory but not the audio-visual congruent conditions. We also found an increase in susceptibility to the sound-induced flash illusion during standing relative to sitting for fall-prone older adults only. Importantly, no performance differences were found across groups in either the unisensory or non-illusory multisensory conditions across the two postures. These results suggest an important link between multisensory integration and balance control in older adults and have important implications for understanding why some older adults are prone to falling.
Looking northeast from Test Stand 'A' superstructure towards Test Stand ...
Looking northeast from Test Stand 'A' superstructure towards Test Stand 'D' tower (4223/E-24, left background), Test Stand 'C' tower (4217/E-18, center), and Test Stand 'B' (4215/E-16, right foreground). - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA
Web services as applications' integration tool: QikProp case study.
Laoui, Abdel; Polyakov, Valery R
2011-07-15
Web services are a new technology that enables to integrate applications running on different platforms by using primarily XML to enable communication among different computers over the Internet. Large number of applications was designed as stand alone systems before the concept of Web services was introduced and it is a challenge to integrate them into larger computational networks. A generally applicable method of wrapping stand alone applications into Web services was developed and is described. To test the technology, it was applied to the QikProp for DOS (Windows). Although performance of the application did not change when it was delivered as a Web service, this form of deployment had offered several advantages like simplified and centralized maintenance, smaller number of licenses, and practically no training for the end user. Because by using the described approach almost any legacy application can be wrapped as a Web service, this form of delivery may be recommended as a global alternative to traditional deployment solutions. Copyright © 2011 Wiley Periodicals, Inc.
Aerial shows Stennis test stands
2004-04-16
An aerial photo shows the B-1/B-2 Test Stand (foreground), A-2 Test Stand (middle) and A-1 Test Stand (back). The historic stands have been used to test engines used on every manned Apollo and space shuttle mission.
9. WEST SIDE, TEST STAND AND SUPERSTRUCTURE. TEST STAND 1B ...
9. WEST SIDE, TEST STAND AND SUPERSTRUCTURE. TEST STAND 1-B IN DISTANCE. Looking east. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Remote Transmission at High Speed
NASA Technical Reports Server (NTRS)
2003-01-01
Omni and NASA Test Operations at Stennis entered a Dual-Use Agreement to develop the FOTR-125, a 125 megabit-per-second fiber-optic transceiver that allows accurate digital recordings over a great distance. The transceiver s fiber-optic link can be as long as 25 kilometers. This makes it much longer than the standard coaxial link, which can be no longer than 50 meters.The FOTR-125 utilizes laser diode transmitter modules and integrated receivers for the optical interface. Two transmitters and two receivers are employed at each end of the link with automatic or manual switchover to maximize the reliability of the communications link. NASA uses the transceiver in Stennis High-Speed Data Acquisition System (HSDAS). The HSDAS consists of several identical systems installed on the Center s test stands to process all high-speed data related to its propulsion test programs. These transceivers allow the recorder and HSDAS controls to be located in the Test Control Center in a remote location while the digitizer is located on the test stand.
Small Radioisotope Power System Testing at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Dugala, Gina; Bell, Mark; Oriti, Salvatore; Fraeman, Martin; Frankford, David; Duven, Dennis
2013-01-01
In April 2009, NASA Glenn Research Center (GRC) formed an integrated product team (IPT) to develop a Small Radioisotope Power System (SRPS) utilizing a single Advanced Stirling Convertor (ASC) with passive balancer. A single ASC produces approximately 80 We making this system advantageous for small distributed lunar science stations. The IPT consists of Sunpower, Inc., to provide the single ASC with a passive balancer, The Johns Hopkins University Applied Physics Laboratory (JHUAPL) to design an engineering model Single Convertor Controller (SCC) for an ASC with a passive balancer, and NASA GRC to provide technical support to these tasks and to develop a simulated lunar lander test stand. The single ASC with a passive balancer, simulated lunar lander test stand, and SCC were delivered to GRC and were tested as a system. The testing sequence at GRC included SCC fault tolerance, integration, electromagnetic interference (EMI), vibration, and extended operation testing. The SCC fault tolerance test characterized the SCCs ability to handle various fault conditions, including high or low bus power consumption, total open load or short circuit, and replacing a failed SCC card while the backup maintains control of the ASC. The integrated test characterized the behavior of the system across a range of operating conditions, including variations in cold-end temperature and piston amplitude, including the emitted vibration to both the sensors on the lunar lander and the lunar surface. The EMI test characterized the AC and DC magnetic and electric fields emitted by the SCC and single ASC. The vibration test confirms the SCCs ability to control the single ASC during launch. The extended operation test allows data to be collected over a period of thousands of hours to obtain long term performance data of the ASC with a passive balancer and the SCC. This paper will discuss the results of each of these tests.
Integration of Biomass Harvesting and Site Preparation
Bryce J. Stokes; William F. Watson
1986-01-01
This study was conducted to assess the costs of various site preparation methods with various levels of harvesting Site impacts, soil compaction and disturbance were examined. Three hawesting methods rare evaluated in pine pulpwood plantation and pine sawtimber stands. The harvesting methods tested were (1) conventional - harvesting all roundwood. (2) two-pass - first...
Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash.
Dias, Marina O S; Junqueira, Tassia L; Cavalett, Otávio; Cunha, Marcelo P; Jesus, Charles D F; Rossell, Carlos E V; Maciel Filho, Rubens; Bonomi, Antonio
2012-01-01
Ethanol production from lignocellulosic materials is often conceived considering independent, stand-alone production plants; in the Brazilian scenario, where part of the potential feedstock (sugarcane bagasse) for second generation ethanol production is already available at conventional first generation production plants, an integrated first and second generation production process seems to be the most obvious option. In this study stand-alone second generation ethanol production from surplus sugarcane bagasse and trash is compared with conventional first generation ethanol production from sugarcane and with integrated first and second generation; simulations were developed to represent the different technological scenarios, which provided data for economic and environmental analysis. Results show that the integrated first and second generation ethanol production process from sugarcane leads to better economic results when compared with the stand-alone plant, especially when advanced hydrolysis technologies and pentoses fermentation are included. Copyright © 2011 Elsevier Ltd. All rights reserved.
2. EAST ELEVATION OF POWER PLANT TEST STAND (HORIZONTAL TEST ...
2. EAST ELEVATION OF POWER PLANT TEST STAND (HORIZONTAL TEST STAND REMNANTS OF BUILDING-BLANK WHITE WALL ONLY ORIGINAL REMAINS. - Marshall Space Flight Center, East Test Area, Power Plant Test Stand, Huntsville, Madison County, AL
NASA Astrophysics Data System (ADS)
Liu, Qifa; Wang, Wei
2018-01-01
Gallium Nitride (GaN) free-standing planar photonic device at telecommunication wavelength based on GaN-on-silicon platform was presented. The free-standing structure was realized by particular double-side fabrication process, which combining GaN front patterning, Si substrate back releasing and GaN slab etching. The actual device parameters were identified via the physical characterizations employing scanning electron microscope (SEM), atomic force microscope (AFM) and reflectance spectra testing. High coupling efficiency and good light confinement properties of the gratings and rib waveguide at telecommunication wavelength range were verified by finite element method (FEM) simulation. This work illustrates the potential of new GaN photonic structure which will enable new functions for planar photonics in communication and sensing applications, and is favorable for the realization of integrated optical circuit.
Paik, Haines; Kang, Daniel G; Lehman, Ronald A; Cardoso, Mario J; Gaume, Rachel E; Ambati, Divya V; Dmitriev, Anton E
2014-08-01
Some postoperative complications after anterior cervical fusions have been attributed to anterior cervical plate (ACP) profiles and the necessary wide operative exposure for their insertion. Consequently, low-profile stand-alone interbody spacers with integrated screws (SIS) have been developed. Although SIS constructs have demonstrated similar biomechanical stability to the ACP in single-level fusions, their role as a stand-alone device in multilevel reconstructions has not been thoroughly evaluated. To evaluate the acute segmental stability afforded by an SIS device compared with the traditional ACP in the setting of a multilevel cervical arthrodesis. In vitro human cadaveric biomechanical analysis. Thirteen human cadaveric cervical spines (C2-T1) were nondestructively tested with a custom 6 df spine simulator under axial rotation, flexion-extension, and lateral bending loading. After intact analysis, eight single-levels (C4-C5/C6-C7) from four specimens were instrumented and tested with ACP and SIS. Nine specimens were tested with C5-C7 SIS, C5-C7 ACP, C4-C7 ACP, C4-C7 ACP+posterior fixation, C4-C7 SIS, and C4-C7 SIS+posterior fixation. Testing order was randomized with each additional level instrumented. Full range of motion (ROM) data were obtained and analyzed by each loading modality, using mean comparisons with repeated measures analysis of variance. Paired t tests were used for post hoc analysis with Sidak correction for multiple comparisons. No significant difference in ROM was noted between the ACP and SIS for single-level fixation (p>.05). For multisegment reconstructions (two and three levels), the ACP proved superior to SIS and intact condition, with significantly lower ROM in all planes (p<.05). When either the three-level SIS or ACP constructs were supplemented with posterior lateral mass fixation, there was a greater than 80% reduction in ROM under all testing modalities (p<.05), with no significant difference between the ACP and SIS constructs (p>.05). The SIS device may be a reasonable option as a stand-alone device for single-level fixation. However, SIS devices should be used with careful consideration in the setting of multilevel cervical fusion. However, when supplemented with posterior fixation, SIS devices are a sound biomechanical alternative to ACP for multilevel fusion constructs. Published by Elsevier Inc.
A Nonlinear Digital Control Solution for a DC/DC Power Converter
NASA Technical Reports Server (NTRS)
Zhu, Minshao
2002-01-01
A digital Nonlinear Proportional-Integral-Derivative (NPID) control algorithm was proposed to control a 1-kW, PWM, DC/DC, switching power converter. The NPID methodology is introduced and a practical hardware control solution is obtained. The design of the controller was completed using Matlab (trademark) Simulink, while the hardware-in-the-loop testing was performed using both the dSPACE (trademark) rapid prototyping system, and a stand-alone Texas Instruments (trademark) Digital Signal Processor (DSP)-based system. The final Nonlinear digital control algorithm was implemented and tested using the ED408043-1 Westinghouse DC-DC switching power converter. The NPID test results are discussed and compared to the results of a standard Proportional-Integral (PI) controller.
Mazzoleni, S; Battini, E; Rustici, A; Stampacchia, G
2017-07-01
The aim of this study is to investigate the effects of an integrated gait rehabilitation training based on Functional Electrical Stimulation (FES)-cycling and overground robotic exoskeleton in a group of seven complete spinal cord injury patients on spasticity and patient-robot interaction. They underwent a robot-assisted rehabilitation training based on two phases: n=20 sessions of FES-cycling followed by n= 20 sessions of robot-assisted gait training based on an overground robotic exoskeleton. The following clinical outcome measures were used: Modified Ashworth Scale (MAS), Numerical Rating Scale (NRS) on spasticity, Penn Spasm Frequency Scale (PSFS), Spinal Cord Independence Measure Scale (SCIM), NRS on pain and International Spinal Cord Injury Pain Data Set (ISCI). Clinical outcome measures were assessed before (T0) after (T1) the FES-cycling training and after (T2) the powered overground gait training. The ability to walk when using exoskeleton was assessed by means of 10 Meter Walk Test (10MWT), 6 Minute Walk Test (6MWT), Timed Up and Go test (TUG), standing time, walking time and number of steps. Statistically significant changes were found on the MAS score, NRS-spasticity, 6MWT, TUG, standing time and number of steps. The preliminary results of this study show that an integrated gait rehabilitation training based on FES-cycling and overground robotic exoskeleton in complete SCI patients can provide a significant reduction of spasticity and improvements in terms of patient-robot interaction.
28. HISTORIC VIEW OF A3 ROCKET IN TEST STAND NO. ...
28. HISTORIC VIEW OF A-3 ROCKET IN TEST STAND NO. 3 AT KUMMERSDORF (THE LARGEST TEST STAND AT KUMMERSDORF). THE STAND WAS MOBILE, SINCE IT MOVED ALONG RAILS. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
1. TEST STAND 1A ENVIRONS, SHOWING WEST SIDE OF TEST ...
1. TEST STAND 1-A ENVIRONS, SHOWING WEST SIDE OF TEST STAND 1-A, RP1 COMBINED FUEL STORAGE TANK FARM BELOW WATER TANKS ON HILLSIDE TO LEFT, AND TEST STAND 1-B IN DISTANCE AT RIGHT. Looking east. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwan, T.J.T.; Snell, C.M.
The authors have demonstrated through computer simulations that self-biasing the target can effectively control the ion column which causes radial pinching of the electron beam, resulting in the growth of spot size on target. This method has the unique features in simplicity and non-intrusiveness in its implementation into radiographic systems. The concept is being actively explored experimentally at the Integrated Test Stand (ITS).
Hydrogen-Fuel Engine Component Tests Near Completion
NASA Technical Reports Server (NTRS)
2003-01-01
Gaseous hydrogen is burned off at the E1 Test Stand the night of Oct. 7 during a cold-flow test of the fuel turbopump of the Integrated Powerhead Demonstrator (IPD) at NASA Stennis Space Center (SSC). The gaseous hydrogen spins the pump's turbine during the test, which was conducted to verify the pump's performance. Engineers plan one more test before sending the pump to The Boeing Co. for inspection. It will then be returned to SSC for engine system assembly. The IPD is the first reusable hydrogen-fueled advanced engine in development since the Space Shuttle Main Engine.
Hydrogen-Fuel Engine Component Tests Near Completion
2003-11-05
Gaseous hydrogen is burned off at the E1 Test Stand the night of Oct. 7 during a cold-flow test of the fuel turbopump of the Integrated Powerhead Demonstrator (IPD) at NASA Stennis Space Center (SSC). The gaseous hydrogen spins the pump's turbine during the test, which was conducted to verify the pump's performance. Engineers plan one more test before sending the pump to The Boeing Co. for inspection. It will then be returned to SSC for engine system assembly. The IPD is the first reusable hydrogen-fueled advanced engine in development since the Space Shuttle Main Engine.
20. Building 202, detail of stand A, rocket test stand ...
20. Building 202, detail of stand A, rocket test stand in test cell. View looking southeast. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
31. HISTORIC VIEW OF TEST STAND NO. 1 AT PEENEMUENDE ...
31. HISTORIC VIEW OF TEST STAND NO. 1 AT PEENEMUENDE A-4 ENGINE AND ROCKET PROPULSION TEST STAND. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
GENERAL VIEW OF SITE LOOKING SOUTHWEST. JUPITER 'HOP' STAND, FOREGROUND ...
GENERAL VIEW OF SITE LOOKING SOUTHWEST. JUPITER 'HOP' STAND, FOREGROUND CENTER, REDSTONE TEST STAND FOREGROUND RIGHT, SATURN I C TEST STAND BACKGROUND LEFT. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Obermeyer, Carla Makhlouf; Neuman, Melissa; Desclaux, Alice; Wanyenze, Rhoda; Ky-Zerbo, Odette; Cherutich, Peter; Namakhoma, Ireen; Hardon, Anita
2012-01-01
Background Recommendations about scaling up HIV testing and counseling highlight the need to provide key services and to protect clients' rights, but it is unclear to what extent different modes of testing differ in this respect. This paper examines whether practices regarding consent, confidentiality, and referral vary depending on whether testing is provided through voluntary counseling and testing (VCT) or provider-initiated testing. Methods and Findings The MATCH (Multi-Country African Testing and Counseling for HIV) study was carried out in Burkina Faso, Kenya, Malawi, and Uganda. Surveys were conducted at selected facilities. We defined eight outcome measures related to pre- and post-test counseling, consent, confidentiality, satisfactory interactions with providers, and (for HIV-positive respondents) referral for care. These were compared across three types of facilities: integrated facilities, where testing is provided along with medical care; stand-alone VCT facilities; and prevention of mother-to-child transmission (PMTCT) facilities, where testing is part of PMTCT services. Tests of bivariate associations and modified Poisson regression were used to assess significance and estimate the unadjusted and adjusted associations between modes of testing and outcome measures. In total, 2,116 respondents tested in 2007 or later reported on their testing experience. High percentages of clients across countries and modes of testing reported receiving recommended services and being satisfied. In the unadjusted analyses, integrated testers were less likely to meet with a counselor before testing (83% compared with 95% of VCT testers; p<0.001), but those who had a pre-test meeting were more likely to have completed consent procedures (89% compared with 83% among VCT testers; p<0.001) and pre-test counseling (78% compared with 73% among VCT testers; p = 0.015). Both integrated and PMTCT testers were more likely to receive complete post-test counseling than were VCT testers (59% among both PMTCT and integrated testers compared with 36% among VCT testers; p<0.001). Adjusted analyses by country show few significant differences by mode of testing: only lower satisfaction among integrated testers in Burkina Faso and Uganda, and lower frequency of referral among PMTCT testers in Malawi. Adjusted analyses of pooled data across countries show a higher likelihood of pre-test meeting for those testing at VCT facilities (adjusted prevalence ratio: 1.22, 95% CI: 1.07–1.38) and higher satisfaction for stand-alone VCT facilities (adjusted prevalence ratio: 1.15; 95% CI: 1.06–1.25), compared to integrated testing, but no other associations were statistically significant. Conclusions Overall, in this study most respondents reported favorable outcomes for consent, confidentiality, and referral. Provider-initiated ways of delivering testing and counseling do not appear to be associated with less favorable outcomes for clients than traditional, client-initiated VCT, suggesting that testing can be scaled up through multiple modes without detriment to clients' rights. Please see later in the article for the Editors' Summary PMID:23109914
Obermeyer, Carla Makhlouf; Neuman, Melissa; Desclaux, Alice; Wanyenze, Rhoda; Ky-Zerbo, Odette; Cherutich, Peter; Namakhoma, Ireen; Hardon, Anita
2012-01-01
Recommendations about scaling up HIV testing and counseling highlight the need to provide key services and to protect clients' rights, but it is unclear to what extent different modes of testing differ in this respect. This paper examines whether practices regarding consent, confidentiality, and referral vary depending on whether testing is provided through voluntary counseling and testing (VCT) or provider-initiated testing. The MATCH (Multi-Country African Testing and Counseling for HIV) study was carried out in Burkina Faso, Kenya, Malawi, and Uganda. Surveys were conducted at selected facilities. We defined eight outcome measures related to pre- and post-test counseling, consent, confidentiality, satisfactory interactions with providers, and (for HIV-positive respondents) referral for care. These were compared across three types of facilities: integrated facilities, where testing is provided along with medical care; stand-alone VCT facilities; and prevention of mother-to-child transmission (PMTCT) facilities, where testing is part of PMTCT services. Tests of bivariate associations and modified Poisson regression were used to assess significance and estimate the unadjusted and adjusted associations between modes of testing and outcome measures. In total, 2,116 respondents tested in 2007 or later reported on their testing experience. High percentages of clients across countries and modes of testing reported receiving recommended services and being satisfied. In the unadjusted analyses, integrated testers were less likely to meet with a counselor before testing (83% compared with 95% of VCT testers; p<0.001), but those who had a pre-test meeting were more likely to have completed consent procedures (89% compared with 83% among VCT testers; p<0.001) and pre-test counseling (78% compared with 73% among VCT testers; p = 0.015). Both integrated and PMTCT testers were more likely to receive complete post-test counseling than were VCT testers (59% among both PMTCT and integrated testers compared with 36% among VCT testers; p<0.001). Adjusted analyses by country show few significant differences by mode of testing: only lower satisfaction among integrated testers in Burkina Faso and Uganda, and lower frequency of referral among PMTCT testers in Malawi. Adjusted analyses of pooled data across countries show a higher likelihood of pre-test meeting for those testing at VCT facilities (adjusted prevalence ratio: 1.22, 95% CI: 1.07-1.38) and higher satisfaction for stand-alone VCT facilities (adjusted prevalence ratio: 1.15; 95% CI: 1.06-1.25), compared to integrated testing, but no other associations were statistically significant. Overall, in this study most respondents reported favorable outcomes for consent, confidentiality, and referral. Provider-initiated ways of delivering testing and counseling do not appear to be associated with less favorable outcomes for clients than traditional, client-initiated VCT, suggesting that testing can be scaled up through multiple modes without detriment to clients' rights. Please see later in the article for the Editors' Summary.
Standing Vs Supine; Does it Matter in Cough Stress Testing?
Patnam, Radhika; Edenfield, Autumn L; Swift, Steven E
The aim of this study was to compare the sensitivity of cough stress test in the standing versus supine position in the evaluation of incontinent females. We performed a prospective observational study of women with the chief complaint of urinary incontinence (UI) undergoing a provocative cough stress test (CST). Subjects underwent both a standing and a supine CST. Testing order was randomized via block randomization. Cough stress test was performed in a standard method via backfill of 200 mL or until the subject described strong urge. The subjects were asked to cough, and the physician documented urine leakage by direct observation. The gold standard for stress UI diagnosis was a positive CST in either position. Sixty subjects were enrolled, 38 (63%) tested positive on any CST, with 38 (63%) positive on standing compared with 29 (28%) positive on supine testing. Nine women (15%) had positive standing and negative supine testing. No subjects had negative standing with positive supine testing. There were no significant differences in positive tests between the 2 randomized groups (standing first and supine second vs. supine first and standing second). When compared with the gold standard of any positive provocative stress test, the supine CST has a sensitivity of 76%, whereas the standing CST has a sensitivity of 100%. The standing CST is more sensitive than the supine CST and should be performed in any patient with a complaint of UI and negative supine CST. The order of testing either supine or standing first does not affect the results.
Preparation and Integration of ALHAT Precision Landing Technology for Morpheus Flight Testing
NASA Technical Reports Server (NTRS)
Carson, John M., III; Robertson, Edward A.; Pierrottet, Diego F.; Roback, Vincent E.; Trawny, Nikolas; Devolites, Jennifer L.; Hart, Jeremy J.; Estes, Jay N.; Gaddis, Gregory S.
2014-01-01
The Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project has developed a suite of prototype sensors for enabling autonomous and safe precision land- ing of robotic or crewed vehicles on solid solar bodies under varying terrain lighting condi- tions. The sensors include a Lidar-based Hazard Detection System (HDS), a multipurpose Navigation Doppler Lidar (NDL), and a long-range Laser Altimeter (LAlt). Preparation for terrestrial ight testing of ALHAT onboard the Morpheus free- ying, rocket-propelled ight test vehicle has been in progress since 2012, with ight tests over a lunar-like ter- rain eld occurring in Spring 2014. Signi cant work e orts within both the ALHAT and Morpheus projects has been required in the preparation of the sensors, vehicle, and test facilities for interfacing, integrating and verifying overall system performance to ensure readiness for ight testing. The ALHAT sensors have undergone numerous stand-alone sensor tests, simulations, and calibrations, along with integrated-system tests in special- ized gantries, trucks, helicopters and xed-wing aircraft. A lunar-like terrain environment was constructed for ALHAT system testing during Morpheus ights, and vibration and thermal testing of the ALHAT sensors was performed based on Morpheus ights prior to ALHAT integration. High- delity simulations were implemented to gain insight into integrated ALHAT sensors and Morpheus GN&C system performance, and command and telemetry interfacing and functional testing was conducted once the ALHAT sensors and electronics were integrated onto Morpheus. This paper captures some of the details and lessons learned in the planning, preparation and integration of the individual ALHAT sen- sors, the vehicle, and the test environment that led up to the joint ight tests.
NASA Stennis Space Center integrated system health management test bed and development capabilities
NASA Astrophysics Data System (ADS)
Figueroa, Fernando; Holland, Randy; Coote, David
2006-05-01
Integrated System Health Management (ISHM) capability for rocket propulsion testing is rapidly evolving and promises substantial reduction in time and cost of propulsion systems development, with substantially reduced operational costs and evolutionary improvements in launch system operational robustness. NASA Stennis Space Center (SSC), along with partners that includes NASA, contractor, and academia; is investigating and developing technologies to enable ISHM capability in SSC's rocket engine test stands (RETS). This will enable validation and experience capture over a broad range of rocket propulsion systems of varying complexity. This paper describes key components that constitute necessary ingredients to make possible implementation of credible ISHM capability in RETS, other NASA ground test and operations facilities, and ultimately spacecraft and space platforms and systems: (1) core technologies for ISHM, (2) RETS as ISHM testbeds, and (3) RETS systems models.
NASA Technical Reports Server (NTRS)
Pirrello, C. J.; Hardin, R. D.; Heckart, M. V.; Brown, K. R.
1971-01-01
The inventory covers free jet and direct connect altitude cells, sea level static thrust stands, sea level test cells with ram air, and propulsion wind tunnels. Free jet altitude cells and propulsion wind tunnels are used for evaluation of complete inlet-engine-exhaust nozzle propulsion systems under simulated flight conditions. These facilities are similar in principal of operation and differ primarily in test section concept. The propulsion wind tunnel provides a closed test section and restrains the flow around the test specimen while the free jet is allowed to expand freely. A chamber of large diameter about the free jet is provided in which desired operating pressure levels may be maintained. Sea level test cells with ram air provide controlled, conditioned air directly to the engine face for performance evaluation at low altitude flight conditions. Direct connect altitude cells provide a means of performance evaluation at simulated conditions of Mach number and altitude with air supplied to the flight altitude conditions. Sea level static thrust stands simply provide an instrumented engine mounting for measuring thrust at zero airspeed. While all of these facilities are used for integrated engine testing, a few provide engine component test capability.
2011-07-29
Work continues on the A-3 Test Stand at Stennis Space Center. The new stand will allow operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet. The test stand is scheduled for completion and activation in 2013.
2010-10-01
An 80,000-gallon liquid hydrogen tank is placed at the A-3 Test Stand construction site on Sept. 24, 2010. The tank will provide propellant for tests of next-generation rocket engines at the stand. It will be placed upright on top of the stand, helping to increase the overall height to 300 feet. Once completed, the A-3 Test Stand will enable operators to test rocket engines at simulated altitudes of up to 100,000 feet. The A-3 stand is the first large rocket engine test structure to be built at Stennis Space Center since the 1960s.
2010-09-24
A 35,000-gallon liquid oxygen tank is placed at the A-3 Test Stand construction site on Sept. 24, 2010. The tank will provide propellant for tests of next-generation rocket engines at the stand. It will be placed upright on top of the stand, helping to increase the overall height to 300 feet. Once completed, the A-3 Test Stand will enable operators to test rocket engines at simulated altitudes of up to 100,000 feet. The A-3 stand is the first large rocket engine test structure to be built at Stennis Space Center since the 1960s.
Photographic copy of site plan for proposed Test Stand "D" ...
Photographic copy of site plan for proposed Test Stand "D" in 1958. The contemporary site plans of test stands "A," "B," and "C" are also visible, along with the interconnecting tunnel system. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering "Site Plan for Proposed Test Stand "D" - Edwards Test Station," drawing no. ESP/22-0, 14 November 1958 - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
A-3 Test Stand continues with test cell installation
2010-07-20
Employees at Stennis Space Center continue work on the A-3 Test Stand. As shown, a section of the test cell is lifted for installation on the stand's structural steel frame. Work on the A-3 Test Stand began in 2007. It is scheduled for activation in 2012.
High-Speed Observer: Automated Streak Detection in SSME Plumes
NASA Technical Reports Server (NTRS)
Rieckoff, T. J.; Covan, M.; OFarrell, J. M.
2001-01-01
A high frame rate digital video camera installed on test stands at Stennis Space Center has been used to capture images of Space Shuttle main engine plumes during test. These plume images are processed in real time to detect and differentiate anomalous plume events occurring during a time interval on the order of 5 msec. Such speed yields near instantaneous availability of information concerning the state of the hardware. This information can be monitored by the test conductor or by other computer systems, such as the integrated health monitoring system processors, for possible test shutdown before occurrence of a catastrophic engine failure.
Electromagnetic pulse-induced current measurement device
NASA Astrophysics Data System (ADS)
Gandhi, Om P.; Chen, Jin Y.
1991-08-01
To develop safety guidelines for exposure to high fields associated with an electromagnetic pulse (EMP), it is necessary to devise techniques that would measure the peak current induced in the human body. The main focus of this project was to design, fabricate, and test a portable, self-contained stand-on device that would measure and hold the peak current and the integrated change Q. The design specifications of the EMP-Induced Current Measurement Device are as follows: rise time of the current pulse, 5 ns; peak current, 20-600 A; charge Q, 0-20 microcoulombs. The device uses a stand-on parallel-plate bilayer sensor and fast high-frequency circuit that are well-shielded against spurious responses to high incident fields. Since the polarity of the incident peak electric field of the EMP may be either positive or negative, the induced peak current can also be positive or negative. Therefore, the device is designed to respond to either of these polarities and measure and hold both the peak current and the integrated charge which are simultaneously displayed on two separate 3-1/2 digit displays. The prototype device has been preliminarily tested with the EMP's generated at the Air Force Weapons Laboratory (ALECS facility) at Kirtland AFB, New Mexico.
2012-06-08
A tethered Stennis Space Center employee climbs an A-3 Test Stand ladder June 8, 2012, against the backdrop of the A-2 and B-1/B-2 stands. The new A-3 Test Stand will enable simulated high-altitude testing of next-generation rocket engines.
2012-06-08
A tethered Stennis Space Center employee climbs an A-3 Test Stand ladded June 8, 2012, against the backdrop of the A-2 and B-1/B-2 stands. The new A-3 Test Stand will enable simulated high-altitude testing of next-generation rocket engines.
13. Photographic copy of site plan displaying Test Stand 'C' ...
13. Photographic copy of site plan displaying Test Stand 'C' (4217/E-18), Test Stand 'D' (4223/E-24), and Control and Recording Center (4221/E-22) with ancillary structures, and connecting roads and services. California Institute of Technology, Jet Propulsion Laboratory, Facilities Engineering and Construction Office 'Repairs to Test Stand 'C,' Edwards Test Station, Legend & Site Plan M-1,' drawing no. ESP/115, August 14, 1987. - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA
Credit WCT. Photographic copy of photograph, view of Test Stand ...
Credit WCT. Photographic copy of photograph, view of Test Stand "D" from Test Stand "A" while a rocket engine test is in progress. Cloud of steam is from partly from water created by propellant reaction and from water sprayed by flame bucket into engine exhaust for cooling purposes. A portion of Test Stand "C" is visible at the far right. (JPL negative no. 384-2082-B, 23 October 1959) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Main Propulsion Test Article (MPTA)
NASA Technical Reports Server (NTRS)
Snoddy, Cynthia
2010-01-01
Scope: The Main Propulsion Test Article integrated the main propulsion subsystem with the clustered Space Shuttle Main Engines, the External Tank and associated GSE. The test program consisted of cryogenic tanking tests and short- and long duration static firings including gimbaling and throttling. The test program was conducted on the S1-C test stand (Position B-2) at the National Space Technology Laboratories (NSTL)/Stennis Space Center. 3 tanking tests and 20 hot fire tests conducted between December 21 1 1977 and December 17, 1980 Configuration: The main propulsion test article consisted of the three space shuttle main engines, flightweight external tank, flightweight aft fuselage, interface section and a boilerplate mid/fwd fuselage truss structure.
Credit BG. View looking northeast at southwestern side of Test ...
Credit BG. View looking northeast at southwestern side of Test Stand "D" complex. Test Stand "D" workshop (Building 4222/E-23) is at left; shed to its immediate right is an entrance to underground tunnel system which interconnects all test stands. To the right of Test Stand "D" tower are four Clayton water-tube flash boilers once used in the Steam Generator Plant 4280/E-81 to power the vacuum ejector system at "D" and "C" stands. A corner of 4280/E-81 appears behind the boilers. Boilers were removed as part of stand dismantling program. The Dv (vertical vacuum) Test Cell is located in the Test Stand "D" tower, behind the sunscreen on the west side. The top of the tower contains a hoist for lifting or lowering rocket engines into the Dv Cell. Other equipment mounted in the tower is part of the steam-driven vacuum ejector system - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
1. Photographic copy of original engineering drawing for Test Stand ...
1. Photographic copy of original engineering drawing for Test Stand 'C.' California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'New Test Stand Plan -- Edwards Test Station' drawing no. E18/2-3, 18 January 1957. - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA
View looking west at Test Stand 'A' complex in morning ...
View looking west at Test Stand 'A' complex in morning sun. View shows Monitor Building 4203/E-4 at left, barrier (Building 4216/E-17) to right of 4203/E-4, and Test Stand 'A' tower. Attached structure to lower left of tower is Test Stand 'A' machine room which contained refrigeration equipment. Building in right background with Test Stand 'A' tower shadow on it is Assembly Building 4288/E-89, built in 1984. Row of ground-mounted brackets in foreground was used to carry electrical cable and/or fuel lines. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA
25. "TEST STAND 1A UTILIZED TO TEST THE ATLAS ICBM", ...
25. "TEST STAND 1-A UTILIZED TO TEST THE ATLAS ICBM", CROPPED OUT: "DIRECTORATE OF MISSILE CAPTIVE TEST, EDWARDS AFB." Photo no. 11,371 57; G-AFFTC 15 OCT 57. Looking southwest from below the stand. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Modeling of Kerena Emergency Condenser
NASA Astrophysics Data System (ADS)
Bryk, Rafał; Schmidt, Holger; Mull, Thomas; Wagner, Thomas; Ganzmann, Ingo; Herbst, Oliver
2017-12-01
KERENA is an innovative boiling water reactor concept equipped with several passive safety systems. For the experimental verification of performance of the systems and for codes validation, the Integral Test Stand Karlstein (INKA) was built in Karlstein, Germany. The emergency condenser (EC) system transfers heat from the reactor pressure vessel (RPV) to the core flooding pool in case of water level decrease in the RPV. EC is composed of a large number of slightly inclined tubes. During accident conditions, steam enters into the tubes and condenses due to the contact of the tubes with cold water at the secondary side. The condensed water flows then back to the RPV due to gravity. In this paper two approaches for modeling of condensation in slightly inclined tubes are compared and verified against experiments. The first approach is based on the flow regime map. Depending on the regime, heat transfer coefficient is calculated according to specific semi-empirical correlation. The second approach uses a general, fully-empirical correlation. The models are developed with utilization of the object-oriented Modelica language and the open-source OpenModelica environment. The results are compared with data obtained during a large scale integral test, simulating loss of coolant accident performed at Integral Test Stand Karlstein (INKA). The comparison shows a good agreement.Due to the modularity of models, both of them may be used in the future in systems incorporating condensation in horizontal or slightly inclined tubes. Depending on his preferences, the modeller may choose one-equation based approach or more sophisticated model composed of several exchangeable semi-empirical correlations.
1963-01-15
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. The F-1 Engine test stand was built north of the massive S-IC test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability is provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This aerial photograph, taken January 15, 1963, gives a close overall view of the newly developed test complex. Depicted in the forefront center is the S-IC test stand with towers prominent, the Block House is seen in the center just above the S-IC test stand, and the large hole to the left, located midway between the two is the F-1 test stand site.
Scaglioni-Solano, Pietro; Aragón-Vargas, Luis F
2014-06-01
Standing balance is an important motor task. Postural instability associated with age typically arises from deterioration of peripheral sensory systems. The modified Clinical Test of Sensory Integration for Balance and the Tandem test have been used to screen for balance. Timed tests present some limitations, whereas quantification of the motions of the center of pressure (CoP) with portable and inexpensive equipment may help to improve the sensitivity of these tests and give the possibility of widespread use. This study determines the validity and reliability of the Wii Balance Board (Wii BB) to quantify CoP motions during the mentioned tests. Thirty-seven older adults completed three repetitions of five balance conditions: eyes open, eyes closed, eyes open on a compliant surface, eyes closed on a compliant surface, and tandem stance, all performed on a force plate and a Wii BB simultaneously. Twenty participants repeated the trials for reliability purposes. CoP displacement was the main outcome measure. Regression analysis indicated that the Wii BB has excellent concurrent validity, and Bland-Altman plots showed good agreement between devices with small mean differences and no relationship between the difference and the mean. Intraclass correlation coefficients (ICCs) indicated modest-to-excellent test-retest reliability (ICC=0.64-0.85). Standard error of measurement and minimal detectable change were similar for both devices, except the 'eyes closed' condition, with greater standard error of measurement for the Wii BB. In conclusion, the Wii BB is shown to be a valid and reliable method to quantify CoP displacement in older adults.
2014-01-01
Background Sitting, particularly in prolonged, unbroken bouts, is widespread within the office workplace, yet few interventions have addressed this newly-identified health risk behaviour. This paper describes the iterative development process and resulting intervention procedures for the Stand Up Australia research program focusing on a multi-component workplace intervention to reduce sitting time. Methods The development of Stand Up Australia followed three phases. 1) Conceptualisation: Stand Up Australia was based on social cognitive theory and social ecological model components. These were operationalised via a taxonomy of intervention strategies and designed to target multiple levels of influence including: organisational structures (e.g. via management consultation), the physical work environment (via provision of height-adjustable workstations), and individual employees (e.g. via face-to-face coaching). 2) Formative research: Intervention components were separately tested for their feasibility and acceptability. 3) Pilot studies: Stand Up Comcare tested the integrated intervention elements in a controlled pilot study examining efficacy, feasibility and acceptability. Stand Up UQ examined the additional value of the organisational- and individual-level components over height-adjustable workstations only in a three-arm controlled trial. In both pilot studies, office workers’ sitting time was measured objectively using activPAL3 devices and the intervention was refined based on qualitative feedback from managers and employees. Results Results and feedback from participants and managers involved in the intervention development phases suggest high efficacy, acceptance, and feasibility of all intervention components. The final version of the Stand Up Australia intervention includes strategies at the organisational (senior management consultation, representatives consultation workshop, team champions, staff information and brainstorming session with information booklet, and supportive emails from managers to staff), environmental (height-adjustable workstations), and individual level (face-to-face coaching session and telephone support). Stand Up Australia is currently being evaluated in the context of a cluster-randomised controlled trial at the Department of Human Services (DHS) in Melbourne, Australia. Conclusions Stand Up Australia is an evidence-guided and systematically developed workplace intervention targeting reductions in office workers’ sitting time. PMID:24559162
1999-02-08
In the Vertical Processing Facility (VPF), workers check the placement of the Chandra X-ray Observatory on the stand on the floor. The stand will be used to raise the observatory to a vertical position. While in the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambon, Paul H.; Deter, Dean D.
2016-07-01
xiii ABSTRACT The goal of this project is to develop and evaluate powertrain test procedures that can accurately simulate real-world operating conditions, and to determine greenhouse gas (GHG) emissions of advanced medium- and heavy-duty engine and vehicle technologies. ORNL used their Vehicle System Integration Laboratory to evaluate test procedures on a stand-alone engine as well as two powertrains. Those components where subjected to various drive cycles and vehicle conditions to evaluate the validity of the results over a broad range of test conditions. Overall, more than 1000 tests were performed. The data are compiled and analyzed in this report.
Interactive Schematic Integration Within the Propellant System Modeling Environment
NASA Technical Reports Server (NTRS)
Coote, David; Ryan, Harry; Burton, Kenneth; McKinney, Lee; Woodman, Don
2012-01-01
Task requirements for rocket propulsion test preparations of the test stand facilities drive the need to model the test facility propellant systems prior to constructing physical modifications. The Propellant System Modeling Environment (PSME) is an initiative designed to enable increased efficiency and expanded capabilities to a broader base of NASA engineers in the use of modeling and simulation (M&S) technologies for rocket propulsion test and launch mission requirements. PSME will enable a wider scope of users to utilize M&S of propulsion test and launch facilities for predictive and post-analysis functionality by offering a clean, easy-to-use, high-performance application environment.
1963-01-15
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. The F-1 Engine test stand was built north of the massive S-IC test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability is provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. Looking North, this aerial taken January 15, 1963, gives a closer view of the deep hole for the F-1 test stand site in the forefront. The S-IC test stand with towers prominent is to the right of center, and the Block House is seen left of center.
2011-09-14
Team members check the progress of a liquid nitrogen cold shock test on the A-1 Test Stand at Stennis Space Center on Sept. 15. The cold shock test is used to confirm the test stand's support system can withstand test conditions, when super-cold rocket engine propellant is piped. The A-1 Test Stand is preparing to conduct tests on the powerpack component of the J-2X rocket engine, beginning in early 2012.
1. TEST AREA 1115, SOUTH PART OF SUPPORT COMPLEX, LOOKING ...
1. TEST AREA 1-115, SOUTH PART OF SUPPORT COMPLEX, LOOKING TO EAST FROM ABOVE BUILDING 8655, THE FUEL STORAGE TANK FARM, IN FOREGROUND SHADOW. AT THE RIGHT IS BUILDING 8660, ELECTRICAL SUBSTATION; TO ITS LEFT IS BUILDING 8663, THE HELIUM COMPRESSION PLANT. THE LIGHT TONED STRUCTURE IN THE MIDDLE DISTANCE, CENTER, IS THE MACHINE SHOP FOR TEST STAND 1-3. IN THE FAR DISTANCE IS TEST STAND 1-A, WITH THE WHITE SPHERICAL TANKS, AND TEST STAND 2-A TO ITS RIGHT. ALONG THE HORIZON FROM FAR LEFT ARE TEST STAND 1-D, TEST STAND 1-C, WATER TANKS ABOVE TEST AREA 1-125, AND TEST STAND 1-B IN TEST AREA 1-120. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA
1963-01-15
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. The F-1 Engine test stand was built north of the massive S-IC test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability is provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This aerial photograph, taken January 15, 1963 gives an overall view of the construction progress of the newly developed test complex. The large white building located in the center is the Block House. Just below and to the right of it is the S-IC test stand. The large hole to the left of the S-IC stand is the F-1 test stand site.
2012-11-08
NASA recorded a historic week Nov. 5-9, conducting tests on all three stands in the E Test Complex at John C. Stennis Space Center. Inset images show the types of tests conducted on the E-1 Test Stand (right), the E-2 Test Stand (left) and the E-3 Test Stand (center). The E-1 photo is from an early October test and is provided courtesy of Blue Origin. Other photos are from tests conducted the week of Nov. 5.
A-2 Test Stand modification work
2010-10-27
John C. Stennis Space Center employees install a new master interface tool on the A-2 Test Stand on Oct. 27, 2010. Until July 2009, the stand had been used for testing space shuttle main engines. With that test series complete, employees are preparing the stand for testing the next-generation J-2X rocket engine being developed. Testing of the new engine is scheduled to begin in 2011.
38. HISTORIC CLOSER VIEW LOOKING WEST OF THE TEST STAND ...
38. HISTORIC CLOSER VIEW LOOKING WEST OF THE TEST STAND AND ROCKET DURING TEST FIRING NUMBER 10. NOTE THE NUMBER ALONG THE TOP RAIL OF THE STAND JUST TO THE RIGHT OF THE ROCKET, THIS NUMBER INDICATES WHAT NUMBER TEST IS BEING CONDUCTED. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Code of Federal Regulations, 2010 CFR
2010-10-01
... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement on receiving property of the noise emission levels from switcher locomotives, load cell test stands, car...
Code of Federal Regulations, 2013 CFR
2013-10-01
... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement on receiving property of the noise emission levels from switcher locomotives, load cell test stands, car...
Code of Federal Regulations, 2012 CFR
2012-10-01
... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement on receiving property of the noise emission levels from switcher locomotives, load cell test stands, car...
Code of Federal Regulations, 2014 CFR
2014-10-01
... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement on receiving property of the noise emission levels from switcher locomotives, load cell test stands, car...
Code of Federal Regulations, 2011 CFR
2011-10-01
... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement on receiving property of the noise emission levels from switcher locomotives, load cell test stands, car...
NASA Technical Reports Server (NTRS)
2010-01-01
Employees at NASA's John C. Stennis Space Center work to maneuver a structural steam beam into place on the A-1 Test Stand on Jan. 13. The beam was one of several needed to form the thrust takeout structure that will support a new thrust measurement system being installed on the stand for future rocket engine testing. Once lifted onto the stand, the beams had to be hoisted into place through the center of the test stand, with only two inches of clearance on each side. The new thrust measurement system represents a state-of-the-art upgrade from the equipment installed more than 40 years ago when the test stand was first constructed.
Integration of the SSPM and STAGE with the MPACT Virtual Facility Distributed Test Bed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cipiti, Benjamin B.; Shoman, Nathan
The Material Protection Accounting and Control Technologies (MPACT) program within DOE NE is working toward a 2020 milestone to demonstrate a Virtual Facility Distributed Test Bed. The goal of the Virtual Test Bed is to link all MPACT modeling tools, technology development, and experimental work to create a Safeguards and Security by Design capability for fuel cycle facilities. The Separation and Safeguards Performance Model (SSPM) forms the core safeguards analysis tool, and the Scenario Toolkit and Generation Environment (STAGE) code forms the core physical security tool. These models are used to design and analyze safeguards and security systems and generatemore » performance metrics. Work over the past year has focused on how these models will integrate with the other capabilities in the MPACT program and specific model changes to enable more streamlined integration in the future. This report describes the model changes and plans for how the models will be used more collaboratively. The Virtual Facility is not designed to integrate all capabilities into one master code, but rather to maintain stand-alone capabilities that communicate results between codes more effectively.« less
2012-08-16
Two large-engine tests were conducted simultaneously for the first time at Stennis Space Center on Aug. 16. A plume on the left indicates a test on the facility's E-1 Test Stand. On the right, a finger of fire indicates a test under way on the A-1 Test Stand. In another first, both tests were conducted by female engineers. The image was taken from atop the facility's A-2 Test Stand, offering a panoramic view that includes the new A-3 Test Stand under construction to the left.
An Integrated Modeling and Simulation Methodology for Intelligent Systems Design and Testing
2002-08-01
simulation and actual execution. KEYWORDS: Model Continuity, Modeling, Simulation, Experimental Frame, Real Time Systems , Intelligent Systems...the methodology for a stand-alone real time system. Then it will scale up to distributed real time systems . For both systems, step-wise simulation...MODEL CONTINUITY Intelligent real time systems monitor, respond to, or control, an external environment. This environment is connected to the digital
24. SATURN V Fl ENGINE TEST FIRING ON TEST STAND ...
24. SATURN V F-l ENGINE TEST FIRING ON TEST STAND 1A. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Stand for testing the electrical race car engine
NASA Astrophysics Data System (ADS)
Baier, M.; Franiasz, J.; Mierzwa, P.; Wylenzek, D.
2015-11-01
An engine test stand created especially for research of electrical race car is described in the paper. The car is an aim of Silesian Greenpower project whose participants build and test electrical vehicles to take part in international races in Great Britain. The engine test stand is used to test and measure the characteristics of vehicles and their engines. It has been designed particularly to test the electric cars engineered by students of Silesian Greenpower project. The article contains a description how the test stand works and shows its versatility in many areas. The paper presents both construction of the test stand, control system and sample results of conducted research. The engine test stand was designed and modified using PLM Siemens NX 8.5. The construction of the test stand is highly modular, which means it can be used both for testing the vehicle itself or for tests without the vehicle. The test stand has its own wheel, motor, powertrain and braking system with second engine. Such solution enables verifying various concepts without changing the construction of the vehicle. The control system and measurement system are realized by enabling National Instruments product myRIO (RIO - Reconfigurable Input/Output). This controller in combination with powerful LabVIEW environment performs as an advanced tool to control torque and speed simultaneously. It is crucial as far as the test stand is equipped in two motors - the one being tested and the braking one. The feedback loop is realized by an optical encoder cooperating with the rotor mounted on the wheel. The results of tests are shown live on the screen both as a chart and as single values. After performing several tests there is a report generated. The engine test stand is widely used during process of the Silesian Greenpower vehicle design. Its versatility enables powertrain testing, wheels and tires tests, thermal analysis and more.
View east northeast at Test Stand 'A' complex from road, ...
View east northeast at Test Stand 'A' complex from road, showing Test Stand 'C' test tower in left background (Building 4217/E-18). Curved I-beam labeled '3-ton' is for small traveling hoist. Fuel tanks, propellant lines, and control panels have been removed from tower. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA
1. VIEW NORTHEAST, LEFT TO RIGHT COLD CALIBRATION TEST STAND ...
1. VIEW NORTHEAST, LEFT TO RIGHT COLD CALIBRATION TEST STAND COLD CALIBRATION BLOCKHOUSE IN FOREGROUND. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL
2011-07-29
Stennis Space Center employees have installed liquid oxygen and liquid hydrogen tanks atop the A-3 Test Stand, raising the structure to its full 300-foot height. The stand is being built to test next-generation rocket engines that could carry humans beyond low-Earth orbit into deep space. The A-3 Test Stand is scheduled for completion and activation in 2013.
Code of Federal Regulations, 2010 CFR
2010-07-01
... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving...
Code of Federal Regulations, 2014 CFR
2014-07-01
... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving...
Code of Federal Regulations, 2012 CFR
2012-07-01
... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving...
Code of Federal Regulations, 2011 CFR
2011-07-01
... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving...
Code of Federal Regulations, 2013 CFR
2013-07-01
... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving...
Photographic copy of photograph, aerial view looking north and showing ...
Photographic copy of photograph, aerial view looking north and showing Test Stand 'A' (at bottom), Test Stand 'B' (upper right), and a portion of Test Stand 'C' (top of view). Compare HAER CA-163-1 and 2 and note addition of liquid nitrogen storage tank (Building 4262/E-63) to west of Test Stand 'C' as well as various ancillary facilities located behind earth barriers near Test Stand 'C.' (JPL negative no. 384-3006-A, 12 December 1961) - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA
Transmission Bearing Damage Detection Using Decision Fusion Analysis
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Lewicki, David G.; Decker, Harry J.
2004-01-01
A diagnostic tool was developed for detecting fatigue damage to rolling element bearings in an OH-58 main rotor transmission. Two different monitoring technologies, oil debris analysis and vibration, were integrated using data fusion into a health monitoring system for detecting bearing surface fatigue pitting damage. This integrated system showed improved detection and decision-making capabilities as compared to using individual monitoring technologies. This diagnostic tool was evaluated by collecting vibration and oil debris data from tests performed in the NASA Glenn 500 hp Helicopter Transmission Test Stand. Data was collected during experiments performed in this test rig when two unanticipated bearing failures occurred. Results show that combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spiral bevel gears duplex ball bearings and spiral bevel pinion triplex ball bearings in a main rotor transmission.
Employees lower Cassini's upper experiment module and base onto a work stand in the PHSF
NASA Technical Reports Server (NTRS)
1997-01-01
Employees in the Payload Hazardous Servicing Facility (PHSF) lower the upper experiment module and base of the Cassini orbiter onto a work stand during prelaunch processing, testing and integration work in that facility. The Cassini orbiter and Huygens probe being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn's largest moon, Titan. The orbiter was designed and assembled at NASA's Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004.
1962-07-03
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the construction of the F-1 test stand as of July 3, 1963. All four of its tower legs are well underway.
1963-09-05
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the construction of the F-1 test stand as of September 5, 1963.
1962-10-26
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC test stand, related facilities were built during this time. Built to the north of the massive S-IC test stand, was the F-1 Engine test stand. The F-1 test stand, a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken October 26, 1962, depicts the excavation process of the single engine F-1 stand.
1963-09-30
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the construction of the F-1 test stand as of September 30, 1963.
1963-06-24
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the construction of the F-1 test stand as of June 24, 1963. Two if its four tower legs are underway.
1962-11-15
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC test stand, related facilities were built during this time. Built to the north of the massive S-IC test stand, was the F-1 Engine test stand. The F-1 test stand, a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken November 15, 1962, depicts the excavation process of the single engine F-1 stand site.
1963-10-22
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Northeast of the massive S-IC test stand, the F-1 Engine test stand was built. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the fuel tanks that housed kerosene and just beyond those is the F-1 test stand.
23. "A CAPTIVE ATLAS MISSILE EXPLODED DURING THE TEST ON ...
23. "A CAPTIVE ATLAS MISSILE EXPLODED DURING THE TEST ON TEST STAND 1-A, 27 MARCH 1959, PUTTING THAT TEST STAND OUT-OF-COMMISSION. STAND WAS NOT REPAIRED FOR THE ATLAS PROGRAM BUT TRANSFERRED TO ROCKETDYNE AND MODIFIED FOR THE F-l ENGINE PROGRAM." - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
NDE of logs and standing trees using new acoustic tools : technical application and results
Peter Carter; Xiping Wang; Robert J. Ross; David Briggs
2005-01-01
The new Director ST300 provides a means to efficiently assess stands for stiffness and related wood properties based on standing tree acoustic velocily measures, and can be easily integrated with pre-harvest and earlier stand assessments. This provides for effective valuation for forest sale, stumpage purchase, harvest planning, and ranking of progeny or clones in tree...
Running, Steven W.; Gower, Stith T.
1991-01-01
A new version of the ecosystem process model FOREST-BGC is presented that uses stand water and nitrogen limitations to alter the leaf/root/stem carbon allocation fraction dynamically at each annual iteration. Water deficit is defined by integrating a daily soil water deficit fraction annually. Current nitrogen limitation is defined relative to a hypothetical optimum foliar N pool, computed as maximum leaf area index multiplied by maximum leaf nitrogen concentration. Decreasing availability of water or nitrogen, or both, reduces the leaf/root carbon partitioning ratio. Leaf and root N concentrations, and maximum leaf photosynthetic capacity are also redefined annually as functions of nitrogen availability. Test simulations for hypothetical coniferous forests were performed for Madison, WI and Missoula, MT, and showed simulated leaf area index ranging from 4.5 for a control stand at Missoula, to 11 for a fertilized stand at Madison, with Year 50 stem carbon biomasses of 31 and 128 Mg ha(-1), respectively. Total nitrogen incorporated into new tissue ranged from 34 kg ha(-1) year(-1) for the unfertilized Missoula stand, to 109 kg ha(-1) year(-1) for the fertilized Madison stand. The model successfully showed dynamic annual carbon partitioning controlled by water and nitrogen limitations.
Maturing Pump Technology for EVA Applications in a Collaborative Environment
NASA Technical Reports Server (NTRS)
Hodgson, Edward; Dionne, Steven; Gervais, Edward; Anchondo, Ian
2012-01-01
The transition from low earth orbit Extravehicular Activity (EVA) for construction and maintenance activities to planetary surface EVA on asteroids, moons, and, ultimately, Mars demands a new spacesuit system. NASA's development of that system has resulted in dramatically different pumping requirements from those in the current spacesuit system. Hamilton Sundstrand, Cascon, and NASA are collaborating to develop and mature a pump that will reliably meet those new requirements in space environments and within the design constraints imposed by spacesuit system integration. That collaboration, which began in the NASA purchase of a pump prototype for test evaluation, is now entering a new phase of development. A second generation pump reflecting the lessons learned in NASA's testing of the original prototype will be developed under Hamilton Sundstrand internal research funding and ultimately tested in an integrated Advanced Portable Life Support System (APLSS) in NASA laboratories at the Johnson Space Center. This partnership is providing benefit to both industry and NASA by supplying a custom component for EVA integrated testing at no cost to the government while providing test data for industry that would otherwise be difficult or impossible to duplicate in industry laboratories. This paper discusses the evolving collaborative process, component requirements and design development based on early NASA test experience, component stand alone test results, and near term plans for integrated testing at JSCs.
8. TEST STAND 15, INVERTED ENGINE FIRING TEST, CIRCA 1963. ...
8. TEST STAND 1-5, INVERTED ENGINE FIRING TEST, CIRCA 1963. Original is a color print. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
Stand-Alone and Hybrid Positioning Using Asynchronous Pseudolites
Gioia, Ciro; Borio, Daniele
2015-01-01
global navigation satellite system (GNSS) receivers are usually unable to achieve satisfactory performance in difficult environments, such as open-pit mines, urban canyons and indoors. Pseudolites have the potential to extend GNSS usage and significantly improve receiver performance in such environments by providing additional navigation signals. This also applies to asynchronous pseudolite systems, where different pseudolites operate in an independent way. Asynchronous pseudolite systems require, however, dedicated strategies in order to properly integrate GNSS and pseudolite measurements. In this paper, several asynchronous pseudolite/GNSS integration strategies are considered: loosely- and tightly-coupled approaches are developed and combined with pseudolite proximity and receiver signal strength (RSS)-based positioning. The performance of the approaches proposed has been tested in different scenarios, including static and kinematic conditions. The tests performed demonstrate that the methods developed are effective techniques for integrating heterogeneous measurements from different sources, such as asynchronous pseudolites and GNSS. PMID:25609041
2011-04-22
Stennis Space Center employees continue work on the A-3 Test Stand test cell. The stand is being built to test next-generation rocket engines that could carry humans beyond low-Earth orbit into deep space.
9. COLD CALIBRATION TEST STAND (H1) FROM LEFT TO RIGHT ...
9. COLD CALIBRATION TEST STAND (H-1) FROM LEFT TO RIGHT - WORK BENCH, CONTROL PANEL, CHEMICAL TANK. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL
5. EAST SIDE, TEST STAND AND ITS SUPERSTRUCTURE. Edwards ...
5. EAST SIDE, TEST STAND AND ITS SUPERSTRUCTURE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
PERSPECTIVE VIEW LOOKING NORTHEAST AT THE TEST STAND, NOTE THE ...
PERSPECTIVE VIEW LOOKING NORTHEAST AT THE TEST STAND, NOTE THE SERVICE AND SUPPORT BUILDINGS TO THE LEFT AND RIGHT OF THE TEST STAND. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
Methods to Fabricate and Improve Stand-alone and Integrated Filters
NASA Technical Reports Server (NTRS)
Greer, Frank (Inventor); Nikzad, Shouleh (Inventor)
2014-01-01
Embodiments of the invention provide for fabricating a filter, for electromagnetic radiation, in at least three ways, including (1) fabricating integrated thin film filters directly on a detector; (2) fabricating a free standing thin film filter that may be used with a detector; and (3) treating an existing filter to improve the filter's properties.
CLOSEUP VIEW LOOKING SOUTH AT THE SATURN I TEST STAND, ...
CLOSE-UP VIEW LOOKING SOUTH AT THE SATURN I TEST STAND, NOTE THE INTERPRETIVE SIGN EXPLAINING THE HISTORIC NATURE OF THE SATURN I TEST STAND. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
43. HISTORIC VIEW LOOKING SOUTHWEST AT THE TEST STAND WITH ...
43. HISTORIC VIEW LOOKING SOUTHWEST AT THE TEST STAND WITH A REDSTONE ROCKET BEING FUELED AND PREPARED FOR TESTING. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
NASA's Space Launch System Takes Shape
NASA Technical Reports Server (NTRS)
Askins, Bruce; Robinson, Kimberly F.
2017-01-01
Major hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of a major new capability for deep space human exploration. SLS continues to pursue a 2018 first launch of Exploration Mission 1 (EM-1). At NASA's Michoud Assembly Facility near New Orleans, LA, Boeing completed welding of structural test and flight liquid hydrogen tanks, and engine sections. Test stands for core stage structural tests at NASA's Marshall Space Flight Center, Huntsville, AL. neared completion. The B2 test stand at NASA's Stennis Space Center, MS, completed major structural renovation to support core stage green run testing in 2018. Orbital ATK successfully test fired its second qualification solid rocket motor in the Utah desert and began casting the motor segments for EM-1. Aerojet Rocketdyne completed its series of test firings to adapt the heritage RS-25 engine to SLS performance requirements. Production is under way on the first five new engine controllers. NASA also signed a contract with Aerojet Rocketdyne for propulsion of the RL10 engines for the Exploration Upper Stage. United Launch Alliance delivered the structural test article for the Interim Cryogenic Propulsion Stage to MSFC for tests and construction was under way on the flight stage. Flight software testing at MSFC, including power quality and command and data handling, was completed. Substantial progress is planned for 2017. Liquid oxygen tank production will be completed at Michoud. Structural testing at Marshall will get under way. RS-25 hotfire testing will verify the new engine controllers. Core stage horizontal integration will begin. The core stage pathfinder mockup will arrive at the B2 test stand for fit checks and tests. EUS will complete preliminary design review. This paper will discuss the technical and programmatic successes and challenges of 2016 and look ahead to plans for 2017.
3. "TEST STAND NO. 13, EXCAVATION PLAN & SECTIONS." Specifications ...
3. "TEST STAND NO. 1-3, EXCAVATION PLAN & SECTIONS." Specifications No. ENG 04-353-50-10; Drawing No. 60-0906; no sheet number within title block; D.O. SERIES 1109/10. Stamped: AS BUILT. No revisions or revision dates. Last work date on this drawing "Checked by EAG, 1/31/49." Though this drawing is specific to Test Stand 1-3, it also illustrates the general methods used for excavation design and retaining wall construction at Test Stand 1-5. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
1. Credit PSR. This view displays the north and west ...
1. Credit PSR. This view displays the north and west facades of Test Stand "G" (Vibration Facility) as seen when looking east southeast (110°). Test Stand "G" no longer houses the vibrator; it now houses an autoclave due to the changing nature of the testing work. The Vibration Facility was Test Stand "G"'s historic function. Test Stand "E" is at the far right. The Vibration Facility subjected motor and engine assemblies to various vibration patterns in order to simulate flight conditions and evaluate the durability of engine and motor designs. - Jet Propulsion Laboratory Edwards Facility, Test Stand G, Edwards Air Force Base, Boron, Kern County, CA
Impaired perception of surface tilt in progressive supranuclear palsy
Dale, Marian L.; Horak, Fay B.; Wright, W. Geoffrey; Schoneburg, Bernadette M.; Nutt, John G.; Mancini, Martina
2017-01-01
Introduction Progressive supranuclear palsy (PSP) is characterized by early postural instability and backward falls. The mechanisms underlying backward postural instability in PSP are not understood. The aim of this study was to test the hypothesis that postural instability in PSP is a result of dysfunction in the perception of postural verticality. Methods We gathered posturography data on 12 subjects with PSP to compare with 12 subjects with idiopathic Parkinson’s Disease (PD) and 12 healthy subjects. Objective tests of postural impairment included: dynamic sensory perception tests of gravity and of surface oscillations, postural responses to surface perturbations, the sensory organization test of postural sway under altered sensory conditions and limits of stability in stance. Results Perception of toes up (but not toes down) surface tilt was reduced in subjects with PSP compared to both control subjects (p≤0.001 standing, p≤0.007 seated) and subjects with PD (p≤0.03 standing, p≤0.04 seated). Subjects with PSP, PD and normal controls accurately perceived the direction of gravity when standing on a tilting surface. Unlike PD and control subjects, subjects with PSP exerted less postural corrective torque in response to toes up surface tilts. Discussion Difficulty perceiving backward tilt of the surface or body may account for backward falls and postural impairments in patients with PSP. These observations suggest that abnormal central integration of sensory inputs for perception of body and surface orientation contributes to the pathophysiology of postural instability in PSP. PMID:28267762
NASA Astrophysics Data System (ADS)
Giffin, Paxton K.; Parsons, Michael S.; Unz, Ronald J.; Waggoner, Charles A.
2012-05-01
The Institute for Clean Energy Technology (ICET) at Mississippi State University has developed a test stand capable of lifecycle testing of high efficiency particulate air filters and other filters specified in American Society of Mechanical Engineers Code on Nuclear Air and Gas Treatment (AG-1) filters. The test stand is currently equipped to test AG-1 Section FK radial flow filters, and expansion is currently underway to increase testing capabilities for other types of AG-1 filters. The test stand is capable of producing differential pressures of 12.45 kPa (50 in. w.c.) at volumetric air flow rates up to 113.3 m3/min (4000 CFM). Testing is performed at elevated and ambient conditions for temperature and relative humidity. Current testing utilizes three challenge aerosols: carbon black, alumina, and Arizona road dust (A1-Ultrafine). Each aerosol has a different mass median diameter to test loading over a wide range of particles sizes. The test stand is designed to monitor and maintain relative humidity and temperature to required specifications. Instrumentation is implemented on the upstream and downstream sections of the test stand as well as on the filter housing itself. Representative data are presented herein illustrating the test stand's capabilities. Digital images of the filter pack collected during and after testing is displayed after the representative data are discussed. In conclusion, the ICET test stand with AG-1 filter testing capabilities has been developed and hurdles such as test parameter stability and design flexibility overcome.
1963-01-14
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC test stand, related facilities were constructed during this time frame. Built just north of the massive S-IC test stand was the F-1 Engine test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken January 14, 1963 depicts the F-1 test stand site with hoses pumping excess water from the site.
STS-87 crew participates in Crew Equipment Interface Test
NASA Technical Reports Server (NTRS)
1997-01-01
Participating in the Crew Equipment Integration Test (CEIT) at Kennedy Space Center are STS-87 crew members, assisted by Glenda Laws, extravehicular activity (EVA) coordinator, Johnson Space Center. Standing behind Laws are Takao Doi, Ph.D., of the National Space Development Agency of Japan, and Winston Scott, both mission specialists on STS-87. The STS-87 mission will be the fourth United States Microgravity Payload and flight of the Spartan-201 deployable satellite. During the mission, scheduled for a Nov. 19 liftoff from KSC, Dr. Doi and Scott will both perform spacewalks.
NASA Technical Reports Server (NTRS)
Bennett, G.; Koenig, K.; Miley, S. J.; Mcwhorter, J.; Wells, G.
1981-01-01
A bibliography was compiled of all readily available sources of propeller analytical and experimental studies conducted during the 1930 through 1960 period. A propeller test stand was developed for the measurement of thrust and torque characteristics of full scale general aviation propellers and installed in the LaRC 30 x 60 foot full scale wind tunnel. A tunnel entry was made during the January through February 1980 period. Several propellers were tested, but unforseen difficulties with the shaft thrust torque balance severely degraded the data quality.
1. CAPTIVE TEST STAND D1 FROM THE FERROCEMENT APRON, VIEW ...
1. CAPTIVE TEST STAND D-1 FROM THE FERROCEMENT APRON, VIEW TOWARDS SOUTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
2. CLOSE UP OF CAPTIVE TEST STAND D4, VIEW TOWARDS ...
2. CLOSE UP OF CAPTIVE TEST STAND D-4, VIEW TOWARDS NORTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-4, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
1. CAPTIVE TEST STAND D4, CONNECTING TUNNELS AT RIGHT, VIEW ...
1. CAPTIVE TEST STAND D-4, CONNECTING TUNNELS AT RIGHT, VIEW TOWARDS NORTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-4, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
51. HISTORIC GENERAL VIEW LOOKING WEST AT THE TEST STAND ...
51. HISTORIC GENERAL VIEW LOOKING WEST AT THE TEST STAND WITH THE MERCURY REDSTONE ROCKET FULLY ASSEMBLED AND BEING PREPARED FOR TESTING. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
1963-11-20
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo shows the progress of the F-1 Test Stand as of November 20, 1963.
1963-04-04
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken April 4, 1963 depicts the construction of the F-1 test stand foundation walls.
1963-04-17
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken April 17, 1963 depicts the construction of the F-1 test stand foundation walls.
Credit BG. Test Stand "D" tower as seen looking northeast ...
Credit BG. Test Stand "D" tower as seen looking northeast (See caption for CA-163-F-18). To the right of the view is the stainless steel dome top for Dv Cell (see CA-163-F-22 for view into cell), behind which rests a spherical accumulator--an electrically heated steam generator for powering the vacuum system at "C" and Test Stand "D." Part of the ejector system can be seen on the right corner of the tower, other connections include electrical ducts (thin, flat metal members) and fire protection systems. Note the stand in the foreground with lights used to indicate safety status of the stand during tests - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Short Duration Base Heating Test Improvements
NASA Technical Reports Server (NTRS)
Bender, Robert L.; Dagostino, Mark G.; Engel, Bradley A.; Engel, Carl D.
1999-01-01
Significant improvements have been made to a short duration space launch vehicle base heating test technique. This technique was first developed during the 1960's to investigate launch vehicle plume induced convective environments. Recent improvements include the use of coiled nitrogen buffer gas lines upstream of the hydrogen / oxygen propellant charge tubes, fast acting solenoid valves, stand alone gas delivery and data acquisition systems, and an integrated model design code. Technique improvements were successfully demonstrated during a 2.25% scale X-33 base heating test conducted in the NASA/MSFC Nozzle Test Facility in early 1999. Cost savings of approximately an order of magnitude over previous tests were realized due in large part to these improvements.
Free-Standing Organic Transistors and Circuits with Sub-Micron Thicknesses
Fukuda, Kenjiro; Sekine, Tomohito; Shiwaku, Rei; Morimoto, Takuya; Kumaki, Daisuke; Tokito, Shizuo
2016-01-01
The realization of wearable electronic devices with extremely thin and flexible form factors has been a major technological challenge. While substrates typically limit the thickness of thin-film electronic devices, they are usually necessary for their fabrication and functionality. Here we report on ultra-thin organic transistors and integrated circuits using device components whose substrates that have been removed. The fabricated organic circuits with total device thicknesses down to 350 nm have electrical performance levels close to those fabricated on conventional flexible substrates. Moreover, they exhibit excellent mechanical robustness, whereby their static and dynamic electrical characteristics do not change even under 50% compressive strain. Tests using systematically applied compressive strains reveal that these free-standing organic transistors possess anisotropic mechanical stability, and a strain model for a multilayer stack can be used to describe the strain in this sort of ultra-thin device. These results show the feasibility of ultimate-thin organic electronic devices using free-standing constructions. PMID:27278828
ROBERT BOBO AND MIKE NICHOLS AT TEST STAND 4693
2016-12-14
ROBERT BOBO, LEFT, AND MIKE NICHOLS TALK BENEATH THE 221-FOOT-TALL TEST STAND 4693, THE LARGEST OF TWO NEW SPACE LAUNCH SYSTEM TEST STANDS AT MSFC. BOBO MANAGES SLS STRUCTURAL STRENGTH TESTING, AND NICHOLS IS LEAD TEST ENGINEER FOR THE SLS LIQUID HYDROGEN TANK.
22. DETAIL, TWO LIGHTING TYPES AT REAR OF TEST STAND ...
22. DETAIL, TWO LIGHTING TYPES AT REAR OF TEST STAND 1-A. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
1963-08-13
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the construction of the F-1 test stand as of August 13, 1963. All four of its tower legs are well underway into the skyline.
Credit BG. View looking southwest at Test Stand "D" complex. ...
Credit BG. View looking southwest at Test Stand "D" complex. In the background at left is the Steam Generator Plant 4280/E-81 built in 1972 to house four gas-fired Clayton flash boilers. The boilers were later supplemented by the electrically heated steam accumulator (sphere) to supply steam to the various ejectors at Test Stand "D" vacuum test cells - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
9. BUILDING 8769, EAST REAR AND NORTH SIDE, TEST STAND ...
9. BUILDING 8769, EAST REAR AND NORTH SIDE, TEST STAND AT RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
3. EAST SIDE, ALSO SHOWING COVERED TANKS AND TEST STAND ...
3. EAST SIDE, ALSO SHOWING COVERED TANKS AND TEST STAND 1-5 AT RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-4, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
Association of unipedal standing time and bone mineral density in community-dwelling Japanese women.
Sakai, A; Toba, N; Takeda, M; Suzuki, M; Abe, Y; Aoyagi, K; Nakamura, T
2009-05-01
Bone mineral density (BMD) and physical performance of the lower extremities decrease with age. In community-dwelling Japanese women, unipedal standing time, timed up and go test, and age are associated with BMD while in women aged 70 years and over, unipedal standing time is associated with BMD. The aim of this study was to clarify whether unipedal standing time is significantly associated with BMD in community-dwelling women. The subjects were 90 community-dwelling Japanese women aged 54.7 years. BMD of the second metacarpal bone was measured by computed X-ray densitometry. We measured unipedal standing time as well as timed up and go test to assess physical performance of the lower extremities. Unipedal standing time decreased with increased age. Timed up and go test significantly correlated with age. Low BMD was significantly associated with old age, short unipedal standing time, and long timed up and go test. Stepwise regression analysis revealed that age, unipedal standing time, and timed up and go test were significant factors associated with BMD. In 21 participants aged 70 years and over, body weight and unipedal standing time, but not age, were significantly associated with BMD. BMD and physical performance of the lower extremities decrease with older age. Unipedal standing time, timed up and go test, and age are associated with BMD in community-dwelling Japanese women. In women aged 70 years and over, unipedal standing time is significantly associated with BMD.
Chien, Jung Hung; Eikema, Diderik-Jan Anthony; Mukherjee, Mukul; Stergiou, Nicholas
2014-12-01
Feedback based balance control requires the integration of visual, proprioceptive and vestibular input to detect the body's movement within the environment. When the accuracy of sensory signals is compromised, the system reorganizes the relative contributions through a process of sensory recalibration, for upright postural stability to be maintained. Whereas this process has been studied extensively in standing using the Sensory Organization Test (SOT), less is known about these processes in more dynamic tasks such as locomotion. In the present study, ten healthy young adults performed the six conditions of the traditional SOT to quantify standing postural control when exposed to sensory conflict. The same subjects performed these six conditions using a novel experimental paradigm, the Locomotor SOT (LSOT), to study dynamic postural control during walking under similar types of sensory conflict. To quantify postural control during walking, the net Center of Pressure sway variability was used. This corresponds to the Performance Index of the center of pressure trajectory, which is used to quantify postural control during standing. Our results indicate that dynamic balance control during locomotion in healthy individuals is affected by the systematic manipulation of multisensory inputs. The sway variability patterns observed during locomotion reflect similar balance performance with standing posture, indicating that similar feedback processes may be involved. However, the contribution of visual input is significantly increased during locomotion, compared to standing in similar sensory conflict conditions. The increased visual gain in the LSOT conditions reflects the importance of visual input for the control of locomotion. Since balance perturbations tend to occur in dynamic tasks and in response to environmental constraints not present during the SOT, the LSOT may provide additional information for clinical evaluation on healthy and deficient sensory processing.
2. Credit JPL. Photographic copy of photograph, looking northeast at ...
2. Credit JPL. Photographic copy of photograph, looking northeast at unfinished original Test Stand 'C' construction. A portion of the corrugated steel tunnel tube connecting Test Stand 'C' to the first phase of JPL tunnel system construction is visible in the foreground. The steel frame used to support propellant tanks and engine equipment has been erected. The open trap door leads to a chamber inside the Test Stand 'C' base where gaseous nitrogen is distributed via manifolds to Test Stand 'C' control valves. (JPL negative no. 384-1568-A, 19 March 1957) - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA
Silva, Paula F. S.; Quintino, Ludmylla F.; Franco, Juliane; Faria, Christina D. C. M.
2014-01-01
Background Subjects with neurological disease (ND) usually show impaired performance during sit-to-stand and stand-to-sit tasks, with a consequent reduction in their mobility levels. Objective To determine the measurement properties and feasibility previously investigated for clinical tests that evaluate sit-to-stand and stand-to-sit in subjects with ND. Method A systematic literature review following the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) protocol was performed. Systematic literature searches of databases (MEDLINE/SCIELO/LILACS/PEDro) were performed to identify relevant studies. In all studies, the following inclusion criteria were assessed: investigation of any measurement property or the feasibility of clinical tests that evaluate sit-to-stand and stand-to-sit tasks in subjects with ND published in any language through December 2012. The COSMIN checklist was used to evaluate the methodological quality of the included studies. Results Eleven studies were included. The measurement properties/feasibility were most commonly investigated for the five-repetition sit-to-stand test, which showed good test-retest reliability (Intraclass Correlation Coefficient:ICC=0.94-0.99) for subjects with stroke, cerebral palsy and dementia. The ICC values were higher for this test than for the number of repetitions in the 30-s test. The five-repetition sit-to-stand test also showed good inter/intra-rater reliabilities (ICC=0.97-0.99) for stroke and inter-rater reliability (ICC=0.99) for subjects with Parkinson disease and incomplete spinal cord injury. For this test, the criterion-related validity for subjects with stroke, cerebral palsy and incomplete spinal cord injury was, in general, moderate (correlation=0.40-0.77), and the feasibility and safety were good for subjects with Alzheimer's disease. Conclusions The five-repetition sit-to-stand test was used more often in subjects with ND, and most of the measurement properties were investigated and showed adequate results. PMID:24839043
2006-09-29
The Stennis Space Center conducted the final space shuttle main engine test on its A-1 Test Stand Friday. The A-1 Test Stand was the site of the first test on a shuttle main engine in 1975. Stennis will continue testing shuttle main engines on its A-2 Test Stand through the end of the Space Shuttle Program in 2010. The A-1 stand begins a new chapter in its operational history in October. It will be temporarily decommissioned to convert it for testing the J-2X engine, which will power the upper stage of NASA's new crew launch vehicle, the Ares I. Although this ends the stand's work on the Space Shuttle Program, it will soon be used for the rocket that will carry America's next generation human spacecraft, Orion.
45. HISTORIC AERIAL VIEW LOOKING SOUTHWEST AT THE TEST STAND ...
45. HISTORIC AERIAL VIEW LOOKING SOUTHWEST AT THE TEST STAND AND THE SURROUNDING ELECTRONICS AND EQUIPMENT TRAILERS. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Radiation predictions and shielding calculations for RITS-6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maenchen, John Eric; O'Malley, John; Kensek, Ronald Patrick
2005-06-01
The mission of Radiographic Integrated Test Stand-6 (RITS-6) facility is to provide the underlying science and technology for pulsed-power-driven flash radiographic X-ray sources for the National Nuclear Security Administration (NNSA). Flash X-ray radiography is a penetrating diagnostic to discern the internal structure in dynamic experiments. Short (~50 nanosecond (ns) duration) bursts of very high intensity Xrays from mm-scale source sizes are required at a variety of voltages to address this mission. RITS-6 was designed and is used to both develop the accelerator technology needed for these experiments and serves as the principal test stand to develop the high intensity electronmore » beam diodes that generate the required X-ray sources. RITS is currently in operation with three induction cavities (RITS-3) with a maximum voltage output of 5.5 MV and is classified as a low hazard non-nuclear facility in accordance with CPR 400.1.1, Chapter 13, Hazards Identification/Analysis and Risk Management. The facility will be expanded from three to six cavities (RITS-6) effectively doubling the operating voltage. The increase in the operating voltage to above 10 MV has resulted in RITS-6 being classified as an accelerator facility. RITS-6 will come under DOE Order 420.2B, Safety of Accelerator Facilities. The hazards of RITS are detailed in the "Safety Assessment Document for the Radiographic Integrated Test Stand Facility." The principal non-industrial hazard is prompt x-ray radiation. As the operating voltage is increased, both the penetration power and the total amount (dose) of x-rays are increased, thereby increasing the risk to local personnel. Fixed site shielding (predominantly concrete walls and a steel/lead skyshine shield) is used to attenuate these x-rays and mitigate this risk. This SAND Report details the anticipated x-ray doses, the shielding design, and the anticipated x-ray doses external to this shielding structure both in areas where administrative access control restricts occupation and in adjacent uncontrolled areas.« less
Construction Progress of the S-IC Test Stand Complex Bunker House
NASA Technical Reports Server (NTRS)
1963-01-01
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC stand, additional related facilities were built during this time frame. Built to the east of the S-IC stand, the block house served as the control room. To the south of the blockhouse was a newly constructed pump house used for delivering water to the S-IC stand during testing. North of the massive test stand, the F-1 Engine test stand was built for testing a single F-1 engine. Just southeast of the S-IC stand a concrete bunker house was constructed. The bunker housed an emergency crew clad in fire proof gear, who were close at hand should any emergencies arise during testing. This photo of the completed bunker house was taken on May 7, 1963.
System design and integration of the large-scale advanced prop-fan
NASA Technical Reports Server (NTRS)
Huth, B. P.
1986-01-01
In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that blades with thin airfoils and aerodynamic sweep extend the inherent efficiency advantage that turboprop propulsion systems have demonstrated to the higher speed to today's aircraft. Hamilton Standard has designed a 9-foot diameter single-rotation Prop-Fan. It will test the hardware on a static test stand, in low speed and high speed wind tunnels and on a research aircraft. The major objective of this testing is to establish the structural integrity of large scale Prop-Fans of advanced construction, in addition to the evaluation of aerodynamic performance and the aeroacoustic design. The coordination efforts performed to ensure smooth operation and assembly of the Prop-Fan are summarized. A summary of the loads used to size the system components, the methodology used to establish material allowables and a review of the key analytical results are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auld, Joshua; Hope, Michael; Ley, Hubert
This paper discusses the development of an agent-based modelling software development kit, and the implementation and validation of a model using it that integrates dynamic simulation of travel demand, network supply and network operations. A description is given of the core utilities in the kit: a parallel discrete event engine, interprocess exchange engine, and memory allocator, as well as a number of ancillary utilities: visualization library, database IO library, and scenario manager. The overall framework emphasizes the design goals of: generality, code agility, and high performance. This framework allows the modeling of several aspects of transportation system that are typicallymore » done with separate stand-alone software applications, in a high-performance and extensible manner. The issue of integrating such models as dynamic traffic assignment and disaggregate demand models has been a long standing issue for transportation modelers. The integrated approach shows a possible way to resolve this difficulty. The simulation model built from the POLARIS framework is a single, shared-memory process for handling all aspects of the integrated urban simulation. The resulting gains in computational efficiency and performance allow planning models to be extended to include previously separate aspects of the urban system, enhancing the utility of such models from the planning perspective. Initial tests with case studies involving traffic management center impacts on various network events such as accidents, congestion and weather events, show the potential of the system.« less
A-3 Test Stand construction moves forward
2010-07-13
Work on the A-3 Test Stand at Stennis Space Center took a step forward in July with delivery of the first-stage steam ejector July 13. Stennis employees are shown preparing the ejector to be lifted into place on the test stand. When activated in 2012, the A-3 Test Stand will allow operators to test rocket engines at simulated altitudes of 100,000 feet, a critical feature for next-generation engines that will take humans beyond low-Earth orbit once more.
5. BUILDING 8768, SOUTH SIDE AND EAST REAR. TEST STAND ...
5. BUILDING 8768, SOUTH SIDE AND EAST REAR. TEST STAND 1A AT LEFT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
21. Building 202, underside of test stand A, detail of ...
21. Building 202, underside of test stand A, detail of junction of scrubber structure and test stand with water pipes and valves visible. View looking southeast. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
37. HISTORIC GENERAL VIEW LOOKING WEST OF TEST STAND AND ...
37. HISTORIC GENERAL VIEW LOOKING WEST OF TEST STAND AND ROCKET DURING TEST FIRING NUMBER 2. NOTE THE FLAME BEING EMITTED FROM THE BOTTOM OF THE ROCKET. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
8. VIEW LOOKING WEST AT THE POWER PLANT TEST STAND ...
8. VIEW LOOKING WEST AT THE POWER PLANT TEST STAND DURING AN ENGINE FIRING. DATE UNKNOWN, FRED ORDWAY COLLECTION, U.S. SPACE AND ROCKET CENTER, HUNTSVILLE, AL. - Marshall Space Flight Center, East Test Area, Power Plant Test Stand, Huntsville, Madison County, AL
10. "TEST STAND 15, AIR FORCE FLIGHT TEST CENTER." ca. ...
10. "TEST STAND 1-5, AIR FORCE FLIGHT TEST CENTER." ca. 1958. Test Area 1-115. Original is a color print, showing Test Stand 1-5 from below, also showing the superstructure of TS1-4 at left. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA
Stennis Space Center Conducts Water Flow Test On The B-2 Test Stand
2018-05-04
Stennis Space Center completed a water flow test of the refurbished B-2 Test Stand on May 4, 2018. This included both the deflector and the aspirator, individually and together. This test stand is being prepared for the testing of the Space Launch System's booster core, which will utilize four RS-25 rocket engines.
SSC Test Operations Contract Overview
NASA Technical Reports Server (NTRS)
Kleim, Kerry D.
2010-01-01
This slide presentation reviews the Test Operations Contract at the Stennis Space Center (SSC). There are views of the test stands layouts, and closer views of the test stands. There are descriptions of the test stand capabilities, some of the other test complexes, the Cryogenic propellant storage facility, the High Pressure Industrial Water (HPIW) facility, and Fluid Component Processing Facility (FCPF).
Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing
NASA Technical Reports Server (NTRS)
Tuma, M. L.; Chenevert, D. J.
2010-01-01
Integrated vehicle ground vibration testing (IVGVT) will be a vital component for ensuring the safety of NASA's next generation of exploration vehicles to send human beings to the Moon and beyond. A ground vibration test (GVT) measures the fundamental dynamic characteristics of launch vehicles during various phases of flight. The Ares Flight & Integrated Test Office (FITO) will be leading the IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2012 to 2014 using Test Stand (TS) 4550. MSFC conducted similar GVT for the Saturn V and Space Shuttle vehicles. FITO is responsible for performing the IVGVT on the Ares I crew launch vehicle, which will lift the Orion crew exploration vehicle to low Earth orbit, and the Ares V cargo launch vehicle, which can launch the lunar lander into orbit and send the combined Orionilander vehicles toward the Moon. Ares V consists of a six-engine core stage with two solid rocket boosters and an Earth departure stage (EDS). The same engine will power the EDS and the Ares I second stage. For the Ares IVGVT, the current plan is to test six configurations in three unique test positions inside TS 4550. Position 1 represents the entire launch stack at liftoff (using inert first stage segments). Position 2 consists of the entire launch stack at first stage burn-out (using empty first stage segments). Four Ares I second stage test configurations will be tested in Position 3, consisting of the Upper Stage and Orion crew module in four nominal conditions: J-2X engine ignition, post Launch Abort System (LAS) jettison, critical slosh mass, and J-2X burn-out. Because of long disuse, TS 4550 is being repaired and reactivated to conduct the Ares I IVGVT. The Shuttle-era platforms have been removed and are being replaced with mast climbers that provide ready access to the test articles and can be moved easily to support different positions within the test stand. The electrical power distribution system for TS 4550 was upgraded. Two new cranes will help move test articles at the test stand and at the Redstone Arsenal railhead where first stage segments will be received in 2011. The Hydrodynamic Support systems (HDSs) used for Saturn and Shuttle have been disassembled and evaluated for use during IVGVT. Analyses indicate that the 45-year-old HDSs can be refurbished to support the Ares I IVGVT. An alternate concept for a pneumatic suspension system is also being explored. A decision on which suspension system configuration to use for IVGVT will be made in 2010. In the next three years, the team will complete the updates to TS 4550, upgrade the test and data collection equipment, and finalize the configurations of the test articles to be used in the IVGVT. With NASA's GVT capabilities reestablished, the FITO team will be well positioned to perform similar work on Ares V, the largest exploration launch vehicle NASA has ever built. The GVT effort continues NASA's 50-year commitment to using testing and data analysis for safer, more reliable launch vehicles.
4BMS-X Design and Test Activation
NASA Technical Reports Server (NTRS)
Peters, Warren T.; Knox, James C.
2017-01-01
In support of the NASA goals to reduce power, volume and mass requirements on future CO2 (Carbon Dioxide) removal systems for exploration missions, a 4BMS (Four Bed Molecular Sieve) test bed was fabricated and activated at the NASA Marshall Space Flight Center. The 4BMS-X (Four Bed Molecular Sieve-Exploration) test bed used components similar in size, spacing, and function to those on the flight ISS flight CDRA system, but were assembled in an open framework. This open framework allows for quick integration of changes to components, beds and material systems. The test stand is highly instrumented to provide data necessary to anchor predictive modeling efforts occurring in parallel to testing. System architecture and test data collected on the initial configurations will be presented.
2011-07-29
Rocket engine propellant tanks and cell dome top the A-3 Test Stand under construction at Stennis Space Center. The stand will test next-generation rocket engines that could carry humans beyond low-Earth orbit into deep space once more.
40 CFR 63.9285 - Am I subject to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
...) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands What This Subpart... engine test cell/stand that is located at a major source of HAP emissions. (a) An engine test cell/stand...
40 CFR 63.9285 - Am I subject to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands What This Subpart... engine test cell/stand that is located at a major source of HAP emissions. (a) An engine test cell/stand...
40 CFR 63.9285 - Am I subject to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands What This Subpart... engine test cell/stand that is located at a major source of HAP emissions. (a) An engine test cell/stand...
40 CFR 63.9285 - Am I subject to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
...) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands What This Subpart... engine test cell/stand that is located at a major source of HAP emissions. (a) An engine test cell/stand...
40 CFR 63.9285 - Am I subject to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands What This Subpart... engine test cell/stand that is located at a major source of HAP emissions. (a) An engine test cell/stand...
1964-10-01
Test firing of the Saturn I S-I Stage (S-1-10) at the Marshall Space Flight Center. This test stand was originally constructed in 1951 and sometimes called the Redstone or T tower. In l961, the test stand was modified to permit static firing of the S-I/S-IB stages, which produced a total thrust of 1,600,000 pounds. The name of the stand was then changed to the S-IB Static Test Stand.
Murata, Koichi; Sugitani, Shigeki; Yoshioka, Hiroki; Noguchi, Takashi; Aoto, Toshiyuki; Nakamura, Takashi
2010-01-01
The aim of this study was to predict the ambulation reacquisition time after hip fracture in elderly people using the unipedal standing test during the early postoperative stage. Patients with an intertrochanteric fracture treated with internal fixation (n = 35) and patients with a femoral neck fracture treated with hemiarthroplasty (n = 22) were included. A unipedal standing test using the nonoperated leg was performed on days 3 and 7 after the operation. Among the patients with an intertrochanteric fracture, those with a positive result on the unipedal standing test on postoperative day (POD) 3 attained gait with parallel guide bars (BG) and walker-assisted gait (WG) significantly earlier than did patients with a negative result on the unipedal standing test. Patients with a positive result on the unipedal standing test on POD 7 attained BG, WG, and cane-assisted gait (CG) significantly earlier than did patients with a negative test. Among patients with a femoral neck fracture, those with a positive unipedal standing test result on POD 3 attained BG, WG, and CG significantly earlier than did patients with a negative test. Those with a positive test result on POD 7 attained BG, WG, and CG significantly earlier than did patients with a negative test. The unipedal standing test given during the early postoperative stage is a good test for predicting the ambulation reacquisition time. Moreover, it gives information that can help determine the need for subacute rehabilitation and about discharge planning and health service provision.
NASA Johnson Space Center: White Sands Test Facility
NASA Technical Reports Server (NTRS)
Aggarwal, Pravin; Kowalski, Robert R.
2011-01-01
This slide presentation reviews the testing facilities and laboratories available at the White Sands Test Facility (WSTF). The mission of WSTF is to provide the expertise and infrastructure to test and evaluate spacecraft materials, components and propulsion systems that enable the safe exploration and use of space. There are nine rocket test stands in two major test areas, six altitude test stands, three ambient test stands,
17. HISTORIC VIEW OF ROCKET & LAUNCH STAND DESIGNED BY ...
17. HISTORIC VIEW OF ROCKET & LAUNCH STAND DESIGNED BY HERMANN OBERTH AND RUDOLF NEBEL FOR THE MOVIE DIE FRAU IM MOND (THE WOMAN ON THE MOON). THE LAUNCH STAND WAS MODIFIED BY THE VFR FOR THE FIRST TEST STAND AT RAKETENFLUGPLATZ NEAR BERLIN. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
1. ROCKET ENGINE TEST STAND, LOCATED IN THE NORTHEAST ¼ ...
1. ROCKET ENGINE TEST STAND, LOCATED IN THE NORTHEAST ¼ OF THE X-15 ENGINE TEST COMPLEX. Looking northeast. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
3. COMPLETE X15 VEHICLE TEST STAND, LOCATED IN SOUTHEAST ¼ ...
3. COMPLETE X-15 VEHICLE TEST STAND, LOCATED IN SOUTHEAST ¼ OF X-15 ENGINE TEST COMPLEX. Looking northeast. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
2010-10-27
The first of nine chemical steam generator (CSG) units that will be used on the A-3 Test Stand is hoisted into place at the E-2 Test Stand at John C. Stennis Space Center on Oct. 24, 2010. The unit was installed at the E-2 stand for verification and validation testing before it is moved to the A-3 stand. Steam generated by the nine CSG units that will be installed on the A-3 stand will create a vacuum that allows Stennis operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet.
Food for Thought … Integrated Testing Strategies for Safety Assessments
Hartung, Thomas; Luechtefeld, Tom; Maertens, Alexandra; Kleensang, Andre
2013-01-01
Summary Despite the fact that toxicology uses many stand-alone tests, a systematic combination of several information sources very often is required: Examples include: when not all possible outcomes of interest (e.g., modes of action), classes of test substances (applicability domains), or severity classes of effect are covered in a single test; when the positive test result is rare (low prevalence leading to excessive false-positive results); when the gold standard test is too costly or uses too many animals, creating a need for prioritization by screening. Similarly, tests are combined when the human predictivity of a single test is not satisfactory or when existing data and evidence from various tests will be integrated. Increasingly, kinetic information also will be integrated to make an in vivo extrapolation from in vitro data. Integrated Testing Strategies (ITS) offer the solution to these problems. ITS have been discussed for more than a decade, and some attempts have been made in test guidance for regulations. Despite their obvious potential for revamping regulatory toxicology, however, we still have little guidance on the composition, validation, and adaptation of ITS for different purposes. Similarly, Weight of Evidence and Evidence-based Toxicology approaches require different pieces of evidence and test data to be weighed and combined. ITS also represent the logical way of combining pathway-based tests, as suggested in Toxicology for the 21st Century. This paper describes the state of the art of ITS and makes suggestions as to the definition, systematic combination, and quality assurance of ITS. PMID:23338803
3. BUILDING 8767, NORTH REAR AND WEST SIDE, TEST STAND ...
3. BUILDING 8767, NORTH REAR AND WEST SIDE, TEST STAND 1-A AT FAR RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
5. FLAME DEFLECTOR, COMPLETE X15 VEHICLE TEST STAND. Looking east. ...
5. FLAME DEFLECTOR, COMPLETE X-15 VEHICLE TEST STAND. Looking east. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
Embedded Relative Navigation Sensor Fusion Algorithms for Autonomous Rendezvous and Docking Missions
NASA Technical Reports Server (NTRS)
DeKock, Brandon K.; Betts, Kevin M.; McDuffie, James H.; Dreas, Christine B.
2008-01-01
bd Systems (a subsidiary of SAIC) has developed a suite of embedded relative navigation sensor fusion algorithms to enable NASA autonomous rendezvous and docking (AR&D) missions. Translational and rotational Extended Kalman Filters (EKFs) were developed for integrating measurements based on the vehicles' orbital mechanics and high-fidelity sensor error models and provide a solution with increased accuracy and robustness relative to any single relative navigation sensor. The filters were tested tinough stand-alone covariance analysis, closed-loop testing with a high-fidelity multi-body orbital simulation, and hardware-in-the-loop (HWIL) testing in the Marshall Space Flight Center (MSFC) Flight Robotics Laboratory (FRL).
John D. Shaw; Sara A. Goeking; James Menlove; Charles E. Werstak
2017-01-01
Integration of Forest Inventory and Analysis (FIA) plot data with Monitoring Trends in Burn Severity (MTBS) data can provide new information about fire effects on forests. This integration allowed broad-scale assessment of the cover types burned in large fires, the relationship between prefire stand conditions and fire severity, and postfire stand conditions. Of the 42...
Design and Application of New Low-Cost Instruments for Marine Environmental Research
Marcelli, Marco; Piermattei, Viviana; Madonia, Alice; Mainardi, Umberto
2014-01-01
The development of low-cost instrumentation plays a key role in marine environmental studies and represents one of the most innovative aspects of current oceanographic research. These kinds of devices can be used for several applications, ranging from vertical profilers to stand-alone systems, and can be installed on different platforms (buoys, Voluntary Observing Ships, underwater vehicles, etc.). The availability of low-cost technologies enables the realization of extended observatory networks for the study of marine physical and biological processes through an integrated approach merging in situ observations, forecasting models and remotely sensed data. We present new low-cost sensors and probes developed to measure marine temperature, conductivity, chlorophyll a and Chromophoric Dissolved Organic Matter fluorescence, focusing on sensing strategies, general architecture, laboratory trials, in situ tests and comparison with standard instruments. Furthermore, we report the expendable (New T-FLaP), vertical profiler (T-FLaPpro) and stand-alone (Spectra) applications of these technological developments that were tested during several oceanographic surveys in the Mediterranean Sea. PMID:25490594
NASA Technical Reports Server (NTRS)
Nayagam, Vedha; Dietrich, Daniel L.; Ferkul, Paul V.; Hicks, Michael C.; Williams, Forman A.
2012-01-01
Motivated by the need to understand the flammability limits of condensed-phase fuels in microgravity, isolated single droplet combustion experiments were carried out in the Combustion Integrated Rack Facility onboard the International Space Station. Experimental observations of methanol droplet combustion and extinction in oxygen/carbon-dioxide/nitrogen mixtures at 0.7 and 1 atmospheric pressure in quiescent microgravity environment are reported for initial droplet diameters varying between 2 mm to 4 mm in this study.The ambient oxygen concentration was systematically lowered from test to test so as to approach the limiting oxygen index (LOI) at fixed ambient pressure. At one atmosphere pressure, ignition and some burning were observed for an oxygen concentration of 13% with the rest being nitrogen. In addition, measured droplet burning rates, flame stand-off ratios, and extinction diameters are presented for varying concentrations of oxygen and diluents. Simplified theoretical models are presented to explain the observed variations in extinction diameter and flame stand-off ratios.
NASA Technical Reports Server (NTRS)
1977-01-01
The 20x9 TDI array was developed to meet the LANDSAT Thematic Mapper Requirements. This array is based upon a self-aligned, transparent gate, buried channel process. The process features: (1) buried channel, four phase, overlapping gate CCD's for high transfer efficiency without fat zero; (2) self-aligned transistors to minimize clock feedthrough and parasitic capacitance; and (3) transparent tin oxide electrode for high quantum efficiency with front surface irradiation. The requirements placed on the array and the performance achieved are summarized. This data is the result of flat field measurements only, no imaging or dynamic target measurements were made during this program. Measurements were performed with two different test stands. The bench test equipment fabricated for this program operated at the 8 micro sec line time and employed simple sampling of the gated MOSFET output video signal. The second stand employed Correlated Doubled Sampling (CDS) and operated at 79.2 micro sec line time.
Design and application of new low-cost instruments for marine environmental research.
Marcelli, Marco; Piermattei, Viviana; Madonia, Alice; Mainardi, Umberto
2014-12-05
The development of low-cost instrumentation plays a key role in marine environmental studies and represents one of the most innovative aspects of current oceanographic research. These kinds of devices can be used for several applications, ranging from vertical profilers to stand-alone systems, and can be installed on different platforms (buoys, Voluntary Observing Ships, underwater vehicles, etc.). The availability of low-cost technologies enables the realization of extended observatory networks for the study of marine physical and biological processes through an integrated approach merging in situ observations, forecasting models and remotely sensed data. We present new low-cost sensors and probes developed to measure marine temperature, conductivity, chlorophyll a and Chromophoric Dissolved Organic Matter fluorescence, focusing on sensing strategies, general architecture, laboratory trials, in situ tests and comparison with standard instruments. Furthermore, we report the expendable (New T-FLaP), vertical profiler (T-FLaPpro) and stand-alone (Spectra) applications of these technological developments that were tested during several oceanographic surveys in the Mediterranean Sea.
Credit WCT. Photographic copy of photograph, view looking south down ...
Credit WCT. Photographic copy of photograph, view looking south down easternmost tunnel axis during second phase of JPL tunnel construction in 1959. Reinforced concrete formwork for Test Stand "D" foundation appears in left foreground. Formwork for Building 4222/E-23 (Test Stand "D" Workshop) is in place in right foreground with disturbed earth for western leg of tunnel system evident in background. Test Stand "C" is in center background, where first phase of tunnel construction ended. Test Stand "A" appears as tower in right background. (JPL negative no. 384-1838-C, 9 March 1959) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
10. OBSERVATION POST NO. 3, WEST OF TEST STAND 1A. ...
10. OBSERVATION POST NO. 3, WEST OF TEST STAND 1-A. SOUTH SIDE AND EAST FRONT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Detail of north side of Test Stand 'A' base, showing ...
Detail of north side of Test Stand 'A' base, showing tanks for distilled water (left), fuel (center), and gaseous nitrogen (right). Other tanks present for tests were removed before this image was taken. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA
6. CABLE RACK, MEZZANINE LEVEL, INTERIOR OF TEST STAND 1A. ...
6. CABLE RACK, MEZZANINE LEVEL, INTERIOR OF TEST STAND 1A. Looking south from north wall of terminal room. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
7. ROCKET SLED ON DECK OF TEST STAND 15. Photo ...
7. ROCKET SLED ON DECK OF TEST STAND 1-5. Photo no. "6085, G-EAFB-16 SEP 52." Looking south to machine shop. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
2011-06-08
Construction of the A-3 Test Stand at Stennis Space Center continued June 8 with installation of a 35,000-gallon liquid oxygen tank atop the steel structure. The stand is being built to test next-generation rocket engines that will carry humans into deep space once more. The LOX tank and a liquid hydrogen tank to be installed atop the stand later will provide propellants for testing the engines. The A-3 Test Stand is scheduled for completion and activation in 2013.
2015-03-26
Stennis Space Center employees install a 96-inch valve during a recent upgrade of the high-pressure industrial water system that serves the site’s large rocket engine test stands. The upgraded system has a capacity to flow 335,000 gallons of water a minute, which is a critical element for testing. At Stennis, engines are anchored in place on large test stands and fired just as they are during an actual space flight. The fire and exhaust from the test is redirected out of the stand by a large flame trench. A water deluge system directs thousands of gallons of water needed to cool the exhaust. Water also must be available for fire suppression in the event of a mishap. The new system supports RS-25 engine testing on the A-1 Test Stand, as well as testing of the core stage of NASA’s new Space Launch System on the B-2 Test Stand at Stennis.
[Research and workshop on alternative fuels for aviation. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-09-01
The Renewable Aviation Fuels Development Center (RAFDC) at Baylor University was granted U. S. Department of Energy (US DOE) and Federal Aviation Administration (FAA) funds for research and development to improve the efficiency in ethanol powered aircraft, measure performance and compare emissions of ethanol, Ethyl Tertiary Butyl Ether (ETBE) and 100 LL aviation gasoline. The premise of the initial proposal was to use a test stand owned by Engine Components Inc. (ECI) based in San Antonio, Texas. After the grant was awarded, ECI decided to close down its test stand facility. Since there were no other test stands available atmore » that time, RAFDC was forced to find additional support to build its own test stand. Baylor University provided initial funds for the test stand building. Other obstacles had to be overcome in order to initiate the program. The price of the emission testing equipment had increased substantially beyond the initial quote. Rosemount Analytical Inc. gave RAFDC an estimate of $120,000.00 for a basic emission testing package. RAFDC had to find additional funding to purchase this equipment. The electronic ignition unit also presented a series of time consuming problems. Since at that time there were no off-the-shelf units of this type available, one had to be specially ordered and developed. FAA funds were used to purchase a Super Flow dynamometer. Due to the many unforeseen obstacles, much more time and effort than originally anticipated had to be dedicated to the project, with much of the work done on a volunteer basis. Many people contributed their time to the program. One person, mainly responsible for the initial design of the test stand, was a retired engineer from Allison with extensive aircraft engine test stand experience. Also, many Baylor students volunteered to assemble the. test stand and continue to be involved in the current test program. Although the program presented many challenges, which resulted in delays, the RAFDC's test stand is an asset which provides an ongoing research capability dedicated to the testing of alternative fuels for aircraft engines. The test stand is now entirely functional with the exception of the electronic ignition unit which still needs adjustments.« less
Model-Based Fault Diagnosis: Performing Root Cause and Impact Analyses in Real Time
NASA Technical Reports Server (NTRS)
Figueroa, Jorge F.; Walker, Mark G.; Kapadia, Ravi; Morris, Jonathan
2012-01-01
Generic, object-oriented fault models, built according to causal-directed graph theory, have been integrated into an overall software architecture dedicated to monitoring and predicting the health of mission- critical systems. Processing over the generic fault models is triggered by event detection logic that is defined according to the specific functional requirements of the system and its components. Once triggered, the fault models provide an automated way for performing both upstream root cause analysis (RCA), and for predicting downstream effects or impact analysis. The methodology has been applied to integrated system health management (ISHM) implementations at NASA SSC's Rocket Engine Test Stands (RETS).
B-1 and B-3 Test Stands at NASA’s Plum Brook Station
1966-09-21
Operation of the High Energy Rocket Engine Research Facility (B-1), left, and Nuclear Rocket Dynamics and Control Facility (B-3) at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The test stands were constructed in the early 1960s to test full-scale liquid hydrogen fuel systems in simulated altitude conditions. Over the next decade each stand was used for two major series of liquid hydrogen rocket tests: the Nuclear Engine for Rocket Vehicle Application (NERVA) and the Centaur second-stage rocket program. The different components of these rocket engines could be studied under flight conditions and adjusted without having to fire the engine. Once the preliminary studies were complete, the entire engine could be fired in larger facilities. The test stands were vertical towers with cryogenic fuel and steam ejector systems. B-1 was 135 feet tall, and B-3 was 210 feet tall. Each test stand had several levels, a test section, and ground floor shop areas. The test stands relied on an array of support buildings to conduct their tests, including a control building, steam exhaust system, and fuel storage and pumping facilities. A large steam-powered altitude exhaust system reduced the pressure at the exhaust nozzle exit of each test stand. This allowed B-1 and B-3 to test turbopump performance in conditions that matched the altitudes of space.
Improved Testing Capability and Adaptability Through the Use of Wireless Sensors
NASA Technical Reports Server (NTRS)
Solano, Wanda M.
2003-01-01
From the first Saturn V rocket booster (S-II-T) testing in 1966 and the routine Space Shuttle Main Engine (SSME) testing beginning in 1975, to more recent test programs such as the X-33 Aerospike Engine, the Integrated Powerhead Development (IPD) program, and the Hybrid Sounding Rocket (HYSR), Stennis Space Center (SSC) continues to be a premier location for conducting large-scale testing. Central to each test program is the capability for sensor systems to deliver reliable measurements and high quality data, while also providing a means to monitor the test stand area to the highest degree of safety and sustainability. Sensor wiring is routed along piping and through cable trenches, making its way from the engine test area, through the test stand area and to the signal conditioning building before final transfer to the test control center. When sensor requirements lie outside the reach of the routine sensor cable routing, the use of wireless sensor networks becomes particularly attractive due to their versatility and ease of installation. As part of an on-going effort to enhance the testing capabilities of Stennis Space Center, the Test Technology and Development group has found numerous applications for its sensor-adaptable wireless sensor suite. While not intended for critical engine measurements or control loops, in-house hardware and software development of the sensor suite can provide improved testing capability for a range of applications including the safety monitoring of propellant storage barrels and as an experimental test-bed for embedded health monitoring paradigms.
NASA Technical Reports Server (NTRS)
Staveland, Lowell
1994-01-01
This is the experimental and software detailed design report for the prototype task loading model (TLM) developed as part of the man-machine integration design and analysis system (MIDAS), as implemented and tested in phase 6 of the Army-NASA Aircrew/Aircraft Integration (A3I) Program. The A3I program is an exploratory development effort to advance the capabilities and use of computational representations of human performance and behavior in the design, synthesis, and analysis of manned systems. The MIDAS TLM computationally models the demands designs impose on operators to aide engineers in the conceptual design of aircraft crewstations. This report describes TLM and the results of a series of experiments which were run this phase to test its capabilities as a predictive task demand modeling tool. Specifically, it includes discussions of: the inputs and outputs of TLM, the theories underlying it, the results of the test experiments, the use of the TLM as both stand alone tool and part of a complete human operator simulation, and a brief introduction to the TLM software design.
Vestibular ataxia and its measurement in man
NASA Technical Reports Server (NTRS)
Fregly, A. R.
1974-01-01
Methods involved in and results obtained with a new comprehensive ataxia test battery are described, and definitions of spontaneous and induced vestibular ataxia in man are given in terms of these findings. In addition, the topic of alcohol-induced ataxia in relation to labyrinth function is investigated. Items in the test battery comprise a sharpened Romberg test, in which the subject stands on the floor with eyes closed and arms folded against his chest, feet heel-to-toe, for 60 seconds; an eyes-open walking test; an eyes-open standing test; an eyes-closed standing test; an eyes-closed on-leg standing test; an eyes-closed walk a line test; an eyes-closed heel-to-toe walking test; and supplementary ataxia tests such as the classical Romberg test.
Impact of Fibromyalgia in the Sit-to-Stand-to-Sit Performance Compared With Healthy Controls.
Collado-Mateo, Daniel; Adsuar, Jose C; Dominguez-Muñoz, Francisco J; Olivares, Pedro R; Gusi, Narcis
2017-06-01
Fibromyalgia is associated with a reduction in the ability to perform activities of daily living. Sit-to-stand-to-sit performance is one of the most common activities of daily living and often is evaluated by counting the number of repetitions of the 30-second chair-stand test. No study, however, has examined the performance over the 30 seconds of this test of female patients with fibromyalgia on a phase-by-phase basis. To evaluate the impact of fibromyalgia on performance of the 30-second chair-stand test and to analyze how the kinematic performance changed over the 30-second test period. A cross-sectional study. Local association of fibromyalgia. Fifteen females with fibromyalgia and nine healthy female controls. Participants performed the 30-second chair-stand test while wearing a motion capture device. Duration of each sit-to-stand-to-sit phase within the 30-second time limit was compared between groups using repeated measures analysis of variance. The association between duration of phases and scores from the revised version of the Fibromyalgia Impact Questionnaire was tested using bivariate correlations. The duration of impulse and sit-to-stand phases were gradually increased over the 30 seconds of the chair-stand test for women with fibromyalgia compared with healthy controls (P = .04 and P = .02, respectively). The mean duration of these 2 phases was associated with symptom duration and the function domain of the revised version of the Fibromyalgia Impact Questionnaire (P < .05). Also, stiffness was directly associated with the duration of the stand-up phase (P = .04). Kinematic performance during the 30-second chair-stand test differed between women with fibromyalgia and healthy controls. Since sit-to-stand from a chair is a common daily activity, women with fibromyalgia may require specific exercises to improve performance of this task. Not applicable. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
A Smartphone Application Suite for Assessing Mobility.
Madhushri, Priyanka; Dzhagaryan, Armen A; Jovanov, Emil; Milenkovic, Aleksandar
2016-08-01
Modern smartphones integrate a growing number of inertial and environmental sensors that can enable the development of new mobile health applications. In this paper we introduce a suite of smartphone applications for assessing mobility in elderly population. The suite currently includes applications that automate and quantify the following standardized medical tests for assessing mobility: Timed-Up-and-Go (TUG), 30 Seconds Chair Stand Test (30SCS), and a 4-stage Balance Test (4SBT). For each smartphone application we describe its functionality and a list of parameters extracted by processing signals from smartphone's inertial sensors. The paper shows the results from studies conducted on geriatric patients for TUG tests and from studies conducted in the laboratory on healthy subjects for 30SCS and 4SBT tests.
Isopropyl alcohol tank installed at A-3 Test Stand
NASA Technical Reports Server (NTRS)
2009-01-01
An isopropyl alcohol (IPA) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen IPA, water and liquid oxygen (LOX) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.
Water tank installed at A-3 Test Stand
NASA Technical Reports Server (NTRS)
2009-01-01
A water tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen water, liquid oxygen (LOX) and isopropyl alcohol (IPA) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.
Liquid oxygen tank installed at A-3 Test Stand
NASA Technical Reports Server (NTRS)
2009-01-01
A liquid oxygen (LOX) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen LOX, isopropyl alcohol (IPA) and water tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.
Water tank installed at A-3 Test Stand
2009-08-13
A water tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen water, liquid oxygen (LOX) and isopropyl alcohol (IPA) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.
Liquid oxygen tank installed at A-3 Test Stand
2009-09-18
A liquid oxygen (LOX) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen LOX, isopropyl alcohol (IPA) and water tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.
Isopropyl alcohol tank installed at A-3 Test Stand
2009-09-18
An isopropyl alcohol (IPA) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen IPA, water and liquid oxygen (LOX) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.
Modal Analysis with the Mobile Modal Testing Unit
NASA Technical Reports Server (NTRS)
Wilder, Andrew J.
2013-01-01
Recently, National Aeronautics and Space Administration's (NASA's) White Sands Test Facility (WSTF) has tested rocket engines with high pulse frequencies. This has resulted in the use of some of WSTF's existing thrust stands, which were designed for static loading, in tests with large dynamic forces. In order to ensure that the thrust stands can withstand the dynamic loading of high pulse frequency engines while still accurately reporting the test data, their vibrational modes must be characterized. If it is found that they have vibrational modes with frequencies near the pulsing frequency of the test, then they must be modified to withstand the dynamic forces from the pulsing rocket engines. To make this determination the Mobile Modal Testing Unit (MMTU), a system capable of determining the resonant frequencies and mode shapes of a structure, was used on the test stands at WSTF. Once the resonant frequency has been determined for a test stand, it can be compared to the pulse frequency of a test engine to determine whether or not that stand can avoid resonance and reliably test that engine. After analysis of test stand 406 at White Sands Test Facility, it was determined that natural frequencies for the structure are located around 75, 125, and 240 Hz, and thus should be avoided during testing.
Robot-operated quality control station based on the UTT method
NASA Astrophysics Data System (ADS)
Burghardt, Andrzej; Kurc, Krzysztof; Szybicki, Dariusz; Muszyńska, Magdalena; Nawrocki, Jacek
2017-03-01
This paper presents a robotic test stand for the ultrasonic transmission tomography (UTT) inspection of stator vane thickness. The article presents the method of the test stand design in Autodesk Robot Structural Analysis Professional 2013 software suite. The performance of the designed test stand solution was simulated in the RobotStudio software suite. The operating principle of the test stand measurement system is presented with a specific focus on the measurement strategy. The results of actual wall thickness measurements performed on stator vanes are presented.
High-voltage terminal test of a test stand for a 1-MV electrostatic accelerator
NASA Astrophysics Data System (ADS)
Park, Sae-Hoon; Kim, Yu-Seok
2015-10-01
The Korea Multipurpose Accelerator Complex has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source and accelerating tube will be installed in a high-pressure vessel. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz radio-frequency power supply, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. The results of the 300-kV high-voltage terminal tests are presented in this paper.
RP1 (KEROSENE) STORAGE TANKS ON HILLSIDE EAST OF TEST STAND ...
RP1 (KEROSENE) STORAGE TANKS ON HILLSIDE EAST OF TEST STAND 1-B. THIS TANK FARM SERVES BOTH TEST STANDS 1-A AND 1-B - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Combined Fuel Storage Tank Farm, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
7. CABLE RACK, MEZZANINE LEVEL, INTERIOR OF TEST STAND 1A. ...
7. CABLE RACK, MEZZANINE LEVEL, INTERIOR OF TEST STAND 1A. Looking north from north end of the cable tunnel leading toward Control Center. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
4. COMPLETE X15 VEHICLE TEST STAND, DETAIL OF THRUST MOUNTING ...
4. COMPLETE X-15 VEHICLE TEST STAND, DETAIL OF THRUST MOUNTING STRUCTURE AT ENGINE END OF PLANE. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
2. ROCKET ENGINE TEST STAND, SHOWING TANK (BUILDING 1929) AND ...
2. ROCKET ENGINE TEST STAND, SHOWING TANK (BUILDING 1929) AND GARAGE (BUILDING 1930) AT LEFT REAR. Looking to west. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
Hooshyar, Dina; Surís, Alina M; Czarnogorski, Maggie; Lepage, James P; Bedimo, Roger; North, Carol S
2014-01-01
In the USA, 21% of the estimated 1.1 million people living with human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) are unaware they are HIV-infected. In 2011, Veterans Health Administration (VHA)'s Office of Public Health in conjunction with VHA's Health Care for Homeless Veterans Program funded grants to support rapid HIV testing at homeless outreach events because homeless populations are more likely to obtain emergent rather than preventive care and have a higher HIV seroprevalence as compared to the general population. Because of a Veterans Affairs North Texas Health Care System (VANTHCS)'s laboratory testing requirement, VANTHCS partnered with community agencies to offer rapid HIV testing for the first time at VANTHCS' 2011 Homeless Stand Downs in Dallas, Fort Worth, and Texoma, Texas. Homeless Stand Downs are outreach events that connect Veterans with services. Veterans who declined testing were asked their reasons for declining. Comparisons by Homeless Stand Down site used Pearson χ², substituting Fisher's Exact tests for expected cell sizes <5. Of the 910 Veterans attending the Homeless Stand Downs, 261 Veterans reported reasons for declining HIV testing, and 133 Veterans were tested, where 92% of the tested Veterans obtained their test results at the events - all tested negative. Veterans' reported reasons for declining HIV testing included previous negative result (n=168), no time to test (n=49), no risk factors (n=36), testing is not a priority (n=11), uninterested in knowing serostatus (n=6), and HIV-infected (n=3). Only "no time to test" differed significantly by Homeless Stand Down site. Nonresponse rate was 54%. Offering rapid HIV testing at Homeless Stand Downs is a promising testing venue since 15% of Veterans attending VANTHCS' Homeless Stand Downs were tested for HIV, and majority obtained their HIV test results at point-of-care while further research is needed to determine how to improve these rates.
Effects of Standing and Light-Intensity Walking and Cycling on 24-h Glucose.
Crespo, Noe C; Mullane, Sarah L; Zeigler, Zachary S; Buman, Matthew P; Gaesser, Glenn A
2016-12-01
This study aimed to compare 24-h and postprandial glucose responses to incremental intervals of standing (STAND), walking (WALK), and cycling (CYCLE) to a sit-only (SIT) condition. Nine overweight/obese (body mass index = 29 ± 3 kg·m) adults (30 ± 15 yr) participated in this randomized crossover full-factorial study, with each condition performed 1 wk apart. STAND, CYCLE, and WALK intervals increased from 10 to 30 min·h (2.5 h total) during an 8-h workday. WALK (1.0 mph) and STAND were matched for upright time, and WALK and CYCLE were matched for energy expenditure (~2 METs). Continuous interstitial glucose monitoring was performed for 24 h to include the 8-h workday (LAB), after-work evening hours (EVE), and sleep (SLEEP). Three 2-h postprandial periods were also analyzed. Linear mixed models were used to test for condition differences. Compared with SIT (5.7 ± 1.0 mmol·L), mean 24-h glucose during STAND (5.4 ± 0.9 mmol·L) and WALK (5.3 ± 0.9 mmol·L) were lower, and CYCLE (5.1 ± 1.0 mmol·L) was lower than all other conditions (all P < 0.001). During LAB and EVE, mean glucose was lower for STAND, WALK, and CYCLE compared with SIT (P < 0.001). During SLEEP, the mean glucose for CYCLE was lower than all other conditions (P < 0.001). Compared with SIT, cumulative 6-h postprandial mean glucose was 5%-12% lower (P < 0.001) during STAND, WALK, and CYCLE, and 6-h postprandial glucose integrated area under the curve was 24% lower during WALK (P < 0.05) and 44% lower during CYCLE (P < 0.001). Replacing sitting with regular intervals of standing or light-intensity activity during an 8-h workday reduces 24-h and postprandial glucose. These effects persist during evening hours, with CYCLE having the largest and most sustained effect.
7. BUILDING 604F, INTERIOR OF BULL PEN SHOWING TESTING STAND ...
7. BUILDING 604-F, INTERIOR OF BULL PEN SHOWING TESTING STAND AND HEAVY WOOD LINING ON CONCRETE WALLS. STEEL PLATE ABOVE TEST STAND DEFLECTS SHRAPNEL, SCREEN FURTHER HELPS TO CONTAIN PARTICLES. ONLY SMALL EXPLOSIVES WERE TESTED HERE (GRENADES, MINES, BOMB FUZES, ETC.). - Picatinny Arsenal, 600 Area, Test Areas District, State Route 15 near I-80, Dover, Morris County, NJ
Engineers conduct key water test for A-3 stand
NASA Technical Reports Server (NTRS)
2009-01-01
Water cascades from the A-2 Test Stand at Stennis Space Center as engineers challenge the limits of the high-pressure water system as part of the preparation process for the A-3 Test Stand under construction. Jeff Henderson, test director for Stennis' A Complex, led a series of tests Nov. 16-20, flowing water simultaneously on the A-1 and A-2 stands, followed by the A-1 and B-1 stands, to determine if the high-pressure industrial water facility pumps and the existing pipe system can support the needs of the A-3 stand. The stand is being built to test rocket engines that will carry astronauts beyond low-Earth orbit and will need about 300,000 gallons of water per minute when operating, but the Stennis system never had been tested to that level. The recent tests were successful in showing the water facility pumps can operate at that capacity - reaching 318,000 gallons per minute in one instance. However, officials continue to analyze data to determine if the system can provide the necessary pressure at that capacity and if the delivery system piping is adequate. 'We just think if there's a problem, it's better to identify and address it now rather than when A-3 is finished and it has to be dealt with,' Henderson said.
NEARING THE END OF CONSTRUCTION ON THE LOX TEST STAND AT MSFC.
2015-01-08
AS THE END OF CONSTRUCTION ON TEST STAND 4697, THE LIQUID OXYGEN TANK TEST STAND AT MARSHALL SPACE FLIGHT CENTER, PROJECT ENGINEERS PHIL HENDRIX, FROM MSFC, AND CURTNEY WALTERS FROM THE U.S. CORP OF ENGINEERS, STUDY PLANS AND PROGRESS.
44. HISTORIC VIEW LOOKING WEST AT THE TEST STAND AND ...
44. HISTORIC VIEW LOOKING WEST AT THE TEST STAND AND ROCKET BEING PREPARED FOR TESTING. NOTE THE LOAD CELL APPARATUS ABOVE THE ROCKET AND THE EQUIPMENT PLATFORM TO THE LEFT OF THE LOAD CELL HAVE BEEN ENCLOSED FOR PROTECTION FROM THE CLIMATE. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
36. HISTORIC GENERAL VIEW LOOKING NORTH DOWN THE FLAME TRENCH ...
36. HISTORIC GENERAL VIEW LOOKING NORTH DOWN THE FLAME TRENCH AT THE TEST STAND. NOTE THE MOTORIZED LIFT TO THE LEFT OF THE TEST STAND, USED TO ACCESS THE INSTRUMENTATION PLATFORM ('BIRDCAGE') MOUNTED ON TOP OF THE ROCKET DURING TEST FIRINGS. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
1967-01-01
This photograph is a view of the Saturn V S-IC (first) test stage being hoisted into the S-IC-B1 test stand at the Mississippi Test Facility (MTF), Bay St. Louis, Mississippi. This stage was used to prove the operational readiness of the stand. Begirning operations in 1966, the MTF has two test stands; a dual-position structure for running the S-IC stage at full throttle, and two separate stands for the S-II (Saturn V third) stage. It became the focus of the static test firing program. The completed S-IC stage was shipped from the Michoud Assembly Facility (MAF) to the MTF. The stage was then installed into the 124-meter-high test stand for static firing tests before shipment to the Kennedy Space Center for final assembly of the Saturn V vehicle. The MTF was renamed to the National Space Technology Laboratory (NSTL) in 1974 and later to the Stennis Space Center (SSC) in May 1988.
Credit WCT. Photographic copy of photograph, view of Test Stand ...
Credit WCT. Photographic copy of photograph, view of Test Stand "D" from the south with tower ejector system in operation during a 1972 engine test. Note steam evolving from Z-stage ejectors atop the interstage condenser in the tower. Note also the "Hyprox" steam generator straddling the Dd ejector train to the right. The new Dy horizontal train has not been erected as of this date. In the distance is Test Stand "E." (JPL negative no. 384-9766-AC, 28 November 1972) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
2016-01-06
A CRANE MOVES THE FIRST STEEL TIER TO BE BOLTED INTO PLACE ON JAN. 6, FOR WELDING OF A SECOND NEW STRUCTURAL TEST STAND AT NASA'S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALABAMA -- CRITICAL TO DEVELOPMENT OF NASA'S SPACE LAUNCH SYSTEM. WHEN COMPLETED THIS SUMMER, THE 85-FOOT-TALL TEST STAND 4697 WILL USE HYDRAULIC CYLINDERS TO SUBJECT THE LIQUID OXYGEN TANK AND HARDWARE OF THE MASSIVE SLS CORE STAGE TO THE SAME LOADS AND STRESSES IT WILL ENDURE DURING A LAUNCH. THE STAND IS RISING IN MARSHALL'S WEST TEST AREA, WHERE WORK IS ALSO UNDERWAY ON THE 215-FOOT-TALL TOWERS OF TEST STAND 4693, WHICH WILL CONDUCT SIMILAR STRUCTURAL TESTS ON THE SLS CORE STAGE'S LIQUID HYDROGEN TANK. SLS, THE MOST POWERFUL ROCKET EVER BUILT, WILL CARRY ASTRONAUTS IN NASA'S ORION SPACECRAFT ON DEEP SPACE MISSIONS, INCLUDING THE JOURNEY TO MARS.
TMS delivered for A-3 Test Stand
2010-03-17
A state-of-the-art thrust measurement system for the A-3 Test Stand under construction at NASA's John C. Stennis Space Center was delivered March 17. Once completed, the A-3 stand (seen in background) will allow simulated high-altitude testing on the next generation of rocket engines for America's space program. Work on the stand began in 2007, with activation scheduled for 2012. The stand is the first major test structure to be built at Stennis since the 1960s. The recently delivered TMS was fabricated by Thrust Measurement Systems in Illinois. It is an advanced calibration system capable of measuring vertical and horizontal thrust loads with an accuracy within 0.15 percent at 225,000 pounds.
Credit BG. View west of Test Stand "D" complex, with ...
Credit BG. View west of Test Stand "D" complex, with ends of Dd (left) and Dy (right) station ejectors in view. Steam piping from accumulator (sphere) to ejectors is apparent; long horizontal loops in the pipes permit expansion and contraction without special joints. The small platform straddling the Dd ejector (near the accumulator) was originally constructed for a "Hyprox" steam generator which supplied steam to the Dd ejector before the accumulator and Dy stand were built. Note ejectors on top of interstage condenser in Test Stand "D" tower. Metal shed in far right background is for storage - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Data Mining for ISHM of Liquid Rocket Propulsion Status Update
NASA Technical Reports Server (NTRS)
Srivastava, Ashok; Schwabacher, Mark; Oza, Nijunj; Martin, Rodney; Watson, Richard; Matthews, Bryan
2006-01-01
This document consists of presentation slides that review the current status of data mining to support the work with the Integrated Systems Health Management (ISHM) for the systems associated with Liquid Rocket Propulsion. The aim of this project is to have test stand data from Rocketdyne to design algorithms that will aid in the early detection of impending failures during operation. These methods will be extended and improved for future platforms (i.e., CEV/CLV).
Allison V–1710 Engine on a Dynamotor Stand in the Engine Research Building
1943-03-21
The first research assignment specifically created for the National Advisory Committee for Aeronautics’ (NACA) new Aircraft Engine Research Laboratory was the integration of a supercharger into the Allison V–1710 engine. The military was relying on the liquid-cooled V–1710 to power several types of World War II fighter aircraft and wanted to improve the engine's speed and altitude performance. Superchargers forced additional airflow into the combustion chamber, which increased the engine’s performance resulting in greater altitudes and speeds. They also generated excess heat that affected the engine cylinders, oil, and fuel. In 1943 the military tasked the new Aircraft Engine Research Laboratory to integrate the supercharger, improve the cooling system, and remedy associated engine knock. Three Allison engines were provided to the laboratory’s research divisions. One group was tasked with improving the supercharger performance, another analyzed the effect of the increased heat on knock in the fuel, one was responsible for improving the cooling system, and another would install the new components on the engine with minimal drag penalties. The modified engines were installed on this 2000-horsepower dynamotor stand in a test cell within the Engine Research Building. The researchers could run the engine at different temperatures, fuel-air ratios, and speeds. When the modifications were complete, the improved V–1710 was flight tested on a P–63A Kingcobra loaned to the NACA for this project.
1963-02-04
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This photograph taken February 4, 1963, gives an impressive look at the Block House looking directly through the ever-growing four towers of the S-IC Test Stand.
SSC_NASA Tests Upgraded Water System for the B-2 Test Stand - Highlights with Music
2017-12-04
On December 4, Stennis Space Center conducted a water flow test on the B-2 test stand to check the water system’s upgraded modifications in preparation for Space Launch System’s Core Stage testing. During a test, rocket engine fire and exhaust is redirected out of the stand by a large flame trench. For this test, the water deluge system, with the capability of flowing 335,000 gallons of water per minute, directed more than 240,000 gallons of water per minute through more than 32,000 5/32-inch holes in the B2 stand flame deflector, cooling the exhaust and protecting the trench from damage.
NASA Tests Upgraded Water System for Stennis Space Center's B-2 Test Stand
2017-12-04
On December 4, Stennis Space Center conducted a water flow test on the B-2 test stand to check the water system’s upgraded modifications in preparation for Space Launch System’s Core Stage testing. During a test, rocket engine fire and exhaust is redirected out of the stand by a large flame trench. For this test, the water deluge system, with the capability of flowing 335,000 gallons of water per minute, directed more than 240,000 gallons of water per minute through more than 32,000 5/32-inch holes in the B2 stand flame deflector, cooling the exhaust and protecting the trench from damage.
1963-12-05
The test laboratory of the Marshall Space Flight Center (MSFC) tested the F-1 engine, the most powerful rocket engine ever fired at MSFC. The engine was tested on the newly modified Saturn IB Static Test Stand which had been used for three years to test the Saturn I eight-engine booster, S-I (first) stage. In 1961 the test stand was modified to permit static firing of the S-I/S-IB stage and the name of the stand was then changed to the S-IB Static Test Stand. Producing a combined thrust of 7,500,000 pounds, five F-1 engines powered the S-IC (first) stage of the Saturn V vehicle for the marned lunar mission.
1963-12-01
The test laboratory of the Marshall Space Flight Center (MSFC) tested the F-1 engine, the most powerful rocket engine ever fired at MSFC. The engine was tested on the newly modified Saturn IB static test stand that had been used for three years to test the Saturn I eight-engine booster, S-I (first) stage. In 1961, the test stand was modified to permit static firing of the S-I/S-IB stage and the name of the stand was then changed to the S-IB Static Test Stand. Producing a combined thrust of 7,500,000 pounds, five F-1 engines powered the S-IC (first) stage of the Saturn V vehicle for the marned lunar mission.
An electromechanical material testing system for in situ electron microscopy and applications.
Zhu, Yong; Espinosa, Horacio D
2005-10-11
We report the development of a material testing system for in situ electron microscopy (EM) mechanical testing of nanostructures. The testing system consists of an actuator and a load sensor fabricated by means of surface micromachining. This previously undescribed nanoscale material testing system makes possible continuous observation of the specimen deformation and failure with subnanometer resolution, while simultaneously measuring the applied load electronically with nanonewton resolution. This achievement was made possible by the integration of electromechanical and thermomechanical components based on microelectromechanical system technology. The system capabilities are demonstrated by the in situ EM testing of free-standing polysilicon films, metallic nanowires, and carbon nanotubes. In particular, a previously undescribed real-time instrumented in situ transmission EM observation of carbon nanotubes failure under tensile load is presented here.
Shake test results of the MDHC test stand in the 40- by 80-foot wind tunnel
NASA Technical Reports Server (NTRS)
Lau, Benton H.; Peterson, Randall
1994-01-01
A shake test was conducted to determine the modal properties of the MDHC (McDonnell Douglas Helicopter Company) test stand installed in the 40- by 80- Foot Wind Tunnel at Ames Research Center. The shake test was conducted for three wind-tunnel balance configurations with and without balance dampers, and with the snubber engagement to lock the balance frame. A hydraulic shaker was used to apply random excitation at the rotor hub in the longitudinal and lateral directions. A GenRad 2515 computer-aided test system computed the frequency response functions at the rotor hub and support struts. From these response functions, the modal properties, including the natural frequency, damping ratio, and mode shape were calculated. The critical modes with low damping ratios are identified as the test-stand second longitudinal mode for the dampers-off configuration, the test-stand yaw mode for the dampers-on configuration, and the test stand first longitudinal mode for the balance-frame locked configuration.
1976-01-06
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was originally designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage. Modifications to the S-IC Test Stand began in 1975 to accommodate space shuttle external tank testing. This photo is of the horizontal liquid oxygen tanks.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Horowitz, S. J.
1982-01-01
An iterative finite element integral technique is used to predict the sound field radiated from the JT15D turbofan inlet. The sound field is divided into two regions: the sound field within and near the inlet which is computed using the finite element method and the radiation field beyond the inlet which is calculated using an integral solution technique. The velocity potential formulation of the acoustic wave equation was employed in the program. For some single mode JT15D data, the theory and experiment are in good agreement for the far field radiation pattern as well as suppressor attenuation. Also, the computer program is used to simulate flight effects that cannot be performed on a ground static test stand.
9. Credit JPL. Photographic copy of drawing, engineering drawing showing ...
9. Credit JPL. Photographic copy of drawing, engineering drawing showing structure of Test Stand 'A' (Building 4202/E-3) and its relationship to the Monitor Building or blockhouse (Building 4203/E-4) when a reinforced concrete machinery room was added to the west side of Test Stand 'A' in 1955. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'Electrical Layout - Muroc, Test Stand & Refrigeration Equipment Room,' drawing no. E3/7-0, April 6, 1955. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA
2010-10-27
John C. Stennis Space Center employees complete installation of a chemical steam generator (CSG) unit at the site's E-2 Test Stand. On Oct. 24, 2010. The unit will undergo verification and validation testing on the E-2 stand before it is moved to the A-3 Test Stand under construction at Stennis. Each CSG unit includes three modules. Steam generated by the nine CSG units that will be installed on the A-3 stand will create a vacuum that allows Stennis operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet.
2010-10-27
The first of nine chemical steam generator (CSG) units that will be used on the A-3 Test Stand is prepared for installation Oct. 24, 2010, at John C. Stennis Space Center. The unit was installed at the E-2 Test Stand for verification and validation testing before it is moved to the A-3 stand. Steam generated by the nine CSG units that will be installed on the A-3 stand will create a vacuum that allows Stennis operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet.
2010-10-22
The first of nine chemical steam generator (CSG) units that will be used on the A-3 Test Stand arrived at John. C. Stennis Space Center on Oct. 22, 2010. The unit was installed at the E-2 Test Stand for verification and validation testing before it is moved to the A-3 stand. Steam generated by the nine CSG units that will be installed on the A-3 stand will create a vacuum that allows Stennis operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet.
11. "NIGHT SCENE OF TEST AREA WITH TEST STAND 1A ...
11. "NIGHT SCENE OF TEST AREA WITH TEST STAND 1-A IN FOREGROUND. LIGHTS OF MAIN BASE, EDWARDS AFB, IN THE BACKGROUND. EDWARDS AFB." Test Area 1-120. Looking west past Test Stand 1-A to Test Area 1-115 and Test Area 1-110. Photo no. "12,401 57; G-AFFTC 12 DEC 57; TS 1-A Aux #1". - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA
Kalubarme, Ramchandra S.; Jadhav, Harsharaj S.; Ngo, Duc Tung; Park, Ga-Eun; Fisher, John G.; Choi, Yun-Il; Ryu, Won-Hee; Park, Chan-Jin
2015-01-01
An effective integrated design with a free standing and carbon-free architecture of spinel MnCo2O4 oxide prepared using facile and cost effective hydrothermal method as the oxygen electrode for the Li–O2 battery, is introduced to avoid the parasitic reactions of carbon and binder with discharge products and reaction intermediates, respectively. The highly porous structure of the electrode allows the electrolyte and oxygen to diffuse effectively into the catalytically active sites and hence improve the cell performance. The amorphous Li2O2 will then precipitate and decompose on the surface of free-standing catalyst nanorods. Electrochemical examination demonstrates that the free-standing electrode without carbon support gives the highest specific capacity and the minimum capacity fading among the rechargeable Li–O2 batteries tested. The Li-O2 cell has demonstrated a cyclability of 119 cycles while maintaining a moderate specific capacity of 1000 mAh g−1. Furthermore, the synergistic effect of the fast kinetics of electron transport provided by the free-standing structure and the high electro-catalytic activity of the spinel oxide enables excellent performance of the oxygen electrode for Li-O2 cells. PMID:26292965
Diagnosing Postural Tachycardia Syndrome: Comparison of Tilt Test versus Standing Hemodynamics
Plash, Walker B; Diedrich, André; Biaggioni, Italo; Garland, Emily M; Paranjape, Sachin Y; Black, Bonnie K; Dupont, William D; Raj, Satish R
2012-01-01
Postural tachycardia syndrome (POTS) is characterized by increased heart rate (ΔHR) of ≥30 bpm with symptoms related to upright posture. Active stand (STAND) and passive head-up tilt (TILT) produce different physiological responses. We hypothesized these different responses would affect the ability of individuals to achieve the POTS HR increase criterion. Patients with POTS (n=15) and healthy controls (n=15) underwent 30 min of TILT and STAND testing. ΔHR values were analyzed at 5 min intervals. Receiver Operating Characteristics analysis was performed to determine optimal cut point values of ΔHR for both TILT and STAND. TILT produced larger ΔHR than STAND for all 5 min intervals from 5 min (38±3 bpm vs. 33±3 bpm; P=0.03) to 30 min (51±3 bpm vs. 38±3 bpm; P<0.001). Sensitivity (Sn) of the 30 bpm criterion was similar for all tests (TILT-10=93%, STAND-10=87%, TILT30=100%, and STAND30=93%). Specificity (Sp) of the 30 bpm criterion was less at both 10 and 30 min for TILT (TILT10=40%, TILT30=20%) than STAND (STAND10=67%, STAND30=53%). The optimal ΔHR to discriminate POTS at 10 min were 38 bpm (TILT) and 29 bpm (STAND), and at 30 min were 47 bpm (TILT) and 34 bpm (STAND). Orthostatic tachycardia was greater for TILT (with lower specificity for POTS diagnosis) than STAND at 10 and 30 min. The 30 bpm ΔHR criterion is not suitable for 30 min TILT. Diagnosis of POTS should consider orthostatic intolerance criteria and not be based solely on orthostatic tachycardia regardless of test used. PMID:22931296
Plash, Walker B; Diedrich, André; Biaggioni, Italo; Garland, Emily M; Paranjape, Sachin Y; Black, Bonnie K; Dupont, William D; Raj, Satish R
2013-01-01
POTS (postural tachycardia syndrome) is characterized by an increased heart rate (ΔHR) of ≥30 bpm (beats/min) with symptoms related to upright posture. Active stand (STAND) and passive head-up tilt (TILT) produce different physiological responses. We hypothesized these different responses would affect the ability of individuals to achieve the POTS HR increase criterion. Patients with POTS (n=15) and healthy controls (n=15) underwent 30 min of tilt and stand testing. ΔHR values were analysed at 5 min intervals. ROC (receiver operating characteristic) analysis was performed to determine optimal cut point values of ΔHR for both tilt and stand. Tilt produced larger ΔHR than stand for all 5 min intervals from 5 min (38±3 bpm compared with 33±3 bpm; P=0.03) to 30 min (51±3 bpm compared with 38±3 bpm; P<0.001). Sn (sensitivity) of the 30 bpm criterion was similar for all tests (TILT10=93%, STAND10=87%, TILT30=100%, and STAND30=93%). Sp (specificity) of the 30 bpm criterion was less at both 10 and 30 min for tilt (TILT10=40%, TILT30=20%) than stand (STAND10=67%, STAND30=53%). The optimal ΔHR to discriminate POTS at 10 min were 38 bpm (TILT) and 29 bpm (STAND), and at 30 min were 47 bpm (TILT) and 34 bpm (STAND). Orthostatic tachycardia was greater for tilt (with lower Sp for POTS diagnosis) than stand at 10 and 30 min. The 30 bpm ΔHR criterion is not suitable for 30 min tilt. Diagnosis of POTS should consider orthostatic intolerance criteria and not be based solely on orthostatic tachycardia regardless of test used.
1962-10-26
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo, taken October 26, 1962, depicts a view of the Block House tunnel opening.
1962-08-17
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo taken August 17, 1962 depicts a back side view of the Block House.
1962-11-15
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo, taken November 15, 1962, depicts a view of the Block House.
1962-01-23
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This photo, taken January 23, 1962, shows the excavation of the Block House site.
1962-06-13
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. Construction of the tunnel is depicted in this photo taken June 13, 1962.
1962-02-02
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This photo, taken February 2, 1962, shows the excavation of the Block House site.
49. HISTORIC GENERAL VIEW LOOKING NORTHWEST AT THE TEST STAND ...
49. HISTORIC GENERAL VIEW LOOKING NORTHWEST AT THE TEST STAND IN ITS CONFIGURATION FOR THE MERCURY-REDSTONE TESTING PROGRAM. NOTE THE MERCURY CAPSULE BEING ASSEMBLED IN THE FOREGROUND, ALSO NOTE THE LOAD CELL APPARATUS ON THE GROUND IN THE RIGHT OF THE PHOTOGRAPH. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Credit BG. View looking west down into Test Stand "D" ...
Credit BG. View looking west down into Test Stand "D" vertical vacuum cell with top removed. Access to cell is normally through large round port seen in view. Piping and cradling toward bottom of cell was last used in tests of Viking space probe engines - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Tisch, Ulrike; Haick, Hossam
2014-06-01
Profiling the body chemistry by means of volatile organic compounds (VOCs) in the breath opens exciting new avenues in medical diagnostics. Gas sensors could provide ideal platforms for realizing portable, hand-held breath testing devices in the near future. This review summarizes the latest developments and applications in the field of chemical sensors for diagnostic breath testing that were presented at the Breath Analysis Summit 2013 in Wallerfangen, Germany. Considerable progress has been made towards clinically applicable breath testing devices, especially by utilizing chemo-sensitive nanomaterials. Examples of several specialized breath testing applications are presented that are either based on stand-alone nanomaterial-based sensors being highly sensitive and specific to individual breath compounds over others, or on combinations of several highly specific sensors, or on experimental nanomaterial-based sensors arrays. Other interesting approaches include the adaption of a commercially available MOx-based sensor array to indirect breath testing applications, using a sample pre-concentration method, and the development of compact integrated GC-sensor systems. The recent trend towards device integration has led to the development of fully integrated prototypes of point-of-care devices. We describe and compare the performance of several prototypes that are based on different sensing technologies and evaluate their potential as low-cost and readily available next-generation medical devices.
Validation of Cardiovascular Parameters During NASA's Functional Task Test
NASA Technical Reports Server (NTRS)
Arzeno, N. M.; Stenger, M. B.; Bloomberg, J. J.; Platts, Steven H.
2008-01-01
Microgravity-induced physiological changes, including cardiovascular deconditioning may impair crewmembers f capabilities during exploration missions on the Moon and Mars. The Functional Task Test (FTT), which will be used to assess task performance in short and long duration astronauts, consists of 7 functional tests to evaluate crewmembers f ability to perform activities to be conducted in a partial-gravity environment or following an emergency landing on Earth. The Recovery from Fall/Stand Test (RFST) tests both the subject fs ability to get up from a prone position and orthostatic intolerance. PURPOSE: Crewmembers have never become presyncopal in the first 3 min of quiet stand, yet it is unknown whether 3 min is long enough to cause similar heart rate fluctuations to a 5-min stand. The purpose of this study was to validate and test the reliability of heart rate variability (HRV) analysis of a 3-min quiet stand. METHODS: To determine the validity of using 3 vs. 5-min of standing to assess HRV, 7 healthy subjects remained in a prone position for 2 min, stood up quickly and stood quietly for 6 min. ECG and continuous blood pressure data were recorded. Mean R-R interval and spectral HRV were measured in minutes 0-3 and 0-5 following the heart rate transient due to standing. Significant differences between the segments were determined by a paired t-test. To determine the reliability of the 3-min stand test, 13 healthy subjects completed 3 trials of the complete FTT on separate days, including the RFST with a 3-min stand test. Analysis of variance (ANOVA) was performed on the HRV measures. RESULTS: Spectral HRV measures reflecting autonomic activity were not different (p>0.05) during the 0-3 and 0-5 min segment (mean R-R interval: 738+/-74 ms, 728+/-69 ms; low frequency to high frequency ratio: 6.5+/-2.2, 7.7+/-2.7; normalized high frequency: 0.19+/-0.03, 0.18+/-0.04). The average coefficient of variation for mean R-R interval, systolic and diastolic blood pressures in the prone position and stand test were less than 8% for the test sessions. ANOVA results yielded a greater inter-subject variability (p.0.006) than inter-session variability (p>0.05) for HRV in the stand test. CONCLUSION: These studies show that a 3 minute stand delivers repeatable cardiovascular heart rate and BP data in the context of this larger series of tests such as the FTT.
NASA Technical Reports Server (NTRS)
Hodgson, Edward; Oehler, William; Dionne, Steve; Converse, David; Jennings, Mallory A.
2012-01-01
NASA s plans for Extravehicular Activity (EVA) portable life support systems for future exploration missions result in different design requirements than those which led to the combined fan / pump / separator in the current ISS Extravehicular Mobility Unit (EMU). To meet these new requirements, NASA contracted with Hamilton Sundstrand to provide two new prototype fans designed to meet anticipated future system requirements. Based on design trade studies, a high speed fan with mechanical bearing support of the rotating elements and a novel non-metallic barrier canned motor design was developed and implemented in the deliverable prototypes. The prototypes, which used two different bearing lubricants, have been extensively tested in both stand-alone and integrated system tests in NASA laboratories and proven to meet the anticipated performance requirements. Subsequently, they have been subjected to post test inspection and analysis in Hamilton Sundstrand laboratories to assess the effects of integrated operation and resultant exposure to vent loop contaminants. Results have confirmed expectations that one of the lubricants would be superior in this application and the prototype fans have been reassembled with new bearings with the superior lubricant. They have now been returned to the Johnson Space Center for further testing and maturation as part of NASA s PLSS 2.0 integrated test effort. This paper will discuss the test history of these units, resulting test data, the results of post test evaluation, and plans for further testing in the near future.
4. Credit BG. View looking northeast at west facade of ...
4. Credit BG. View looking northeast at west facade of Test Stand 'E' 4259/E-60, solid rocket motor test facility. Wooden barricades to north and south of 4259/E-60 protect personnel and other facilities from flying debris in case of inadvertent explosions. Test Stand 'E' is accessed from the tunnel system by the inclined tube shown at the center of the image adjacent to a ladder. Racks running to the north (having the appearance of a low fence) carry electrical cables to Test Stand 'G' (Building 4271/E-72). - Jet Propulsion Laboratory Edwards Facility, Test Stand E, Edwards Air Force Base, Boron, Kern County, CA
40 CFR 63.9350 - What reports must I submit and when?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands... reconstructed engine test cell/stand that is subject to permitting regulations pursuant to 40 CFR part 70 or 71... reconstructed engine test cell/stand during the reporting period. (3) A summary of the total duration of the...
40 CFR 63.9345 - What notifications must I submit and when?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands... apply to you by the dates specified. (b) If you own or operate a new or reconstructed test cell/stand... engine test cell/stand has no additional requirements and explain the basis of the exclusion (for example...
40 CFR 63.9345 - What notifications must I submit and when?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands... apply to you by the dates specified. (b) If you own or operate a new or reconstructed test cell/stand... engine test cell/stand has no additional requirements and explain the basis of the exclusion (for example...
40 CFR 63.9350 - What reports must I submit and when?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands... reconstructed engine test cell/stand that is subject to permitting regulations pursuant to 40 CFR part 70 or 71... reconstructed engine test cell/stand during the reporting period. (3) A summary of the total duration of the...
40 CFR 63.9350 - What reports must I submit and when?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands... reconstructed engine test cell/stand that is subject to permitting regulations pursuant to 40 CFR part 70 or 71... reconstructed engine test cell/stand during the reporting period. (3) A summary of the total duration of the...
49 CFR 655.5 - Stand-down waivers for drug testing.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 7 2010-10-01 2010-10-01 false Stand-down waivers for drug testing. 655.5 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PREVENTION OF ALCOHOL MISUSE AND PROHIBITED DRUG USE IN TRANSIT OPERATIONS General § 655.5 Stand-down waivers for drug testing. (a) An employer subject to this part may...
49 CFR 655.5 - Stand-down waivers for drug testing.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 7 2013-10-01 2013-10-01 false Stand-down waivers for drug testing. 655.5 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PREVENTION OF ALCOHOL MISUSE AND PROHIBITED DRUG USE IN TRANSIT OPERATIONS General § 655.5 Stand-down waivers for drug testing. (a) An employer subject to this part may...
49 CFR 655.5 - Stand-down waivers for drug testing.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 7 2014-10-01 2014-10-01 false Stand-down waivers for drug testing. 655.5 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PREVENTION OF ALCOHOL MISUSE AND PROHIBITED DRUG USE IN TRANSIT OPERATIONS General § 655.5 Stand-down waivers for drug testing. (a) An employer subject to this part may...
49 CFR 655.5 - Stand-down waivers for drug testing.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Stand-down waivers for drug testing. 655.5 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PREVENTION OF ALCOHOL MISUSE AND PROHIBITED DRUG USE IN TRANSIT OPERATIONS General § 655.5 Stand-down waivers for drug testing. (a) An employer subject to this part may...
49 CFR 655.5 - Stand-down waivers for drug testing.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false Stand-down waivers for drug testing. 655.5 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PREVENTION OF ALCOHOL MISUSE AND PROHIBITED DRUG USE IN TRANSIT OPERATIONS General § 655.5 Stand-down waivers for drug testing. (a) An employer subject to this part may...
40 CFR 63.9345 - What notifications must I submit and when?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands... apply to you by the dates specified. (b) If you own or operate a new or reconstructed test cell/stand... engine test cell/stand has no additional requirements and explain the basis of the exclusion (for example...
40 CFR 63.9350 - What reports must I submit and when?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands... reconstructed engine test cell/stand that is subject to permitting regulations pursuant to 40 CFR part 70 or 71... reconstructed engine test cell/stand during the reporting period. (3) A summary of the total duration of the...
40 CFR 63.9345 - What notifications must I submit and when?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands... apply to you by the dates specified. (b) If you own or operate a new or reconstructed test cell/stand... engine test cell/stand has no additional requirements and explain the basis of the exclusion (for example...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Standards for Hazardous Air Pollutants for Engine Test Cells/Stands General Compliane Requirements § 63.9306... at all times that an engine test cell/stand is operating, except during monitoring malfunctions... engine test cell/stand is operating. You must inspect the automatic shutdown system at least once every...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Standards for Hazardous Air Pollutants for Engine Test Cells/Stands General Compliane Requirements § 63.9306... at all times that an engine test cell/stand is operating, except during monitoring malfunctions... engine test cell/stand is operating. You must inspect the automatic shutdown system at least once every...
39. HISTORIC VIEW LOOKING WEST AT THE TEST STAND WITH ...
39. HISTORIC VIEW LOOKING WEST AT THE TEST STAND WITH THE COLD CALIBRATION TOWER CONSTRUCTED TO THE LEFT OF THE ROCKET AND AN ACCESS PLATFORM BUILT TO REACH THE TOP OF THE ROCKET MORE EASILY. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
1. BUILDING 8698, TEST STAND 13, WEST ELEVATION. NOTE TUNNEL ...
1. BUILDING 8698, TEST STAND 1-3, WEST ELEVATION. NOTE TUNNEL BETWEEN BLDG. 8668 AND TEST STAND 1-3. TEST AREA 1-120 IN THE MIDDLE DISTANCE, AND TEST AREA 1-125 ON THE HORIZON. Looking northeast from the roof of Building 8668, Instrumentation and Control Center. Note: Photograph CA-236-F-2 is an 8" x 10" enlargement from a 4" x 5" negative. This view is a photocopy of a recent resin coated print made from a print held at the Main Base History Office, Edwards Air Force Base, California. Photographer unknown. Date and file number unknown. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
1963-09-18
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. This photograph taken September 18, 1963 shows a spherical hydrogen tank being constructed next to the S-IC test stand.
NASA Technical Reports Server (NTRS)
Dmbacher, Daniel L.; Lyles, Garry M.; McConnaughey, Paul
2008-01-01
Over the past 50 years, the National Aeronautics and Space Administration (NASA) has delivered space transportation solutions for America's complex missions, ranging from scientific payloads that expand knowledge, such as the Hubble Space Telescope, to astronauts and lunar rovers destined for voyages to the Moon. Currently, the venerable Space Shuttle, which has been in service since 1981, provides the United States' (U.S.) capability for both crew and heavy cargo to low-Earth orbit to' construct the International Space Station, before the Shuttle is retired in 2010. In the next decade, NASA will replace this system with a duo of launch vehicles: the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle (Figure 1). The goals for this new system include increased safety and reliability coupled with lower operations costs that promote sustainable space exploration for decades to come. The Ares I will loft the Orion Crew Exploration Vehicle, while the heavy-lift Ares V will carry the Altair Lunar Lander and the equipment and supplies needed to construct a lunar outpost for a new generation of human and robotic space pioneers. This paper will provide details of the in-house systems engineering and vehicle integration work now being performed for the Ares I and planned for the Ares V. It will give an overview of the Ares I system-level test activities, such as the ground vibration testing that will be conducted in the Marshall Center's Dynamic Test Stand to verify the integrated vehicle stack's structural integrity and to validate computer modeling and simulation (Figure 2), as well as the main propulsion test article analysis to be conducted in the Static Test Stand. These activities also will help prove and refine mission concepts of operation, while supporting the spectrum of design and development work being performed by Marshall's Engineering Directorate, ranging from launch vehicles and lunar rovers to scientific spacecraft and associated experiments. Ultimately, fielding a robust space transportation solution that will carry international explorers and essential payloads will pave the way for a new century of scientific discovery beyond planet Earth.
Madison Katherine Akers; Michael Kane; Dehai Zhao; Richard F. Daniels; Robert O. Teskey
2015-01-01
Examining the role of foliage in stand development across a range of stand structures provides a more detailed understanding of the processes driving productivity and allows further development of process-based models for prediction. Productivity changes observed at the stand scale will be the integration of changes at the individual tree scale, but few studies have...
Comparison of Test Stand and Helicopter Oil Cooler Bearing Condition Indicators
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Branning, Jeremy; Wade, Damiel R.; Bolander, Nathan
2010-01-01
The focus of this paper was to compare the performance of HUMS condition indicators (CI) when detecting a bearing fault in a test stand or on a helicopter. This study compared data from two sources: first, CI data collected from accelerometers installed on two UH-60 Black Hawk helicopters when oil cooler bearing faults occurred, along with data from helicopters with no bearing faults; and second, CI data that was collected from ten cooler bearings, healthy and faulted, that were removed from fielded helicopters and installed in a test stand. A method using Receiver Operating Characteristic (ROC) curves to compare CI performance was demonstrated. Results indicated the bearing energy CI responded differently for the helicopter and the test stand. Future research is required if test stand data is to be used validate condition indicator performance on a helicopter.
Implementation of Wireless and Intelligent Sensor Technologies in the Propulsion Test Environment
NASA Technical Reports Server (NTRS)
Solano, Wanda M.; Junell, Justin C.; Shumard, Kenneth
2003-01-01
From the first Saturn V rocket booster (S-II-T) testing in 1966 and the routine Space Shuttle Main Engine (SSME) testing beginning in 1975, to more recent test programs such as the X-33 Aerospike Engine, the Integrated Powerhead Development (IPD) program, and the Hybrid Sounding Rocket (HYSR), Stennis Space Center (SSC) continues to be a premier location for conducting large-scale propulsion testing. Central to each test program is the capability for sensor systems to deliver reliable measurements and high quality data, while also providing a means to monitor the test stand area to the highest degree of safety and sustainability. As part of an on-going effort to enhance the testing capabilities of Stennis Space Center, the Test Technology and Development group is developing and applying a number of wireless and intelligent sensor technologies in ways that are new to the test existing test environment.
1993-09-01
Marshall Space Flight Center's F-1 Engine Test Stand is shown in this picture. Constructed in 1963, the test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability is provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. The foundation of the stand is keyed into the bedrock approximately 40 feet below grade.
NASA Technical Reports Server (NTRS)
2010-01-01
A structural steel beam to support the new thrust measurement system on the A-1 Test Stand at NASA's John C. Stennis Space Center is lifted to waiting employees for installation. The beam is part of the thrust takeout structure needed to support the new measurement system. Four such beams have been installed at the stand in preparation for installation of the system in upcoming weeks. Operators are preparing the stand for testing the next generation of rocket engines for the U.S. space program.
[Reliability of static posturography in elderly persons].
Bauer, C M; Gröger, I; Rupprecht, R; Tibesku, C O; Gassmann, K G
2010-08-01
Static posturography is used to quantify body sway. It is used to assess the balance of elderly persons who are prone to falls. There is still no general opinion concerning the reliability of force platform measurements. The aim of this study was to test the reliability of force platform parameters when measuring elderly persons. The reliability of 11 force platform parameters was tested measuring 30 elderly persons. The following parameters were calculated: mean speed of center of pressure displacement in mm/s, length of sway in mm, sway area in mm(2), amplitudes of center of pressure movement, the axis of oscillation in degrees and the person's angles of inclination in degrees. Three measurements were taken on the same day, with a resting period of 2 min. Four different test conditions were used: normal standing and narrow stand with eyes open and eyes closed, respectively. Reliability was determined by using intraclass correlation coefficients. Six parameters had excellent reliability with a correlation coefficient of >0.9: mean speed of center of pressure movement during narrow stand, area of sway during narrow stand, length of sway during normal and narrow stand, and the angle of inclination in the sagittal plane during normal stand and narrow stand. The condition "narrow stand eyes closed" proved to be the most reliable test position. Six parameters proved to have excellent reliability and are recommended to be used in further investigations. Narrow stand with eyes closed should be used as the test position. The tested protocol proved to be reliable. Whether these parameters can be used to predict falls in elderly persons remains to be investigated.
VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST ...
VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST TOWER VIEW INCLUDES STRUCTURAL DYNAMICS TEST STAND COLD CALIBRATION TEST STAND AND COMPONENTS TEST LAB. - Marshall Space Flight Center, East Test Area, Dodd Road, Huntsville, Madison County, AL
Interim Cryogenic Propulsion Stage (ICPS) for EM-1 Transport fro
2017-04-11
The Interim Cryogenic Propulsion Stage (ICPS) for NASA's Space Launch System (SLS) rocket has been moved on its transport stand by truck out of the United Launch Alliance (ULA) Horizontal Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The ICPS will be transported to the Delta Operations Center. The ICPS is the first integrated piece of flight hardware to arrive for the SLS. It is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission-1.
Interim Cryogenic Propulsion Stage (ICPS) for EM-1 Transport fro
2017-04-11
The Interim Cryogenic Propulsion Stage (ICPS) for NASA's Space Launch System (SLS) rocket is moved on its transport stand by truck out of the United Launch Alliance (ULA) Horizontal Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The ICPS will be transported to the Delta Operations Center. The ICPS is the first integrated piece of flight hardware to arrive for the SLS. It is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission-1.
Interim Cryogenic Propulsion Stage (ICPS) for EM-1 Transport fro
2017-04-11
The Interim Cryogenic Propulsion Stage (ICPS) for NASA's Space Launch System (SLS) rocket has been moved on its transport stand by truck out of the United Launch Alliance (ULA) Horizontal Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida, on its way to the Delta Operations Center. The ICPS is the first integrated piece of flight hardware to arrive for the SLS. It is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission-1.
Interim Cryogenic Propulsion Stage (ICPS) for EM-1 Transport fro
2017-04-11
The Interim Cryogenic Propulsion Stage (ICPS) for NASA's Space Launch System (SLS) rocket has been moved on its transport stand by truck out of the United Launch Alliance (ULA) Horizontal Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida, and is on its way to the Delta Operations Center. The ICPS is the first integrated piece of flight hardware to arrive for the SLS. It is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission 1.
26. "TEST STAND, STRUCTURAL, FOUNDATION PLAN." Specifications No. ENG043535572; Drawing ...
26. "TEST STAND, STRUCTURAL, FOUNDATION PLAN." Specifications No. ENG-04-353-55-72; Drawing No. 60-0912; sheet 25 of 148; file no. 1320/76. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
7. COMPLETE X15 VEHICLE TEST STAND AFTER AN ENGINE FIRE ...
7. COMPLETE X-15 VEHICLE TEST STAND AFTER AN ENGINE FIRE OR EXPLOSION. Wreckage of engine is still fixed in its clamp; X-15 vehicle lies on the ground detached from engine. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
A combination of clinical balance measures and FRAX® to improve identification of high-risk fallers.
Najafi, David A; Dahlberg, Leif E; Hansson, Eva Ekvall
2016-05-03
The FRAX® algorithm quantifies a patient's 10-year probability of a hip or major osteoporotic fracture without taking an individual's balance into account. Balance measures assess the functional ability of an individual and the FRAX® algorithm is a model that integrates the individual patients clinical risk factors [not balance] and bone mineral density. Thus, clinical balance measures capture aspects that the FRAX® algorithm does not, and vice versa. It is therefore possible that combining FRAX® and clinical balance measures can improve the identification of patients at high fall risk and thereby high fracture risk. Our study aim was to explore whether there is an association between clinical balance measures and fracture prediction obtained from FRAX®. A cross-sectional study design was used where post hoc was performed on a dataset of 82 participants (54 to 89 years of age, mean age 71.4, 77 female), with a fall-related wrist-fracture between 2008 and 2012. Balance was measured by tandem stance, standing one leg, walking in the figure of eight, walking heel to toe on a line, walking as fast as possible for 30 m and five times sit to stand balance measures [tandem stance and standing one leg measured first with open and then with closed eyes] and each one analyzed for bivariate relations with the 10-year probability values for hip and major osteoporotic fractures as calculated by FRAX® using Spearman's rank correlation test. Individuals with high FRAX® values had poor outcome in balance measures; however the significance level of the correlation differed between tests. Standing one leg eyes closed had strongest correlation to FRAX® (0.610 p = < 0.01) and Five times sit to stand was the only test that did not correlate with FRAX® (0.013). This study showed that there is an association between clinical balance measures and FRAX®. Hence, the use of clinical balance measures and FRAX® in combination, might improve the identification of individuals with high risk of falls and thereby following fractures. Results enable healthcare providers to optimize treatment and prevention of fall-related fractures. The study has been registered in Clinical Trials.gov, registration number NCT00988572 .
2. TEST AREA 1115, A VIEW TO THE SOUTHEAST FROM ...
2. TEST AREA 1-115, A VIEW TO THE SOUTHEAST FROM THE DECK OF TEST STAND 1-5. AT RIGHT IS BUILDING 8642, MACHINE SHOP FOR TEST STAND 1-5. AT LEFT IS BUILDING 8649, AND PART OF BUILDING 8647, TEST STAND 1-4, IS VISIBLE TO LEFT OF BLDG. 8649. (PANORAMA 1/2). - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA
Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure
Miquelajauregui, Yosune; Cumming, Steven G.; Gauthier, Sylvie
2016-01-01
It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity. PMID:26919456
Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure.
Miquelajauregui, Yosune; Cumming, Steven G; Gauthier, Sylvie
2016-01-01
It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity.
NASA Technical Reports Server (NTRS)
Hebert, Phillip W.
2008-01-01
NASA/SSC's Mission in Rocket Propulsion Testing Is to Acquire Test Performance Data for Verification, Validation and Qualification of Propulsion Systems Hardware: Accurate, Reliable, Comprehensive, and Timely. Data Acquisition in a Rocket Propulsion Test Environment Is Challenging: a) Severe Temporal Transient Dynamic Environments; b) Large Thermal Gradients; c) Vacuum to high pressure regimes. A-3 Test Stand Development is equally challenging with respect to accommodating vacuum environment, operation of a CSG system, and a large quantity of data system and control channels to determine proper engine performance as well as Test Stand operation. SSC is currently in the process of providing modernized DAS, Control Systems, Video, and network systems for the A-3 Test Stand to overcome these challenges.
1978-09-01
Workmen in the Dynamic Test Stand lowered the nose cone into place to complete stacking of the left side of the solid rocket booster (SRB) in the Dynamic Test Stand at the east test area of the Marshall Space Flight Center (MSFC). The SRB would be attached to the external tank (ET) and then the orbiter later for the Mated Vertical Ground Vibration Test (MVGVT), that resumed in October 1978. The stacking of a complete Shuttle in the Dynamic Test Stand allowed test engineers to perform ground vibration testing on the Shuttle in its liftoff configuration. The purpose of the MVGVT was to verify that the Space Shuttle would perform as predicted during launch. The platforms inside the Dynamic Test Stand were modified to accommodate two SRB'S to which the ET was attached.
7. MOTION PICTURE CAMERA STAND AT BUILDING 8768. Edwards ...
7. MOTION PICTURE CAMERA STAND AT BUILDING 8768. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
8. Credit JPL. Photographic copy of photograph, view west down ...
8. Credit JPL. Photographic copy of photograph, view west down from Test Stand 'A' tower across newly installed tunnel tube to corner of Building 4201/E-2, Test Stand 'A' Workshop (demolished in 1985). Note the wooden retaining structure erected in the foreground to retain earth once the tunnel trench is backfilled (this retaining wall remained in 1994). Note also the propellant control piping on the Test Stand 'A' platform in the immediate foreground. (JPL negative no. 384-1547-C, 6 February 1957) - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA
Lubetzky, Anat V; Price, Robert; McCoy, Sarah W
2016-07-01
Functional ankle instability is associated with decreased ankle muscle function. Compliant surfaces and eyes-closed training are commonly used for rehabilitation and prevention of ankle sprains. Brief Achilles tendon vibration is commonly used in the study of postural control. To test the level of activation of tibialis anterior (TIB) and fibularis longus (FIB), bilateral Achilles tendon vibration was applied for the middle 20 s in a series of 60-s trials, when 10 healthy young adults and 10 adults with history of repeated ankle sprains were standing bipedal: on floor, on memory foam, or on a Both Sides Up (BOSU) ball, with eyes open, and on floor and foam with eyes closed. Differences in Integrated surface electromyography (IEMG) of TIB and FIB were significant for both groups pre, during, and post vibration (Friedman Tests, p < 0.001 for all). In both groups, the highest IEMG for TIB was obtained during vibration when standing on foam with eyes closed, whereas the highest IEMG for FIB was obtained during vibration when standing on the BOSU. Bipedal stance on BOSU and brief Achilles tendon vibration may be a useful intervention when a session's goal is to facilitate lower leg muscles activation. Future research should explore training effects as well as the effect of FIB tendon vibration. Copyright © 2016 Elsevier Ltd. All rights reserved.
1997-06-04
This shot offers a bird's eye-view of a Fastrac II engine duration test at Marshall's Test Stand 116. The Fastrac II engine was designed as a part of the low cost X-34 Reusable Launch Vehicle (RLV). The purpose for these tests was to test the different types of metal alloys in the nozzle. Beside the engine were six additional nozzels which spray a continuous stream of water onto the test stand to reduce damage to the test stand and the engines. The X-34 program was cancelled in 2001.
Commercialization of an S-band standing-wave electron accelerator for industrial applications
NASA Astrophysics Data System (ADS)
Moon, Jin-Hyeok; Kwak, Gyeong-Il; Han, Jae-Ik; Lee, Gyu-Baek; Jeon, Seong-Hwan; Kim, Jae-Young; Hwang, Cheol-Bin; Lee, Gi-Yong; Kim, Young-Man; Park, Sung-Ju
2016-09-01
An electron accelerator system has been developed for use in industrial, as well as possible medical, applications. Based on our experiences achieved during prototype system development and various electron beam acceleration tests, we have built a stable and compact system for sales purposes. We have integrated a self-developed accelerating cavity, an E-gun pulse driver, a radio-frequency (RF) power system, a vacuum system, a cooling system, etc. into a frame with a size of 1800 × 1000 × 1500 mm3. The accelerating structure is a side-coupled standing-wave type operating in the π/2 mode (tuned to~3 GHz). The RF power is provided by using a magnetron driven by a solid-state modulator. The electron gun is a triode type with a dispenser cathode (diameter of 11 mm). The system is capable of delivering a maximum 900-W average electron beam power with tight focusing at the target. Until now, we have performed various electron beam tests and X-ray beam tests after having built the system, have completed the beam assessment for commercializations, and have been preparing full-fledged sales activity. This article reports on our system development processes and on some of our early test results for commercializations.
Investigation of postural hypotension due to static prolonged standing in female workers.
Kabe, Isamu; Tsuruoka, Hiroko; Tokujitani, Yoko; Endo, Yuichi; Furusawa, Mami; Takebayashi, Toru
2007-07-01
The "Just-in-Time system" improves productivity and efficiency through cost reduction while it makes workers work in a standing posture. The aim of this study was to investigate the prevalence of postural hypotension in females during prolonged standing work, and to discuss preventive methods. Twelve female static standing workers (mean age+/-standard deviation; 32+/-14 yr old), 6 male static standing workers (30+/-4 yr old), 10 female walking workers (27+/-7 yr old) and 9 female desk workers (31+/-5 yr old) in a certain telecommunications equipment manufacturing factory agreed to participate in this study. All participants received an interview with an occupational physician, and performed the standing up test before working and ambulatory blood pressure monitoring (ABPM) while working. Although the blood pressure of the standing up test did not differ among the groups, mean pulse rates on standing up significantly increased in every group. Hypotension rates in the female standing workers' group by ABPM were 9 persons of 12 participants (75%) for systolic blood pressure (SBP), and were 11 persons of 12 participants (92%) for diastolic blood pressure (DBP). There were significantly higher than those in the female desk workers' group, none of 9 participants (0%) for SBP and 2 of 9 participants (22%) for DBP. The hypotension rates both male standing and female walking worker groups did not differ. Because all 8 workers who were found to have postural hypotension by the standing up test had decreased SBP and/or DBP by ABPM, it is suggested that persons at high risk of postural hypotension during standing work could be screened by the standing up test. The mechanism of postural hypotension may be a decrease of venous return due to leg swelling, and neurocardiogenic or vasovagal response. Preventing the congestion of the lower limbs by walking, managing standing time and wearing elastic hose to keep the amount of the venous return could prevent postural hypotension during prolonged standing work.
AIM being prepared for integrated testing and flight simulation
2007-03-24
At North Vandenberg Air Force Base in California, the AIM spacecraft has been rotated to horizontal prior to its move to the clean room for testing. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
AIM being prepared for integrated testing and flight simulation
2007-03-24
At North Vandenberg Air Force Base in California, the AIM spacecraft is prepared for its move to the clean room for testing. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
AIM being prepared for integrated testing and flight simulation
2007-03-24
At North Vandenberg Air Force Base in California, the AIM spacecraft is moved into a clean room for testing. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
1. Photographic copy of engineering drawing showing elevations and sections ...
1. Photographic copy of engineering drawing showing elevations and sections of Test Stand 'E' (Building 4259/E-60). California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'Solid Propellant Test Stand E-60 - Elevations & Sections,' sheet E60/10, no date. - Jet Propulsion Laboratory Edwards Facility, Test Stand E, Edwards Air Force Base, Boron, Kern County, CA
4. Credit WCT. Photographic copy of photograph, test Stand 'B' ...
4. Credit WCT. Photographic copy of photograph, test Stand 'B' set up for shock tube and research on ship-to-ship fueling problems for the U.S. Coast Guard. (JPL negative no. 344-3743-A, October or November 1980) - Jet Propulsion Laboratory Edwards Facility, Test Stand B, Edwards Air Force Base, Boron, Kern County, CA
1962-03-31
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow tunnel which housed the cables for the controls. Again to the east, just south of the Block House, was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand’s 1900 ton water deflector at the rate of 320,000 gallons per minute. In this photo, taken March 20, 1962, construction of the Pump House area is well underway.
1963-08-12
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built to the east was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand’s 1900 ton flame deflector at the rate of 320,000 gallons per minute. In this photo, taken August 12, 1963, the S-IC stand has received some of its internal components. Directly in the center is the framework that houses the flame deflector. The F-1 test stand, designed and built to test a single F-1 engine, can be seen on the left side of the photo.
8. "TEST STAND, ARCHITECTURAL, FLOOR PLANS AND SCHEDULES." Specifications No. ...
8. "TEST STAND, ARCHITECTURAL, FLOOR PLANS AND SCHEDULES." Specifications No. ENG-04-353-55-72; Drawing No. 60-0912; sheet 22 of 148; file no. 1320/73. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST ...
VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST TOWER VIEW INCLUDES POWER PLANT TEST STAND AND SATURN V TEST STAND IN THE WEST TEST AREA (FAR BACKGROUND). - Marshall Space Flight Center, East Test Area, Dodd Road, Huntsville, Madison County, AL
2002-10-01
This is a ground level view of Test Stand 500 at the east test area of the Marshall Space Flight Center. Originally constructed in 1966, Test Stand 500 is a multipurpose, dual-position test facility. The stand was utilized to test liquid hydrogen/liquid oxygen turbopumps and combustion devices for the J-2 engine. One test position has a high superstructure with lines and tankage for testing liquid hydrogen and liquid oxygen turbopumps while the other position is adaptable to pressure-fed test programs such as turbo machinery bearings or seals. The facility was modified in 1980 to support Space Shuttle main engine (SSME) bearing testing.
OntoCAT -- simple ontology search and integration in Java, R and REST/JavaScript
2011-01-01
Background Ontologies have become an essential asset in the bioinformatics toolbox and a number of ontology access resources are now available, for example, the EBI Ontology Lookup Service (OLS) and the NCBO BioPortal. However, these resources differ substantially in mode, ease of access, and ontology content. This makes it relatively difficult to access each ontology source separately, map their contents to research data, and much of this effort is being replicated across different research groups. Results OntoCAT provides a seamless programming interface to query heterogeneous ontology resources including OLS and BioPortal, as well as user-specified local OWL and OBO files. Each resource is wrapped behind easy to learn Java, Bioconductor/R and REST web service commands enabling reuse and integration of ontology software efforts despite variation in technologies. It is also available as a stand-alone MOLGENIS database and a Google App Engine application. Conclusions OntoCAT provides a robust, configurable solution for accessing ontology terms specified locally and from remote services, is available as a stand-alone tool and has been tested thoroughly in the ArrayExpress, MOLGENIS, EFO and Gen2Phen phenotype use cases. Availability http://www.ontocat.org PMID:21619703
OntoCAT--simple ontology search and integration in Java, R and REST/JavaScript.
Adamusiak, Tomasz; Burdett, Tony; Kurbatova, Natalja; Joeri van der Velde, K; Abeygunawardena, Niran; Antonakaki, Despoina; Kapushesky, Misha; Parkinson, Helen; Swertz, Morris A
2011-05-29
Ontologies have become an essential asset in the bioinformatics toolbox and a number of ontology access resources are now available, for example, the EBI Ontology Lookup Service (OLS) and the NCBO BioPortal. However, these resources differ substantially in mode, ease of access, and ontology content. This makes it relatively difficult to access each ontology source separately, map their contents to research data, and much of this effort is being replicated across different research groups. OntoCAT provides a seamless programming interface to query heterogeneous ontology resources including OLS and BioPortal, as well as user-specified local OWL and OBO files. Each resource is wrapped behind easy to learn Java, Bioconductor/R and REST web service commands enabling reuse and integration of ontology software efforts despite variation in technologies. It is also available as a stand-alone MOLGENIS database and a Google App Engine application. OntoCAT provides a robust, configurable solution for accessing ontology terms specified locally and from remote services, is available as a stand-alone tool and has been tested thoroughly in the ArrayExpress, MOLGENIS, EFO and Gen2Phen phenotype use cases. http://www.ontocat.org.
Intelligent Sensors: Strategies for an Integrated Systems Approach
NASA Technical Reports Server (NTRS)
Chitikeshi, Sanjeevi; Mahajan, Ajay; Bandhil, Pavan; Utterbach, Lucas; Figueroa, Fernando
2005-01-01
This paper proposes the development of intelligent sensors as an integrated systems approach, i.e. one treats the sensors as a complete system with its own sensing hardware (the traditional sensor), A/D converters, processing and storage capabilities, software drivers, self-assessment algorithms, communication protocols and evolutionary methodologies that allow them to get better with time. Under a project being undertaken at the Stennis Space Center, an integrated framework is being developed for the intelligent monitoring of smart elements. These smart elements can be sensors, actuators or other devices. The immediate application is the monitoring of the rocket test stands, but the technology should be generally applicable to the Intelligent Systems Health Monitoring (ISHM) vision. This paper outlines progress made in the development of intelligent sensors by describing the work done till date on Physical Intelligent Sensors (PIS) and Virtual Intelligent Sensors (VIS).
1962-07-03
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo taken July 3, 1962 depicts the Block House with a portion of its concrete walls poured and exposed while many are still in the forms stage.
2. Photographic copy of engineering drawing showing mechanical systems in ...
2. Photographic copy of engineering drawing showing mechanical systems in plan and sections of Test Stand 'E,' including tunnel entrance. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'Bldg. E-60 Mechanical, Solid Propellant Test Stand,' sheet E60/13-4, June 20, 1961. - Jet Propulsion Laboratory Edwards Facility, Test Stand E, Edwards Air Force Base, Boron, Kern County, CA
2. View looking southeast at north and west facades of ...
2. View looking southeast at north and west facades of Test Stand 'D' workshop 4222/E-23, with Test Stand 'D' tower in background and tunnel access shed to the right. Equipment on 4222/E-23 roof is for air conditioning. - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Workshop, Edwards Air Force Base, Boron, Kern County, CA
1. View looking northeast at the west and south facades ...
1. View looking northeast at the west and south facades of Test Stand 'D' workshop 4222/E-23. Test Stand 'D' tower nitrogen tanks, television camera platform and access stairs are at right of image. Ductwork atop roof is for air conditioning system. - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Workshop, Edwards Air Force Base, Boron, Kern County, CA
1967-09-09
This photograph depicts the F-1 engine firing in the Marshall Space Flight Center’s F-1 Engine Static Test Stand. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. It is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, designed to assist in the development of the F-1 Engine. Capability is provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. The foundation of the stand is keyed into the bedrock approximately 40 feet below grade.
New Marshall Center Test Stand 4697 Construction Time-Lapse
2016-09-27
In less than two minutes watch structural Test Stand 4697 rise at NASA's Marshall Space Flight Center from the start of construction in May 2014 to the end of the stand's construction phase in September 2016. The stand will subject the 196,000-gallon liquid oxygen tank of the Space Launch System's massive core stage to the same stresses and pressures it must endure at launch and in flight. Now, Marshall teams are installing sophisticated fluid transfer and pressurization systems, hydraulic controls, electrical control and data systems, fiber optics cables and special test equipment to prepare for the arrival of the test tank in 2017. (NASA/MSFC/David Olive)
1962-10-08
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo, taken October 8, 1962, depicts a front view of the Block House nearing completion.
Arya, Preeti; Acharya, Vishal
2018-02-01
STAND P-loop NTPase is the common weapon used by plant and other organisms from all three kingdoms of life to defend themselves against pathogen invasion. The purpose of this study is to review comprehensively the latest finding of plant STAND P-loop NTPase related to their genomic distribution, evolution, and their mechanism of action. Earlier, the plant STAND P-loop NTPase known to be comprised of only NBS-LRRs/AP-ATPase/NB-ARC ATPase. However, recent finding suggests that genome of early green plants comprised of two types of STAND P-loop NTPases: (1) mammalian NACHT NTPases and (2) NBS-LRRs. Moreover, YchF (unconventional G protein and members of P-loop NTPase) subfamily has been reported to be exceptionally involved in biotic stress (in case of Oryza sativa), thereby a novel member of STAND P-loop NTPase in green plants. The lineage-specific expansion and genome duplication events are responsible for abundance of plant STAND P-loop NTPases; where "moderate tandem and low segmental duplication" trajectory followed in majority of plant species with few exception (equal contribution of tandem and segmental duplication). Since the past decades, systematic research is being investigated into NBS-LRR function supported the direct recognition of pathogen or pathogen effectors by the latest models proposed via 'integrated decoy' or 'sensor domains' model. Here, we integrate the recently published findings together with the previous literature on the genomic distribution, evolution, and distinct models proposed for functional molecular mechanism of plant STAND P-loop NTPases.
Photographic copy of plan of new Dy horizontal station and ...
Photographic copy of plan of new Dy horizontal station and accumulator additions to Test Stand "D," also showing existing Dd test station. JPL drawing by VTN Consolidated, Inc. Engineers, Architects, Planners, 2301 Campus Drive, Irvine, California 92664: "Jet Propulsion Laboratory-Edwards Test Station, Motive Steam Supply & Ejector Pumping System: Plan - Test Stand "D," sheet M-3 (JPL sheet number E24/33), 21 December 1976 - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
"Chair Stand Test" as Simple Tool for Sarcopenia Screening in Elderly Women.
Pinheiro, P A; Carneiro, J A O; Coqueiro, R S; Pereira, R; Fernandes, M H
2016-01-01
To investigate the association between sarcopenia and "chair stand test" performance, and evaluate this test as a screening tool for sarcopenia in community-dwelling elderly women. Cross-sectional Survey. 173 female individuals, aged ≥ 60 years and living in the urban area of the municipality of Lafaiete Coutinho, Bahia's inland, Brazil. The association between sarcopenia (defined by muscle mass, strength and/or performance loss) and performance in the "chair stand test" was tested by binary logistic regression technique. The ROC curve parameters were used to evaluate the diagnostic power of the test in sarcopenia screening. The significance level was set at 5 %. The model showed that the time spent for the "chair stand test" was positively associated (OR = 1.08; 95% CI = 1.01 - 1.16, p = 0.024) to sarcopenia, indicating that, for each 1 second increment in the test performance, the sarcopenia's probability increased by 8% in elderly women. The cut-off point that showed the best balance between sensitivity and specificity was 13 seconds. The performance of "chair stand test" showed predictive ability for sarcopenia, being an effective and simple screening tool for sarcopenia in elderly women. This test could be used for screening sarcopenic elderly women, allowing early interventions.
5. "TEST STAND 13, CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications ...
5. "TEST STAND 1-3, CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/17, Rev. A. Stamped: AS BUILT; NO CHANGES. Date of Revision A: 11/1/50. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
Photographic copy of photograph, aerial view looking south at Jet ...
Photographic copy of photograph, aerial view looking south at Jet Propulsion Laboratory, Edwards Test Station complex in 1959, shortly after completion of Test Stand 'D' construction and installation of underground tunnel system. Test Stand 'D' is in the foreground, Test Stand 'A' complex in the background. Roads are as yet unpaved. (JPL negative no. 384-1917-B, 28 May 1959) - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA
12. "TEST STAND; STRUCTURAL; DEFLECTOR PIT DETAILS, SHEET NO. 1." ...
12. "TEST STAND; STRUCTURAL; DEFLECTOR PIT DETAILS, SHEET NO. 1." Specifications No. ENG-04-353-55-72; Drawing No. 60-09-12; sheet 41 of 148; file no. 1320/92, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
11. "INSTRUMENTATION AND CONTROL SYSTEMS, EQUIPMENT LOCATION, TEST STAND TERMINAL ...
11. "INSTRUMENTATION AND CONTROL SYSTEMS, EQUIPMENT LOCATION, TEST STAND TERMINAL ROOM, PLANS AND SECTION." Specifications No. ENG-04-353-55-72; Drawing No. 60-0912; sheet 106 of 148; file no. 1321/57. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
27. "TEST STAND; STRUCTURAL; SIDEWALL, NORTH WALL AND SOUTH WALL ...
27. "TEST STAND; STRUCTURAL; SIDEWALL, NORTH WALL AND SOUTH WALL FRAMING ELEVATIONS." Specifications No. ENG-04353-55-72; Drawing No. 60-09-12; sheet 27 of 148; file no. 1320/78. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, Rev. B; date: 15 April 1957. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
9. "TEST STAND; STRUCTURAL; CABLE TUNNEL, PLAN, SECTIONS, DETAILS." Specifications ...
9. "TEST STAND; STRUCTURAL; CABLE TUNNEL, PLAN, SECTIONS, DETAILS." Specifications No. OC1-55-72-(Rev.); Drawing No. 60-09-12; sheet 43 of 148; file no. AF 1320/94, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
NASA Astrophysics Data System (ADS)
Zhang, C.; Ju, W.; Zhang, F.; Mao, D.; Wang, X.
2017-12-01
Forests play an irreplaceable role in the Earth's terrestrial carbon budget which retard the atmospheric CO2 buildup. Understanding the factors controlling forest carbon budget is critical for reducing uncertainties in projections of future climate. The relative importance of climate, atmospheric CO2 concentration, nitrogen deposition, and stand age changes on carbon budget, however, remains unclear for China's forests. In this study, we quantify individual contribution of these drivers to the trends of forest carbon budget in China from 1901 to 2012 by integrating national datasets, the updated Integrated Terrestrial Ecosystem Carbon Cycle (InTEC) model and factorial simulations. Results showed that the average carbon sink in China's forests from 1982 to 2012 was 186.9 Tg C yr-1 with 68% (127.6 Tg C yr-1) of the sink in living biomass because of the integrated effects of climate, atmospheric CO2 concentration, nitrogen deposition, and stand age factors. Compared with the simulation of all factors combined, the estimated carbon sink during 1901-2012 would be reduced by 41.8 Tg C yr-1 if climate change, atmospheric CO2 concentration and nitrogen deposition factors were omitted, and reduced by 25.0 Tg C yr-1 if stand age factor was omitted. In most decades, these factors increased forest carbon sinks with the largest of 101.3, 62.9, and 44.0 Tg C yr-1 from 2000 to 2012 contributed by stand age, CO2 concentration and nitrogen deposition, respectively. During 1901-2012, climate change, CO2 concentration, nitrogen deposition and stand age contributed -13.3, 21.4, 15.4 and 25.0 Tg C yr-1 to the averaged carbon sink of China's forests, respectively. Our study also showed diverse regional patterns of forest carbon budget related to the importance of driving factors. Stand age effect was the largest in most regions, but the effects of CO2 concentration and nitrogen deposition were dominant in southern China.
NASA Technical Reports Server (NTRS)
Pike, Cody J.
2015-01-01
A project within SwampWorks is building a test stand to hold regolith to study how dust is ejected when exposed to the hot exhaust plume of a rocket engine. The test stand needs to be analyzed, finalized, and fabrication drawings generated to move forward. Modifications of the test stand assembly were made with Creo 2 modeling software. Structural analysis calculations were developed by hand to confirm if the structure will hold the expected loads while optimizing support positions. These calculations when iterated through MatLab demonstrated the optimized position of the vertical support to be 98'' from the far end of the stand. All remaining deflections were shown to be under the 0.6'' requirement and internal stresses to meet NASA Ground Support Equipment (GSE) Safety Standards. Though at the time of writing, fabrication drawings have yet to be generated, but are expected shortly after.
Jorrakate, Chaiyong; Kongsuk, Jutaluk; Pongduang, Chiraprapa; Sadsee, Boontiwa; Chanthorn, Phatchari
2015-01-01
[Purpose] The aim of the present study was to investigate the effect of yoga training on static and dynamic standing balance in obese individuals with poor standing balance. [Subjects and Methods] Sixteen obese volunteers were randomly assigned into yoga and control groups. The yoga training program was performed for 45 minutes per day, 3 times per week, for 4 weeks. Static and dynamic balance were assessed in volunteers with one leg standing and functional reach tests. Outcome measures were tested before training and after a single week of training. Two-way repeated measure analysis of variance with Tukey’s honestly significant difference post hoc statistics was used to analyze the data. [Results] Obese individuals showed significantly increased static standing balance in the yoga training group, but there was no significant improvement of static or dynamic standing balance in the control group after 4 weeks. In the yoga group, significant increases in static standing balance was found after the 2nd, 3rd, and 4th weeks. Compared with the control group, static standing balance in the yoga group was significantly different after the 2nd week, and dynamic standing balance was significantly different after the 4th week. [Conclusion] Yoga training would be beneficial for improving standing balance in obese individuals with poor standing balance. PMID:25642038
Pociask, Fredrick D; DiZazzo-Miller, Rosanne; Goldberg, Allon; Adamo, Diane E
2016-01-01
Postural control requires the integration of sensorimotor information to maintain balance and to properly position and orient the body in response to external stimuli. Age-related declines in peripheral and central sensory and motor function contribute to postural instability and falls. This study investigated the contribution of head position, standing surface, and vision on postural sway in 26 community-dwelling older adults. Participants were asked to maintain a stable posture under conditions that varied standing surface, head position, and the availability of visual information. Significant main and interaction effects were found for all three factors. Findings from this study suggest that postural sway responses require the integration of available sources of sensory information. These results have important implications for fall risks in older adults and suggest that when standing with the head extended and eyes closed, older adults may place themselves at risk for postural disequilibrium and loss of balance. Copyright © 2016 by the American Occupational Therapy Association, Inc.
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Miller, Lee A.; Williams, Tom
2010-01-01
The Carbon Dioxide Reduction Assembly (CRA) designed and developed for the International Space Station (ISS) represents the state-of-the-art in carbon dioxide reduction (CDRe) technology. The CRA produces water and methane by reducing carbon dioxide with hydrogen via the Sabatier reaction. The water is recycled to the Oxygen Generation Assembly (OGA) and the methane is vented overboard resulting in a net loss of hydrogen. The proximity to earth and the relative ease of logistics resupply from earth allow for a semi-closed system on ISS. However, long-term manned space flight beyond low earth orbit (LEO) dictates a more thoroughly closed-loop system involving significantly higher recovery of hydrogen, and subsequent recovery of oxygen, to minimize costs associated with logistics resupply beyond LEO. The open-loop ISS system for CDRe can be made closed-loop for follow-on missions by further processing methane to recover hydrogen. For this purpose, a process technology has been developed that employs a microwave-generated plasma to reduce methane to hydrogen and acetylene resulting in 75% theoretical recovery of hydrogen. In 2009, a 1-man equivalent Plasma Pyrolysis Assembly (PPA) was delivered to the National Aeronautics and Space Administration (NASA) for technical evaluation. The PPA has been integrated with a Sabatier Development Unit (SDU). The integrated process configuration incorporates a sorbent bed to eliminate residual carbon dioxide and water vapor in the Sabatier methane product stream before it enters the PPA. This paper provides detailed information on the stand-alone and integrated performance of both the PPA and SDU. Additionally, the integrated test stand design and anticipated future work are discussed.
An Architecture for Intelligent Systems Based on Smart Sensors
NASA Technical Reports Server (NTRS)
Schmalzel, John; Figueroa, Fernando; Morris, Jon; Mandayam, Shreekanth; Polikar, Robi
2004-01-01
Based on requirements for a next-generation rocket test facility, elements of a prototype Intelligent Rocket Test Facility (IRTF) have been implemented. A key component is distributed smart sensor elements integrated using a knowledgeware environment. One of the specific goals is to imbue sensors with the intelligence needed to perform self diagnosis of health and to participate in a hierarchy of health determination at sensor, process, and system levels. The preliminary results provide the basis for future advanced development and validation using rocket test stand facilities at Stennis Space Center (SSC). We have identified issues important to further development of health-enabled networks, which should be of interest to others working with smart sensors and intelligent health management systems.
TARA MARSHALL AND MIKE NICHOLS AT TEST STAND 4693
2016-12-14
TARA MARSHALL, LEFT, A MARSHALL ENGINEER, TALKS ABOUT THE INSTALLATION OF A PRESSURIZATION CONTROL PANEL AT TEST STAND 4693 WITH MIKE NICHOLS, LEAD TEST ENGINEER FOR THE SPACE LAUNCH SYSTEM LIQUID HYDROGEN TANK STRUCTURAL TEST ARTICLE.
2002-10-01
This is a ground level view of Test Stand 300 at the east test area of the Marshall Space Flight Center. Test Stand 300 was constructed in 1964 as a gas generator and heat exchanger test facility to support the Saturn/Apollo Program. Deep-space simulation was provided by a 1960 modification that added a 20-ft thermal vacuum chamber and a 1981 modification that added a 12-ft vacuum chamber. The facility was again modified in 1989 when 3-ft and 15-ft diameter chambers were added to support Space Station and technology programs. This multiposition test stand is used to test a wide range of rocket engine components, systems, and subsystems. It has the capability to simulate launch thermal and pressure profiles. Test Stand 300 was designed for testing solid rocket booster (SRB) insulation panels and components, super-insulated tanks, external tank (ET) insulation panels and components, Space Shuttle components, solid rocket motor materials, and advanced solid rocket motor materials.
2003-09-03
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), stands inside the Japanese Experiment Module (JEM) that is undergoing a Multi-Element Integrated Test (MEIT) with the U.S. Node 2. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.
Redstone Test Stand Accepted Into National Register of Historical Places
NASA Technical Reports Server (NTRS)
1976-01-01
On October 02, 1976, Marshall Space Flight Center's (MSFC) Redstone test stand was received into the National Registry of Historical Places. Photographed in front of the Redstone test stand are Dr. William R. Lucas, MSFC Center Director from June 15, 1974 until July 3, 1986, as he is accepting a certificate of registration from Madison County Commission Chairman James Record, and Huntsville architect Harvie Jones.
Thinning from below in a 60-year-old western white pine stand
Marvin W. Foiles
1955-01-01
Thirty-year results from a test of thinning a 60-year-old western white pine stand indicate that thinning does not appreciably change total volume growth, but it does improve the quality of the final product by increasing diameter growth and improving stand composition. This test was established in 1919 on the Priest River Experimental Forest, Idaho, to test three...
1963-09-25
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built to the northeast of the stand was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand’s 1900 ton flame deflector at the rate of 320,000 gallons per minute. This photograph, taken September 25, 1963, depicts the construction progress of the Pump House and massive round water tanks on the right.
1963-09-05
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. In the center portion of this photograph, taken September 5, 1963, the spherical hydrogen storage tanks are being constructed. One of the massive tower legs of the S-IC test stand is visible to the far right.
Integration Test of the High Voltage Hall Accelerator System Components
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Dankanich, John
2013-01-01
NASA Glenn Research Center is developing a 4 kilowatt-class Hall propulsion system for implementation in NASA science missions. NASA science mission performance analysis was completed using the latest high voltage Hall accelerator (HiVHAc) and Aerojet-Rocketdyne's state-of-the-art BPT-4000 Hall thruster performance curves. Mission analysis results indicated that the HiVHAc thruster out performs the BPT-4000 thruster for all but one of the missions studied. Tests of the HiVHAc system major components were performed. Performance evaluation of the HiVHAc thruster at NASA Glenn's vacuum facility 5 indicated that thruster performance was lower than performance levels attained during tests in vacuum facility 12 due to the lower background pressures attained during vacuum facility 5 tests when compared to vacuum facility 12. Voltage-Current characterization of the HiVHAc thruster in vacuum facility 5 showed that the HiVHAc thruster can operate stably for a wide range of anode flow rates for discharge voltages between 250 and 600 volts. A Colorado Power Electronics enhanced brassboard power processing unit was tested in vacuum for 1,500 hours and the unit demonstrated discharge module efficiency of 96.3% at 3.9 kilowatts and 650 volts. Stand-alone open and closed loop tests of a VACCO TRL 6 xenon flow control module were also performed. An integrated test of the HiVHAc thruster, brassboard power processing unit, and xenon flow control module was performed and confirmed that integrated operation of the HiVHAc system major components. Future plans include continuing the maturation of the HiVHAc system major components and the performance of a single-string integration test.
Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments.
Norby, Richard J; De Kauwe, Martin G; Domingues, Tomas F; Duursma, Remko A; Ellsworth, David S; Goll, Daniel S; Lapola, David M; Luus, Kristina A; MacKenzie, A Rob; Medlyn, Belinda E; Pavlick, Ryan; Rammig, Anja; Smith, Benjamin; Thomas, Rick; Thonicke, Kirsten; Walker, Anthony P; Yang, Xiaojuan; Zaehle, Sönke
2016-01-01
The first generation of forest free-air CO2 enrichment (FACE) experiments has successfully provided deeper understanding about how forests respond to an increasing CO2 concentration in the atmosphere. Located in aggrading stands in the temperate zone, they have provided a strong foundation for testing critical assumptions in terrestrial biosphere models that are being used to project future interactions between forest productivity and the atmosphere, despite the limited inference space of these experiments with regards to the range of global ecosystems. Now, a new generation of FACE experiments in mature forests in different biomes and over a wide range of climate space and biodiversity will significantly expand the inference space. These new experiments are: EucFACE in a mature Eucalyptus stand on highly weathered soil in subtropical Australia; AmazonFACE in a highly diverse, primary rainforest in Brazil; BIFoR-FACE in a 150-yr-old deciduous woodland stand in central England; and SwedFACE proposed in a hemiboreal, Pinus sylvestris stand in Sweden. We now have a unique opportunity to initiate a model-data interaction as an integral part of experimental design and to address a set of cross-site science questions on topics including responses of mature forests; interactions with temperature, water stress, and phosphorus limitation; and the influence of biodiversity. © UT-Battelle, LLC New Phytologist © 2015 New Phytologist Trust.
Model-data synthesis for the next generation of forest free-air CO 2 enrichment (FACE) experiments
Norby, Richard J.; De Kauwe, Martin G.; Domingues, Tomas F.; ...
2015-08-06
The first generation of forest free-air CO 2 enrichment (FACE) experiments has successfully provided deeper understanding about how forests respond to an increasing CO 2 concentration in the atmosphere. Located in aggrading stands in the temperate zone, they have provided a strong foundation for testing critical assumptions in terrestrial biosphere models that are being used to project future interactions between forest productivity and the atmosphere, despite the limited inference space of these experiments with regards to the range of global ecosystems. Now, a new generation of FACE experiments in mature forests in different biomes and over a wide range ofmore » climate space and biodiversity will significantly expand the inference space. These new experiments are: EucFACE in a mature Eucalyptus stand on highly weathered soil in subtropical Australia; AmazonFACE in a highly diverse, primary rainforest in Brazil; BIFoR-FACE in a 150-yr-old deciduous woodland stand in central England; and SwedFACE proposed in a hemiboreal, Pinus sylvestris stand in Sweden. We now have a unique opportunity to initiate a model–data interaction as an integral part of experimental design and to address a set of cross-site science questions on topics including responses of mature forests; interactions with temperature, water stress, and phosphorus limitation; and the influence of biodiversity.« less
Model-data synthesis for the next generation of forest free-air CO 2 enrichment (FACE) experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norby, Richard J.; De Kauwe, Martin G.; Domingues, Tomas F.
The first generation of forest free-air CO 2 enrichment (FACE) experiments has successfully provided deeper understanding about how forests respond to an increasing CO 2 concentration in the atmosphere. Located in aggrading stands in the temperate zone, they have provided a strong foundation for testing critical assumptions in terrestrial biosphere models that are being used to project future interactions between forest productivity and the atmosphere, despite the limited inference space of these experiments with regards to the range of global ecosystems. Now, a new generation of FACE experiments in mature forests in different biomes and over a wide range ofmore » climate space and biodiversity will significantly expand the inference space. These new experiments are: EucFACE in a mature Eucalyptus stand on highly weathered soil in subtropical Australia; AmazonFACE in a highly diverse, primary rainforest in Brazil; BIFoR-FACE in a 150-yr-old deciduous woodland stand in central England; and SwedFACE proposed in a hemiboreal, Pinus sylvestris stand in Sweden. We now have a unique opportunity to initiate a model–data interaction as an integral part of experimental design and to address a set of cross-site science questions on topics including responses of mature forests; interactions with temperature, water stress, and phosphorus limitation; and the influence of biodiversity.« less
Samaan, Michael A; Schultz, Brooke; Popovic, Tijana; Souza, Richard B; Majumdar, Sharmila
2017-01-01
Background Performance tests are important to characterize patient disabilities and functional changes. The Osteoarthritis Research Society International and others recommend the 30-second Chair Stand Test and Stair Climb Test, among others, as core tests that capture two distinct types of disability during activities of daily living. However, these two tests are limited by current protocols of testing in clinics. There is a need for an alternative that allows remote testing of functional capabilities during these tests in the osteoarthritis patient population. Objective Objectives are to (1) develop an app for testing the functionality of an iPhone’s accelerometer and gravity sensor and (2) conduct a pilot study objectively evaluating the criterion validity and test-retest reliability of outcome variables obtained from these sensors during the 30-second Chair Stand Test and Stair Climb Test. Methods An iOS app was developed with data collection capabilities from the built-in iPhone accelerometer and gravity sensor tools and linked to Google Firebase. A total of 24 subjects performed the 30-second Chair Stand Test with an iPhone accelerometer collecting data and an external rater manually counting sit-to-stand repetitions. A total of 21 subjects performed the Stair Climb Test with an iPhone gravity sensor turned on and an external rater timing the duration of the test on a stopwatch. App data from Firebase were converted into graphical data and exported into MATLAB for data filtering. Multiple iterations of a data processing algorithm were used to increase robustness and accuracy. MATLAB-generated outcome variables were compared to the manually determined outcome variables of each test. Pearson’s correlation coefficients (PCCs), Bland-Altman plots, intraclass correlation coefficients (ICCs), standard errors of measurement, and repeatability coefficients were generated to evaluate criterion validity, agreement, and test-retest reliability of iPhone sensor data against gold-standard manual measurements. Results App accelerometer data during the 30-second Chair Stand Test (PCC=.890) and gravity sensor data during the Stair Climb Test (PCC=.865) were highly correlated to gold-standard manual measurements. Greater than 95% of values on Bland-Altman plots comparing the manual data to the app data fell within the 95% limits of agreement. Strong intraclass correlation was found for trials of the 30-second Chair Stand Test (ICC=.968) and Stair Climb Test (ICC=.902). Standard errors of measurement for both tests were found to be within acceptable thresholds for MATLAB. Repeatability coefficients for the 30-second Chair Stand Test and Stair Climb Test were 0.629 and 1.20, respectively. Conclusions App-based performance testing of the 30-second Chair Stand Test and Stair Climb Test is valid and reliable, suggesting its applicability to future, larger-scale studies in the osteoarthritis patient population. PMID:29079549
Validation of Cardiovascular Parameters during NASA's Functional Task Test
NASA Technical Reports Server (NTRS)
Arzeno, N. M.; Stenger, M. B.; Bloomberg, J. J.; Platts, S. H.
2009-01-01
Microgravity exposure causes physiological deconditioning and impairs crewmember task performance. The Functional Task Test (FTT) is designed to correlate these physiological changes to performance in a series of operationally-relevant tasks. One of these, the Recovery from Fall/Stand Test (RFST), tests both the ability to recover from a prone position and cardiovascular responses to orthostasis. PURPOSE: Three minutes were chosen for the duration of this test, yet it is unknown if this is long enough to induce cardiovascular responses similar to the operational 5 min stand test. The purpose of this study was to determine the validity and reliability of heart rate variability (HRV) analysis of a 3 min stand and to examine the effect of spaceflight on these measures. METHODS: To determine the validity of using 3 vs. 5 min of standing to assess HRV, ECG was collected from 7 healthy subjects who participated in a 6 min RFST. Mean R-R interval (RR) and spectral HRV were measured in minutes 0-3 and 0-5 following the heart rate transient due to standing. Significant differences between the segments were determined by a paired t-test. To determine the reliability of the 3-min stand test, 13 healthy subjects completed 3 trials of the FTT on separate days, including the RFST with a 3 min stand. Analysis of variance (ANOVA) was performed on the HRV measures. One crewmember completed the FTT before a 14-day mission, on landing day (R+0) and one (R+1) day after returning to Earth. RESULTS VALIDITY: HRV measures reflecting autonomic activity were not significantly different during the 0-3 and 0-5 min segments. RELIABILITY: The average coefficient of variation for RR, systolic (SBP) and diastolic blood pressures during the RFST were less than 8% for the 3 sessions. ANOVA results yielded a greater inter-subject variability (p<0.006) than inter-session variability (p>0.05) for HRV in the RFST. SPACEFLIGHT: Lower RR and higher SBP were observed on R+0 in rest and stand. On R+1, both RR and SBP trended towards preflight rest and stand values. Postflight HRV showed higher LF/HF for rest and stand and lower HFnu during rest. CONCLUSION: These studies show that a 3 min stand delivers repeatable HRV data in the context of this larger series of FTT tests. Spaceflight-induced changes in blood pressure, RR and autonomic function (HRV) are evident from the RFST.
1961-08-14
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress of the test stand as of August 14, 1961.
1961-08-18
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress of the test stand as of August 18, 1961.
1963-04-17
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph taken April 17, 1963, gives a look at the four tower legs of the S-IC test stand at their completed height.
1961-07-21
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken July 21, 1961, a worker can be seen inside the test stand work area with a jack hammer.
1963-11-20
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the progress of the S-IC test stand as of November 20, 1963.
1963-06-24
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken June 24, 1963, the four tower legs of the test stand can be seen at their maximum height.
1961-07-31
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken July 31, 1961, work is continued in the clearing of the test stand site.
1963-02-25
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph taken February 25, 1963, gives a close up look at two of the ever-growing four towers of the S-IC Test Stand.
1961-08-11
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress of the test stand as of August 11, 1961.
1963-05-07
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph, taken from ground level on May 7, 1963, gives a close look at one of the four towers legs of the S-IC test stand nearing its completed height.
1963-05-07
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph, taken May 7, 1963, gives a close look at the four concrete tower legs of the S-IC test stand at their completed height.
1961-07-21
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken July 21, 1961, workers can be seen inside the test stand work area clearing the site.
1963-10-10
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the progress of the S-IC test stand as of October 10, 1963. Kerosene storage tanks can be seen to the left.
1961-09-07
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress of the S-IC test stand as of September 7, 1961.
Construction Progress of the S-IC Test Stand-Steel Reinforcements
NASA Technical Reports Server (NTRS)
1961-01-01
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken September 15, 1961, shows the installation of the reinforcing steel prior to the pouring of the concrete foundation walls.
1961-07-10
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken July 10, 1961, actual ground breaking has occurred for the S-IC test stand site.
1961-06-30
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this early construction photo, taken June 30, 1961, workers are involved in the survey and site preparation for the test stand.
1989-06-03
The Marshall Space Flight Center (MSFC) engineers test fired a 26-foot long, 100,000-pound-thrust solid rocket motor for 30 seconds at the MSFC east test area, the first test firing of the Modified NASA Motor (M-NASA Motor). The M-NASA Motor was fired in a newly constructed stand. The motor is 48-inches in diameter and was loaded with two propellant cartridges weighing a total of approximately 12,000 pounds. The purpose of the test was to learn more about solid rocket motor insulation and nozzle materials and to provide young engineers additional hands-on expertise in solid rocket motor technology. The test is a part of NASA's Solid Propulsion Integrity Program, that is to provide NASA engineers with the techniques, engineering tools, and computer programs to be able to better design, build, and verify solid rocket motors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, B.; Urazuka, Y.; Chen, H.
2014-05-07
We report on numerical analysis on self-oscillation of standing spin wave excited in a nanostructured active ring resonator, consists of a ferromagnetic nanowire with perpendicular anisotropy. The confined resonant modes are along the nanowire length. A positive feedback with proportional-integral-derivative gain control was adopted in the active ring. Stable excitation of the 1st order standing spin wave has been demonstrated with micromagnetic simulations, taking into account the thermal effect with a random field model. The stationary standing spin wave with a pre-determined set variable of precession amplitude was attained within 20 ns by optimizing the proportional-integral-derivative gain control parameters. The resultmore » indicates that a monochromatic oscillation frequency f{sub osc} is extracted from the initial thermal fluctuation state and selectively amplified with the positive feedback loop. The obtained f{sub osc} value of 5.22 GHz practically agrees with the theoretical prediction from dispersion relation of the magneto static forward volume wave. It was also confirmed that the f{sub osc} change due to the temperature rise can be compensated with an external perpendicular bias field H{sub b}. The observed quick compensation time with an order of nano second suggests the fast operation speed in the practical device application.« less
The SLS Stages Intertank Structural Test Assembly (STA) arrives at MSFC
2018-03-08
The SLS Stages Intertank Structural Test Assembly (STA) is rolling off the NASA Pegasus Barge at the MSFC Dock enroute to the MSFC 4619 Load Test Annex test facility for qualification testing via MSFC West Test Area. STA approaches Test Stand 4693, SLS LH2 test Stand, on way to Bldg. 4619
Van Dorst, Bieke; Brivio, Monica; Van Der Sar, Elfried; Blom, Marko; Reuvekamp, Simon; Tanzi, Simone; Groenhuis, Roelf; Adojutelegan, Adewole; Lous, Erik-Jan; Frederix, Filip; Stuyver, Lieven J
2016-04-15
In this manuscript, a microfluidic detection module, which allows a sensitive readout of biological assays in point-of-care (POC) tests, is presented. The proposed detection module consists of a microfluidic flow cell with an integrated Complementary Metal-Oxide-Semiconductor (CMOS)-based single photon counting optical sensor. Due to the integrated sensor-based readout, the detection module could be implemented as the core technology in stand-alone POC tests, for use in mobile or rural settings. The performance of the detection module was demonstrated in three assays: a peptide, a protein and an antibody detection assay. The antibody detection assay with readout in the detection module proved to be 7-fold more sensitive that the traditional colorimetric plate-based ELISA. The protein and peptide assay showed a lower limit of detection (LLOD) of 200 fM and 460 fM respectively. Results demonstrate that the sensitivity of the immunoassays is comparable with lab-based immunoassays and at least equal or better than current mainstream POC devices. This sensitive readout holds the potential to develop POC tests, which are able to detect low concentrations of biomarkers. This will broaden the diagnostic capabilities at the clinician's office and at patient's home, where currently only the less sensitive lateral flow and dipstick POC tests are implemented. Copyright © 2015 Elsevier B.V. All rights reserved.
GALACSI integration and functional tests
NASA Astrophysics Data System (ADS)
La Penna, P.; Ströbele, S.; Aller Carpentier, E.; Argomedo, J.; Arsenault, R.; Conzelmann, R. D.; Delabre, B.; Donaldson, R.; Duchateau, M.; Fedrigo, E.; Gago, F.; Hubin, N.; Quentin, J.; Jolley, P.; Kiekebusch, M.; Kirchbauer, J. P.; Klein, B.; Kolb, J.; Kuntschner, H.; Le Louarn, M.; Lizon, J. L.; Madec, P.-.; Manescau, A.; Mehrgan, L.; Sedghi, B.; Suarez Valles, M.; Soenke, C.; Tordo, S.; Vernet, J.; Zampieri, S.
2014-07-01
GALACSI is the Adaptive Optics (AO) modules of the ESO Adaptive Optics Facility (AOF) that will correct the wavefront delivered to the MUSE Integral Field Spectrograph. It will sense with four 40×40 subapertures Shack-Hartmann wavefront sensors the AOF 4 Laser Guide Stars (LGS), acting on the 1170 voice-coils actuators of the Deformable Secondary Mirror (DSM). GALACSI has two operating modes: in Wide Field Mode (WFM), with the four LGS at 64" off axis, the collected energy in a 0.2"×0.2" pixel will be enhanced by a factor 2 at 750 nm over a Field of View (FoV) of 1'×1' using the Ground Layer AO (GLAO) technique. The other mode, the Narrow Field Mode (NFM), provides an enhanced wavefront correction (Strehl Ratio (SR) of 5% (goal 10%) at 650 nm) but in a smaller FoV (7.5"×7.5"), using Laser Tomography AO (LTAO), with the 4 LGS located closer, at 10" off axis. Before being shipped to Paranal, GALACSI will be first integrated and fully tested in stand-alone, and then moved to a dedicated AOF facility to be tested with the DSM in Europe. At present the module is fully assembled, its main functionalities have been implemented and verified, and AO system tests with the DSM are starting. We present here the main system features and the results of the internal functional tests of GALACSI.
ICPS Removal from Shipping Container
2017-03-09
Inside the United Launch Alliance (ULA) Horizontal Integration Facility at Cape Canaveral Air Force Station in Florida, a crane lifts the shipping container cover away from the Interim Cryogenic Propulsion Stage (ICPS) for NASA's Space Launch System rocket, followed by the ICPS bring removed and placed on a work stand for processing. The ICPS is the first integrated piece of flight hardware to arrive for the SLS. The ICPS arrived from the ULA facility in Decatur, Alabama. The ICPS is the in-space stage that is located toward the top of the rocket, between the Launch Vehicle Stage Adapter and the Orion Spacecraft Adapter. It will provide some of the in-space propulsion during Orion's first flight test atop the SLS on Exploration Mission 1.
10. ENGINE TEST CELL BUILDING INTERIOR. CELL 4, MOUNTING STAND. ...
10. ENGINE TEST CELL BUILDING INTERIOR. CELL 4, MOUNTING STAND. LOOKING NORTHWEST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA
1967-08-01
This photograph is a view of the Saturn V S-IC-5 (first) flight stage static test firing at the S-IC-B1 test stand at the Mississippi Test Facility (MTF), Bay St. Louis, Mississippi. Begirning operations in 1966, the MTF has two test stands, a dual-position structure for running the S-IC stage at full throttle, and two separate stands for the S-II (Saturn V third) stage. It became the focus of the static test firing program. The completed S-IC stage was shipped from Michoud Assembly Facility (MAF) to the MTF. The stage was then installed into the 407-foot-high test stand for the static firing tests before shipment to the Kennedy Space Center for final assembly of the Saturn V vehicle. The MTF was renamed to the National Space Technology Laboratory (NSTL) in 1974 and later to the Stennis Space Center (SSC) in May 1988.
Ares Launch Vehicles Development Awakens Historic Test Stands at NASA's Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.; Burt, Richard K.
2008-01-01
This paper chronicles the rebirth of two national rocket testing assets located at NASA's Marshall Space Flight Center: the Dynamic Test Stand (also known as the Ground Vibration Test Stand) and the Static Test Stand (also known as the Main Propulsion Test Stand). It will touch on the historical significance of these special facilities, while introducing the requirements driving modifications for testing a new generation space transportation system, which is set to come on line after the Space Shuttle is retired in 2010. In many ways, America's journey to explore the Moon begins at the Marshall Center, which is developing the Ares I crew launch vehicle and the Ares V cargo launch vehicle, along with managing the Lunar Precursor Robotic Program and leading the Lunar Lander descent stage work, among other Constellation Program assignments. An important component of this work is housed in Marshall's Engineering Directorate, which manages more than 40 facilities capable of a full spectrum of rocket and space transportation technology testing - from small components to full-up engine systems. The engineers and technicians who operate these test facilities have more than a thousand years of combined experience in this highly specialized field. Marshall has one of the few government test groups in the United States with responsibility for the overall performance of a test program from conception to completion. The Test Laboratory has facilities dating back to the early 1960s, when the test stands needed for the Apollo Program and other scientific endeavors were commissioned and built along the Marshall Center's southern boundary, with logistics access by air, railroad, and barge or boat on the Tennessee River. NASA and its industry partners are designing and developing a new human-rated system based on the requirements for safe, reliable, and cost-effective transportation solutions. Given below are summaries of the Dynamic Test Stand and the Static Test Stand capabilities, along with an introduction to the new missions that these sleeping giants will be fulfilling as NASA readies the Ares I for service in the 2015 timeframe, and plans the development work for fielding the Ares V late next decade (fig. 1). Validating modern computer design models and techniques requires the sorts of data that can only be generated by these one-of-a-kind facilities.
4. "TEST STAND NO. 13, CONCRETE STRUCTURAL PLAN AND ELEVATION." ...
4. "TEST STAND NO. 1-3, CONCRETE STRUCTURAL PLAN AND ELEVATION." Specifications No. OC11-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/12 REV. E. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04-353 Eng. 177, Rev. E; Date: 17 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
6. "TEST STAND NO. 13, RETAINING WALLS & APRON, SECTIONS ...
6. "TEST STAND NO. 1-3, RETAINING WALLS & APRON, SECTIONS & ELEVATIONS." Specifications No. OC11-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/20, Rev. B. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04-353 Eng. 177, Rev. B; Date: 26 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
11. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...
11. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/15, Rev. E. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. E; Date: 21 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
13. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...
13. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/18, Rev. D. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. D, no change; Date: 18 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
15. "TEST STANDS NOS. 11, 13, & 15; STRUCTURAL STEEL; ...
15. "TEST STANDS NOS. 1-1, 1-3, & 1-5; STRUCTURAL STEEL; PLAN & DETAILS." Specifications No. ENG 04-353-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/34, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. A, no change; Date: 21 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
9. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...
9. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. ENG 04-35350-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/13. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, no change; Date: 17 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
10. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...
10. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/14, Rev. B. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. B; Date: 21 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
16. "TEST STANDS NOS. 11, 13, & 15; STRUCTURAL STEEL; ...
16. "TEST STANDS NOS. 1-1, 1-3, & 1-5; STRUCTURAL STEEL; ELEVATIONS AND SECTIONS." Specifications No. ENG 04353-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/35, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04-353 Eng. 177, Rev. A; Date: 29 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
12. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...
12. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/16, Rev. E. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. E; Date: 26 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
14. "TEST STANDS NOS. 11, 13, & 15; MISCELLANEOUS DETAILS." ...
14. "TEST STANDS NOS. 1-1, 1-3, & 1-5; MISCELLANEOUS DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/22, Rev. D. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04-353 Eng. 177, Rev. D, no change; Date: 17 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
40. HISTORIC VIEW LOOKING WEST AT THE TEST STAND. NOTE ...
40. HISTORIC VIEW LOOKING WEST AT THE TEST STAND. NOTE THE LOAD CELL APPARATUS LOCATED ABOVE THE ROCKET. THE SPACE BETWEEN THE BOTTOM OF THE LOAD CELL APPARATUS AND THE TOP OF THE ROCKET IS THE DIFFERENCE IN SIZE BETWEEN THE REDSTONE ROCKET AND ITS DECEDENT THE JUPITER C ROCKET. THE GAP IS FILLED WITH A SPACER WHEN THEY TEST A REDSTONE ROCKET. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Small Radioisotope Power System at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Dugala, Gina M.; Fraeman, Martin; Frankford, David P.; Duven, Dennis; Shamkovich, Andrei; Ambrose, Hollis; Meer, David W.
2012-01-01
In April 2009, NASA Glenn Research Center (GRC) formed an integrated product team (IPT) to develop a Small Radioisotope Power System (SRPS) utilizing a single Advanced Stirling Convertor (ASC) with passive balancer for possible use by the International Lunar Network (ILN) program. The ILN program is studying the feasibility of implementing a multiple node seismometer network to investigate the internal lunar structure. A single ASC produces approximately 80 W(sub e) and could potentially supply sufficient power for that application. The IPT consists of Sunpower, Inc., to provide the single ASC with balancer, The Johns Hopkins University Applied Physics Laboratory (JHU/APL) to design an engineering model Single Convertor Controller (SCC) for an ASC with balancer, and NASA GRC to provide technical support to these tasks and to develop a simulated lunar lander test stand. A controller maintains stable operation of an ASC. It regulates the alternating current produced by the linear alternator of the convertor, provides a specified output voltage, and maintains operation at a steady piston amplitude and hot end temperature. JHU/APL also designed an ASC dynamic engine/alternator simulator to aid in the testing and troubleshooting of the SCC. This paper describes the requirements, design, and development of the SCC, including some of the key challenges and the solutions chosen to overcome those issues. In addition, it describes the plans to analyze the effectiveness of a passive balancer to minimize vibration from the ASC, characterize the effect of ASC vibration on a lunar lander, characterize the performance of the SCC, and integrate the single ASC, SCC, and lunar lander test stand to characterize performance of the overall system.
Tan, John F; Masani, Kei; Vette, Albert H; Zariffa, José; Robinson, Mark; Lynch, Cheryl; Popovic, Milos R
2014-01-01
The restoration of arm-free standing in individuals with paraplegia can be facilitated via functional electrical stimulation (FES). In developing adequate control strategies for FES systems, it remains challenging to test the performance of a particular control scheme on human subjects. In this study, we propose a testing platform for developing effective control strategies for a closed-loop FES system for standing. The Inverted Pendulum Standing Apparatus (IPSA) is a mechanical inverted pendulum, whose angular position is determined by the subject's ankle joint angle as controlled by the FES system while having the subject's body fixed in a standing frame. This approach provides a setup that is safe, prevents falling, and enables a research and design team to rigorously test various closed-loop controlled FES systems applied to the ankle joints. To demonstrate the feasibility of using the IPSA, we conducted a case series that employed the device for studying FES closed-loop controllers for regulating ankle joint kinematics during standing. The utilized FES system stimulated, in able-bodied volunteers, the plantarflexors as they prevent toppling during standing. Four different conditions were compared, and we were able to show unique performance of each condition using the IPSA. We concluded that the IPSA is a useful tool for developing and testing closed-loop controlled FES systems for regulating ankle joint position during standing.
Tan, John F.; Masani, Kei; Vette, Albert H.; Zariffa, José; Robinson, Mark; Lynch, Cheryl; Popovic, Milos R.
2014-01-01
The restoration of arm-free standing in individuals with paraplegia can be facilitated via functional electrical stimulation (FES). In developing adequate control strategies for FES systems, it remains challenging to test the performance of a particular control scheme on human subjects. In this study, we propose a testing platform for developing effective control strategies for a closed-loop FES system for standing. The Inverted Pendulum Standing Apparatus (IPSA) is a mechanical inverted pendulum, whose angular position is determined by the subject's ankle joint angle as controlled by the FES system while having the subject's body fixed in a standing frame. This approach provides a setup that is safe, prevents falling, and enables a research and design team to rigorously test various closed-loop controlled FES systems applied to the ankle joints. To demonstrate the feasibility of using the IPSA, we conducted a case series that employed the device for studying FES closed-loop controllers for regulating ankle joint kinematics during standing. The utilized FES system stimulated, in able-bodied volunteers, the plantarflexors as they prevent toppling during standing. Four different conditions were compared, and we were able to show unique performance of each condition using the IPSA. We concluded that the IPSA is a useful tool for developing and testing closed-loop controlled FES systems for regulating ankle joint position during standing. PMID:27350992
2011-09-15
E-2 Test Stand team members at Stennis Space Center conducted their first series of tests on a three-module chemical steam generator unit Sept. 15. All three modules successfully fired during the tests. The chemical steam generator is a critical component for the A-3 Test Stand under construction at Stennis.
GENERAL VIEW LOOKING SOUTH AT THE SATURN I STATIC TEST ...
GENERAL VIEW LOOKING SOUTH AT THE SATURN I STATIC TEST STAND. NOTE THE FIRST STAGE OF THE SATURN I ROCKET ON DISPLAY TO THE LEFT OF THE TEST STAND. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
1963-01-14
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, depicts the progress of the stand as of January 14, 1963, with its four towers prominently rising.
2011-08-19
The A-3 Test Stand under construction at Stennis Space Center is set for completion and activation in 2013. It will allow operators to conduct simulated high-altitude testing on the next-generation J-2X rocket engine.
6. INTERIOR VIEW, DETAIL OF PROPELLER TEST STAND. WrightPatterson ...
6. INTERIOR VIEW, DETAIL OF PROPELLER TEST STAND. - Wright-Patterson Air Force Base, Area B, Building No. 20A, Propeller Test Complex, Seventh Street, from E to G Streets, Dayton, Montgomery County, OH
TEST STAND 4697 CONSTRUCTION TOP OUT
2016-03-04
ON MARCH 4, CREW MEMBERS READIED A 900-POUND STEEL BEAM TO "TOP OUT" TEST STAND 4697, WHICH IS UNDER CONSTRUCTION TO TEST THE SPACE LAUNCH SYSTEM LIQUID OXYGEN TANK AT NASA'S MARSHALL SPACE FLIGHT CENTER.
Construction Progress of the S-IC Test Stand-Pumps
NASA Technical Reports Server (NTRS)
1962-01-01
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken April 4, 1961, shows the S-IC test stand dry once again when workers resumed construction after a 6 month delay due to booster size reconfiguration back in September of 1961. The disturbance of a natural spring during the excavation of the site required water to be pumped from the site continuously. The site was completely flooded after the pumps were shut down during the construction delay.
Credit WCT. Photographic copy of photograph, view looking northwest at ...
Credit WCT. Photographic copy of photograph, view looking northwest at complete Test Stand "D" installation as of January 1962. Note closed-circuit television camera at extreme left, along with MMH (fuel) storage tank. Hatch of Dd test cell is open; nearby stand MMH run tanks for Dd station. (JPL negative no. 384-2591-A, 25 January 1961) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
DEVELOPMENT OF AN ARMY STATIONARY AXLE TEST STAND FOR LUBRICANT EFFICIENCY EVALUATION-PART II
2017-01-13
value was estimated based on the engines maximum peak torque output, multiplied by the transmissions 1st gear ratio, high range transfer case ratio...efficiency test stand to allow for laboratory based investigation of Fuel Efficient Gear Oils (FEGO) and their impact on vehicle efficiency. Development...their impact on vehicle efficiency. The test stand was designed and developed with the following goals: • Provide a lower cost alternative for
Credit BG. West elevation of Test Stand "D" tower, with ...
Credit BG. West elevation of Test Stand "D" tower, with workshop on left, and tunnel entrance at right. Tower is accessed by exterior steel stairway; the vertical vacuum cell (Dv Cell) is obscured behind large square sunscreen. Below the sunscreen can be seen the end of the horizontal vacuum duct leading from the vacuum cell - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
1997-10-02
Participating in the Crew Equipment Integration Test (CEIT) at Kennedy Space Center are STS-87 crew members, assisted by Glenda Laws, extravehicular activity (EVA) coordinator, Johnson Space Center. Standing behind Laws are Takao Doi, Ph.D., of the National Space Development Agency of Japan, and Winston Scott, both mission specialists on STS-87. The STS-87 mission will be the fourth United States Microgravity Payload and flight of the Spartan-201 deployable satellite. During the mission, scheduled for a Nov. 19 liftoff from KSC, Dr. Doi and Scott will both perform spacewalks
Geerts, L; Adriaens, E; Alépée, N; Guest, R; Willoughby, J A; Kandarova, H; Drzewiecka, A; Fochtman, P; Verstraelen, S; Van Rompay, A R
2018-06-01
Assessment of ocular irritation is a regulatory requirement in safety evaluation of industrial and consumer products. Although a number of in vitro ocular irritation assays exist, none are capable of fully categorizing chemicals as stand-alone assays. Therefore, the CEFIC-LRI-AIMT6-VITO CON4EI (CONsortium for in vitro Eye Irritation testing strategy) project was developed to assess the reliability of eight in vitro test methods and computational models as well as establishing an optimal tiered-testing strategy. For three computational models (Toxtree, and Case Ultra EYE_DRAIZE and EYE_IRR) performance parameters were calculated. Coverage ranged from 15 to 58%. Coverage was 2 to 3.4 times higher for liquids than for solids. The lowest number of false positives (5%) was reached with EYE_IRR; this model however also gave a high number of false negatives (46%). The lowest number of false negatives (25%) was seen with Toxtree; for liquids Toxtree predicted the lowest number of false negatives (11%), for solids EYE_DRAIZE did (17%). It can be concluded that the training sets should be enlarged with high quality data. The tested models are not yet sufficiently powerful for stand-alone evaluations, but that they can surely become of value in an integrated weight-of-evidence approach in hazard assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.
7. INTERIOR VIEW, SHOWING PROPELLER TEST STAND AND BOMB BAYS. ...
7. INTERIOR VIEW, SHOWING PROPELLER TEST STAND AND BOMB BAYS. - Wright-Patterson Air Force Base, Area B, Building No. 20A, Propeller Test Complex, Seventh Street, from E to G Streets, Dayton, Montgomery County, OH
5. INTERIOR VIEW, SHOWING PROPELLER TEST STAND AND BOMB BAYS. ...
5. INTERIOR VIEW, SHOWING PROPELLER TEST STAND AND BOMB BAYS. - Wright-Patterson Air Force Base, Area B, Building No. 20A, Propeller Test Complex, Seventh Street, from E to G Streets, Dayton, Montgomery County, OH
1967-01-01
This photograph is a view of the Saturn V S-IC-5 (first) flight stage being hoisted into the S-IC-B1 test stand at the Mississippi Test Facility (MTF), Bay St. Louis, Mississippi. Begirning operations in 1966, the MTF has two test stands, a dual-position structure for running the S-IC stage at full throttle, and two separate stands for the S-II (Saturn V third) stage. It became the focus of the static test firing program. The completed S-IC stage was shipped from Michoud Assembly Facility (MAF) to the MTF. The stage was then installed into the 124-meter-high test stand for static firing tests before shipment to the Kennedy Space Center for final assembly of the Saturn V vehicle. The MTF was renamed to the National Space Technology Laboratory (NSTL) in 1974 and later to the Stennis Space Center (SSC) in May 1988.
Adusumilli, Gautam; Joseph, Solomon Eben; Samaan, Michael A; Schultz, Brooke; Popovic, Tijana; Souza, Richard B; Majumdar, Sharmila
2017-10-27
Performance tests are important to characterize patient disabilities and functional changes. The Osteoarthritis Research Society International and others recommend the 30-second Chair Stand Test and Stair Climb Test, among others, as core tests that capture two distinct types of disability during activities of daily living. However, these two tests are limited by current protocols of testing in clinics. There is a need for an alternative that allows remote testing of functional capabilities during these tests in the osteoarthritis patient population. Objectives are to (1) develop an app for testing the functionality of an iPhone's accelerometer and gravity sensor and (2) conduct a pilot study objectively evaluating the criterion validity and test-retest reliability of outcome variables obtained from these sensors during the 30-second Chair Stand Test and Stair Climb Test. An iOS app was developed with data collection capabilities from the built-in iPhone accelerometer and gravity sensor tools and linked to Google Firebase. A total of 24 subjects performed the 30-second Chair Stand Test with an iPhone accelerometer collecting data and an external rater manually counting sit-to-stand repetitions. A total of 21 subjects performed the Stair Climb Test with an iPhone gravity sensor turned on and an external rater timing the duration of the test on a stopwatch. App data from Firebase were converted into graphical data and exported into MATLAB for data filtering. Multiple iterations of a data processing algorithm were used to increase robustness and accuracy. MATLAB-generated outcome variables were compared to the manually determined outcome variables of each test. Pearson's correlation coefficients (PCCs), Bland-Altman plots, intraclass correlation coefficients (ICCs), standard errors of measurement, and repeatability coefficients were generated to evaluate criterion validity, agreement, and test-retest reliability of iPhone sensor data against gold-standard manual measurements. App accelerometer data during the 30-second Chair Stand Test (PCC=.890) and gravity sensor data during the Stair Climb Test (PCC=.865) were highly correlated to gold-standard manual measurements. Greater than 95% of values on Bland-Altman plots comparing the manual data to the app data fell within the 95% limits of agreement. Strong intraclass correlation was found for trials of the 30-second Chair Stand Test (ICC=.968) and Stair Climb Test (ICC=.902). Standard errors of measurement for both tests were found to be within acceptable thresholds for MATLAB. Repeatability coefficients for the 30-second Chair Stand Test and Stair Climb Test were 0.629 and 1.20, respectively. App-based performance testing of the 30-second Chair Stand Test and Stair Climb Test is valid and reliable, suggesting its applicability to future, larger-scale studies in the osteoarthritis patient population. ©Gautam Adusumilli, Solomon Eben Joseph, Michael A Samaan, Brooke Schultz, Tijana Popovic, Richard B Souza, Sharmila Majumdar. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 27.10.2017.
35. VIEW LOOKING NORTHWEST AT THE STATIC TEST TOWER. A ...
35. VIEW LOOKING NORTHWEST AT THE STATIC TEST TOWER. A 'DUMMY' SATURN I BOOSTER IS BEING HOISTED INTO THE TEST STAND TO TEST THE MATING OF THE BOOSTER AND THE TEST STAND. EARLY 1960, PHOTOGRAPHER UNKNOWN, MSFC PHOTO LAB. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
Patterns of growth dominance in forests of the Rocky Mountains, USA
Dan Binkley; Daniel M. Kashian; Suzanne Boyden; Margot W. Kaye; John B. Bradford; Mary A. Arthur; Paula J. Fornwalt; Michael G. Ryan
2006-01-01
We used data from 142 stands in Colorado andWyoming, USA, to test the expectations of a model of growth dominance and stand development. Growth dominance relates the distribution of growth rates of individual trees within a stand to tree sizes. Stands with large trees that account for a greater share of stand growth than of stand mass exhibit strong growth dominance....
Correlation of Space Shuttle Landing Performance with Post-Flight Cardiovascular Dysfunction
NASA Technical Reports Server (NTRS)
McCluskey, R.
2004-01-01
Introduction: Microgravity induces cardiovascular adaptations resulting in orthostatic intolerance on re-exposure to normal gravity. Orthostasis could interfere with performance of complex tasks during the re-entry phase of Shuttle landings. This study correlated measures of Shuttle landing performance with post-flight indicators of orthostatic intolerance. Methods: Relevant Shuttle landing performance parameters routinely recorded at touchdown by NASA included downrange and crossrange distances, airspeed, and vertical speed. Measures of cardiovascular changes were calculated from operational stand tests performed in the immediate post-flight period on mission commanders from STS-41 to STS-66. Stand test data analyzed included maximum standing heart rate, mean increase in maximum heart rate, minimum standing systolic blood pressure, and mean decrease in standing systolic blood pressure. Pearson correlation coefficients were calculated with the null hypothesis that there was no statistically significant linear correlation between stand test results and Shuttle landing performance. A correlation coefficient? 0.5 with a p<0.05 was considered significant. Results: There were no significant linear correlations between landing performance and measures of post-flight cardiovascular dysfunction. Discussion: There was no evidence that post-flight cardiovascular stand test data correlated with Shuttle landing performance. This implies that variations in landing performance were not due to space flight-induced orthostatic intolerance.
NASA Astrophysics Data System (ADS)
Barcena, Jorge; Garmendia, Iñaki; Triantou, Kostoula; Mergia, Konstatina; Perez, Beatriz; Florez, Sonia; Pinaud, Gregory; Bouilly, Jean-Marc; Fischer, Wolfgang P. P.
2017-05-01
A new thermal protection system for atmospheric earth re-entry is proposed. This concept combines the advantages of both reusable and ablative materials to establish a new hybrid concept with advanced capabilities. The solution consists of the design and the integration of a dual shield resulting on the overlapping of an external thin ablative layer with a Ceramic Matrix Composite (CMC) thermo-structural core. This low density ablative material covers the relatively small heat peak encountered during re-entry the CMC is not able to bear. On the other hand the big advantage of the CMC based TPS is of great benefit which can deal with the high integral heat for the bigger time period of the re-entry. To verify the solution a whole testing plan is envisaged, which as part of it includes thermal shock test by infra-red heating (heating flux up to 1 MW/m2) and vibration test under launcher conditions (Volna and Ariane 5). Sub-scale tile samples (100×100 mm2) representative of the whole system (dual ablator/ceramic layers, insulation, stand-offs) are specifically designed, assembled and tested (including the integration of thermocouples). Both the thermal and the vibration test are analysed numerically by simulation tools using Finite Element Models. The experimental results are in good agreement with the expected calculated parameters and moreover the solution is qualified according to the specified requirements.
Kamnik, Roman; Bajd, Tadej
2007-11-01
The paper presents a novel control approach for the robot-assisted motion augmentation of disabled subjects during the standing-up manoeuvre. The main goal of the proposal is to integrate the voluntary activity of a person in the control scheme of the rehabilitation robot. The algorithm determines the supportive force to be tracked by a robot force controller. The basic idea behind the calculation of supportive force is to quantify the deficit in the dynamic equilibrium of the trunk. The proposed algorithm was implemented as a Kalman filter procedure and evaluated in a simulation environment. The simulation results proved the adequate and robust performance of "patient-driven" robot-assisted standing-up training. In addition, the possibility of varying the training conditions with different degrees of the subject's initiative is demonstrated.
Ryan, Herbert; van Bentum, Jan; Maly, Thorsten
2017-04-01
In recent years high-field Dynamic Nuclear Polarization (DNP) enhanced NMR spectroscopy has gained significant interest. In high-field DNP-NMR experiments (⩾400MHz 1 H NMR, ⩾9.4T) often a stand-alone gyrotron is used to generate high microwave/THz power to produce sufficiently high microwave induced B 1e fields at the position of the NMR sample. These devices typically require a second, stand-alone superconducting magnet to operate. Here we present the design and realization of a ferroshim insert, to create two iso-centers inside a commercially available wide-bore NMR magnet. This work is part of a larger project to integrate a gyrotron into NMR magnets, effectively eliminating the need for a second, stand-alone superconducting magnet. Copyright © 2017 Elsevier Inc. All rights reserved.
40 CFR 63.9305 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Cells/Stands General Compliane Requirements § 63.9305 What are my general requirements for complying... maintain your engine test cell/stand, air pollution control equipment, and monitoring equipment in a manner... to engine test cells/stands. [68 FR 28785, May 27, 2003, as amended at 71 FR 20470, Apr. 20, 2006] ...
40 CFR 63.9305 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Cells/Stands General Compliane Requirements § 63.9305 What are my general requirements for complying... maintain your engine test cell/stand, air pollution control equipment, and monitoring equipment in a manner... to engine test cells/stands. [68 FR 28785, May 27, 2003, as amended at 71 FR 20470, Apr. 20, 2006] ...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-20
... Activities; Submission to OMB for Review and Approval; Comment Request; NESHAP for Engine Test Cells/ Stands... Cells/Stands (Renewal) ICR Numbers: EPA ICR Number 2066.05, OMB Control Number 2060-0483. ICR Status... Hazardous Air Pollutants (NESHAP) for Engine Test Cells/Stands were proposed on May 14, 2002 (67 FR 34547...
40 CFR 63.9305 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Cells/Stands General Compliane Requirements § 63.9305 What are my general requirements for complying... maintain your engine test cell/stand, air pollution control equipment, and monitoring equipment in a manner... to engine test cells/stands. [68 FR 28785, May 27, 2003, as amended at 71 FR 20470, Apr. 20, 2006] ...
40 CFR 63.9305 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Cells/Stands General Compliane Requirements § 63.9305 What are my general requirements for complying... maintain your engine test cell/stand, air pollution control equipment, and monitoring equipment in a manner... to engine test cells/stands. [68 FR 28785, May 27, 2003, as amended at 71 FR 20470, Apr. 20, 2006] ...
40 CFR 63.9305 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Cells/Stands General Compliane Requirements § 63.9305 What are my general requirements for complying... maintain your engine test cell/stand, air pollution control equipment, and monitoring equipment in a manner... to engine test cells/stands. [68 FR 28785, May 27, 2003, as amended at 71 FR 20470, Apr. 20, 2006] ...
25. HISTORIC VIEW OF A2 ROCKET (FULLY ASSEMBLED) EXCEPT FOR ...
25. HISTORIC VIEW OF A-2 ROCKET (FULLY ASSEMBLED) EXCEPT FOR GN2 CONTAINER. AT TEST STAND NO. 1 IN KUMMERSDORF. THE STAND WAS DESIGNED & CONSTRUCTED IN 1932. ROCKET IS BEING TANKED WITH LOX PRECEDING A STATIC FIRING. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
The SLS Stages Intertank Structural Test Assembly (STA) arrives at MSFC
2018-03-08
The SLS Stages Intertank Structural Test Assembly (STA) is rolling off the NASA Pegasus Barge at the MSFC Dock enroute to the MSFC 4619 Load Test Annex test facility for qualification testing via MSFC West Test Area. Historic Saturn 1-C test stand on far left, blockhouse 4670 on far right, SLS LH2 test stand, 4693, in center.
Rahal, Miguel Antônio; Alonso, Angélica Castilho; Andrusaitis, Felix Ricardo; Rodrigues, Thuam Silva; Speciali, Danielli Souza; Greve, Júlia Maria D′Andréa; Leme, Luiz Eugênio Garcez
2015-01-01
OBJECTIVE: To determine whether Tai Chi Chuan or ballroom dancing promotes better performance with respect to postural balance, gait, and postural transfer among elderly people. METHODS: We evaluated 76 elderly individuals who were divided into two groups: the Tai Chi Chuan Group and the Dance Group. The subjects were tested using the NeuroCom Balance Master® force platform system with the following protocols: static balance tests (the Modified Clinical Tests of Sensory Interaction on Balance and Unilateral Stance) and dynamic balance tests (the Walk Across Test and Sit-to-stand Transfer Test). RESULTS: In the Modified Clinical Test of Sensory Interaction on Balance, the Tai Chi Chuan Group presented a lower sway velocity on a firm surface with open and closed eyes, as well as on a foam surface with closed eyes. In the Modified Clinical Test of Sensory Interaction on Unilateral Stance, the Tai Chi Chuan Group presented a lower sway velocity with open eyes, whereas the Dance Group presented a lower sway velocity with closed eyes. In the Walk Across Test, the Tai Chi Chuan Group presented faster walking speeds than those of the Dance Group. In the Sit-to-stand Transfer Test, the Tai Chi Chuan Group presented shorter transfer times from the sitting to the standing position, with less sway in the final standing position. CONCLUSION: The elderly individuals who practiced Tai Chi Chuan had better bilateral balance with eyes open on both types of surfaces compared with the Dance Group. The Dance Group had better unilateral postural balance with eyes closed. The Tai Chi Chuan Group had faster walking speeds, shorter transfer times, and better postural balance in the final standing position during the Sit-to-stand Test. PMID:26017644
Rahal, Miguel Antônio; Alonso, Angélica Castilho; Andrusaitis, Felix Ricardo; Rodrigues, Thuam Silva; Speciali, Danielli Souza; Greve, Júlia Maria D Andréa; Leme, Luiz Eugênio Garcez
2015-03-01
To determine whether Tai Chi Chuan or ballroom dancing promotes better performance with respect to postural balance, gait, and postural transfer among elderly people. We evaluated 76 elderly individuals who were divided into two groups: the Tai Chi Chuan Group and the Dance Group. The subjects were tested using the NeuroCom Balance Master¯ force platform system with the following protocols: static balance tests (the Modified Clinical Tests of Sensory Interaction on Balance and Unilateral Stance) and dynamic balance tests (the Walk Across Test and Sit-to-stand Transfer Test). In the Modified Clinical Test of Sensory Interaction on Balance, the Tai Chi Chuan Group presented a lower sway velocity on a firm surface with open and closed eyes, as well as on a foam surface with closed eyes. In the Modified Clinical Test of Sensory Interaction on Unilateral Stance, the Tai Chi Chuan Group presented a lower sway velocity with open eyes, whereas the Dance Group presented a lower sway velocity with closed eyes. In the Walk Across Test, the Tai Chi Chuan Group presented faster walking speeds than those of the Dance Group. In the Sit-to-stand Transfer Test, the Tai Chi Chuan Group presented shorter transfer times from the sitting to the standing position, with less sway in the final standing position. The elderly individuals who practiced Tai Chi Chuan had better bilateral balance with eyes open on both types of surfaces compared with the Dance Group. The Dance Group had better unilateral postural balance with eyes closed. The Tai Chi Chuan Group had faster walking speeds, shorter transfer times, and better postural balance in the final standing position during the Sit-to-stand Test.
Integrated System Health Management (ISHM) Implementation in Rocket Engine Testing
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Morris, Jon; Turowski, Mark; Franzl, Richard; Walker, Mark; Kapadia, Ravi; Venkatesh, Meera
2010-01-01
A pilot operational ISHM capability has been implemented for the E-2 Rocket Engine Test Stand (RETS) and a Chemical Steam Generator (CSG) test article at NASA Stennis Space Center. The implementation currently includes an ISHM computer and a large display in the control room. The paper will address the overall approach, tools, and requirements. It will also address the infrastructure and architecture. Specific anomaly detection algorithms will be discussed regarding leak detection and diagnostics, valve validation, and sensor validation. It will also describe development and use of a Health Assessment Database System (HADS) as a repository for measurements, health, configuration, and knowledge related to a system with ISHM capability. It will conclude with a discussion of user interfaces, and a description of the operation of the ISHM system prior, during, and after testing.
Modified 30-second Sit to Stand test predicts falls in a cohort of institutionalized older veterans
Chassé, Kathleen
2017-01-01
Physical function performance tests, including sit to stand tests and Timed Up and Go, assess the functional capacity of older adults. Their ability to predict falls warrants further investigation. The objective was to determine if a modified 30-second Sit to Stand test that allowed upper extremity use and Timed Up and Go test predicted falls in institutionalized Veterans. Fifty-three older adult Veterans (mean age = 91 years, 49 men) residing in a long-term care hospital completed modified 30-second Sit to Stand and Timed Up and Go tests. The number of falls over one year was collected. The ability of modified 30-second Sit to Stand or Timed Up and Go to predict if participants had fallen was examined using logistic regression. The ability of these tests to predict the number of falls was examined using negative binomial regression. Both analyses controlled for age, history of falls, cognition, and comorbidities. The modified 30-second Sit to Stand was significantly (p < 0.05) related to if participants fell (odds ratio = 0.75, 95% confidence interval = 0.58, 0.97) and the number of falls (incidence rate ratio = 0.82, 95% confidence interval = 0.68, 0.98); decreased repetitions were associated with increased number of falls. Timed Up and Go was not significantly (p > 0.05) related to if participants fell (odds ratio = 1.03, 95% confidence interval = 0.96, 1.10) or the number of falls (incidence rate ratio = 1.01, 95% confidence interval = 0.98, 1.05). The modified 30-second Sit to Stand that allowed upper extremity use offers an alternative method to screen for fall risk in older adults in long-term care. PMID:28464024
Modified 30-second Sit to Stand test predicts falls in a cohort of institutionalized older veterans.
Applebaum, Eva V; Breton, Dominic; Feng, Zhuo Wei; Ta, An-Tchi; Walsh, Kayley; Chassé, Kathleen; Robbins, Shawn M
2017-01-01
Physical function performance tests, including sit to stand tests and Timed Up and Go, assess the functional capacity of older adults. Their ability to predict falls warrants further investigation. The objective was to determine if a modified 30-second Sit to Stand test that allowed upper extremity use and Timed Up and Go test predicted falls in institutionalized Veterans. Fifty-three older adult Veterans (mean age = 91 years, 49 men) residing in a long-term care hospital completed modified 30-second Sit to Stand and Timed Up and Go tests. The number of falls over one year was collected. The ability of modified 30-second Sit to Stand or Timed Up and Go to predict if participants had fallen was examined using logistic regression. The ability of these tests to predict the number of falls was examined using negative binomial regression. Both analyses controlled for age, history of falls, cognition, and comorbidities. The modified 30-second Sit to Stand was significantly (p < 0.05) related to if participants fell (odds ratio = 0.75, 95% confidence interval = 0.58, 0.97) and the number of falls (incidence rate ratio = 0.82, 95% confidence interval = 0.68, 0.98); decreased repetitions were associated with increased number of falls. Timed Up and Go was not significantly (p > 0.05) related to if participants fell (odds ratio = 1.03, 95% confidence interval = 0.96, 1.10) or the number of falls (incidence rate ratio = 1.01, 95% confidence interval = 0.98, 1.05). The modified 30-second Sit to Stand that allowed upper extremity use offers an alternative method to screen for fall risk in older adults in long-term care.
Ultra-thin solid oxide fuel cells: Materials and devices
NASA Astrophysics Data System (ADS)
Kerman, Kian
Solid oxide fuel cells are electrochemical energy conversion devices utilizing solid electrolytes transporting O2- that typically operate in the 800 -- 1000 °C temperature range due to the large activation barrier for ionic transport. Reducing electrolyte thickness or increasing ionic conductivity can enable lower temperature operation for both stationary and portable applications. This thesis is focused on the fabrication of free standing ultrathin (<100 nm) oxide membranes of prototypical O 2- conducting electrolytes, namely Y2O3-doped ZrO2 and Gd2O3-doped CeO2. Fabrication of such membranes requires an understanding of thin plate mechanics coupled with controllable thin film deposition processes. Integration of free standing membranes into proof-of-concept fuel cell devices necessitates ideal electrode assemblies as well as creative processing schemes to experimentally test devices in a high temperature dual environment chamber. We present a simple elastic model to determine stable buckling configurations for free standing oxide membranes. This guides the experimental methodology for Y 2O3-doped ZrO2 film processing, which enables tunable internal stress in the films. Using these criteria, we fabricate robust Y2O3-doped ZrO2 membranes on Si and composite polymeric substrates by semiconductor and micro-machining processes, respectively. Fuel cell devices integrating these membranes with metallic electrodes are demonstrated to operate in the 300 -- 500 °C range, exhibiting record performance at such temperatures. A model combining physical transport of electronic carriers in an insulating film and electrochemical aspects of transport is developed to determine the limits of performance enhancement expected via electrolyte thickness reduction. Free standing oxide heterostructures, i.e. electrolyte membrane and oxide electrodes, are demonstrated. Lastly, using Y2O3-doped ZrO2 and Gd2O 3-doped CeO2, novel electrolyte fabrication schemes are explored to develop oxide alloys and nanoscale compositionally graded membranes that are thermomechanically robust and provide added interfacial functionality. The work in this thesis advances experimental state-of-the-art with respect to solid oxide fuel cell operation temperature, provides fundamental boundaries expected for ultrathin electrolytes, develops the ability to integrate highly dissimilar material (such as oxide-polymer) heterostructures, and introduces nanoscale compositionally graded electrolyte membranes that can lead to monolithic materials having multiple functionalities.
1962-03-31
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September 1961 as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction about to resume, portable, floating pump stations were placed in the site to drain the flood waters caused by a disturbed natural spring months prior during excavation. In this March 31, 1962 photo, the foundation walls can once again be seen.
1961-12-22
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 22, 1961, shows danger signs posted around the abandoned site with floods nearing the top. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1962-03-15
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken March 15, 1962, shows danger signs posted around the abandoned, flooded site. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1962-03-20
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction about to resume, portable floating pump stations were placed in the site, as seen in this March 20, 1962 photo, to drain the flood waters caused by a disturbed natural spring months prior during excavation.
1961-12-04
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 4, 1961, shows the abandoned site with floods at the 11 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1961-12-18
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 18, 1961, shows the abandoned site entirely flooded. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1961-12-11
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 11, 1961, shows the abandoned site with floods above the 18 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1961-12-01
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 1, 1961, shows the abandoned site with floods at the 6 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1961-12-11
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 11, 1961, shows the abandoned site with floods above the 18 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1961-12-08
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 8, 1961, shows the abandoned site with floods at the 16 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1961-12-04
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand would have to be modified. With construction delayed, and pumps turned off, this photo, taken December 4, 1961, shows the abandoned site with floods at the 11 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1961-12-14
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 14, 1961, shows the abandoned site entirely flooded. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1962-02-02
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken February 2, 1962, shows the abandoned flooded site. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
3. VIEW LOOKING NORTH FROM LEFT TO RIGHT BAYS 5 ...
3. VIEW LOOKING NORTH FROM LEFT TO RIGHT BAYS 5 & 6 OF O-RING FACILITY, POWER PLANT. TEST STAND SUPPORT BUILDING, (REMAINING WALLS) DYNAMIC TEST TOWERS IN BACKGROUND (BOTH VERSIONS). - Marshall Space Flight Center, East Test Area, Power Plant Test Stand, Huntsville, Madison County, AL
30. SKETCH OF THE PROPOSED TEST STAND FOR THE ORDNANCE ...
30. SKETCH OF THE PROPOSED TEST STAND FOR THE ORDNANCE GUIDED MISSILE CENTER AT REDSTONE ARSENAL (PRE-DATING NASA). JUNE, 1951, HANS LUEHRSEN COLLECTION, MSFC MASTER PLANNING OFFICE. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
Redstone Test Stand Accepted Into National Register of Historical Places
NASA Technical Reports Server (NTRS)
1976-01-01
On October 02, 1976, Marshall Space Flight Center's (MSFC) Redstone test stand was received into the National Registry of Historical Places. Photographed in front of the Redstone test stand along with their wives are (left to right), Madison County Commission Chairman James Record, Dr. William R. Lucas, MSFC Center Director from June 15, 1974 until July 3, 1986, (holding certificate), Ed, Buckbee, Space and Rocket Center Director; Harvie Jones, Huntsville Architect; Dick Smith; and Joe Jones.
Up, Up Up in 60 Seconds- Watch Rocket Test Stand Soar to 221-Feet Tall
2017-01-09
In this 60-second time-lapse video, watch structural Test Stand 4693 at NASA's Marshall Space Flight Center rise 221 feet, from the start of construction in May 2014 to its end in December 2016. Test Stand 4693 will subject the 537,000-gallon liquid hydrogen tank of the Space Launch System's massive core stage to the same stresses and pressures it must endure at launch and in flight.
Credit WCT. Photographic copy of photograph, view looking east at ...
Credit WCT. Photographic copy of photograph, view looking east at Test Stand "D" during erection of the test stand tower. Note wire lath nailed over gypsum board on Building 4222/E-23 at far left in preparation for stucco covering (temporary construction). Stucco would not require painting in desert. (JPL negative no. 384-1865-A, 13 April 1959) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
2011-04-02
VANDENBERG AIR FORCE BASE, Calif. -- An overhead crane lifts the Aquarius/SAC-D spacecraft from its stand by an overhead to cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB
2011-04-02
VANDENBERG AIR FORCE BASE, Calif. -- With the aid of an overhead crane, technicians guide the Aquarius/SAC-D spacecraft from its stand to cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB
2011-04-02
VANDENBERG AIR FORCE BASE, Calif. -- Technicians monitor the lifting of the Aquarius/SAC-D spacecraft from its stand by an overhead crane to cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB
8. X15 ENGINE TESTING. A color print showing the engine ...
8. X-15 ENGINE TESTING. A color print showing the engine during test firing. View from the rear of the test stand looking northwest. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
Design of an x-ray telescope optics for XEUS
NASA Astrophysics Data System (ADS)
Graue, Roland; Kampf, Dirk; Wallace, Kotska; Lumb, David; Bavdaz, Marcos; Freyberg, Michael
2017-11-01
The X-ray telescope concept for XEUS is based on an innovative high performance and light weight Silicon Pore Optics technology. The XEUS telescope is segmented into 16 radial, thermostable petals providing the rigid optical bench structure of the stand alone XRay High Precision Tandem Optics. A fully representative Form Fit Function (FFF) Model of one petal is currently under development to demonstrate the outstanding lightweight telescope capabilities with high optically effective area. Starting from the envisaged system performance the related tolerance budgets were derived. These petals are made from ceramics, i.e. CeSiC. The structural and thermal performance of the petal shall be reported. The stepwise alignment and integration procedure on petal level shall be described. The functional performance and environmental test verification plan of the Form Fit Function Model and the test set ups are described in this paper. In parallel to the running development activities the programmatic and technical issues wrt. the FM telescope MAIT with currently 1488 Tandem Optics are under investigation. Remote controlled robot supported assembly, simultaneous active alignment and verification testing and decentralised time effective integration procedures shall be illustrated.
Building on 50 Years of Systems Engineering Experience for a New Era of Space Exploration
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.; Lyles, Garry M.; McConnaughey, Paul K.
2008-01-01
Over the past 50 years, the National Aeronautics and Space Administration (NASA) has delivered space transportation solutions for America's complex missions, ranging from scientific payloads that expand knowledge, such as the Hubble Space Telescope, to astronauts and lunar rovers destined for voyages to the Moon. Currently, the venerable Space Shuttle, which has been in service since 1981, provides the United States (US) capability for both crew and heavy cargo to low-Earth orbit to construct the International Space Station, before the Shuttle is retired in 2010. In the next decade, NASA will replace this system with a duo of launch vehicles: the Ares I crew launch vehicle and the Ares V cargo launch vehicle. The goals for this new system include increased safety and reliability coupled with lower operations costs that promote sustainable space exploration for decades to come. The Ares I will loft the Orion crew exploration vehicle, while the heavy-lift Ares V will carry the Altair lunar lander, as well as the equipment and supplies needed to construct a lunar outpost for a new generation of human and robotic space pioneers. NASA's Marshall Space Flight Center manages the Shuttle's propulsion elements and is managing the design and development of the Ares rockets, along with a host of other engineering assignments in the field of scientific space exploration. Specifically, the Marshall Center's Engineering Directorate houses the skilled workforce and unique facilities needed to build capable systems upon the foundation laid by the Mercury, Gemini, Apollo, and Shuttle programs. This paper will provide details of the in-house systems engineering and vehicle integration work now being performed for the Ares I and planned for the Ares V. It will give an overview of the Ares I system-level testing activities, such as the ground vibration testing that will be conducted in the Marshall Center's Dynamic Test Stand to verify the integrated vehicle stack's structural integrity and to validate computer modeling and simulation, as well as the main propulsion test article analysis to be conducted in the Static Test Stand. Ultimately, fielding a robust space transportation solution that will carry international explorers and essential payloads will pave the way for a new era of scientific discovery now dawning beyond planet Earth.
Kagwa, Sharon A; Boström, Anne-Marie; Ickert, Carla; Slaughter, Susan E
2018-03-01
To explore the experience of HCAs encouraging residents living in residential care to complete the sit-to-stand activity and to identify the strategies HCAs used to integrate the activity into their daily work routines. Decreased mobility in advanced ageing is further reduced when entering a residential care facility. Interventions such as the sit-to-stand activity have been shown to have a positive effect on the mobility of older people. There is evidence to suggest that healthcare aides are able to support residents to complete the sit-to-stand activity as part of their daily work routines; however, little is known about how healthcare aides actually do this with residents living in residential care. A qualitative interview study included seven purposively sampled HCAs working in residential care facilities. Semistructured interviews were analysed using inductive qualitative content analysis. The HCAs' experience with the sit-to-stand activity was represented by the following four categories: Resident participation, Feeling misunderstood and disrespected, Time and workload, and Management involvement. HCAs identified three strategies to help them support residents to complete the sit-to-stand activity: Motivating residents, Completing activity in a group and Using time management skills. HCAs reported some encouragement from managers and cooperation from residents to complete the sit-to-stand activity with residents; however, they also felt constrained by time limitations and workload demands and they felt misunderstood and disrespected. HCAs were able to identify several strategies that helped them to integrate the sit-to-stand activity into their daily routines. This study highlights the challenges and supportive factors of implementing the sit-to-stand activity into the daily work routine of HCAs. The study also identifies the strategic role of nurse managers when implementing interventions in residential care facilities. © 2017 John Wiley & Sons Ltd.
Shukla, Shrivridhi; Muchomba, Felix M; McCoyd, Judith L M
2018-06-01
Integrated models of HIV/AIDS service delivery are believed to have advantages over stand-alone models of care from health planners' and providers' perspectives. Integration models differ, yet there is little information about the influence of differing models on workers' beliefs about models' efficacy. Here, we examine the effect of integration of HIV care into the general health system in India. In 2014, India replaced its stand-alone model of HIV service delivery-Community Care Centers (CCCs)-with a purported integrated model that delivers HIV medical services at general hospitals and HIV psychosocial services at nearby Care and Support Centers (CSCs). We examine 15 health workers' perceptions of how change from the earlier stand-alone model to the current model impacted women's care in a district in Uttar Pradesh, India. Results indicate that (1) Women's antiretroviral (ART) adherence and utilization of psychosocial support service for HIV/AIDS suffered when services were not provided at one site; (2) Provision of inpatient care in the CCC model offered women living in poverty personal safety in accessing HIV health services and promoted chances of competent ART usage and repeat service utilization; and (3) Although integration of HIV services with the general health system was perceived to improve patient anonymity and decrease chances of HIV-related stigma and discrimination, resource shortages continued to plague the integrated system while shifting costs of time and money to the patients. Findings suggest that integration efforts need to consider the context of service provision and the gendered nature of access to HIV care.
1963-10-22
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the progress of the S-IC test stand as of October 22, 1963. Spherical liquid hydrogen tanks can be seen to the left. Just to the lower front of those are the cylindrical liquid oxygen (LOX) tanks.
1961-06-01
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken July 13, 1961, progress is being made with the excavation of the S-IC test stand site. During the digging, a natural spring was disturbed which caused a constant flooding problem. Pumps were used to remove the water all through the construction process and the site is still pumped today.
1963-03-29
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In the early stages of excavation, a natural spring was disturbed that caused a water problem which required constant pumping from the site and is even pumped to this day. Behind this reservoir of pumped water is the S-IC test stand boasting its ever-growing four towers as of March 29, 1963.
1961-08-05
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photograph taken on August 5th, 1961, a back hoe is nearly submerged in water in the test stand site. During the initial digging, the disturbance of a natural spring contributed to constant water problems during the construction process. It was necessary to pump the water from the site on a daily basis and is still pumped from the site today.
1961-08-14
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress of the test stand as of August 14, 1961. Water gushing in from the disturbance of a natural spring contributed to constant water problems during the construction process. It was necessary to pump water from the site on a daily basis and is still pumped from the site today. The equipment is partially submerged in the water emerging from the spring.
Fuzzy adaptive integration scheme for low-cost SINS/GPS navigation system
NASA Astrophysics Data System (ADS)
Nourmohammadi, Hossein; Keighobadi, Jafar
2018-01-01
Due to weak stand-alone accuracy as well as poor run-to-run stability of micro-electro mechanical system (MEMS)-based inertial sensors, special approaches are required to integrate low-cost strap-down inertial navigation system (SINS) with global positioning system (GPS), particularly in long-term applications. This paper aims to enhance long-term performance of conventional SINS/GPS navigation systems using a fuzzy adaptive integration scheme. The main concept behind the proposed adaptive integration is the good performance of attitude-heading reference system (AHRS) in low-accelerated motions and its degradation in maneuvered or accelerated motions. Depending on vehicle maneuvers, gravity-based attitude angles can be intelligently utilized to improve orientation estimation in the SINS. Knowledge-based fuzzy inference system is developed for decision-making between the AHRS and the SINS according to vehicle maneuvering conditions. Inertial measurements are the main input data of the fuzzy system to determine the maneuvering level during the vehicle motions. Accordingly, appropriate weighting coefficients are produced to combine the SINS/GPS and the AHRS, efficiently. The assessment of the proposed integrated navigation system is conducted via real data in airborne tests.
6. NORTH REAR, WEST PART. VIEW TO SOUTHWEST. TEST STAND ...
6. NORTH REAR, WEST PART. VIEW TO SOUTHWEST. TEST STAND 1-5 AT RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
13. VIEW FROM COLD CALIBRATION BLOCKHOUSE LOOKING DOWN CONNECTING TUNNEL ...
13. VIEW FROM COLD CALIBRATION BLOCKHOUSE LOOKING DOWN CONNECTING TUNNEL TO COLD CALIBRATION TEST STAND BASEMENT, SHOWING HARD WIRE CONNECTION (INSTRUMENTATION AND CONTROL). - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL
2. VIEW NORTHWEST FROM LEFT TO RIGHT: COLD CALIBRATION BLOCKHOUSE, ...
2. VIEW NORTHWEST FROM LEFT TO RIGHT: COLD CALIBRATION BLOCKHOUSE, COLD CALIBRATION TEST STAND FOR FL ENGINE FOR SATURN V. EXHAUST DUCT IN FOREGROUND. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL
Muñoz-Esparza, Carmen; Zorio, Esther; Domingo Valero, Diana; Peñafiel-Verdú, Pablo; Sánchez-Muñoz, Juan J; García-Molina, Esperanza; Sabater, María; Navarro, Marina; San-Román, Irene; Pérez, Inmaculada; Santos, Juan J; Cabañas-Perianes, Valentín; Valdés, Mariano; Pascual, Domingo; García-Alberola, Arcadio; Gimeno Blanes, Juan R
2017-11-01
Patients with congenital long QT syndrome (LQTS) have an abnormal QT adaptation to sudden changes in heart rate provoked by standing. The present study sought to evaluate the standing test in a cohort of LQTS patients and to assess if this QT maladaptation phenomenon is ameliorated by beta-blocker therapy. Electrographic assessments were performed at baseline and immediately after standing in 36 LQTS patients (6 LQT1 [17%], 20 LQT2 [56%], 3 LQT7 [8%], 7 unidentified-genotype patients [19%]) and 41 controls. The corrected QT interval (QTc) was measured at baseline (QTc supine ) and immediately after standing (QTc standing ); the QTc change from baseline (ΔQTc) was calculated as QTc standing - QTc supine . The test was repeated in 26 patients receiving beta-blocker therapy. Both QTc standing and ΔQTc were significantly higher in the LQTS group than in controls (QTc standing , 528 ± 46ms vs 420 ± 15ms, P < .0001; ΔQTc, 78 ± 40ms vs 8 ± 13ms, P < .0001). No significant differences were noted between LQT1 and LQT2 patients. Typical ST-T wave patterns appeared after standing in LQTS patients. Receiver operating characteristic curves of QTc standing and ΔQTc showed a significant increase in diagnostic value compared with the QTc supine (area under the curve for both, 0.99 vs 0.85; P < .001). Beta-blockers attenuated the response to standing in LQTS patients (QTc standing , 440 ± 32ms, P < .0001; ΔQTc, 14 ± 16ms, P < .0001). Evaluation of the QTc after the simple maneuver of standing shows a high diagnostic performance and could be important for monitoring the effects of beta-blocker therapy in LQTS patients. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
The partial coherence modulation transfer function in testing lithography lens
NASA Astrophysics Data System (ADS)
Huang, Jiun-Woei
2018-03-01
Due to the lithography demanding high performance in projection of semiconductor mask to wafer, the lens has to be almost free in spherical and coma aberration, thus, in situ optical testing for diagnosis of lens performance has to be established to verify the performance and to provide the suggesting for further improvement of the lens, before the lens has been build and integrated with light source. The measurement of modulation transfer function of critical dimension (CD) is main performance parameter to evaluate the line width of semiconductor platform fabricating ability for the smallest line width of producing tiny integrated circuits. Although the modulation transfer function (MTF) has been popularly used to evaluation the optical system, but in lithography, the contrast of each line-pair is in one dimension or two dimensions, analytically, while the lens stand along in the test bench integrated with the light source coherent or near coherent for the small dimension near the optical diffraction limit, the MTF is not only contributed by the lens, also by illumination of platform. In the study, the partial coherence modulation transfer function (PCMTF) for testing a lithography lens is suggested by measuring MTF in the high spatial frequency of in situ lithography lens, blended with the illumination of partial and in coherent light source. PCMTF can be one of measurement to evaluate the imperfect lens of lithography lens for further improvement in lens performance.
2012-06-25
NASA engineers tested an Aerojet AJ26 rocket engine on the E-1 Test Stand at Stennis Space Center on June 25, 2012, against the backdrop of the B-1/B-2 Test Stand. The engine will be used by Orbital Sciences Corporation to power commercial cargo flights to the International Space Station.
6. AN EARLY VIEW OF THE COMPLETE X15 VEHICLE TEST ...
6. AN EARLY VIEW OF THE COMPLETE X-15 VEHICLE TEST STAND. Looking to the northeast. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
A-3 Test Stand construction update
NASA Technical Reports Server (NTRS)
2007-01-01
The concrete foundation placed Dec. 18 (foreground) for Stennis Space Center's future A-3 Test Stand has almost completely cured by early January, according to Bo Clarke, NASA's contracting officer technical representative for the foundation contract. By late December, construction on foundations for many of the test stand's support structures - diffuser, liquid oxygen, isopropyl alcohol and water tanks and gaseous nitrogen bottle battery - had begun with the installation of (background) `mud slabs.' The slabs provide a working surface for the reinforcing steel and foundation forms.
A-3 Test Stand construction update
2007-12-18
The concrete foundation placed Dec. 18 (foreground) for Stennis Space Center's future A-3 Test Stand has almost completely cured by early January, according to Bo Clarke, NASA's contracting officer technical representative for the foundation contract. By late December, construction on foundations for many of the test stand's support structures - diffuser, liquid oxygen, isopropyl alcohol and water tanks and gaseous nitrogen bottle battery - had begun with the installation of (background) `mud slabs.' The slabs provide a working surface for the reinforcing steel and foundation forms.
NASA Astrophysics Data System (ADS)
Broughton, Rachel; Gomez, Michael; Zolfaghari, Ali; Morris, Lewis
2016-10-01
A self-aligning Gaussian telescope has been designed to compensate for the effect of movement in the ITER vacuum vessel on the transmission line. The purpose of the setup is to couple microwaves into and out of the vessel across the vacuum windows while allowing for both slow movements of the vessel, due to thermal growth, and rapid movements, due to vibrations and disruptions. Additionally, a test stand has been designed specifically to hold this telescope in order to imitate these movements. Consequently, this will allow for the assessment of the efficacy in applying the self-aligning Gaussian telescope approach. The motions of the test stand, as well as the stress on the telescope mechanism, have been virtually simulated using ANSYS workbench. A prototype of this test stand and self-aligning telescope will be built using a combination of custom machined parts and ordered parts. The completed mechanism will be tested at the lab in four different ways: slow single- and multi-direction movements, rapid multi-direction movement, functional laser alignment and self-aligning tests, and natural frequency tests. Once the prototype successfully passes all requirements, it will be tested with microwaves in the LFSR transmission line test stand at General Atomics. This work is supported by US DOE Contract No. DE-AC02-09CH11466.
Thalassinos, Michalis; Fotiadis, Giorgos; Arabatzi, Fotini; Isableu, Brice; Hatzitaki, Vassilia
2017-09-15
The authors asked how sport expertise modulates visual field dependence and sensory reweighting for controlling posture. Experienced soccer athletes, ballet dancers, and nonathletes performed (a) a Rod and Frame test and (b) a 100-s bipedal stance task during which vision and proprioception were successively or concurrently disrupted in 20-s blocks. Postural adaptation was assessed in the mean center of pressure displacement, root mean square of center of pressure velocity and ankle muscles integrated electromyography activity. Soccer athletes were more field dependent than were nonathletes. During standing, dancers were more destabilized by vibration and required more time to reweigh sensory information compared with the other 2 groups. These findings reveal a sport skill-specific bias in the reweighing of sensory inputs for spatial orientation and postural control.
AIM being prepared for integrated testing and flight simulation
2007-03-24
Flight simulation No. 3 is on the schedule for the Pegasus XL launch vehicle, seen here in Building 1555 on North Vandenberg Air Force Base in California. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
AIM being prepared for integrated testing and flight simulation
2007-03-24
In Building 1555 on North Vandenberg Air Force Base in California, technicians work on the separation system to be mated to the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
AIM being prepared for integrated testing and flight simulation
2007-03-24
In Building 1555 on North Vandenberg Air Force Base in California, technicians look over the spacecraft handling fixture that will be used to lift the AIM spacecraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.